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Preface

The effectiveness of computational techniques such as finite elements in modeling

material failure has lagged far behind their capabilities in traditional stress analysis.

This difficulty arises because the mathematical foundation on which all such

methods are based assumes that the body remains continuous as it deforms. Existing

computational methods for the modeling of fracture in a continuous body are based

on the partial differential equations (PDEs) of classical continuum mechanics.

These methods suffer from the inherent limitation that the spatial derivatives

required by the PDEs do not, by definition, exist at crack tips or along crack

surfaces. Therefore, the basic mathematical structure of the formulation breaks

down whenever a crack appears in a body. Various special techniques have been

developed in fracture mechanics to deal with this limitation. Generally, these

techniques involve redefining a body in such a way as to exclude the crack and

then applying conditions at the crack surfaces as boundary conditions. In addition,

existing methods for fracture modeling suffer from the need of external crack

growth criteria and, possibly, remeshing. This is a mathematical statement that

prescribes how a crack evolves a priori based on local conditions. The requirement

of tracking individual crack fronts, particularly in three dimensions, as well as the

possibility of fractures moving between constituent materials, interfaces, and

layers, makes it difficult to provide accurate crack growth criteria.

The difficulties encountered in the methods utilizing classical continuum

mechanics can be overcome by performing molecular dynamics simulations or by

using atomistic lattice models. Atomistic methods, although providing insight into

the nature of fracture in certain materials, cannot be expected to provide a practical

tool for the modeling of engineering structures. It is clear that the atomistic

simulations are insufficient to model fracture processes in real-life structures.

The peridynamic theory provides the capability for improved modeling of

progressive failure in materials and structures. Further, it paves the way for

addressing multi-physics and multi-scale problems. Even though numerous journal

articles and conference papers exist in the literature on the evolution and applica-

tion of the peridynamic theory, it is still new to the technical community. Because it

is based on concepts not commonly used in the past, the purpose of this book is to
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explain the peridynamic theory in a single framework. It presents not only the

theoretical basis but also its numerical implementation. It starts with an overview of

the peridynamic theory and the derivation of its governing equations. The relation-

ship between peridynamics and classical continuum mechanics is established, and

this leads to the ordinary state-based peridynamics formulations for both isotropic

and composite materials. Numerical treatments of the peridynamic equations are

presented in detail along with solutions to many benchmark and demonstration

problems. In order to take advantage of salient features of peridynamics and the

finite element method, a coupling technique is also described. Finally, an extension

of the peridynamic theory for thermal diffusion and fully coupled thermomechanics

is presented with applications.

Sample algorithms for the solutions of benchmark problems are available at

the website http://extras.springer.com so that researchers and graduate students can

modify these algorithms and develop their own solution algorithms for specific

problems. The goal of this book is to provide students and researchers with a

theoretical and practical knowledge of the peridynamic theory and the skills

required to analyze engineering problems by developing their own algorithms.
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Chapter 1

Introduction

1.1 Classical Local Theory

One of the underlying assumptions in the classical theory is its locality. The

classical continuum theory assumes that a material point only interacts with its

immediate neighbors; hence, it is a local theory. The interaction of material points

is governed by the various balance laws. Therefore, in a local model a material

point only exchanges mass, momentum, and energy with its closest neighbors. As a

result, in classical mechanics the stress state at a point depends on the deformation

at that point only. The validity of this assumption becomes questionable across

different length scales. In general, at the macroscale this assumption is acceptable.

However, the existence of long-range forces is evident from the atomic theory and

as such the supposition of local interactions breaks down as the geometric length

scale becomes smaller and approaches the atomic scale. Even at the macroscale

there are situations when the validity of locality is questionable, for instance when

small features and microstructures influence the entire macrostructure.

Despite the development of many important concepts to predict crack initiation

and its growth in materials, it is still a major challenge within the framework of

classical continuum mechanics. The main difficulty lies in the mathematical for-

mulation, which assumes that a body remains continuous as it deforms. Therefore,

the basic mathematical structure of the formulation breaks down whenever a

discontinuity appears in a body. Mathematically, the classical theory is formulated

using spatial partial differential equations, and these spatial derivatives are unde-

fined at discontinuities. This introduces an inherent limitation to the classical

theory, as the spatial derivatives in the governing equations, by definition, lose

their meaning due to the presence of a discontinuity, such as a crack.

E. Madenci and E. Oterkus, Peridynamic Theory and Its Applications,
DOI 10.1007/978-1-4614-8465-3_1, © Springer Science+Business Media New York 2014
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1.1.1 Shortcomings in Failure Prediction

The solutions within the realm of classical continuum mechanics result in infinite

(singular) stresses at the crack tips, as derived in the pioneering study by Griffith

(1921) that led to the concept of Linear Elastic Fracture Mechanics (LEFM). Within

the realm of LEFM, a pre-existing crack in the material is necessary, and the

stresses at the crack tip are mathematically singular. Therefore, the onset of crack

initiation and crack growth are treated separately by introducing external criteria,

such as critical energy release rate, that are not part of the governing equations of

classical continuum mechanics. Furthermore, crack nucleation within LEFM still

remains an unresolved issue.

Due to the presence of singular stresses, accurate calculation of the stress

intensity factor or energy release rate can be highly challenging as these quantities

are dependent on loading, geometry, and the numerical solution method. In addition

to the requirement of an external criterion for the onset of crack growth, a criterion

is also necessary for the direction of crack propagation. Understanding and predic-

tion of the material failure process is rather complex due to the presence of a variety

of mechanisms associated with grain boundaries, dislocations, microcracks, anisot-

ropy, etc., each of which plays an important role at a specific length scale.

Many experiments indicated that materials with smaller cracks exhibit higher

fracture resistance than those with larger cracks, and yet the solutions utilizing the

classical continuum theory are independent of the crack size (Eringen et al. 1977).

Furthermore, the classical continuum theory predicts no dispersion while

experiments show otherwise for propagation of elastic plane waves with short

wavelengths in elastic solids (Eringen 1972a). Within the realm of the classical

(local) continuum theory, a material point in a continuum is influenced only by the

other material points that are located within its immediate vicinity. Hence, there is

no internal length parameter distinguishing different length scales.

Although the classical continuum theory is incapable of distinguishing among

different scales, it can capture certain failure processes, and can be applied to a wide

range of engineering problems, especially by employing the Finite Element Method

(FEM). The FEM is robust in particular for determining stress fields, and it is also

exceptionally suitable for modeling structures possessing complex geometries and

different materials under general loading conditions. However, its governing

equations are derived based on the classical continuum mechanics, and it also

suffers from the presence of undefined spatial derivatives of displacements at

crack tips or along crack surfaces.

When LEFM is adopted into the FEM, special elements are commonly needed in

order to capture the correct singular behavior (mathematical artifact) at the crack

tip. With traditional finite elements, the discontinuity in the displacement field that

transpires as the crack propagates is remedied by redefining the body, i.e., defining

the crack as a boundary.

The field of fracture mechanics is primarily concerned with the evolution of

pre-existing cracks within a body, rather than the nucleation of new cracks. Even
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when addressing crack growth, the FEM with traditional elements suffers from the

inherent limitation that it requires remeshing after each incremental crack growth.

In addition to the need to remesh, existing methods for fracture modeling also suffer

from the need to supply a kinetic relation for crack growth, a mathematical

statement that prescribes how a crack evolves a priori based on local conditions.

It guides the analysis as to when a crack should initiate; how fast it should grow and

in what direction; whether it should turn, branch, oscillate, arrest, etc. Considering

the difficulty in obtaining and generalizing experimental fracture data, providing

such a kinetic relation for crack growth clearly presents a major obstacle to fracture

modeling using conventional methods. Considering the presence of crack tip

singularity, the need for external criteria, the inability to address crack initiation,

and the requirement for redefining the body, it is clear that it is nearly impossible to

solve a problem with multiple interacting cracks that propagate in a complex

manner using traditional finite elements.

1.1.2 Remedies

Numerous studies were performed to improve the shortcomings of the FEM with

traditional elements within the realm of LEFM. In particular, the cohesive zone

concept introduced by Dugdale (1960) and Barenblatt (1962) has become prevalent

among many other fracture criteria. However, the major breakthrough in computa-

tional fracture mechanics came with the introduction of Cohesive Zone Elements

(CZE) by Hillerborg et al. (1976) for the Mode-I fracture mode and Xu and

Needleman (1994) for a mixed-mode fracture. Materials and material interfaces

are modeled through a traction-separation law for which the tractions are zero when

the opening displacement (separation) reaches a critical value. Cohesive zone

elements are usually surface elements that are placed along the element boundaries;

hence, crack growth occurs only between traditional (regular) elements. Therefore,

the material response exhibits characteristics of both regular and cohesive zone

elements; the cohesive elements are only introduced to produce fracture behavior.

The number of cohesive elements increases with decreasing mesh size, yet the size

of the continuum region remains the same. Hence, softening of material properties

can be observed with decreasing mesh size. Furthermore, mesh texture produces

anisotropy, and it leads to mesh dependence. Crack paths are highly sensitive to

mesh texture and alignment (Klein et al. 2001), and remeshing is required when

crack paths are unknown a priori.

In an effort to resolve these difficulties, the concept of the eXtended Finite

Element Method (XFEM) was introduced as a technique to model cracks and crack

growth within the realm of finite elements without remeshing (Belytschko and

Black 1999; Moes et al. 1999). It permits the cracks to propagate on any surface

within an element, rather than only along element boundaries. Thus, it removes the

limitation of CZE on the admissible direction of new fracture surfaces. XFEM is

based on the partition of unity property of finite elements (Melenk and
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Babuska 1996). Local enrichment functions, with additional degrees of freedom,

are included in the standard finite element approximation. These functions are in the

form of discontinuous displacement enrichment, in order to capture displacement

discontinuity across a crack, and near-crack tip asymptotic displacement enrich-

ment. Also, the additional number of degrees of freedom is minimized since the

enrichment only includes the nodes that belong to the elements cut by cracks

(Zi et al. 2007). According to Zi et al. (2007), the elements adjacent to the element

in which the crack tip is positioned are partially enriched, and the partition of unity

does not hold for them. Hence, the solution becomes inaccurate in the blending

region. This prevents such methods from being applicable to problems in which

multiple cracks grow and interact in complex patterns. The XFEM has been

successfully employed to solve a number of fracture problems; however, it does

require external criteria for injection of discontinuous displacement enrichment.

The difficulties encountered in the methods utilizing the classical continuum

mechanics can be overcome by performing Molecular Dynamics Simulations

(MDS) or atomistic lattice models. The atomistic simulation is certainly the most

detailed and realistic one for predicting material fracture (Schlangen and van Mier

1992). The crack initiation and propagation can be simulated using the inter-atomic

forces. However, atomistic studies focus on providing a fundamental understanding

of the underlying basic physical processes of dynamic fracture, instead of being

predictive (Cox et al. 2005). The reason for the limited focus stems from the

availability of computational resources. In recent years, large-scale molecular

dynamics simulations certainly have become possible with advancements in com-

puter architectures. For instance, Kadau et al. (2006) performed simulations using

320 billion atoms, corresponding to a cubic piece of solid copper with an edge

length of 1.56 μm. However, these length scales are still very small for real-life

engineering structures. Furthermore, atomistic simulations suffer from the strict

limitation on the total time since the time step is very small. Hence, most

simulations are performed under very high loading rates, and it is not very clear

if the fracture processes at artificially high rates resulting in high stresses are

representative of events happening at lower rates.

Inspired from atomistic lattice models, lattice spring models eliminate the

inadequacy of the atomistic simulations for large-scale structures by representing

materials with discrete units interacting through springs, or, more generally, rheo-

logical elements (Ostoja-Starzewski 2002). The interactions among the lattice

points can be short range by including nearest neighbors or long range (nonlocal)

by containing neighbors beyond the nearest ones. Furthermore, lattice sites can be

periodic or disordered and there are many different periodic lattices: triangular,

square, honeycomb, etc. However, periodic lattices exhibit directional dependence

on the elastic properties. Furthermore, the interaction force for one lattice type

cannot easily be utilized for another type, and it is also not clear which lattice type is

best suited for a specific problem.

Hence, it is clear that the atomistic simulations are insufficient to model fracture

processes in real-life structures. Moreover, the experiments of physicists have

revealed that cohesive forces reach finite distances among atoms, yet the classical
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continuum theory lacks an internal length parameter permitting modeling at

different length scales because it is valid only for very long wavelengths (Eringen

1972a). Therefore, Eringen and Edelen (1972), Kroner (1967), and Kunin (1982)

introduced the nonlocal continuum theory in an effort to account for the long-range

effects.

1.2 Nonlocal Theories

The nonlocal theory of continuous media establishes the connection between

classical continuum mechanics and molecular dynamics. In the case of the local

(classical) continuum model, the state of a material point is influenced by the

material points located in its immediate vicinity. In the case of the nonlocal

continuum model, the state of a material point is influenced by material points

located within a region of finite radius. As the radius becomes infinitely large, the

nonlocal theory becomes the continuous version of the molecular dynamics model.

Therefore, the nonlocal theory of continuous media establishes a connection

between the classical (local) continuum mechanics and molecular dynamics

models. The relationship between the local and nonlocal continuum models and

the molecular dynamics model is illustrated in Fig. 1.1.

Any point x interacts with other material points within a distance δ. The material

points within a distance δ of x are called the family of x,Hx. The number of material

points in a family of x, within the realm of classical continuum mechanics, is 3, 5,

and 7 (including itself) for one-, two-, and three-dimensional analysis, respectively.

Various nonlocal theories, involving higher-order displacement gradients and

spatial integrals, were introduced in the past. Early work by Eringen and Edelen

(1972) and Eringen (1972a, b) resulted in a nonlocal continuum theory that

accounted for nonlocality in the balance laws and thermodynamic statements.

However, the resulting equations were rather complicated, and later work by

these researchers simplified the theory by accounting for nonlocality in the

x

x

xHx

Local Peridynamics Molecular dynamics

Fig. 1.1 Relationship between local and nonlocal continuum models
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constitutive relation while keeping the equilibrium and kinematic equations in the

local form (Eringen et al. 1977). Currently, most nonlocal theories account for

nonlocality through the constitutive relation. Generally, integral-type nonlocal

material models in continuum mechanics have a constitutive law that relates the

forces (stresses) at a material point to some weighted average of deformation

(strains) of other points that are some finite distance away. On the other hand,

gradient-type nonlocal models include higher order derivatives to account for the

field in the immediate vicinity of the point, such as the first derivative of the strain to

the local constitutive law. Both types of nonlocal models have an associated

characteristic length, which can be related to physical lengths such as grain size,

fracture process zone size, or pore size.

The nonlocal continuum theory was noted for its ability to not only capture

macroscale effects, but also the effects of molecular and atomic scales. Eringen

(1972b) showed that a nonlocal model is capable of predicting a wide range of

wavelengths. The nonlocal theory still assumes the media as a continuum, however

it is computationally less demanding than the molecular dynamics while taking into

account the long-range effects. Since the classical theory is the longwave limit of

the atomic theory, they showed the ability of the nonlocal theory to capture

deformation from the classical longwave limit to the atomic scale. According to

Bazant and Jirasek (2002), there are many occasions when it is necessary to adopt

a nonlocal approach in continuum mechanics. Such instances include capturing

the effects of microstructure heterogeneity on small-scale continuum models.

Nonlocality is also required in order to capture size effects—the dependence of

nominal strength on structure size, observed in experiments and discrete modeling

but not captured by local models. Nonlocality is also exhibited in the phenomena of

microcracking. Distributed microcracking has been experimentally observed; how-

ever, it is challenging if not impossible to numerically simulate with local models

because microcrack growth is not decided by local deformation or local stress.

Evidence points to the fact that microcracking is not only dependent on the local

deformation at the center of the microcrack, but is also dependent on the deforma-

tion that occurs within some neighborhood of the microcrack (Bazant 1991).

The nonlocal theory was also extended to address crack growth prediction.

Eringen and Kim (1974a, b) showed that because of the nonlocal nature of the

theory, the stress field ahead of the crack tip is bounded as the crack tip is

approached asymptotically, rather than unbounded as predicted by the classical

continuum theory. Also, Eringen and Kim (1974a) suggested a natural fracture

criterion by equating maximum stress to the cohesive stress that holds atomic bonds

together. This criterion can be applied everywhere in continuous media without

distinguishing discontinuities. Although their nonlocal continuum theory leads to

finite stresses at the crack tips, the derivatives of the displacement field are retained

in the formulation.

Later, Eringen and his coworkers (1977) applied their nonlocal theory to the

modeling of a Griffith crack. The advantage of the nonlocal continuum theory over

the local theory in the area of fracture is made obvious by the fact that the nonlocal

model predicts a physically meaningful finite stress field at the crack tip. This is
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opposed to the local theory that predicts infinite stresses at the crack tip, which is

nonphysical because no real material can support infinite stresses. Also, Ari and

Eringen (1983) showed that the analysis results of a Griffith crack using nonlocal

elasticity are in agreement with the lattice model given by Elliott (1947). In spite of

this, the governing equations of their model still lose meaning at the crack, as they

are formulated in terms of spatial derivatives. In fact, most nonlocal models still

break down in the presence of a discontinuity, such as a crack, because, similar to

the classical local theory, spatial derivatives are included in their formulation.

Typically, nonlocal models include nonlocality in the stress–strain relation through

strain averaging (Eringen et al. 1977; Ozbolt and Bazant 1996) or through adding

strain derivatives to the standard constitutive relation, hence retaining the spatial

derivative.

Another type of nonlocal theory, introduced by Kunin (1982, 1983) and Rogula

(1982), circumvents this difficulty because it uses displacement fields rather than

their derivatives. However, it is only given for a one-dimensional medium by Kunin

(1982) and Rogula (1982). Kunin (1983) derived a three-dimensional nonlocal

model by approximating a continuous medium as a discrete lattice structure.

More recently, Silling (2000) proposed a nonlocal theory that does not require

spatial derivatives—the peridynamic (PD) theory. Compared to the previous non-

local theory by Kunin (1982) and Rogula (1982), the PD theory is more general

because it considers two- and three-dimensional media in addition to the

one-dimensional medium. In contrast to the nonlocal theory by Kunin (1983), the

PD theory provides nonlinear material response with respect to displacements.

Furthermore, the material response includes damage in the PD theory.

1.2.1 Basics of Peridynamic Theory

In light of the inadequacies of local and nonlocal theories, the peridynamic theory,

which is nonlocal, was introduced by Silling (2000) and Silling et al. (2007) in an

attempt to deal with the discontinuities. Similar to the nonlocal theory formulated

by Kunin (1982), the peridynamic theory employs displacements rather than dis-

placement derivatives in its formulation. Basically, the peridynamic theory is a

reformulation of the equation of motion in solid mechanics that is better suited for

modeling bodies with discontinuities, such as cracks. The theory uses spatial

integral equations that can be applied to a discontinuity. This stands in contrast to

the partial differential equations used in the classical formulation, which are not

defined at discontinuities. The peridynamic governing equations are defined at

fracture surfaces; additionally, material damage is part of the peridynamic consti-

tutive laws. These attributes permit fracture initiation and propagation to be

modeled, with arbitrary paths, without the need for special crack growth treatment.

Furthermore, interfaces between dissimilar materials have their own properties.

In the peridynamic theory, material points interact with each other directly

through the prescribed response function, which contains all of the constitutive
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information associated with the material. The response function includes a length

parameter called internal length (horizon), δ. The locality of interactions depends on
the horizon, and interactions become more local with a decreasing horizon. Hence,

the classical theory of elasticity can be considered as a limiting case of the

peridynamic theory as the internal length approaches zero. For instance, it has

been shown that the peridynamic theory reduces to the linear theory of elasticity

with the proper choice of response function (Silling et al. 2003; Weckner and

Abeyaratne 2005). In another limiting case where the internal length approaches

the inter-atomic distance, it was shown by Silling and Bobaru (2005) that van der

Waals forces can be used as part of the response function to model nanoscale

structures. Therefore, the peridynamic theory is capable of bridging the nano to

macro length scales. With the PD theory, damage in the material is simulated in a

much more realistic manner compared to the classical continuum-based methods.

As the interactions between material points cease, cracks may initiate and align

themselves along surfaces that form cracks, yet the integral equations continue to

remain valid.

1.2.2 Attributes and Its Present State

The main difference between the peridynamic theory and classical continuum

mechanics is that the former is formulated using integral equations as opposed to

derivatives of the displacement components. This feature allows damage initiation

and propagation at multiple sites with arbitrary paths inside the material without

resorting to special crack growth criteria. In the peridynamic theory, internal forces

are expressed through nonlocal interactions between pairs of material points within

a continuous body, and damage is part of the constitutive model. Interfaces between

dissimilar materials have their own properties and damage can propagate when and

where it is energetically favorable for it to do so. The PD theory provides the ability

to link different length scales, and it can be viewed as the continuum version of

MDS. It provides the ability to address multiphysics and multiscale failure predic-

tion in a common framework.

The ability of the peridynamic theory to represent physical phenomena was

demonstrated by Silling (2000). Silling investigated the propagation of linear stress

waves and wave dispersion along with the shape of the crack tip within the realm of

the peridynamic theory. The peridynamic linear elastic waves with long

wavelengths were in agreement with those from the classical theory. At small

scales, the peridynamic theory predicts nonlinear dispersion curves, which are

found in real materials, unlike the curves predicted by the classical elasticity. In

the crack tip study, the peridynamic theory predicts a cusp-like crack tip as opposed

to the parabolic crack tip from LEFM. The parabolic crack tip in LEFM is

associated with the unphysical unbounded stress at the crack tip.

The original peridynamic formulation by Silling (2000), later coined the “bond-

based peridynamic theory,” is based on the assumption of pairwise interactions of
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the same magnitude, thus resulting in a constraint on material properties, such as

requiring the Poisson’s ratio to be one-fourth for isotropic materials. Also, it does

not distinguish between volumetric and distortional deformations; thus it is not

suitable to capture the plastic incompressibility condition, or to utilize the existing

material models.

In order to relax the constraint on material properties, Gerstle et al. (2007)

introduced a “micropolar peridynamic model” by considering pairwise moments

as well as forces in the “bond-based” peridynamics. Although this formulation

overcomes the constraint limitation for isotropic materials, it is not clear if it can

also capture the incompressibility condition. Therefore, Silling et al. (2007)

introduced a more general formulation, coined the “state-based” peridynamic

theory, which eliminates the limitations of the “bond-based” peridynamics. The

“state-based” PD theory is based on the concept of peridynamic states that are

infinite dimensional arrays containing information about peridynamic interactions.

Silling (2010) also extended the “state-based” PD theory to account for the effects

of indirect interactions between material points on other material points by

introducing the “double state” concept. Recently, Lehoucq and Sears (2011)

derived the energy and momentum conservation laws of the peridynamic theory

by using the principles of classical statistical mechanics. They showed that the

nonlocal interaction is intrinsic to continuum conservation laws. Recently, Silling

(2011) also extended the use of PD theory for bridging different length scales by

introducing a “coarse-graining method.” According to this approach, the structural

properties at a lower scale are reflected to its upper scale through a mathematically

consistent technique.

The peridynamic theory does not concern the concept of stress and strain;

however, it is possible to define a stress tensor within the PD framework. Lehoucq

and Silling (2008) derived a PD stress tensor from nonlocal PD interactions. The

stress tensor is obtained from the PD forces that pass through a material point

volume. For sufficiently smooth motion, a constitutive model, and any existing

nonhomogeneities, Silling and Lehoucq (2008) showed that the PD stress tensor

converges to a Piola-Kirchhoff stress tensor in the limiting case where the horizon

size converges to zero.

The integro-differential equation of peridynamic theory is difficult to solve

analytically. However, a few analytical solutions exist in the literature. For

instance, Silling et al. (2003) investigated the deformation of an infinite bar

subjected to a self-equilibrated load distribution. The solution was achieved in the

form of a linear Fredholm integral equation and solved by Fourier transformation.

This solution revealed interesting results that cannot be captured by the classical

theory, including decaying oscillations in the displacement field and progressively

weakening discontinuities propagating outside of the loading region. Weckner

et al. (2009) also used Laplace and Fourier transforms, and obtained an integral

representation for the three-dimensional PD solution by utilizing Green’s functions.

This approach was independently pursued byMikata (2012) to investigate peristatic

and peridynamic solution of a one-dimensional infinite bar, and it was found that

peridynamics can represent negative group velocities for certain wavenumbers,
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which can be used for modeling certain types of dispersive media with irregular

dispersion.

Peridynamics permits not only linear elastic material behavior, but also nonlin-

ear elastic (Silling and Bobaru 2005), plastic (Silling et al. 2007; Mitchell 2011a),

viscoelastic (Kilic 2008; Taylor 2008; Mitchell 2011b), and viscoplastic (Taylor

2008; Foster et al. 2010) material behaviors. Dayal and Bhattacharya (2006) studied

the kinetics of phase transformations in solids by using peridynamics. They derived

a nucleation criterion by examining nucleation as a dynamic instability.

The solution of PD equations requires numerical integration both in time and

space, for which explicit and Gaussian quadrature techniques can be adopted

because of their simplicity. The description of these techniques and their applica-

tion to peridynamics are presented by Silling and Askari (2005). They also provided

the stability criterion for convergence of time integration, and discussed the order of

accuracy for uniform discretization (grid) for spatial integration. Later, Emmrich

and Weckner (2007) presented different spatial discretization schemes and tested

them by considering a linear microelastic material of infinite length in one dimen-

sion. Recently, Bobaru et al. (2009) and Bobaru and Ha (2011) considered a

nonuniform grid and nonuniform horizon sizes for spatial integration. In order to

improve the accuracy and efficiency of numerical time integration, Polleschi (2010)

proposed a mixed explicit-implicit time integration scheme; the integration through

the time steps is explicit with an implicit cycle at every time step. In a similar way,

Yu et al. (2011) proposed an adaptive trapezoidal integration scheme with a

combined relative-absolute error control. Also, Mitchell (2011a, b) utilized an

implicit time integration method.

Although the PD equation of motion includes the effects of inertia, it is possible

to use it for quasi-static problems by appropriately allowing the inertia term to

vanish through schemes, as demonstrated by Kilic and Madenci (2010a). Alterna-

tively, Wang and Tian (2012) introduced a fast Galerkin method with efficient

matrix assembly and storage.

The degree of nonlocality is defined by a PD parameter, referred to as the

horizon; therefore, it is crucial to choose an appropriate size for it to obtain accurate

results and represent the actual physical reality. In a recent study, Bobaru and Hu

(2012) discuss the meaning, selection, and use of horizon in the PD theory and

explain under what conditions the crack propagation speed depends on the horizon

size and the role of incident waves on this speed. Influence function is another

important parameter in PD theory, which determines the strength of interactions

between material points. Seleson and Parks (2011) studied the effect of influence

function by investigating wave propagation in simple one-dimensional models and

brittle fracture in three-dimensional models.

The spatial integration of the PD equation is very suitable for parallel comput-

ing. However, the load distribution is a key issue to obtain the most efficient

computational environment. An efficient load distribution scheme is described by

Kilic (2008). Also, Liu and Hong (2012a) demonstrated the use of Graphics

Processing Unit (GPU) architecture towards the same goal.
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The PD theory permits crack initiation and growth. Silling et al. (2010)

established a condition for the emergence of a discontinuity (crack nucleation) in

an elastic body. For crack growth, it requires a critical material failure parameter.

The original parameter for a brittle material is referred to as the “critical stretch,”

and it can be related to the critical energy release rate of the material, as explained

in Silling and Askari (2005). Warren et al. (2009) demonstrated the capability of the

nonordinary state-based PD theory for capturing failure based on either the critical

equivalent strain (measure of shearing strain) or the averaged value of the volumet-

ric strain (dilatation). Recently, Foster et al. (2011) proposed critical energy density

as an alternative critical parameter and also related it to the critical energy release

rate. As shown by Silling and Lehoucq (2010) and Hu et al. (2012b), the PD theory

also permits the calculation of the J-integral value, which is an important parameter

of fracture mechanics.

Silling (2003) considered a Kalthoff-Winkler experiment in which a plate

having two parallel notches was hit by an impactor and peridynamic simulations

successfully captured the angle of crack growth that was observed in the

experiments. Silling and Askari (2004) also presented impact damage simulations

including the Charpy V-notch test. Ha and Bobaru (2011) successfully captured

various characteristics of dynamic fracture observed in experiments, including

crack branching, crack-path instability, etc. Furthermore, Agwai et al. (2011) com-

pared their PD analysis results against extended Finite Element Method (XFEM)

and Cohesive Zone Model (CZM) predictions. Crack speeds computed from all

approaches were found to be on the same order; however, the PD prediction of

fracture paths are closer to the experimental observations, including both branching

and microbranching behaviors.

The PD theory captures the interaction of local failure such as a crack growth

with global failure due to structural stability. Kilic and Madenci (2009a)

investigated the buckling characteristics of a rectangular column with a groove

(crack initiation site) under compression and a constrained rectangular plate under

uniform temperature load. They triggered lateral displacements using geometrical

imperfection.

The PD theory also permits multiple load paths such as compression after

impact. Demmie and Silling (2007) considered the extreme loadings on reinforced

concrete structures by impacts from massive objects and explosive loading of

concrete structures. This study was recently extended by Oterkus et al. (2012a) to

predict the residual strength of impact damaged concrete structures.

Composite damage has also been modeled with the peridynamic theory. Within

the PD framework, the simplest approach to model a composite layer with direc-

tional properties is achieved by assigning different material properties in the fiber

and other (remaining) directions. The interactions between neighboring layers are

defined by using inter-layer bonds. Askari et al. (2006) and Colavito et al. (2007a, b)

predicted damage in laminated composites subjected to low-velocity impact and

damage in woven composites subjected to static indentation. In addition, Xu

et al. (2007) considered notched laminated composites under biaxial loads. Also,
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Oterkus et al. (2010) demonstrated that PD analysis is capable of capturing bearing

and shear-out failure modes in bolted composite lap joints.

Xu et al. (2008) analyzed the delamination and matrix damage process in

composite laminates due to only low-velocity impact. Recently, Askari

et al. (2011) considered the effect of both high- and low-energy hail impacts against

a toughened-epoxy, intermediate-modulus, carbon-fiber composite. Also, Hu

et al. (2012a) predicted the basic failure modes of fiber, matrix, and delamination

in laminates with a pre-existing central crack under tension. The analytical deriva-

tion of the PD material parameters, including thermal loading conditions, was

recently given by Oterkus and Madenci (2012). They also demonstrated the

constraints on material constants due to the pairwise interaction assumption. The

other approach to model composites was introduced by Kilic et al. (2009) by

distinguishing fiber and matrix materials based on the volume fraction. Although

this approach may have some advantages by taking into account the inhomoge-

neous structure, it is computationally more expensive than the homogenized tech-

nique. The other approach for modeling composites is the linking of micro- and

macroscales as described by Alali and Lipton (2012). The method depends on a

two-scale evolution equation. While the microscopic part of this equation governs

the dynamics at the length scale of heterogeneities, the macroscopic part tracks the

homogenized dynamics.

Since the numerical solution of peridynamic equations of motion is computa-

tionally more expensive than the local solutions, such as FEM, it may be advanta-

geous to combine PD theory and local solutions. In a recent study, Seleson

et al. (2013) proposed a force-based blended model that coupled PD theory and

classical elasticity by using nonlocal weights composed of integrals of blending

functions. They also generalized this approach to couple peridynamics and higher-

order gradient models of any order. In another study, Lubineau et al. (2012)

performed coupling of local and nonlocal solutions through a transition (morphing)

that affects only constitutive parameters. The definition of the morphing functions

in their approach relies on energy equivalence. In addition to these techniques, Kilic

and Madenci (2010b) and Liu and Hong (2012b) coupled FEM and peridynamics.

A more straightforward coupling procedure is given in Macek and Silling (2007),

where the PD interactions are represented by truss elements. If only some part of the

region is desired to be modeled by using peridynamics, then the other sections can

be modeled by traditional finite elements. Another simple approach, demonstrated

by Oterkus et al. (2012b) and Agwai et al. (2012), was first to solve the problem by

using finite element analysis and obtain the displacement field. Then, by using the

available information, the displacements can be applied as a boundary condition to

the peridynamic model of a critical region.

The peridynamic theory is also suitable for thermal loading conditions; Kilic and

Madenci (2010c) included the thermal term in the response function of peridynamic

interactions. By utilizing this approach, Kilic and Madenci (2009b) predicted

thermally driven crack propagation patterns in quenched glass plates containing

single or multiple pre-existing cracks, and Kilic and Madenci (2010c) also
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predicted damage initiation and propagation in regions having dissimilar materials

due to thermal loading.

Furthermore, the PD theory was extended to consider heat diffusion. Gerstle

et al. (2008) developed a peridynamic model for electromigration that accounts for

heat conduction in a one-dimensional body. Additionally, Bobaru and Duangpanya

(2010, 2012) introduced a multidimensional peridynamic heat conduction equation,

and considered domains with discontinuities such as insulated cracks. Both studies

adopted the bond-based peridynamic approach. Later, Agwai (2011) derived the

state-based peridynamic heat conduction equation. She also further extended it for

fully coupled thermomechanics (Agwai 2011).

The peridynamic theory has been utilized successfully for damage prediction of

many problems at different length scales from macro to nano. In order to take into

account the effect of van der Waals interactions, Silling and Bobaru (2005) and

Bobaru (2007) included an additional term to the peridynamic response function to

represent van der Waals forces. This new formulation was used to investigate the

mechanical behavior, strength, and toughness properties of three-dimensional

nanofiber networks under imposed stretch deformation. It was found that the

inclusion of van der Waals forces significantly changes the overall deformation

behavior of the nanofiber network structure. In a recent study, Seleson et al. (2009)

demonstrated that peridynamics can play the role of an upscale version of molecu-

lar dynamics and pointed out the extent where the molecular dynamics solutions

can be recovered by peridynamics. Celik et al. (2011) utilized peridynamics to

extract mechanical properties of nickel nanowires subjected to bending loads in a

customized atomic force microscope (AFM) and scanning electron microscope

(SEM). SEM images of fractured nanowires are also compared against peridynamic

simulation results.

Even though numerous journal articles and conference papers exist in the

literature on the evolution and application of the peridynamic theory, it is still

new to the scientific community. Because it is based on concepts not commonly

used in the past, the purpose of this book is to explain the peridynamic theory in a

single framework. It presents not only the theoretical basis but also its numerical

implementation.

It starts with an overview of the peridynamic theory and derivation of its

governing equations. The relationship between peridynamics and classical contin-

uum mechanics is established, and this leads to the ordinary state-based

peridynamics formulations for both isotropic and composite materials. Numerical

treatments of the peridynamic equations are presented in detail along with solutions

to many benchmark and demonstration problems. In order to take advantage of

salient features of the peridynamics and finite element methods, a coupling tech-

nique is also presented in detail. Finally, an extension of the peridynamic theory for

thermal diffusion and fully coupled thermomechanics is presented with

applications. [FORTRAN algorithms providing solutions to many of these bench-

mark problems can be found at http://extras.springer.com.]
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Chapter 2

Peridynamic Theory

2.1 Basics

At any instant of time, every point in the material denotes the location of a material

particle, and these infinitely many material points (particles) constitute the contin-

uum. In an undeformed state of the body, each material point is identified by its

coordinates, xðkÞ with ðk ¼ 1; 2; . . . ;1Þ , and is associated with an incremental

volume, VðkÞ, and a mass density of ρðxðkÞÞ: Each material point can be subjected to

prescribed body loads, displacement, or velocity, resulting in motion and deforma-

tion. With respect to a Cartesian coordinate system, the material point xðkÞ
experiences displacement, uðkÞ, and its location is described by the position vector

yðkÞ in the deformed state. The displacement and body load vectors at material point

xðkÞ are represented by uðkÞðxðkÞ; tÞ and bðkÞðxðkÞ; tÞ, respectively. The motion of a

material point conforms to the Lagrangian description.

According to the peridynamic (PD) theory introduced by Silling (2000), the

motion of a body is analyzed by considering the interaction of a material point, xðkÞ,
with the other, possibly infinitely many, material points, xðjÞ; with ðj ¼ 1; 2; ::;1Þ,
in the body. Therefore, an infinite number of interactions may exist between the

material point at location xðkÞ and other material points. However, the influence of

the material points interacting with xðkÞ is assumed to vanish beyond a local region

(horizon), denoted byHxðkÞ, shown in Fig. 2.1. Similarly, material point xðjÞ interacts
with material points in its own family, HxðjÞ .

In other words, the PD theory is concerned with the physics of a material body at

a point that interacts with all points within its range, as shown in Fig. 2.1. The range

of material point xðkÞ is defined by δ; referred to as the “horizon.” Also, the material

points within a distance δ of xðkÞ are called the family of xðkÞ,HxðkÞ :The interaction of

material points is prescribed through a micropotential that depends on the deforma-

tion and constitutive properties of the material. The locality of interactions depends

on the horizon, and the interactions become more local with a decreasing horizon, δ.

E. Madenci and E. Oterkus, Peridynamic Theory and Its Applications,
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Hence, the classical theory of elasticity can be considered a limiting case of the

peridynamic theory as the horizon approaches zero (Silling and Lehoucq 2008).

2.2 Deformation

As shown in Fig. 2.2, material point xðkÞ interacts with its family of material points,

HxðkÞ ; and it is influenced by the collective deformation of all these material points.

Similarly, material point xðjÞ is influenced by deformation of the material points,

HxðjÞ ; in its own family. In the deformed configuration, the material points xðkÞ and
xðjÞ experience displacements, uðkÞ and uðjÞ, respectively, as shown in Fig. 2.2. Their
initial relative position vector ðxðjÞ � xðkÞÞprior to deformation becomes ðyðjÞ � yðkÞÞ
after deformation. The stretch between material points xðkÞ and xðjÞ is defined as

sðkÞðjÞ ¼
yðjÞ � yðkÞ
��� ���� xðjÞ � xðkÞ

�� ��� �
xðjÞ � xðkÞ
�� �� : (2.1)

Associated with material point xðkÞ , all of the relative position vectors in the

deformed configuration, ðyðjÞ � yðkÞÞ with ðj ¼ 1; 2; ::;1Þ , can be stored in an

infinite-dimensional array, or a deformation vector state, Y:

V(1) V(2)

x(k) x( j)

V(k)

V( j )

Hx(k)

Hx(j)

x

y

z

Fig. 2.1 Infinitely many

PD material points

and interaction of points at

xðkÞ and xðjÞ
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YðxðkÞ; tÞ ¼
ðyð1Þ � yðkÞÞ

..

.

ðyð1Þ � yðkÞÞ

8><
>:

9>=
>;: (2.2)

The definitions and mathematical properties of vector states are presented by

Silling et al. (2007). Their properties in relation to the derivation of PD equations

are summarized in the Appendix.

2.3 Force Density

As illustrated in Fig. 2.3, the material point xðkÞ interacts with its family of material

points, HxðkÞ , and it is influenced by the collective deformation of all these material

points, thus resulting in a force density vector, tðkÞðjÞ; acting at material point xðkÞ. It
can be viewed as the force exerted by material point xðjÞ. Similarly, material point

xðjÞ is influenced by deformation of the material points, HxðjÞ, in its own family, and

the corresponding force density vector is tðjÞðkÞ at material pointxðjÞ and is exerted on
by material point xðkÞ . These forces are determined jointly by the collective

deformation of HxðkÞ and HxðjÞ through the material model.

Hx( )k

V(1)V(2)

x

y

z

Hx ( j)

Hx( )k

Hx( )j

x( )j
x( )k

u ( )k

u ( )j

y( )k

y( )j

V( )k
V( )j

Fig. 2.2 Kinematics of PD material points

2.3 Force Density 21



Associated with material point xðkÞ , all of the force density vectors, tðkÞðjÞ with
ðj ¼ 1; 2; ::;1Þ , can be stored in an infinite-dimensional array, or a force vector

state, T:

TðxðkÞ; tÞ ¼
tðkÞð1Þ
..
.

tðkÞð1Þ

8><
>:

9>=
>;: (2.3)

Hx( )k

x

y

z

Hx( )j

Hx( )k

Hx( )j

x( )j
x( )k

y( )k

y( )j

( -x( )j x( )k )

( -y( )j y( )k )

Hx( )k

x

y

z

Hx( )j

Hx( )k

Hx( )j

x( )j
x( )k

y( )k

y( )j

( -x( )j x( )k )

t( )( )k j

t( )( )j k

a

b

Fig. 2.3 PD vector states: (a) deformation, Y, and (b) force, T
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2.4 Peridynamic States

The PD theory mainly concerns the deformation state, Y, and the force state, T.

As described in Fig. 2.3a, the relative position vector ðyðjÞ � yðkÞÞ can be

obtained by operating the deformation state, Y , on the relative position vector

ðxðjÞ � xðkÞÞ as

ðyðjÞ � yðkÞÞ ¼ YðxðkÞ; tÞ xðjÞ � xðkÞ
� �

: (2.4)

Similarly, the force density vector, tðkÞðjÞ , shown in Fig. 2.3b, that the material

point at location xðjÞ exerts on the material point at location xðkÞ can be expressed as

tðkÞðjÞ uðjÞ � uðkÞ; xðjÞ � xðkÞ; t
� � ¼ TðxðkÞ; tÞ xðjÞ � xðkÞ

� �
: (2.5)

The difference between the force state and the deformation state is that the force

state is dependent on the deformation state while the deformation state is indepen-

dent. Therefore, the force state for material point xðkÞ depends on the relative

displacements between this material point and the other material points within its

horizon. Hence, the force state can also be written as

TðxðkÞ; tÞ ¼ T Y xðkÞ; t
� �� �

: (2.6)

2.5 Strain Energy Density

Due to the interaction between material points xðkÞ and xðjÞ, a scalar-valued

micropotential, wðkÞðjÞ , develops; it depends on the material properties as well as

the stretch between point xðkÞ and all other material points in its family. Note that

the micropotential wðjÞðkÞ 6¼ wðkÞðjÞ, because wðjÞðkÞ depends on the state of material

points within the family of material point xðjÞ . These micropotentials can be

expressed as

wðkÞðjÞ ¼ wðkÞðjÞ yð1kÞ � yðkÞ; yð2kÞ � yðkÞ; � � �
� �

(2.7a)

and

wðjÞðkÞ ¼ wðjÞðkÞ yð1jÞ � yðjÞ; yð2jÞ � yðjÞ; � � �
� �

; (2.7b)
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where yðkÞ is the position vector of point xðkÞ in the deformed configuration and yð1kÞ
is the position vector of the first material point that interacts with point xðkÞ:
Similarly, yðjÞ is the position vector of point xðjÞ in the deformed configuration

and yð1jÞ is the position vector of the first material point that interacts with point xðjÞ.
The strain energy density, WðkÞ; of material point xðkÞ can be expressed as a

summation of micropotentials, wðkÞðjÞ, arising from the interaction of material point

xðkÞ and the other material points, xðjÞ, within its horizon in the form

WðkÞ ¼ 1

2

X1
j¼1

1

2
wðkÞðjÞ yð1kÞ � yðkÞ; yð2kÞ � yðkÞ; � � �

� ��

þ wðjÞðkÞ yð1jÞ � yðjÞ; yð2jÞ � yðjÞ; � � �
� ��

VðjÞ;

(2.8)

in which wðkÞðjÞ ¼ 0 for k ¼ j.

2.6 Equations of Motion

The PD equations of motion at material point xðkÞ can be derived by applying the

principle of virtual work, i.e.,

δ

ð t1

t0

ðT � UÞdt ¼ 0; (2.9)

where T and U represent the total kinetic and potential energies in the body. This

principle is satisfied by solving for the Lagrange’s equation

d

dt

@L

@ _uðkÞ

	 

� @L

@uðkÞ
¼ 0; (2.10)

where the Lagrangian L is defined as

L ¼ T � U: (2.11)

The total kinetic and potential energies in the body can be obtained by summa-

tion of kinetic and potential energies of all material points, respectively,

T ¼
X1
i¼1

1

2
ρðiÞ _uðiÞ � _uðiÞ VðiÞ (2.12a)
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and

U ¼
X1
i¼1

WðiÞ VðiÞ �
X1
i¼1

bðiÞ � uðiÞ
� �

VðiÞ: (2.12b)

Substituting for the strain energy density,WðiÞ, of material point xðiÞ from Eq. 2.8,

the potential energy can be rewritten as

U ¼
X1
i¼1

1

2

X1
j¼1

1

2

wðiÞðjÞ yð1iÞ � yðiÞ; yð2iÞ � yðiÞ; � � �
� �

þwðjÞðiÞ yð1jÞ � yðjÞ; yð2jÞ � yðjÞ; � � �
� �

2
64

3
75VðjÞ� bðiÞ � uðiÞ

� �
8><
>:

9>=
>;VðiÞ :

(2.13)

By using Eq. 2.11, the Lagrangian can be written in an expanded form by

showing only the terms associated with the material point xðkÞ:

L ¼ . . .þ 1

2
ρðkÞ _uðkÞ � _uðkÞ VðkÞ þ � � �

� � � � 1

2

X1
j¼1

1

2
wðkÞðjÞ yð1kÞ � yðkÞ; yð2kÞ � yðkÞ; � � �

� �h�

þ wðjÞðkÞ yð1jÞ � yðjÞ; yð2jÞ � yðjÞ; � � �
� �i

VðjÞ
o
VðkÞ � � �

� � � � 1

2

X1
i¼1

1

2
wðiÞðkÞ yð1iÞ � yðiÞ; yð2iÞ � yðiÞ; � � �

� �h�

þ wðkÞðiÞ yð1kÞ � yðkÞ; yð2kÞ � yðkÞ; � � �
� �i

VðiÞ
o
VðkÞ � � �

. . .þ bðkÞ � uðkÞ
� �

VðkÞ � � �

(2.14a)

or

L ¼ � � � þ 1

2
ρðkÞ _uðkÞ � _uðkÞ VðkÞ þ � � �

� � � � 1

2

X1
j¼1

wðkÞðjÞ yð1kÞ � yðkÞ; yð2kÞ � yðkÞ; � � �
� �

VðjÞ VðkÞ
n o

. . .

