
Chapter 12

Peridynamic Thermal Diffusion

The peridynamic (PD) theory can be applied to other physical fields such as thermal

diffusion, neutronic diffusion, vacancy diffusion, and electrical potential distribu-

tion. This paves the way for fully coupling various field equations and deformation

within the framework of peridynamics using the same computational domain.

12.1 Basics

In heat conduction, the thermal energy is transported through phonons, lattice

vibrations, and electrons. Usually, electrons are the vehicles through which thermal

energy is transported in metals while phonons are the heat carriers in insulators and

semiconductors. This process of thermal energy transfer is inherently nonlocal

because the carriers arrive at one point, having brought thermal energy from

another. The mean free path of the heat carriers is the average distance a carrier

travels before its excess energy is lost. As the heat carriers’ mean free path becomes

comparable to the characteristic lengths, the nonlocality needs to be taken into

account in the continuum model.

Although heat transfer and temperature are closely related, they are of a different

nature. Temperature has only a magnitude, and heat transfer has a direction as well

as a magnitude. Temperature difference between the material points in a medium is

the driving force for any type of heat transfer. In a body, heat flows in the direction

of decreasing temperature. Physical experiments show that the rate of heat flow is

proportional to the gradient of the temperature, and the proportionality constant, k,
represents thermal conductivity of the material. This observation, referred to as

Fourier’s law of heat conduction, is expressed as

q ¼ �krΘ; (12.1)

where q is the heat flux vector, k is the thermal conductivity, andrΘ is the gradient

of temperature. The minus sign ensures that heat flows in the direction of decreasing
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temperature. The rate of heat entering through the bounding surface, S, with unit

normal, n, can be obtained from

_Q ¼ �
ð
S

q:ndS; (12.2)

in which the minus sign ensures that heat flow is into the body. If the rate of heat, _Q,
is positive, it indicates a heat gain. Otherwise, it is a heat loss. This formulation

employing Fourier’s law as the local constitutive relation has been used success-

fully to model macroscale heat conduction.

12.2 Nonlocal Thermal Diffusion

Nonlocality often becomes important at low temperatures, as exhibited in cryogen-

ics systems, since the heat carriers have a longer mean free path at lower

temperatures. It has been found that nonlocality should also be accounted for in

problems in which the temperature gradients are steep. This is because the penetra-

tion depth, the length characterizing the temperature gradient, becomes short, even

becoming the same order of magnitude as the mean free path of the carrier. In such

instances, it is necessary to consider the nonlocality of the heat transport in a

continuum model. With the miniaturization of devices, the short geometric length

scales also necessitated the inclusion of nonlocal effects in microscale and nano-

scale models (Tien and Chen 1994).

Several nonlocal heat conduction theories have been proposed in the last few

decades. In the early 1980s, Luciani et al. (1983) developed a nonlocal theory to

better represent electron heat transport down a steep temperature gradient by

introducing a nonlocal expression for the heat flux. The nonlocal model was in

better agreement with probabilistic simulations (Fokker-Planck simulations) than

the local models. Later, Mahan and Claro (1988) proposed a nonlocal relation

between the heat current, determined from Boltzmann’s equation, and the tempera-

ture gradient. In the 1990s, Sobolev (1994) introduced a model in which both space

and time nonlocality are taken into account in the strong form, i.e., integral form, of

the energy balance, Gibbs, and entropy balance equations. Lebon and Grmela

(1996), proposed a weakly nonlocal model (weakly nonlocal models are typically

based on gradient formulations). The model was based on nonequilibrium thermo-

dynamics, for which an extra variable is added to the basic state variables to account

for nonlocality. Subsequently, they extended their model to include nonlinearity

(Grmela and Lebon 1998). More recently, the development of nonlocal heat

conduction equations has been motivated by the miniaturization of devices. A

number of researchers have put forth nonlocal models with the objective of

capturing heat transport in microscale and nanoscale devices. One example of

this is the ballistic-diffusive heat equation by Chen (2002), which was derived
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from the Boltzmann’s equation, and it accounts for nonlocality in heat transport.

Another example is by Alvarez and Jou (2007). They developed their model by

including nonlocal (and memory/lag) effects in irreversible thermodynamics. Tzou

and Guo (2010) constructed their model by incorporating a nonlocal (and lag) term

into the Fourier law.

An area of interest is determining the temperature field in the presence of

emerging discontinuities. One class of problems that contains a discontinuity is

the heat transfer process that involves phase changes such as solidification and

melting (Özişik 1980). This process is commonly referred to as the Stefan problem,

and there are a number of technologically important problems that involve heat

transfer with phase change. Examples of these include ablation of space vehicles

during reentry and casting of metals. Another heat conduction problem with an

emerging discontinuity is the rewetting problem from the nuclear industry.

Rewetting in a nuclear reactor is employed to restore temperatures to a safe range

following accidental dry-out or loss of coolant. Emergency cooling is introduced to

the system via an upward moving water front or by spraying from the top of the

reactor (Duffey and Porthous 1973; Dorfman 2004). A moving discontinuity occurs

in the heat-generating solid at the quench front due to the sudden change in the heat

transfer condition at the solid surface.

A peridynamic approach to heat conduction is advantageous because it not only

accounts for nonlocality but it also allows for the determination of the temperature

field in spite of discontinuities. The peridynamic heat conduction is a continuum

model; it is not a discrete model. As such, the phonon and electron motions are not

explicitly modeled. Initial successful attempts have recently been made to develop

heat conduction equations in the peridynamic framework. Gerstle et al. (2008)

developed a PD model for electromigration that accounts for heat conduction in a

one-dimensional body. Additionally, Bobaru and Duangpanya (2010, 2012)

introduced a multi-dimensional peridynamic heat conduction equation, and consid-

ered domains with discontinuities such as insulated cracks. Both studies adopted the

bond-based PD approach. Later, Agwai (2011) derived a state-based PD heat

conduction equation, which is described in the subsequent section.

12.3 State-Based Peridynamic Thermal Diffusion

Within the peridynamic framework, the interaction between material points is

nonlocal. For thermal diffusion, the nonlocal interaction between material points

is due to the exchange of heat energy. Therefore, a material point will exchange

heat with points within its neighborhood defined by the horizon. In the Lagrangian

formalism, the governing heat conduction equation corresponds to the Euler-

Lagrange equation. The Euler-Lagrange equation based on the Lagrangian, L, is
given in the following form (Moiseiwitsch 2004):

12.3 State-Based Peridynamic Thermal Diffusion 205



d

dt

@L

@ _Θ

� �
� @L

@Θ
¼ 0; (12.3a)

with

L ¼
ð
V

LdV; (12.3b)

in which Θ is the temperature and L is the Lagrangian density. The Lagrangian

density of a peridynamic material point can be defined as

L ¼ Z þ ρs
_

Θ; (12.4)

where Z is thermal potential and is a function of all the temperatures of the points

with which x interacts, ρ is the density, and s
_

is the heat source per unit mass, which

includes the rate of heat generation per unit volume and the internal energy storage.

There is a thermal potential associated with each material point, and the term ZðiÞ
represents the thermal potential of material point xðiÞ. The microthermal potential,

zðiÞðjÞ; is the thermal potential due to the interaction (exchange of heat energy)

between material points xðiÞ and xðjÞ. The microthermal potential is related to heat

energy exchange, which depends on the temperature difference between the mate-

rial points. Therefore, the microthermal potential is dependent on the temperature

difference between pairs of material points. More specifically, the microthermal

potential, zðiÞðjÞ, depends on the temperature difference between point i and all other

material points that interact with point xðiÞ . Note that the microthermal potential

zðjÞðiÞ 6¼ zðiÞðjÞ , as zðjÞðiÞ depends on the state of material points that interact with

material point xðjÞ. The microthermal potential is denoted as follows:

zðiÞðjÞ ¼ zðiÞðjÞ Θð1iÞ � ΘðiÞ; Θð2iÞ � ΘðiÞ; � � �
� �

; (12.5a)

zðjÞðiÞ ¼ zðjÞðiÞ Θð1jÞ � ΘðjÞ; Θð2jÞ � ΘðjÞ; � � �
� �

; (12.5b)

whereΘðiÞ is the temperature at pointxðiÞ,Θð1iÞ is the temperature of the first material

point that interacts with point xðiÞ, and, similarly,ΘðjÞ is the temperature at point xðjÞ
whileΘð1jÞ is the temperature of the first material point that interacts with point xðjÞ.

