
Chapter 1

Introduction

1.1 Classical Local Theory

One of the underlying assumptions in the classical theory is its locality. The

classical continuum theory assumes that a material point only interacts with its

immediate neighbors; hence, it is a local theory. The interaction of material points

is governed by the various balance laws. Therefore, in a local model a material

point only exchanges mass, momentum, and energy with its closest neighbors. As a

result, in classical mechanics the stress state at a point depends on the deformation

at that point only. The validity of this assumption becomes questionable across

different length scales. In general, at the macroscale this assumption is acceptable.

However, the existence of long-range forces is evident from the atomic theory and

as such the supposition of local interactions breaks down as the geometric length

scale becomes smaller and approaches the atomic scale. Even at the macroscale

there are situations when the validity of locality is questionable, for instance when

small features and microstructures influence the entire macrostructure.

Despite the development of many important concepts to predict crack initiation

and its growth in materials, it is still a major challenge within the framework of

classical continuum mechanics. The main difficulty lies in the mathematical for-

mulation, which assumes that a body remains continuous as it deforms. Therefore,

the basic mathematical structure of the formulation breaks down whenever a

discontinuity appears in a body. Mathematically, the classical theory is formulated

using spatial partial differential equations, and these spatial derivatives are unde-

fined at discontinuities. This introduces an inherent limitation to the classical

theory, as the spatial derivatives in the governing equations, by definition, lose

their meaning due to the presence of a discontinuity, such as a crack.
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1.1.1 Shortcomings in Failure Prediction

The solutions within the realm of classical continuum mechanics result in infinite

(singular) stresses at the crack tips, as derived in the pioneering study by Griffith

(1921) that led to the concept of Linear Elastic Fracture Mechanics (LEFM). Within

the realm of LEFM, a pre-existing crack in the material is necessary, and the

stresses at the crack tip are mathematically singular. Therefore, the onset of crack

initiation and crack growth are treated separately by introducing external criteria,

such as critical energy release rate, that are not part of the governing equations of

classical continuum mechanics. Furthermore, crack nucleation within LEFM still

remains an unresolved issue.

Due to the presence of singular stresses, accurate calculation of the stress

intensity factor or energy release rate can be highly challenging as these quantities

are dependent on loading, geometry, and the numerical solution method. In addition

to the requirement of an external criterion for the onset of crack growth, a criterion

is also necessary for the direction of crack propagation. Understanding and predic-

tion of the material failure process is rather complex due to the presence of a variety

of mechanisms associated with grain boundaries, dislocations, microcracks, anisot-

ropy, etc., each of which plays an important role at a specific length scale.

Many experiments indicated that materials with smaller cracks exhibit higher

fracture resistance than those with larger cracks, and yet the solutions utilizing the

classical continuum theory are independent of the crack size (Eringen et al. 1977).

Furthermore, the classical continuum theory predicts no dispersion while

experiments show otherwise for propagation of elastic plane waves with short

wavelengths in elastic solids (Eringen 1972a). Within the realm of the classical

(local) continuum theory, a material point in a continuum is influenced only by the

other material points that are located within its immediate vicinity. Hence, there is

no internal length parameter distinguishing different length scales.

Although the classical continuum theory is incapable of distinguishing among

different scales, it can capture certain failure processes, and can be applied to a wide

range of engineering problems, especially by employing the Finite Element Method

(FEM). The FEM is robust in particular for determining stress fields, and it is also

exceptionally suitable for modeling structures possessing complex geometries and

different materials under general loading conditions. However, its governing

equations are derived based on the classical continuum mechanics, and it also

suffers from the presence of undefined spatial derivatives of displacements at

crack tips or along crack surfaces.

When LEFM is adopted into the FEM, special elements are commonly needed in

order to capture the correct singular behavior (mathematical artifact) at the crack

tip. With traditional finite elements, the discontinuity in the displacement field that

transpires as the crack propagates is remedied by redefining the body, i.e., defining

the crack as a boundary.

The field of fracture mechanics is primarily concerned with the evolution of

pre-existing cracks within a body, rather than the nucleation of new cracks. Even
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when addressing crack growth, the FEM with traditional elements suffers from the

inherent limitation that it requires remeshing after each incremental crack growth.