� � � � 1

2

X1
j¼1

wðjÞðkÞ yð1jÞ � yðjÞ; yð2jÞ � yðjÞ; � � �
� �

VðjÞ VðkÞ
n o

. . .

� � � þ bðkÞ � uðkÞ
� �

VðkÞ � � � :

(2.14b)
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Substituting from Eq. 2.14b into Eq. 2.10 results in the Lagrange’s equation of

the material point xðkÞ as

ρðkÞ€uðkÞ VðkÞ þ
X1
j¼1

1

2

X1
i¼1

@wðkÞðjÞ

@ yðjÞ � yðkÞ
� �VðiÞ

0
@

1
A @ yðjÞ � yðkÞ

� �
@uðkÞ

0
@

þ
X1
j¼1

1

2

X1
i¼1

@wðjÞðkÞ

@ yðkÞ � yðjÞ
� � VðiÞ

0
@

1
A @ yðkÞ � yðjÞ

� �
@uðkÞ

� bðkÞ

1
AVðkÞ ¼ 0

(2.15a)

or

ρðkÞ€uðkÞ ¼
X1
j¼1

1

2

X1
i¼1

@wðkÞðiÞ

@ yðjÞ � yðkÞ
� �VðiÞ

0
@

1
A�

X1
j¼1

1

2

X1
i¼1

@wðiÞðkÞ

@ yðkÞ � yðjÞ
� �VðiÞ

0
@

1
Aþ bðkÞ;

(2.15b)

in which it is assumed that the interactions not involving material point xðkÞ do not

have any effect on material point xðkÞ . Based on the dimensional analysis of this

equation, it is apparent that
P1
i¼1

VðiÞ@wðkÞðiÞ=@ðyðjÞ � yðkÞÞ represents the force density

that material point xðjÞ exerts on material point xðkÞ and
P1
i¼1

VðiÞ@wðiÞðkÞ=@ðyðkÞ � yðjÞÞ
represents the force density that material point xðkÞ exerts on material point xðjÞ. With

this interpretation, Eq. 2.15b can be rewritten as

ρðkÞ€uðkÞ ¼
X1
j¼1

tðkÞðjÞ uðjÞ � uðkÞ; xðjÞ � xðkÞ; t
� ��

� tðjÞðkÞ uðkÞ � uðjÞ; xðkÞ � xðjÞ; t
� �

VðjÞ þ bðkÞ;

(2.16)

where

tðkÞðjÞ uðjÞ � uðkÞ; xðjÞ � xðkÞ; t
� � ¼ 1

2

1

VðjÞ

X1
i¼1

@wðkÞðiÞ

@ yðjÞ � yðkÞ
� �VðiÞ

0
@

1
A (2.17a)

and

tðjÞðkÞ uðkÞ � uðjÞ; xðkÞ � xðjÞ; t
� � ¼ 1

2

1

VðjÞ

X1
i¼1

@wðiÞðkÞ

@ yðkÞ � yðjÞ
� �VðiÞ

0
@

1
A : (2.17b)
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By utilizing the state concept, the force densities tðkÞðjÞ and tðjÞðkÞ can be stored in

force vector states that belong to material points xðkÞ and xðjÞ; respectively, as

T xðkÞ; t
� � ¼

..

.

tðkÞðjÞ
..
.

8>><
>>:

9>>=
>>; and T xðjÞ; t

� � ¼
..
.

tðjÞðkÞ
..
.

8>><
>>:

9>>=
>>;: (2.18a,b)

The force densities tðkÞðjÞ and tðjÞðkÞ stored in vector states TðxðkÞ; tÞ and TðxðjÞ; tÞ
can be extracted again by operating the force states on the corresponding initial

relative position vectors

tðkÞðjÞ ¼ T xðkÞ; t
� �

xðjÞ � xðkÞ
� �

(2.19a)

and

tðjÞðkÞ ¼ T xðjÞ; t
� �

xðkÞ � xðjÞ
� �

: (2.19b)

By using Eqs. 2.19a and 2.19b, Lagrange’s equation of the material pointxðkÞ can
be recast as

ρðkÞ€uðkÞ ¼
X1
j¼1

T xðkÞ; t
� �

xðjÞ � xðkÞ
� �� T xðjÞ; t

� �
xðkÞ � xðjÞ
� �� �

VðjÞ þ bðkÞ: (2.20)

Because the volume of each material point VðjÞ is infinitesimally small, for the

limiting case of VðjÞ ! 0, the infinite summation can be expressed as integration

while considering only the material points within the horizon,

X1
j¼1

�ð ÞVðjÞ !
ð
V

�ð Þ dV0 !
ð
H

�ð Þ dH: (2.21)

With this replacement, Eq. 2.20 can be written in integral equation form as

ρ xð Þ€u x; tð Þ ¼
ð
H

T x; tð Þ x0 � xh i � T x0; tð Þ x� x0h ið Þ dH þ b x; tð Þ (2.22a)

or

ρ xð Þ€u x; tð Þ ¼
ð
H

t u0 � u; x0 � x; tð Þ � t0 u� u0; x� x0; tð Þð Þ dH þ b x; tð Þ : (2.22b)
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2.7 Initial and Constraint Conditions

The resulting PD equation of motion is a nonlinear integro-differential equation in

time and space and is free of kinematic linearization, thus it is suitable for

geometrically nonlinear analyses. It contains differentiation with respect to time

and integration in the spatial domain. It does not contain any spatial derivatives of

displacements. Thus, the PD equation of motion is valid everywhere whether or not

displacement discontinuities exist in the material. Construction of its solution

involves time and spatial integrations while being subject to constraints and/or

loading conditions on the boundary, B , of the material region, R , and initial

conditions on the displacement and velocity fields.

2.7.1 Initial Conditions

Time integration requires the application of initial displacement and velocity values

at each material point in R, and they can be specified as

uðx; t ¼ 0Þ ¼ u�ðxÞ (2.23a)

and

_uðx; t ¼ 0Þ ¼ v�ðxÞ: (2.23b)

In addition to these required initial conditions, the initial conditions may also be

necessary on the displacement and velocity gradients, H�ðxÞ and L�ðxÞ, respec-
tively. They can be specified as

Hðx; t ¼ 0Þ ¼ H�ðxÞ � @uiðxk; 0Þ
@xj

; with ði; j; kÞ ¼ 1; 2; 3; (2.24a)

and

Lðx; t ¼ 0Þ ¼ L�ðxÞ � @ _uiðxk; 0Þ
@xj

; with ði; j; kÞ ¼ 1; 2; 3 : (2.24b)

The corresponding displacement and velocity fields are superimposed on the

initial displacement and velocity fields as

uðx; t ¼ 0Þ ¼ u�ðxÞ þH�ðxÞ x� xref
� �

(2.25a)

and
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_uðx; t ¼ 0Þ ¼ v�ðxÞ þ L�ðxÞ x� xref
� �

; (2.25b)

where xref is a reference point (Silling 2004).

2.7.2 Constraint Conditions

The PD equation of motion does not contain any spatial derivatives; therefore,

constraint conditions are, in general, not necessary for the solution of an integro-

differential equation. However, such conditions can be imposed by prescribing

constraints on displacement and velocity fields in a “fictitious material layer”

along the boundary of a nonzero volume. Based on numerical experiments,

Macek and Silling (2007) suggested that the extent of the fictitious boundary

layer be equal to the horizon, δ , in order to ensure that the imposed prescribed

constraints are sufficiently reflected on the actual material region. Therefore, a

fictitious boundary layer,Rc, with depth δ, is introduced along the boundary of the

actual material region, R, as shown in Fig. 2.4.

2.7.2.1 Displacement Constraints

The prescribed displacement vector U0 can be imposed through the material points

in Rc as

uðx; tÞ ¼ U0; for x 2 Rc: (2.26)

Also, in order to avoid abrupt constraint introduction, it can be applied as

uðx; tÞ ¼ U0

t

t0
for 0 � t � t0

U0 for t0 � t ;

(
(2.27)

c

Fig. 2.4 Boundary regions

for constraint and external

load introduction
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where t0 represents the time at which the prescribed displacement is reached. The

velocity of each material point, _uðx; tÞ, can be calculated through differentiation.

2.7.2.2 Velocity Constraints

The prescribed velocity vector VðtÞ can be imposed through the material points in

Rc as

_uðx; tÞ ¼ VðtÞ; for x 2 Rc: (2.28)

Their displacement, uðx; tÞ, can be obtained from

uðx; tÞ ¼
ðt
0

Vðt0Þdt0: (2.29)

If VðtÞ ¼ V0HðtÞ , with V0 containing constant constraint values, then uðx; tÞ
¼ V0t for all material points in Rc. The Heaviside step function is represented by

HðtÞ. Also, in order to avoid abrupt velocity introduction, it can be applied as

VðtÞ ¼ V0

t

t0
for 0 � t � t0

V0 for t0 � t ;

(
(2.30)

where t0 represents the time at which the prescribed velocity is reached.

2.7.3 External Loads

Boundary traction does not directly appear in the PD equation of motion. Therefore,

the application of external loads is also different from that of the classical contin-

uum theory. The difference can be illustrated by considering a region, Ω, that is

subjected to external loads. If this region is fictitiously divided into two domains,

Ω� and Ωþ, as shown in Fig. 2.5a, there must be a net force, Fþ, that is exerted to

domain Ωþ by domain Ω� so that force equilibrium is satisfied (Kilic 2008).

According to classical continuum mechanics, force Fþ can be determined by

integrating surface tractions over the cross-sectional area, @Ω, of domains Ω� and

Ωþ as

Fþ ¼
ð
@Ω

TdA; (2.31)

in which T is the surface tractions (Fig. 2.5b).
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In the case of the PD theory, the material points located in domain Ωþ interact

with the other material points in domain Ω� (Fig. 2.5c). Thus, the force Fþ can

be computed by volume integration of the force densities (Fig. 2.5d) over domain

Ωþ as

Fþ ¼
ð
Ωþ

LðxÞdV; (2.32a)

in which L, acting on a material point in domain Ωþ, is determined by

-

F+ T

t

t

L

a b

c d

Fig. 2.5 Boundary conditions: (a) domain of interest, (b) tractions in classical continuum

mechanics, (c) interaction of a material point in domain Ωþ with other material points in domain

Ω�, (d) force densities acting on domain Ωþ due to domain Ω�
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LðxÞ ¼
ð
Ω�

t u0 � u; x0 � x; tð Þ � t0 u� u0; x� x0; tð Þ½ �dV : (2.32b)

Note that if the volumeΩ� is void, the volume integration in Eq. 2.32b vanishes.

Hence, the tractions or point forces cannot be applied as boundary conditions since

their volume integrations result in a zero value. Therefore, the external loads can be

applied as body force density in a “real material layer” along the boundary of a

nonzero volume. Based on numerical experiments, the extent of the boundary layer

should be as close to the boundary as possible. Therefore, a boundary layer for

external load application,R‘, with depthΔ, is introduced along the boundary of the
material region R, as shown in Fig. 2.4.

In the case of distributed pressure, pðx; tÞ, or a point force, PðtÞ, over the surface
S‘ of the boundary layer R‘, the body force density vector can be expressed as

bðx; tÞ ¼ � 1

Δ
pðx; tÞn (2.33a)

or

bðx; tÞ ¼ 1

S‘Δ
PðtÞ : (2.33b)

If pðx; tÞ ¼ p0ðxÞHðtÞ and PðtÞ ¼ P0HðtÞ, with p0ðxÞ and P0 representing the

distributed pressure and constant point force, in order to avoid abrupt constraint

introduction, they can be applied as

bðx; tÞ ¼ � 1

Δ
p0ðxÞn t

t0
or bðx; tÞ ¼ 1

S‘Δ
P0

t

t0
for 0 � t � t0 (2.34a)

and

bðx; tÞ ¼ � 1

Δ
p0ðxÞn or bðx; tÞ ¼ 1

S‘Δ
P0; for t0 � t; (2.34b)

where t0 represents the time at which the prescribed external load is reached.

The displacement and velocity of all points in the boundary layerR‘ are calculated

based on the equation of motion.

2.8 Balance Laws

The PD equation of motion must be further governed by the balance of linear

momentum, angular momentum, and energy. These balance laws are viewed as

having a primitive status in mechanics. The balance of linear momentum and
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energy are automatically satisfied, as the principle of virtual work, Eq. 2.9,

represents their weak forms. However, the balance of angular momentum must be

assured.

The linear momentum, L, and angular momentum (about the coordinate origin),

H0, of a fixed set of particles at time t in volume V are given by

L ¼
ð
V

ρðxÞ _u x; tð ÞdV (2.35a)

and

H0 ¼
ð
V

yðx; tÞ � ρðxÞ _u x; tð ÞdV; (2.35b)

while the total force, F, and torque, Π0, about the origin are given by

F ¼
ð
V

bðx; tÞdV þ
ð
V

ð
H

T x; tð Þ x0 � xh i dHdV �
ð
V

ð
H

T x0; tð Þ x� x0h i dHdV (2.35c)

and

Π0 ¼
ð
V

yðx; tÞ � bðx; tÞdV þ
ð
V

ð
H

yðx; tÞ � T x; tð Þ x0 � xh i dHdV

�
ð
V

ð
H

yðx; tÞ � T x0; tð Þ x� x0h i dHdV :

(2.35d)

Thus, the balance of linear momentum, _L ¼ F , and angular momentum, _H0

¼ Π0; results in ð
V

ρ xð Þ€u x; tð Þ dV ¼
ð
V

bðx; tÞdV

þ
ð
V

ð
H

T x; tð Þ x0 � xh i dHdV

�
ð
V

ð
H

T x0; tð Þ x� x0h i dHdV

(2.36a)

and
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ð
V

y x; tð Þ � ρ xð Þ€u x; tð Þ dV ¼
ð
V

yðx; tÞ � bðx; tÞdV

þ
ð
V

ð
H

yðx; tÞ � T x; tð Þ x0 � xh i dHdV

�
ð
V

ð
H

yðx; tÞ � T x0; tð Þ x� x0h i dHdV :

(2.36b)

Because T x; tð Þ x0 � xh i ¼ T x0; tð Þ x� x0h i ¼ 0 for x0 =2 H, these equations can

be rewritten to include all of the material points in volume V as

ð
V

ρ xð Þ€u x; tð Þ dV ¼
ð
V

bðx; tÞdV

þ
ð
V

ð
V

T x; tð Þ x0 � xh i dV0dV

�
ð
V

ð
V

T x0; tð Þ x� x0h i dV0dV

(2.37a)

and

ð
V

y x; tð Þ � ρ xð Þ€u x; tð Þð Þ dV ¼
ð
V

yðx; tÞ � bðx; tÞdV

þ
ð
V

ð
V

yðx; tÞ � T x; tð Þ x0 � xh i dV0dV

�
ð
V

ð
V

yðx; tÞ � T x0; tð Þ x� x0h i dV0dV :

(2.37b)

If the parameters x and x0 in the third integrals on the right-hand side of

Eqs. 2.37a, b are exchanged, the third integrals become

ð
V

ð
V

T x0; tð Þ x� x0h i dV0 dV ¼
ð
V

ð
V

T x; tð Þ x0 � xh i dV dV0 (2.38a)

and
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ð
V

ð
V

y x; tð Þ � T x0; tð Þ x� x0h ið Þ dV0 dV

¼
ð
V

ð
V

y x0; tð Þ � T x; tð Þ x0 � xh ið Þ dV dV0 :
(2.38b)

Therefore, Eqs. 2.37a, b can be rewritten as

ð
V

ρ xð Þ€u x; tð Þ � b x; tð Þð Þ dV ¼ 0 (2.39a)

and

ð
V

y x; tð Þ � ρ xð Þ€u x; tð Þð Þ dV ¼
ð
V

y x; tð Þ � b x; tð Þ dV

�
ð
V

ð
V

y x0; tð Þ � y x; tð Þð Þ � T x; tð Þ x0 � xh ið Þ dV 0 dV:

(2.39b)

Hence, the balance of linear momentum, Eq. 2.39a, is automatically satisfied for

arbitrary force density vectors T x; tð Þ x0 � xh i and T x0; tð Þ x� x0h i.
The difference between the locations of material points at x and x0 in the

deformed configuration can be written by using the state notation as

y x0; tð Þ � y x; tð Þ ¼ ðy0 � yÞ ¼ Y x; tð Þ x0 � xh i; (2.40)

wherey0 ¼ y x0; tð Þ ¼ x0 þ u0 andy ¼ y x; tð Þ ¼ xþ u. Considering only the material

points within the horizon, substituting from Eq. 2.40 into Eq. 2.39b results in

ð
V

y x; tð Þ � ρ xð Þ€u x; tð Þ � b x; tð Þð ÞdV

¼ �
ð
V

ð
H

Y x; tð Þ x0 � xh i � T x; tð Þ x0 � xh ið Þ dH dV:

(2.41)

While invoking the requirement of a balance of linear momentum, Eq. 2.39a, in

order to satisfy the balance of angular momentum, the integral on the right-hand

side of Eq. 2.41 must be forced to vanish, i.e.,

ð
H

Y x; tð Þ x0 � xh i � T x; tð Þ x0 � xh ið Þ dH ¼ 0 (2.42a)
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or

ð
H

ðy0 � yÞ � T x; tð Þ x0 � xh ið Þ dH ¼ 0 : (2.42b)

It is apparent that this requirement is automatically satisfied if the force vectors

t u0 � u; x0 � x; tð Þ ¼ T x; tð Þ x0 � xh i and t0 u� u0; x� x0; tð Þ ¼ T x0; tð Þ x� x0h i are

aligned with the relative position vector of the material points in the deformed state,

ðy0 � yÞ. However, their general form that satisfies the requirement of Eq. 2.42b can

also be derived in terms of the deformation gradient and stress tensors of classical

continuum mechanics.

2.9 Bond-Based Peridynamics

As a special case, the force density vectors can also be equal in magnitude as well as

being parallel to the relative position vector in the deformed state, shown in

Fig. 2.6, in order to satisfy the requirement for balance of angular momentum.

Thus, they can be expressed in the form

t u0 � u; x0 � x; tð Þ ¼ T x; tð Þ x0 � xh i ¼ 1

2
C

y0 � y

y0 � yj j
¼ 1

2
f u0 � u; x0 � x; tð Þ

(2.43a)

and

t0 u� u0; x� x0; tð Þ ¼ T x0; tð Þ x� x0h i

¼ � 1

2
C

y0 � y

y0 � yj j ¼ � 1

2
f u0 � u; x0 � x; tð Þ; (2.43b)

where C is an unknown auxiliary parameter that depends on the engineering

material constants, pairwise stretch between x0 and x, and the horizon. This

particular form of the force vectors is referred to as “bond-based” peridynamics,

as introduced by Silling (2000). As shown in Fig. 2.6, the bond-based peridynamic

theory is concerned with pairwise interactions of material points.

Their substitution into Eq. 2.22b results in the bond-based PD equation of

motion of the material point x

ρ xð Þ €u x; tð Þ ¼
ð
H

f u0 � u; x0 � x; tð Þ dH þ b x; tð Þ; (2.44)
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in which the force density vector, fðu0 � u; x0 � xÞ is referred to as the pairwise

response function by Silling and Askari (2005). It is defined as the force vector per

unit volume squared that the material point atx0 exerts on the material point atx. The

force density vector can be assumed linearly dependent on the stretch between these

material points in the form

f u0 � u; x0 � xð Þ ¼ c1sðu0 � u; x0 � xÞ � c2T½ � y0 � y

y0 � yj j ; (2.45)

where the mean value of the temperatures at material points x0 and x relative to the

ambient temperature is denoted byT. The stretch sðu0 � u; x0 � xÞcan be interpreted
as the strain in the classical continuum theory, and it is defined as

sðu0 � u; x0 � xÞ ¼ y0 � yj j � x0 � xj j
x0 � xj j : (2.46)

For an isotropic material, the peridynamic material parameters c1 and c2 in

Eq. 2.45 can be determined by considering an infinite homogeneous body under

isotropic expansion, as suggested by Silling and Askari (2005). The body is also

subjected to uniform temperature change, T . Equating the energy densities of

peridynamic and classical continuum theory leads to the determination of c1 and

c2 as

c1 ¼ c ¼ 18κ

πδ4
and c2 ¼ cα; (2.47a, b)

in which κ is the bulk modulus and α is the coefficient of thermal expansion of the

material. The PD material parameter c is referred to as the bond-constant. In this

case, the PD theory limits the number of independent material constants to one for

isotropic materials with a constraint on the Poisson’s ratio. It permits only total

deformation without distinguishing the distortional and volumetric deformations.

Furthermore, it does not allow plastic incompressibility.

Undeformed state

Deformed state

u

u

y

x

y

z

y
f

x

x

f

Fig. 2.6 Deformation of

PD material points x and x0,
and developing equal and

opposite pairwise force

densities
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2.10 Ordinary State-Based Peridynamics

As shown in Fig. 2.7, the force density vectors having unequal magnitudes while

being parallel to the relative position vector in the deformed state also satisfy the

requirement for balance of angular momentum, Eq. 2.42b. Thus, they can be

defined in the form

t u0 � u; x0 � x; tð Þ ¼ T x; tð Þ x0 � xh i ¼ 1

2
A

y0 � y

y0 � yj j (2.48a)

and

t0 u� u0; x� x0; tð Þ ¼ T x0; tð Þ x� x0h i ¼ � 1

2
B

y0 � y

y0 � yj j ; (2.48b)

where A and B are auxiliary parameters that are dependent on engineering material

constants, deformation field, and the horizon. As coined by Silling et al. (2007), the

choice of the force density vectors in this form is referred to as “ordinary

state-based” peridynamics. It permits decoupled distortional and volumetric

deformations. Also, it enables the enforcement of plastic incompressibility.

In light of the definition of the strain energy density function, Eq. 2.8, and the

expressions for force density vectors in terms of micropotentials, Eqs. 2.17a, b,

while considering the requirement on their direction, Eqs. 2.48a, b, the force density

vectors can be related to the strain energy density function, W, as

t u0 � u; x0 � x; tð Þ � @WðxÞ
@ y0 � yj jð Þ

y0 � y

y0 � yj j ; (2.49a)

x

y

z

x

x

y

y

Undeformed state

Deformed state

t
t

Fig. 2.7 Deformation of

PD material points x and x0,
and developing unequal

pairwise force densities
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or

t0 u� u0; x� x0; tð Þ � @Wðx0Þ
@ y� y0j jð Þ

y0 � y

y0 � yj j : (2.49b)

These relations permit the determination of the auxiliary parameters A and B in

Eq. 2.48, and thus the peridynamic constitutive parameters that describe the mate-

rial behavior. The explicit forms of the expressions for these parameters are derived

in Chap. 4 for isotropic and in Chap. 5 for fiber-reinforced composite materials.

2.11 Nonordinary State-Based Peridynamics

As shown in Fig. 2.8, a general form of a force density vector that satisfies the

requirement of Eq. 2.42b necessary for balance of angular momentum can be

derived by applying the principle of virtual displacements to Eq. 2.22a as

ρ xð Þ€u x; tð Þ � Δu ¼
ð
H

T x; tð Þ x0 � xh ið

�T x0; tð Þ x� x0h iÞ � Δu dH þ b x; tð Þ � Δu;
(2.50)

where Δu represents the virtual displacement vector applied to the PD material

point at x. This equation can also be written in matrix notation as

ρ xð Þ€uT x; tð ÞΔu ¼
ð
H

T x; tð Þ x0 � xh ið

�T x0; tð Þ x� x0h iÞTΔu dH þ bT x; tð ÞΔu :

(2.51)

x

y

z

x

x

y

y

Undeformed state

Deformed state

t t

Fig. 2.8 Deformation of

PD material points x and x0,
and developing force

densities in arbitrary

directions
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Noting that Tðx; tÞhx0 � xi ¼ Tðx0; tÞhx� x0i ¼ 0 for x0 =2 H and integrating

Eq. 2.51 throughout the body result in

ð
V

ρ xð Þ€uT x; tð Þ � bT x; tð Þ� �
Δu dV ¼

ð
V

ð
V

T x; tð Þ x0 � xh ið ÞTΔu dV0dV

�
ð
V

ð
V

T x0; tð Þ x� x0h ið ÞTΔu dV0dV:
(2.52)

Exchanging the parameters x and x0 in the second integral on the right-hand side

of Eq. 2.52 leads to

ð
V

ð
V

T x0; tð Þ x� x0h ið ÞTΔu dV0dV ¼
ð
V

ð
V

T x; tð Þ x0 � xh ið ÞTΔu0 dVdV0 : (2.53)

This relationship permits the right-hand side of Eq. 2.52 to be rewritten as

ð
V

ð
V

T x; tð Þ x0 � xh ið ÞTΔu dV0dV �
ð
V

ð
V

T x0; tð Þ x� x0h ið ÞTΔu dV0dV

¼
ð
V

ð
V

T x; tð Þ x0 � xh ið ÞT Δu� Δu0ð Þ dV0dV:
(2.54)

The difference in virtual displacements of material points at locationsxandx0 can
be written in state form as

Δu0 � Δu ¼ ΔY x; tð Þ x0 � xh i: (2.55)

Therefore, Eq. 2.54 can be rewritten as

ð
V

ð
V

T x; tð Þ x0 � xh ið ÞT Δu� Δu0ð Þ dV 0dV

¼ �
ð
V

ð
V

T x; tð Þ x0 � xh ið ÞT ΔY x; tð Þ x0 � xh ið Þ dV0dV:
(2.56)

With this equation, Eq. 2.52 can be written in the form

ð
V

ρ xð Þ€uT x; tð Þ � bT x; tð Þ� �
Δu dV ¼ �

ð
V

ΔWIdV; (2.57)

whereΔWI corresponds to the virtual work of the internal forces at location x due to

its interactions with all other material points:
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ΔWI ¼
ð
V

T x; tð Þ x0 � xh ið ÞT ΔY x; tð Þ x0 � xh ið Þ dV0: (2.58)

Considering only the material points within the horizon, Eq. 2.58 can be

rewritten as

ΔWI ¼
ð
H

T x; tð Þ x0 � xh ið ÞT ΔY x; tð Þ x0 � xh ið Þ dH: (2.59)

The corresponding internal virtual work at location x in classical continuum

mechanics can be expressed as

ΔŴI ¼ trðST ΔEÞ (2.60)

where S ¼ ST is the second Piola-Kirchhoff (Kirchhoff) stress tensor, and the

Green-Lagrange strain tensor, E ¼ ET , can be related to the deformation gradient

tensor, F,

E ¼ 1

2
FTF� I
� �

: (2.61)

Using Eq. 2.61, the virtual form of the Green-Lagrange strain tensor can be

written as

ΔE ¼ 1

2
ΔFTFþ FTΔF
� �

: (2.62)

After substituting from Eq. 2.62 into Eq. 2.60, the internal virtual work expres-

sion in classical continuum mechanics takes the form

ΔŴI ¼ trðST FTΔFÞ ¼ trðPΔFÞ; (2.63)

where P ¼ ðST FTÞ is the first Piola-Kirchhoff (Lagrangian) stress tensor.
By using the vector state reduction to a second-order tensor, given in Eq. A.8, the

deformation gradient tensor, which corresponds to the deformation state in PD

theory, can be obtained as

F ¼ Y � Xð ÞK�1; (2.64)

whose virtual form can be written as

ΔF ¼ ΔY � Xð ÞK�1; (2.65)
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in which the explicit form of the shape tensor, K, serving as a volume-averaging

quantity, is derived in the Appendix; it is symmetric and diagonal. The symbol �
denotes the convolution of vector states, also defined in the Appendix.

Substituting from Eq. 2.65 into the internal virtual work expression of classical

continuum mechanics, Eq. 2.63, in conjunction with Eq. A.7, results in

ΔŴI ¼ tr P

ð
H

w x0 � xh iΔY x0 � xh i 	 X x0 � xh i dH
0
@

1
AK�1

0
@

1
A; (2.66)

where the influence (weight) function,w, is a scalar state, and 	 denotes the dyadic

product of two vectors, i.e., C ¼ a	 b or Cij ¼ ai bj . The scalar state influence

function provides a means to control the influence of PD points away from the

current point.

Using Eqs. A.4 and 2.55, this equation can be expressed in indicial form as

ΔŴI ¼ Pij

ð
H

w x0 � xh i Δu0i � Δuið Þ x0k � xkð Þ dH
0
@

1
AK�1

kj ; with ði; j; kÞ ¼ 1; 2; 3

(2.67)

Because the shape tensor is symmetric, this equation can be rearranged in the

form

ΔŴI ¼
ð
H

w x0 � xh iPij K
�1
jk x0k � xkð Þ Δu0i � Δuið Þ dH; with ði; j; kÞ ¼ 1; 2; 3

(2.68a)

or, in matrix form,

ΔŴI ¼
ð
H

w x0 � xh iPK�1 x0 � xð Þ� �T Δu0 � Δuð Þ dH : (2.68b)

After invoking Eq. 2.55 into Eq. 2.68b, equating the virtual work expressions

from the PD theory, Eq. 2.59, and classical continuum mechanics, Eq. 2.68b,

results in

ð
H

T x; tð Þ x0 � xh ið ÞT ΔY x; tð Þ x0 � xh ið Þ dH



ð
H

w x0 � xh iPK�1 x0 � xð Þ� �T ΔY x; tð Þ x0 � xh ið Þ dH :

(2.69)
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This requirement leads to the relation between the force vector state and the

deformation gradient and stress tensors of classical continuum mechanics as

t u0 � u; x0 � x; tð Þ ¼ T x; tð Þ x0 � xh i 
 w x0 � xh iPK�1 x0 � xð Þ (2.70)

Although this expression for the force density vector, Eq. 2.70, is identical to that

derived by Silling et al. (2007), this derivation based on the principle of virtual

displacements proves that the force density vector is valid for any material model

provided that the Piola-Kirchhoff stress tensor can be obtained directly or by using

incremental procedures. Therefore, this equation also forms the basis for

implementing any material behavior in the PD theory.
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Chapter 3

Peridynamics for Local Interactions

3.1 Equations of Motion

Within classical continuum mechanics, a material point can only interact with other

material points in its nearest neighborhood. As depicted in Fig. 3.1, the material

point k at location xðkÞ can only have interactions with the material points labeled as

ðk � 1Þ, ðk þ 1Þ, ðk � mÞ, ðk þ mÞ, ðk � nÞ, and ðk þ nÞ. These interactions are

represented by “internal traction vectors.” For the material point k that is located on

a surface whose unit normal isnT ¼ ðnx; ny; nzÞ, the components of a traction vector,

TT ¼ ðTx; Ty; TzÞ, are related to the Cauchy stress components as

Tx
Ty
Tz

8<
:

9=
; ¼

σxxðkÞ σxyðkÞ σxzðkÞ
σxyðkÞ σyyðkÞ σyzðkÞ
σxzðkÞ σyzðkÞ σzzðkÞ

2
4

3
5 nx

ny
nz

8<
:

9=
;; (3.1)

in which ðσxxðkÞ; σyyðkÞ; σzzðkÞÞ and ðσxyðkÞ; σxzðkÞ; σyzðkÞÞ are the normal and shear stress

components, respectively.

Associated with material point k, the traction vectors acting on surfaces with unit
normal vectors n ¼ �ex;�ey;�ez can be expressed in a slightly different form

TðkÞðjÞ ¼ TxðkÞðjÞex þ TyðkÞðjÞey þ TzðkÞðjÞez; (3.2)

with j ¼ ðk þ 1Þ; ðk � 1Þ; ðk þ mÞ; ðk � mÞ; ðk þ nÞ; ðk � nÞ and the traction vector,
TðkÞðjÞ, representing the force exerted by material point j on k.

The equations of motion for the classical continuum (local) theory can be

derived in a manner similar to the derivation of equations of motion for the nonlocal

PD theory. The only difference in the derivation is that the expression for the strain

energy density, WðkÞ; of material point k is expressed as a summation of

micropotential, wðkÞðjÞ; arising from the interaction of material point k and the

other six material points denoted as ðk � 1Þ, ðk þ 1Þ, ðk � mÞ, ðk þ mÞ, ðk � nÞ, and

E. Madenci and E. Oterkus, Peridynamic Theory and Its Applications,
DOI 10.1007/978-1-4614-8465-3_3, © Springer Science+Business Media New York 2014
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ðk þ nÞ, as shown in Fig. 3.1. Therefore, the strain energy expression, Eq. 2.8, for

the nonlocal theory is modified as

WðkÞ ¼ 1

2

X
j¼k�1;kþ1;k�m;kþm;k�n;kþn

1

2
wðkÞðjÞ yð1kÞ � yðkÞ; yð2kÞ � yðkÞ; � � �

� ��

þ wðjÞðkÞ yð1jÞ � yðjÞ; yð2jÞ � yðjÞ; � � �
� ��

VðjÞ :

(3.3)

Following the derivation of PD equations of motion (nonlocal), the equations of

motion for the material point k in the context of local theory can be obtained as

ρðkÞ€uðkÞ ¼
X

j¼k�1;kþ1;k�m;kþm;k�n;kþn

tðkÞðjÞ � tðjÞðkÞ
� �

VðjÞ þ bðkÞ; (3.4a)

where

tðkÞðjÞ ¼ 1

2

@wðkÞðjÞ

@ yðjÞ � yðkÞ
� � and tðjÞðkÞ ¼ 1

2

@wðjÞðkÞ

@ yðkÞ � yðjÞ
� � ; (3.4b)

with the interpretation that tðkÞðjÞ represents the force density that material point xðjÞ
exerts on material point xðkÞ , and tðjÞðkÞ represents the force density that material

point xðkÞ exerts on material point xðjÞ.

xy

k

k+1

k+n

k-1 k-m

k+m

k-n

zFig. 3.1 Material point

interacting with others in its

immediate vicinity
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3.2 Relationship Between Cauchy Stresses

and Peridynamic Forces

For material point xðkÞ; the equations of motion based on classical continuum

mechanics can also be expressed in terms of stress components, σαβðkÞ, in the form

ρðkÞ€uαðkÞ ¼ σαx;xðkÞ þ σαy;yðkÞ þ σαz;zðkÞ þ bαðkÞ; (3.5)

with α ¼ ðx; y; zÞ. Invoking the finite difference approximation, using both forward

and backward formulae, these equations can be expressed as

ρðkÞ€uxðkÞ ¼
1

2

σxxðkÞ � σxxðk�1Þ
� �

Δx
þ 1

2

σxxðkþ1Þ � σxxðkÞ
� �

Δx

þ 1

2

σxyðkÞ � σxyðk�mÞ
� �

Δy
þ 1

2

σxyðkþmÞ � σxyðkÞ
� �

Δy

þ 1

2

σxzðkÞ � σxzðk�nÞ
� �

Δz
þ 1

2

σxzðkþnÞ � σxzðkÞ
� �

Δz
þ bxðkÞ;

(3.6a)

ρðkÞ€uyðkÞ ¼
1

2

σxyðkÞ � σxyðk�1Þ
� �

Δx
þ 1

2

σxyðkþ1Þ � σxyðkÞ
� �

Δx

þ 1

2

σyyðkÞ � σyyðk�mÞ
� �

Δy
þ 1

2

σyyðkþmÞ � σyyðkÞ
� �

Δy

þ 1

2

σyzðkÞ � σyzðk�nÞ
� �

Δz
þ 1

2

σyzðkþnÞ � σyzðkÞ
� �

Δz
þ byðkÞ;

(3.6b)

and

ρðkÞ€uzðkÞ ¼
1

2

σxzðkÞ � σxzðk�1Þ
� �

Δx
þ 1

2

σxzðkþ1Þ � σxzðkÞ
� �

Δx

þ 1

2

σyzðkÞ � σyzðk�mÞ
� �

Δy
þ 1

2

σyzðkþmÞ � σyzðkÞ
� �

Δy

þ 1

2

σzzðkÞ � σzzðk�nÞ
� �

Δz
þ 1

2

σzzðkþnÞ � σzzðkÞ
� �

Δz
þ bzðkÞ:

(3.6c)

Equating each term of Eqs. 3.6a, 3.6b, 3.6c to those of Eq. 3.4a leads to the

relations between stress and PD force densities as
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σαβðkÞ ¼ 2tβðkÞðqαÞΔαVðqαÞ;

with qx ¼ k þ 1ð Þ; qy ¼ k þ mð Þ; qz ¼ k þ nð Þ; (3.7a)

σαβðkÞ ¼ �2tβðkÞðqαÞΔαVðqαÞ;

with qx ¼ k � 1ð Þ; qy ¼ k � mð Þ; qz ¼ k � nð Þ; (3.7b)

with α; β ¼ x; y; z . The normal stresses of the Cauchy stress tensor can also be

written as

σααðkÞ ¼ 2tðkÞðqαÞ � xðqαÞ � xðkÞ
� �

VðqαÞ; (3.8a)

with

tðkÞðqαÞ ¼ txðkÞðqαÞex þ tyðkÞðqαÞey þ tzðkÞðqαÞez; (3.8b)

and

xðqαÞ � xðkÞ ¼ Δαeα; (3.8c)

for α ¼ x; y; z:
The base vectors of the Cartesian coordinate system ðx; y; zÞ are denoted as eα. It

is also worth noting the following expression involving the normal and shear stress

components can be expressed in terms of the PD force densities:

X
β¼x;y;z

σ2αβðkÞ ¼
X

β¼x;y;z

4t2βðkÞðqαÞ Δαð Þ2V2
ðqαÞ (3.9a)

or

X
β¼x;y;z

σ2αβðkÞ ¼ 4 tðkÞðqαÞ xðqαÞ � xðkÞ
�� ��VðqαÞ

� � � tðkÞðqαÞ xðqαÞ � xðkÞ
�� ��VðqαÞ

� �
: (3.9b)

3.3 Strain Energy Density

Based on classical continuum mechanics, the strain energy density at material point

k is expressed as

WðkÞ ¼ κ

2
θðkÞ � 3 α TðkÞ
� �2 þ 1

4 μ
σ2xxðkÞ þ σ2yyðkÞ þ σ2zzðkÞ
� ��

þ 1

2 μ
σ2xyðkÞ þ σ2xzðkÞ þ σ2yzðkÞ
� �

� 3 κ2

4μ
θ2ðkÞ

�
;

(3.10)
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in which TðkÞ is the temperature change, and α represents the coefficient of thermal

expansion for an isotropic material whose bulk modulus is κ. The first and second

terms on the right-hand side represent the dilatational and distortional energy

densities, respectively. This equation can also be rewritten in a slightly different

form as

WðkÞ ¼ κ

2
θðkÞ � 3 α TðkÞ
� �2 � 3κ2

4μ
θ2ðkÞ

þ 1

8μ
σ2xxðkÞ þ σ2xyðkÞ þ σ2xzðkÞ
� �

þ σ2xxðkÞ þ σ2xyðkÞ þ σ2xzðkÞ
� �h i

þ 1

8μ
σ2yyðkÞ þ σ2xyðkÞ þ σ2yzðkÞ
� �

þ σ2yyðkÞ þ σ2xyðkÞ þ σ2yzðkÞ
� �h i

þ 1

8μ
σ2zzðkÞ þ σ2xzðkÞ þ σ2yzðkÞ
� �

þ σ2zzðkÞ þ σ2xzðkÞ þ σ2yzðkÞ
� �h i

;

(3.11)

in which each term involving the stress components corresponds to the contribution

of PD forces exerted by material points ðk þ 1Þ, ðk � 1Þ, ðk þ mÞ, ðk � mÞ, ðk þ nÞ,
and ðk � nÞ on material point k.

Utilizing the expressions given by Eq. 3.9b, the strain energy density can be

rewritten in terms of PD force densities as

WðkÞ ¼
κ

2
θðkÞ � 3 αTðkÞ
� �2 � 3 κ2

4μ
θ2ðkÞ

þ 1

2μ

X
j¼k�1;kþ1;

k�m;kþm;

k�n;kþn

tðkÞðjÞ xðjÞ � xðkÞ
�� ��VðjÞ

� � � tðkÞðjÞ xðjÞ � xðkÞ
�� ��VðjÞ

� �
: (3.12)

In accordance with Eq. 2.43a, for a pairwise interaction of material point k
with the other six material points denoted as ðk � 1Þ, ðk þ 1Þ; ðk � mÞ, ðk þ mÞ,
ðk � nÞ, and ðk þ nÞ, the PD force density vector tðkÞðjÞ can be replaced with fðkÞðjÞ,
leading to

WðkÞ ¼
κ

2
θðkÞ � 3 α TðkÞ
� �2 � 3 κ2

4μ
θ2ðkÞ

þ 1

8μ

X
j¼k�1;kþ1;

k�m;kþm;

k�n;kþn

fðkÞðjÞ xðjÞ � xðkÞ
�� ��VðjÞ

� � � fðkÞðjÞ xðjÞ � xðkÞ
�� ��VðjÞ

� �
: (3.13)
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Substituting for the pairwise force density from Eq. 2.45 in conjunction with

Eq. 2.46 results in

WðkÞ ¼ κ

2
θðkÞ � 3 α TðkÞ
� �2 � 3 κ2

4μ
θ2ðkÞ

þ c2

8μ

X
j¼k�1;kþ1;

k�m;kþm;

k�n;kþn

sðkÞðjÞ � α TðkÞ
� �2

xðjÞ � xðkÞ
�� ��2 V2

ðjÞ: (3.14)

A general form of this expression that it is suitable for both bond-based and

ordinary state-based peridynamics can be written as

WðkÞ ¼ a θ2ðkÞ � a2 θðkÞ TðkÞ þ a3 T
2
ðkÞ

þ
X

j¼k�1;kþ1;

k�m;kþm;

k�n;kþn

b sðkÞðjÞ � α TðkÞ
� �2

xðjÞ � xðkÞ
�� ��2 VðjÞ

(3.15a)

or

WðkÞ ¼ aθ2ðkÞ � a2 θðkÞ TðkÞ þ a3 T
2
ðkÞ

þ
X

j¼k�1;kþ1;

k�m;kþm;

k�n;kþn

b yðjÞ � yðkÞ
��� ���� xðjÞ � xðkÞ

�� ��� ���
�αTðkÞ xðjÞ � xðkÞ

�� ���2VðjÞ
�
;

(3.15b)

where a, a2, a3, and b are the peridynamic parameters.

The dilatation, θðkÞ , term at material point k is defined in classical continuum

mechanics as

θðkÞ ¼ ðεxxðkÞ þ εyyðkÞ þ εzzðkÞÞ ¼
ðσxxðkÞ þ σyyðkÞ þ σzzðkÞÞ

3 κ
þ 3 αTðkÞ; (3.16)

in which the normal strain components are ðεxxðkÞ; εyyðkÞ; εzzðkÞÞ. This expression is

rewritten in a slightly different form as

θðkÞ ¼ 1

3κ

1

2
σxxðkÞ þ 1

2
σxxðkÞ þ 1

2
σyyðkÞ þ 1

2
σyyðkÞ þ 1

2
σzzðkÞ þ 1

2
σzzðkÞ

	 

þ 3 αTðkÞ;

(3.17)

in which each term corresponds to peridynamic forces exerted by material points

ðk þ 1Þ, ðk � 1Þ, ðk þ mÞ, ðk � mÞ, ðk þ nÞ, and ðk � nÞ on material point k. Utilizing
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the expressions given by Eq. 3.8a, the dilatation can be rewritten in terms of

peridynamic force densities,

θðkÞ ¼ 1

3 κ

X
j¼k�1;kþ1;k�m;kþm;k�n;kþn

tðkÞðjÞ � xðjÞ � xðkÞ
� �� �

VðjÞ

 !
þ 3 αTðkÞ: (3.18)

As in the strain energy density expression, this expression can be written

for a pairwise interaction of material point k with the other six material points,

leading to

θðkÞ ¼ 1

6 κ

X
j¼k�1; kþ1; k�m; kþm; k�n; kþn

fðkÞðjÞ � xðjÞ � xðkÞ
� �� �

VðjÞ

 !