The thermal potential of point xðiÞ, ZðiÞ is defined as

ZðiÞ ¼
1

2

X1
j¼1

1

2
zðiÞðjÞ Θð1iÞ � ΘðiÞ; Θð2iÞ � ΘðiÞ; � � �

� ��
þ zðjÞðiÞ Θð1jÞ � ΘðjÞ; Θð2jÞ � ΘðjÞ; � � �

� ��
VðjÞ;

(12.6)
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where VðjÞ is the volume associated with material point xðjÞ. Basically, this equation
indicates that the thermal potential at a point is the summation over all the

microthermal potential associated with that point. The microthermal potential and

therefore thermal potential are both functions of temperature. The Euler-Lagrange

equation, Eq. 12.3a, for material point xðkÞ becomes

d

dt

@L

@ _ΘðkÞ

 !
� @L

@ΘðkÞ
¼ 0; (12.7a)

in which

L ¼
X1
i¼1

LðiÞ VðiÞ; (12.7b)

with

LðiÞ ¼ ZðiÞ þ ρs
_

ðiÞΘðiÞ: (12.7c)

Consequently, invoking Eq. 12.6 into Eq. 12.7b results in the Lagrangian

function as

L ¼
X1
i¼1

1

2

X1
j¼1

1

2

zðiÞðjÞ Θð1iÞ � ΘðiÞ;Θð2iÞ � ΘðiÞ; � � �
� �

þzðjÞðiÞ Θð1jÞ � ΘðjÞ;Θð2jÞ � ΘðjÞ; � � �
� �

" #
VðjÞ

(

þ ρs
_

ðiÞΘðiÞ

)
VðiÞ;

(12.8a)

which can be written in an expanded form by showing only the terms associated

with the material point xðkÞ:

L ¼ � � � 1
2

X1
j¼1

�
1

2
zðkÞðjÞ Θð1kÞ � ΘðkÞ; Θð2kÞ � ΘðkÞ; � � �

� ��

þ zðjÞðkÞ Θð1jÞ � ΘðjÞ; Θð2jÞ � ΘðjÞ; � � �
� ��

VðjÞ

	
VðkÞ � � �

� � � þ 1

2

X1
i¼1

�
1

2
zðiÞðkÞ Θð1iÞ � ΘðiÞ; Θð2iÞ � ΘðiÞ; � � �

� ��

þ zðkÞðiÞ Θð1kÞ � ΘðkÞ; Θð2kÞ � ΘðkÞ; � � �
� ��

VðkÞ

	
VðiÞ � � �

� � � þ ρs
_

ðkÞΘðkÞ
� �

VðkÞ � � �

(12.8b)
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or

L ¼ � � �
X1
j¼1

1

2
zðkÞðjÞ Θð1kÞ � ΘðkÞ; Θð2kÞ � ΘðkÞ; � � �

� ���

þ zðjÞðkÞ Θð1jÞ � ΘðjÞ; Θð2jÞ � ΘðjÞ; � � �
� ��

VðjÞ

	
VðkÞ � � �

� � � þ ρs
_

ðkÞΘðkÞ
� �

VðkÞ � � � :

(12.8c)

With this representation, the Euler-Lagrange equation, Eq. 12.7a, becomes

X1
j¼1

1

2

X1
i¼1

@zðkÞðiÞ
@ ΘðjÞ � ΘðkÞ
� �VðiÞ

 !
@ ΘðjÞ � ΘðkÞ
� �

@ΘðkÞ

 

þ
X1
j¼1

1

2

X1
i¼1

@zðiÞðkÞ
@ ΘðkÞ � ΘðjÞ
� �VðiÞ

 !
@ ΘðkÞ � ΘðjÞ
� �

@ΘðkÞ
VðjÞ

!
VðkÞ þ ρs

_

ðkÞ VðkÞ ¼ 0

(12.9a)

or

�
X1
j¼1

1

2

X1
i¼1

@zðkÞðiÞ
@ ΘðjÞ � ΘðkÞ
� �VðiÞ

 !
þ
X1
j¼1

X1
i¼1

@zðiÞðkÞ
@ ΘðkÞ � ΘðjÞ
� �VðiÞ

 !
þ ρs

_

ðkÞ ¼ 0;

(12.9b)

in which the terms
P1
i¼1

VðiÞ@zðkÞðiÞ=@ðΘðjÞ � ΘðkÞÞ and
P1
i¼1

VðiÞ@zðiÞðkÞ=@ðΘðkÞ � ΘðjÞÞ
can be thought of as the heat flow density from material point xðjÞ to material point

xðkÞ and the heat flow density from material point xðkÞ to xðjÞ, respectively. Based on
this interpretation, HðkÞðjÞ and HðjÞðkÞ are introduced and defined as

HðkÞðjÞ ¼ 1

2

1

VðjÞ

X1
i¼1

@zðkÞðiÞ
@ ΘðjÞ � ΘðkÞ
� �VðiÞ

 !
and HðjÞðkÞ ¼ 1

2

1

VðjÞ

X1
i¼1

@zðiÞðkÞ
@ ΘðkÞ � ΘðjÞ
� �VðiÞ

 !
:

(12.10)

Using these definitions allows Eq. 12.9b to be rewritten as follows:

X1
j¼1

�HðkÞðjÞ þ HðjÞðkÞ
� �

VðjÞ þ ρs
_

ðkÞ ¼ 0: (12.11)

A PD state can be thought of as an infinite dimensional array that contains certain

information about all the interactions associated with a particular material point. All of

the heat flow density associated with each interaction assembled in an infinite-

dimensional array is referred to as the heat flow scalar state, �hðx; tÞ , where t is the
time.Theassembledheat flowstate formaterial pointsxðkÞandxðjÞmaybe represented as
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h xðkÞ; t
� � ¼

..

.

HðkÞðjÞ
..
.

8>><
>>:

9>>=
>>; and h xðjÞ; t

� � ¼
..
.

HðjÞðkÞ
..
.

8>><
>>:

9>>=
>>;: (12.12)

The heat flow state associates each pair of interacting material points with a heat

flow density, and enables the expressions for heat flow densities HðkÞðjÞ and HðjÞðkÞ as

HðkÞðjÞ ¼ h xðkÞ; t
� �

xðjÞ � xðkÞ

 �

and HðjÞðkÞ ¼ h xðjÞ; t
� �

xðkÞ � xðjÞ

 �

; (12.13)

where the angled brackets include the interacting material points. The microthermal

potentials may also be assembled in a state, which is called the microthermal

potential scalar state, zðx; tÞ, permitting the following representation:

zðkÞðjÞ ¼ z xðkÞ; t
� �

xðjÞ � xðkÞ

 �

and zðjÞðkÞ ¼ z xðjÞ; t
� �

xðkÞ � xðjÞ

 �

: (12.14)

Applying the state notation, Eq. 12.11 can be rewritten as

X1
j¼1

h xðkÞ; t
� �

xðjÞ � xðkÞ

 �� h xðjÞ; t

� �
xðkÞ � xðjÞ

 �� �

VðjÞ � ρs
_

ðkÞ ¼ 0: (12.15)

Transforming the summation to integration over the material points within the

horizon as given by

X1
j¼1

�ð ÞVðjÞ !
ð
H

�ð Þ dVx0 (12.16)

permits Eq. 12.15 to be recast as

ð
H

h x; tð Þ x0 � xh i � h x0; tð Þ x� x0h ið ÞdVx0 � ρs
_ ¼ 0; (12.17)

where hðx; tÞ x0 � xih ¼ 0 for x0 =2H, and the domain of integration,H, is defined by
the horizon of the material point, x, that interacts with other material points in its

own family.

For convenience, the following notation is adopted:

h x; tð Þ ¼ h; h x0; tð Þ ¼ h0: (12.18)

Also, the temperature scalar state, τ, is defined as

τ x; tð Þ x0�xh i ¼ Θ x0; tð Þ � Θ x; tð Þ: (12.19)
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The temperature state simply contains the temperature difference associated

with each interaction of a particular material point. Since, the microthermal poten-

tial is dependent on the temperature difference of all the interactions associated

with the material point, it may be written as a function of the temperature state

z ¼ z τð Þ: (12.20)

Therefore, the heat flow state can also be written as a function of the temperature

state

h ¼ h τð Þ: (12.21)

As outlined by Bathe (1996), the heat conduction equation should explicitly

include the rate at which heat energy is stored when the heat flow changes over a

short period of time. This rate of internal energy storage density, _εs , is a negative

energy source and is given by

_εs ¼ cv
@Θ
@t

; (12.22)

for which cv is the specific heat capacity.