In addition to the need to remesh, existing methods for fracture modeling also suffer

from the need to supply a kinetic relation for crack growth, a mathematical

statement that prescribes how a crack evolves a priori based on local conditions.

It guides the analysis as to when a crack should initiate; how fast it should grow and

in what direction; whether it should turn, branch, oscillate, arrest, etc. Considering

the difficulty in obtaining and generalizing experimental fracture data, providing

such a kinetic relation for crack growth clearly presents a major obstacle to fracture

modeling using conventional methods. Considering the presence of crack tip

singularity, the need for external criteria, the inability to address crack initiation,

and the requirement for redefining the body, it is clear that it is nearly impossible to

solve a problem with multiple interacting cracks that propagate in a complex

manner using traditional finite elements.

1.1.2 Remedies

Numerous studies were performed to improve the shortcomings of the FEM with

traditional elements within the realm of LEFM. In particular, the cohesive zone

concept introduced by Dugdale (1960) and Barenblatt (1962) has become prevalent

among many other fracture criteria. However, the major breakthrough in computa-

tional fracture mechanics came with the introduction of Cohesive Zone Elements

(CZE) by Hillerborg et al. (1976) for the Mode-I fracture mode and Xu and

Needleman (1994) for a mixed-mode fracture. Materials and material interfaces

are modeled through a traction-separation law for which the tractions are zero when

the opening displacement (separation) reaches a critical value. Cohesive zone

elements are usually surface elements that are placed along the element boundaries;

hence, crack growth occurs only between traditional (regular) elements. Therefore,

the material response exhibits characteristics of both regular and cohesive zone

elements; the cohesive elements are only introduced to produce fracture behavior.

The number of cohesive elements increases with decreasing mesh size, yet the size

of the continuum region remains the same. Hence, softening of material properties

can be observed with decreasing mesh size. Furthermore, mesh texture produces

anisotropy, and it leads to mesh dependence. Crack paths are highly sensitive to

mesh texture and alignment (Klein et al. 2001), and remeshing is required when

crack paths are unknown a priori.

In an effort to resolve these difficulties, the concept of the eXtended Finite

Element Method (XFEM) was introduced as a technique to model cracks and crack

growth within the realm of finite elements without remeshing (Belytschko and

Black 1999; Moes et al. 1999). It permits the cracks to propagate on any surface

within an element, rather than only along element boundaries. Thus, it removes the

limitation of CZE on the admissible direction of new fracture surfaces. XFEM is

based on the partition of unity property of finite elements (Melenk and
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Babuska 1996). Local enrichment functions, with additional degrees of freedom,

are included in the standard finite element approximation. These functions are in the

form of discontinuous displacement enrichment, in order to capture displacement

discontinuity across a crack, and near-crack tip asymptotic displacement enrich-

ment. Also, the additional number of degrees of freedom is minimized since the

enrichment only includes the nodes that belong to the elements cut by cracks

(Zi et al. 2007). According to Zi et al. (2007), the elements adjacent to the element

in which the crack tip is positioned are partially enriched, and the partition of unity

does not hold for them. Hence, the solution becomes inaccurate in the blending

region. This prevents such methods from being applicable to problems in which

multiple cracks grow and interact in complex patterns. The XFEM has been

successfully employed to solve a number of fracture problems; however, it does

require external criteria for injection of discontinuous displacement enrichment.

The difficulties encountered in the methods utilizing the classical continuum

mechanics can be overcome by performing Molecular Dynamics Simulations

(MDS) or atomistic lattice models. The atomistic simulation is certainly the most

detailed and realistic one for predicting material fracture (Schlangen and van Mier

1992). The crack initiation and propagation can be simulated using the inter-atomic

forces. However, atomistic studies focus on providing a fundamental understanding

of the underlying basic physical processes of dynamic fracture, instead of being

predictive (Cox et al. 2005). The reason for the limited focus stems from the

availability of computational resources. In recent years, large-scale molecular

dynamics simulations certainly have become possible with advancements in com-

puter architectures. For instance, Kadau et al. (2006) performed simulations using

320 billion atoms, corresponding to a cubic piece of solid copper with an edge

length of 1.56 μm. However, these length scales are still very small for real-life

engineering structures. Furthermore, atomistic simulations suffer from the strict

limitation on the total time since the time step is very small. Hence, most

simulations are performed under very high loading rates, and it is not very clear

if the fracture processes at artificially high rates resulting in high stresses are

representative of events happening at lower rates.