þ 3 αTðkÞ : (3.19)

Substituting for the pairwise force density from Eq. 2.45 in conjunction with

Eq. 2.46 results in

θðkÞ ¼ c

6 κ

X
j¼k�1

kþ1

k�m

kþm

k�n

kþn

sðkÞðjÞ � αTðkÞ
� � yðjÞ � yðkÞ

� �
yðjÞ � yðkÞ
��� ��� � xðjÞ � xðkÞ

� �
VðjÞ þ 3αTðkÞ:

(3.20)

A general form of this expression can be written as

θðkÞ ¼ d
X
j¼k�1

kþ1

k�m

kþm

k�n

kþn

sðkÞðjÞ � α TðkÞ
� � yðjÞ � yðkÞ

� �
yðjÞ � yðkÞ
��� ��� � xðjÞ � xðkÞ

� �
VðjÞ þ 3 α TðkÞ; (3.21)

where d is a peridynamic parameter. The expressions for dilatation, θðkÞ, and strain

energy density, WðkÞ , at material point k will take their general form within the

ordinary state-based peridynamic framework, where the number of interactions are

not limited to the immediate vicinity of material points as in classical continuum

mechanics.
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Chapter 4

Peridynamics for Isotropic Materials

4.1 Material Parameters

The auxiliary parameters, C in Eq. 2.43 and A and B in Eq. 2.48, can be determined

by using the relationship between the force density vector and the strain energy

density, WðkÞ, at material point k given by Eq. 2.49 in the form,

tðkÞðjÞ uðjÞ � uðkÞ; xðjÞ � xðkÞ; t
� � ¼ 1

VðjÞ

@WðkÞ

@ yðjÞ � yðkÞ
��� ���� � yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� ; (4.1)

in whichVðjÞ represents the volume of material point j, and the direction of the force

density vector is aligned with the relative position vector in the deformed configu-

ration. The material point j exerts the force density tðkÞðjÞ on material point k .

Determination of the auxiliary parameters requires an explicit form of the strain

energy density function.

For an isotropic and elastic material, the explicit form of the strain energy

density, WðkÞ, at material point xðkÞ can be obtained by generalizing the expression

given by Eq. 3.15 as

WðkÞ ¼ aθ2ðkÞ � a2 θðkÞ TðkÞ þ a3 T
2
ðkÞ

þ b
XN
j¼1

wðkÞðjÞ yðjÞ � yðkÞ
��� ���� xðjÞ � xðkÞ

�� ��� �
� α TðkÞ xðjÞ � xðkÞ

�� ��� �2
VðjÞ;

(4.2)

where N represents the number of material points within the family of xðkÞ . The
nondimensional influence function, wðkÞðjÞ ¼ wðjxðjÞ � xðkÞjÞ, provides a means to

control the influence of material points away from the current material point at xðkÞ.
The temperature change at material point k isTðkÞ, withα representing the coefficient

E. Madenci and E. Oterkus, Peridynamic Theory and Its Applications,
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of thermal expansion. Similarly, the explicit expression for θðkÞ can be obtained

from Eq. 3.21 in a general form as

θðkÞ ¼ d
XN
j¼1

wðkÞðjÞ sðkÞðjÞ � αTðkÞ
� � yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� � xðjÞ � xðkÞ

� �
VðjÞ þ 3 αTðkÞ; (4.3)

in which the PD parameter d ensures that θðkÞ remains nondimensional. The PD

material parameters, a, a2, a3, and b, in Eq. 4.2 can be related to the engineering

material constants of shear modulus, μ, bulk modulus, κ , and thermal expansion

coefficient, α , of classical continuum mechanics by considering simple loading

conditions.

After substituting for θðkÞ from Eq. 4.3 in the expression for WðkÞ , given by

Eq. 4.2, and performing differentiation, the force density vector

tðkÞðjÞ uðjÞ � uðkÞ; xðjÞ � xðkÞ; t
� �

can be rewritten in terms of PD material parameters

as

tðkÞðjÞ uðjÞ � uðkÞ; xðjÞ � xðkÞ; t
� � ¼ 1

2
A

yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� ; (4.4a)

with

A ¼ 4wðkÞðjÞ d
yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� �

xðjÞ � xðkÞ
xðjÞ � xðkÞ
�� �� aθðkÞ � 1

2
a2 TðkÞ

� �8<
:

þb yðjÞ � yðkÞ
��� ���� xðjÞ � xðkÞ

�� ��� �
� α TðkÞ xðjÞ � xðkÞ

�� ��� �)
:

(4.4b)

Similarly, the force density vector tðjÞðkÞ uðkÞ � uðjÞ; xðkÞ � xðjÞ; t
� �

can be

expressed as

tðjÞðkÞ uðkÞ � uðjÞ; xðkÞ � xðjÞ; t
� � ¼ � 1

2
B

yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� ; (4.5a)

with

B ¼ 4wðjÞðkÞ d
yðkÞ � yðjÞ

yðkÞ � yðjÞ
��� ��� �

xðkÞ � xðjÞ
xðkÞ � xðjÞ
�� �� aθðjÞ �

1

2
a2 TðjÞ

� �8<
:

þb yðkÞ � yðjÞ
��� ���� xðkÞ � xðjÞ

�� ��� �
� α TðjÞ xðkÞ � xðjÞ

�� ��� �)
:

(4.5b)
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Although Eqs. 4.4b and 4.5b appear to be similar, they are different because the

values of (θðkÞ, TðkÞ) and (θðjÞ, TðjÞ) for the material points at xðkÞ and xðjÞ, respectively,
are not necessarily equal to each other. However, A and B must be equal to each

other for the bond-based PD theory. Therefore, the terms associated with θðkÞ and
θðjÞ in Eqs. 4.4b and 4.5b must disappear, thus requiring that

ad ¼ 0: (4.6)

Thus, the parameter C in Eq. 2.43 becomes

C ¼ 4bwðkÞðjÞ yðjÞ � yðkÞ
��� ���� xðjÞ � xðkÞ

�� ��� �
� α TðkÞ xðjÞ � xðkÞ

�� ��� �
: (4.7)

The force density vector can be rewritten as

tðkÞðjÞ ¼ 2bwðkÞðjÞ yðjÞ � yðkÞ
��� ���� xðjÞ � xðkÞ

�� ��� ��
� α TðkÞ xðjÞ � xðkÞ

�� ��� yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� :

(4.8)

Based on Eq. 2.43, the bond-based force density vector between the material

points at xðkÞ and xðjÞ can be obtained as

fðkÞðjÞ ¼ 4bwðkÞðjÞ xðjÞ � xðkÞ
�� �� sðkÞðjÞ � α TðkÞ

� � yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� : (4.9)

Comparing this expression with the bond-based definition of the force density

vector, Eq. 2.45 leads to the explicit form of the influence function as

wðkÞðjÞ ¼
c

4b

1

xðjÞ � xðkÞ
�� �� : (4.10)

Performing dimensional analysis on Eq. 4.2 requires that parameter b have

dimensionsForce=ðLengthÞ7whereas the parameterc ¼ c1 inEq. 2.45 has dimensions

Force=ðLengthÞ6 . Therefore, the ratio of c b= has a dimension of Length ,
rendering the influence function to be nondimensional. The horizon, δ, can be

taken as the Length dimension to include the influence of other material points

within a family. Thus, the influence (weight) function for the state-based

peridynamics becomes

wðkÞðjÞ ¼ δ

xðjÞ � xðkÞ
�� �� : (4.11)
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Thus, the ratio of c b= is established as

c

b
¼ 4δ: (4.12)

Substituting for the influence function results in the final form of the expressions

for the force density vectors

tðkÞðjÞ ¼ 2δ d
ΛðkÞðjÞ

xðjÞ � xðkÞ
�� �� aθðkÞ � 1

2
a2 TðkÞ

� �
þ b sðkÞðjÞ � α TðkÞ
� �( )

� yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� ; (4.13)

where the parameter, ΛðkÞðjÞ, is defined as

ΛðkÞðjÞ ¼
yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ���

0
B@

1
CA � xðjÞ � xðkÞ

xðjÞ � xðkÞ
�� ��

 !
: (4.14)

For the bond-based PD theory, the dilatation termθðkÞmust disappear, resulting in

tðkÞðjÞ ¼ 2δb sðkÞðjÞ � αTðkÞ
� � yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� : (4.15)

Based on Eq. 2.43 in conjunction with Eq. 4.12, the bond-based force density

vector, fðkÞðjÞ, in Eq. 2.44, becomes

fðkÞðjÞ ¼ c sðkÞðjÞ � αTðkÞðjÞ
� � yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� ; (4.16)

where TðkÞðjÞ ¼ ðTðjÞ þ TðkÞÞ=2. This expression is the same as that given by Silling

and Askari (2005), who coined the term “bond-constant” for the parameter c for

bond-based peridynamics.

Although all structures are three dimensional in nature, they can be idealized under

certain assumptions as one dimensional or two dimensional in order to simplify the

computational effort. For instance, long bars can be treated as one-dimensional

structures. Similarly, thin plates can be treated as two-dimensional structures. The

PDmaterial constants must reflect these idealizations. A two-dimensional plate can be

discretized with a single layer of material points in the thickness direction. The

spherical domain of integral H becomes a disk with radius δ and thickness h .
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A one-dimensional bar can be discretized with a single row of material points.

The spherical domain of integral H becomes a line with a length 2δ and cross-

sectional area of A.

4.1.1 Three-Dimensional Structures

For three-dimensional analysis, the strain energy density based on classical contin-

uum mechanics can be obtained from

WðkÞ ¼ 1

2
σT
ðkÞ εðkÞ; (4.17)

in which the stress and strain vectors σðkÞ and εðkÞ are defined as

σT
ðkÞ ¼ σxxðkÞ σyyðkÞ σzzðkÞ σyzðkÞ σxzðkÞ σxyðkÞ

	 

(4.18a)

and

εTðkÞ ¼ εxxðkÞ εyyðkÞ εzzðkÞ γyzðkÞ γxzðkÞ γxyðkÞ
	 


: (4.18b)

For an isotropic material with bulk modulus, κ, and shear modulus, μ, the stress
and strain components are related through the constitutive relation as

σðkÞ ¼ C εðkÞ; (4.19)

where the material property matrix C is defined as

C ¼

κ þ 4μ=3ð Þ κ � 2μ=3ð Þ κ � 2μ=3ð Þ 0 0 0

κ � 2μ=3ð Þ κ þ 4μ=3ð Þ κ � 2μ=3ð Þ 0 0 0

κ � 2μ=3ð Þ κ � 2μ=3ð Þ κ þ 4μ=3ð Þ 0 0 0

0 0 0 μ 0 0

0 0 0 0 μ 0

0 0 0 0 0 μ

2
6666664

3
7777775
; (4.20a)

with

κ ¼ E

3ð1� 2νÞ and μ ¼ E

2ð1þ νÞ : (4.20b)

Two different loading cases resulting in isotropic expansion and simple shear
can be considered to determine the peridynamic parameters a, a2, a3, b, and d in

terms of engineering material constants of classical continuum mechanics.
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As illustrated in Fig. 4.1, a loading case of isotropic expansion can be achieved

by applying a normal strain of ζ in all directions and a uniform temperature change

of T: Thus, the strain components in the body are

εxxðkÞ ¼ εyyðkÞ ¼ εzzðkÞ ¼ ζ þ α T (4.21a)

and

γxyðkÞ ¼ γxzðkÞ ¼ γyzðkÞ ¼ 0; (4.21b)

for which the dilatation, θðkÞ, and the strain energy density,WðkÞ, within the realm of

classical continuum mechanics become

θðkÞ ¼ εxxðkÞ þ εyyðkÞ þ εzzðkÞ ¼ 3ζ þ 3 αT (4.22a)

and

WðkÞ ¼
9

2
κ ζ2: (4.22b)

The relative position vector between the material points at xðjÞ and xðkÞ in the

deformed configuration becomes

yðjÞ � yðkÞ
��� ��� ¼ 1þ ζ þ αTðkÞ

� �
xðjÞ � xðkÞ
�� ��; (4.23)

in which TðkÞ ¼ T:

Defining ξ ¼ xðjÞ � xðkÞ, with ξ ¼ jξj, and substituting for wðkÞðjÞ from Eq. 4.11

and the relative position vector from Eq. 4.23, the strain energy density, WðkÞ , at
material point xðkÞ that interacts with other material points within a sphere of radius,

δ, from Eq. 4.2 can be evaluated as

Undeformed

Deformed
x y

z

x( )k

x( )j

T

x( )k

y( )k

x( )j

y( )j
+ T

y( )j

x

+ T yy

+ T x

+ T z

z

Fig. 4.1 A three-dimensional body subjected to isotropic expansion
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WðkÞ ¼ a θ2ðkÞ � a2 θðkÞ TðkÞ þ a3 T
2
ðkÞ þ b

ðδ
0

ð2π
0

ðπ
0

δ

ξ
1þ ζ þ α TðkÞ
� �

ξ� ξ
� ��

�α TðkÞ ξ
�2
ξ2 sin ϕð Þ dϕdθdξ;

(4.24)

in which ðξ; θ;ϕÞ serve as spherical coordinates. After invoking from Eq. 4.22a, its

evaluation leads to

WðkÞ ¼ a 3ζ þ 3 α TðkÞ
� �2 � a2 3ζ þ 3 αTðkÞ

� �
TðkÞ þ a3 T

2
ðkÞ þ π bζ2 δ5 : (4.25)

Equating the expressions for strain energy density from Eqs. 4.22b and 4.25

provides the relationships between the PD parameters and engineering material

constants as

9 aþ π b δ5 ¼ 9

2
κ; (4.26a)

a2 ¼ 6 α a; (4.26b)

a3 ¼ 9 α2 a: (4.26c)

Similarly, the expression for θðkÞ from Eq. 4.3 can be recast as

θðkÞ ¼ d

ðδ
0

ð2π
0

ðπ
0

δ

ξ
1þ ζ þ αTðkÞ
� �

ξ� ξ
� �� α TðkÞ ξ
� �

� ξ
ξ
� ξ
ξ

� �
ξ2 sin ϕð Þdϕdθdξþ 3αTðkÞ;

(4.27)

whose explicit evaluation leads to

θðkÞ ¼
4 π d δ4

3
ζ þ 3αTðkÞ: (4.28)

Equating the expressions for dilatation from Eqs. 4.22a and 4.28 permits the

determination of the peridynamic parameter d as

d ¼ 9

4 π δ4
: (4.29)

As illustrated in Fig. 4.2, a loading case of simple shear can be achieved by

applying
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γxyðkÞ ¼ ζ and εxxðkÞ ¼ εyyðkÞ ¼ εzzðkÞ ¼ γxzðkÞ ¼ γyzðkÞ ¼ TðkÞ ¼ 0; (4.30)

for which the dilatation, θðkÞ, and the strain energy density,WðkÞ, within the realm of

classical continuum mechanics become

θðkÞ ¼ 0 (4.31a)

and

WðkÞ ¼ 1

2
μ ζ2: (4.31b)

The relative position vector in the deformed state becomes

yðjÞ � yðkÞ
��� ��� ¼ 1þ ζ sin 2ϕð Þ sin θð Þ

2

 �
xðjÞ � xðkÞ
�� ��: (4.32)

Therefore, the strain energy density, WðkÞ, from Eq. 4.2 can be evaluated as

WðkÞ ¼ b

ðδ
0

ð2π
0

ðπ
0

δ

ξ
1þ ζ sin 2ϕð Þ sin θð Þ

2

 �
ξ� ξ

� �2

ξ2 sin ϕð Þdϕdθdξ; (4.33a)

whose evaluation leads to

WðkÞ ¼ b π δ5 ζ2

15
: (4.33b)

Equating the strain energy density expressions of Eqs. 4.31b and 4.33b obtained

from classical continuum mechanics and the PD theory gives the relationship

between the peridynamic parameter b and shear modulus, μ, as

b ¼ 15 μ

2 π δ5
: (4.34)

UndeformedDeformed
x y

z

x ( )j

x ( )k y ( )k

x( )j
y ( )j

y ( )j

x

y

z

z

z sin( )sin( )

x ( )k

Fig. 4.2 A three-dimensional body subjected to simple shear
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Substituting from Eq. 4.34 into Eq. 4.26a results in the evaluation of the

peridynamic parameter a in terms of bulk modulus, κ, and shear modulus, μ, as

a ¼ 1

2
κ � 5 μ

3

� �
: (4.35)

In summary, the PD parameters for a three-dimensional analysis can be

expressed as

a ¼ 1

2
κ � 5 μ

3

� �
; a2 ¼ 6 α a; (4.36a,b)

a3 ¼ 9 α2 a; b ¼ 15 μ

2 π δ5
; d ¼ 9

4 π δ4
: (4.36c--e)

In view of Eqs. 4.6 and 4.12, a constraint condition of κ ¼ 5μ=3 or ν ¼ 1=4

emerges for bond-based peridynamics with a bond constant of c ¼ 30μ=πδ4 or c

¼ 18κ=πδ4.

4.1.2 Two-Dimensional Structures

Under two-dimensional idealization, the stress and strain vectors σðkÞ and εðkÞ are
defined as

σT
ðkÞ ¼ σxxðkÞ σyyðkÞ σxyðkÞ

	 

(4.37a)

and

εTðkÞ ¼ εxxðkÞ εyyðkÞ γxyðkÞ
	 


: (4.37b)

The material property matrix C in Eq. 4.19 is reduced to

C ¼
κ þ μ κ � μ 0

κ � μ κ þ μ 0

0 0 μ

2
4

3
5: (4.38)

Due to two-dimensional idealization, the expression for bulk modulus differs

from that given in Eq. 4.20b and is given by

κ ¼ E

2ð1� νÞ : (4.39)
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As shown in Fig. 4.3, a two-dimensional plate is discretized with a single layer of

material points in the thickness direction. The domain of integral H in Eq. 2.22a

becomes a disk with radius δ and thickness h. As in the previous case, two different
loading cases to achieve isotropic expansion and simple shear are considered to

determine the peridynamic parameters.

As illustrated in Fig. 4.4, isotropic expansion can be achieved by applying an

equal normal strain of ζ in all directions and a uniform temperature change of T:
Thus, the strain components in the body are

εxxðkÞ ¼ εyyðkÞ ¼ ζ þ α T and γxyðkÞ ¼ 0; (4.40)

for which the dilatation, θðkÞ, and the strain energy density,WðkÞ, within the realm of

classical continuum mechanics become

θðkÞ ¼ εxxðkÞ þ εyyðkÞ ¼ 2ζ þ 2 αTðkÞ (4.41a)

and

WðkÞ ¼ 2κ ζ2: (4.41b)

The relative position vector between the material points at xðjÞ and xðkÞ in the

deformed configuration becomes

yðjÞ � yðkÞ
��� ��� ¼ 1þ ζ þ αTðkÞ

� �
xðjÞ � xðkÞ
�� ��; (4.42)

in which TðkÞ ¼ T.

x

y

x

H
x

Fig. 4.3 PD horizon for a

two-dimensional plate and

PD interactions between

material point x and other

material points within its

horizon
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The strain energy density, WðkÞ , at material point xðkÞ that interacts with other

material points within a disk of radius δ and thickness h from Eq. 4.2 can be

evaluated as

WðkÞ ¼ a θ2ðkÞ � a2 θðkÞ TðkÞ þ a3 T
2
ðkÞ

þ b h

ðδ
0

ð2π
0

δ

ξ
1þ ζ þ α TðkÞ
� �

ξ� ξ
� �� α TðkÞ ξ
� �2

ξdθdξ ;
(4.43)

in which ðξ; θÞ serve as polar coordinates. While invoking from Eq. 4.41a, its

evaluation leads to

WðkÞ ¼ a 2ζ þ 2 α TðkÞ
� �2 � a2 2ζ þ 2 α TðkÞ

� �
TðkÞ þ a3 T

2
ðkÞ þ

2

3
π b hδ4ζ2 : (4.44)

Equating the expressions for strain energy density from Eqs. 4.41b and 4.44

provides the relationships between the PD parameters and engineering material

constants as

4aþ 2

3
π bh δ4 ¼ 2κ; (4.45a)

a2 ¼ 4 α a; (4.45b)

x

y

y

x
H

L
( /2)( + )L T

x( )k

y( )k

x( )j

y( )j+ T

Deformed

Undeformed

T

+ T x

+ T y
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Fig. 4.4 A two-dimensional plate subjected to isotropic expansion
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a3 ¼ 4 α2 a : (4.45c)

Similarly, the expression for θðkÞ from Eq. 4.3 can be recast as

θðkÞ ¼ dh

ðδ
0

ð2π
0

δ

ξ
1þ ζ þ αTð Þ ξ� ξð Þ � αT ξð Þ

� ξ
ξ
� ξ
ξ

� �
ξ dθdξþ 2αTðkÞ;

(4.46a)

whose explicit evaluation leads to

θðkÞ ¼ π d hδ3ζ þ 2α TðkÞ: (4.46b)

Equating the expressions for dilatation from Eqs. 4.41a and 4.46b permits the

determination of the peridynamic parameter d as

d ¼ 2

π hδ3
: (4.47)

As illustrated in Fig. 4.5, a loading case of simple shear can be achieved by

applying

γxyðkÞ ¼ ζ and εxxðkÞ ¼ εyyðkÞ ¼ TðkÞ ¼ 0; (4.48)

for which the dilatation, θðkÞ, and the strain energy density,WðkÞ, within the realm of

classical continuum mechanics become

θðkÞ ¼ 0 and WðkÞ ¼ 1

2
μ ζ2: (4.49a,b)

The relative position vector in the deformed state becomes

yðjÞ � yðkÞ
��� ��� ¼ 1þ sin θ cos θð Þζ½ � xðjÞ � xðkÞ

�� ��: (4.50)

Therefore, the strain energy density, WðkÞ, from Eq. 4.2 can be evaluated as

WðkÞ ¼ a ð0Þ þ bh

ðδ
0

ð2π
0

δ

ξ
1þ sin θ cos θð Þζ½ � ξ� ξð Þ2ξdθdξ; (4.51a)
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whose evaluation leads to

WðkÞ ¼ πhδ4ζ2

12
b: (4.51b)

Equating the strain energy density expressions of Eqs. 4.49a,b and 4.51b

obtained from classical continuum mechanics and the PD theory gives the relation-

ship between the peridynamic parameter b and shear modulus, μ, as

b ¼ 6μ

πhδ4
: (4.52)

Substituting from Eq. 4.52 into Eq. 4.45a results in the evaluation of the

peridynamic parameter a in terms of bulk modulus, κ, and shear modulus, μ, as

a ¼ 1

2
ðκ � 2μÞ: (4.53)

In summary, the PD parameters for a two-dimensional analysis can be expressed as

a ¼ 1

2
ðκ � 2μÞ; a2 ¼ 4 α a; (4.54a,b)
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Fig. 4.5 A two-dimensional plate subjected to simple shear
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a3 ¼ 4 α2 a; b ¼ 6μ

πhδ4
; d ¼ 2

π hδ3
: (4.54c--e)

In view of Eqs. 4.6 and 4.12, a constraint condition of κ ¼ 2μ or ν ¼ 1=3 emerges

for bond-based peridynamics with a bond constant ofc ¼ 24μ=πhδ3 orc ¼ 12κ=πhδ3.

4.1.3 One-Dimensional Structures

Under one-dimensional idealization, the nonvanishing stress and strain components

are σxxðkÞ and εxxðkÞ. They are related through the Young’s modulus as

σxxðkÞ ¼ EεxxðkÞ: (4.55)

As illustrated in Fig. 4.6, a bar can be subjected to a uniform stretch of s ¼ ζ and
thermal expansion of loading, α T. Thus, the strain component in the bar is

εxxðkÞ ¼ ζ þ α T; (4.56)

for which the dilatation, θðkÞ , and strain energy density, WðkÞ , within the realm of

classical continuum mechanics become

θðkÞ ¼ εxxðkÞ ¼ ζ þ αTðkÞ (4.57a)

and

WðkÞ ¼ 1

2
E ζ2: (4.57b)

As shown in Fig. 4.6, a one-dimensional structure is discretized with a single row

of material points. The domain of integral H in Eq. 2.22a becomes a line with a

constant cross-sectional area, A.
The relative position vector between the material points at xðjÞ and xðkÞ in the

deformed configuration becomes

yðjÞ � yðkÞ
��� ��� ¼ 1þ ζ þ αTðkÞ

� �
xðjÞ � xðkÞ
�� ��; (4.58)

in which TðkÞ ¼ T.
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The strain energy density, WðkÞ , at material point xðkÞ that interacts with other

material points within a line of length δ and area A from Eq. 4.2 can be evaluated as

WðkÞ ¼ a θ2ðkÞ � a2 θ TðkÞ þ a3 T
2
ðkÞ

þ 2bA

ðδ
0

δ

ξ
1þ ζ þ αTðkÞ
� �

ξ� ξ
� �� α TðkÞ ξ
� �2

dξ;
(4.59)

in which ðξÞ serves as the coordinate. While invoking from Eq. 4.57a, its evaluation

leads to

WðkÞ ¼ a ζ þ α TðkÞ
� �2 � a2 ζ þ α TðkÞ

� �
TðkÞ þ a3 T

2
ðkÞ þ b ζ2δ3A: (4.60)

Assuming a = 0 due to the Poisson’s ratio being zero, and equating the

expressions for strain energy density from Eqs. 4.57b and 4.60 provides the

relationships between the PD parameters and engineering material constants as

a2 ¼ a3 ¼ 0; and b ¼ E

2Aδ3
: (4.61)

Similarly, the expression for θðkÞ, from Eq. 4.3 can be recast as

θðkÞ ¼ 2dA

ðδ
0

δ

ξ
1þ ζ þ α TðkÞ
� �

ξ� ξ
� �� αTðkÞ ξ
� �

� ξ
ξ
� ξ
ξ

� �
dξþ αTðkÞ;

(4.62a)

whose explicit evaluations leads to

θðkÞ ¼ 2dδ2ζAþ αTðkÞ: (4.62b)
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Fig. 4.6 A one-dimensional bar subjected to isotropic expansion
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Equating the expressions for dilatation from Eqs. 4.57a and 4.62b permits the

determination of the peridynamic parameter d as

d ¼ 1

2δ2A
: (4.63)

In summary, the PD parameters for a one-dimensional structure can be expressed

as

a ¼ a2 ¼ a3 ¼ 0; b ¼ E

2Aδ3
; d ¼ 1

2δ2A
: (4.64a--c)

In view of Eq. 4.12, a bond constant for bond-based peridynamics becomes

c ¼ 2E=Aδ2.

4.2 Surface Effects

The peridynamic material parameters a, b, and d that appear in the peridynamic

force-stretch relations are determined by computing both dilatation and strain

energy density of a material point whose horizon is completely embedded in the

material. The values of these parameters, except for a, depend on the domain of

integration defined by the horizon. Therefore, the values of b and d require

correction if the material point is close to free surfaces or material interfaces

(Fig. 4.7). Since the presence of free surfaces is problem dependent, it is impractical

to resolve this issue analytically. The correction of the material parameters is

achieved by numerically integrating both dilatation and strain energy density at

each material point inside the body for simple loading conditions and comparing

them to their counterparts obtained from classical continuum mechanics.

For the first simple loading condition, the body is subjected to uniaxial stretch

loadings in the x-, y-, and z-directions of the global coordinate system, i.e., εxx 6¼ 0;
εαα ¼ γαβ ¼ 0 (shown in Fig. 4.8), εyy 6¼ 0; εαα ¼ γαβ ¼ 0, and εzz 6¼ 0; εαα ¼ γαβ
¼ 0, with α; β ¼ x; y; z.

The applied uniaxial stretch in the x-, y-, and z-directions is achieved through the
constant displacement gradient, @u�α=@α ¼ ζ , with α ¼ x; y; z . The displacement

field at material point x resulting from this loading can be expressed as

uT1 xð Þ ¼ @u�x
@x x 0 0

n o
; (4.65a)

uT2 xð Þ ¼ 0
@u�y
@y y 0

n o
; (4.65b)
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Fig. 4.8 Material point xwith (a) a truncated horizon and (b) far away from external surfaces of a

material domain subjected to uniaxial stretch loading
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and

uT3 xð Þ ¼ 0 0
@u�z
@z z

n o
; (4.65c)

in which the subscripts (1, 2, 3) denote the x-, y-, and z-directions of uniaxial stretch,
respectively. Due to this displacement field, the corresponding PD dilatation term,

θPDm ðxðkÞÞ with ðm ¼ 1; 2; 3Þ, at material point xðkÞ can be obtained from Eq. 4.3 as

θPDm ðxðkÞÞ ¼ d δ
XN
j¼1

sðkÞðjÞΛðkÞðjÞVðjÞ; (4.66)

in which N represents the number of material points inside the horizon of material

point xðkÞ . The corresponding dilatation based on classical continuum mechanics,

θCMm ðxðkÞÞ, is uniform throughout the domain and is determined as

θCMm ðxðkÞÞ ¼ ζ : (4.67)

The dilatation correction term can be defined as

DmðkÞ ¼
θCMm ðxðkÞÞ
θPDm ðxðkÞÞ

¼ ζ

d δ
PN
j¼1

sðkÞðjÞΛðkÞðjÞVðjÞ

: (4.68)

Maximum values of dilatation occur in the loading directions that coincide with

the global coordinates x; y; and z, respectively.
Similarly, the strain energy density at any material point can be computed due to

simple shear loading in the ðx0 � y0Þ, ðx0 � z0Þ, and ðy0 � z0Þ planes, i.e., γx0y0 6¼ 0;

εαα ¼ γαβ ¼ 0 (shown in Fig. 4.9), γx0z0 6¼ 0; εαα ¼ γαβ ¼ 0, and γy0z0 6¼ 0; εαα ¼ γαβ
¼ 0, with α; β ¼ x0; y0; z0 . This loading is achieved through constant displacement

gradient@u�α=@β ¼ ζ, withα 6¼ β andα; β ¼ x0; y0; z0. These planes are oriented by an
angle of � 45� in reference to the ðx� yÞ, ðx� zÞ, and ðy� zÞ planes of the global
coordinate system. The loading on these planes is considered because the maximum

strain energy occurs in the x-, y-, and z-directions:
The displacement field at material point x resulting from the applied simple

shear loading in the ðx0 � y0Þ, ðx0 � z0Þ, and ðy0 � z0Þ planes can be expressed in the

global coordinate system as

uT1 xð Þ ¼ 1
2

@u�
x0

@y0 x � 1
2

@u�
x0

@y0 y 0

n o
; (4.69a)
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uT2 xð Þ ¼ 0 1
2

@u�
y0

@z0 y � 1
2

@u�
y0

@z0 z

n o
; (4.69b)

uT3 xð Þ ¼ � 1
2

@u�
z0

@x0 x 0 1
2

@u�
z0

@x0 z
n o

; (4.69c)

in which the subscripts ð1; 2; 3Þ denote the applied simple shear loadings in the

ðx0 � y0Þ, ðy0 � z0Þ, and ðx0 � z0Þ planes, respectively.
Due to these applied displacement fields, the PD strain energy density at material

point xðkÞ can be obtained from Eq. 4.2 as

WPD
m ðxðkÞÞ ¼ a θPDm ðxðkÞÞ

� �2
þ b δ

XN
j¼1

1

xðjÞ � xðkÞ
�� �� yðjÞ � yðkÞ

��� ���� xðjÞ � xðkÞ
�� ��� �2

VðjÞ;
(4.70)

with ðm ¼ 1; 2; 3Þ.
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Fig. 4.9 Material point xwith (a) a truncated horizon and (b) far away from external surfaces of a

material domain subjected to simple shear loading
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Under simple shear loading, the dilatation and strain energy densities can be

computed by using classical continuum mechanics as

θCMm ðxðkÞÞ ¼ 0; WCM
m ðxðkÞÞ ¼ 1

2
μζ2; (4.71a,b)

with ðm ¼ 1; 2; 3Þ.
The dilatation term, θPDm ðxðkÞÞ, is expected to vanish for this loading condition

because it is already corrected with a dilatation correction term, Eq. 4.68. Thus, the

strain energy density term reduces to

WPD
m ðxðkÞÞ ¼ b δ

XN
j¼1

1

xðjÞ � xðkÞ
�� �� yðjÞ � yðkÞ

��� ���� xðjÞ � xðkÞ
�� ��� �2

VðjÞ: (4.72)

Hence, the correction term is only necessary for the term including parameter b
and can be defined as

SmðkÞ ¼
WCM

ðmÞ ðxðkÞÞ
WPD

ðmÞðxðkÞÞ
¼

1
2
μζ2

b δ
PN
j¼1

1

xðjÞ�xðkÞj j yðjÞ � yðkÞ
��� ���� xðjÞ � xðkÞ

�� ��� �2
VðjÞ

: (4.73)

With these expressions, a vector of correction factors for the integral terms in

dilatation and strain energy density at material point xðkÞ can be written as

gðdÞðxðkÞÞ ¼ gxðdÞðkÞ; gyðdÞðkÞ; gzðdÞðkÞ
	 
T ¼ D1ðkÞ; D2ðkÞ;D3ðkÞ

	 
T
; (4.74a)

gðbÞðxðkÞÞ ¼ gxðbÞðkÞ; gyðbÞðkÞ; gzðbÞðkÞ
	 
T ¼ S1ðkÞ; S2ðkÞ; S3ðkÞ

	 
T
: (4.74b)

These correction factors are only valid in the x-, y-, and z-directions. However,
they can be used as the principal values of an ellipsoid, as shown in Fig. 4.10, in

order to approximate the surface correction factor in any direction. Arising from a

general loading condition, the correction factor for interaction between material

points xðkÞ and xðjÞ, shown in Fig. 4.11a, can be obtained in the direction of their unit
relative position vector, n ¼ ðxðjÞ � xðkÞÞ=jxðjÞ � xðkÞj ¼ fnx; ny; nzgT .

A vector of correction factors for the integrals in the dilatation and strain energy

density expressions at material point xðjÞ can be similarly written as

gðdÞðjÞðxðjÞÞ ¼ gxðdÞðjÞ; gyðdÞðjÞ; gzðdÞðjÞ
	 
T ¼ D1ðjÞ; D2ðjÞ;D3ðjÞ

	 
T
; (4.75a)
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gðbÞðjÞðxðjÞÞ ¼ gxðbÞðjÞ; gyðbÞðjÞ; gzðbÞðjÞ
	 
T ¼ S1ðjÞ; S2ðjÞ; S3ðjÞ

	 
T
: (4.75b)

These correction factors are, in general, different at material points xðkÞ and xðjÞ.
Therefore, the correction factor for an interaction between material points xðkÞ and
xðjÞ can be obtained by their mean values as

�gðβÞðkÞðjÞ ¼ �gxðβÞðkÞðjÞ; �gyðβÞðkÞðjÞ; �gzðβÞðkÞðjÞ
n oT

¼ gðβÞðkÞ þ gðβÞðjÞ
2

;

with β ¼ d; b;

(4.76)

which can be used as the principal values of an ellipsoid, as shown in Fig. 4.11b.
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Fig. 4.11 (a) PD interaction between material points at xðkÞ and xðjÞ and (b) the ellipsoid for the
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The intersection of the ellipsoid and a relative position vector, n ¼ ðxðjÞ � xðkÞÞ
=jxðjÞ � xðkÞj, of material points xðkÞ and xðjÞ provides the correction factors as

GðβÞðkÞðjÞ ¼ nx �gxðβÞðkÞðjÞ
.h i2

þ ny �gyðβÞðkÞðjÞ
.h i2�

þ nz �gzðβÞðkÞðjÞ
.h i2��1=2

: (4.77)

After considering the surface effects, the discrete forms of the dilatation and the

strain energy density can be corrected as

θðkÞ ¼ dδ
XN
j¼1

GðdÞðkÞðjÞsðkÞðjÞΛðkÞðjÞVðjÞ; (4.78a)

WðkÞ ¼ a θ2ðkÞ � a2θðkÞTðkÞ þ a3T
2
ðkÞ

þ bδ
XN
j¼1

GðbÞðkÞðjÞ
1

xðjÞ � xðkÞ
�� �� yðjÞ � yðkÞ

��� ���� xðjÞ � xðkÞ
�� ��� �2

VðjÞ :

(4.78b)

Reference

Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid

mechanics. Comput Struct 83:1526–1535

74 4 Peridynamics for Isotropic Materials



Chapter 5

Peridynamics for Laminated Composite

Materials

5.1 Basics

Fiber-reinforced laminated composites are generally constructed by bonding

unidirectional laminae in a particular sequence. Each lamina has its own material

properties and thickness. As shown in Fig. 5.1, the fiber orientation angle, θ , is
defined with respect to a reference axis, x. Fiber direction is commonly aligned with

the x1 � axis, and transverse direction is aligned with the x2 � axis. A unidirec-

tional lamina is specially orthotropic. Thus, a thin lamina has four independent

material constants of elastic modulus in the fiber direction, E11, elastic modulus in

the transverse direction, E22; in-plane shear modulus, G12, and in-plane Poisson’s

ratio, ν12.
For a unidirectional lamina, the stiffness matrix, Q , relates the stresses

and strains at material point xðkÞ in reference to the material (natural) coordinates,

ðx1; x2Þ as

σ11
σ22
σ12

8<
:

9=
; ¼

Q11 Q12 0

Q12 Q22 0

0 0 Q66

2
4

3
5 ε11

ε22
γ12

8<
:

9=
;; (5.1a)

where

Q11 ¼ E11

1� ν12ν21
; Q12 ¼ ν12E22

1� ν12ν21
; Q22 ¼ E22

1� ν12ν21
; Q66 ¼ G12; (5.1b)

with ν12=E11 ¼ ν21=E22.

The stress, σij, and strain, εij, components are referenced to the principal material

(natural) coordinate system, ðx1; x2Þ. The inverse of the lamina stiffness matrix,Q, is

referred to as the lamina compliance matrix, S, whose coefficients are given as

E. Madenci and E. Oterkus, Peridynamic Theory and Its Applications,
DOI 10.1007/978-1-4614-8465-3_5, © Springer Science+Business Media New York 2014
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S11 ¼ 1

E11

; S12 ¼ � ν12
E11

¼ � ν21
E22

; S22 ¼ 1

E22

; S66 ¼ 1

G12

: (5.2)

Note that the coefficients of the stiffness and compliance matrices recover the

relationship for an isotropic layer by specifying

Q11 ¼ Q22 ¼ κ þ μ; Q12 ¼ ðκ � μÞ; Q66 ¼ μ (5.3a)

and

S11 ¼ S22 ¼ μþ κ

4κμ
; S12 ¼ μ� κ

4κμ
; S66 ¼ 1

μ
; (5.3b)

where κ and μ are bulk and shear modulus, respectively. The dilatation for a lamina

based on classical continuum mechanics is

θ ¼ ε11 þ ε22ð Þ: (5.4)

The strain energy density, W; based on classical continuum mechanics can be

expressed as

W ¼ 1

2
σ11ε11 þ 1

2
σ22ε22 þ 1

2
σ12γ12 (5.5a)

or

W ¼ 1

2
Q11ε

2
11 þ 2Q12ε22ε11 þ Q66γ

2
12 þ Q22ε

2
22

� �
: (5.5b)
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Under general loading conditions, the total deformation of a lamina cannot be

decomposed as dilatational and distortional parts. Depending on the fiber orienta-

tion angle, the lamina may exhibit coupling of stretch and in-plane shear

deformation.

5.2 Fiber-Reinforced Lamina

A lamina can be idealized as a two-dimensional structure, and is thus suitable for

discretization with a single layer of material points in the thickness direction. In the

case of an isotropic material, there is no directional dependence. However, the

directional dependency of the interactions between the material points in a fiber-

reinforced composite lamina must be included in the PD analysis.

As shown in Fig. 5.2, the material point q represents material points that interact

with material point k only along the fiber direction with an orientation angle of θ in
reference to the x-axis. Similarly, material point r represents material points that

interact with material point k only along the transverse direction. However, the

material point p represents material points that interact with material point k in any

direction, including the fiber and transverse directions. The orientation of a PD

interaction between the material point k and the material point p is defined by the

angle ϕ with respect to the x-axis. The domain of integral H in Eq. 2.22a is a disk

with radius δ and thickness h.
The force density-stretch relations given by Eq. 2.48 must reflect the directional

dependence of the PD material parameters for fiber-reinforced composite lamina.

They can be defined in the form

tðkÞðjÞ uðjÞ � uðkÞ; xðjÞ � xðkÞ; t
� � ¼ 1

2
AðkÞðjÞ

yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� (5.6a)

and

tðjÞðkÞ uðkÞ � uðjÞ; xðkÞ � xðjÞ; t
� � ¼ � 1

2
BðjÞðkÞ

yðkÞ � yðjÞ

yðkÞ � yðjÞ
��� ��� ; (5.6b)

where AðkÞðjÞ and BðjÞðkÞ are auxiliary parameters. As in the case of isotropic

materials, these parameters can be determined by using Eq. 4.1, thus requiring an

explicit form of the PD strain energy density at material point xðkÞ for a unidirec-

tional lamina.

In light of Eq. 4.2 and the directional dependency of a lamina, the PD strain

energy density can be expressed as
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WðkÞ ¼ a θ2ðkÞ þ bF
XJ
j¼1

δ

xðjÞ � xðkÞ
�� �� yðjÞ � yðkÞ

��� ���� xðjÞ � xðkÞ
�� ��� �2

VðjÞ

þ bFT
X1
j¼1

δ

xðjÞ � xðkÞ
�� �� yðjÞ � yðkÞ

��� ���� xðjÞ � xðkÞ
�� ��� �2

VðjÞ

þ bT
XJ
j¼1

δ

xðjÞ � xðkÞ
�� �� yðjÞ � yðkÞ

��� ���� xðjÞ � xðkÞ
�� ��� �2

VðjÞ;

(5.7)

in which the PD material parameter a is associated with the deformation involving

dilatation, θðkÞ. The other material parameters, bF; bT ; and bFT, are associated with

deformation of material points in the fiber direction, transverse direction, and

arbitrary directions, respectively. The total number of material points within the

family of material point xðkÞ in either fiber or transverse directions is denoted by J.

The PD dilatation, θðkÞ, for a unidirectional lamina can be expressed as

θðkÞ ¼ d
X1
j¼1

δ

xðjÞ � xðkÞ
�� �� yðjÞ � yðkÞ

��� ���� xðjÞ � xðkÞ
�� ��� �

ΛðkÞðjÞVðjÞ; (5.8)

in which d is a PD parameter.

After substituting for θðkÞ from Eq. 5.8 in the expression forWðkÞ given by Eq. 5.7
and performing differentiation, the force density vector tðkÞðjÞðuðjÞ � uðkÞ; xðjÞ � xðkÞ; tÞ
from Eq. 4.1 can be rewritten in terms of PD material parameters as

tðkÞðjÞ uðjÞ � uðkÞ; xðjÞ � xðkÞ; t
� � ¼ 1

2
AðkÞðjÞ

yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� ; (5.9a)

Hx

x

y

fiber direction, F
transverse direction, T
arbitrary direction, FT

qr

p
k

Fig. 5.2 PD horizon for a

fiber-reinforced lamina and

interaction of a family of

material points
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where

AðkÞðjÞ ¼ 4ad
δ

xðjÞ � xðkÞ
�� ��ΛðkÞðjÞθðkÞ þ 4δ μFbF þ bFT þ μTbTð ÞsðkÞðjÞ; (5.9b)

with

μF ¼ 1 ðxðjÞ � xðkÞÞ==fiber direction
0 otherwise

�
(5.9c)

and

μT ¼ 1 ðxðjÞ � xðkÞÞ?fiber direction

0 otherwise :

�
(5.9d)

Similarly, the force density vector tðjÞðkÞðuðkÞ � uðjÞ; xðkÞ � xðjÞ; tÞ can be

expressed as

tðjÞðkÞ uðkÞ � uðjÞ; xðkÞ � xðjÞ; t
� � ¼ � 1

2
BðjÞðkÞ

yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� ; (5.10a)

with

BðjÞðkÞ ¼ 4ad
δ

xðkÞ � xðjÞ
�� ��ΛðjÞðkÞθðjÞ þ 4δ μFbF þ bFT þ μTbTð ÞsðjÞðkÞ: (5.10b)

Although Eqs. 5.9b and 5.10b appear to be similar, they are different because the

dilatations θðkÞ and θðjÞ for the material points at xðkÞ and xðjÞ; respectively, are

different. This formulation can be extended to include the effect of thermal loading

as described in Chap. 4. Oterkus and Madenci (2012) presented such an extension

for the bond-based peridynamic formulation.

5.3 Laminated Composites

The laminae are perfectly bonded in the construction of a laminate; thus, there

exists no slip among the laminae. Aside from the loading conditions, the deforma-

tion of a laminate is dependent on the lamina properties, thickness, and stacking

sequence. There exists usually a resin-rich layer between the laminae; an inherent

source for cracking and delamination. Therefore, transverse normal and shear

deformations especially play a critical role in the initiation and growth of delami-

nation. Also, in the presence of a nonsymmetric stacking sequence, the laminates

exhibit coupling between in-plane and out-of-plane deformation, resulting in

curvature.
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As shown in Fig. 5.3, the reference coordinate system ðx; y; zÞ is located on the

midplane of the laminate. The laminate thickness, h, is given by

h ¼
XN
n¼1

hn; (5.11)

where N is the total number of lamina in the stacking sequence, and hn is the

thickness of the nth lamina. With respect to the midplane, the position of each

lamina, zn, is defined as

zn ¼ � h

2
þ
Xn�1

m¼1

hm þ 1

2
hn: (5.12)

The presence of the transverse normal and transverse shear deformations in a

laminate can be included in the derivation of the PD equation of motion under the

assumption that material points in a particular lamina interact with the other

material points of immediate neighboring laminae above and below it.