Therefore, the source term in Eq. 12.15 is then replaced by s
_ ¼ _εs � sb, where sb

is the heat source due to volumetric heat generation per unit mass. Invoking

Eq. 12.22 into Eq. 12.15 leads to the transient form of the state-based peridynamic

thermal diffusion equation

ρcv _Θ x; tð Þ ¼
ð
H

h x; tð Þ x0�xh i � h x0; tð Þ x� x0h idV0 þ hs x; tð Þ; (12.23)

in which hsðx; tÞ ¼ ρsbðx; tÞ is the heat source due to volumetric heat generation.

The resulting equation is an integro-differential equation in time and space. It

contains differentiation with respect to time, and integration in the spatial domain.

It does not contain any spatial derivatives of temperature; thus, the PD thermal

equation is valid everywhere whether or not discontinuities exist in the domain.

Construction of its solution involves time and spatial integrations while being

subject to conditions on the boundary of the domain, R, and initial conditions.
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12.4 Relationship Between Heat Flux and Peridynamic

Heat Flow States

The heat flow scalar state, h, contains the heat flow densities associated with all the

interactions. The heat flow density, hðx; tÞ x0 � xih , has units of heat flow rate (rate

of heat energy change) per volume squared. The integral in Eq. 12.23

ð
H

h x; tð Þ x0 � xh i � h x0; tð Þ x� x0h idV0 (12.24)

is similar to the divergence of heat flux,r � q, and it has units of heat flow rate per

volume. Therefore, the peridynamic heat flow state can be related to the heat flux,q.

Multiplying the PD heat conduction equation, Eq. 12.23, by a temperature

variation of ΔΘ and integrating over the entire domain results in

ð
V

ρcv _ΘΔΘdV ¼
ð
V

ð
H

h x; tð Þ x0 � xh i � h x0; tð Þ x� x0h i½ �ΔΘdV0dV

þ
ð
V

hs x; tð ÞΔΘdVt :
(12.25)

Moving the last term on the right-hand side of Eq. 12.25, the heat generation

term, to the left-hand side, and changing the integration from H to V due to the fact

that

h x; tð Þ x0 � xh i ¼ h x0; tð Þ x� x0h i ¼ 0 for x0 =2H; (12.26)

leads to the following form of the equation:

ð
V

ρcv _Θ� hs x; tð Þ� �
ΔΘdV ¼

ð
V

ð
V

½h x; tð Þ x0 � xh i �h x0; tð Þ x� x0h i�ΔΘdV0dV :

(12.27)

If the parameters x and x0 in the second integral on the right-hand side of

Eq. 12.27 are exchanged, the second integral becomes

ð
V

ð
V

h x0; tð Þ x� x0h iΔΘdV0dV ¼
ð
V

ð
V

h x; tð Þ x0 � xh iΔΘ0dVdV 0: (12.28)

Substituting from Eq. 12.28 into Eq. 12.27, leads to
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ð
V

ρcv _Θ� hs x; tð Þ� �
ΔΘdV ¼

ð
V

ð
V

h x; tð Þ x0 � xh i ΔΘ� ΔΘ0ð ÞdV0dV: (12.29)

Invoking the variation of the temperature scalar state, Δτ, from Eq. 12.19 into

Eq. 12.29 results in ð
V

ρcv _Θ� hs x; tð Þ� �
ΔΘdV ¼

ð
V

ΔZdV; (12.30)

where ΔZ corresponds to the variation of the PD thermal potential at x due to its

interactions with all other material points:

ΔZ ¼ �
ð
V

h x; tð Þ x0 � xh ið Þ Δτ x0 � xh ið ÞdV0: (12.31)

Considering only the material points within the horizon, Eq. 12.31 can be

rewritten as

ΔZ ¼ �
ð
H

h x; tð Þ x0 � xh ið Þ Δτ x0�xh ið ÞdV0: (12.32)

Based on the classical formulation, the corresponding variation of thermal

potential can be written as

ΔẐ �G
� � ¼ 1

2
Δ�G � k �Gþ �G � kΔ �G
� � ¼ k �G � Δ �G; (12.33a)

with Ẑ �G
� �

given by

Ẑ �G
� � ¼ 1

2
�G � k �G; (12.33b)

where k is the thermal conductivity and �G ¼ rΘ . After invoking the Fourier

relation, q ¼ �k �G, the variation of classical thermal potential can be rewritten as

ΔẐ �G
� � ¼ �q � Δ�G: (12.34)

By applying the definition of scalar reduction given in the Appendix, the

temperature gradient can be approximated as

Δ�G ¼ 1

m
Δτ � X ¼ 1

m

ð
H

w x0�xh iΔτ x0�xh i � X x0�xh idV0; (12.35)
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in which Δτ is a scalar state, thus not requiring the dyadic, �; operation. It
reduces to

Δ�G ¼ 1

m

ð
H

w x0�xh iX x0 � xh iΔτ x0 � xh idV 0; (12.36)

where w is a scalar state representing the influence function, and m is the scalar

weighted volume defined in the Appendix.

Its substitution into Eq. 12.34 leads to the following:

ΔẐ ¼ � 1

m

ð
H

qTw x0 � xh iX x0 � xh iΔτ x0 � xh idV0: (12.37)

Assuming that the variation of the PD thermal potential, ΔZ , and classical

thermal potential, ΔẐ; are equal, ΔZ ¼ ΔẐ; and comparing Eq. 12.31 to

Eq. 12.37, it follows that

h x; tð Þ x0 � xh i ¼ 1

m
qTw x0�xh iX x0 � xh i; (12.38)

and this expression relates the heat flow state to the heat flux.

12.5 Initial and Boundary Conditions

The PD thermal equation does not contain any spatial derivatives; thus, boundary

conditions are, in general, not necessary for the solution of an integro-differential

equation. However, such conditions on temperature can be imposed in a “fictitious

material layer” along the boundary of a nonzero volume.

Heat flux does not directly appear in the PD thermal diffusion equation. There-

fore, the application of heat flux is also different from that of the classical heat

conduction theory. The difference can be illustrated by considering a region,Ω, that
is in thermal equilibrium. If this region is fictitiously divided into two domains,Ω�

and Ωþ as shown in Fig. 12.1, there must be rates of heat flow _Q
þ
and _Q

�
entering

through the cross-sectional surfaces, @Ω, of domain Ωþ and Ω�:
According to classical heat conduction theory, the heat flow rates, _Q

þ
and _Q

�
;

can be determined by integrating the normal component of the heat flux over the

cross-sectional area, @Ω, of domains Ωþ and Ω� as

_Q
þ ¼ �

ð
@Ω

qþ � nþdS (12.39a)
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and

_Q
� ¼ �

ð
@Ω

q� � n�dS; (12.39b)

in which qþ and q� are the heat fluxes across the surfaces with unit normal vectors,

nþ and n�, of domains Ωþ and Ω�, as shown in Fig. 12.1a, b.

In the case of the PD theory, the material points located in domain Ωþ interact

with the other material points in domain Ω� (Fig. 12.1c). Thus, the heat flow rate,

_Q
þ
, can be computed by volume integration of the heat flux densities (Fig. 12.1d)

over domain Ωþ as

q n

qn
Q

•

a b

c d

Fig. 12.1 Boundary

conditions: (a) heat fluxes

through the cross-sectional

area, (b) heat flow rate in

classical heat conduction

theory, (c) heat flow density

of a material point in

domain Ωþ with other

material points in domain

Ω�, (d) heat flux density

from domain Ωþ due to

domain Ω�
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_Q
þ ¼

ð
Ωþ

LðxÞdV; (12.40a)

in which LðxÞ, acting on a material point in domain Ωþ, is determined by

LðxÞ ¼
ð
Ω�

h x; tð Þ x0 � xh i � h x0; tð Þ x� x0h i½ �dV : (12.40b)

Note that if the volume Ω� is void, the volume integration in Eq. 12.40b

vanishes. Hence, the heat flux cannot be applied as a boundary condition since its

volume integrations result in a zero value. Therefore, the heat flux can be applied as

rate of volumetric heat generation in a “real material layer” along the boundary of a

nonzero volume.

12.5.1 Initial Conditions

Time integration requires the application of initial temperature values at each

material point in the domain,R, as shown in Fig. 12.2, and they can be specified as

Θðx; t ¼ 0Þ ¼ Θ�ðxÞ: (12.41)

12.5.2 Boundary Conditions

Boundary conditions can be imposed as temperature, heat flux, convection, and

radiation. As shown in Fig. 12.2, the prescribed boundary temperature is imposed

in a layer of a fictitious region,Rt, along the boundary of the actual material surface,

St, of the actual material region,R. Based on numerical experiments, the extent of

the fictitious boundary layer must be equal to the horizon, δ, in order to ensure that

the prescribed temperatures are sufficiently reflected in the actual material region.