Inspired from atomistic lattice models, lattice spring models eliminate the

inadequacy of the atomistic simulations for large-scale structures by representing

materials with discrete units interacting through springs, or, more generally, rheo-

logical elements (Ostoja-Starzewski 2002). The interactions among the lattice

points can be short range by including nearest neighbors or long range (nonlocal)

by containing neighbors beyond the nearest ones. Furthermore, lattice sites can be

periodic or disordered and there are many different periodic lattices: triangular,

square, honeycomb, etc. However, periodic lattices exhibit directional dependence

on the elastic properties. Furthermore, the interaction force for one lattice type

cannot easily be utilized for another type, and it is also not clear which lattice type is

best suited for a specific problem.

Hence, it is clear that the atomistic simulations are insufficient to model fracture

processes in real-life structures. Moreover, the experiments of physicists have

revealed that cohesive forces reach finite distances among atoms, yet the classical
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continuum theory lacks an internal length parameter permitting modeling at

different length scales because it is valid only for very long wavelengths (Eringen

1972a). Therefore, Eringen and Edelen (1972), Kroner (1967), and Kunin (1982)

introduced the nonlocal continuum theory in an effort to account for the long-range

effects.

1.2 Nonlocal Theories

The nonlocal theory of continuous media establishes the connection between

classical continuum mechanics and molecular dynamics. In the case of the local

(classical) continuum model, the state of a material point is influenced by the

material points located in its immediate vicinity. In the case of the nonlocal

continuum model, the state of a material point is influenced by material points

located within a region of finite radius. As the radius becomes infinitely large, the

nonlocal theory becomes the continuous version of the molecular dynamics model.

Therefore, the nonlocal theory of continuous media establishes a connection

between the classical (local) continuum mechanics and molecular dynamics

models. The relationship between the local and nonlocal continuum models and

the molecular dynamics model is illustrated in Fig. 1.1.

Any point x interacts with other material points within a distance δ. The material

points within a distance δ of x are called the family of x,Hx. The number of material

points in a family of x, within the realm of classical continuum mechanics, is 3, 5,

and 7 (including itself) for one-, two-, and three-dimensional analysis, respectively.

Various nonlocal theories, involving higher-order displacement gradients and

spatial integrals, were introduced in the past. Early work by Eringen and Edelen

(1972) and Eringen (1972a, b) resulted in a nonlocal continuum theory that

accounted for nonlocality in the balance laws and thermodynamic statements.

However, the resulting equations were rather complicated, and later work by

these researchers simplified the theory by accounting for nonlocality in the

x

x

xHx

Local Peridynamics Molecular dynamics

Fig. 1.1 Relationship between local and nonlocal continuum models
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constitutive relation while keeping the equilibrium and kinematic equations in the

local form (Eringen et al. 1977). Currently, most nonlocal theories account for

nonlocality through the constitutive relation. Generally, integral-type nonlocal

material models in continuum mechanics have a constitutive law that relates the

forces (stresses) at a material point to some weighted average of deformation

(strains) of other points that are some finite distance away. On the other hand,

gradient-type nonlocal models include higher order derivatives to account for the

field in the immediate vicinity of the point, such as the first derivative of the strain to

the local constitutive law. Both types of nonlocal models have an associated

characteristic length, which can be related to physical lengths such as grain size,

fracture process zone size, or pore size.

The nonlocal continuum theory was noted for its ability to not only capture

macroscale effects, but also the effects of molecular and atomic scales. Eringen

(1972b) showed that a nonlocal model is capable of predicting a wide range of

wavelengths. The nonlocal theory still assumes the media as a continuum, however

it is computationally less demanding than the molecular dynamics while taking into

account the long-range effects. Since the classical theory is the longwave limit of

the atomic theory, they showed the ability of the nonlocal theory to capture

deformation from the classical longwave limit to the atomic scale. According to

Bazant and Jirasek (2002), there are many occasions when it is necessary to adopt

a nonlocal approach in continuum mechanics. Such instances include capturing

the effects of microstructure heterogeneity on small-scale continuum models.