The total potential energy of a laminate with N layers can be expressed in the

form

U ¼
XN
n¼1

X1
i¼1

Wn
ðiÞ þ

XN�1

n¼1

X1
i¼1

Ŵn
ðiÞ þ

XN�1

n¼1

X1
i¼1

~Wn
ðiÞ �

XN
n¼1

X1
i¼1

bnðiÞ � unðiÞ; (5.13)

where Wn
ðiÞ, Ŵ

n
ðiÞ, and ~Wn

ðiÞ represent the contributions from the in-plane, transverse

normal, and shear deformations, respectively, and bnðiÞ is the body load vector.

Using Eq. 5.7, the strain energy density,Wn
ðkÞ, of material pointxnðkÞ located on the

nth layer , due to in-plane deformations, can be expressed as a summation of

micropotentials, wðkÞðjÞ , arising from the interaction of material point xnðkÞ and the

other material points xnðjÞ within its horizon in the form

zn

h

hn

1

N

z = 0

n x( )k
n x ( )j

n
n+1

n-1

x ( )k
n+1 x ( )j

n+1

x ( )k
n-1 x ( )j

n-1

ba

Fig. 5.3 Elevation of each lamina in laminate
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Wn
ðkÞ ¼

1

2

X1
j¼1

1

2

wðkÞð jÞ ynð1kÞ � ynðkÞ; y
n
ð2kÞ � ynðkÞ; � � �

� �
þ

wð jÞðkÞ ynð1jÞ � ynð jÞ; y
n
ð2jÞ � ynð jÞ; � � �

� �
2
64

3
75 Vn

ð jÞ; (5.14)

in which wðkÞðjÞ ¼ 0 for k ¼ j . Due to transverse normal deformation, the strain

energy density, Ŵn
ðkÞ, of material point xnðkÞ located on the n

th layer can be expressed

as a summation of micropotentials, ŵðkÞ , arising from the interaction of material

point xnðkÞ and the adjacent material points, x
ðnþ1Þ
ðkÞ and x

ðn�1Þ
ðkÞ , located on ðnþ 1Þth and

ðn� 1Þth layers in the form

Ŵn
ðkÞ ¼

1

2

X
m¼nþ1;n�1

1

2
ŵðkÞ ymðkÞ � ynðkÞ

� �
Vm
ðkÞ þ ŵðkÞ ynðkÞ � ymðkÞ

� �
Vm
ðkÞ

h i
: (5.15)

Similarly, the strain energy density associated with transverse shear deforma-

tion, ~Wn
ðkÞ, of material pointxnðkÞ can be expressed as a summation of micropotentials,

~wðkÞðjÞ , arising from the interaction of material point xnðkÞ and the other material

points (within its family),x
ðnþ1Þ
ðjÞ andx

ðn�1Þ
ðjÞ , and ~wðjÞðkÞ, arising from the interaction of

material point xnðjÞ and the other material points (within its family), x
ðnþ1Þ
ðkÞ and x

ðn�1Þ
ðkÞ ,

in the form

~Wn
ðkÞ ¼

1

2

X1
j¼1

1

2
~wðkÞðjÞ ynþ1

ðjÞ � ynðkÞ; y
nþ1
ðkÞ � ynðjÞ

� �
Vnþ1
ðjÞ

(

þ
X1
j¼1

1

2
~wðjÞðkÞ ynðkÞ � ynþ1

ðjÞ ; ynðjÞ � ynþ1
ðkÞ

� �
Vnþ1
ðjÞ

þ
X1
j¼1

1

2
~wðjÞðkÞ ynðkÞ � yn�1

ðjÞ ; ynðjÞ � yn�1
ðkÞ

� �
Vn�1
ðjÞ

þ
X1
j¼1

1

2
~wðkÞðjÞ yn�1

ðjÞ � ynðkÞ; y
n�1
ðkÞ � ynðjÞ

� �
Vn�1
ðjÞ

þ
X1
j¼1

1

2
~wðjÞðkÞ ynþ1

ðkÞ � ynðjÞ; y
nþ1
ðjÞ � ynðkÞ

� �
Vn
ðjÞ

þ
X1
j¼1

1

2
~wðkÞðjÞ ynðjÞ � ynþ1

ðkÞ ; y
n
ðkÞ � ynþ1

ðjÞ
� �

Vn
ðjÞ

þ
X1
j¼1

1

2
~wðkÞðjÞ ynðjÞ � yn�1

ðkÞ ; y
n
ðkÞ � yn�1

ðjÞ
� �

Vn
ðjÞ

þ
X1
j¼1

1

2
~wðjÞðkÞ yn�1

ðkÞ � ynðjÞ; y
n�1
ðjÞ � ynðkÞ

� �
Vn
ðjÞ

)
:

(5.16)
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Substituting for the strain energy densities,Wn
ðiÞ, Ŵ

n
ðiÞ, and ~Wn

ðiÞ, of material point

xnðiÞ from Eqs. 5.14, 5.15 and 5.16, the potential energy of the laminate withN layers

can be rewritten as

U ¼
XN
n¼1

1

2

X1
i¼1

X1
j¼1

1

2
wðiÞðjÞ ynð1iÞ � ynðiÞ; y

n
ð2iÞ � ynðiÞ; � � �

� �h(

þ wðjÞðiÞ ynð1jÞ � ynðjÞ; y
n
ð2jÞ � ynðjÞ; � � �

� �i
Vn
ðjÞV

n
ðiÞ

)

þ 1

2

XN�1

n¼1

X1
i¼1

X
m¼nþ1;n�1

1

2
ŵðiÞ ymðiÞ � ynðiÞ
� �

þ ŵðiÞ ynðiÞ � ymðiÞ
� �h i

Vm
ðiÞV

n
ðiÞ

þ 1

2

XN�1

n¼1

X1
i¼1

1

2

X1
j¼1

~wðiÞðjÞ ynþ1
ðjÞ � ynðiÞ;y

nþ1
ðiÞ � ynðjÞ

� �
Vnþ1
ðjÞ Vn

ðiÞ

"(

þ
X1
j¼1

~wðjÞðiÞ ynðiÞ � ynþ1
ðjÞ ;ynðjÞ � ynþ1

ðiÞ
� �

Vnþ1
ðjÞ Vn

ðiÞ

þ
X1
j¼1

~wðjÞðiÞ ynðiÞ � yn�1
ðjÞ ;ynðjÞ � yn�1

ðiÞ
� �

Vn�1
ðjÞ Vn

ðiÞ

þ
X1
j¼1

~wðiÞðjÞ yn�1
ðjÞ � ynðiÞ;y

n�1
ðiÞ � ynðjÞ

� �
Vn�1
ðjÞ Vn

ðiÞ

#)

þ 1

2

XN�1

n¼1

X1
i¼1

1

2

X1
j¼1

~wðjÞðiÞ ynþ1
ðiÞ � ynðjÞ;y

nþ1
ðjÞ � ynðiÞ

� �
Vnþ1
ðiÞ Vn

ðjÞ

"(

þ
X1
j¼1

~wðiÞðjÞ ynðjÞ � ynþ1
ðiÞ ;ynðiÞ � ynþ1

ðjÞ
� �

Vnþ1
ðiÞ Vn

ðjÞ

þ
X1
j¼1

~wðiÞðjÞ ynðjÞ � yn�1
ðiÞ ;ynðiÞ � yn�1

ðjÞ
� �

Vn�1
ðiÞ Vn

ðjÞ

þ
X1
j¼1

~wðjÞðiÞ yn�1
ðiÞ � ynðjÞ;y

n�1
ðjÞ � ynðiÞ

� �
Vn�1
ðiÞ Vn

ðjÞ

#)

�
XN
n¼1

X1
i¼1

bnðiÞ � unðiÞ
� �

Vn
ðiÞ

( )
;

(5.17a)
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or exchanging the order of dummy indices i and j in the fourth summation of layers

results in

U ¼
XN
n¼1

1

2

X1
i¼1

X1
j¼1

1

2
wðiÞðjÞ ynð1iÞ � ynðiÞ; y

n
ð2iÞ � ynðiÞ; � � �

� �h(

þ wðjÞðiÞ ynð1jÞ � ynðjÞ; y
n
ð2jÞ � ynðjÞ; � � �

� �i
Vn
ðjÞV

n
ðiÞ

)

þ 1

2

XN�1

n¼1

X1
i¼1

X
m¼nþ1;n�1

1

2
ŵðiÞ ymðiÞ � ynðiÞ
� �

þ ŵðiÞ ynðiÞ � ymðiÞ
� �h i

Vm
ðiÞV

n
ðiÞ

þ 1

2

XN�1

n¼1

X1
i¼1

X1
j¼1

X
m¼nþ1;n�1

~wðiÞðjÞ ymðjÞ � ynðiÞ; y
m
ðiÞ � ynðjÞ

� �
þ ~wðjÞðiÞ ynðiÞ � ymðjÞ; y

n
ðjÞ � yðiÞ

� �
2
64

3
75 Vm

ðjÞV
n
ðiÞ

�
XN
n¼1

X1
i¼1

bnðiÞ � unðiÞ
� �

Vn
ðiÞ :

(5.17b)

As necessary for the derivation of equations of motion, the Lagrangian, Eq. 2.11,

can be written in an expanded form by showing only the terms associated with the

material point xnðkÞ located on the nth layer as

L ¼ . . .þ 1

2
ρnðkÞ _u

n
ðkÞ � _unðkÞ Vn

ðkÞ þ . . .

. . .� 1

2

X1
j¼1

wðkÞðjÞ ynð1kÞ � ynðkÞ; y
n
ð2kÞ � ynðkÞ; � � �

� �
Vn
ðjÞ V

n
ðkÞ

n o
. . .

. . .� 1

2

X1
j¼1

wðjÞðkÞ ynð1jÞ � ynðjÞ; y
n
ð2jÞ � ynðjÞ; � � �

� �
Vn
ðjÞ V

n
ðkÞ

n o
. . .

. . .� 1

2
ŵðkÞ ynþ1

ðkÞ � ynðkÞ
� �

Vnþ1
ðkÞ Vn

ðkÞ . . .�
1

2
ŵðkÞ ynðkÞ � ynþ1

ðkÞ
� �

Vn
ðkÞV

nþ1
ðkÞ

. . .� 1

2
ŵðkÞ ynðkÞ � yn�1

ðkÞ
� �

Vn
ðkÞV

n�1
ðkÞ . . .� 1

2
ŵðkÞ yn�1

ðkÞ � ynðkÞ
� �

Vn�1
ðkÞ Vn

ðkÞ

. . .�
X1
j¼1

~wðkÞðjÞ ynþ1
ðjÞ � ynðkÞ; y

nþ1
ðkÞ � ynðjÞ

� �
Vnþ1
ðjÞ Vn

ðkÞ . . .

. . .�
X1
j¼1

~wðjÞðkÞ ynðkÞ � ynþ1
ðjÞ ; ynðjÞ � ynþ1

ðkÞ
� �

Vn
ðkÞV

nþ1
ðjÞ

. . .�
X1
j¼1

~wðjÞðkÞ ynðkÞ � yn�1
ðjÞ ; ynðjÞ � yn�1

ðkÞ
� �

Vn
ðkÞV

n�1
ðjÞ . . .

. . .�
X1
j¼1

~wðkÞðjÞ yn�1
ðjÞ � ynðkÞ; y

n�1
ðkÞ � ynðjÞ

� �
Vn�1
ðjÞ Vn

ðkÞ

. . .þ bnðkÞ � unðkÞVn
ðkÞ . . . :

(5.18)
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Substituting from Eq. 5.18 into Eq. 2.10 results in the Lagrange’s equation of the

material point xnðkÞ located on the nth layer as

ρnðkÞ€u
n
ðkÞ þ

X1
j¼1

1

2

X1
i¼1

@wðkÞðiÞ

@ ynðjÞ � ynðkÞ
� � Vn

ðiÞ

0
@

1
A @ ynðjÞ � ynðkÞ

� �
@unðkÞ

8<
:

þ
X1
j¼1

1

2

X1
i¼1

@wðiÞðkÞ

@ ynðkÞ � ynðjÞ
� �Vn

ðiÞ

0
@

1
A @ ynðkÞ � ynðjÞ

� �
@unðkÞ

þ
X

m¼nþ1;n�1

1

2

@ŵðkÞ

@ ymðkÞ � ynðkÞ
� � @ ymðkÞ � ynðkÞ

� �
@unðkÞ

Vm
ðkÞ

þ
X

m¼nþ1;n�1

1

2

@ŵðkÞ

@ ynðkÞ � ymðkÞ
� � @ ynðkÞ � ymðkÞ

� �
@unðkÞ

Vm
ðkÞ

þ 2
X

m¼nþ1;n�1

X1
j¼1

1

2

@ ~wðkÞðjÞ

@ ymðjÞ � ynðkÞ
� � @ ymðjÞ � ynðkÞ

� �
@unðkÞ

Vm
ðjÞ

þ 2
X

m¼nþ1;n�1

X1
j¼1

1

2

@ ~wðjÞðkÞ

@ ynðkÞ � ymðjÞ
� � @ ynðkÞ � ymðjÞ

� �
@unðkÞ

Vm
ðjÞ

�bnðkÞ
o
Vn
ðkÞ ¼ 0;

(5.19)

in which it is assumed that the interactions not involving material point xnðkÞ do not

have any effect on material point xnðkÞ. With the interpretation that the derivatives of

the micropotentials represent the force densities that material points exert upon

each other, this equation can be rewritten as

ρnðkÞ€u
n
ðkÞ ¼

X1
j¼1

tnðkÞðjÞ unðjÞ �unðkÞ;x
n
ðjÞ � xnðkÞ; t

� �h

�tnðjÞðkÞ unðkÞ �unðjÞ;x
n
ðkÞ � xnðjÞ; t

� �i
Vn
ðjÞ

þ
X

m¼nþ1;n�1

r
ðnÞðmÞ
ðkÞ umðkÞ �unðkÞ;x

m
ðkÞ � xnðkÞ; t

� �h

�r
ðmÞðnÞ
ðkÞ unðkÞ �umðkÞ;x

n
ðkÞ � xmðkÞ; t

� �i
Vm
ðkÞ

þ 2
X

m¼nþ1;n�1

X1
j¼1

s
ðnÞðmÞ
ðkÞðjÞ umðjÞ �unðkÞ;u

m
ðkÞ �unðjÞ;x

m
ðjÞ � xnðkÞ;x

m
ðkÞ � xnðjÞ; t

� �h

�s
ðmÞðnÞ
ðjÞðkÞ unðkÞ �umðjÞ;u

n
ðjÞ �umðkÞ;x

n
ðkÞ � xmðjÞ;x

n
ðjÞ � xmðkÞ; t

� �i
Vm
ðjÞ

þbnðkÞ :

(5.20)
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Arising from in-plane deformation, tnðkÞðjÞ represents the force density that material

point xnðjÞ exerts upon material point xnðkÞ. Similarly, tnðjÞðkÞ represents the force density
that material point xnðkÞ exerts upon material point xnðjÞ . The force density vectors,

r
ðnÞðmÞ
ðkÞ and r

ðmÞðnÞ
ðkÞ with m ¼ ðnþ 1Þ; ðn� 1Þ, develop due to the transverse normal

deformation between the material pointsxnðkÞ and x
m
ðkÞ. The force density vector r

ðnÞðmÞ
ðkÞ

represents the force exerted by material point xmðkÞ upon the material point xnðkÞ, and

r
ðmÞðnÞ
ðkÞ represents the opposite. The force density vectors s

ðnÞðmÞ
ðkÞðjÞ and s

ðmÞðnÞ
ðjÞðkÞ , with

m ¼ ðnþ 1Þ; ðn� 1Þ , are associated with transverse shear deformation between

the material points xmðjÞ and x
n
ðkÞ. The force density vector s

ðnÞðmÞ
ðkÞðjÞ represents the force

exerted by material point xmðjÞ on the material point xnðkÞ, and s
ðmÞðnÞ
ðjÞðkÞ represents the

other way around. These force density vectors are defined as

tnðkÞðjÞ unðjÞ � unðkÞ; x
n
ðjÞ � xnðkÞ; t

� �
¼ 1

2

1

Vn
ðjÞ

X1
i¼1

@wðkÞðiÞ

@ ynðjÞ � ynðkÞ
� �Vn

ðiÞ

0
@

1
A

tnðjÞðkÞ unðkÞ � unðjÞ; x
n
ðkÞ � xnðjÞ; t

� �
¼ 1

2

1

Vn
ðjÞ

X1
i¼1

@wðiÞðkÞ

@ ynðkÞ � ynðjÞ
� �Vn

ðiÞ

0
@

1
A

9>>>>>>>=
>>>>>>>;
; (5.21a)

r
ðnÞðmÞ
ðkÞ umðkÞ � unðkÞ; x

m
ðkÞ � xnðkÞ; t

� �
¼ 1

2

@ŵðkÞ

@ ymðkÞ � ynðkÞ
� �

r
ðmÞðnÞ
ðkÞ unðkÞ � umðkÞ; x

n
ðkÞ � xmðkÞ; t

� �
¼ 1

2

@ŵðkÞ

@ ynðkÞ � ymðkÞ
� �

9>>>>>=
>>>>>;
; (5.21b)

and

s
ðnÞðmÞ
ðkÞðjÞ umðjÞ � unðkÞ; u

m
ðkÞ � unðjÞ; x

m
ðjÞ � xnðkÞ; x

m
ðkÞ � xnðjÞ; t

� �
¼ 1

2

@ ~wðkÞðjÞ

@ ymðjÞ � ynðkÞ
� �

s
ðmÞðnÞ
ðjÞðkÞ unðkÞ � umðjÞ; u

n
ðjÞ � umðkÞ; x

n
ðkÞ � xmðjÞ; x

n
ðjÞ � xmðkÞ; t

� �
¼ 1

2

@ ~wðjÞðkÞ

@ ynðkÞ � ymðjÞ
� �

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

; (5.21c)

with m ¼ ðnþ 1Þ; ðn� 1Þ. As derived in Sect. 2.8, in order to satisfy the balance

of angular momentum, the equation of motion, Eq. 5.20 must satisfy the

requirements of
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ð
H

ynðjÞ � ynðkÞ
� �

� tnðkÞðjÞ unðjÞ � unðkÞ; x
n
ðjÞ � xnðkÞ; t

� �� �
dH ¼ 0; (5.22a)

ð
H

ymðkÞ � ynðkÞ
� �

� r
ðnÞðmÞ
ðkÞ umðkÞ � unðkÞ; x

m
ðkÞ � xnðkÞ; t

� �� �
dH ¼ 0; (5.22b)

ð
H

ymðjÞ � ynðkÞ
� �

� s
ðnÞðmÞ
ðkÞðjÞ umðjÞ � unðkÞ;u

m
ðkÞ � unðjÞ; x

m
ðjÞ

��

�xnðkÞ; x
m
ðkÞ � xnðjÞ; t

��
dH ¼ 0:

(5.22c)

It is apparent that these requirements are automatically satisfied if the force

vectors, tnðkÞðjÞ, r
ðnÞðmÞ
ðkÞ , and s

ðnÞðmÞ
ðkÞðjÞ , are aligned with the relative position vector of the

material points in the deformed state, ðynðjÞ � ynðkÞÞ, ðymðkÞ � ynðkÞÞ, and ðymðjÞ � ynðkÞÞ,
respectively. Therefore, they can be expressed in the form

tnðkÞðjÞ ¼
1

2
An
ðkÞðjÞ

ynðjÞ � ynðkÞ

ynðjÞ � ynðkÞ
��� ��� ; (5.23a)

tnðjÞðkÞ ¼ � 1

2
Bn
ðjÞðkÞ

ynðjÞ � ynðkÞ

ynðjÞ � ynðkÞ
��� ��� ; (5.23b)

and

r
ðnÞðmÞ
ðkÞ ¼ 1

2
C
ðnÞðmÞ
ðkÞ

ymðkÞ � ynðkÞ

ymðkÞ � ynðkÞ
��� ��� ¼

1

2
p
ðnÞðmÞ
ðkÞ ; (5.24a)

r
ðmÞðnÞ
ðkÞ ¼ � 1

2
C
ðnÞðmÞ
ðkÞ

ymðkÞ � ynðkÞ

ymðkÞ � ynðkÞ
��� ��� ¼ � 1

2
p
ðnÞðmÞ
ðkÞ ; (5.24b)

and

s
ðnÞðmÞ
ðkÞðjÞ ¼ 1

2
D

ðnÞðmÞ
ðkÞðjÞ

ymðjÞ � ynðkÞ

ymðjÞ � ynðkÞ
��� ��� ¼

1

2
q
ðnÞðmÞ
ðkÞðjÞ ; (5.25a)

s
ðmÞðnÞ
ðjÞðkÞ ¼ � 1

2
D

ðnÞðmÞ
ðkÞðjÞ

ymðjÞ � ynðkÞ

ymðjÞ � ynðkÞ
��� ��� ¼ � 1

2
q
ðnÞðmÞ
ðkÞðjÞ ; (5.25b)
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where An
ðkÞðjÞ , Bn

ðjÞðkÞ , C
ðnÞðmÞ
ðkÞ , and D

ðnÞðmÞ
ðkÞðjÞ are auxiliary parameters. With these

representations of the force density vectors, the equation of motion for material

point xnðkÞ located on the nth layer can be further simplified as

ρnðkÞ€u
n
ðkÞ ¼

X1
j¼1

tnðkÞðjÞ unðjÞ � unðkÞ; x
n
ðjÞ � xnðkÞ; t

� �h

�tnðjÞðkÞ unðkÞ � unðjÞ; x
n
ðkÞ � xnðjÞ; t

� �i
Vn
ðjÞ

þ
X

m¼nþ1;n�1

p
ðnÞðmÞ
ðkÞ Vm

ðkÞ þ 2
X

m¼nþ1;n�1

X1
j¼1

q
ðnÞðmÞ
ðkÞðjÞ V

m
ðjÞ þ bnðkÞ :

(5.26)

The auxiliary parameters, An
ðkÞðjÞ, B

n
ðjÞðkÞ C

ðnÞðmÞ
ðkÞ , andD

ðnÞðmÞ
ðkÞðjÞ , can be determined by

using the relationship between the force density vector and the strain energy

density, WðkÞ. The explicit expressions for the auxiliary parameters An
ðkÞðjÞ and Bn

ðjÞðkÞ
are already given by Eqs. 5.9b and 5.10b. The remaining auxiliary parameters,C

ðnÞðmÞ
ðkÞ

and D
ðnÞðmÞ
ðkÞðjÞ , can be determined by using the relationships

r
ðnÞðmÞ
ðkÞ ¼ 1

Vm
ðkÞ

@Ŵn
ðkÞ

@ ymðkÞ � ynðkÞ
��� ���� � ymðkÞ � ynðkÞ

ymðkÞ � ynðkÞ
��� ��� (5.27a)

and

s
ðnÞðmÞ
ðkÞðjÞ ¼ 1

Vm
ðjÞ

@ ~Wn
ðkÞ

@ ymðjÞ � ynðkÞ
��� ���� � ymðjÞ � ynðkÞ

ymðjÞ � ynðkÞ
��� ��� ; (5.27b)

in which Vm
ðkÞ and Vm

ðjÞ represent the volume of material points xmðkÞ and xmðjÞ
respectively, and the direction of the force density vector is aligned with the relative

position vector in the deformed configuration. However, determination of the

auxiliary parameters requires an explicit form of the strain energy density function.

For transverse normal and shear deformations of an isotropic and elastic material

(resin-rich layer), the explicit form of the strain energy density functions, Ŵn
ðkÞ and

~Wn
ðkÞ, can be written as

Ŵn
ðkÞ ¼ bN

X
m¼nþ1;n�1

δ̂

xmðkÞ � xnðkÞ
��� ��� ymðkÞ � ynðkÞ

��� ���� xmðkÞ � xnðkÞ
��� ���� �2

Vm
ðkÞ (5.28a)

and
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~Wn
ðkÞ ¼ bS

X
m¼nþ1;n�1

X1
j¼1

~δ

xmðjÞ � xnðkÞ
��� ��� ymðjÞ � ynðkÞ

��� ���� xmðjÞ � xnðkÞ
��� ���� �h

� ymðkÞ � ynðjÞ
��� ���� xmðkÞ � xnðjÞ

��� ���� �i2
Vm
ðjÞ;

(5.28b)

in which the PD material parameters bN and bS are associated with the transverse

normal and shear deformations of the matrix material, but are yet to be determined

in terms of Young’s modulus and shear modulus. The horizon size in the thickness

direction is δ̂, and~δ is defined as~δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ δ̂

2
q

. Note that jxmðjÞ � xnðkÞj and jxmðkÞ � xnðjÞj
are equivalent quantities. Substituting for strain energy density from Eqs. 5.28a, b

in Eqs. 5.27a, b and performing differentiation result in

p
ðnÞðmÞ
ðkÞ ¼ 4bN δ̂

ymðkÞ � ynðkÞ
��� ���� xmðkÞ � xnðkÞ

��� ���
xmðkÞ � xnðkÞ
��� ���

0
B@

1
CA ymðkÞ � ynðkÞ

ymðkÞ � ynðkÞ
��� ��� (5.29a)

and

q
ðnÞðmÞ
ðkÞðjÞ ¼ 4bS~δ

ymðjÞ � ynðkÞ
��� ���� xmðjÞ � xnðkÞ

��� ���
xmðjÞ � xnðkÞ
��� ���

0
B@

1
CA

2
64

�
ymðkÞ � ynðjÞ
��� ���� xmðkÞ � xnðjÞ

��� ���
xmðkÞ � xnðjÞ
��� ���

0
B@

1
CA
3
75 ymðjÞ � ynðkÞ

ymðjÞ � ynðkÞ
��� ��� :

(5.29b)

Comparisons of Eqs. 5.24a and 5.29a and 5.25a and 5.29b lead to the determi-

nation of C
ðnÞðmÞ
ðkÞ and D

ðnÞðmÞ
ðkÞðjÞ as

C
ðnÞðmÞ
ðkÞ ¼ 4bN δ̂

ymðkÞ � ynðkÞ
��� ���� xmðkÞ � xnðkÞ

��� ���
xmðkÞ � xnðkÞ
��� ���

0
B@

1
CA (5.30a)

D
ðnÞðmÞ
ðkÞðjÞ ¼ 4bS~δ

ymðjÞ � ynðkÞ
��� ���� xmðjÞ � xnðkÞ

��� ���
xmðjÞ � xnðkÞ
��� ���

0
B@

1
CA�

ymðkÞ � ynðjÞ
��� ���� xmðkÞ � xnðjÞ

��� ���
xmðkÞ � xnðjÞ
��� ���

0
B@

1
CA

2
64

3
75:

(5.30b)

88 5 Peridynamics for Laminated Composite Materials



5.4 Peridynamic Material Parameters

The peridynamic material parameters that appear in force density vector-stretch

relations for in-plane and transverse normal and shear deformations can be deter-

mined in terms of engineering material constants of classical laminate theory by

considering simple loading conditions.

5.4.1 Material Parameters for a Lamina

The PD material parameters, a, d, bF; bT , and bFT , that appear in the force density

vector-stretch relations for in-plane deformation of a lamina, Eqs. 5.9b and 5.10b,

are related to the engineering constants by considering four different simple loading

conditions as

1. Simple shear: γ12 ¼ ζ
2. Uniaxial stretch in fiber direction: ε11 ¼ ζ; ε22 ¼ 0

3. Uniaxial stretch in transverse direction: ε11 ¼ 0; ε22 ¼ ζ
4. Biaxial stretch: ε11 ¼ ζ; ε22 ¼ ζ

5.4.1.1 Simple Shear: γ12 ¼ ζ

Using Eq. 5.1a, the stresses in the lamina due to this loading are obtained as

σ11
σ22
σ12

8<
:

9=
; ¼

Q11 Q12 0

Q12 Q22 0

0 0 Q66

2
4

3
5 0

0

ζ

8<
:

9=
; or

σ11
σ22
σ12

8<
:

9=
; ¼

0

0

Q66ζ

8<
:

9=
;: (5.31)

Based on Eqs. 5.4 and 5.5b, the corresponding dilatation and strain energy

density from the classical continuum mechanics at material point xnðkÞ are

θðkÞ ¼ 0 (5.32a)

and

WðkÞ ¼ 1

2
Q66ζ

2: (5.32b)

As illustrated in Fig. 5.4, the length of the relative position of material points

yðjÞ and yðkÞ in the deformed state becomes

y0 � yj j ¼ 1þ sinϕ cosϕð Þζ½ � x0 � xj j (5.33a)
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or

ynðjÞ � ynðkÞ
��� ��� ¼ 1þ sinϕðjÞðkÞ cosϕðjÞðkÞ

� �
ζ

h i
xnðjÞ � xnðkÞ
��� ���: (5.33b)

Note that if the material points ynðjÞ and ynðkÞ are aligned with the fiber and

transverse directions, the angles become ϕðjÞðkÞ ¼ 0� and ϕðjÞðkÞ ¼ 90�, respectively.
For this deformation, the dilatation, Eq. 5.8, is evaluated as

θðkÞ ¼ d

ð
H

δ

ξ
1þ sinϕ cosϕð Þζ½ �ξ� ξf gdH; (5.34)

in which ξ ¼ xnðjÞ � xnðkÞ
��� ���.

As expected, this loading condition results in no dilatation. The strain energy

density, Eq. 5.7, is evaluated as

WðkÞ ¼ a ð0Þ þ bFð0Þ þ bFT

ð
H

δ

ξ
1þ sinϕ cosϕð Þζ½ � ξ� ξð Þ2dH þ bTð0Þ (5.35a)

or

WðkÞ ¼ bFTh

ðδ
0

ð2π
0

δ

ξ
1þ sinϕ cosϕð Þζ½ � ξ� ξð Þ2ξdξdϕ ¼ πhδ4ζ2

12
bFT : (5.35b)
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Fig. 5.4 Simple shear
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Equating the expressions for strain energy density from the classical and PD

formulations, Eqs. 5.32b and 5.35b, results in

bFT ¼ 6Q66

πhδ4
: (5.36)

5.4.1.2 Uniaxial Stretch in the Fiber Direction: ε11 ¼ ζ; ε22 ¼ 0

Using Eq. 5.1a, the stresses in the lamina due to this loading becomes

σ11
σ22
σ12

8<
:

9=
; ¼

Q11ζ
Q12ζ
0

8<
:

9=
;: (5.37)

Based on Eqs. 5.4 and 5.5b, the corresponding dilatation and strain energy

density from the classical continuum mechanics at material point xnðkÞ are

θðkÞ ¼ ζ (5.38a)

and

WðkÞ ¼ 1

2
Q11ζ

2: (5.38b)

As illustrated in Fig. 5.5, the length of the relative position of material points

ynðjÞ and ynðkÞ in the deformed state becomes

y0 � yj j ¼ 1þ cos2 ϕ
� �

ζ
	 


x0 � xj j (5.39a)

or

ynðjÞ � ynðkÞ
��� ��� ¼ 1þ cos2 ϕðjÞðkÞ

� �
ζ

h i
xnðjÞ � xnðkÞ
��� ���: (5.39b)

Due to this deformation, the dilatation is evaluated as

θðkÞ ¼ d

ð
H

δ

ξ
1þ cos2 ϕ

� �
ζ

	 

ξ� ξ

� �
dH (5.40a)

or

θðkÞ ¼ πdhδ3ζ

2
: (5.40b)
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Equating the expressions for dilatation from the classical and PD formulations,

Eqs. 5.38a and 5.40b, results in

d ¼ 2

πhδ3
: (5.41)

The strain energy density for this deformation is evaluated as

WðkÞ ¼ a ζ2 þ bF
XJ
j¼1

δ

xnðjÞ � xnðkÞ
��� ��� cos2 ϕðjÞðkÞ

� �
ζ xnðjÞ � xnðkÞ
��� ���� �2

Vn
ðjÞ

þ bFT

ð
H

δ

ξ
1þ cos2 ϕ

� �
ζ

	 

ξ� ξ

� �2
dH þ bTð0Þ

(5.42a)

or

WðkÞ ¼ a ζ2 þ bF δζ2
XJ
j¼1

xnðjÞ � xnðkÞ
��� ���� �

VðjÞ þ πhδ4ζ2

4
bFT : (5.42b)

After substituting for bFT from Eq. 5.36, it takes the final form

WðkÞ ¼ a ζ2 þ bF δζ2
XJ
j¼1

xnðjÞ � xnðkÞ
��� ���VðjÞ

 !
þ 3Q66ζ

2

2
: (5.43)
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Fig. 5.5 Uniaxial stretch in fiber direction
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Equating the expressions for strain energy density from the classical and PD

formulations, Eqs. 5.38b and 5.43, results in

aþ δ
XJ
j¼1

xnðjÞ � xnðkÞ
��� ���VðjÞ

 !
bF ¼ 1

2
Q11 � 3Q66ð Þ: (5.44)

5.4.1.3 Uniaxial Stretch in the Transverse Direction: ε11 ¼ 0; ε22 ¼ ζ

Using Eq. 5.1, the stresses in the lamina due to this loading become

σ11
σ22
σ12

8<
:

9=
; ¼

Q12ζ
Q22ζ
0

8<
:

9=
;: (5.45)

Based on Eqs. 5.4 and 5.5b, the corresponding dilatation and strain energy

density from classical continuum mechanics at material point xðkÞ are

θðkÞ ¼ ζ; (5.46a)

WðkÞ ¼ 1

2
Q22ζ

2: (5.46b)

As illustrated in Fig. 5.6, the length of the relative position of material points

yðjÞ and yðkÞ in the deformed state becomes

y0 � yj j ¼ 1þ sin2 ϕ
� �

ζ
	 


x0 � xj j (5.47a)

or

ynðjÞ � ynðkÞ
��� ��� ¼ 1þ sin2 ϕðjÞðkÞ

� �
ζ

h i
xnðjÞ � xnðkÞ
��� ���: (5.47b)

For this deformation, the dilatation is evaluated as

θðkÞ ¼ d

ð
H

δ

ξ
1þ sin2 ϕ

� �
ζ

	 

ξ� ξ

� �
dH (5.48a)

or

θðkÞ ¼ πdhδ3ζ

2
: (5.48b)
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Equating the expressions for dilatation from the classical and PD formulations,

Eqs. 5.46a and 5.48b, results in

d ¼ 2

πhδ3
: (5.49)

As expected, the PD parameter d obtained from the uniform stretch in the fiber

direction, Eq. 5.41, and that in the transverse direction, Eq, 5.49, are equal to each

other and are independent of material properties.

The strain energy density for this deformation is evaluated as

WðkÞ ¼ a ζ2 þ bFð0Þ þ bFT

ð
H

δ

ξ
1þ sin2 ϕ

� �
ζ

	 

ξ� ξ

� �2
dH

þ bT δζ2
XJ
j¼1

xnðjÞ � xnðkÞ
��� ���Vn

ðjÞ

 ! (5.50a)

or

WðkÞ ¼ a ζ2 þ bFT
πhδ4ζ2

4
þ bT δζ2

XJ
j¼1

xnðjÞ � xnðkÞ
��� ���Vn

ðjÞ

 !
: (5.50b)
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Fig. 5.6 Uniaxial stretch in transverse direction
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After substituting for bFT from Eq. 5.36, it takes the final form

WðkÞ ¼ a ζ2 þ 3Q66ζ
2

2
þ bT δζ2

XJ
j¼1

xnðjÞ � xnðkÞ
��� ���Vn

ðjÞ

 !
: (5.51)

Equating the expressions for strain energy density from the classical and PD

formulations, Eqs. 5.46b and 5.51, results in

1

2
Q22 � 3Q66ð Þ ¼ aþ δ

XJ
j¼1

xnðjÞ � xnðkÞ
��� ���VðjÞ

 !
bT : (5.52)

5.4.1.4 Biaxial Stretch: ε11 ¼ ζ; ε22 ¼ ζ

Using Eq. 5.1a, the stresses in the lamina due to this loading become

σ11
σ22
σ12

8<
:

9=
; ¼

Q11 Q12 0

Q12 Q22 0

0 0 Q66

2
4

3
5 ζ

ζ
0

8<
:

9=
; or

σ11
σ22
σ12

8<
:

9=
; ¼

Q11 þ Q12ð Þζ
Q12 þ Q22ð Þζ

0

8<
:

9=
;: (5.53)

Based on Eqs. 5.4 and 5.5b, the corresponding dilatation and strain energy

density from classical continuum mechanics at material point xðkÞ are

θðkÞ ¼ 2ζ (5.54a)

and

WðkÞ ¼ 1

2
Q11 þ 2Q12 þ Q22ð Þζ2: (5.54b)

As illustrated in Fig. 5.7, the length of the relative position of material points

yðjÞ and yðkÞ in the deformed state becomes

y0 � yj j ¼ 1þ cos2 ϕþ sin2ϕ
� �

ζ
	 


x0 � xj j (5.55a)

or

ynðjÞ � ynðkÞ
��� ��� ¼ 1þ cos2 ϕðjÞðkÞ þ sin2ϕðjÞðkÞ

� �
ζ

h i
xnðjÞ � xnðkÞ
��� ���: (5.55b)
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For this deformation, the dilatation is evaluated as

θðkÞ ¼ d

ð
H

δ

ξ
1þ ζ½ � ξ� ξð ÞdH (5.56a)

or

θðkÞ ¼ πdhδ3ζ: (5.56b)

Equating the dilatation contributions from the classical and PD formulations,

Eqs. 5.54a and 5.56b, also results in the same value of the PD parameter

d ¼ 2

πhδ3
: (5.57)

For this deformation given by Eq. 5.55b, the strain energy density is evaluated as

WðkÞ ¼ 4a ζ2 þ bF ζ
2δ

XJ
j¼1

xnðjÞ � xnðkÞ
��� ���� �

Vn
ðjÞ

 !

þ bFT
2πhδ4ζ2

3
þ bTζ

2δ
XJ
j¼1

xnðjÞ � xnðkÞ
��� ���� �

Vn
ðjÞ

 !
:

(5.58)

x

y

y

x
H

L
(L/2)
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y( )k

x( )j

y( )j

Deformed

Undeformed

y( )j

Fig. 5.7 Biaxial stretch
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After substituting for bFT from Eq. 5.36, it takes the final form

WðkÞ ¼ 4a ζ2 þ bF ζ
2δ

XJ
j¼1

xnðjÞ � xnðkÞ
��� ���� �

Vn
ðjÞ

 !

þ 4Q66ζ
2 þ bTζ

2δ
XJ
j¼1

xnðjÞ � xnðkÞ
��� ���� �

VðjÞ

 !
:

(5.59)

Equating the expressions for strain energy density from the classical and PD

formulations, Eqs. 5.54b and 5.59, results in

1

2
Q11 þ 2Q12 þ Q22 � 8Q66ð Þ ¼ 4aþ bF δ

XJ
j¼1

xnðjÞ � xnðkÞ
��� ���� �

Vn
ðjÞ

 !

þ bTδ
XJ
j¼1

xnðjÞ � xnðkÞ
��� ���� �

Vn
ðjÞ

 !
:

(5.60)

The remaining peridynamic parameters in the strain energy density expression

can now be evaluated by using the previous two relations obtained from the uniform

stretch in the fiber and transverse directions, Eqs. 5.44 and 5.52, in conjunction with

Eq. 5.60, as

a ¼ 1

2
Q12 � Q66ð Þ; (5.61a)

bF ¼ Q11 � Q12 � 2Q66ð Þ

2δ
PN
j¼1

xnðjÞ � xnðkÞ
��� ���Vn

ðjÞ

 ! ; (5.61b)

bT ¼ Q22 � Q12 � 2Q66ð Þ

2δ
PN
j¼1

xnðjÞ � xnðkÞ
��� ���Vn

ðjÞ

 ! ; (5.61c)

bFT ¼ 6Q66

πhδ4
: (5.61d)

For bond-based peridynamics, the parameter a associated with dilatation and the

parameterbT associated with the transverse direction should both vanish, thus leading
to constraint equations, previously derived by Oterkus and Madenci (2012), as

Q12 ¼ Q66 and Q22 ¼ 3Q12: (5.62)
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The nonvanishing peridynamic parameters, bF and bFT in the fiber and remaining

directions, respectively, also recover the expressions derived by Oterkus and

Madenci (2012) as

bF ¼ Q11 � Q22ð Þ

2δ
PN
j¼1

xnðjÞ � xnðkÞ
��� ���VðjÞ

 ! and bFT ¼ 6Q66

πhδ4
: (5.63)

For isotropic materials with Q11 ¼ Q22 ¼ κ þ μ, Q12 ¼ ðκ � μÞ, and Q66 ¼ μ,
these peridynamic parameters recover Eqs. 4.52 and 4.53 as

a ¼ 1

2
κ � 2μð Þ; bF ¼ 0; bT ¼ 0 and bFT ¼ b ¼ 6μ

πhδ4
; (5.64)

and the parameter d is also equal to that of isotropic material given by Eq. 4.47.

5.4.2 Material Parameters for Transverse Deformation

The peridynamic material parameters bN and bS in the force density vector-stretch

relations, Eqs. 5.29a, b associated with transverse deformation in a laminate are

determined by considering two simple loading conditions as

1. Transverse normal stretch: ε33 ¼ ζ
2. Simple transverse shear: γ13 ¼ ζ

5.4.2.1 Transverse Normal Stretch: ε33 ¼ ζ

In order to obtain the peridynamic material parameterbN, the laminate is subjected to

a uniform transverse normal strain of ζ , as shown in Fig. 5.8. The corresponding

strain energy density from the classical continuummechanics at material pointxðkÞ is

ŴðkÞ ¼
1

2
Em ζ2; (5.65)

with Em representing the Young’s modulus of matrix material.

Undeformed

Deformed

Ply # n

Ply # m

(1+ζ)

Undeformed configuration Deformed configuration

2
(hm+hn) (hm+hn)

2
xn

(k)
yn

(k)

xm
(k) ym

(k)

Fig. 5.8 A composite laminate subjected to transverse normal stretch
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The relative distance between the material points at xmðkÞ and x
n
ðkÞ, before and after

deformation, can be expressed as

xmðkÞ � xnðkÞ
��� ��� ¼ 1

2
hm þ hnð Þ (5.66a)

and

ymðkÞ � ynðkÞ
��� ��� ¼ 1þ ζð Þ xmðkÞ � xnðkÞ

��� ���: (5.66b)

Defining ξ ¼ xmðkÞ � xnðkÞ and noting that its length is equal to half of the sum of

the two neighboring ply thicknesses, i.e., ξ ¼ jξj ¼ ðhm þ hnÞ=2, with m ¼ ðnþ 1Þ;
ðn� 1Þ , and substituting for the relative position vector, from Eq. 5.66a, in the

expression for the strain energy density,ŴðkÞ, Eq. 5.28a, at material pointxnðkÞ result in

Ŵn
ðkÞ ¼

1

2
ζ2bN δ̂ hnþ1 þ hnð ÞVnþ1

ðkÞ þ hn�1 þ hnð ÞVn�1
ðkÞ

h i
: (5.67)

Equating the expressions for strain energy density from Eqs. 5.65 and 5.67

provides the relationship between the PD parameters, bN, and the Young’s modulus

of the matrix material as

bN ¼ Em

δ̂ hnþ1 þ hnð ÞVnþ1
ðkÞ þ hn�1 þ hnð ÞVn�1

ðkÞ
h i : (5.68)

5.4.2.2 Simple Transverse Shear: γ13 ¼ ζ

Similarly, the peridynamic material parameter bS is evaluated by subjecting

the laminate to a simple transverse shear loading of ζ , as shown in Fig. 5.9.

The corresponding strain energy density from classical continuum mechanics at

material point xðkÞ is

~WðkÞ ¼ 1

2
Gmζ

2; (5.69)

with Gm representing the shear modulus of matrix material.