The prescribed heat flux, convection, and radiation are imposed in boundary layer

regions, Rf , Rc , and Rr , respectively, with depth, Δ; along the boundary of the

material region, R, as shown in Fig. 12.2.

12.5.2.1 Temperature

As shown in Fig. 12.3a, the prescribed boundary temperature, Θ�ðx�; tÞ , can be

imposed in a layer of a fictitious region, Rt , along the boundary of the actual

material surface, St, as
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Θðy; tþ ΔtÞ ¼ 2Θ�ðx�; tþ ΔtÞ � Θðz; tÞ; x� 2 St; y 2 Rt; z 2 R; (12.42)

in which z represents the position of a material point in R, and x� represents the

location of a point on the surface,St. Their relative position is such that the distance,

d ¼ jx� � zj, between them is the shortest. The location of the image material point

in Rt is obtained from y ¼ zþ 2dn, with n ¼ ðx� � zÞ=jx� � zj. The implementa-

tion of the prescribed temperature boundary condition is demonstrated in

Fig. 12.3b. For the case of Θ�ðx�; tÞ ¼ 0, this representation enforces the tempera-

ture variation in the fictitious region to become the negative mirror image of the

temperature variation near the boundary surface in the actual material, as shown in

Fig. 12.3c.

12.5.2.2 Heat Flux

Application of this type of boundary condition is accomplished by first calculating

the rate of heat entering through the bounding surface by using Eq. 12.2, converting

the heat flow rate, _Q , to a heat generation per unit volume, and then specifying

this volumetric heat generation to collocations points in the boundary region.

Assuming the cross-sectional area is constant for each material point, conversion

is achieved by

~Q ¼
_Q

Vf
¼

� Ð
Sf

q:ndS

Vf
¼ � q � nSf

SfΔ
¼ � q � n

Δ
; (12.43)

f

f

r

c

t

t

c

r

Fig. 12.2 Boundary layers

for imposing temperature,

heat flux, convection, and

radiation
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where ~Q is the volumetric heat generation, q is the heat flux, Sf is the area over

which the heat flux is applied, and Vf is the volume of the boundary region.

Specified flux, q�ðx; tÞ, over the surface Sf , shown in Fig. 12.2, can be applied as

the rate of volumetric heat generation in a boundary layer, Rf , as

hsðx; tÞ ¼ � 1

Δ
q�ðx; tÞ � n; for x 2 Rf : (12.44)

If there exists no specified flux, q�ðx; tÞ ¼ 0 , volumetric heat generation, ~Q
calculated from Eq. 12.43 vanishes. Thus, the implementation of a zero flux

boundary condition can be viewed as imposing a zero-valued volumetric heat

generation. Alternative to this implementation, zero flux can be achieved by

assigning the mirror image of the temperature values near the boundary in the

actual domain to the material points in the fictitious region, as shown in Fig. 12.4.

y

z

*x

d

n

t

t

a

b c

Fig. 12.3 (a) Material

point and its image in a

fictitious domain for

applying, (b) a constant

temperature condition and

(c) a zero temperature

condition
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12.5.2.3 Convection

Convection is a heat transfer between the surface of the body and the surrounding

medium. The convection boundary condition is specified as

qðx; tÞ � n ¼ h Θðx; tÞ � Θ1ð Þ; for x 2 Sc; (12.45)

in which Θ1 is the temperature of the surrounding medium, h is the convective

heat transfer coefficient, andΘðx; tÞ is the temperature of the body on the surface,Sc.

Similar to the specified flux condition, convection can be imposed in the form of a

rate of heat generation per unit volume in a boundary layer region, Rc, as

hsðx; tÞ ¼ 1

Δ
h Θ1 � Θðx; tÞð Þ; for x 2 Rc: (12.46)

12.5.2.4 Radiation

Radiation is a heat transfer between the surface of the body and the surrounding

medium. The radiation boundary condition can be written as

qðx; tÞ � n ¼ εσ Θ4ðx; tÞ � Θ4
ss

� �
; for x 2 Sr; (12.47)

in which Θss is the temperature of the surface surrounding the body, Θðx; tÞ is the
surface temperature of the body, σ is the Stefan-Boltzman constant, and ε is

emissivity of the boundary surface. Similar to the imposition of the convection

condition, radiation can also be imposed in the form of rate of heat generation per

unit volume in a boundary layer region, Rr, as

n

dd

y z

*x

Fig. 12.4 Material point

and its image in a fictitious

region for imposing

zero flux
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hsðx; tÞ ¼ 1

Δ
εσ Θ4

ss � Θ4ðx; tÞ� �
; for x 2 Rr: (12.48)

12.6 Bond-Based Peridynamic Thermal Diffusion

If it is assumed that the heat flow density associated between two material points, x

and x0 , is a function of the temperature difference only between these two points,

then the following expression holds true:

h x; tð Þ x0 � xh i ¼ �h x0; tð Þ x� x0h i: (12.49)

This leads to the specialized bond-based PD thermal diffusion. In this

specialized case, the heat flow density, fhðx0; x; tÞ, is defined as

fh x0; x; tð Þ ¼ h x; tð Þ x0 � xh i � h x0; tð Þ x� x0h i ¼ 2h x; tð Þ x0 � xh i; (12.50)

so that the PD heat conduction equation can be written as

ρcv _Θ x; tð Þ ¼
ð
H

fh Θ0;Θ; x0; x; tð ÞdVx0 þ ρsb x; tð Þ: (12.51)

The term fh , also referred to as the thermal response function, is the heat flow

density function that governs only the interaction of material point x with x0. In the

case of bond-based PD thermal diffusion, the pairwise interactions are independent

of each other, and the heat flow between a pair of material points does not depend

on the temperature difference between other pairs of material points. The thermal

response function, fhðx0; xÞ is zero for material points outside the horizon; i.e., jξj
¼ jx0 � xj > δ.

12.7 Thermal Response Function

The pairwise heat flow density can be related to the microthermal potential through

fh ¼ @z

@τ
: (12.52)

The microthermal potential, z, represents the thermal potential between a pair of

interacting points. The temperature difference between the material points x0 and x
at any time is given by
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τ x0; x; tð Þ ¼ Θ x0; tð Þ � Θ x; tð Þ: (12.53)

The thermal potential at point x is then a summation over all microthermal

potentials associated with this point, and is defined as

Z x; tð Þ ¼ 1

2

ð
H

z x0; x; tð ÞdVx0 : (12.54)

The pairwise heat flow density function, fh, can be expressed as

fh x0; x; tð Þ ¼ κ
τ x0; x; tð Þ

ξj j ; (12.55)

whereκ is the thermal microconductivity. Themicrothermal potential corresponding

to the thermal response function, fh, can be obtained as

z ¼ κ
τ2

2 ξj j : (12.56)

The microconductivity is a PD parameter that can be related to the standard

conductivity for a specified horizon.

12.8 Peridynamic Microconductivity

The microconductivity can be determined by equating the peridynamic thermal

potential to the classical thermal potential at a point arising from a simple linear

temperature field. The expression for the microconductivity will differ depending

on the form of the thermal response function. The form given in Eq. 12.55 differs

from those introduced by Bobaru and Duangpanya (2010, 2012) and Gerstle

et al. (2008). In the most general case, heat transfer through a medium is three

dimensional. However, certain problems can be classified as two or one dimen-

sional depending on the relative magnitudes of heat transfer rates in different

directions.