Nonlocality is also required in order to capture size effects—the dependence of

nominal strength on structure size, observed in experiments and discrete modeling

but not captured by local models. Nonlocality is also exhibited in the phenomena of

microcracking. Distributed microcracking has been experimentally observed; how-

ever, it is challenging if not impossible to numerically simulate with local models

because microcrack growth is not decided by local deformation or local stress.

Evidence points to the fact that microcracking is not only dependent on the local

deformation at the center of the microcrack, but is also dependent on the deforma-

tion that occurs within some neighborhood of the microcrack (Bazant 1991).

The nonlocal theory was also extended to address crack growth prediction.

Eringen and Kim (1974a, b) showed that because of the nonlocal nature of the

theory, the stress field ahead of the crack tip is bounded as the crack tip is

approached asymptotically, rather than unbounded as predicted by the classical

continuum theory. Also, Eringen and Kim (1974a) suggested a natural fracture

criterion by equating maximum stress to the cohesive stress that holds atomic bonds

together. This criterion can be applied everywhere in continuous media without

distinguishing discontinuities. Although their nonlocal continuum theory leads to

finite stresses at the crack tips, the derivatives of the displacement field are retained

in the formulation.

Later, Eringen and his coworkers (1977) applied their nonlocal theory to the

modeling of a Griffith crack. The advantage of the nonlocal continuum theory over

the local theory in the area of fracture is made obvious by the fact that the nonlocal

model predicts a physically meaningful finite stress field at the crack tip. This is
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opposed to the local theory that predicts infinite stresses at the crack tip, which is

nonphysical because no real material can support infinite stresses. Also, Ari and

Eringen (1983) showed that the analysis results of a Griffith crack using nonlocal

elasticity are in agreement with the lattice model given by Elliott (1947). In spite of

this, the governing equations of their model still lose meaning at the crack, as they

are formulated in terms of spatial derivatives. In fact, most nonlocal models still

break down in the presence of a discontinuity, such as a crack, because, similar to

the classical local theory, spatial derivatives are included in their formulation.

Typically, nonlocal models include nonlocality in the stress–strain relation through

strain averaging (Eringen et al. 1977; Ozbolt and Bazant 1996) or through adding

strain derivatives to the standard constitutive relation, hence retaining the spatial

derivative.

Another type of nonlocal theory, introduced by Kunin (1982, 1983) and Rogula

(1982), circumvents this difficulty because it uses displacement fields rather than

their derivatives. However, it is only given for a one-dimensional medium by Kunin

(1982) and Rogula (1982). Kunin (1983) derived a three-dimensional nonlocal

model by approximating a continuous medium as a discrete lattice structure.

More recently, Silling (2000) proposed a nonlocal theory that does not require

spatial derivatives—the peridynamic (PD) theory. Compared to the previous non-

local theory by Kunin (1982) and Rogula (1982), the PD theory is more general

because it considers two- and three-dimensional media in addition to the

one-dimensional medium. In contrast to the nonlocal theory by Kunin (1983), the

PD theory provides nonlinear material response with respect to displacements.

Furthermore, the material response includes damage in the PD theory.

1.2.1 Basics of Peridynamic Theory

In light of the inadequacies of local and nonlocal theories, the peridynamic theory,

which is nonlocal, was introduced by Silling (2000) and Silling et al. (2007) in an

attempt to deal with the discontinuities. Similar to the nonlocal theory formulated

by Kunin (1982), the peridynamic theory employs displacements rather than dis-

placement derivatives in its formulation. Basically, the peridynamic theory is a

reformulation of the equation of motion in solid mechanics that is better suited for

modeling bodies with discontinuities, such as cracks. The theory uses spatial

integral equations that can be applied to a discontinuity. This stands in contrast to

the partial differential equations used in the classical formulation, which are not

defined at discontinuities. The peridynamic governing equations are defined at

fracture surfaces; additionally, material damage is part of the peridynamic consti-

tutive laws. These attributes permit fracture initiation and propagation to be

modeled, with arbitrary paths, without the need for special crack growth treatment.