As shown in Fig. 5.10, the relative distance between the material points at xmðjÞ
and xnðkÞ, before and after deformation, can be expressed as

xmðjÞ � xnðkÞ
��� ��� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þ hm þ hnð Þ2

4

s
(5.70a)
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ymðjÞ � ynðkÞ
��� ��� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�‘
2 þ hm þ hnð Þ2

4

s
; (5.70b)

in which �‘ can be obtained from the law of cosines as

�‘
2 ¼ ‘2 þ ζ2

hm þ hnð Þ2
4

� ‘ζ hm þ hnð Þ cos π � ϕð Þ: (5.71)

Thus, the distance between xmðjÞ and x
n
ðkÞ in the deformed state can be rewritten as

ymðjÞ � ynðkÞ
��� ��� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þ hm þ hnð Þ2

4

 !
þ ‘ζ hm þ hnð Þ cos ϕð Þ

vuut : (5.72)

Undeformed
Deformed

Fig. 5.9 A composite laminate subjected to simple transverse shear
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Fig. 5.10 Position of material points before and after deformation due to simple transverse shear
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In deriving this expression, the ζ 2ðhm þ hnÞ2=4 term is disregarded with respect

to ðhm þ hnÞ2=4 because ζ is much less than unity. Also, this expression can

be further simplified by using the square root approximation because ‘ζð hm þ hnÞ
cosðϕÞ � ð‘2 þ ðhm þ hnÞ2=4Þ, leading to

ymðjÞ � ynðkÞ
��� ��� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þ hm þ hnð Þ2

4

s
þ ‘ζ hm þ hnð Þ cos ϕð Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þ hmþhnð Þ2

4

q : (5.73)

Thus, the extension between these material points is obtained as

ymðjÞ � ynðkÞ
��� ���� xmðjÞ � xnðkÞ

��� ��� ¼ ‘ζ hm þ hnð Þ cos ϕð Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þ hmþhnð Þ2

4

q : (5.74)

Similarly, the distance between the material points xmðkÞ and xnðjÞ before and after

deformation can be obtained as

xmðkÞ � xnðjÞ
��� ��� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þ hm þ hnð Þ2

4

s
(5.75a)

and

ymðkÞ � ynðjÞ
��� ��� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þ hm þ hnð Þ2

4

s
� ‘ζ hm þ hnð Þ cos ϕð Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þ hmþhnð Þ2

4

q ; (5.75b)

in which the minus sign emerges due to the contraction between material points xmðkÞ
and xnðjÞ in the deformed state, whereas extension occurs between material points xmðjÞ
and xnðkÞ. Thus, the contraction between these material points is obtained as

ymðkÞ � ynðjÞ
��� ���� xmðkÞ � xnðjÞ

��� ��� ¼ � ‘ζ hm þ hnð Þ cos ϕð Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þ hmþhnð Þ2

4

q : (5.76)

Prior to substituting for the stretch between the material pointsxmðjÞ andx
n
ðkÞ andx

m
ðkÞ

and xnðjÞ, the strain energy expression can be rewritten in a slightly different form as

~Wn
ðkÞ ¼ bS

X
m¼nþ1;n�1

hmþhn
2

 �2

�
X1
j¼1

~δ

xmðjÞ �xnðkÞ
��� ���

ymðjÞ �ynðkÞ
��� ���� xmðjÞ �xnðkÞ

��� ���
hmþhn

2

� � �
ymðkÞ �ynðjÞ
��� ���� xmðkÞ �xnðjÞ

��� ���
hmþhn

2

� �
2
4

3
5
2

Vm
ðjÞ;

(5.77)
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in which the ratios in the summation can be interpreted as the change in angle from

π=2 provided that jxmðjÞ � xnðkÞj � h and jxmðkÞ � xnðjÞj � h, as depicted in Fig. 5.11.

With this interpretation, this expression can be rewritten as

~Wn
ðkÞ ¼ bS

X
m¼nþ1;n�1

hm þ hn
2

 �2X1
j¼1

~δ

xmðjÞ � xnðkÞ
��� ��� αðmÞðnÞðkÞðjÞ þ βðmÞðnÞðjÞðkÞ

h i2
Vm
ðjÞ; (5.78)

with

αðmÞðnÞðkÞðjÞ ¼
ymðjÞ � ynðkÞ
��� ���� xmðjÞ � xnðkÞ

��� ���
hmþhn

2

� � (5.79a)

βðmÞðnÞðjÞðkÞ ¼ �
ymðkÞ � ynðjÞ
��� ���� xmðkÞ � xnðjÞ

��� ���
hmþhn

2

� � : (5.79b)

The average change in angle, φðmÞðnÞ
ðjÞðkÞ , corresponding to the shear strain in

classical continuum mechanics becomes

φðmÞðnÞ
ðkÞðjÞ ¼

αðmÞðnÞðkÞðjÞ þ βðmÞðnÞðjÞðkÞ
2

¼
ymðjÞ � ynðkÞ
��� ���� xmðjÞ � xnðkÞ

��� ���� �
� ymðkÞ � ynðjÞ

��� ���� xmðkÞ � xnðjÞ
��� ���� �

hm þ hnð Þ :

(5.80)

Substituting for the stretch between the material points, xmðjÞ and x
n
ðkÞ and x

m
ðkÞ and

xnðjÞ, the average change in angle,φ
ðmÞðnÞ
ðkÞðjÞ , for the applied simple shear loading can be

determined as
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(k)
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Fig. 5.11 Change in angle

after deformation
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φðmÞðnÞ
ðkÞðjÞ ¼ ‘ζ cos ϕð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘2 þ hmþhnð Þ2
4

q : (5.81)

Therefore, the strain energy density function can be rewritten in terms of the

average change in angle as

~Wn
ðkÞ ¼ 4bS

X
m¼nþ1;n�1

hm þ hn
2

 �2X1
j¼1

~δ

xmðjÞ � xnðkÞ
��� ��� φðmÞðnÞ

ðkÞðjÞ
h i2

Vm
ðjÞ (5.82a)

or

~Wn
ðkÞ ¼ 4bS

hnþ1 þ hn
2

 �2X1
j¼1

~δ

xnþ1
ðjÞ � xnðkÞ

��� ��� φðnþ1ÞðnÞ
ðkÞðjÞ

h i2
Vnþ1
ðjÞ

0
B@

þ hn�1 þ hn
2

 �2X1
j¼1

~δ

xn�1
ðjÞ � xnðkÞ

��� ��� φðn�1ÞðnÞ
ðkÞðjÞ

h i2
Vn�1
ðjÞ

1
CA

(5.82b)

or

~Wn
ðkÞ ¼ 4ζ2bS~δ

hnþ1 þ hn
2

 �2X1
j¼1

‘2 cos2 ϕð Þ
‘2 þ hnþ1þhn

2

� �2h i3=2 Vnþ1
ðjÞ

0
B@

þ hn�1 þ hn
2

 �2X1
j¼1

‘2 cos2 ϕð Þ
‘2 þ hn�1þhn

2

� �2h i3=2 Vn�1
ðjÞ

1
CA :

(5.82c)

Converting summation to integration leads to

~Wn
ðkÞ ¼ 4ζ2bS~δ

hnþ1 þ hn
2

 �3 ðδ
0

ð2π
0

‘2 cos2 ϕð Þ
‘2 þ hnþ1þhn

2

� �2h i3=2 ‘d‘dϕ
0
B@

þ hn�1 þ hn
2

 �3 ðδ
0

ð2π
0

‘2 cos2 ϕð Þ
‘2 þ hn�1þhn

2

� �2h i3=2 ‘d‘dϕ
1
CA :

(5.83)
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Performing the integration results in

~Wn
ðkÞ ¼ 4ζ2bSπ~δ

hnþ1 þ hn
2

 �3 δ2 þ 2 hnþ1þhn
2

� �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ hnþ1þhn

2

� �2q � hnþ1 þ hnð Þ

0
B@

1
CA

0
B@

þ hn�1 þ hn
2

 �3 δ2 þ 2 hn�1þhn
2

� �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ hn�1þhn

2

� �2q � hn�1 þ hnð Þ

0
B@

1
CA
1
CA :

(5.84)

Equating the expressions for strain energy density from Eqs. 5.69 and 5.84

provides the relationship between the PD parameter bS and the shear modulus of

the matrix material as

bS ¼ Gm

8π~δ

hnþ1 þ hn
2

 �3 δ2 þ 2 hnþ1þhn
2

� �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ hnþ1þhn

2

� �2q � hnþ1 þ hnð Þ

0
B@

1
CA

þ hn�1 þ hn
2

 �3 δ2 þ 2 hn�1þhn
2

� �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ hn�1þhn

2

� �2q � hn�1 þ hnð Þ

0
B@

1
CA

0
BBBBBBBB@

1
CCCCCCCCA

: (5.85)

5.5 Surface Effects

The peridynamic material parameters a, d, bF, bT, bFT, bN, and bS that appear in the

peridynamic force-stretch relations are determined by computing both dilatation

and strain energy density of a material point whose horizon is completely embedded

in the material. The values of these parameters, except fora, depend on the accuracy
of integration and domain of integration defined by the horizon. Therefore, the

values of these parameters will be different for a material point located near a

boundary, Fig. 5.12. Thus, these parameters need to be corrected near the free

surfaces.

Since the presence of free surfaces is problem dependent, it is impractical to

resolve this issue analytically. The correction of the material parameters is achieved

by numerically integrating both dilatation and strain energy density at each material

point inside the body for simple loading conditions and comparing them to their

counterparts obtained from classical continuum mechanics. After determining the

correction factor for each parameter, the force density vector is modified in the PD

equations of motion.
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In order to determine the surface correction factors for the peridynamic

parameters d and b‘ ð‘ ¼ F; T;FTÞ, two simple loading conditions are achieved

by applying uniaxial stretch first in the fiber direction, and then in the transverse

direction, i.e.,ε11 6¼ 0; ε22 ¼ γ12 ¼ 0 (shown in Fig. 5.13) andε22 6¼ 0; ε11 ¼ γ12 ¼ 0.

The fiber and transverse directions coincide with the axes of the natural (material)

coordinate system, ð1; 2Þ.
The applied uniaxial stretch in the fiber and transverse directions is achieved

through a constant displacement gradient, @u	α @xα= ¼ ζ with ðα ¼ 1; 2Þ . The
displacement field at material point x arising from these two loading conditions

can be expressed as

uT1 xð Þ ¼ @u	
1

@x1
x1 0

n o
and uT2 xð Þ ¼ 0

@u	
2

@x2
x2

n o
: (5.86a,b)

Due to these displacement fields, the peridynamic dilatation term, θPDα ðxnðiÞÞ, at
material point xnðiÞ can be obtained from Eq. 5.8 as

θPDα ðxnðiÞÞ ¼ d
XN
j¼1

δ

xnðjÞ � xnðiÞ
��� ��� ynðjÞ � ynðiÞ

��� ���� xnðjÞ � xnðiÞ
��� ���� �

Λn
ðiÞðjÞV

n
ðjÞ; (5.87)

in which N represents the number of material points inside the horizon of material

point xnðiÞ . The corresponding dilatation based on classical continuum mechanics,

θCMα ðxnðiÞÞ, is uniform throughout the domain, and is determined as

θCMα ðxnðiÞÞ ¼ εαα ¼ ζ; with ðα ¼ 1; 2Þ; (5.88)

Surface

Point 1

Point 2

Fig. 5.12 Surface effects in

the domain of interest
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The dilatation correction term can be defined as

DαðiÞ ¼
θCMα ðxnðiÞÞ
θPDα ðxnðiÞÞ

¼ ζ

d δ
PN
j¼1

snðiÞðjÞΛ
n
ðiÞðjÞV

n
ðjÞ

: (5.89)

Maximum values of dilatation occur in the loading directions that coincide with

the natural coordinates 1 and 2, respectively.

1
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Undeformed configuration
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x ( )j
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Deformed configuration

Undeformed configuration

x(i)
n

x ( )j
n

a

b

Fig. 5.13 Material point x in lamina subjected to uniaxial stretch: (a) a truncated horizon, and (b)

far away from external surfaces
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The peridynamic strain energy density at material point xnðiÞ can be obtained from
Eq. 5.7 as

WPD
α ðxnðiÞÞ ¼ WPD

αθ ðxnðiÞÞ þWPD
αF ðxnðiÞÞ þWPD

αFTðxnðiÞÞ þWPD
αT ðxnðiÞÞ; (5.90)

where ðα ¼ 1; 2Þ, WPD
αθ is associated with the dilatation term, and WPD

αF , W
PD
αT , and

WPD
αFT represent contributions from the deformation in the fiber direction, transverse

direction, and arbitrary directions, respectively. Based on Eq. 5.7, each of these

terms is expressed as

WPD
αθ ðxnðiÞÞ ¼ a θPDα ðxnðiÞÞ

� �2
; (5.91a)

WPD
αF ðxnðiÞÞ ¼ bF δ

XM
j¼1

1

xnðjÞ � xnðiÞ
��� ��� ynðjÞ � ynðiÞ

��� ���� xnðjÞ � xnðiÞ
��� ���� �2

Vn
ðjÞ; (5.91b)

WPD
αT ðxnðiÞÞ ¼ bT δ

XN
j¼1

1

xnðjÞ � xnðiÞ
��� ��� ynðjÞ � ynðiÞ

��� ���� xnðjÞ � xnðiÞ
��� ���� �2

Vn
ðjÞ; (5.91c)

WPD
αFTðxnðiÞÞ ¼ bFT δ

XP
j¼1

1

xnðjÞ � xnðiÞ
��� ��� ynðjÞ � ynðiÞ

��� ���� xnðjÞ � xnðiÞ
��� ���� �2

Vn
ðjÞ: (5.91d)

Based on classical continuum mechanics, the strain energy density

corresponding to uniaxial stretch in the fiber, WCM
1 ðxnðiÞÞ, and transverse directions,

WCM
2 ðxnðiÞÞ, is uniform, and can be determined from

WCM
α ðxnðiÞÞ ¼

1

2
Qααζ

2 ðα ¼ 1; 2Þ; (5.92)

which can be decomposed as

WCM
α ðxnðiÞÞ ¼ WCM

αθ ðxnðiÞÞ þWCM
αF ðxnðiÞÞ þWCM

αT ðxnðiÞÞ þWCM
αFTðxnðiÞÞ; (5.93)

where WCM
αθ is associated with the dilatation terms, and WCM

αF , WCM
αT , and WCM

αFT

represent strain energy densities arising from the deformation in the fiber direc-

tion, transverse direction, and arbitrary directions, respectively. From Eq. 5.42b in

conjunction with Eqs. 5.61a, b, d for uniaxial stretch in the fiber direction, i.e.,

ðα ¼ 1Þ, each strain energy density component can be expressed as

WCM
1θ ðxnðiÞÞ ¼

1

2
Q12 � Q66ð Þζ2; (5.94a)
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WCM
1F ðxnðiÞÞ ¼

1

2
Q11 � Q12 � 2Q66ð Þζ2; (5.94b)

WCM
1T ðxnðiÞÞ ¼ 0; (5.94c)

WCM
1FTðxnðiÞÞ ¼

3

2
Q66ζ

2: (5.94d)

From Eq. 5.51 in conjunction with Eqs. 5.61a, c, for uniaxial stretch in the

transverse direction, i.e., ðα ¼ 2Þ, each strain energy component can be expressed as

WCM
2θ ðxnðiÞÞ ¼

1

2
Q12 � Q66ð Þζ2; (5.95a)

WCM
2F ðxnðiÞÞ ¼ 0; (5.95b)

WCM
2T ðxnðiÞÞ ¼

1

2
Q22 � Q12 � 2Q66ð Þζ2; (5.95c)

WCM
2FTðxnðiÞÞ ¼

3

2
Q66ζ

2: (5.95d)

Because the dilatation term, θPDα ðxnðiÞÞ, is corrected with a dilatation correction

term in the peridynamic computation, it is expected that Eq. 5.91a is automatically

corrected for this loading condition. Hence, the correction is only necessary for the

terms including parameter b‘, with ‘ ¼ F;FT; T. For the uniaxial stretch in the fiber
direction, the correction terms for these parameters can be defined as

S1FðiÞ ¼
WCM

1F ðxnðiÞÞ
WPD

1F ðxnðiÞÞ

¼
1
2
Q11 � Q12 � 2Q66ð Þζ2

bF δ
PM
j¼1

1

xnðjÞ�xnðiÞ

��� ��� ynðjÞ � ynðiÞ
��� ���� xnðjÞ � xnðiÞ

��� ���� �2
Vn
ðjÞ

;
(5.96a)

S1TðiÞ ¼ 1; (5.96b)

S1FTðiÞ ¼
WCM

1FTðxnðiÞÞ
WPD

1FTðxnðiÞÞ

¼
3
2
Q66ζ

2

bFT δ
PP
j¼1

1

xnðjÞ�xnðiÞ

��� ��� ynðjÞ � ynðiÞ
��� ���� xnðjÞ � xnðiÞ

��� ���� �2
Vn
ðjÞ

:
(5.96c)
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For the uniaxial stretch in the transverse direction, the correction terms for these

parameters can be defined as

S2FðiÞ ¼ 1; (5.97a)

S2TðiÞ ¼
WCM

2T ðxnðiÞÞ
WPD

2T ðxnðiÞÞ

¼
1
2
Q22 � Q12 � 2Q66ð Þζ2

bT δ
PN
j¼1

1

xnðjÞ�xnðiÞ

��� ��� ynðjÞ � ynðiÞ
��� ���� xnðjÞ � xnðiÞ

��� ���� �2
Vn
ðjÞ

;
(5.97b)

S2FTðiÞ ¼
WCM

2FTðxnðiÞÞ
WPD

2FTðxnðiÞÞ

¼
3
2
Q66ζ

2

bFT δ
PP
j¼1

1

xnðjÞ�xnðiÞ

��� ��� ynðjÞ � ynðiÞ
��� ���� xnðjÞ � xnðiÞ

��� ���� �2
Vn
ðjÞ

:
(5.97c)

With these correction factors, a vector of correction factors for the integral and

summation terms that appear in dilatation and the strain energy density at material

point xnðiÞ can be written as

gðdÞðiÞðxnðiÞÞ ¼ g1ðdÞðxnðiÞÞ; g2ðdÞðxnðiÞÞ
n oT

¼ D1ðiÞ; D2ðiÞ
� �T

; (5.98a)

gðbÞ‘ðiÞðxnðiÞÞ ¼ g1ðbÞ‘ðxnðiÞÞ; g2ðbÞ‘ðxnðiÞÞ
n oT

¼ S1‘ðiÞ; S2‘ðiÞ
� �T

; (5.98b)

with ‘ ¼ F;FT; T.
These correction factors are only based on loading in the fiber and transverse

directions. However, they can be used as the principal values of an ellipse as shown

in Fig. 5.14 in order to approximate the surface correction factor in any direction.

Arising from a general loading condition, the correction factor for interaction

between material points xnðiÞ and xnðjÞ , shown in Fig. 5.15a, can be obtained in the

direction of their unit relative position vector, n ¼ ðxnðjÞ � xnðiÞÞ=jxnðjÞ � xnðiÞj ¼
fn1; n2gT .

A vector of correction factors for the integrals in the dilatation and strain energy

density expressions at material point xnðjÞ can be similarly written as

gðdÞðjÞðxnðjÞÞ ¼ g1ðdÞðxnðjÞÞ; g2ðdÞðxnðjÞÞ
n oT

¼ D1ðjÞ; D2ðjÞ
� �T

; (5.99a)
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gðbÞ‘ðjÞðxnðjÞÞ ¼ g1ðbÞ‘ðxnðjÞÞ; g2ðbÞ‘ðxnðjÞÞ
n oT

¼ S1‘ðjÞ; S2‘ðjÞ
� �T

: (5.99b)

These correction factors are, in general, different at material points xnðiÞ and xnðjÞ.
Therefore, the correction factor for an interaction between material points xnðiÞ and
xnðjÞ can be obtained by their mean values as

�gðdÞðiÞðjÞ ¼ �gðdÞðiÞðjÞ1; �gðdÞðiÞðjÞ2
n oT

¼ gðdÞðiÞ þ gðdÞðjÞ
2

(5.100a)

x

1

2
y

g2(i) g1(i)

Fig. 5.14 Construction of an ellipse for surface correction factors
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ng (i)( )2j g (i)( )1j

G (i)( )j

a b

Fig. 5.15 (a) PD interaction between material points at xnðiÞ and xnðjÞ , and (b) the ellipse for the

surface correction factors
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and

�gðbÞ‘ðiÞðjÞ ¼ �gðbÞ‘ðiÞðjÞ1; �gðbÞ‘ðiÞðjÞ2
n oT

¼ gðbÞ‘ðiÞ þ gðbÞ‘ðjÞ
2

; (5.100b)

which can be used as the principal values of an ellipse for the interactions other than

in the fiber and transverse directions, as shown in Fig. 5.15b. The intersection of the

ellipse and a relative position vector, n, of material points xnðiÞ and x
n
ðjÞ, provides the

correction factors as

GðdÞðiÞðjÞ ¼ n1 �gðdÞðiÞðjÞ1
.h i2

þ n2 �gðdÞðiÞðjÞ2
.h i2 ��1 2=

(5.101a)

and

GðbÞ‘ðiÞðjÞ ¼ n1 �gðbÞ‘ðiÞðjÞ1
.h i2

þ n2 �gðbÞ‘ðiÞðjÞ2
.h i2 ��1 2=

: (5.101b)

After considering the surface effects, the discrete forms of the dilatation and the

strain energy density are corrected as

θnðiÞ ¼ d
XP
j¼1

GðdÞðiÞðjÞ
δ

xnðjÞ � xnðiÞ
��� ��� ynðjÞ � ynðiÞ

��� ���� xnðjÞ � xnðiÞ
��� ���� �

�
ynðjÞ � ynðiÞ

ynðjÞ � ynðiÞ
��� ��� �

xnðjÞ � xnðiÞ

xnðjÞ � xnðiÞ
��� ���

0
B@

1
CAVn

ðjÞ ;

(5.102a)

Wn
ðiÞ ¼ a θ2ðiÞ þ bFδ

XM
j¼1

GðbÞFðiÞðjÞ
1

xnðjÞ � xnðiÞ
��� ���

� ynðjÞ � ynðiÞ
��� ���� xnðjÞ � xnðiÞ

��� ���� �2
Vn
ðjÞ

þ bTδ
XN
j¼1

GðbÞTðiÞðjÞ
1

xnðjÞ � xnðiÞ
��� ���

� ynðjÞ � ynðiÞ
��� ���� xnðjÞ � xnðiÞ

��� ���� �2
Vn
ðjÞ

þ bFTδ
XP
j¼1

GðbÞFTðiÞðjÞ
1

xnðjÞ � xnðiÞ
��� ���

� ynðjÞ � ynðiÞ
��� ���� xnðjÞ � xnðiÞ

��� ���� �2
Vn
ðjÞ :

(5.102b)
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The peridynamic material parameters bN and bS for a material point located on

the bounding laminae, such asn ¼ 1orn ¼ N, also require correction. However, the
correction factors for bN and bS are not necessary for material points xnðiÞ for n 6¼ 1;N

because they are imbedded in the laminate, as shown in Fig. 5.3.

Simple loading conditions of uniform transverse stretch, @u	3 @x3= ¼ ζ , and
simple transverse shear, @u	1 @x3= ¼ ζ , are applied to the laminate separately to

determine the correction factors.

The corresponding displacement fields at material point x as a result of these

loading conditions can be expressed as

uT3 ¼ 0 0
@u	

3

@x3
x3

n o
(5.103a)

and

uTS ¼ @u	
1

@x3
x3 0 0

n o
: (5.103b)

The PD strain energy density of material point xnðiÞ with n ¼ 1;N due to these

loading conditions, respectively, can be expressed as

WPD
3 x1ðiÞ
� �

¼ 1

4
ζ2bN hnþ1 þ hnð Þ2Vnþ1

ðiÞ

WPD
3 xNðiÞ
� �

¼ 1

4
ζ2bN hn�1 þ hnð Þ2Vn�1

ðiÞ

9>=
>; (5.104a)

and

WPD
S x1ðiÞ
� �

¼ 4ζ2bS
hnþ1 þ hn

2

 �2XN
j¼1

‘2 cos2 ϕð Þ
‘2 þ hnþ1þhn

2

� �2 Vnþ1
ðjÞ

WPD
S xNðiÞ
� �

¼ 4ζ2bS
hn�1 þ hn

2

 �2XN
j¼1

‘2 cos2 ϕð Þ
‘2 þ hn�1þhn

2

� �2 Vn�1
ðjÞ

9>>>>>=
>>>>>;
: (5.104b)

The corresponding strain energy density expressions based on classical contin-

uum mechanics can be expressed as

WCM
3 xnðiÞ
� �

¼ 1

2
Em ζ2 n ¼ 1;N (5.105a)

and

WCM
S xnðiÞ
� �

¼ 1

2
Gmζ

2 n ¼ 1;N (5.105b)
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Therefore, the correction factors associated with the material parameters, bN and

bS, at material point xnðiÞ for n ¼ 1;N can be defined as

Sn3ðiÞ ¼
WCM

3 xnðiÞ
� �

WPD
3 xnðiÞ
� � (5.106a)

and

SnSðiÞ ¼
WCM

S xnðiÞ
� �

WPD
S xnðiÞ
� � : (5.106b)

Correction factors for bN and bS are not necessary for material points xnðiÞ for
n 6¼ 1;N. Therefore, the correction factor for an interaction between material points

xnðiÞ for n ¼ 1;N and xmðjÞ for m 6¼ 1;N can be obtained by their mean values as

�S
ðnÞðmÞ
3ðiÞ ¼ Sn3ðiÞ þ 1

� �
=2 for n ¼ 1;N andm 6¼ 1;N

�S
ðnÞðmÞ
3ðiÞ ¼ 1 for n;m 6¼ 1;N

9=
;; (5.107a)

�S
ðnÞðmÞ
SðiÞðjÞ ¼ SnSðiÞ þ 1

� �
=2 for n ¼ 1;N andm 6¼ 1;N

�S
ðnÞðmÞ
SðiÞðjÞ ¼ 1 for n;m 6¼ 1;N

9=
;: (5.107b)

After considering the surface effects, the discrete form of the strain energy

density functions Ŵn
ðiÞ and ~Wn

ðiÞ are corrected as

Ŵn
ðiÞ ¼ bN

X
m¼nþ1;n�1

�S
ðnÞðmÞ
3ðiÞ ymðiÞ � ynðiÞ

��� ���� xmðiÞ � xnðiÞ
��� ���� �2

Vm
ðiÞ (5.108a)

and

~Wn
ðiÞ ¼ bS

X
m¼nþ1;n�1

X1
j¼1

�S
ðnÞðmÞ
SðiÞðjÞ ymðjÞ � ynðiÞ

��� ���� xmðjÞ � xnðiÞ
��� ���� �h

� ymðiÞ � ynðjÞ
��� ���� xmðiÞ � xnðjÞ

��� ���� �i2
Vm
ðjÞ :

(5.108b)
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Chapter 6

Damage Prediction

Material damage in peridynamics (PD) is introduced through elimination of

interactions (micropotentials) among the material points. It is assumed that when

the stretch, sðkÞðjÞ, between two material points, k and j, exceeds its critical value, sc,

the onset of damage occurs. Damage is reflected in the equations of motion by

removing the force density vectors between the material points in an irreversible

manner. As a result, the load is redistributed among the material points in the body,

leading to progressive damage growth in an autonomous fashion.

6.1 Critical Stretch

In order to create a new crack surface, A, all of the micropotentials (interactions)

between the material points xðkþÞ and xðj�Þ whose line of action crosses this new

surface must be terminated, as sketched in Fig. 6.1. The material points xðkþÞ and
xðj�Þ are located above and below the new crack surface, respectively.

The micropotentials for linear elastic deformation can be obtained from Eq. 2.17

as

wðkþÞðj�Þ ¼ 2tðkþÞðj�Þ � uðj�Þ � uðkþÞ
� �

; (6.1a)

wðj�ÞðkþÞ ¼ 2tðj�ÞðkþÞ � uðkþÞ � uðj�Þ
� �

; (6.1b)

or

wðkþÞðj�Þ ¼ A yðj�Þ � yðkþÞ
��� ���� ΛðkþÞðj�Þ

���xðj�Þ � xðkþÞ
���� �
; (6.2a)

wðj�ÞðkþÞ ¼ B yðkþÞ � yðj�Þ
��� ���� Λðj�ÞðkþÞ

���xðkþÞ � xðj�Þ
���� �
; (6.2b)
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with

A ¼ 4adδ

xðj�Þ � xðkþÞ
�� ��ΛðkþÞðj�ÞθðkþÞ þ 4δ bsðkþÞðj�Þ; (6.3a)

B ¼ 4adδ

xðkþÞ � xðj�Þ
�� �� Λðj�ÞðkþÞθðj�Þ þ 4δbsðj�ÞðkþÞ; (6.3b)

in which

θðkþÞ ¼ dδ
XN
i¼1

ΛðkþÞðiÞsðkþÞðiÞ VðiÞ; (6.4a)

θðj�Þ ¼ dδ
XN
i¼1

Λðj�ÞðiÞsðj�ÞðiÞ VðiÞ; (6.4b)

and

ΛðkþÞðj�Þ ¼
yðj�Þ � yðkþÞ

yðj�Þ � yðkþÞ
��� ��� �

xðj�Þ � xðkþÞ
xðj�Þ � xðkþÞ
�� �� ; (6.5a)

Λðj�ÞðkþÞ ¼
yðkþÞ � yðj�Þ

yðkþÞ � yðj�Þ
��� ��� �

xðkþÞ � xðj�Þ
xðkþÞ � xðj�Þ
�� �� : (6.5b)

+x
(k+)

x
(j–)

δ

δ
Crack
surface,A

Fig. 6.1 Interaction

between material points xþðkÞ
and x�ðjÞ, whose line of action
crosses the crack surface
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Under the assumption of linear elastic deformation, i.e., Λðj�ÞðkþÞ � 1 and

ΛðkþÞðj�Þ � 1, the expressions for the micropotentials can be rewritten as

wðkþÞðj�Þ ¼ 4ad2δ2
XN�K �

i¼1

sðkþÞðiÞsðkþÞð j�Þ VðiÞ þ
XK �

i¼1

sðkþÞðiÞsðkþÞð j�Þ VðiÞ

 !

þ 4δ bs2ðkþÞðj�Þ xðj�Þ � xðkþÞ
�� ��;

(6.6a)

wðj�ÞðkþÞ ¼ 4ad2δ2
XN�Jþ

i¼1

sðj�ÞðiÞsð j�ÞðkþÞ VðiÞ þ
XJþ
i¼1

sðj�ÞðiÞsð j�ÞðkþÞ VðiÞ

 !

þ 4δbs2ðj�ÞðkþÞ xðkþÞ � xðj�Þ
�� ��;

(6.6b)

in which N represents the total number of material points within the family of xðkþÞ
and xðj�Þ.

The number of material points within the family of xðkþÞ below the crack surface

and intersecting with the crack is denoted by K� . Similarly, Jþ represents the

number of material points above the crack surface within the family of xðj�Þ and
intersecting with the crack. Even at the critical stretch, these micropotentials do not

completely vanish because of the contribution of the material points to the

micropotential through the first term arising from dilatation. Retaining only the

interactions crossing the crack surface, the critical values of these micropotentials

can be obtained by substituting the critical value, sc , of the stretch sðkþÞðj�Þ and

sðj�ÞðkþÞ as

wc
ðkþÞðj�Þ ¼ 4ad2δ2

XK �

i¼1

s2c VðiÞ

 !
þ 4δ bs2c xðj�Þ � xðkþÞ

�� �� !
(6.7a)

and

wc
ðj�ÞðkþÞ ¼ 4ad2δ2

XJþ
i¼1

s2c VðiÞ

 !
þ 4δbs2c xðkþÞ � xðj�Þ

�� �� !
: (6.7b)

Hence, the strain energy required to remove the interaction between two material

points, xðkþÞ and xðj�Þ, can be expressed as

Wc
ðkþÞðj�Þ ¼

1

2

wc
ðkþÞðj�Þ þ wc

ðj�ÞðkþÞ
2

VðkþÞVðj�Þ: (6.8)

Furthermore, the total strain energy required to remove all of the interactions

across the newly created crack surface A can be obtained as
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Wc ¼ 1

2

XKþ

k¼1

1

2

XJ�
j¼1

wc
ðkþÞðj�ÞVðkþÞVðj�Þ þ 1

2

XKþ

k¼1

1

2

XJ�
j¼1

wc
ðj�ÞðkþÞVðj�ÞVðkþÞ; (6.9)

for which the line of interaction defined by jxðkþÞ � xðj�Þj and the crack surface

intersect, and Kþ and J� indicate the number of material points, above and below

the crack surface, within the families of xðkþÞ and xðj�Þ, respectively. If this line of
interaction and crack surface intersect at the crack tip, only half of the critical

micropotential is considered in the summation. Substituting for micropotentials

given by Eqs. 6.7a, b in Eq. 6.9 results in the critical strain energy required to

eliminate all of the interactions across the newly created crack surface A as

Wc ¼ s2c
XKþ

k¼1

XJ�
j¼1

2δ b xðj�Þ � xðkþÞ
�� ��þ ad2δ2

XK �

i¼1

VðiÞ þ
XJþ
i¼1

VðiÞ

 ! !
VðkþÞVðj�Þ:

(6.10)

The total work,Wc, required to eliminate all interactions across this new surface

can be equated to the critical energy release rate, Gc, in order to establish the value

of critical stretch, sc, as

Gc ¼
s2c
PKþ

k¼1

PJ�
j¼1

2δ b xðj�Þ � xðkþÞ
�� ��þ ad2δ2

PK �

i¼1

VðiÞ þ
PJþ
i¼1

VðiÞ

� �� �
VðkþÞVðj�Þ

A
;

(6.11)

which yields the critical stretch, sc, expression of

sc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GcAPKþ

k¼1

PJ�
j¼1

2δ b xðj�Þ � xðkþÞ
�� ��þ ad2δ2

PK �

i¼1

VðiÞ þ
PJþ
i¼1

VðiÞ

� �� �
VðkþÞVðj�Þ

vuuut :

(6.12)

Setting a ¼ 0 and 4δb ¼ c reduces this expression to bond-based peridynamics

Gc ¼ 1

2
cs2c

PKþ

k¼1

PJ�
j¼1

xðj�Þ � xðkþÞ
�� ��VðkþÞVðj�Þ

( )

A
: (6.13)

For three-dimensional analysis, the critical energy release rate for bond-based

peridynamics was derived by Silling and Askari (2005) in integral form as
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Gc ¼
ðδ
0

ð2π
0

ðδ
z

ðcos�1z ξ=

0

1

2
cξs2cξ

2

� �
sinϕdϕdξdθ

( )
dz ¼ 1

2
cs2c

δ5π

5

� �
: (6.14)

This integral represents the summation of the work required to terminate all

interactions (micropotentials) between point xðj�Þ (below the fracture surface) and

all of the points xðkþÞ (above the fracture surface) within its horizon, as shown in

Fig. 6.2. The integration in spherical coordinates, ðξ; θ;ϕÞ, results in the volume of

all the points xðkþÞ that are above the fracture surface and within the horizon of point
xðj�Þ. The line integral includes the contribution of all the points xðj�Þ from 0 to the

horizon, δ.
In the case of two-dimensional analysis, the expression for the critical energy

release rate for bond-based peridynamics becomes

Gc ¼ 2h

ðδ
0

ðδ
z

ðcos�1z ξ=

0

1

2
cξs2cξ

� �
dϕdξ

( )
dz ¼ 1

2
cs2c

hδ4

2

� �
; (6.15)

in which h represents the thickness of the material. The integration is performed in

polar coordinates, ðξ;ϕÞ.

z

cos-1 ( )z

x
(k+)

x
(j –)

+

Crack
surface

Fig. 6.2 Integration

domain of the

micropotentials crossing

a fracture surface
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Comparing Eq. 6.13 with Eqs. 6.14 and 6.15 leads to

PKþ

k¼1

PJ�
j¼1

xðj�Þ � xðkþÞ
�� ��VðkþÞVðj�Þ

A
¼

δ5π

5
three dimensions

hδ4

2
two dimensions

8>><
>>: (6.16)

and the second term in Eq. 6.12 can be evaluated as

PKþ

k¼1

PJ�
j¼1

PK �

i¼1

Vði�Þ þ
PJþ
i¼1

VðiþÞ

� �
VðkþÞVðj�Þ

( )

A
¼

δ7π2

8
three dimensions

8h2δ5

9
two dimensions :

8>><
>>: (6.17)

Finally, the critical energy release rate can be expressed as

Gc ¼
2π

5
bδ6 þ π2

8
ad2δ9

� �
s2c three dimensions

bhδ5 þ 8

9
ad2h2δ7

� �
s2c two dimensions :

8>>><
>>>:

(6.18)

After substituting for the peridynamic parameters, a; b; and d; the critical stretch
can be expressed as

sc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gc

3 μþ 3
4

� �4
κ � 5 μ

3

� �� �
δ

vuut three dimensions

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gc

6
π μþ 16

9π2 ðκ � 2μÞ� �
δ

s
two dimensions :

8>>>>>><
>>>>>>:

(6.19)

It is worth noting that the critical stretch is a function of the horizon. The value of

the horizon brings in the effect of the physical material characteristics, nature of

loading, length scale, and the computational cut-off radius. This simple relationship

provides the value of critical stretch for a linear elastic brittle material with a known

critical energy release rate. If the material exhibits time-dependent nonlinear

behavior such as viscoplasticity, a single critical stretch value is not a viable failure

criterion. Foster et al. (2011) proposed the use of the critical energy density as a

failure criterion in rate-dependent situations. For complex material behavior, there

is no simple approach for determining the critical stretch value or critical energy.

An inverse approach can be adopted to extract their critical values by performing

PD simulations of the fracture experiments with measured failure loads. After each

PD simulation with a trial critical value, the PD failure load prediction is compared

with that of the measured value, and PD simulations continue with updated critical

values until the PD prediction and measured values are within an acceptable range.
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6.2 Damage Initiation

In order to include damage initiation in the material response, the force density

vector can be modified through a history-dependent scalar-valued function μ
(Silling and Bobaru 2005) as

tðkÞðjÞ ¼ 2δ ad
ΛðkÞðjÞ

xðjÞ � xðkÞ
�� �� θðkÞ þ bμ xðjÞ � xðkÞ; t

� �
sðkÞðjÞ

( )
yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� ; (6.20)

with the dilatation term

θðkÞ ¼ dδ
XN
‘¼1

ΛðkÞð‘Þμ xð‘Þ � xðkÞ; t
� �

sðkÞð‘ÞVð‘Þ; (6.21)

where μ can be written as

μ xðjÞ � xðkÞ; t
� � ¼ 1 if sðkÞðjÞ xðjÞ � xðkÞ; t0

� �
< sc for all 0 < t0

0 otherwise :



(6.22)

During the solution process, the displacements of each material point, as well as

the stretch, sðkÞðjÞ, between pairs of material points, xðkÞ and xðjÞ, are computed and

monitored. When the stretch between these material points exceeds its critical

stretch, failure occurs; thus, the history-dependent scalar-valued function μ is

zero, rendering the associated part of the force density vector to be zero.

6.3 Local Damage

Local damage at a point is defined as the weighted ratio of the number of eliminated

interactions to the total number of initial interactions of a material point with its

family members. The local damage at a point can be quantified as (Silling and

Askari 2005)

φ x; tð Þ ¼ 1�

Ð
H

μðx0 � x; tÞdV0

Ð
H

dV0 : (6.23)

The local damage ranges from 0 to 1. When the local damage is one, all the

interactions initially associated with the point have been eliminated, while a local

damage of zero means that all interactions are intact. The measure of local damage
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is an indicator of possible crack formation within a body. For example, initially a

material point interacts with all materials in its horizon, as shown in Fig. 6.3a; thus,

the local damage has a value of zero. However, the creation of a crack terminates

half of the interactions within its horizon, resulting in a local damage value of

one-half, as shown in Fig. 6.3b.

6.4 Failure Load and Crack Path Prediction

The applicability of the critical stretch as a failure parameter is demonstrated for a

linear elastic material by considering the experimental study conducted by

Ayatollahi and Aliha (2009). They considered diagonally loaded square plate

specimens, shown in Fig. 6.4, to investigate the effect of mode mixity ranging

from pure mode I to pure mode II. They provided the failure loads, crack propaga-

tion paths for each of the specimens, and fracture toughness of the material, KIC .

The edge length of the diagonal square is 2W ¼ 0:15 m and its thickness is h ¼
0:005 m. The length of the crack is 2a ¼ 0:045 m; with an orientation angle of α.
The material has an elastic modulus of E ¼ 2940 MPa, Poisson’s ratio of ν ¼ 0:38,

and fracture toughness ofKIC ¼ 1:33 MPa
ffiffiffiffi
m

p
. This corresponds to a critical stretch

value of 0.089. They also reported the failure loads for varying crack orientation

angles of α ¼ 0� ðMode IÞ; 15�; 30�; 45�; and 62:5� ðMode IIÞ. The center of the
crack coincides with the origin of the Cartesian coordinate system.

The applied load is introduced through a velocity constraint of 10�9 m=s along
the circular regions in opposite directions. The initial crack is inserted in the PD

model by removing the interactions across the crack surface. The force is monitored

by summing the forces between the interactions crossing the dotted black line.

As demonstrated in Fig. 6.5, the crack propagation paths obtained from the

peridynamic simulations and those of the experimental results agree well with each

other for all crack orientation angles. Crack growth initiation angles are also

compared between the predictions and measurements. Again a good comparison

is obtained, as shown in Fig. 6.6. Finally, the failure loads are compared and it is

observed that the failure loads obtained from the peridynamic simulations are

within 15 % of the experimental values for all crack inclination angles, as depicted

in Fig. 6.7. While the peridynamic simulations closely match the experimental

(x,t) 0.5
a bFig. 6.3 (a) All

interactions are intact

(no damage); (b) half

of the terminated

interactions create a crack
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results for the pure Mode I and pure Mode II cases, the mixed mode peridynamic

failure loads are higher than the experimental values. A possible reason could be

due to specimen preparation, which does not ensure a sharp crack tip. The inclined

angle of the crack coupled with the shape of the crack tip could in effect change the

crack’s tip orientation, causing the offset observed in the results. Despite this offset,

there exist very good agreement between the peridynamic predictions and those

observed in the experiments, which validates the critical stretch values.
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Chapter 7

Numerical Solution Method

The peridynamic (PD) equation of motion is an integro-differential equation, which

is not usually amenable for analytical solutions. Therefore, its solution is

constructed by using numerical techniques for spatial and time integrations. The

spatial integration can be performed by using the collocation method of a meshless

scheme due to its simplicity. Hence, the domain can be divided into a finite number

of subdomains, with integration or collocation (material) points associated with

specific volumes (Sect. 7.1). Associated with a particular material point, numerical

implementation of spatial integration involves the summation of the volumes of

material points within its horizon. However, the volume of each material point may

not be embedded in the horizon in its entirety, i.e., the material points located near

the surface of the horizon may have truncated volumes. As a result, the volume

integration over the horizon may be incorrect if the entire volume of each material

point is included in the numerical implementation. Therefore, a volume correction

factor is necessary to correct for the extra volume. A volume correction procedure

required for such a case is described in Sect. 7.2.

Numerical time integration can be performed by using backward and forward

difference explicit integration schemes, although other techniques are also

applicable, such as the Adams-Bashforth method, Adams-Moulton method, and

Runge–Kutta method. If an explicit integration scheme is adopted, a stability

criterion on the value of the incremental time step is necessary to ensure conver-

gence. Details of the time integration scheme and stability criterion are given in

Sects. 7.3 and 7.4, respectively.

The PD equation of motion includes the inertial terms; it is not directly

applicable to static and quasi-static problems. Hence, a special treatment is

required so that the system will converge to a static condition in a short amount

of computational time. Although there are different techniques available for this

purpose, adaptive dynamic relaxation (ADR) can be utilized (Kilic and Madenci

2010), and it is described in detail in Sect. 7.5.

Another important concern when using a numerical technique is the conver-

gence of the results. It is important to use optimum values of parameters to

E. Madenci and E. Oterkus, Peridynamic Theory and Its Applications,
DOI 10.1007/978-1-4614-8465-3_7, © Springer Science+Business Media New York 2014
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achieve sufficient accuracy within a suitable amount of computational time.

The determination of such PD parameters is described in Sect. 7.6.

As described in Sect. 4.2, the interactions associated with material points close to

the free surfaces are truncated, and this causes a reduction of the stiffness of these

material points. In other words, these material points do not represent the accurate

bulk behavior and require a correction. The correction can be imposed by

introducing surface correction factors that can be directly inserted in the equation

of motion, as described in Sect. 7.7.

Solution to the PD equation of motion requires initial conditions on displace-

ment and velocity, as well as boundary conditions, as described in Sect. 2.7.

Numerical implementations of the initial and boundary conditions are given in

Sect. 7.8. If necessary, the introduction of a pre-existing crack is rather straightfor-

ward, as explained in Sect. 7.9. Moreover, as a result of extreme loading conditions,

such as high velocity boundary conditions, large displacement boundary

constraints, impact problems, etc., unexpected damage patterns may occur, espe-

cially close to the boundary region. This problem can be overcome by defining “no

fail zones” and is also explained in Sect. 7.9. The measure of local damage for crack

growth is explained in Sect. 7.10.

Each material point has its own particular family members defined by its

horizon. For domains including a large number of material points, it is important

to utilize an efficient process to search and establish the family members, and store

their information, as presented in Sect. 7.11. Utilization of parallel computing is a

crucial process to achieve significant computational efficiency. A brief discussion

on parallel computing is given in Sect. 7.12.

The development of a solution algorithm for the PD equation of motion may

involve the following steps:

• Specify the input parameters and initialize the matrices.

• Determine a stable time step size for the time integration. If the analysis involves

the adaptive dynamic relaxation technique, the time step size is equal to 1.

• Generate the material points.

• Determine the material points inside the horizon of each material point and

store them.

• In the case of a pre-existing crack problem, remove the PD interactions that are

passing through the crack surfaces.