12.8.1 One-Dimensional Analysis

For one-dimensional analysis, a simple linear temperature field of the form ΘðxÞ
¼ x results in the PD temperature difference of
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τ ¼ Θ x0ð Þ � ΘðxÞ ¼ x0 � x ¼ ξ ¼ ξj j: (12.57)

Invoking this temperature difference into Eq. 12.56 results in the PD

microthermal potential as

z ¼ κ
ξ2

2 ξj j ; (12.58)

where jξj ¼ jx0 � xj. Substituting for z from Eq. 12.58 into Eq. 12.54 and performing

the integration leads to the PD thermal potential as

Z ¼ 1

2

ð
H

z ξð ÞdVξ ¼ κ

2

ðδ
0

ξ2

ξj j
� �

Adξ ¼ κδ2A

4
; (12.59)

where A is the cross-sectional area of the volume associated with the material point

x0. The corresponding classical thermal potential from Eq. 12.33b is obtained as

Ẑ ¼ 1

2
k: (12.60)

Equating the peridynamic thermal potential in Eq. 12.59 to the classical thermal

potential given in Eq. 12.60 and solving for κ results in the PD microconductivity

for one-dimensional analysis as

κ ¼ 2k

Aδ2
: (12.61)

12.8.2 Two-Dimensional Analysis

For two-dimensional analysis, a simple linear temperature field of the form Θðx; yÞ
¼ ðxþ yÞ results in the PD temperature difference of

τ ¼ Θ x0; y0ð Þ � Θ x; yð Þ ¼ x0 þ y0 (12.62)

for the material point of interest, x , located at the origin ðx ¼ 0; y ¼ 0Þ .
Invoking this temperature difference into Eq. 12.56 results in the PD microthermal

potential as

z ¼ κ
x0 þ y0ð Þ2
2 ξj j ; (12.63)
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where jξj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02

p
. Substituting for z from Eq. 12.63 into Eq. 12.54 and

performing the integration over the horizon leads to the PD thermal potential as

Z x; tð Þ ¼ 1

2

ð2π
0

ðδ
0

κ
ξCosðθÞ þ ξSinðθÞð Þ2

2 ξj j hξdξdθ ¼ πhκδ3

6
; (12.64)

in which polar coordinates, ðξ; θÞ, are utilized to perform the integration over a disk

with thickness h and radius δ. The corresponding classical thermal potential from

Eq. 12.33b is obtained as

Ẑ ¼ k: (12.65)

Equating the PD thermal potential in Eq. 12.64 to the classical thermal potential

given in Eq. 12.65 and solving for κ results in the PD microconductivity for

two-dimensional analysis as

κ ¼ 6k

πhδ3
: (12.66)

12.8.3 Three-Dimensional Analysis

For three-dimensional analysis, a simple linear temperature field of the form

Θðx; yÞ ¼ ðxþ yþ zÞ results in the PD temperature difference of

τ ¼ Θ x0; y0; z0ð Þ � Θ x; y; zð Þ ¼ x0 þ y0 þ z0ð Þ (12.67)

for the material point of interest, x , located at the origin ðx ¼ 0; y ¼ 0; z ¼ 0Þ .
Invoking this temperature difference into Eq. 12.56 results in the PD microthermal

potential as

z ¼ κ
x0 þ y0 þ z0ð Þ2

2 ξj j ; (12.68)

where jξj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02 þ z02

p
. Substituting for z from Eq. 12.68 into Eq. 12.54 and

performing the integration over the horizon leads to the PD thermal potential as
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Z x; tð Þ ¼ 1

2

ðδ
0

ð2π
0

ðπ
0

κ
ξCosðθÞSin ϕð Þ þ ξSinðθÞSin ϕð Þ þ ξCosðϕÞð Þ2

2 ξj j

� Sinϕdϕdθξ2dξ ¼ πκδ4

4
;

(12.69)

in which spherical coordinates, ðξ; θ;ϕÞ, are utilized to perform the integration over

a sphere with radius δ . The corresponding classical thermal potential from

Eq. 12.33b is obtained as

Ẑ ¼ 3

2
k: (12.70)

Equating the peridynamic thermal potential in Eq. 12.69 to the classical thermal

potential given in Eq. 12.70 and solving for κ results in the PD microconductivity

for three-dimensional analysis as

κ ¼ 6k

πδ4
: (12.71)

12.9 Numerical Procedure

Numerical techniques are employed in order to solve for the PD thermal diffusion

equation. The region of interest is discretized into subdomains in which the

temperature is assumed to be constant. Thus, each subdomain is represented as a

single integration point located at its mass center with an associated volume and

integration weight, wðjÞ ¼ 1. Subsequently, the integration in the governing equa-

tion, given in Eq. 12.51, is numerically performed as

ρðiÞcvðiÞ _Θ
n
ðiÞ ¼

XN
j¼1

fh τn xðjÞ � xðiÞ
� �� �

VðjÞ þ hnsðiÞ; (12.72)

for which n is the time step number, i represents the point of interest, and j represents
the points within the horizon of i. The volume of the subdomain associated with the

collocation point xðjÞ is denoted by VðjÞ. The time integration is accomplished using

the forward difference time stepping scheme. When forward differencing is

employed, the following equation is solved:
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Θnþ1
ðiÞ ¼ Θn

ðiÞ þ
Δt

ρðiÞcvðiÞ

XN
j¼1

fh τn xðjÞ � xðiÞ
� �� �

VðjÞ þ hnsðiÞ

( )
; (12.73)

where Δt is the time step size.

12.9.1 Discretization and Time Stepping

A one-dimensional region is considered to describe the details of the numerical

scheme. The discretization of a one-dimensional region into subdomains is depicted

in Fig. 12.5. Each subdomain has one integration point. The integration point

represents a material point. The solution is constructed for material point xðiÞ. The
material point xðiÞ interacts with all points within its horizon, represented by xðjÞ. As
shown in Fig. 12.6, material point xðiÞ interacts with six other material points, xðjÞ
ðj ¼ i� 3; i� 2; i� 1; iþ 1; iþ 2; and iþ 3Þ, in its horizon. Thus, the radius

of the horizon is δ ¼ 3Δ, where Δ ¼ jx iþ1ð Þ � xðiÞj.
The discretized form of the PD thermal diffusion equation for material point xðiÞ

becomes

ρðiÞcvðiÞ _Θn
ðiÞ ¼

XN
j¼1

f nhðiÞðjÞVðjÞ þ hnsðiÞ; (12.74)

in which the thermal response function, represented by f nhðiÞðjÞ, is determined at each

time step for every interaction. The discretized equation for the thermal response

function, fh, is cast as

f nhðiÞðjÞ ¼ κ
τnðiÞðjÞ

ξðiÞðjÞ
  : (12.75)

The relative initial position is defined as ξðiÞðjÞ ¼ xðjÞ � xðiÞ while the relative

temperature is defined as τnðiÞðjÞ ¼ Θn
ðjÞ � Θn

ðiÞ . The thermal interaction of material

point xðiÞ with the points within its horizon is illustrated in Fig. 12.6.

The discretized thermal diffusion equation can be expanded as

ρðiÞcvðiÞ _Θn
ðiÞ ¼ f nhðiÞ iþ1ð ÞV iþ1ð Þ þ f nhðiÞ iþ2ð ÞV iþ2ð Þ þ f nhðiÞ iþ3ð ÞV iþ3ð Þ

þ f nhðiÞ i�1ð ÞV i�1ð Þ þ f nhðiÞ i�2ð ÞV i�2ð Þ þ f nhðiÞ i�3ð ÞV i�3ð Þ þ hnsðiÞ :
(12.76)

For marching in time, the forward differencing scheme is used. The time

derivative of temperature at material point xðiÞ is determined at the current time

224 12 Peridynamic Thermal Diffusion



step, n, from Eq. 12.76. By employing time integration via the forward differencing

technique, the temperature at the next time step, (n + 1), is determined. This

algorithm may be expressed as

Θnþ1
ðiÞ ¼ Θn

ðiÞ þ Δt _Θn
ðiÞ: (12.77)

12.9.2 Numerical Stability

The forward differencing method utilized for the numerical time integration of the

peridynamic thermal diffusion equation is conditionally stable. Therefore, it is

Fig. 12.5 Discretization of one-dimensional region with collocation points

x(i 3)

fh(i)(i-3)

x(i 2)
x(i 1)

x(i)
x(i 1)

x(i 2)
x(i 3)

fh(i)(i-2)

fh(i)(i-1)

fh(i)(i+1)

fh(i)(i+2)

fh(i)(i+3)

Fig. 12.6 Thermal interaction of points with the horizon of material point xðiÞ
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necessary to develop a stability condition that sets the restriction on the time step

size in order to prevent an unbounded numerical solution. Similar to that performed

by Silling and Askari (2005), a von Neumann stability analysis is adopted in the

derivation of the stability condition. Therefore, the temperature field at each time

step is assumed in the form

Θn
ðiÞ ¼ ζneΓi

ffiffiffiffiffi�1
p

; (12.78)

where Γ , representing the wavenumber, is a real and positive number and ζ is a

complex number. The condition on the time step size ensures that the solution does

not grow in an unbounded manner over time. In order for the solution to be bounded

over time, the following expression must hold true:

ζj j � 1 (12.79)

for every wavenumber Γ.
The discretized peridynamic thermal diffusion equation may be recast as

ρðiÞcvðiÞ _Θ
n
ðiÞ ¼

XN
j¼1

κ

jξðiÞðjÞj
Θn

ðjÞ � Θn
ðiÞ

� �
VðjÞ þ hs

n
ðiÞ: (12.80)