Furthermore, interfaces between dissimilar materials have their own properties.

In the peridynamic theory, material points interact with each other directly

through the prescribed response function, which contains all of the constitutive
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information associated with the material. The response function includes a length

parameter called internal length (horizon), δ. The locality of interactions depends on
the horizon, and interactions become more local with a decreasing horizon. Hence,

the classical theory of elasticity can be considered as a limiting case of the

peridynamic theory as the internal length approaches zero. For instance, it has

been shown that the peridynamic theory reduces to the linear theory of elasticity

with the proper choice of response function (Silling et al. 2003; Weckner and

Abeyaratne 2005). In another limiting case where the internal length approaches

the inter-atomic distance, it was shown by Silling and Bobaru (2005) that van der

Waals forces can be used as part of the response function to model nanoscale

structures. Therefore, the peridynamic theory is capable of bridging the nano to

macro length scales. With the PD theory, damage in the material is simulated in a

much more realistic manner compared to the classical continuum-based methods.

As the interactions between material points cease, cracks may initiate and align

themselves along surfaces that form cracks, yet the integral equations continue to

remain valid.

1.2.2 Attributes and Its Present State

The main difference between the peridynamic theory and classical continuum

mechanics is that the former is formulated using integral equations as opposed to

derivatives of the displacement components. This feature allows damage initiation

and propagation at multiple sites with arbitrary paths inside the material without

resorting to special crack growth criteria. In the peridynamic theory, internal forces

are expressed through nonlocal interactions between pairs of material points within

a continuous body, and damage is part of the constitutive model. Interfaces between

dissimilar materials have their own properties and damage can propagate when and

where it is energetically favorable for it to do so. The PD theory provides the ability

to link different length scales, and it can be viewed as the continuum version of

MDS. It provides the ability to address multiphysics and multiscale failure predic-

tion in a common framework.

The ability of the peridynamic theory to represent physical phenomena was

demonstrated by Silling (2000). Silling investigated the propagation of linear stress

waves and wave dispersion along with the shape of the crack tip within the realm of

the peridynamic theory. The peridynamic linear elastic waves with long

wavelengths were in agreement with those from the classical theory. At small

scales, the peridynamic theory predicts nonlinear dispersion curves, which are

found in real materials, unlike the curves predicted by the classical elasticity. In

the crack tip study, the peridynamic theory predicts a cusp-like crack tip as opposed

to the parabolic crack tip from LEFM. The parabolic crack tip in LEFM is

associated with the unphysical unbounded stress at the crack tip.

The original peridynamic formulation by Silling (2000), later coined the “bond-

based peridynamic theory,” is based on the assumption of pairwise interactions of
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the same magnitude, thus resulting in a constraint on material properties, such as

requiring the Poisson’s ratio to be one-fourth for isotropic materials. Also, it does

not distinguish between volumetric and distortional deformations; thus it is not

suitable to capture the plastic incompressibility condition, or to utilize the existing

material models.

In order to relax the constraint on material properties, Gerstle et al. (2007)

introduced a “micropolar peridynamic model” by considering pairwise moments

as well as forces in the “bond-based” peridynamics. Although this formulation

overcomes the constraint limitation for isotropic materials, it is not clear if it can

also capture the incompressibility condition. Therefore, Silling et al. (2007)

introduced a more general formulation, coined the “state-based” peridynamic

theory, which eliminates the limitations of the “bond-based” peridynamics. The

“state-based” PD theory is based on the concept of peridynamic states that are

infinite dimensional arrays containing information about peridynamic interactions.

Silling (2010) also extended the “state-based” PD theory to account for the effects

of indirect interactions between material points on other material points by

introducing the “double state” concept. Recently, Lehoucq and Sears (2011)

derived the energy and momentum conservation laws of the peridynamic theory

by using the principles of classical statistical mechanics. They showed that the

nonlocal interaction is intrinsic to continuum conservation laws. Recently, Silling

(2011) also extended the use of PD theory for bridging different length scales by

introducing a “coarse-graining method.” According to this approach, the structural

properties at a lower scale are reflected to its upper scale through a mathematically

consistent technique.