• Compute the surface correction factor for each material point.

• Apply initial conditions.

• If the analysis involves the adaptive dynamic relaxation technique, construct the

stable mass matrix.

• Start time integration.

• Apply boundary conditions.

• Compute the total PD interaction forces acting on each material (collocation)

point.

• Terminate the PD interaction if its stretch exceeds the critical stretch.
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• If the analysis involves the adaptive dynamic relaxation technique, compute the

adaptive dynamic relaxation technique parameters.

• Perform time integration to obtain displacements and velocities.

7.1 Spatial Discretization

In order to solve Eq. 2.22, a collocation method is adopted and the numerical

treatment involves the discretization of the domain of interest into subdomains, as

shown in Fig. 7.1. The domain can be discretized into subdomains by employing

line subdomains for one-dimensional geometries, triangular and quadrilateral

subdomains for two-dimensional regions, and hexahedron, tetrahedron, and

wedge subdomains for three-dimensional regions, as shown in Fig. 7.2.

After discretizing the domain, the collocation points are placed in the

subdomains, as shown in Fig. 7.1. With this meshless discretization scheme, the

volume integration in Eq. 2.22 can be approximated as

1 2 3 4 5 6 7

1 2 3 4 5

6 7 8 9 10

1211 14
13

1615

1

2 3

4

17 18
19 Subdomain #15

1 2 3 4 5

6 7 8 9 10

1211 14
13

1615

1

2 3

4

17 18
19

Subdomain #53

24
43

29
48

35

38

34
53 54

33

36

32
51

37

52

56 5755

5
8

7

a

b

c

Fig. 7.1 Discretization of the domain of interest for (a) one-dimensional, (b) two-dimensional,

and (c) three-dimensional regions
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ρ xðkÞ
� �

€u xðkÞ; t
� � ¼XN

e¼1

XNe

j¼1

wðjÞ t u xðjÞ; t
� �� u xðkÞ; t

� �
; xðjÞ � xðkÞ

� ��
�t u xðkÞ; t

� �� u xðjÞ; t
� �

; xðkÞ � xðjÞ
� ��

VðjÞ þ b xðkÞ; t
� �

;

(7.1)

where N is the number of subdomains within the horizon and Ne is the number of

collocation points in eth subdomain. The position vectors xðkÞ and xðjÞ represent

the locations of the kth and jth collocation (integration) points, respectively. The

parameter wðjÞ is the integration weight of point xðjÞ. The integration points can be

determined as described by Kilic (2008). For a uniform grid of cubic subdomains

with one integration point at the center, the weight, wðjÞ , is equal to unity. The

volume of the jth cubic subdomain is denoted by VðjÞ
For instance, in the case of a one-dimensional region, the discretization is

achieved with M cubic subdomains in which Gaussian integration (collocation)

points represent the material points, as shown in Fig. 7.3. Integration points are

located at the center of each cubic subdomain with a weight of unity. Note that the

truncation error in Eq. 7.1 for this particular case is on the order ofOðΔ2Þ, whereΔ
represents spacing between integration (material) points. If a discontinuity is

present in the structure, then the error becomes OðΔÞ (Silling and Askari 2005).
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Fig. 7.2 Subdomain shapes

for one-, two-, and three-

dimensional geometries
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7.2 Volume Correction Procedure

Associated with a material point, xðkÞ, the numerical integration over its horizon is

approximated by considering the entire volume of each material point, xðjÞ, within
its horizon. As illustrated in Fig. 7.4, in the case of a uniform spacing ofΔ between

the material points leading to cubic subdomains ðwðjÞ ¼ 1Þ, and for a horizon of

δ ¼ 3Δ , this numerical approximation leads to summation of the material point

volumes within the range of ξðkÞðjÞ ¼ jxðjÞ � xðkÞj < δ. As implemented in the EMU

code (Silling 2004), this approximation can be improved by considering the entire

volume of the material points within the range of ξðkÞðjÞ ¼ jxðjÞ � xðkÞj < δ� r, in

which r ¼ Δ=2, the distance from the surface of the horizon. For the material points

that are within the range of δ� r < ξðkÞðjÞ < δ, a volume correction factor of υcðjÞ
¼ ðδþ r � ξðkÞðjÞÞ=2r is introduced by using a linear variation between a factor of

1 and ½ depending on the family member’s location with respect to the horizon

boundary. For the material points that are located outside of this region, the volume

correction factor is υcðjÞ ¼ 1.

Thus, the discretized equation of motion, Eq. 7.1, for material point xðkÞ
including the volume correction can be rewritten as

ρ xðkÞ
� �

€u xðkÞ; t
� � ¼XN

e¼1

t u xðjÞ; t
� �� u xðkÞ; t

� �
; xðjÞ � xðkÞ

� ��
� t u xðkÞ; t

� �� u xðjÞ; t
� �

; xðkÞ � xðjÞ
� ��

υcðjÞVðjÞ
� �þ b xðkÞ; t

� �
:

(7.2)
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7.3 Time Integration

The time integration of the PD equation of motion in Eq. 7.2 can be performed by

using explicit forward and backward difference techniques (Silling 2004). If the

solution to Eq. 7.2 at the nth time step of Δt (i.e., t ¼ nΔt) is represented as unðkÞ
¼ uðkÞðt ¼ nΔtÞ, Eq. 7.2 can be rewritten for this time step in the form

ρðkÞ€u
n
ðkÞ ¼

XN
j¼1

tnðkÞðjÞ � tnðjÞðkÞ
� �

υcðjÞVðjÞ
� �þ bnðkÞ; (7.3)

where

tnðkÞðjÞ ¼ tnðkÞðjÞ unðjÞ � unðkÞ; xðjÞ � xðkÞ
� �

and

tnðjÞðkÞ ¼ tnðjÞðkÞ unðkÞ � unðjÞ; xðkÞ � xðjÞ
� �

represent the force density vectors between the material points located at xðkÞ and xðjÞ.
Using Eqs. 4.4 and 4.5, the force density vectors can be explicitly written as

tnðkÞðjÞ ¼
ξðkÞðjÞ þ ηn

ðkÞðjÞ

ξðkÞðjÞ þ ηn
ðkÞðjÞ

��� ��� 2ad δ
Λn
ðkÞðjÞ

ξðkÞðjÞ
��� ��� θnðkÞ þ 2bδsnðkÞðjÞ

0
B@

1
CA (7.4a)

and

tnðjÞðkÞ ¼ �
ξðkÞðjÞ þ ηn

ðkÞðjÞ

ξðkÞðjÞ þ ηn
ðkÞðjÞ

��� ��� 2ad δ
Λn
ðkÞðjÞ

ξðkÞðjÞ
��� ��� θnðjÞ þ 2bδsnðkÞðjÞ

0
B@

1
CA; (7.4b)

in which the relative position and relative displacement vectors are defined as ξðkÞðjÞ
¼ xðjÞ � xðkÞ and ηn

ðkÞðjÞ ¼ unðjÞ � unðkÞ . Thus, the stretch between material points

located at xðkÞ and xðjÞ at this time step, snðkÞðjÞ, becomes

snðkÞðjÞ ¼
ξðkÞðjÞ þ ηn

ðkÞðjÞ
��� ���� ξðkÞðjÞ

��� ���
ξðkÞðjÞ
��� ��� : (7.5)
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Furthermore, the dilatation at material points located at xðkÞ and xðjÞ can be

computed from

θnðkÞ ¼ dδ
XN
‘¼1

snðkÞð‘ÞΛ
n
ðkÞð‘Þ υcð‘ÞVð‘Þ

� �
(7.6a)

and

θnðjÞ ¼ dδ
XN
‘¼1

snðjÞð‘ÞΛ
n
ðjÞð‘Þ υcð‘ÞVð‘Þ

� �
: (7.6b)

As shown in Fig. 7.5, if the material point k interacts with other material points

within a horizon of δ ¼ 3Δ, the peridynamic equation becomes

ρðkÞ€u
n
ðkÞ ¼ tnðkÞðkþ1Þ � tnðkþ1ÞðkÞ

� �
υcðkþ1ÞVðkþ1Þ
� �

þ tnðkÞðkþ2Þ � tnðkþ2ÞðkÞ
� �

υcðkþ2ÞVðkþ2Þ
� �

þ tnðkÞðkþ3Þ � tnðkþ3ÞðkÞ
� �

υcðkþ3ÞVðkþ3Þ
� �

þ tnðkÞðk�1Þ � tnðk�1ÞðkÞ
� �

υcðk�1ÞVðk�1Þ
� �

þ tnðkÞðk�2Þ � tnðk�2ÞðkÞ
� �

υcðk�2ÞVðk�2Þ
� �

þ tnðkÞðk�3Þ � tnðk�3ÞðkÞ
� �

υcðk�3ÞVðk�3Þ
� �þ bnðkÞ:

(7.7)

After determining the acceleration of a material point at the nth time step from

Eq. 7.3, the velocity and displacement at the next time step can be obtained by

= 3
t( )( -3)k k

n

t( )( )k k+
n

t( )( 2)k k+
n
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Fig. 7.5 Interaction

of material points within

the horizon
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employing explicit forward and backward difference techniques in two steps,

respectively. The first step determines the velocity at the ðnþ 1Þth time step using

the known acceleration and the known velocity at the nth time step as

_unþ1
ðkÞ ¼ €unðkÞΔtþ _unðkÞ: (7.8)

The second step determines the displacement at the ðnþ 1Þth time step using the

velocity at the ðnþ 1Þth time step from Eq. 7.8 and the known displacement at the

nth time step as

unþ1
ðkÞ ¼ _unþ1

ðkÞ Δtþ unðkÞ: (7.9)

The same procedure can be applied for other material points as well. For

instance, the displacement and velocity of the ðk þ 1Þth material point can be

obtained as

unþ1
ðkþ1Þ ¼ _unþ1

ðkþ1ÞΔtþ unðkþ1Þ (7.10a)

and

_unþ1
ðkþ1Þ ¼ €unðkþ1ÞΔtþ _unðkþ1Þ: (7.10b)

Note that the numerical error to obtain the displacement value by integrating the

computed acceleration value from Eq. 7.3 is on the order of OðΔt2Þ. Hence, the
overall numerical error becomes OðΔ2Þ þ OðΔt2Þ, including the error from spatial

integration (discretization). Furthermore, the overall error is OðΔÞ þ OðΔt2Þ , if
there is any discontinuity in the structure (Silling and Askari 2005).

7.4 Numerical Stability

Although the explicit time integration scheme is straightforward, it is only

conditionally stable. Therefore, a stability condition is necessary to obtain conver-

gent results. A stability condition for the time step size, Δ t, is derived based on the

approach by Silling and Askari (2005). According to this approach, the standard

von Neumann stability analysis can be performed by assuming a displacement

variation of

unðkÞ ¼ ζne κk
ffiffiffiffiffi�1

pð Þ; (7.11)
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where κ and ζ are positive real and complex numbers, respectively. The stability

analysis requires that jζj � 1 for all values of κ . Satisfaction of this condition is

necessary so the waves do not grow unboundedly over time. By using an explicit

central difference formula, Eq. 7.3 results in

ρðkÞ
unþ1
ðkÞ � 2unðkÞ þ un�1

ðkÞ
Δt2

 !
¼
X
j

2ad δ θnðkÞ þ θnðjÞ
� �

þ 4bδ unðjÞ � unðkÞ
� �

ξðkÞðjÞ
��� ��� υcðjÞVðjÞ;

(7.12)

where

θnðkÞ ¼ dδ
X
‘

unð‘Þ � unðkÞ

ξð‘ÞðkÞ
��� ��� υcð‘ÞVð‘Þ

� �
(7.13a)

and

θnðjÞ ¼ dδ
X
‘

unð‘Þ � unðjÞ

ξð‘ÞðjÞ
��� ��� υcð‘ÞVð‘Þ

� �
: (7.13b)

Substituting Eqs. 7.11 in 7.12 yields

ρðkÞ
ζnþ1 � 2ζn þ ζn�1

Δt2


 �
e κk

ffiffiffiffiffi�1
pð Þ

¼
X
j

2ad δ
θnðkÞ þ θnðjÞ
� �

ξðkÞðjÞ
��� ��� þ 4bδ

ζn e κj
ffiffiffiffiffi�1

pð Þ � e κk
ffiffiffiffiffi�1

pð Þ� �
ξðkÞðjÞ
��� ���

0
B@

1
CA υcðjÞVðjÞ
� �

;

(7.14)

where

θnðkÞ ¼ dδ
X
‘

ζne κ‘
ffiffiffiffiffi�1

pð Þ � ζne κk
ffiffiffiffiffi�1

pð Þ
ξð‘ÞðkÞ
��� ��� υcð‘ÞVð‘Þ

� �
(7.15a)

and

θnðjÞ ¼ dδ
X
‘

ζne κ‘
ffiffiffiffiffi�1

pð Þ � ζne κj
ffiffiffiffiffi�1

pð Þ
ξð‘ÞðjÞ
��� ��� υcð‘ÞVð‘Þ

� �
: (7.15b)
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Rearranging Eq. 7.14 results in

ρðkÞ
ζ2 � 2ζ þ 1

Δt2


 �

¼
X
j

2ad δ
�θnðkÞ þ �θnðjÞ
� �

ξðkÞðjÞ
��� ��� þ 4bδ

e κðj�kÞ ffiffiffiffiffi�1
pð Þ � 1

� �
ξðkÞðjÞ
��� ���

0
B@

1
CAζ υcðjÞVðjÞ
� �

;

(7.16)

where

�θnðkÞ ¼ dδ
X
‘

e κð‘�kÞ ffiffiffiffiffi�1
pð Þ � 1

� �
ξð‘ÞðkÞ
��� ��� υcð‘ÞVð‘Þ

� �
(7.17a)

and

�θnðjÞ ¼ dδ
X
‘

e κð‘�jÞ ffiffiffiffiffi�1
pð Þ � 1

� �
ξð‘ÞðjÞ
��� ��� υcð‘ÞVð‘Þ

� �
: (7.17b)

Since exponential terms can be written in terms of sine and cosine functions, and

sine is an odd function, Eq. 7.16 can be rewritten as

ρðkÞ
ζ2 � 2ζ þ 1

Δt2


 �

¼
X
j

2ad δ
�θnðkÞ þ �θnðjÞ
� �

ξðkÞðjÞ
��� ��� þ 4bδ

cos κ j� kð Þð Þ � 1ð Þ
ξðkÞðjÞ
��� ���

0
B@

1
CAζ υcðjÞVðjÞ
� �

;

(7.18)

where

�θnðkÞ ¼ dδ
X
‘

cos κ ‘� kð Þð Þ � 1

ξð‘ÞðkÞ
��� ��� υcð‘ÞVð‘Þ

� �
(7.19a)

and

�θnðjÞ ¼ dδ
X
‘

cos κ ‘� jð Þð Þ � 1

ξð‘ÞðjÞ
��� ��� υcð‘ÞVð‘Þ

� �
: (7.19b)
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By defining

Mκ ¼�1

2

X
j

2ad δ
�θnðkÞ þ �θnðjÞ
� �

ξðkÞðjÞ
��� ��� þ 4bδ

cos κ j� kð Þð Þ � 1ð Þ
ξðkÞðjÞ
��� ���

0
B@

1
CA υcðjÞVðjÞ
� �

; (7.20)

Equation 7.18 takes the form

ζ2 � 2 1�MκΔt2

ρðkÞ

 !
ζ þ 1 ¼ 0: (7.21)

The solution to the quadratic equation results in

ζ ¼ 1�MκΔt2

ρðkÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�MκΔt2

ρðkÞ

 !2

� 1

vuut : (7.22)

Enforcing the condition jζj � 1 yields

Δt <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρðkÞ=Mκ

q
; for all κ values: (7.23)

In order for this condition to be valid for all κ values implies

Mκ �
X
j

2ad δ

dδ
P
‘

1

ξð‘ÞðkÞj j þ
1

ξð‘ÞðjÞj j

 �

Vð‘Þ


 �

ξðkÞðjÞ
��� ��� þ 4bδ

ξðkÞðjÞ
��� ���

0
BB@

1
CCA υcðjÞVðjÞ
� �

: (7.24)

By using Eqs. 7.23 and 7.24, the stability criterion on the time step size can be

expressed as

Δt <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρðkÞ

P
j

2ad δ
dδ
P
‘

1

ξð‘ÞðkÞj jþ
1

ξð‘ÞðjÞj j

 �

Vð‘Þ


 �
ξðkÞðjÞj j þ 4bδ

ξðkÞðjÞj j

0
BB@

1
CCA υcðjÞVðjÞ
� �

vuuuuuuut
: (7.25)

The use of a safety factor that has a value of less than 1 is recommended as it

makes the analysis more stable in case of some type of nonlinearity in the structure.
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It is also worth noting that the stable time step size is dependent on the horizon size

rather than the grid size because of the dependency of the PD material parameters

on the horizon (Silling and Askari 2005).

7.5 Adaptive Dynamic Relaxation

Although the equation of motion of the peridynamic theory is in dynamic form, it

can still be applicable to solve quasi-static or static problems by using a dynamic

relaxation technique. As explained by Kilic and Madenci (2010), the dynamic

relaxation method is based on the fact that the static solution is the steady-state

part of the transient response of the solution. By introducing an artificial damping to

the system, the solution is guided to the steady-state solution as fast as possible.

However, it is not always possible to determine the most effective damping coeffi-

cient. Therefore, the damping coefficient is determined at each time step by using the

Adaptive Dynamic Relaxation (ADR) scheme introduced by Underwood (1983).

According to the ADR method, the PD equation of motion is written as a set of

ordinary differential equations for all material points in the system by introducing

new fictitious inertia and damping terms

D€U X; tð Þ þ cD _U X; tð Þ ¼ F U;U0;X;X0ð Þ; (7.26)

where D is the fictitious diagonal density matrix and c is the damping coefficient

whose values are determined by Greschgorin’s theorem (Underwood 1983) and

Rayleigh’s quotient, respectively. The vectors X and U contain the initial position

and displacement of the collocation (material) points, respectively, and they can be

expressed as

XT ¼ xð1Þ; xð2Þ; . . . ; xðMÞ
� 

(7.27a)

and

UT ¼ u xð1Þ; t
� �

; u xð2Þ; t
� �

; . . . ;u xðMÞ; t
� �� 

; (7.27b)

whereM is the total number of material points in the structure. Finally, the vector F

is composed of PD interaction and body forces and its ith component can be

expressed as

FðiÞ ¼
XN
j¼1

tðiÞðjÞ � tðjÞðiÞ
� �

υcjVðjÞ
� �þ bðiÞ: (7.28)
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By utilizing central-difference explicit integration, displacements and velocities

for the next time step can be obtained as

_U
nþ1 2= ¼

2� cnΔtð Þ _Un�1 2= þ 2ΔtD�1Fn
� �

2þ cnΔtð Þ (7.29a)

and

Unþ1 ¼ Un þ Δt _Unþ1 2=
; (7.29b)

where n indicates the nth iteration. Although Eq. 7.29a cannot be used to start the

iteration process due to an unknown velocity field at t�1 2= , it can be assumed that

U0 6¼ 0 and _U ¼ 0: Therefore, the integration can be started by

_U
1 2= ¼ ΔtD�1F0

2
: (7.30)

Note that the only physical term in this algorithm is the force vector, F . The

density matrix, D, damping coefficient, c, and time step size , Δt, do not have to be

physical quantities. Thus, their values can be chosen to obtain faster convergence.

In dynamic relaxation, a time step size of 1 (Δt ¼ 1) is a convenient choice. The

diagonal elements of the density matrix, D, can be chosen based on Greschgorin’s

theorem and can be expressed as

λii � 1

4
Δt2

X
j

Kij

�� ��; (7.31)

in whichKij is the stiffness matrix of the system under consideration. The inequality

sign ensures stability of the central-difference explicit integration; the derivation of

this stability condition is given by Underwood (1983). Although this approach

achieves near-optimal values, these values are coordinate frame dependent because

they depend on absolute values of the global stiffness matrix as stated in the context

of the finite element method of Lovie and Metzger (1999). Therefore, an alternative

way can be followed by choosing the values based on the minimum element

dimension to make the frame invariant, as suggested by Sauve and Metzger (1997).

This approach seems to reduce overshooting as compared to Greschgorin’s

theorem.
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Hence, the present solutions of the PD equations also utilize a frame-invariant

density matrix. The construction of the stiffness matrix requires determination of

the derivative of PD interaction forces with respect to the relative displacement

vector,η. Since the PD interaction forces given in Eq. 7.3 are nonlinear functions of

η, it is not always possible to determine its derivative. However, elements of the

stiffness matrix can be calculated by using a small displacement assumption as

X
j

Kij

�� �� ¼XN
j¼1

@ tðiÞðjÞ � tðjÞðiÞ
� �
@ uðjÞ � uðiÞ
�� ��� � � e

¼
XN
j¼1

ξðiÞðjÞ � e
��� ���
ξðiÞðjÞ
��� ���

4δ

ξðiÞðjÞ
��� ���

1

2

ad2δ

ξðiÞðjÞ
��� ��� υcðiÞVðiÞ þ υcðjÞVðjÞ

� �þ b

0
B@

1
CA;

(7.32)

in which e is the unit vector along the x-, y-, or z-direction. Note that the summation

given in Eq. 7.32 can be employed to determine the elements of the stiffness matrix

and it is frame invariant.

As described by Underwood (1983), the damping coefficient can be determined

by using the lowest frequency of the system. The lowest frequency can be obtained

by utilizing Rayleigh’s quotient, which is given as

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
UTKU

UTDU

s
: (7.33)

However, the elements of the density matrix given in Eq. 7.31 may have large

numerical values, which make the denominator in Eq. 7.33 numerically difficult to

compute. In order to overcome this problem, Eq. 7.26 can be written in a different

form at the nth iteration:

€U
n
X; tnð Þ þ cn _U

n
X; tnð Þ ¼ D�1Fn Un;U0n;X;X0� �

: (7.34)

The damping coefficient in Eq. 7.34 can be expressed by using Eq. 7.33 as

cn ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Unð ÞT 1KnUn

� �
Unð ÞT Un

� �.r
; (7.35)
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in which 1Kn is the diagonal “local” stiffness matrix, which is given as

1Kn
ii ¼ � Fn

i λii= � Fn�1
i λii=

� �
Δt _un�1 2=

i

� �.
: (7.36)

7.6 Numerical Convergence

The spacing between material points (grid size),Δ, and the horizon size, δ, influence
the computational process. It is important to determine the optimum values of these

parameters in order to achieve high accuracy with sufficiently small amount of

computational time.

As explained in Silling and Askari (2005), the horizon size can be chosen based

on the characteristic length dimensions. If dimensions are on the order of the

nanoscale, then the horizon may represent the maximum distance of physical

interactions between atoms or molecules. Therefore, it is important to specify its

actual value for an accurate outcome of the analysis. For macroscale analysis, the

horizon does not have a physical correspondence and its value can be chosen based

on convenience. To determine the most optimum value of the horizon, a benchmark

study of a one-dimensional bar with length L subjected to an initial strain loading of
@ux=@x ¼ 0:001HðΔt� tÞ is considered. The spatial integration is performed by

using a very fine grid, so the numerical error due to grid size is minimum. Six

different horizon sizes are considered, δ ¼ ð1; 3; 5; 10; 25; 50ÞΔ. For each of these

cases, the displacement versus time variation of a collocation point, which is

located close to the center of the bar, is monitored and compared against the

analytical solution given by Rao (2004). As demonstrated in Fig. 7.6a–f, the highest

accuracy is achieved for the horizon sizes of δ ¼ Δ and 3Δ . The discrepancy

between analytical and numerical solutions becomes larger when the horizon size

increases due the excessive wave dispersion (Silling and Askari 2005).

Furthermore, the computational time increases substantially as the horizon size

increases. It is recommended to choose a horizon size of δ ¼ 3Δ since δ ¼ Δ may

cause grid dependence on crack propagation and not be able to capture crack

branching behavior, as demonstrated in Fig. 7.7 for a square plate with a central

crack subjected to a velocity boundary condition of V0 ¼ 50m=s. The model with a

horizon size of δ ¼ 3Δ captures the expected crack branching behavior due to a

very high velocity boundary condition, whereas the model with a horizon size of

δ ¼ Δ can only capture the self-similar crack growth.

As mentioned in Sect. 7.1, the discretization error is on the order of OðΔ2Þ .
Therefore, it is important to use a sufficient number of grid points to reduce the

numerical error and at the same time achieve the desired numerical efficiency. By

considering the vibration of a bar, it is possible to visualize the effect of grid size on
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the accuracy for four different grid size values, Δ ¼ L=10, L=100, L=1000, and
L=10000 , as shown in Fig. 7.8a–d. The horizon size is specified as δ ¼ 3Δ .

Sufficient accuracy is obtained at a grid size value of Δ ¼ L=1000. Note that the

error in the very coarse grid size case ofΔ ¼ L=10 increases as the time progresses.
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Fig. 7.6 Variation of displacement with time at the center of the bar for horizon size values of (a)

δ ¼ Δ, (b) δ ¼ 3Δ, (c) δ ¼ 5Δ, (d) δ ¼ 10Δ, (e) δ ¼ 25Δ, and (f) δ ¼ 50Δ
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Fig. 7.7 Damage distribution in a square plate with a central crack subjected to a velocity

boundary condition of V0 ¼ 50 m=s for horizon values of (a) δ ¼ Δ and (b) δ ¼ 3Δ
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Fig. 7.8 Variation of displacement with time at the center of the bar for grid size values of (a)

Δ ¼ L=10, (b) Δ ¼ L=100, (c) Δ ¼ L=1000, and (d) Δ ¼ L=10000
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7.7 Surface Effects

The lack of interactions due to free surfaces may cause inaccuracies, especially for

the material points close to the surfaces. This problem can be largely overcome by

introducing surface correction factors. Detailed information about the surface

correction factors and their determination procedure are given in Chap. 4. The

surface corrections can be directly invoked in the equation of motion, Eq. 7.3, by

rewriting it in a slightly different form as

ρðkÞ€u
n
ðkÞ ¼

XN
j¼1

�tnðkÞðjÞ ��tnðjÞðkÞ
� �

υcðjÞVðjÞ
� �þ bnðkÞ; (7.37)

where the corrected PD interaction forces can be expressed as

�tnðkÞðjÞ ¼
ξðkÞðjÞ þ ηn

ðkÞðjÞ

ξðkÞðjÞ þ ηn
ðkÞðjÞ

��� ���
� 2ad δGðdÞðkÞðjÞ

Λn
ðkÞðjÞ

ξðkÞðjÞ
��� ��� �θnðkÞ þ 2bδGðbÞðkÞðjÞsðkÞðjÞ

0
B@

1
CA (7.38a)

and

�tnðjÞðkÞ ¼ �
ξðkÞðjÞ þ ηn

ðkÞðjÞ

ξðkÞðjÞ þ ηn
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0
B@

1
CA: (7.38b)

Similarly, the corrected dilatation terms in Eqs. 7.38a, 7.38b are defined as

�θnðkÞ ¼ dδ
XN
‘¼1

GðdÞðkÞð‘ÞsnðkÞð‘ÞΛ
n
ðkÞð‘Þ υcð‘ÞVð‘Þ

� �
(7.39a)

and

�θnðjÞ ¼ dδ
XN
‘¼1

GðdÞðjÞð‘ÞsnðjÞð‘ÞΛ
n
ðjÞð‘Þ υcð‘ÞVð‘Þ

� �
: (7.39b)
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Note that surface correction factors are consistently required in the time integration

process. Therefore, they should be computed prior to the start of time integration.

Since the determination of the correction factors requires a test loading condition on

the actual structure, it is important to initialize the displacement and velocity values of

collocation (material) points before starting the time integration process.

7.8 Application of Initial and Boundary Conditions

The PD equation of motion yields the acceleration of the collocation points. The

displacement and velocity of collocation points can be obtained by integrating the

acceleration; it requires the initial condition values of these quantities. Therefore,

all of the collocation points should be subjected to initial displacement and velocity

conditions. Various ways of specifying the initial conditions are explained in detail

in Chap. 2. The initial conditions can be specified either in the form of displacement

and velocity values on all material points as given in Eqs. 2.23a, b or in terms of

displacement and velocity gradients as given in Eqs. 2.25a, b.

As also explained in Chap. 2, the displacement and velocity constraints can be

applied in the peridynamic theory by following a different approach than in

classical continuum mechanics. The constraint conditions can be imposed to mate-

rial points inside a fictitious boundary region,Rc, as demonstrated in Fig. 7.9, with a

width equivalent to the horizon size,δ. Displacement and velocity constraints can be

applied by using Eqs. 2.26 and 2.28, respectively. On the other hand, the external

loads can be applied as body loads through a material layer ofR‘, with a width ofΔ,
as shown in Fig. 7.9. The magnitude of body force applied to collocation points

inside this region can be obtained by using Eqs. 2.34a, b, depending on the nature of

the applied loading condition, i.e., distributed pressure or point force.

7.9 Pre-existing Crack and No-Fail Zone

In many practical applications, cracks may initially exist in the structure and be

located at various sites of the structure. The PD approach to create these initial

cracks is rather straightforward. Any interaction between two material points

R

Rc Rl

δ Δ

Fig. 7.9 Boundary regions

for (a) displacement and

velocity constraints and

(b) external loads
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passing through a crack surface is terminated permanently, as shown in Fig. 7.10.

Therefore, an entire set of terminated interactions represents a crack surface. If

multiple cracks exist in the structure, the same procedure can be repeated for each

crack surface.

For some applications under extreme loading conditions, unexpected failure

may occur between collocation points located close to the external boundaries. In

such cases, a region with a suitable width can be chosen as a “no fail zone,”Rnf , as

shown in Fig. 7.11. The interactions associated with the collocation points located

in this region are not allowed to fail. The thickness of the “no fail zone” should be

chosen in such a way that it will have no adverse effect on the overall fracture

behavior of the structure.

7.10 Local Damage for Crack Growth

The measure of local damage is dependent on the relationship between the horizon

and the material point spacing. For computational efficiency, a horizon is com-

monly defined by three times the material point spacing, Δ, i.e., δ ¼ 3Δ.

Initial
crack

Unbroken PD interactions

Broken PD interactions

Fig. 7.10 Termination

of PD interactions that pass

through a crack surface

R

Rnf

Fig. 7.11 No-fail zones
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As shown in Fig. 7.12a, the elimination of interaction between the material point

xðj�Þ and the others, xðkþÞ , above the dashed line representing the crack surface

results in a local damage of φ � 0:38 for the material point xðj�Þ: Although

computationally not feasible, the local damage at material point xðj�Þ approaches
one-half as the horizon approaches infinity. If the material point xðj�Þ is located

immediately ahead of the dashed line representing the crack surface, as shown in

Fig. 7.12b, its interactions are still intact with the material points xðkþÞ above the

dashed line and directly aligned with xðj�Þ . Thus, the local damage at xðj�Þ is

calculated as φ � 0:14. If the material point xðj�Þ is located immediately behind the

dashed line representing the crack surface, as shown in Fig. 7.12c, its interactions

are no longer intact with the material points xðkþÞ above the dashed line and directly
aligned with xðj�Þ. Thus, the local damage at xðj�Þ is calculated as φ � 0:24.

Unbroken PD interactions
Broken PD interactions

Crack

Unbroken PD interactions
Broken PD interactions

Crack

Unbroken PD interactions
Broken PD interactions

Crack

a b

c

Fig. 7.12 Local damage at a material point (a) on the crack plane, (b) in front of the crack tip, and

(c) behind the crack tip
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According to these local damage values, a crack path can be established in PD

calculations with a horizon size of δ ¼ 3Δ. However, the local damage does not

provide any information to determine the specific broken interactions. Therefore,

the local damage values at neighboring points should also be considered in the

determination of a crack path.

As the material point is located farther away from a crack surface, its degree of

local damage decreases. For example, the local damage values for a material point

xðj�Þ located at a distance of 0:5Δ, 1:5Δ, and 2:5Δ from the dashed line (crack

surface) are calculated as φ � 0:38, φ � 0:16, and φ � 0:02, respectively. A crack

surface results in discernible local damage values only for material points within a

distance of 2Δ away from the crack. Therefore, the local damage values can be used

to identify crack path and tip with an error of less than 2Δ. Figure 7.13 shows the

local damage in a plate with a crack in a peridynamic model. Both the path of the

crack and the tip are clearly visible.

7.11 Spatial Partitioning

In the PD theory, the number of interactions is limited by defining a region called

the horizon. The horizon makes the computations tractable; otherwise, the number

of interactions that needs to be taken into account at each time step is N2 for N
material points inside the body. This is especially very time consuming if the

number of material points is large. According to the continuity assumption of the

body, a material point must have the same neighbors during the deformation

Fig. 7.13 Local damage

measure indicating crack

path in a PD model

146 7 Numerical Solution Method



process. Therefore, it is sufficient to determine the family members of a material

point within its horizon only once during the computation process.

While establishing the family members, it may be computationally advanta-

geous to split the domain into equally sized cells, as shown in Fig. 7.14a. The size of

the cells should be larger than the horizon size. During the search process of the

family members, it is only necessary to examine the collocation points in the

neighboring cells, as shown in Fig. 7.14b.

Another important issue is following an efficient process for storing the family

members of the collocation points in order to overcome possible memory

limitations. For this purpose, two different arrays can be utilized. The first array

(see Array #1 in Fig. 7.15) can store all family members of material points

sequentially in a single column. The second array (see Array #2 in Fig. 7.15) can

be utilized as an indicator for the first array, so that the family members of a

particular material point can be easily extracted from the first array. Each element of

Array #2 corresponds to the location of the first material point within the family of a

Collocation Points

δ

a

b

Fig. 7.14 Uniform grid and

interaction of collocation

points
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particular point in Array #1. For instance, as shown in Fig. 7.15, the second element

of Array #2 (i.e., 4) associated with material point #2 indicates the fourth element of

Array #1 as the first material point number within the family of material point #2.

7.12 Utilization of Parallel Computing and Load Balancing

The structure of the PD meshless scheme is very suitable for parallel computing.

Therefore, significant time efficiency can be achieved, depending on the number of

processors to be utilized. There are various tools available for parallel computing,

such as central processing units (CPU) and graphics processing units (GPU). The

most important aspect of parallel programming is the load balancing, so that full

advantage of the parallel programming can be realized. Efficient load balancing can

be obtained by distributing an approximately equal number of collocation points to

each processor. Otherwise if a processor finishes its job earlier than others at the end

of the time step, then it has to wait for other processors to finish their jobs to proceed

to the next time step. The other important issue is to keep the number of PD

interactions between collocation points that are assigned to different processors at

a minimum level, since the computation of these interactions is carried out by a

single processor to avoid a race condition. A race condition occurs when multiple

processors try to access the same shared memory.

The computational domain can be divided into subunits and each of these

subunits can be assigned to a specific processor by using binary space decomposi-

tion, as shown in Fig. 7.16 (Berger and Bokhari 1987). This method can handle

variations in the collocation point concentration at different regions of the domain.

The decomposition process continues in multiple steps, where each subunit is

divided into two new rectangular subunits in every step. Based on the number of
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Array #1 Array #2Fig. 7.15 Arrays used to

store information on family
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collocation points assigned to each subunit, a workload estimate can be calculated.

For instance, if there are p number of available processors, where p is not necessar-
ily an even number, the domain is split into two, each having s1 and s2 collocation
points. Partitioning is performed such that the ratio of s1 and s2 is equal or close to
ðp=2Þ ðp� p=2Þ= . The partition direction is chosen to be the longest side of the

domain in order to reduce the number of interactions between subunits. Then, p=2
processors are assigned to the subunit having s1 collocation points and p� p=2
processors are assigned to subunit with s2 collocation points. Each subunit is then

divided into other subunits as long as the assigned number of processors is greater

than one. Figures 7.17 and 7.18 demonstrate a tree structure of a two-step binary

decomposition by using four processors and the subunits that are assigned to these

four processors, respectively.

Processor 0

Processor 1

Processor 2

Processor 3

Fig. 7.16 Processor distribution

0 1 2 3Processors

Decomposition 1

Decomposition 0

Fig. 7.17 Tree structure

to construct decomposition

Fig. 7.18 Binary space decomposition
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Chapter 8

Benchmark Problems

This chapter provides solutions to many benchmark problems and comparisons

with those of classical continuum mechanics, i.e., analytical or finite element

analysis. Failure is not allowed in the construction of peridynamic solutions.

These benchmark problems concern primarily structures with simple geometries

and under simple quasi-static and dynamic loads.

A one-dimensional bar initially stretched is released after a short period of time,

and then the same bar is considered under quasi-static external tension. Next, a

two-dimensional isotropic and a specially orthotropic plate are considered under

uniaxial tension or uniform temperature change. The subsequent problems concern

three-dimensional modeling of a block of material under tension, bending, or

compression, and with a spherical cavity under radial extension. The peridynamic

solutions to these problems are obtained by developing specific FORTRAN

programs, as available on the website http://extras.springer.com.

8.1 Longitudinal Vibration of a Bar

A bar is subjected to an initial stretch for a short period of time, and then the stretch

is removed. As illustrated in Fig. 8.1, the bar is clamped at the left end. The solution

is obtained by specifying the geometric parameters, material properties, initial and

boundary conditions, as well as the peridynamic discretization and time integration

parameters as:

Geometric Parameters

Length of the bar: L ¼ 1 m

Cross-sectional area: A ¼ h� h ¼ 1� 10�6 m2

E. Madenci and E. Oterkus, Peridynamic Theory and Its Applications,
DOI 10.1007/978-1-4614-8465-3_8, © Springer Science+Business Media New York 2014

151

http://extras.springer.com/


Material Properties

Young’s modulus: E ¼ 200 GPa

Poisson’s ratio: ν ¼ 0:25

Mass density: ρ ¼ 7850 kg=m3

Boundary Conditions

uxðx ¼ 0Þ ¼ 0

Initial Conditions

Initial displacement gradient: @ux=@x ¼ εHðΔt� tÞ with ε ¼ 0:001
Initial velocity: _uxðx; tÞ ¼ 0

PD Discretization and Time Integration Parameters

Total number of material points in the x-direction: 1000þ 3

Total number of material points in the y-direction: 1

Total number of material points in the z-direction: 1

Spacing between material points: Δ ¼ 0:001 m

Incremental volume of material points: ΔV ¼ 1� 10�9 m3

Volume of fictitious boundary region: ΔVδ ¼ 3� 1� 1� ΔV ¼ 3� 10�9 m3

Horizon: δ ¼ 3:015 Δ
Adaptive Dynamic Relaxation: OFF

Time step size: Δt ¼ 1:94598� 10�7 s

Total number of time steps: 26,000

Numerical Results: As given by Rao (2004), the analytical solution to this problem

can be easily constructed in the form

ux x; tð Þ ¼ 8εL

π2

X1
n¼0

�1ð Þn
2nþ 1ð Þ2 sin

2nþ 1ð Þπx
2

� �
cos

ffiffiffi
E

ρ

s
2nþ 1ð Þπ

2
t

 !
: (8.1)

A material point located at x ¼ 0:4995 m is monitored, and its displacement

variation with time is compared against the analytical solution. As shown in

Fig. 8.2, it is evident that the peridynamic (PD) simulation successfully captures

the expected longitudinal vibration.

L

Rc 

δFig. 8.1 Geometry of a bar

subjected to initial strain

and its discretization
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8.2 Bar Under Tension

The bar described in the previous case is now initially at rest, but subjected to a

quasi-static tension loading of F ¼ 200 N at the free end (Fig. 8.3). The

peridynamic discretization parameters are the same as before, except for the applied

loading and time integration scheme. The external applied loading is introduced in

the form of a body force density in the boundary layer region.

Volume of boundary layer: ΔVΔ ¼ 1� 1� 1� ΔV ¼ 1� 10�9 m3

Applied body force density: bx ¼ F ΔVΔ= ¼ 2� 1011 N=m3

Adaptive Dynamic Relaxation: ON

Incremental time step size: Δ t ¼ 1:0 s

Total number of time steps: 10,000

Numerical Results: As observed in Fig. 8.4, the displacement of a collocation point

near the center of the bar appears to converge to a steady-state value after a time

step of 5,000. Hence, the displacement of collocation points along the bar at the end

of a time step of 10,000 is compared with the simple analytical solution, i.e.,

ux ¼ F

AE
x ¼ 0:001 x: (8.2)

As shown in Fig. 8.5, there is a close agreement between the PD predictions and

the analytical solution.
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0.0008Fig. 8.2 Displacement of a
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located at x ¼ 0:4995 m

as a function of time
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8.3 Isotropic Plate Under Uniaxial Tension or Uniform

Temperature Change

A rectangular isotropic plate is subjected to uniaxial uniform tension or uniform

temperature change, as shown Fig. 8.6. It is free of any displacement constraints.

The applied tension is introduced in the form a body force density in the boundary

layer region. The solution is obtained by specifying the geometric parameters,

material properties, initial and boundary conditions, as well as the peridynamic

discretization and time integration parameters as:

Fig. 8.3 Geometry of

a bar under tension and

its discretization
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Geometric Parameters

Length of the plate: L ¼ 1 m

Width of the plate: W ¼ 0:5 m

Thickness of the plate: h ¼ 0:01 m

Material Properties

Young’s modulus: E ¼ 200 GPa

Poisson’s ratio: ν ¼ 1=3

Mass density: ρ ¼ 7850 kg=m3

Thermal expansion coefficient: α ¼ 23� 10�6=�C

Applied Loading

Uniaxial tension loading: p0 ¼ 200 MPa

Uniform temperature change: ΔT ¼ 50�C

PD Discretization Parameters

Total number of material points in the x-direction: 100

Total number of material points in the y-direction: 50

Total number of material points in the z-direction: 1

Spacing between material points: Δ ¼ 0:01 m

Incremental volume of material points: ΔV ¼ 1� 10�6 m3

Boundary layer volume: ΔVΔ ¼ 1� 50� 1� ΔV ¼ 50� 10�6 m3

Applied body force density: bx ¼ ðp0WhÞ=ΔVΔ ¼ 2� 1010 N=m3

Horizon: δ ¼ 3:015 Δ
Adaptive Dynamic Relaxation: ON

Incremental time step size: Δ t ¼ 1:0 s

Total number of time steps: 4,000

L

W
R

Rl

Rl

Δ

Δ

Fig. 8.6 Geometry of a plate under uniaxial tension or uniform temperature change and its

discretization
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Numerical Results: As in the previous problem, the displacements of material

points are monitored to ensure that the number of time steps used in the analysis

is sufficient to reach the steady-state condition. As shown in Fig. 8.7, there is a rapid

convergence of displacement components ux and uy to their steady-state values at

x ¼ 0:255 mandy ¼ 0:125 mas the time step increases. Therefore, a total time step

number of 4000 is considered sufficient to achieve a quasi-static solution.

The steady-state PD solutions for uxðx; y ¼ 0Þ and uyðx ¼ 0; yÞ are compared

with the analytical solutions given as

uxðx; y ¼ 0Þ ¼ p0
E
x (8.3a)

and

uyðx ¼ 0; yÞ ¼ �ν
p0
E
y; (8.3b)

respectively. For both displacement components, there is a very good correlation

between PD and analytical results, as shown in Fig. 8.8.