In the absence of a heat source due to volumetric heat generation, invoking

Eq. 12.78 into Eq. 12.80 leads to

ρðiÞcvðiÞ
Δt

ζnþ1 � ζn
� �

eΓi
ffiffiffiffiffi�1

p
¼
XN
j¼1

κ

jξðiÞðjÞj
ζneΓ j�ið Þ ffiffiffiffiffi�1

p
� ζn

� �
eΓi

ffiffiffiffiffi�1
p

VðjÞ: (12.81)

Canceling out common terms reduces Eq. 12.81 to

ρðiÞcvðiÞ
Δt

ζ � 1ð Þ ¼
XN
j¼1

κ

jξðiÞðjÞj
eΓ j�ið Þ ffiffiffiffiffi�1

p
� 1

� �
VðjÞ

¼
XN
j¼1

κ

jξðiÞðjÞj
cosΓ j� ið Þ � 1ð ÞVðjÞ :

(12.82)

This equation can be recast as

ρðiÞcvðiÞ
Δt

ζ � 1ð Þ ¼ �MΓ; (12.83)

in which MΓ is defined by
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MΓ ¼
XN
j¼1

κ

jξðiÞðjÞj
1� cosΓ j� ið Þð ÞVðjÞ: (12.84)

Solving for ζ in Eq. 12.83 gives

ζ ¼ 1� Δt
ρðiÞcvðiÞ

MΓ: (12.85)

Enforcing the condition jζj � 1 results in the following constraint:

0 � Δt
ρðiÞcvðiÞ

MΓ � 2: (12.86)

The restriction on the time step size is determined as

Δt <
2ρðiÞcvðiÞ

MΓ
: (12.87)

For the condition jζj � 1 to be valid for all wavenumbers, Γ, Eq. 12.84 leads to

the condition of

MΓ �
XN
j¼1

2
κ

jξðiÞðjÞj
VðjÞ: (12.88)

Substituting Eq. 12.88 into Eq. 12.87 leads to the stability condition as

Δt <
ρðiÞcvðiÞPN

j¼1

κ
jξðiÞðjÞjVðjÞ

: (12.89)

Due to the dependence of κ on the horizon, the stability condition given in

Eq. 12.89 is dependent on δ.

12.10 Surface Effects

The PD microconductivity parameter, κ , that appears in the thermal response

function, fh , is determined by computing the thermal potential of a material point

whose horizon is completely embedded in the material. The value of this parameter

depends on the domain of integration defined by the horizon. Therefore, the value

of κ requires correction if the material point is close to free surfaces or material
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interfaces (Fig. 12.7). Since the presence of free surfaces is problem dependent, it is

impractical to resolve this issue analytically. The correction of the material

parameters is achieved by numerically integrating the PD thermal potential at

each material point inside the body for simple temperature distribution and com-

paring it to its counterpart obtained from the classical thermal potential.

The simple temperature distribution can be linear in form, and the corresponding

thermal potential, Z1, of a point completely embedded in the material is calculated

using Eq. 12.33b. Subsequently, the PD thermal potential due to the applied linear

temperature distribution is computed for each material point through numerical

integration over its horizon from

ZðiÞ ¼ 1

2

ð
H

z ξð ÞdVξ ¼ 1

2

XN
j¼1

zðiÞðjÞVðjÞ; (12.90)

in which the micropotential, zðiÞðjÞ, between material points xðiÞ and xðjÞ depends on
the material microconductivity.

As shown in Fig. 12.8, the material point xðiÞ may interact with material points

xðjÞ and xðmÞ . Material points xðiÞ and xðjÞ are embedded in material 1, and xðmÞ is
embedded in material 2. Thus, the microconductivity between points xðiÞ and xðjÞ is
κðiÞðjÞ, and it differs from κðiÞðmÞ between material points xðiÞ and xðmÞ. Because the
material points xðiÞ and xðmÞ are embedded in two different materials, their

microconductivity, κðiÞðmÞ; can be expressed in terms of an equivalent thermal

conductivity as

kðiÞðmÞ ¼
‘1 þ ‘2
‘1
k1
þ ‘2

k2

; (12.91)

Surface Interface

Material 1

Material 2

Point 1

Point 2

Point 3

Fig. 12.7 Surface effects

in the domain of interest
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in which ‘1 represents the segment of the distance between material points xðiÞ and
xðmÞ in material 1 whose thermal conductivity is k1, and ‘2 represents the segment in

material 2 whose thermal conductivity is k2.
The thermal potential of material point xðiÞ is denoted by ZðiÞ . The correction

factor is determined for each material point in the domain as

gðiÞ ¼ Z1
ZðiÞ

: (12.92)

Therefore, the discretized thermal diffusion equation including the correction

factor for point xðiÞ becomes

ρðiÞcvðiÞ _Θ
n
ðiÞ ¼

XN
j¼1

gðiÞðjÞf nhðiÞðjÞVðjÞ þ ρðiÞsb
n
ðiÞ; (12.93)

where gðiÞðjÞ ¼ gðiÞ þ gðjÞ=2. Finally, the discretized equation of motion for material

point xðiÞ, including surface and volume correction, υc, is rewritten as

ρðiÞcvðiÞ _Θn
ðiÞ ¼

XN
j¼1

gðiÞðjÞf nhðiÞðjÞ υcðjÞVðjÞ
� �þ ρðiÞsb

n
ðiÞ: (12.94)

Also, the thermal response functions between material points xðiÞ and xðjÞ and xðiÞ
and xðmÞ are modified to reflect the change in microconductivity as

f nhðiÞðmÞ ¼ κðiÞðmÞ
τnðiÞðmÞ

ξðiÞðmÞ
  and f nhðiÞðjÞ ¼ κðiÞðjÞ

τnðiÞðjÞ

ξðiÞðjÞ
  : (12.95)

Fig. 12.8 Material point

xðiÞ close to an interface
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12.11 Validation

In achieving the numerical results, the bond-based peridynamics approach is

adopted while utilizing the numerical schemes described in the preceding sections.

The predictions from the peridynamic simulations are compared against the classi-

cal solution to establish the validity of the peridynamic heat transfer analysis.

12.11.1 Finite Slab with Time-Dependent
Surface Temperature

A finite slab initially at zero temperature is subjected to a boundary temperature

that increases linearly with time. Its geometric description and discretization are

depicted in Fig. 12.9.

Geometric Parameters

Slab thickness: L ¼ 0:01 m

Material Properties

Specific heat capacity: cv ¼ 64 J=kgK
Thermal conductivity: k ¼ 233 W=mK

Mass density: ρ ¼ 260 kg=m3

Initial Conditions

Θðx; 0Þ ¼ 0	C; 0 � x � L

Boundary Conditions

Θð0; tÞ ¼ 0; ΘðL; tÞ ¼ At with A ¼ 500; 0 � t < 1

PD Discretization Parameters

Total number of material points in the x-direction: 100
Spacing between material points: Δ ¼ 0:0001 m

L

Fig. 12.9 Discretization of the finite slab and the fictitious boundary regions for temperatures

230 12 Peridynamic Thermal Diffusion



Incremental volume of material points: ΔV ¼ 1� 10�12 m3

Volume of fictitious boundary layer: Vδ ¼ ð3Þ � ΔV ¼ 3� 10�12 m3

Horizon: δ ¼ 3:015Δ
Time step size: Δt ¼ 10�6 s

The classical analytical solution (Jiji 2009) can be expressed as

Θðx; tÞ ¼ A
x

L
þ A

ρcv2L2

kπ3

�
X1
n¼1

�1ð Þn
n3

sin
nπ

L
x

� �
1� exp � k

ρcv

nπ

L

� �2
t

� �� �
: (12.96)

The temperature variation is predicted at t ¼ 0:0125 s, t ¼ 0:025 s, t ¼ 0:0375 s,

and t ¼ 0:05 s. Both analytical and PD predictions are shown in Fig. 12.10, and they

are in close agreement. Because the temperature on the right boundary increases as

a function of time, the rate of heat transfer from the right boundary also increases, as

expected.

12.11.2 Slab with Convection Boundary Condition

A plate of thickness L, initially at temperature Θðx; 0Þ ¼ FðxÞ, dissipates heat by
convection for times t > 0 from its surfaces into an environment at Θ1 ¼ 0	C.
The plate initially has a linear temperature profile, and two surfaces are subjected
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to convective heat transfer. Its geometric description and discretization are depicted

in Fig. 12.11.