The peridynamic theory does not concern the concept of stress and strain;

however, it is possible to define a stress tensor within the PD framework. Lehoucq

and Silling (2008) derived a PD stress tensor from nonlocal PD interactions. The

stress tensor is obtained from the PD forces that pass through a material point

volume. For sufficiently smooth motion, a constitutive model, and any existing

nonhomogeneities, Silling and Lehoucq (2008) showed that the PD stress tensor

converges to a Piola-Kirchhoff stress tensor in the limiting case where the horizon

size converges to zero.

The integro-differential equation of peridynamic theory is difficult to solve

analytically. However, a few analytical solutions exist in the literature. For

instance, Silling et al. (2003) investigated the deformation of an infinite bar

subjected to a self-equilibrated load distribution. The solution was achieved in the

form of a linear Fredholm integral equation and solved by Fourier transformation.

This solution revealed interesting results that cannot be captured by the classical

theory, including decaying oscillations in the displacement field and progressively

weakening discontinuities propagating outside of the loading region. Weckner

et al. (2009) also used Laplace and Fourier transforms, and obtained an integral

representation for the three-dimensional PD solution by utilizing Green’s functions.

This approach was independently pursued byMikata (2012) to investigate peristatic

and peridynamic solution of a one-dimensional infinite bar, and it was found that

peridynamics can represent negative group velocities for certain wavenumbers,
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which can be used for modeling certain types of dispersive media with irregular

dispersion.

Peridynamics permits not only linear elastic material behavior, but also nonlin-

ear elastic (Silling and Bobaru 2005), plastic (Silling et al. 2007; Mitchell 2011a),

viscoelastic (Kilic 2008; Taylor 2008; Mitchell 2011b), and viscoplastic (Taylor

2008; Foster et al. 2010) material behaviors. Dayal and Bhattacharya (2006) studied

the kinetics of phase transformations in solids by using peridynamics. They derived

a nucleation criterion by examining nucleation as a dynamic instability.

The solution of PD equations requires numerical integration both in time and

space, for which explicit and Gaussian quadrature techniques can be adopted

because of their simplicity. The description of these techniques and their applica-

tion to peridynamics are presented by Silling and Askari (2005). They also provided

the stability criterion for convergence of time integration, and discussed the order of

accuracy for uniform discretization (grid) for spatial integration. Later, Emmrich

and Weckner (2007) presented different spatial discretization schemes and tested

them by considering a linear microelastic material of infinite length in one dimen-

sion. Recently, Bobaru et al. (2009) and Bobaru and Ha (2011) considered a

nonuniform grid and nonuniform horizon sizes for spatial integration. In order to

improve the accuracy and efficiency of numerical time integration, Polleschi (2010)

proposed a mixed explicit-implicit time integration scheme; the integration through

the time steps is explicit with an implicit cycle at every time step. In a similar way,

Yu et al. (2011) proposed an adaptive trapezoidal integration scheme with a

combined relative-absolute error control. Also, Mitchell (2011a, b) utilized an

implicit time integration method.

Although the PD equation of motion includes the effects of inertia, it is possible

to use it for quasi-static problems by appropriately allowing the inertia term to

vanish through schemes, as demonstrated by Kilic and Madenci (2010a). Alterna-

tively, Wang and Tian (2012) introduced a fast Galerkin method with efficient

matrix assembly and storage.

The degree of nonlocality is defined by a PD parameter, referred to as the

horizon; therefore, it is crucial to choose an appropriate size for it to obtain accurate

results and represent the actual physical reality. In a recent study, Bobaru and Hu

(2012) discuss the meaning, selection, and use of horizon in the PD theory and

explain under what conditions the crack propagation speed depends on the horizon

size and the role of incident waves on this speed. Influence function is another

important parameter in PD theory, which determines the strength of interactions

between material points. Seleson and Parks (2011) studied the effect of influence

function by investigating wave propagation in simple one-dimensional models and

brittle fracture in three-dimensional models.