In the presence of only applied uniform temperature change of ΔT ¼ 50�C, the
steady-state PD solutions for uxðx; y ¼ 0Þ and uyðx ¼ 0; yÞ are compared with the

analytical solutions given as

uxðx; y ¼ 0Þ ¼ α ΔTð Þ x (8.4a)

and

uyðx ¼ 0; yÞ ¼ α ΔTð Þ y: (8.4b)

As shown in Fig. 8.9, there exists a remarkably close agreement between the

analytical and peridynamic results.
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8.4 Lamina Under Uniaxial Tension or Uniform

Temperature Change

This problem is similar to the previous one except for the material properties. It has

directional material properties representing a fiber-reinforced lamina. The fibers are

aligned with the direction of tensile loading. A rectangular lamina is subjected to

uniaxial uniform tension or uniform temperature change, as shown Fig. 8.10. It is

free of any displacement constraints. The applied tension is introduced in the form

of a body force density in the boundary layer region. The solution is obtained by

specifying the geometric parameters, material properties, initial and boundary

conditions, as well as the peridynamic discretization and time integration

parameters as:
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Fig. 8.8 Displacement variations along the center lines under uniform tension: (a) uxðx; y ¼ 0Þ
and (b) uyðx ¼ 0; yÞ
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(a) uxðx; y ¼ 0Þ and (b) uyðx ¼ 0; yÞ
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Geometric Parameters

Length of the plate: L ¼ 152:4 mm

Width of the plate: W ¼ 76:2 m

Thickness of the plate: h ¼ 0:1651 mm

Material Properties

Elastic modulus in fiber direction: E11 ¼ 159:96 GPa

Elastic modulus in transverse direction: E22 ¼ 8:96 GPa

In-plane Poisson’s ratio: ν12 ¼ 1=3
In-plane shear modulus: G12 ¼ 3:0054 GPa

Mass density: ρ ¼ 8000 kg=m3

Thermal expansion coefficient in fiber direction: α1 ¼ �1:52� 10�6=�C
Thermal expansion coefficient in transverse direction: α2 ¼ 34:3� 10�6=�C

Applied Loading:

Uniaxial tension loading: p0 ¼ 159:96 MPa

Uniform temperature change: ΔT ¼ 50�C

PD Discretization Parameters

Total number of material points in the x-direction: 240

Total number of material points in the y-direction: 120

Total number of material points in the z-direction: 1

Spacing between material points: Δ ¼ 0:635 mm

Incremental volume of material points: ΔV ¼ 66:5724475� 10�12 m3

Boundary layer volume: ΔVΔ ¼ 1� 120� 1� ΔV ¼ 7:989� 10�9 m3

L

R

RlRl

ΔΔ

W

Fig. 8.10 Geometry of a composite lamina under uniaxial tension or uniform temperature change

loading and its discretization
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Applied body force density: bx ¼ ðp0WhÞ=ΔVΔ ¼ 25:19� 1010 N=m3

Horizon: δ ¼ 3:015 Δ
Adaptive Dynamic Relaxation: ON

Incremental time step size: Δ t ¼ 1:0 s

Total number of time steps: 4,000

Numerical Results: Based on a convergence study, 4,000 time steps are sufficient to

reach the steady-state condition, as shown in Fig. 8.11, the same as in the isotropic

plate case. Under uniaxial tensile loading, the steady-state solutions for displace-

ment components along both the central x-axis and y-axis from PD analysis are

compared with the analytical solutions given by

uxðx; y ¼ 0Þ ¼ p0
E11

x (8.5a)

and

uyðx ¼ 0; yÞ ¼ �ν12
p0
E11

y: (8.5b)

A close agreement exists between the peridynamic and analytical solutions as

presented in Fig. 8.12. After removing the tension loading, the lamina is subjected

to a uniform temperature change of ΔT ¼ 50�C. The steady-state PD solutions for

uxðx; y ¼ 0Þ and uyðx ¼ 0; yÞ are compared with the analytical solutions given as

uxðx; y ¼ 0Þ ¼ α1 ΔTð Þ x (8.6a)

and

uyðx ¼ 0; yÞ ¼ α2 ΔTð Þ y: (8.6b)

As demonstrated in Fig. 8.13, an excellent match exists between the peridynamic

predictions and analytical solutions.
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8.5 Block of Material Under Tension

A three-dimensional rectangular block is subjected to tensile loading at the free end.

As illustrated in Fig. 8.14, it is fully clamped at the other end. The solution is

obtained by specifying the geometric parameters, material properties, initial and

boundary conditions, as well as the peridynamic discretization and time integration

parameters as:

Geometric Parameters

Length of the block: L ¼ 1:0 m

Width of the block: W ¼ 0:1 m

Thickness of the block: h ¼ 0:1 m
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Fig. 8.12 Displacement variations along the center lines: (a) uxðx; y ¼ 0Þ and (b) uyðx ¼ 0; yÞ
under uniform tension
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Material Properties

Young’s modulus: E ¼ 200 GPa

Poisson’s ratio: ν ¼ 0:25

Mass density: ρ ¼ 7850 kg=m3

Boundary Conditions

Boundary condition at the left end: ux ¼ uy ¼ uz ¼ 0

Applied Loading

Uniaxial tensile load: p0 ¼ 200 MPa

PD Discretization Parameters

Total number of material points in the x-direction: 100þ 3

Total number of material points in the y-direction: 10

Total number of material points in the z-direction: 10

Spacing between material points: Δ ¼ 0:01 m

Incremental volume of material points: ΔV ¼ 1� 10�6 m3

Volume of boundary layer: ΔVΔ ¼ 1� 10� 10� ΔV ¼ 1� 10�4 m3

Applied body force density: bx ¼ ðp0WhÞ=ΔVΔ ¼ 2� 1010 N=m3

Volume of fictitious boundary region: ΔVδ ¼ 3� 10� 10� ΔV ¼ 3� 10�4 m3

Horizon: δ ¼ 3:015 Δ
Adaptive Dynamic Relaxation: ON

Incremental time step size: Δ t ¼ 1:0 s

Total number of time steps: 4,000

Numerical Results: Based on the convergence study shown in Fig. 8.15, a total time

step number of 1000 is sufficient to reach the steady-state condition. The steady-

state solution is verified by comparing displacement components, shown in

Fig. 8.16, along the central x-, y-, and z-axes with the analytical solutions given by

uxðx; y ¼ 0; z ¼ 0Þ ¼ p0
E
x; (8.7a)

uyðx ¼ 0; y; z ¼ 0Þ ¼ �ν
p0
E
y; (8.7b)

z

c

y

W

H
x

L

Fig. 8.14 Geometry of a block under tension loading and its discretization
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and

uzðx ¼ 0; y ¼ 0; zÞ ¼ �ν
p0
E
z: (8.7c)

Although a coarse discretization is employed for the PD solution, a very good

agreement is observed between the peridynamic and analytical solutions in Fig. 8.16.

8.6 Block of Material Under Transverse Loading

The rectangular block described in the preceding case is now subjected to a quasi-

static transverse loading of F ¼ 5000 N at the free end, as shown in Fig. 8.17. The

peridynamic discretization parameters are the same as before except for the applied

body force density, by ¼ F ΔVΔ= ¼ 5� 107 N=m3.

Numerical Results: Based on the convergence study shown in Fig. 8.18, a total time

step number of 8000 is sufficient to reach the steady-state condition. The steady-

state solution is verified by comparing the vertical displacement component, shown
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Fig. 8.17 Geometry of a rectangular block under transverse force and its discretization
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in Fig. 8.19, along the central x-axis with the finite element predictions.

As presented in this figure, there is a good agreement between the peridynamic

and analytical solution given by

uyðx ¼ 0; y; z ¼ 0Þ ¼ F

6EI
ð3L� xÞx2; (8.8)

where I represents the moment of inertia.

8.7 Block of Material Under Compression

A three-dimensional rectangular column is subjected to a compressive loading at the

ends by specifying displacement constraints. As shown in Fig. 8.20, an initial imper-

fection is introduced in the form of a shallow groove at the upper surface near the center

in order to trigger the out-of-plane displacement. The solution is obtained by specifying

the geometric parameters, material properties, initial and boundary conditions, as

well as the peridynamic discretization and time integration parameters as:

Geometric Parameters

Length of the plate: L ¼ 10 in:
Width of the plate: W ¼ 0:4 in:
Thickness of the plate: h ¼ 0:4 in:
Length of the groove: Lg ¼ 0:1 in:

Thickness of the groove: hg ¼ 0:05 in:

Material Properties

Young’s modulus: E ¼ 107 psi

Poisson’s ratio: ν ¼ 0:25
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Mass density: ρ ¼ 0:1 lb=in3

Boundary Conditions

Boundary condition at the left end: ux ¼ 0:05 in:; uy ¼ uz ¼ 0

Boundary condition at the right end: ux ¼ �0:05 in:; uy ¼ uz ¼ 0

PD Discretization Parameters

Total number of material points in the x-direction: 200þ 3þ 3

Total number of material points in the y-direction: 8

Total number of material points in the z-direction: 8

Spacing between material points: Δ ¼ 0:05 in:

Incremental volume of material points: ΔV ¼ 1:25� 10�4 in3

Volume of fictitious boundary region: ΔVδ ¼ 3� 8� 8� ΔV ¼ 2:4� 10�2 in3

Horizon: δ ¼ 3:015 Δ
Adaptive Dynamic Relaxation: ON

Incremental time step size: Δ t ¼ 1:0 s

Total number of time steps: 20,000

Numerical Results: As in the other cases, a convergence study was performed and,

as demonstrated in Fig. 8.21, 15,000 time steps is sufficient to reach the steady-state
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Fig. 8.20 Geometry of a column under compression loading and its discretization
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condition after the buckling occurs. As observed in Fig. 8.22, the peridynamic

prediction for column buckling load is about P ¼ 7650N . The PD force is

calculated by summing all the forces in the axial direction passing through an

imaginary plane perpendicular to the loading direction located far from the loading

edges. The analytical prediction of P ¼ 8422N is obtained from

P ¼ 4π2EI

L2
; (8.9)

with I being the moment of inertia. Even though the PD discretization is rather

coarse, these values are in reasonable agreement. Also, the peridynamic axial and

transverse displacements along the central x-axis are calculated and compared

against FEA solutions. As shown in Fig. 8.23, there is a very good agreement
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between the two approaches. Also, the contour plot of transverse displacement and

the deformed shape of the column are presented in Fig. 8.24.

8.8 Block of Material with a Spherical Cavity

Under Radial Extension

In this last problem, a spherical cavity inside a large block of material is subjected

to radial extension, as shown in Fig. 8.25. The block is free of loading on its

outer surfaces. The solution is obtained by specifying the geometric parameters,

material properties, initial and boundary conditions, as well as the peridynamic

discretization and time integration parameters as:

Geometric Parameters

Length of the block: L ¼ 1 m

Width of the block: W ¼ 1 m

Height of the block: h ¼ 1 m

Radius of cavity: a ¼ 0:15 m

Material Properties

Young’s modulus: E ¼ 200 GPa

Poisson’s ratio: ν ¼ 0:25

Mass density: ρ ¼ 7850 kg=m3

Boundary Conditions

Radial displacement on the surface of the cavity: ur ¼ u� ¼ 0:001 m

Fig. 8.24 Contour plot of

transverse displacements,

uz; and the deformed shape

of the column
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PD Discretization Parameters

Total number of material points in the x-direction: 81

Total number of material points in the y-direction: 81

Total number of material points in the z-direction: 81

Spacing between material points: Δ ¼ 0:0125 m

Incremental volume of material points: ΔV ¼ 1:953125� 10�6 m3

Volume of fictitious boundary region: ΔVδ ¼ 4=3 πa3 ¼ 1:4137� 10�2 m3

Horizon: δ ¼ 3:015 Δ
Adaptive Dynamic Relaxation: ON

Incremental time step size: Δ t ¼ 1:0 s

Total number of time steps: 1,000

Numerical Results: After reaching the steady-state condition after 1,000 time steps,

as in Fig. 8.26, the peridynamic simulation results are compared with the analytical

solution given by
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Fig. 8.25 Geometry of a block of material with a spherical cavity under radial extension and its

discretization
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ur ¼ a2

r2
u�: (8.10)

As presented in Fig. 8.27, there is a good agreement between the two solutions.

Reference

Rao SS (2004) Mechanical vibrations, 4th edn. Pearson Prentice Hall, Upper Saddle River
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Chapter 9

Nonimpact Problems

In Chap. 8, peridynamic solutions of many benchmark problems were presented

and compared with the classical theory in the absence of failure prediction. This

chapter presents solutions to various problems while considering failure initiation

and propagation. When available and suitable, the peridynamic (PD) predictions are

compared with the finite element analysis (FEA) solutions.

An isotropic plate with a hole is slowly stretched along its horizontal boundaries.

Its solution is straightforward when failure prediction is not a concern; however, it

poses a challenge from a failure analysis point of view. Based on the Linear Elastic

Fracture Mechanics (LEFM) concept, the traditional finite elements fail to address

crack initiation and growth when there is no pre-existing crack in the structure. This

problem demonstrates the capability of peridynamics when addressing crack initia-

tion and its propagation. Next, an isotropic plate with a pre-existing crack is

stretched rather fast along its horizontal boundaries. The peridynamic solution to

this problem captures the effect of rate of loading (stretching) on the evolution of

dynamic crack growth. In order to include the presence of thermal loading, a

bimaterial strip with mismatch in thermal expansion coefficients is subjected to a

uniform temperature change. Finally, an isotropic plate is subjected to a tempera-

ture gradient rather than a uniform temperature change. The peridynamic solutions

to these problems are obtained by developing specific FORTRAN programs, which

are available on the website http://extras.springer.com.

9.1 Plate with a Circular Cutout Under

Quasi-Static Loading

As shown in Fig. 9.1, an isotropic plate with a circular cutout is subjected to a

slow rate of stretch along its horizontal edges, representing quasi-static loading.

There exist no initial cracks of any form in its domain. The solution is obtained

by specifying the geometric parameters, material properties, initial and

E. Madenci and E. Oterkus, Peridynamic Theory and Its Applications,
DOI 10.1007/978-1-4614-8465-3_9, © Springer Science+Business Media New York 2014
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boundary conditions as well as the peridynamic discretization and time integration

parameters as:

Geometric Parameters

Length of the plate: L ¼ 50 mm

Width of the plate: W ¼ 50 mm

Thickness of the plate: h ¼ 0:5 mm

Diameter of the cutout: D ¼ 10 mm

Material Properties

Young’s modulus: E ¼ 192 GPa

Poisson’s ratio: ν ¼ 1=3

Mass density: ρ ¼ 8000 kg=m3

Boundary Conditions

_uyðx;�L 2= ; tÞ ¼ �2:7541� 10�7m=s

PD Discretization Parameters

Total number of material points in the x-direction: 100

Total number of material points in the y-direction: 100þ 3þ 3

Total number of material points in the z-direction: 1

Spacing between material points: Δ ¼ 0:0005 m

Incremental volume of material points: ΔV ¼ 1:25� 10�10m3

Volume of fictitious boundary layer: ΔVδ ¼ 3� 100� 1� ΔV ¼ 3:75� 10�8 m3

Horizon: δ ¼ 3:015 Δ
Critical stretch (failure off): sc ¼ 1

Critical stretch (failure on): sc ¼ 0:02

WD

c

c

L

Fig. 9.1 Geometry of a plate with a circular cutout under slow stretch and its discretization
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Adaptive Dynamic Relaxation: ON

Time step: Δt ¼ 1:0 s

Total number of time steps: 1,000

Numerical Results: First, the displacement field due to the applied loading is

obtained and compared against finite element predictions in the absence of failure.

The variations of horizontal and vertical displacements along the central x-axis and
y-axis, respectively, are shown in Fig. 9.2. A close agreement is observed between

PD predictions and FEA results with ANSYS, a commercially available code. This

indicates that the values of PD parameters such as grid size and horizon, and the

volume of the boundary region, provide accurate results. After establishing the

values of the PD parameters, failure among the material points is allowed by

specifying a critical stretch value of sc ¼ 0:02 , and the damage progression is

examined at different time steps. Although there is no pre-existing crack in the

plate, failure initiates in the form of a crack at the stress concentration sites. This is

clearly an exceptional feature of the PD theory, unlike the other existing techniques

that require pre-existing cracks. As shown in Fig. 9.3a, the damage initiates in the

stress concentration sites at the end of 650 time steps. At the end of 700 time steps

(Fig. 9.3b), the local damage value of some material points exceeds φ ¼ 0:38 ,
resulting in self-similar crack growth. Due to the low value of applied velocity

along the boundary, representative of quasi-static loading, the crack continues to

propagate toward the external vertical boundaries, as shown in Fig. 9.3c, d.

9.2 Plate with a Pre-existing Crack Under Velocity

Boundary Conditions

The circular hole is replaced with a pre-existing crack, as shown in Fig. 9.4. Also,

its horizontal edges are subjected to a very fast rate of stretch (velocity) in order to

observe how the rate of loading affects the evolution of dynamic crack growth. The
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Fig. 9.2 Variation of horizontal displacement (a) and vertical displacement (b) along the central

axes at the end of 1,000 time steps when failure is not allowed
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plate properties and geometry are the same as before except for the thickness.

The thickness and boundary conditions, as well as the peridynamic discretization

and time integration parameters, are specified as:

Geometric Parameters

Thickness of the plate: h ¼ 0:0001 m

Initial length of the pre-existing crack: 2a ¼ 0:01 m

Boundary Conditions

Case 1: _uyðx;�L 2= ; tÞ ¼ �20:0 m=s

Case 2: _uyðx;�L 2= ; tÞ ¼ �50:0 m=s

PD Discretization Parameters

Total number of material points in the x-direction: 500

Total number of material points in the y-direction: 500þ 3þ 3

Total number of material points in the z-direction: 1

Spacing between material points: Δ ¼ 0:0001 m

Incremental volume of material points: ΔV ¼ 1� 10�12 m3

Volume of fictitious boundary layer: ΔVδ ¼ 3� 100� 1� ΔV ¼ 3� 10�10 m3

Horizon: δ ¼ 3:015 Δ
Adaptive Dynamic Relaxation: OFF

Time step: Δ t ¼ 1:3367� 10�8 s

Total number of time steps: 1,250

Critical stretch (failure off): sc ¼ 1

Critical stretch (failure on): sc ¼ 0:04472

Numerical Results: First, failure is not allowed (the interaction between the mate-

rial points never ceases), and the crack opening displacement is computed as shown

in Fig. 9.5. Unlike the elliptical crack opening displacement of classical continuum

mechanics, the PD analysis predicts a cusp-like crack opening displacement near

the crack tip. As explained by Silling (2000), the elliptical crack opening displace-

ment is a mathematical requirement of the unbounded stresses (physically impossi-

ble) near the crack tip. The PD theory successfully captures a more physically

meaningful crack opening shape. When failure is allowed by using a critical stretch

value of sc ¼ 0:04472, a self-similar crack growth is observed at the end of 1,250

time steps, as shown in Fig. 9.6a. This growth is typical for a mode-I type of

loading. The position of the crack tip or crack growth is determined based on the

local damage value of any material point that exceeds φ ¼ 0:38 along the x-axis.
The growth of a crack as a function of time is shown in Fig. 9.6b, and the crack

growth speed can be evaluated as 1,650 m/s. This crack speed is less than the

Rayleigh wave speed of 2,800 m/s, which is considered to be the upper limit of

the crack growth speed for a mode-I type of loading (Silling and Askari 2005).

If the applied velocity boundary condition is increased from V0ðtÞ ¼ 20m=s to
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V0ðtÞ ¼ 50m=s , the crack growth characteristics change from self-similar

to branching, as shown in Fig. 9.7. It is worth noting that the only parameter that

was different between the two PD analyses while obtaining Figs. 9.6a and 9.7 is

due to the applied velocity boundary condition. All other parameters remain the

same. The PD theory captures a very complex phenomenon of crack branching

without resorting to any external criteria that triggers branching.
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velocity boundary condition of V0ðtÞ ¼ 20m=s and (b) crack growth as a function of time
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9.3 Bimaterial Strip Subjected to Uniform

Temperature Change

A bimaterial strip is subjected to a uniform temperature change, as shown in

Fig. 9.8. Both the top and bottom regions have the same length and thickness, but

different widths and thermal expansion coefficients. Although the bimaterial strip is

free of constraints and the temperature change is uniform, the mismatch between

the thermal expansion coefficients causes bending deformation. The interface has

the same properties as those of the top plate, and failure is not allowed. The solution

is obtained by specifying the geometric parameters, material properties, initial and

boundary conditions, as well as the peridynamic discretization and time integration

parameters as:

Geometric Parameters

Length of plate: L ¼ 30 mm

Thickness of plate: h ¼ 0:1 mm

Width of bottom plate: Wb ¼ 1 mm

Width of top plate: Wt ¼ 3 mm

Material Properties

Young’s modulus of bottom plate: Eb ¼ 128:0GPa
Poisson’s ratio of bottom plate: νb ¼ 1=3

Thermal expansion coefficient of bottom plate: αb ¼ 16:6� 10�6=�C
Young’s modulus of top plate: Et ¼ 5:1 GPa

Poisson’s ratio of top plate: νt ¼ 1=3

Thermal expansion coefficient of top plate: αt ¼ 50� 10�6=�C
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Fig. 9.7 Damage

indicating crack branching

at the end of 1,000 time

steps under a velocity

boundary condition of

V0ðtÞ ¼ 50m=s
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Applied Loading

Uniform temperature change: ΔT ¼ 50�C

PD Discretization Parameters

Total number of material points in x-direction: 300

Total number of material points in z-direction: 1

Total number of material points in bottom plate in y-direction: 10

Total number of material points in top plate in y-direction: 30

Spacing between material points, Δ ¼ 0:1 mm

Horizon: δ ¼ 3:015 Δ
Adaptive Dynamic Relaxation: ON

Incremental time step size: Δt ¼ 1:0 s

Total number of time steps: 20,000

Numerical Results: The PD predictions for displacement components, ux and uy ,
along the interface between two plates are compared with those of FEA

simulations. As observed in Fig. 9.9, the results from both approaches agree very

well with each other. As expected, the bimaterial strip is curled down, presented in

Fig. 9.9b, due to the mismatch between the coefficients of thermal expansion.

9.4 Rectangular Plate Subjected to Temperature Gradient

An isotropic plate is subjected to a nonuniform temperature change, as shown in

Fig. 9.10. It is free of any constraints and, by specifying a unit critical stretch value,

failure is not allowed. The solution is obtained by specifying the geometric

parameters, material properties, initial and boundary conditions, as well as the

peridynamic discretization and time integration parameters as:

L

3W/4

b

t

W/4

Material-top

Material-bottom

Fig. 9.8 Geometry of a bimaterial strip subjected to uniform temperature change and its

discretization
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Geometric Parameters

Length of the plate: L ¼ 10 in:
Width of the plate: W ¼ 4 in:
Thickness of the plate: h ¼ 0:04 in:

Material Properties

Young’s modulus: E ¼ 1� 107 psi

Poisson’s ratio: ν ¼ 1=3

Mass density: ρ ¼ 0:1 lb=in3

Thermal Expansion Coefficient: α ¼ 24� 10�6=�C

L

W

Fig. 9.10 Geometry of a rectangular plate subjected to a temperature gradient and its

discretization
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Fig. 9.9 Variation of (a) ux displacement component, and (b) uy displacement component along

the interface between two materials
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Applied Loading

Temperature change: ΔT ¼ 5:0 xþ 5:0ð Þ

PD Discretization Parameters

Total number of material points in the x-direction: 250

Total number of material points in the y-direction: 100

Total number of material points in the z-direction: 1

Spacing between material points: Δ ¼ 0:04 in:
Horizon: δ ¼ 3:015 Δ
Adaptive Dynamic Relaxation: ON

Time step size: Δt ¼ 1:0 s

Total number of time steps: 4,000

Numerical Results: The steady-state solution from PD is compared with the FEA

predictions. The comparison of ux displacement values along the central x-axis and
the uy displacement values along the central y-axis, shown in Fig. 9.11, indicates a

close agreement.
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Chapter 10

Impact Problems

This chapter concerns the peridynamic modeling of contact between two bodies due

to an impact event. The impactor can be either rigid or deformable, and the target

body is deformable. The interpenetration of bodies must be prevented between the

bodies during the analysis. The treatment of contact due to a rigid impactor is

different than that of a deformable impactor; Silling (2004) implemented two

different techniques in the EMU code. The following sections will describe

how interpenetration between the two bodies can be prevented while modeling

contact due to a rigid or a deformable impactor. Also, applications are presented to

well-known contact events such as the impact of two flexible bars, a rigid cylinder

impacting a rectangular plate, and the Kalthoff and Winkler (1988) experiment.

The peridynamic solutions to these problems are obtained by developing

specific FORTRAN programs, which are available on the website http://extras.

springer.com.

10.1 Impact Modeling

10.1.1 Rigid Impactor

The rigid impactor is not deformable at any instant, and it moves with its own

velocity as a rigid body, as shown in Fig. 10.1a. The deformable target material is

governed by the peridynamic equation of motion. After contact takes place between

the impactor and target material, there is initially an interpenetration of material

points, as illustrated in Fig. 10.1b. In order to reflect the physical reality, the

material points inside the impactor are relocated to their new positions outside

the impactor (see Fig. 10.1c). Their new locations are assigned in order to achieve

the closest distance to the surface of the impactor. Hence, this process develops a

contact surface between the impactor and material points at a particular time, t.

E. Madenci and E. Oterkus, Peridynamic Theory and Its Applications,
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The velocity of such a material point, xðkÞ , in its new location at the next time

step, tþ Δt, can be computed as

�vtþΔt
ðkÞ ¼

�utþΔt
ðkÞ � utðkÞ

Δt
; (10.1)

where �utþΔt
ðkÞ is the modified displacement vector at time tþ Δt, utðkÞ represents the

displacement vector at time t, and Δt corresponds to the time increment value.

At time tþ Δt, the contribution of the material point, xðkÞ, to the reaction force

from the target material to the impactor, FtþΔt
ðkÞ , can be computed from

FtþΔt
ðkÞ ¼ �1� ρðkÞ

�vtþΔt
ðkÞ � vtþΔt

ðkÞ
� �

Δt
VðkÞ; (10.2)

where vtþΔt
ðkÞ is the velocity vector at time tþ Δt before relocating the material point

xðkÞ, with ρðkÞ andVðkÞ representing its density and volume, respectively. Summation

of the contributions of all material points inside the impactor results in the total

reaction force, FtþΔt, on the impactor at time tþ Δt, and it can be expressed as

FtþΔt ¼
X
k¼1

FtþΔt
ðkÞ λtþΔt

ðkÞ ; (10.3)

where

λtþΔt
ðkÞ ¼ 1 inside impactor

0 outside impactor :

(
(10.4)

v0

v0 v0

Time, t Time, t+ t Time, t+ t

i
i

i

Fig. 10.1 Relocation of material points inside a target material to represent contact with the

impactor
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10.1.2 Flexible Impactor

In the case of a flexible impactor, both the target material and the impactor are

governed by the peridynamic equation of motion. However, when two bodies come

close to each other within a critical distance, rsh, they are forced to repel each other

in order to define the contact between two bodies and also prevent sharing the same

location by two or more material points, which is not acceptable from a continuum

mechanics point of view.

This repelling short-range force, defined by Silling (2004), between material

points can be expressed as

fsh yðjÞ; yðkÞ
� �

¼ yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� min 0; csh

yðjÞ � yðkÞ
��� ���

2rsh
� 1

0
@

1
A

8<
:

9=
;; (10.5)

where the short-range force constant, csh , and the critical distance, rsh , can be

chosen as

csh ¼ 5c (10.6a)

and

rsh ¼ Δ
2
: (10.6b)

10.2 Validation

When failure initiation and growth is not permitted, the validity of the impact

models is established by comparing peridynamic (PD) solutions with those of finite

element analysis (FEA) using ANSYS. In the presence of fracture, the PD

predictions are compared with observations such as those of the Kalthoff-Winkler

experiment (Kalthoff and Winkler 1988). The first problem concerns the impact of

two identical flexible bars. The solution to this problem is obtained by constructing

a three-dimensional PDmodel. The second problem concerns a rigid disk impacting

a rectangular plate on its edge. Its solution is obtained by constructing a

two-dimensional PD model. The third problem simulates the Kalthoff-Winkler

experiment with a three-dimensional PD model.
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10.2.1 Impact of Two Identical Flexible Bars

As shown in Fig. 10.2, the impact of two identical deformable bars is considered.

Their velocities are equal but in opposite directions prior to their impact. Both are

free of any displacement constraints and external loads. Also, failure is not allowed

in order to compare the PD predictions with FEA results using ANSYS. The

three-dimensional solution is constructed by specifying the geometric parameters,

material properties, initial and boundary conditions, as well as the peridynamic

discretization and time integration parameters as:

Geometric Parameters

Length of the identical bars: L ¼ 0:05 m

Width of the identical bars: W ¼ 0:01 m

Thickness of the identical bars: h ¼ 0:01 m

Material Properties

Young’s modulus: E ¼ 75 GPa

Poisson’s ratio: ν ¼ 0:25

Mass density: ρ ¼ 2700 kg=m3

Initial Conditions

Initial condition of the bars: _ux ¼ �10 m=s

PD Discretization Parameters:

Total number of material points in the x-direction: 100

Total number of material points in the y-direction: 10

Total number of material points in the z-direction: 10

L

W

H
L

left right
x

y

z

Fig. 10.2 Impact of two identical flexible bars and PD discretization
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Spacing between material points: Δ ¼ 0:001 m

Incremental volume of material points: ΔV ¼ 1� 10�9 m3

Horizon: δ ¼ 3:015 Δ
Adaptive Dynamic Relaxation: OFF

Time step size: Δ t ¼ 9:3184� 10�8 s

Total number of time steps: 535

Numerical Results: Figure 10.3 shows the axial displacement at the center of the

bars. The displacement values change their sign and bars start to move in the

opposite direction because the compressive waves generated after the initial impact

of the bars propagate toward the free edges. These compressive waves are then

transformed to tension waves when they reach the free edges, thus leading to the

separation of the bars. This figure also shows the comparison of the PD and FEA

predictions, and confirm the validity of the flexible impactor model proposed by

Silling (2004). As shown in Fig. 10.4, the PD and FEA predictions for the axial

displacement along the x-axis at the end of the analysis are also in close agreement.
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10.2.2 A Rigid Disk Impacting on a Rectangular Plate

As shown in Fig. 10.5, a rigid disk impacts the edge of a plate that is free of

displacement constraints, and initially at rest. Failure is not allowed in order to

compare the PD predictions with FEA results using ANSYS. In the FEA model, a

very high elastic modulus is assigned to represent the rigid impactor. Both models

are generated within the two-dimensional framework to reduce the computational

time. The two-dimensional solution is obtained by specifying the geometric

parameters, material properties, initial and boundary conditions, as well as the

peridynamic discretization and time integration parameters as:

Geometric Parameters

Length of the plate: L ¼ 0:2 m

Width of the plate: W ¼ 0:1 m

Thickness of the plate: h ¼ 0:009 m

Material Properties

Young’s modulus: E ¼ 191 GPa

Poisson’s ratio: ν ¼ 1=3

Mass density: ρ ¼ 8000 kg=m3

Impactor Properties:

Diameter of the impactor: D ¼ 0:05 m

Thickness of the impactor: H ¼ 0:009 m

Initial velocity of the impactor: v0 ¼ 32 m=s
Mass of the impactor: m ¼ 1:57 kg

L

W

D Rigid disk

Fig. 10.5 A rigid cylinder impacting a rectangular plate and PD discretization
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PD Discretization Parameters

Total number of material points in the x-direction: 200

Total number of material points in the y-direction: 100

Total number of material points in the z-direction: 1

Spacing between material points: Δ ¼ 0:001 m

Incremental volume of material points: ΔV ¼ 9� 10�9 m3

Horizon: δ ¼ 3:015 Δ
Adaptive Dynamic Relaxation: OFF

Time step size: Δ t ¼ 1� 10�7 s

Total number of time steps: 2,000

Numerical Results: As shown in Fig. 10.6, a close agreement exists between the PD

and FEA predictions for displacement in the y-direction at the center of the plate as
time progresses. Figure 10.7 shows the PD and FEA displacement variations along
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Fig. 10.7 PD and FEA displacement predictions in the y-direction at a time step of 2000: (a) along

the central x-axis and (b) along the central y-axis
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the central x-and y-axes at the end of the analysis. Their comparison indicates a

close agreement, and demonstrates the validity of the rigid impactor model pro-

posed by Silling (2004) within the peridynamic framework.

10.2.3 Kalthoff-Winkler Experiment

A dynamic fracture benchmark, the Kalthoff-Winkler experiment (Kalthoff and

Winkler 1988) concerns the impact of a steel plate having two notches (slits) with a

cylindrical impactor, as depicted in Fig. 10.8. The slits are located symmetrically

with respect to the central axis. The impactor is assumed rigid. The steel plate is free

of displacement constraints, and initially at rest. Silling (2003) previously

constructed the PD solution to this benchmark problem, and presents more detailed

results and discussion. The solution is obtained by specifying the geometric

parameters, material properties, initial and boundary conditions, as well as the

peridynamic discretization and time integration parameters as:

Geometric Parameters

Length of the plate: L ¼ 0:2 m

Width of the plate: W ¼ 0:1 m

Thickness of the plate: h ¼ 0:009 m

Distance between notches: d ¼ 0:05 m

Notch length: a0 ¼ 0:05 m

Notch width: h0 ¼ 0:0015 m

L

W

d

h

a0

D

H

d

h0

Fig. 10.8 Description of Kalthoff and Winkler (1988) experiment and its discretization
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Material Properties

Young’s modulus: E ¼ 191 GPa

Poisson’s ratio: ν ¼ 0:25

Mass density: ρ ¼ 8000 kg=m3

Impactor Properties

Diameter of the impactor: D ¼ 0:05 m

Height of the impactor: H ¼ 0:05 m

Initial velocity of the impactor: v0 ¼ 32 m=s
Mass of the impactor: m ¼ 1:57 kg

PD Discretization Parameters:

Total number of material points in the x-direction: 201

Total number of material points in the y-direction: 101

Total number of material points in the z-direction: 9

Spacing between material points: Δ ¼ 0:001 m

Incremental volume of material points: ΔV ¼ 1� 10�9 m3

Horizon: δ ¼ 3:015 Δ
Critical stretch: sc ¼ 0:01
Adaptive Dynamic Relaxation: OFF

Time step size: Δ t ¼ 8:7� 10�8 s

Total number of time steps: 1,350

Numerical Results: Figure 10.9 shows the contour plots for damage patterns (crack

growth). The PD predictions of 68� for crack propagation angles from the vertical

axis are in excellent agreement with the experimental measurements (Kalthoff and

Winkler 1988).
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Fig. 10.9 Contour plot for damage (crack propagation path)

10.2 Validation 189



References

Kalthoff JF, Winkler S (1988) Failure mode transition at high rates of shear loading. In: Chiem

CY, Kunze H-D, Meyer LW (eds) Impact loading and dynamic behavior of materials, vol

1. DGM Informationsgesellschaft Verlag, Oberursel, pp 185–195

Silling SA (2003) Dynamic fracture modeling with a meshfree peridynamic code. In: Bathe KJ

(ed) Computational fluid and solid mechanics. Elsevier, Oxford, pp 641–644

Silling SA (2004) EMU user’s manual, Code Ver. 2.6d. Sandia National Laboratories,

Albuquerque

190 10 Impact Problems



Chapter 11

Coupling of the Peridynamic Theory

and Finite Element Method

The PD theory provides deformation, as well as damage initiation and growth,

without resorting to external criteria since material failure is invoked in the material

response. However, it is computationally more demanding compared to the finite

element method. Furthermore, the finite element method is very effective for

modeling problems without damage. Hence, it is desirable to couple the PD theory

and FEM to take advantage of their salient features if the regions of potential failure

sites are identified prior to the analysis. Then, the regions in which failure is

expected can be modeled by using the PD theory and the rest can be analyzed by

using FEM.

A simple coupling approach is submodeling, demonstrated by Oterkus

et al. (2012) and Agwai et al. (2012); it involves FEM for global analysis and PD

theory for submodeling in order to perform failure prediction. The primary assump-

tion in submodeling is that the structural details of the submodel do not significantly

affect the global model. Also, the boundaries of the submodel should be sufficiently

far away from local features so that St. Venant’s principle holds for a valid

submodeling analysis. The solution obtained from the global model along the

boundary of the domain of interest is applied as displacement boundary conditions

on the submodel. The global model should be refined enough to enable accurate

calculation of the displacement on the boundary of the submodeling region. Also,

different time discretizations of the displacement boundary condition should be

considered because the time-dependent nature of boundary conditions may affect

the results in submodeling.

Another straightforward way of coupling was suggested by Macek and Silling

(2007) where the PD interactions are represented by using traditional truss elements

and an embedded element technique for the overlap region. Lall et al. (2010) also

utilized this approach to study shock and vibration reliability of electronics.

Recently, Liu and Hong (2012) introduced interface elements between FEM and

PD regions. A finite number of peridynamic points are embedded inside the

interface element to transfer information between PD and FEM regions. The

peridynamic forces exerted on these embedded material points are distributed as
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nodal forces to the interface element based on two particular schemes. In the first

scheme, coupling forces are distributed to all nodes of the interface element.

However, in the second scheme, the coupling forces are only distributed to nodes

that are located on the interface plane between FEM and PD regions. The displace-

ment of the embedded material points are not computed through a PD equation of

motion. Instead, they are determined by utilizing the nodal displacements of

interface elements and their shape functions.

Also, Lubineau et al. (2012) coupled local and nonlocal theories by introducing a

transition (morphing) strategy. The definition of the morphing functions relies on

the energy equivalence, and the transition region affects only constitutive

parameters. The influence of local and nonlocal theories is captured by defining a

function that automatically converges to full local and nonlocal formulations along

their respective boundaries. In a recent study, Seleson et al. (2013) proposed a

force-based blended model that coupled PD theory and classical elasticity by using

nonlocal weights composed of integrals of blending functions. They also

generalized this approach to couple peridynamics and higher-order gradient models

of any order.

In addition to these techniques, Kilic and Madenci (2010) introduced a direct

coupling of FEM and PD theory using an overlap region, shown in Fig. 11.1a, in

which equations of both PD and FEM are solved simultaneously. The PD region is

discretized with material points and the finite element region with traditional

elements (Fig. 11.1b). Both the PD and FE equations are satisfied in the overlap

region. Furthermore, the displacement and velocity fields are determined using

finite element equations in the overlap region. These fields are then utilized to

compute the body force densities using the PD theory. Finally, these body force

densities serve as external forces for finite elements in the overlap region.

Overlap region

Finite element
analysis region

Peridynamics

Subdomains

Finite elements Collocation points

Nodes

Peridynamic
analysis region

FEA

a b

Fig. 11.1 Schematic for coupling of the finite element method and peridynamics: (a) finite

element (FEA) and peridynamic regions; (b) discretization
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11.1 Direct Coupling

The direct coupling of PD theory and FEM presented herein concerns steady-state

or quasi-static solutions. However, the PD equation of motion, Eq. 7.1, includes

dynamic terms that need to be eliminated. Thus, the adaptive dynamic relaxation

method, described in Chap. 7, is utilized to obtain a steady-state solution. The

damping coefficient is changed adaptively in each time step. The dynamic relaxa-

tion method is based on the fact that the static solution is the steady-state part of the

transient response of the solution.

In order to achieve direct coupling, the discrete PD equation of motion, Eq. 7.1,

is rewritten as

€U
n

p

€U
n

p

( )
þ cn

_U
n

p

_U
n

p

( )
¼ D�1 0

0 D�1

� �
F n

p

F n
p

� �
; (11.1)

in which U is a vector that contains displacements at the PD material points and the

vector F is the summation of internal and external forces. The subscript p denotes

the variables associated with the PD region, and single and double underscores

denote the variables located outside and inside the overlap region, respectively. The

parameter cn represents the damping coefficient at the nth time increment. The

coefficients of the fictitious diagonal density matrix, D , are determined through

Greschgorin’s theorem (Underwood 1983). A detailed description of these

parameters is presented in Chap. 7.

In order to achieve coupling of FEM with the PD theory, the direct assembly of

finite element equations without constructing the global stiffness matrix is utilized

so that the FE equations can be expressed as

€U
n

f

€U
n

f

( )
þ cn

_U
n

f

_U
n

f

( )
¼ M�1 0

0 M�1

� �
Fn

f

Fn
f

� �
; (11.2)

in which subscript f denotes the variables associated with the finite element region,

and M is the diagonal mass matrix. The components of the mass matrix can be

approximated as

M ¼ I ~m; (11.3)

in which I is the identity matrix. The mass vector, ~m, is constructed as

~m ¼ A
e
m̂

ðeÞ; (11.4)

where A is the assembly operator and the operations are strictly performed as

additions (Belytschko 1983). The components of vector m̂
ðeÞ

can be written as
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m̂
ðeÞ
i ¼

X8
j¼1

k
ðeÞ
ij

��� ���; (11.5)

in which k
ðeÞ
ij indicates the components of the element stiffness matrix given by

Zienkiewicz (1977).

The force vector Fn at the nth time increment can be expressed as

Fn ¼ fextðtnÞ � f intðunÞ; (11.6)

where t is time and fext is the vector of external forces.

The internal forces resulting from the deformation of the elements can be

assembled into a global array of internal forces by using the convention of

Belytschko (1983) as

f int ¼ A
e
fðeÞ; (11.7)

where fðeÞ is the element force vector.

The element force vector is expressed as

fðeÞ ¼ kðeÞuðeÞ; (11.8)

in which kðeÞ is the element stiffness matrix described by Zienkiewicz (1977) and

uðeÞ is the vector representing the nodal displacements of the eth element.

The vector up representing displacements of a PD material point located inside

the eth element can be obtained from

up ¼
X8
i¼1

Niu
ðeÞ
i ; (11.9)

whereNi are the shape functions given by Zienkiewicz (1977). The vector u
ðeÞ
i is the

ith nodal displacements of the eth element and is extracted from the global solution

vector, U
f
, denoting nodal FE displacements. Determination of the vector up leads

to the computation of vectorU
p
. The force density vector Fn

p
can then be computed

by utilizing the force density vector Fp associated with the PD material point xp
inside the eth element (subdomain) as given by Eq. 7.1

Fp ¼ bðxp; tÞ þ
XN
e¼1

XNe

j¼1

wðjÞ t u xðjÞ; t
� �� u xp; t

� �
; xðjÞ � xp; t

� �	
� t u xp; t

� �� u xðjÞ; t
� �

; xp � xðjÞ; t
� �


VðjÞ;

(11.10)
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where N is the number of elements within the horizon and Ne is the number of

collocation points in the eth element. The position vector xðjÞ represents the location
of the jth collocation (integration) point.

Since, for a quasi-static problem, the equilibrium should be satisfied for all

material points, i.e., Fp ¼ 0, the body load exerted on material point xp can then

be calculated as

bðxp; tÞ ¼ �
XN
e¼1

XNe

j¼1

wðjÞ t u xðjÞ; t
� �� u xp; t

� �
; xðjÞ � xp; t

� �	
� t u xp; t

� �� u xðjÞ; t
� �

; xp � xðjÞ; t
� �


VðjÞ :

(11.11)

The total body load associated with the element where the material point xp is

located can be computed as

gðeÞ ¼
XNe

j¼1

bðxp; tÞ: (11.12)

Furthermore, the calculated total body load can be lumped into the finite element

nodes as

f
ðeÞ
I ¼

ð
Ve

dVeNIρ g
ðeÞ; (11.13)

in which ρ is the mass density of the eth element and I indicates the Ith node of the

eth element. Hence, f
ðeÞ
I indicates the external force acting on the Ith node. The body

force density is only known at the PD material points, which serve as integration

points for the eth element in Eq. 11.13. Furthermore, Fn
f

is constructed by

assembling the nodal forces given by Eq. 11.13.

Finally, the coupled system of equations can be expressed as

€U
~

n þ cn _U
~

n ¼ M
~

�1F
~

n; (11.14)

in which _U
~

n
and €U

~

n
are the first and second time derivatives of the displacements,

respectively, and can be expressed as

_U
~

n ¼ _U
n

p
_U
n

f
_U
n

f

n oT
; (11.15a)

€U
~

n ¼ €U
n

p
€U
n

f
€U
n

f

n oT
: (11.15b)
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The matrix M
~
can be written as

M
~
¼

D 0 0

0 M 0

0 0 M

2
4

3
5: (11.16)

The vector F
~
is given as

F
~

n ¼ Fn
p Fn

f Fn
f

n oT
: (11.17)

As suggested by Underwood (1983), the damping coefficient cn can be deter-

mined as

cn ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ðU
~

nÞT 1KnU
~

n
 �

ðU
~

nÞT U
~

n
�s
; (11.18)

in which 1Kn is the diagonal “local” stiffness matrix expressed as (Underwood

1983)

1Kn
ii ¼ �

�
F
~

n
i m

~
ii � F

~

n�1
i m

~
ii

� �
_U
n�1 2=
i

.
:

�
(11.19)

The time integration is performed by utilizing the central-difference explicit

integration, with a time step size of unity, as

_U
~

nþ1 2= ¼
2� cnð Þ _U

~

n�1 2= þ 2M
~

�1F
~

n

2þ cnð Þ ; (11.20a)

U
~

nþ1 ¼ U
~

n þ _U
~

nþ1 2=
: (11.20b)

However, the integration algorithm given by Eq. 11.20a, b cannot be used to start

the integration due to an unknown velocity field at t�1 2= , but integration can be

started by assuming that U
~

0 6¼ 0 and _U
~

0 ¼ 0, which yields

_U
~

1 2= ¼ M
~

�1F
~

1 2= 2= : (11.21)

Finally, the steps in coupling FEM with PD can be summarized as:

1. Utilize displacement and velocity fields which are known at time steps i, where

i � n:
2. Compute displacement of collocation points within the overlap region using

nodal displacements within the overlap region.
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3. Compute force densities associated with collocation points within the overlap

region.

4. Apply force densities as body force to finite elements within the overlap region.

5. Integrate to find displacements and velocities at time step ðnþ 1Þ.
6. Repeat previous steps to reach desired number of time steps.

11.2 Validation of Direct Coupling

The validity of the direct coupling approach is demonstrated by considering a bar

and a plate with a hole, both of which are under tension. In the case of a bar, there

exists only one overlap region between PD and FEM solution domains. In the case

of a plate, the region of the hole where failure is expected to occur is modeled with

the PD theory, and the regions far away from the hole are modeled with FEM,

resulting in two overlap regions.

11.2.1 Bar Subjected to Tensile Loading

The isotropic bar under tension at both ends is divided into two regions for

modeling with FEM and PD theory, as illustrated in Fig. 11.2.