Geometric Parameters

Slab thickness: L ¼ 1 m

Material Properties

Specific heat capacity: cv ¼ 64 J=kgK
Thermal conductivity: k ¼ 233 W=mK

Mass density: ρ ¼ 260 kg=m3

Initial Conditions

Θðx; 0Þ ¼ FðxÞ; 0 � x � L; with FðxÞ ¼ x

Boundary Conditions

�k@Θ=@x ¼ h1 Θ1 � Θð Þ; t > 0; at x ¼ 0

k@Θ=@x ¼ h2 Θ1 � Θð Þ; t > 0; at x ¼ L

with h1 ¼ 10W=m2K; h2 ¼ 20W =m2K; Θ1 ¼ 0	C

PD Discretization Parameters

Total number of material points in the x-direction: 500
Spacing between material points: Δ ¼ 0:002 m

Incremental volume of material points: ΔV ¼ 8� 10�9 m3

Volume of boundary layer: VΔ ¼ 8� 10�9 m3

Horizon: δ ¼ 3:015Δ
Time step size: Δt ¼ 10�6 s

Rate of heat generation per unit volume at x ¼ 0:

hs1ðx; tÞ ¼ h1ðΘ1 � Θðx; tÞÞ=Δ; x 2 Rc1

Rate of heat generation per unit volume at x ¼ L:
hs2ðx; tÞ ¼ h2ðΘ1 � Θðx; tÞÞ=Δ; x 2 Rc2

L

Fig. 12.11 Discretization of the finite slab and boundary regions for convection
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The classical analytical solution of the problem is given by Özişik (1980) as

Θ x; tð Þ ¼
X1
m¼1

e�
k

ρcv
β2mt

1

N βmð ÞX βm; xð Þ
ðL
0

X βm; x
0ð ÞFðx0Þdx0; (12.97)

in which Xðβm; xÞ represents the eigenfunctions, βm represents the eigenvalues, and

NðβmÞ represents the normalization integral. The eigenfunctions, eigenvalues, and

normalization integral are as follows:

X βm; xð Þ ¼ βmCos βmxð Þ þ H1Sin βmxð Þ; (12.98a)

tan βmLð Þ ¼ βm H1 þ H2ð Þ
β2m � H1H2

; (12.98b)

N βmð Þ ¼ 1

2
β2m þ H2

1

� �
Lþ H2

β2m þ H2
2

 !
þ H1

" #
; (12.98c)

withH1 ¼ h1=k andH2 ¼ h2=k. The temperature variation is predicted at t ¼ 0:5 s,

t ¼ 2:5 s, t ¼ 5 s, and t ¼ 10 s. Both analytical and PD predictions are shown in

Fig. 12.12, and they are in close agreement.
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12.11.3 Plate Under Thermal Shock with Insulated
Boundaries

A square plate of isotropic material under thermal shock with insulated boundaries,

shown in Fig. 12.13, was first considered by Hosseini-Tehrani and Eslami (2000)

using the Boundary Element Method (BEM).

Geometric Parameters

Length: L ¼ 10 m

Width: W ¼ 10 m

Thickness: H ¼ 1 m

Material Properties

Specific heat capacity: cv ¼ 1 J=kgK
Thermal conductivity: k ¼ 1 W=mK

Mass density: ρ ¼ 1 kg=m3

Initial Conditions

Θðx; y; t ¼ 0Þ ¼ 0	C

Boundary Conditions

Θ;xðx ¼ 10; yÞ ¼ 0; t > 0

Θ;yðx; y ¼ 
5Þ ¼ 0; t > 0

Θðx ¼ 0; tÞ ¼ 5te�2t; t > 0

L

W
x

y

Fig. 12.13 Peridynamic model of the plate
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PD Discretization Parameters

Total number of material points in the x-direction: 500
Total number of material points in the y-direction: 500
Spacing between material points: Δ ¼ 0:02 m

Incremental volume of material points: ΔV ¼ 4� 10�4 m3

Volume of fictitious boundary layer: Vδ ¼ ð3� 500Þ � ΔV ¼ 0:6 m3

Horizon: δ ¼ 3:015Δ
Time step size: Δ t ¼ 5� 10�4 s

The temperature variations at y ¼ 0 are predicted for t ¼ 3 s and t ¼ 6 s. Both

BEM and PD predictions are shown in Fig. 12.14, and they are in close agreement.

12.11.4 Three-Dimensional Block with Temperature
and Insulated Boundaries

A block of isotropic material is subjected to constant temperatures at both ends

while its lateral surfaces are insulated. The schematic of the problem is described in

Fig. 12.15.

Geometric Parameters

Length: L ¼ 0:01 m

Width: W ¼ 0:001 m

Thickness: H ¼ 0:001 m

PD t = 3 s
PD t = 6 s
BEM t = 3 s
BEM t = 6 s
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Fig. 12.14 Temperature

variation from

peridynamics and BEM at y
¼ 0 (Hosseini-Tehrani and

Eslami 2000)
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Material Properties

Specific heat capacity: cv ¼ 64 J=kgK
Thermal conductivity: k ¼ 233 W=mK

Mass density: ρ ¼ 260 kg=m3

Initial Conditions

Θðx; y; z; 0Þ ¼ 100	C; 0 � x � L; 0 � y � W; 0 � z � H

Boundary Conditions

Θð0; y; z; tÞ ¼ 0	C; ΘðL; y; z; tÞ ¼ 300oC; t > 0

Θ;yðx; 0; z; tÞ ¼ 0; Θ;yðx;W; z; tÞ ¼ 0; t > 0

Θ;zðx; y; 0; tÞ ¼ 0; Θ;zðx; y;H; tÞ ¼ 0; t > 0

PD Discretization Parameters

Total number of material points in the x-direction: 100
Total number of material points in the y-direction: 10
Total number of material points in the z-direction: 10
Spacing between material points: Δ ¼ 0:0001 m

Incremental volume of material points: ΔV ¼ 1� 10�12 m3

Volume of fictitious boundary layer: Vδ ¼ ð3� 10� 10Þ � ΔV ¼ 3� 10�10 m3

Horizon: δ ¼ 3:015Δ
Time step size: Δt ¼ 10�7 s

Since the block is insulated on its lateral surfaces, the temperature profile along

the block can be compared with the one-dimensional analytical solution of the

problem given by

Θðx; tÞ ¼ Θð0; tÞ � Θð0; tÞ � ΘðL; tÞ
L

x� 2

L

X1
n¼1;3;5;...

sin
nπ

L
x

� �

� L

nπ
Θð0; tÞ � �1ð ÞnΘðL; tÞð Þ

�
� 100L

nπ
�1ð Þn � 1ð Þ

�
e�

k
ρcv

n2π2

L2

� �
t :

(12.99)

Fig. 12.15 Peridynamic model of a three-dimensional block
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The temperature variation is predicted at t ¼ 5� 10�6s, t ¼ 5� 10�5s, t ¼ 5

�10�4s , and t ¼ 5� 10�3s . As the block reaches a steady-state condition, the

temperature profile approaches a linear variation along the block. As observed in

Fig. 12.16, the thermal response predicted by the peridynamic heat transfer model is

in close agreement with the analytical solution.

12.11.5 Dissimilar Materials with an Insulated Crack

In order to verify the peridynamic model in solving for the heat transfer concerning

dissimilar materials, a plate with two different materials having an insulated

interface crack is considered, as shown in Fig. 12.17. The peridynamic predictions

and their comparison with ANSYS are given in Fig. 12.18. As observed, there is a

close agreement.