The spatial integration of the PD equation is very suitable for parallel comput-

ing. However, the load distribution is a key issue to obtain the most efficient

computational environment. An efficient load distribution scheme is described by

Kilic (2008). Also, Liu and Hong (2012a) demonstrated the use of Graphics

Processing Unit (GPU) architecture towards the same goal.
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The PD theory permits crack initiation and growth. Silling et al. (2010)

established a condition for the emergence of a discontinuity (crack nucleation) in

an elastic body. For crack growth, it requires a critical material failure parameter.

The original parameter for a brittle material is referred to as the “critical stretch,”

and it can be related to the critical energy release rate of the material, as explained

in Silling and Askari (2005). Warren et al. (2009) demonstrated the capability of the

nonordinary state-based PD theory for capturing failure based on either the critical

equivalent strain (measure of shearing strain) or the averaged value of the volumet-

ric strain (dilatation). Recently, Foster et al. (2011) proposed critical energy density

as an alternative critical parameter and also related it to the critical energy release

rate. As shown by Silling and Lehoucq (2010) and Hu et al. (2012b), the PD theory

also permits the calculation of the J-integral value, which is an important parameter

of fracture mechanics.

Silling (2003) considered a Kalthoff-Winkler experiment in which a plate

having two parallel notches was hit by an impactor and peridynamic simulations

successfully captured the angle of crack growth that was observed in the

experiments. Silling and Askari (2004) also presented impact damage simulations

including the Charpy V-notch test. Ha and Bobaru (2011) successfully captured

various characteristics of dynamic fracture observed in experiments, including

crack branching, crack-path instability, etc. Furthermore, Agwai et al. (2011) com-

pared their PD analysis results against extended Finite Element Method (XFEM)

and Cohesive Zone Model (CZM) predictions. Crack speeds computed from all

approaches were found to be on the same order; however, the PD prediction of

fracture paths are closer to the experimental observations, including both branching

and microbranching behaviors.

The PD theory captures the interaction of local failure such as a crack growth

with global failure due to structural stability. Kilic and Madenci (2009a)

investigated the buckling characteristics of a rectangular column with a groove

(crack initiation site) under compression and a constrained rectangular plate under

uniform temperature load. They triggered lateral displacements using geometrical

imperfection.

The PD theory also permits multiple load paths such as compression after

impact. Demmie and Silling (2007) considered the extreme loadings on reinforced

concrete structures by impacts from massive objects and explosive loading of

concrete structures. This study was recently extended by Oterkus et al. (2012a) to

predict the residual strength of impact damaged concrete structures.

Composite damage has also been modeled with the peridynamic theory. Within

the PD framework, the simplest approach to model a composite layer with direc-

tional properties is achieved by assigning different material properties in the fiber

and other (remaining) directions. The interactions between neighboring layers are

defined by using inter-layer bonds. Askari et al. (2006) and Colavito et al. (2007a, b)

predicted damage in laminated composites subjected to low-velocity impact and

damage in woven composites subjected to static indentation. In addition, Xu

et al. (2007) considered notched laminated composites under biaxial loads. Also,
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Oterkus et al. (2010) demonstrated that PD analysis is capable of capturing bearing

and shear-out failure modes in bolted composite lap joints.

Xu et al. (2008) analyzed the delamination and matrix damage process in

composite laminates due to only low-velocity impact. Recently, Askari

et al. (2011) considered the effect of both high- and low-energy hail impacts against

a toughened-epoxy, intermediate-modulus, carbon-fiber composite. Also, Hu

et al. (2012a) predicted the basic failure modes of fiber, matrix, and delamination

in laminates with a pre-existing central crack under tension. The analytical deriva-

tion of the PD material parameters, including thermal loading conditions, was

recently given by Oterkus and Madenci (2012). They also demonstrated the

constraints on material constants due to the pairwise interaction assumption. The

other approach to model composites was introduced by Kilic et al. (2009) by

distinguishing fiber and matrix materials based on the volume fraction. Although

this approach may have some advantages by taking into account the inhomoge-

neous structure, it is computationally more expensive than the homogenized tech-

nique. The other approach for modeling composites is the linking of micro- and

macroscales as described by Alali and Lipton (2012). The method depends on a

two-scale evolution equation. While the microscopic part of this equation governs

the dynamics at the length scale of heterogeneities, the macroscopic part tracks the

homogenized dynamics.

Since the numerical solution of peridynamic equations of motion is computa-

tionally more expensive than the local solutions, such as FEM, it may be advanta-

geous to combine PD theory and local solutions. In a recent study, Seleson

et al. (2013) proposed a force-based blended model that coupled PD theory and

classical elasticity by using nonlocal weights composed of integrals of blending

functions. They also generalized this approach to couple peridynamics and higher-

order gradient models of any order. In another study, Lubineau et al. (2012)

performed coupling of local and nonlocal solutions through a transition (morphing)

that affects only constitutive parameters. The definition of the morphing functions

in their approach relies on energy equivalence. In addition to these techniques, Kilic

and Madenci (2010b) and Liu and Hong (2012b) coupled FEM and peridynamics.

A more straightforward coupling procedure is given in Macek and Silling (2007),

where the PD interactions are represented by truss elements. If only some part of the

region is desired to be modeled by using peridynamics, then the other sections can

be modeled by traditional finite elements. Another simple approach, demonstrated

by Oterkus et al. (2012b) and Agwai et al. (2012), was first to solve the problem by

using finite element analysis and obtain the displacement field. Then, by using the

available information, the displacements can be applied as a boundary condition to

the peridynamic model of a critical region.

The peridynamic theory is also suitable for thermal loading conditions; Kilic and

Madenci (2010c) included the thermal term in the response function of peridynamic

interactions. By utilizing this approach, Kilic and Madenci (2009b) predicted

thermally driven crack propagation patterns in quenched glass plates containing

single or multiple pre-existing cracks, and Kilic and Madenci (2010c) also
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predicted damage initiation and propagation in regions having dissimilar materials

due to thermal loading.

Furthermore, the PD theory was extended to consider heat diffusion. Gerstle

et al. (2008) developed a peridynamic model for electromigration that accounts for

heat conduction in a one-dimensional body. Additionally, Bobaru and Duangpanya

(2010, 2012) introduced a multidimensional peridynamic heat conduction equation,

and considered domains with discontinuities such as insulated cracks. Both studies

adopted the bond-based peridynamic approach. Later, Agwai (2011) derived the

state-based peridynamic heat conduction equation. She also further extended it for

fully coupled thermomechanics (Agwai 2011).

The peridynamic theory has been utilized successfully for damage prediction of

many problems at different length scales from macro to nano. In order to take into

account the effect of van der Waals interactions, Silling and Bobaru (2005) and

Bobaru (2007) included an additional term to the peridynamic response function to

represent van der Waals forces. This new formulation was used to investigate the

mechanical behavior, strength, and toughness properties of three-dimensional

nanofiber networks under imposed stretch deformation. It was found that the

inclusion of van der Waals forces significantly changes the overall deformation

behavior of the nanofiber network structure. In a recent study, Seleson et al. (2009)

demonstrated that peridynamics can play the role of an upscale version of molecu-

lar dynamics and pointed out the extent where the molecular dynamics solutions

can be recovered by peridynamics. Celik et al. (2011) utilized peridynamics to

extract mechanical properties of nickel nanowires subjected to bending loads in a

customized atomic force microscope (AFM) and scanning electron microscope

(SEM). SEM images of fractured nanowires are also compared against peridynamic

simulation results.

Even though numerous journal articles and conference papers exist in the

literature on the evolution and application of the peridynamic theory, it is still

new to the scientific community. Because it is based on concepts not commonly

used in the past, the purpose of this book is to explain the peridynamic theory in a

single framework. It presents not only the theoretical basis but also its numerical

implementation.

It starts with an overview of the peridynamic theory and derivation of its

governing equations. The relationship between peridynamics and classical contin-

uum mechanics is established, and this leads to the ordinary state-based

peridynamics formulations for both isotropic and composite materials. Numerical

treatments of the peridynamic equations are presented in detail along with solutions

to many benchmark and demonstration problems. In order to take advantage of

salient features of the peridynamics and finite element methods, a coupling tech-

nique is also presented in detail. Finally, an extension of the peridynamic theory for

thermal diffusion and fully coupled thermomechanics is presented with

applications. [FORTRAN algorithms providing solutions to many of these bench-

mark problems can be found at http://extras.springer.com.]
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