Geometric Parameters

Length: L ¼ 2 cm

Width : W ¼ 2 cm

Thickness: H ¼ 0:01 cm

Crack length: 2a ¼ 1:0 cm

Material Properties

Specific heat capacity: cv ¼ 1 J=kgK
Thermal conductivity: k ¼ 1:14 W=cmK

Mass density: ρ ¼ 1 kg=cm3
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Initial Conditions

Θðx; y; z; 0Þ ¼ 0; �L =2 � x � L=2; �W=2 � y � W=2

Boundary Conditions

Θðx;W=2; tÞ ¼ 100	C; Θðx;�W=2; tÞ ¼ �100	C; t > 0

Θ;xðL=2; y; tÞ ¼ 0; Θ;xð�L=2; y; tÞ ¼ 0; t > 0

2a

L

W/2

Material 1

Material 2

W/2

Fig. 12.17 Peridynamic model of a plate with an insulated interface crack

-100 -50 0 50 100
-1

-0.5

0

0.5

1

Temperature ( C)o

y 
(c

m
)

PD  k1=k  k2=k

PD  k1=k/2  k2= k

PD  k1=k/5  k2= k

PD  k1=k/10  k2= k

ANSYS  k1=k  k2=k

ANSYS  k1=k/2  k2=k

ANSYS  k1=k/5  k2=k

ANSYS k1=k/10 k2=k

Fig. 12.18 Temperature

variations along x ¼ 0,

across the interface of the

plates with thermal

conductivity k1 for the upper
half and k2 for the lower half
at t ¼ 0:5 s

238 12 Peridynamic Thermal Diffusion



PD Discretization Parameters

Total number of material points in the x-direction: 200
Total number of material points in the y-direction: 200
Spacing between material points: Δ ¼ 0:01 cm

Incremental volume of material points: ΔV ¼ 1� 10�6 cm3

Volume of fictitious boundary layer: Vδ ¼ ð3� 200Þ � ΔV ¼ 6� 10�4cm3

Horizon: δ ¼ 3:015� Δ
Time step size: Δ t ¼ 10�4 s

In order to demonstrate the three-dimensional capability of the PD analysis,

the plate geometry with an insulated crack is also discretized in the thickness

direction, as shown in Fig. 12.19. The peridynamic results are compared with the

two-dimensional predictions. As observed in Fig. 12.20, there exists a close agree-

ment between the two models.

Geometric Parameters

Length: L ¼ 2 cm

Width: W ¼ 2 cm

Thickness: H ¼ 0:2 cm

Crack length: 2a ¼ 1:0 cm

Material Properties

Specific heat capacity: cv ¼ 1 J=kgK
Thermal conductivity: k ¼ 1:14 W=cmK

Mass density: ρ ¼ 1 kg=cm3

2a

L

H

t

t

Material 1

Material 22

1

W/2

W/2

Fig. 12.19 Three-dimensional peridynamic model of a plate with a crack
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Initial Conditions

Θðx; y; z; 0Þ ¼ 0� L =2 � x � L=2; �W=2 � y � W=2; �H � z � 0

Boundary Conditions

Θðx;W=2; z; tÞ ¼ 100	C; Θðx;�W=2; z; tÞ ¼ �100	C; t > 0

Θ;xðL=2; y; z; tÞ ¼ 0; Θ;xð�L=2; y; z; tÞ ¼ 0; t > 0

Θ;zðx; y; 0; tÞ ¼ 0; Θ;zðx; y;�H; tÞ ¼ 0; t > 0

PD Discretization Parameters

Total number of material points in the x-direction: 100
Total number of material points in the y-direction: 100
Total number of material points in the z-direction: 10

Spacing between material points: Δ ¼ 0:02 cm

Incremental volume of material points: ΔV ¼ 8� 10�6 cm3

Volume of fictitious boundary layer: Vδ ¼ ð3� 100� 10Þ � ΔV cm3

Horizon: δ ¼ 3:015� Δ
Time step size: Δ t ¼ 10�5s

12.11.6 Thick Plate with Two Inclined Insulated Cracks

In order to further demonstrate the three-dimensional capability of the PD analysis,

a thick plate with two insulated inclined cracks is considered under two different

types of boundary conditions. The plate geometry is symmetric with respect to the
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vertical direction. For the first type of boundary condition, the plate is subjected to

constant temperature at the top and bottom surfaces while the remaining surfaces

are insulated. For the second type of boundary condition, the plate is subjected

to constant temperature at the top and bottom surfaces and convective heat transfer

on the left and right surfaces while the remaining surfaces are insulated.

The discretization and PD model of the plate for these two different types of

boundary conditions are shown in Fig. 12.21a, b.
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Fig. 12.21 Peridynamic model of the thick plate: (a) boundary conditions type I; (b) boundary

conditions type-II
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Geometric Parameters

Length: L ¼ 2 cm

Width: W ¼ 2 cm

Thickness: H ¼ 0:2 cm

Crack lengths: 2a ¼ 0:6 cm

Crack orientations from horizontal direction: θ ¼ 60	 and θ ¼ 120	

Distance between crack centers: 2e ¼ 0:66 cm

Material Properties

Specific heat capacity: cv ¼ 1 J=kgK
Thermal conductivity: k ¼ 1:14 W=cmK

Mass density: ρ ¼ 1 kg=cm3

Initial Conditions

Θðx; y; z; 0Þ ¼ 0� L =2 � x � L=2; �W=2 � y � W=2; �H � z � 0

Boundary Conditions-I

Θðx;W=2; z; tÞ ¼ 100	C; Θðx;�W=2; z; tÞ ¼ �100	C; t > 0

Θ;xðL=2; y; z; tÞ ¼ 0; Θ;xð�L=2; y; z; tÞ ¼ 0; t > 0

Θ;zðx; y; 0; tÞ ¼ 0; Θ;zðx; y;�H; tÞ ¼ 0; t > 0

Boundary Conditions-II

Θðx;W=2; z; tÞ ¼ 100	C; Θðx;�W=2; z; tÞ ¼ �100	C; t > 0

�kT;xð�L=2; y; z; tÞ ¼ h Θ1 � Θð Þ; t > 0

kT;xðL=2; y; z; tÞ ¼ h Θ1 � Θð Þ; t > 0

h ¼ 10W=cm2K; Θ1 ¼ 0	C
Θ;zðx; y; 0; tÞ ¼ 0; Θ;zðx; y;�H; tÞ ¼ 0; t > 0

PD Discretization Parameters

Total number of material points in the x-direction: 100
Total number of material points in the y-direction: 100
Total number of material points in the z-direction: 10

Spacing between material points: Δ ¼ 0:02 cm

Incremental volume of material points: ΔV ¼ 8� 10�6 cm3

Volume of boundary layer: VΔ ¼ ð1� 100� 10Þ � ΔV ¼ 8� 10�3cm3

Volume of fictitious boundary layer: Vδ ¼ ð3� 100� 10Þ � ΔV ¼ 24� 10�3cm3

Horizon: δ ¼ 3:015� Δ
Time step size: Δt ¼ 10�5s

Rate of heat generation per unit volume at x ¼ �L =2 and x ¼ L =2:

h sðx; tÞ ¼ 1
Δ h Θ1 � Θðx; tÞð Þ; x 2 Rc
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For the first type of boundary condition, the peridynamic prediction for the

temperature field is shown in Fig. 12.22. They are in close agreement with the

classical solution (Chang and Ma 2001; Chen and Chang 1994). For the second type

of boundary condition, the peridynamic prediction for the temperature field is

shown in Fig. 12.23. For this case, there exists no classical solution for comparison.
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Fig. 12.22 Three-
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temperature predictions on

the mid-plane with a normal

in the þ z direction
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Özişik MN (1980) Heat conduction, 2nd edn. Wiley, New York

Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid

mechanics. Comput Struct 83:1526–1535

Sobolev SL (1994) Equations of transfer in nonlocal media. Int J Heat Mass Transf 37:2175–2182

Tien CL, Chen G (1994) Challenges in microscale conductive and radiative heat-transfer. Trans

ASME J Heat Transf 116:799–807

Tzou DY, Guo Z (2010) Non local behavior in thermal lagging. Int J Therm Sci 49:1133–1137

244 12 Peridynamic Thermal Diffusion


	Chapter 12: Peridynamic Thermal Diffusion
	12.1 Basics
	12.2 Nonlocal Thermal Diffusion
	12.3 State-Based Peridynamic Thermal Diffusion
	12.4 Relationship Between Heat Flux and Peridynamic Heat Flow States
	12.5 Initial and Boundary Conditions
	12.5.1 Initial Conditions
	12.5.2 Boundary Conditions
	12.5.2.1 Temperature
	12.5.2.2 Heat Flux
	12.5.2.3 Convection
	12.5.2.4 Radiation


	12.6 Bond-Based Peridynamic Thermal Diffusion
	12.7 Thermal Response Function
	12.8 Peridynamic Microconductivity
	12.8.1 One-Dimensional Analysis
	12.8.2 Two-Dimensional Analysis
	12.8.3 Three-Dimensional Analysis

	12.9 Numerical Procedure
	12.9.1 Discretization and Time Stepping
	12.9.2 Numerical Stability

	12.10 Surface Effects
	12.11 Validation
	12.11.1 Finite Slab with Time-Dependent Surface Temperature
	12.11.2 Slab with Convection Boundary Condition
	12.11.3 Plate Under Thermal Shock with Insulated Boundaries
	12.11.4 Three-Dimensional Block with Temperature and Insulated Boundaries
	12.11.5 Dissimilar Materials with an Insulated Crack
	12.11.6 Thick Plate with Two Inclined Insulated Cracks

	References