Geometric Parameters

Length of the beam: L ¼ 10 in: (FEM region, Lf ¼ 5 in:; PD region, Lp ¼ 5 in:)

Cross-sectional area: A ¼ h� h ¼ 0:16 in2

Material Properties

Young’s modulus: E ¼ 107psi

Poisson’s ratio: ν ¼ 0:25

Mass density: ρ ¼ 0:1 lbs=in3

FEA Peridynamics

Lf Lp
h

h

Overlap region

Lb

Fig. 11.2 Dimensions of the bar
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Boundary Conditions

Free of displacement constraints

Applied Loading

Uniaxial tensile force: F ¼ 1600 lbs:

PD Discretization Parameters

Total number of material points in the x-direction: 200

Total number of material points in the y-direction: 8

Total number of material points in the z-direction: 8

Spacing between material points: Δ ¼ 0:05 in:

Incremental volume of material points: ΔV ¼ 125� 10�6 in3

Boundary layer volume: ΔVΔ ¼ 1� 8� 8� 125� 10�6 in3 ¼ 8� 10�3 in3

Applied body force density: bx ¼ F ΔVΔ= ¼ 2� 105 lb=in3

Overlap region: Lb ¼ 0:125 in:
Horizon: δ ¼ 3Δ
Adaptive Dynamic Relaxation: ON

Incremental time step size: Δt ¼ 1 s

In addition to the coupled approach, the entire bar is also modeled by using

either the PD theory or the FEM. The FE model was constructed using SOLID45

brick elements of ANSYS, a commercially available program. The uniaxial tension

is applied as surface tractions at the end surfaces of the bar. A comparison of the

displacements from the coupled approach with those of the PD theory and the FEM

is shown in Fig. 11.3. There is an approximately 5 % difference among the models

using only the PD theory and FEM. The contour plot of horizontal displacements

from the coupled approach is shown in Fig. 11.4.
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Fig. 11.3 Comparison

of horizontal displacements

of the bar
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11.2.2 Plate with a Hole Subjected to Tensile Loading

The isotropic plate with a hole under tension at both ends is divided into three

different regions for coupled modeling of the FEM and PD theory, as illustrated in

Fig. 11.5. The extent of the PD and FEM regions is defined byLp andLf , respectively.

Geometric Parameters

Length of the plate: a ¼ 9 in: (Lf ¼ 2:5 in: and Lp ¼ 4 in:)

Width of the plate: b ¼ 3 in:
Thickness of plate, h ¼ 0:2 in:
Hole radius: r ¼ 0:5 in:

Material Properties

Young’s modulus: E ¼ 107psi

Poisson’s ratio: ν ¼ 0:25

Mass density: ρ ¼ 0:1 lbs=in3

Fig. 11.4 Horizontal displacement contour plot of the bar
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Fig. 11.5 Dimensions of

the plate with a circular

cutout
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Boundary Conditions

Free of displacement constraints

Applied Loading

Uniaxial tensile force: F ¼ 6000 lbs:

PD Discretization Parameters

Total number of material points in the x-direction: 180

Total number of material points in the y-direction: 60

Total number of material points in the z-direction: 4

Spacing between material points: Δ ¼ 0:05 in:

Incremental volume of material points: ΔV ¼ 125� 10�6 in3

Overlap region: Lb ¼ 0:125 in:

Boundary layer volume: ΔVΔ ¼ 1� 4� 60� 125� 10�6 in3 ¼ 0:03 in3

Applied body force density: bx ¼ F ΔVΔ= ¼ 2� 105 lb=in3

Horizon: δ ¼ 3Δ
Adaptive Dynamic Relaxation: ON

Incremental time step size: Δt ¼ 1 s

The three-dimensional model is constructed by discretizing the domain, as

shown in Fig. 11.6. The validity of the coupled approach is established by

Peridynamics

Overlap

region

FEA

Fig. 11.6 Three dimensional discretization of the plate for coupled analysis
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comparing the steady-state displacements from the PD theory and FEM using

ANSYS, a commercially available program. Both the PD and FE models are

constructed by utilizing the same discretization as that of coupled model shown

in Fig. 11.6. The FE model was constructed using the SOLID45 brick elements of

ANSYS. Figure 11.7 shows the horizontal displacements along the bottom line of

the plate. The comparison of horizontal displacements indicates a close agreement

among the coupled analysis, peridynamic theory, and finite element method.
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Chapter 12

Peridynamic Thermal Diffusion

The peridynamic (PD) theory can be applied to other physical fields such as thermal

diffusion, neutronic diffusion, vacancy diffusion, and electrical potential distribu-

tion. This paves the way for fully coupling various field equations and deformation

within the framework of peridynamics using the same computational domain.

12.1 Basics

In heat conduction, the thermal energy is transported through phonons, lattice

vibrations, and electrons. Usually, electrons are the vehicles through which thermal

energy is transported in metals while phonons are the heat carriers in insulators and

semiconductors. This process of thermal energy transfer is inherently nonlocal

because the carriers arrive at one point, having brought thermal energy from

another. The mean free path of the heat carriers is the average distance a carrier

travels before its excess energy is lost. As the heat carriers’ mean free path becomes

comparable to the characteristic lengths, the nonlocality needs to be taken into

account in the continuum model.

Although heat transfer and temperature are closely related, they are of a different

nature. Temperature has only a magnitude, and heat transfer has a direction as well

as a magnitude. Temperature difference between the material points in a medium is

the driving force for any type of heat transfer. In a body, heat flows in the direction

of decreasing temperature. Physical experiments show that the rate of heat flow is

proportional to the gradient of the temperature, and the proportionality constant, k,
represents thermal conductivity of the material. This observation, referred to as

Fourier’s law of heat conduction, is expressed as

q ¼ �krΘ; (12.1)

where q is the heat flux vector, k is the thermal conductivity, andrΘ is the gradient

of temperature. The minus sign ensures that heat flows in the direction of decreasing

E. Madenci and E. Oterkus, Peridynamic Theory and Its Applications,
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temperature. The rate of heat entering through the bounding surface, S, with unit

normal, n, can be obtained from

_Q ¼ �
ð
S

q:ndS; (12.2)

in which the minus sign ensures that heat flow is into the body. If the rate of heat, _Q,
is positive, it indicates a heat gain. Otherwise, it is a heat loss. This formulation

employing Fourier’s law as the local constitutive relation has been used success-

fully to model macroscale heat conduction.

12.2 Nonlocal Thermal Diffusion

Nonlocality often becomes important at low temperatures, as exhibited in cryogen-

ics systems, since the heat carriers have a longer mean free path at lower

temperatures. It has been found that nonlocality should also be accounted for in

problems in which the temperature gradients are steep. This is because the penetra-

tion depth, the length characterizing the temperature gradient, becomes short, even

becoming the same order of magnitude as the mean free path of the carrier. In such

instances, it is necessary to consider the nonlocality of the heat transport in a

continuum model. With the miniaturization of devices, the short geometric length

scales also necessitated the inclusion of nonlocal effects in microscale and nano-

scale models (Tien and Chen 1994).

Several nonlocal heat conduction theories have been proposed in the last few

decades. In the early 1980s, Luciani et al. (1983) developed a nonlocal theory to

better represent electron heat transport down a steep temperature gradient by

introducing a nonlocal expression for the heat flux. The nonlocal model was in

better agreement with probabilistic simulations (Fokker-Planck simulations) than

the local models. Later, Mahan and Claro (1988) proposed a nonlocal relation

between the heat current, determined from Boltzmann’s equation, and the tempera-

ture gradient. In the 1990s, Sobolev (1994) introduced a model in which both space

and time nonlocality are taken into account in the strong form, i.e., integral form, of

the energy balance, Gibbs, and entropy balance equations. Lebon and Grmela

(1996), proposed a weakly nonlocal model (weakly nonlocal models are typically

based on gradient formulations). The model was based on nonequilibrium thermo-

dynamics, for which an extra variable is added to the basic state variables to account

for nonlocality. Subsequently, they extended their model to include nonlinearity

(Grmela and Lebon 1998). More recently, the development of nonlocal heat

conduction equations has been motivated by the miniaturization of devices. A

number of researchers have put forth nonlocal models with the objective of

capturing heat transport in microscale and nanoscale devices. One example of

this is the ballistic-diffusive heat equation by Chen (2002), which was derived
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from the Boltzmann’s equation, and it accounts for nonlocality in heat transport.

Another example is by Alvarez and Jou (2007). They developed their model by

including nonlocal (and memory/lag) effects in irreversible thermodynamics. Tzou

and Guo (2010) constructed their model by incorporating a nonlocal (and lag) term

into the Fourier law.

An area of interest is determining the temperature field in the presence of

emerging discontinuities. One class of problems that contains a discontinuity is

the heat transfer process that involves phase changes such as solidification and

melting (Özişik 1980). This process is commonly referred to as the Stefan problem,

and there are a number of technologically important problems that involve heat

transfer with phase change. Examples of these include ablation of space vehicles

during reentry and casting of metals. Another heat conduction problem with an

emerging discontinuity is the rewetting problem from the nuclear industry.

Rewetting in a nuclear reactor is employed to restore temperatures to a safe range

following accidental dry-out or loss of coolant. Emergency cooling is introduced to

the system via an upward moving water front or by spraying from the top of the

reactor (Duffey and Porthous 1973; Dorfman 2004). A moving discontinuity occurs

in the heat-generating solid at the quench front due to the sudden change in the heat

transfer condition at the solid surface.

A peridynamic approach to heat conduction is advantageous because it not only

accounts for nonlocality but it also allows for the determination of the temperature

field in spite of discontinuities. The peridynamic heat conduction is a continuum

model; it is not a discrete model. As such, the phonon and electron motions are not

explicitly modeled. Initial successful attempts have recently been made to develop

heat conduction equations in the peridynamic framework. Gerstle et al. (2008)

developed a PD model for electromigration that accounts for heat conduction in a

one-dimensional body. Additionally, Bobaru and Duangpanya (2010, 2012)

introduced a multi-dimensional peridynamic heat conduction equation, and consid-

ered domains with discontinuities such as insulated cracks. Both studies adopted the

bond-based PD approach. Later, Agwai (2011) derived a state-based PD heat

conduction equation, which is described in the subsequent section.

12.3 State-Based Peridynamic Thermal Diffusion

Within the peridynamic framework, the interaction between material points is

nonlocal. For thermal diffusion, the nonlocal interaction between material points

is due to the exchange of heat energy. Therefore, a material point will exchange

heat with points within its neighborhood defined by the horizon. In the Lagrangian

formalism, the governing heat conduction equation corresponds to the Euler-

Lagrange equation. The Euler-Lagrange equation based on the Lagrangian, L, is
given in the following form (Moiseiwitsch 2004):
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d

dt

@L

@ _Θ

� �
� @L

@Θ
¼ 0; (12.3a)

with

L ¼
ð
V

LdV; (12.3b)

in which Θ is the temperature and L is the Lagrangian density. The Lagrangian

density of a peridynamic material point can be defined as

L ¼ Z þ ρs
_

Θ; (12.4)

where Z is thermal potential and is a function of all the temperatures of the points

with which x interacts, ρ is the density, and s
_

is the heat source per unit mass, which

includes the rate of heat generation per unit volume and the internal energy storage.

There is a thermal potential associated with each material point, and the term ZðiÞ
represents the thermal potential of material point xðiÞ. The microthermal potential,

zðiÞðjÞ; is the thermal potential due to the interaction (exchange of heat energy)

between material points xðiÞ and xðjÞ. The microthermal potential is related to heat

energy exchange, which depends on the temperature difference between the mate-

rial points. Therefore, the microthermal potential is dependent on the temperature

difference between pairs of material points. More specifically, the microthermal

potential, zðiÞðjÞ, depends on the temperature difference between point i and all other

material points that interact with point xðiÞ . Note that the microthermal potential

zðjÞðiÞ 6¼ zðiÞðjÞ , as zðjÞðiÞ depends on the state of material points that interact with

material point xðjÞ. The microthermal potential is denoted as follows:

zðiÞðjÞ ¼ zðiÞðjÞ Θð1iÞ � ΘðiÞ; Θð2iÞ � ΘðiÞ; � � �
� �

; (12.5a)

zðjÞðiÞ ¼ zðjÞðiÞ Θð1jÞ � ΘðjÞ; Θð2jÞ � ΘðjÞ; � � �
� �

; (12.5b)

whereΘðiÞ is the temperature at pointxðiÞ,Θð1iÞ is the temperature of the first material

point that interacts with point xðiÞ, and, similarly,ΘðjÞ is the temperature at point xðjÞ
whileΘð1jÞ is the temperature of the first material point that interacts with point xðjÞ.

The thermal potential of point xðiÞ, ZðiÞ is defined as

ZðiÞ ¼
1

2

X1
j¼1

1

2
zðiÞðjÞ Θð1iÞ � ΘðiÞ; Θð2iÞ � ΘðiÞ; � � �

� ��
þ zðjÞðiÞ Θð1jÞ � ΘðjÞ; Θð2jÞ � ΘðjÞ; � � �

� ��
VðjÞ;

(12.6)
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where VðjÞ is the volume associated with material point xðjÞ. Basically, this equation
indicates that the thermal potential at a point is the summation over all the

microthermal potential associated with that point. The microthermal potential and

therefore thermal potential are both functions of temperature. The Euler-Lagrange

equation, Eq. 12.3a, for material point xðkÞ becomes

d

dt

@L

@ _ΘðkÞ

 !
� @L

@ΘðkÞ
¼ 0; (12.7a)

in which

L ¼
X1
i¼1

LðiÞ VðiÞ; (12.7b)

with

LðiÞ ¼ ZðiÞ þ ρs
_

ðiÞΘðiÞ: (12.7c)

Consequently, invoking Eq. 12.6 into Eq. 12.7b results in the Lagrangian

function as

L ¼
X1
i¼1

1

2

X1
j¼1

1

2

zðiÞðjÞ Θð1iÞ � ΘðiÞ;Θð2iÞ � ΘðiÞ; � � �
� �

þzðjÞðiÞ Θð1jÞ � ΘðjÞ;Θð2jÞ � ΘðjÞ; � � �
� �

" #
VðjÞ

(

þ ρs
_

ðiÞΘðiÞ

)
VðiÞ;

(12.8a)

which can be written in an expanded form by showing only the terms associated

with the material point xðkÞ:

L ¼ � � � 1
2

X1
j¼1

�
1

2
zðkÞðjÞ Θð1kÞ � ΘðkÞ; Θð2kÞ � ΘðkÞ; � � �

� ��

þ zðjÞðkÞ Θð1jÞ � ΘðjÞ; Θð2jÞ � ΘðjÞ; � � �
� ��

VðjÞ

	
VðkÞ � � �

� � � þ 1

2

X1
i¼1

�
1

2
zðiÞðkÞ Θð1iÞ � ΘðiÞ; Θð2iÞ � ΘðiÞ; � � �

� ��

þ zðkÞðiÞ Θð1kÞ � ΘðkÞ; Θð2kÞ � ΘðkÞ; � � �
� ��

VðkÞ

	
VðiÞ � � �

� � � þ ρs
_

ðkÞΘðkÞ
� �

VðkÞ � � �

(12.8b)
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or

L ¼ � � �
X1
j¼1

1

2
zðkÞðjÞ Θð1kÞ � ΘðkÞ; Θð2kÞ � ΘðkÞ; � � �

� ���

þ zðjÞðkÞ Θð1jÞ � ΘðjÞ; Θð2jÞ � ΘðjÞ; � � �
� ��

VðjÞ

	
VðkÞ � � �

� � � þ ρs
_

ðkÞΘðkÞ
� �

VðkÞ � � � :

(12.8c)

With this representation, the Euler-Lagrange equation, Eq. 12.7a, becomes

X1
j¼1

1

2

X1
i¼1

@zðkÞðiÞ
@ ΘðjÞ � ΘðkÞ
� �VðiÞ

 !
@ ΘðjÞ � ΘðkÞ
� �

@ΘðkÞ

 

þ
X1
j¼1

1

2

X1
i¼1

@zðiÞðkÞ
@ ΘðkÞ � ΘðjÞ
� �VðiÞ

 !
@ ΘðkÞ � ΘðjÞ
� �

@ΘðkÞ
VðjÞ

!
VðkÞ þ ρs

_

ðkÞ VðkÞ ¼ 0

(12.9a)

or

�
X1
j¼1

1

2

X1
i¼1

@zðkÞðiÞ
@ ΘðjÞ � ΘðkÞ
� �VðiÞ

 !
þ
X1
j¼1

X1
i¼1

@zðiÞðkÞ
@ ΘðkÞ � ΘðjÞ
� �VðiÞ

 !
þ ρs

_

ðkÞ ¼ 0;

(12.9b)

in which the terms
P1
i¼1

VðiÞ@zðkÞðiÞ=@ðΘðjÞ � ΘðkÞÞ and
P1
i¼1

VðiÞ@zðiÞðkÞ=@ðΘðkÞ � ΘðjÞÞ
can be thought of as the heat flow density from material point xðjÞ to material point

xðkÞ and the heat flow density from material point xðkÞ to xðjÞ, respectively. Based on
this interpretation, HðkÞðjÞ and HðjÞðkÞ are introduced and defined as

HðkÞðjÞ ¼ 1

2

1

VðjÞ

X1
i¼1

@zðkÞðiÞ
@ ΘðjÞ � ΘðkÞ
� �VðiÞ

 !
and HðjÞðkÞ ¼ 1

2

1

VðjÞ

X1
i¼1

@zðiÞðkÞ
@ ΘðkÞ � ΘðjÞ
� �VðiÞ

 !
:

(12.10)

Using these definitions allows Eq. 12.9b to be rewritten as follows:

X1
j¼1

�HðkÞðjÞ þ HðjÞðkÞ
� �

VðjÞ þ ρs
_

ðkÞ ¼ 0: (12.11)

A PD state can be thought of as an infinite dimensional array that contains certain

information about all the interactions associated with a particular material point. All of

the heat flow density associated with each interaction assembled in an infinite-

dimensional array is referred to as the heat flow scalar state, �hðx; tÞ , where t is the
time.Theassembledheat flowstate formaterial pointsxðkÞandxðjÞmaybe represented as
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h xðkÞ; t
� � ¼

..

.

HðkÞðjÞ
..
.

8>><
>>:

9>>=
>>; and h xðjÞ; t

� � ¼
..
.

HðjÞðkÞ
..
.

8>><
>>:

9>>=
>>;: (12.12)

The heat flow state associates each pair of interacting material points with a heat

flow density, and enables the expressions for heat flow densities HðkÞðjÞ and HðjÞðkÞ as

HðkÞðjÞ ¼ h xðkÞ; t
� �

xðjÞ � xðkÞ

 �

and HðjÞðkÞ ¼ h xðjÞ; t
� �

xðkÞ � xðjÞ

 �

; (12.13)

where the angled brackets include the interacting material points. The microthermal

potentials may also be assembled in a state, which is called the microthermal

potential scalar state, zðx; tÞ, permitting the following representation:

zðkÞðjÞ ¼ z xðkÞ; t
� �

xðjÞ � xðkÞ

 �

and zðjÞðkÞ ¼ z xðjÞ; t
� �

xðkÞ � xðjÞ

 �

: (12.14)

Applying the state notation, Eq. 12.11 can be rewritten as

X1
j¼1

h xðkÞ; t
� �

xðjÞ � xðkÞ

 �� h xðjÞ; t

� �
xðkÞ � xðjÞ

 �� �

VðjÞ � ρs
_

ðkÞ ¼ 0: (12.15)

Transforming the summation to integration over the material points within the

horizon as given by

X1
j¼1

�ð ÞVðjÞ !
ð
H

�ð Þ dVx0 (12.16)

permits Eq. 12.15 to be recast as

ð
H

h x; tð Þ x0 � xh i � h x0; tð Þ x� x0h ið ÞdVx0 � ρs
_ ¼ 0; (12.17)

where hðx; tÞ x0 � xih ¼ 0 for x0 =2H, and the domain of integration,H, is defined by
the horizon of the material point, x, that interacts with other material points in its

own family.

For convenience, the following notation is adopted:

h x; tð Þ ¼ h; h x0; tð Þ ¼ h0: (12.18)

Also, the temperature scalar state, τ, is defined as

τ x; tð Þ x0�xh i ¼ Θ x0; tð Þ � Θ x; tð Þ: (12.19)
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The temperature state simply contains the temperature difference associated

with each interaction of a particular material point. Since, the microthermal poten-

tial is dependent on the temperature difference of all the interactions associated

with the material point, it may be written as a function of the temperature state

z ¼ z τð Þ: (12.20)

Therefore, the heat flow state can also be written as a function of the temperature

state

h ¼ h τð Þ: (12.21)

As outlined by Bathe (1996), the heat conduction equation should explicitly

include the rate at which heat energy is stored when the heat flow changes over a

short period of time. This rate of internal energy storage density, _εs , is a negative

energy source and is given by

_εs ¼ cv
@Θ
@t

; (12.22)

for which cv is the specific heat capacity.

Therefore, the source term in Eq. 12.15 is then replaced by s
_ ¼ _εs � sb, where sb

is the heat source due to volumetric heat generation per unit mass. Invoking

Eq. 12.22 into Eq. 12.15 leads to the transient form of the state-based peridynamic

thermal diffusion equation

ρcv _Θ x; tð Þ ¼
ð
H

h x; tð Þ x0�xh i � h x0; tð Þ x� x0h idV0 þ hs x; tð Þ; (12.23)

in which hsðx; tÞ ¼ ρsbðx; tÞ is the heat source due to volumetric heat generation.

The resulting equation is an integro-differential equation in time and space. It

contains differentiation with respect to time, and integration in the spatial domain.

It does not contain any spatial derivatives of temperature; thus, the PD thermal

equation is valid everywhere whether or not discontinuities exist in the domain.

Construction of its solution involves time and spatial integrations while being

subject to conditions on the boundary of the domain, R, and initial conditions.
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12.4 Relationship Between Heat Flux and Peridynamic

Heat Flow States

The heat flow scalar state, h, contains the heat flow densities associated with all the

interactions. The heat flow density, hðx; tÞ x0 � xih , has units of heat flow rate (rate

of heat energy change) per volume squared. The integral in Eq. 12.23

ð
H

h x; tð Þ x0 � xh i � h x0; tð Þ x� x0h idV0 (12.24)

is similar to the divergence of heat flux,r � q, and it has units of heat flow rate per

volume. Therefore, the peridynamic heat flow state can be related to the heat flux,q.

Multiplying the PD heat conduction equation, Eq. 12.23, by a temperature

variation of ΔΘ and integrating over the entire domain results in

ð
V

ρcv _ΘΔΘdV ¼
ð
V

ð
H

h x; tð Þ x0 � xh i � h x0; tð Þ x� x0h i½ �ΔΘdV0dV

þ
ð
V

hs x; tð ÞΔΘdVt :
(12.25)

Moving the last term on the right-hand side of Eq. 12.25, the heat generation

term, to the left-hand side, and changing the integration from H to V due to the fact

that

h x; tð Þ x0 � xh i ¼ h x0; tð Þ x� x0h i ¼ 0 for x0 =2H; (12.26)

leads to the following form of the equation:

ð
V

ρcv _Θ� hs x; tð Þ� �
ΔΘdV ¼

ð
V

ð
V

½h x; tð Þ x0 � xh i �h x0; tð Þ x� x0h i�ΔΘdV0dV :

(12.27)

If the parameters x and x0 in the second integral on the right-hand side of

Eq. 12.27 are exchanged, the second integral becomes

ð
V

ð
V

h x0; tð Þ x� x0h iΔΘdV0dV ¼
ð
V

ð
V

h x; tð Þ x0 � xh iΔΘ0dVdV 0: (12.28)

Substituting from Eq. 12.28 into Eq. 12.27, leads to
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ð
V

ρcv _Θ� hs x; tð Þ� �
ΔΘdV ¼

ð
V

ð
V

h x; tð Þ x0 � xh i ΔΘ� ΔΘ0ð ÞdV0dV: (12.29)

Invoking the variation of the temperature scalar state, Δτ, from Eq. 12.19 into

Eq. 12.29 results in ð
V

ρcv _Θ� hs x; tð Þ� �
ΔΘdV ¼

ð
V

ΔZdV; (12.30)

where ΔZ corresponds to the variation of the PD thermal potential at x due to its

interactions with all other material points:

ΔZ ¼ �
ð
V

h x; tð Þ x0 � xh ið Þ Δτ x0 � xh ið ÞdV0: (12.31)

Considering only the material points within the horizon, Eq. 12.31 can be

rewritten as

ΔZ ¼ �
ð
H

h x; tð Þ x0 � xh ið Þ Δτ x0�xh ið ÞdV0: (12.32)

Based on the classical formulation, the corresponding variation of thermal

potential can be written as

ΔẐ �G
� � ¼ 1

2
Δ�G � k �Gþ �G � kΔ �G
� � ¼ k �G � Δ �G; (12.33a)

with Ẑ �G
� �

given by

Ẑ �G
� � ¼ 1

2
�G � k �G; (12.33b)

where k is the thermal conductivity and �G ¼ rΘ . After invoking the Fourier

relation, q ¼ �k �G, the variation of classical thermal potential can be rewritten as

ΔẐ �G
� � ¼ �q � Δ�G: (12.34)

By applying the definition of scalar reduction given in the Appendix, the

temperature gradient can be approximated as

Δ�G ¼ 1

m
Δτ � X ¼ 1

m

ð
H

w x0�xh iΔτ x0�xh i � X x0�xh idV0; (12.35)
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in which Δτ is a scalar state, thus not requiring the dyadic, �; operation. It
reduces to

Δ�G ¼ 1

m

ð
H

w x0�xh iX x0 � xh iΔτ x0 � xh idV 0; (12.36)

where w is a scalar state representing the influence function, and m is the scalar

weighted volume defined in the Appendix.

Its substitution into Eq. 12.34 leads to the following:

ΔẐ ¼ � 1

m

ð
H

qTw x0 � xh iX x0 � xh iΔτ x0 � xh idV0: (12.37)

Assuming that the variation of the PD thermal potential, ΔZ , and classical

thermal potential, ΔẐ; are equal, ΔZ ¼ ΔẐ; and comparing Eq. 12.31 to

Eq. 12.37, it follows that

h x; tð Þ x0 � xh i ¼ 1

m
qTw x0�xh iX x0 � xh i; (12.38)

and this expression relates the heat flow state to the heat flux.

12.5 Initial and Boundary Conditions

The PD thermal equation does not contain any spatial derivatives; thus, boundary

conditions are, in general, not necessary for the solution of an integro-differential

equation. However, such conditions on temperature can be imposed in a “fictitious

material layer” along the boundary of a nonzero volume.

Heat flux does not directly appear in the PD thermal diffusion equation. There-

fore, the application of heat flux is also different from that of the classical heat

conduction theory. The difference can be illustrated by considering a region,Ω, that
is in thermal equilibrium. If this region is fictitiously divided into two domains,Ω�

and Ωþ as shown in Fig. 12.1, there must be rates of heat flow _Q
þ
and _Q

�
entering

through the cross-sectional surfaces, @Ω, of domain Ωþ and Ω�:
According to classical heat conduction theory, the heat flow rates, _Q

þ
and _Q

�
;

can be determined by integrating the normal component of the heat flux over the

cross-sectional area, @Ω, of domains Ωþ and Ω� as

_Q
þ ¼ �

ð
@Ω

qþ � nþdS (12.39a)

12.5 Initial and Boundary Conditions 213



and

_Q
� ¼ �

ð
@Ω

q� � n�dS; (12.39b)

in which qþ and q� are the heat fluxes across the surfaces with unit normal vectors,

nþ and n�, of domains Ωþ and Ω�, as shown in Fig. 12.1a, b.

In the case of the PD theory, the material points located in domain Ωþ interact

with the other material points in domain Ω� (Fig. 12.1c). Thus, the heat flow rate,

_Q
þ
, can be computed by volume integration of the heat flux densities (Fig. 12.1d)

over domain Ωþ as

q n

qn
Q

•

a b

c d

Fig. 12.1 Boundary

conditions: (a) heat fluxes

through the cross-sectional

area, (b) heat flow rate in

classical heat conduction

theory, (c) heat flow density

of a material point in

domain Ωþ with other

material points in domain

Ω�, (d) heat flux density

from domain Ωþ due to

domain Ω�

214 12 Peridynamic Thermal Diffusion



_Q
þ ¼

ð
Ωþ

LðxÞdV; (12.40a)

in which LðxÞ, acting on a material point in domain Ωþ, is determined by

LðxÞ ¼
ð
Ω�

h x; tð Þ x0 � xh i � h x0; tð Þ x� x0h i½ �dV : (12.40b)

Note that if the volume Ω� is void, the volume integration in Eq. 12.40b

vanishes. Hence, the heat flux cannot be applied as a boundary condition since its

volume integrations result in a zero value. Therefore, the heat flux can be applied as

rate of volumetric heat generation in a “real material layer” along the boundary of a

nonzero volume.

12.5.1 Initial Conditions

Time integration requires the application of initial temperature values at each

material point in the domain,R, as shown in Fig. 12.2, and they can be specified as

Θðx; t ¼ 0Þ ¼ Θ�ðxÞ: (12.41)

12.5.2 Boundary Conditions

Boundary conditions can be imposed as temperature, heat flux, convection, and

radiation. As shown in Fig. 12.2, the prescribed boundary temperature is imposed

in a layer of a fictitious region,Rt, along the boundary of the actual material surface,

St, of the actual material region,R. Based on numerical experiments, the extent of

the fictitious boundary layer must be equal to the horizon, δ, in order to ensure that

the prescribed temperatures are sufficiently reflected in the actual material region.

The prescribed heat flux, convection, and radiation are imposed in boundary layer

regions, Rf , Rc , and Rr , respectively, with depth, Δ; along the boundary of the

material region, R, as shown in Fig. 12.2.

12.5.2.1 Temperature

As shown in Fig. 12.3a, the prescribed boundary temperature, Θ�ðx�; tÞ , can be

imposed in a layer of a fictitious region, Rt , along the boundary of the actual

material surface, St, as
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Θðy; tþ ΔtÞ ¼ 2Θ�ðx�; tþ ΔtÞ � Θðz; tÞ; x� 2 St; y 2 Rt; z 2 R; (12.42)

in which z represents the position of a material point in R, and x� represents the

location of a point on the surface,St. Their relative position is such that the distance,

d ¼ jx� � zj, between them is the shortest. The location of the image material point

in Rt is obtained from y ¼ zþ 2dn, with n ¼ ðx� � zÞ=jx� � zj. The implementa-

tion of the prescribed temperature boundary condition is demonstrated in

Fig. 12.3b. For the case of Θ�ðx�; tÞ ¼ 0, this representation enforces the tempera-

ture variation in the fictitious region to become the negative mirror image of the

temperature variation near the boundary surface in the actual material, as shown in

Fig. 12.3c.

12.5.2.2 Heat Flux

Application of this type of boundary condition is accomplished by first calculating

the rate of heat entering through the bounding surface by using Eq. 12.2, converting

the heat flow rate, _Q , to a heat generation per unit volume, and then specifying

this volumetric heat generation to collocations points in the boundary region.

Assuming the cross-sectional area is constant for each material point, conversion

is achieved by

~Q ¼
_Q

Vf
¼

� Ð
Sf

q:ndS

Vf
¼ � q � nSf

SfΔ
¼ � q � n

Δ
; (12.43)

f

f

r

c

t

t

c

r

Fig. 12.2 Boundary layers

for imposing temperature,

heat flux, convection, and

radiation
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where ~Q is the volumetric heat generation, q is the heat flux, Sf is the area over

which the heat flux is applied, and Vf is the volume of the boundary region.

Specified flux, q�ðx; tÞ, over the surface Sf , shown in Fig. 12.2, can be applied as

the rate of volumetric heat generation in a boundary layer, Rf , as

hsðx; tÞ ¼ � 1

Δ
q�ðx; tÞ � n; for x 2 Rf : (12.44)

If there exists no specified flux, q�ðx; tÞ ¼ 0 , volumetric heat generation, ~Q
calculated from Eq. 12.43 vanishes. Thus, the implementation of a zero flux

boundary condition can be viewed as imposing a zero-valued volumetric heat

generation. Alternative to this implementation, zero flux can be achieved by

assigning the mirror image of the temperature values near the boundary in the

actual domain to the material points in the fictitious region, as shown in Fig. 12.4.

y

z

*x

d

n

t

t

a

b c

Fig. 12.3 (a) Material

point and its image in a

fictitious domain for

applying, (b) a constant

temperature condition and

(c) a zero temperature

condition
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12.5.2.3 Convection

Convection is a heat transfer between the surface of the body and the surrounding

medium. The convection boundary condition is specified as

qðx; tÞ � n ¼ h Θðx; tÞ � Θ1ð Þ; for x 2 Sc; (12.45)

in which Θ1 is the temperature of the surrounding medium, h is the convective

heat transfer coefficient, andΘðx; tÞ is the temperature of the body on the surface,Sc.

Similar to the specified flux condition, convection can be imposed in the form of a

rate of heat generation per unit volume in a boundary layer region, Rc, as

hsðx; tÞ ¼ 1

Δ
h Θ1 � Θðx; tÞð Þ; for x 2 Rc: (12.46)

12.5.2.4 Radiation

Radiation is a heat transfer between the surface of the body and the surrounding

medium. The radiation boundary condition can be written as

qðx; tÞ � n ¼ εσ Θ4ðx; tÞ � Θ4
ss

� �
; for x 2 Sr; (12.47)

in which Θss is the temperature of the surface surrounding the body, Θðx; tÞ is the
surface temperature of the body, σ is the Stefan-Boltzman constant, and ε is

emissivity of the boundary surface. Similar to the imposition of the convection

condition, radiation can also be imposed in the form of rate of heat generation per

unit volume in a boundary layer region, Rr, as

n

dd

y z

*x

Fig. 12.4 Material point

and its image in a fictitious

region for imposing

zero flux
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hsðx; tÞ ¼ 1

Δ
εσ Θ4

ss � Θ4ðx; tÞ� �
; for x 2 Rr: (12.48)

12.6 Bond-Based Peridynamic Thermal Diffusion

If it is assumed that the heat flow density associated between two material points, x

and x0 , is a function of the temperature difference only between these two points,

then the following expression holds true:

h x; tð Þ x0 � xh i ¼ �h x0; tð Þ x� x0h i: (12.49)

This leads to the specialized bond-based PD thermal diffusion. In this

specialized case, the heat flow density, fhðx0; x; tÞ, is defined as

fh x0; x; tð Þ ¼ h x; tð Þ x0 � xh i � h x0; tð Þ x� x0h i ¼ 2h x; tð Þ x0 � xh i; (12.50)

so that the PD heat conduction equation can be written as

ρcv _Θ x; tð Þ ¼
ð
H

fh Θ0;Θ; x0; x; tð ÞdVx0 þ ρsb x; tð Þ: (12.51)

The term fh , also referred to as the thermal response function, is the heat flow

density function that governs only the interaction of material point x with x0. In the

case of bond-based PD thermal diffusion, the pairwise interactions are independent

of each other, and the heat flow between a pair of material points does not depend

on the temperature difference between other pairs of material points. The thermal

response function, fhðx0; xÞ is zero for material points outside the horizon; i.e., jξj
¼ jx0 � xj > δ.

12.7 Thermal Response Function

The pairwise heat flow density can be related to the microthermal potential through

fh ¼ @z

@τ
: (12.52)

The microthermal potential, z, represents the thermal potential between a pair of

interacting points. The temperature difference between the material points x0 and x
at any time is given by
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τ x0; x; tð Þ ¼ Θ x0; tð Þ � Θ x; tð Þ: (12.53)

The thermal potential at point x is then a summation over all microthermal

potentials associated with this point, and is defined as

Z x; tð Þ ¼ 1

2

ð
H

z x0; x; tð ÞdVx0 : (12.54)

The pairwise heat flow density function, fh, can be expressed as

fh x0; x; tð Þ ¼ κ
τ x0; x; tð Þ

ξj j ; (12.55)

whereκ is the thermal microconductivity. Themicrothermal potential corresponding

to the thermal response function, fh, can be obtained as

z ¼ κ
τ2

2 ξj j : (12.56)

The microconductivity is a PD parameter that can be related to the standard

conductivity for a specified horizon.

12.8 Peridynamic Microconductivity

The microconductivity can be determined by equating the peridynamic thermal

potential to the classical thermal potential at a point arising from a simple linear

temperature field. The expression for the microconductivity will differ depending

on the form of the thermal response function. The form given in Eq. 12.55 differs

from those introduced by Bobaru and Duangpanya (2010, 2012) and Gerstle

et al. (2008). In the most general case, heat transfer through a medium is three

dimensional. However, certain problems can be classified as two or one dimen-

sional depending on the relative magnitudes of heat transfer rates in different

directions.

12.8.1 One-Dimensional Analysis

For one-dimensional analysis, a simple linear temperature field of the form ΘðxÞ
¼ x results in the PD temperature difference of
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τ ¼ Θ x0ð Þ � ΘðxÞ ¼ x0 � x ¼ ξ ¼ ξj j: (12.57)

Invoking this temperature difference into Eq. 12.56 results in the PD

microthermal potential as

z ¼ κ
ξ2

2 ξj j ; (12.58)

where jξj ¼ jx0 � xj. Substituting for z from Eq. 12.58 into Eq. 12.54 and performing

the integration leads to the PD thermal potential as

Z ¼ 1

2

ð
H

z ξð ÞdVξ ¼ κ

2

ðδ
0

ξ2

ξj j
� �

Adξ ¼ κδ2A

4
; (12.59)

where A is the cross-sectional area of the volume associated with the material point

x0. The corresponding classical thermal potential from Eq. 12.33b is obtained as

Ẑ ¼ 1

2
k: (12.60)

Equating the peridynamic thermal potential in Eq. 12.59 to the classical thermal

potential given in Eq. 12.60 and solving for κ results in the PD microconductivity

for one-dimensional analysis as

κ ¼ 2k

Aδ2
: (12.61)

12.8.2 Two-Dimensional Analysis

For two-dimensional analysis, a simple linear temperature field of the form Θðx; yÞ
¼ ðxþ yÞ results in the PD temperature difference of

τ ¼ Θ x0; y0ð Þ � Θ x; yð Þ ¼ x0 þ y0 (12.62)

for the material point of interest, x , located at the origin ðx ¼ 0; y ¼ 0Þ .
Invoking this temperature difference into Eq. 12.56 results in the PD microthermal

potential as

z ¼ κ
x0 þ y0ð Þ2
2 ξj j ; (12.63)
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where jξj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02

p
. Substituting for z from Eq. 12.63 into Eq. 12.54 and

performing the integration over the horizon leads to the PD thermal potential as

Z x; tð Þ ¼ 1

2

ð2π
0

ðδ
0

κ
ξCosðθÞ þ ξSinðθÞð Þ2

2 ξj j hξdξdθ ¼ πhκδ3

6
; (12.64)

in which polar coordinates, ðξ; θÞ, are utilized to perform the integration over a disk

with thickness h and radius δ. The corresponding classical thermal potential from

Eq. 12.33b is obtained as

Ẑ ¼ k: (12.65)

Equating the PD thermal potential in Eq. 12.64 to the classical thermal potential

given in Eq. 12.65 and solving for κ results in the PD microconductivity for

two-dimensional analysis as

κ ¼ 6k

πhδ3
: (12.66)

12.8.3 Three-Dimensional Analysis

For three-dimensional analysis, a simple linear temperature field of the form

Θðx; yÞ ¼ ðxþ yþ zÞ results in the PD temperature difference of

τ ¼ Θ x0; y0; z0ð Þ � Θ x; y; zð Þ ¼ x0 þ y0 þ z0ð Þ (12.67)

for the material point of interest, x , located at the origin ðx ¼ 0; y ¼ 0; z ¼ 0Þ .
Invoking this temperature difference into Eq. 12.56 results in the PD microthermal

potential as

z ¼ κ
x0 þ y0 þ z0ð Þ2

2 ξj j ; (12.68)

where jξj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02 þ z02

p
. Substituting for z from Eq. 12.68 into Eq. 12.54 and

performing the integration over the horizon leads to the PD thermal potential as

222 12 Peridynamic Thermal Diffusion



Z x; tð Þ ¼ 1

2

ðδ
0

ð2π
0

ðπ
0

κ
ξCosðθÞSin ϕð Þ þ ξSinðθÞSin ϕð Þ þ ξCosðϕÞð Þ2

2 ξj j

� Sinϕdϕdθξ2dξ ¼ πκδ4

4
;

(12.69)

in which spherical coordinates, ðξ; θ;ϕÞ, are utilized to perform the integration over

a sphere with radius δ . The corresponding classical thermal potential from

Eq. 12.33b is obtained as

Ẑ ¼ 3

2
k: (12.70)

Equating the peridynamic thermal potential in Eq. 12.69 to the classical thermal

potential given in Eq. 12.70 and solving for κ results in the PD microconductivity

for three-dimensional analysis as

κ ¼ 6k

πδ4
: (12.71)

12.9 Numerical Procedure

Numerical techniques are employed in order to solve for the PD thermal diffusion

equation. The region of interest is discretized into subdomains in which the

temperature is assumed to be constant. Thus, each subdomain is represented as a

single integration point located at its mass center with an associated volume and

integration weight, wðjÞ ¼ 1. Subsequently, the integration in the governing equa-

tion, given in Eq. 12.51, is numerically performed as

ρðiÞcvðiÞ _Θ
n
ðiÞ ¼

XN
j¼1

fh τn xðjÞ � xðiÞ
� �� �

VðjÞ þ hnsðiÞ; (12.72)

for which n is the time step number, i represents the point of interest, and j represents
the points within the horizon of i. The volume of the subdomain associated with the

collocation point xðjÞ is denoted by VðjÞ. The time integration is accomplished using

the forward difference time stepping scheme. When forward differencing is

employed, the following equation is solved:
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Θnþ1
ðiÞ ¼ Θn

ðiÞ þ
Δt

ρðiÞcvðiÞ

XN
j¼1

fh τn xðjÞ � xðiÞ
� �� �

VðjÞ þ hnsðiÞ

( )
; (12.73)

where Δt is the time step size.

12.9.1 Discretization and Time Stepping

A one-dimensional region is considered to describe the details of the numerical

scheme. The discretization of a one-dimensional region into subdomains is depicted

in Fig. 12.5. Each subdomain has one integration point. The integration point

represents a material point. The solution is constructed for material point xðiÞ. The
material point xðiÞ interacts with all points within its horizon, represented by xðjÞ. As
shown in Fig. 12.6, material point xðiÞ interacts with six other material points, xðjÞ
ðj ¼ i� 3; i� 2; i� 1; iþ 1; iþ 2; and iþ 3Þ, in its horizon. Thus, the radius

of the horizon is δ ¼ 3Δ, where Δ ¼ jx iþ1ð Þ � xðiÞj.
The discretized form of the PD thermal diffusion equation for material point xðiÞ

becomes

ρðiÞcvðiÞ _Θn
ðiÞ ¼

XN
j¼1

f nhðiÞðjÞVðjÞ þ hnsðiÞ; (12.74)

in which the thermal response function, represented by f nhðiÞðjÞ, is determined at each

time step for every interaction. The discretized equation for the thermal response

function, fh, is cast as

f nhðiÞðjÞ ¼ κ
τnðiÞðjÞ

ξðiÞðjÞ
  : (12.75)

The relative initial position is defined as ξðiÞðjÞ ¼ xðjÞ � xðiÞ while the relative

temperature is defined as τnðiÞðjÞ ¼ Θn
ðjÞ � Θn

ðiÞ . The thermal interaction of material

point xðiÞ with the points within its horizon is illustrated in Fig. 12.6.

The discretized thermal diffusion equation can be expanded as

ρðiÞcvðiÞ _Θn
ðiÞ ¼ f nhðiÞ iþ1ð ÞV iþ1ð Þ þ f nhðiÞ iþ2ð ÞV iþ2ð Þ þ f nhðiÞ iþ3ð ÞV iþ3ð Þ

þ f nhðiÞ i�1ð ÞV i�1ð Þ þ f nhðiÞ i�2ð ÞV i�2ð Þ þ f nhðiÞ i�3ð ÞV i�3ð Þ þ hnsðiÞ :
(12.76)

For marching in time, the forward differencing scheme is used. The time

derivative of temperature at material point xðiÞ is determined at the current time
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step, n, from Eq. 12.76. By employing time integration via the forward differencing

technique, the temperature at the next time step, (n + 1), is determined. This

algorithm may be expressed as

Θnþ1
ðiÞ ¼ Θn

ðiÞ þ Δt _Θn
ðiÞ: (12.77)

12.9.2 Numerical Stability

The forward differencing method utilized for the numerical time integration of the

peridynamic thermal diffusion equation is conditionally stable. Therefore, it is

Fig. 12.5 Discretization of one-dimensional region with collocation points

x
(i 3)

fh(i)(i-3)

x
(i 2)

x
(i 1)

x(i)
x

(i 1)
x

(i 2)

x
(i 3)

fh(i)(i-2)

fh(i)(i-1)

fh(i)(i+1)

fh(i)(i+2)

fh(i)(i+3)

Fig. 12.6 Thermal interaction of points with the horizon of material point xðiÞ
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necessary to develop a stability condition that sets the restriction on the time step

size in order to prevent an unbounded numerical solution. Similar to that performed

by Silling and Askari (2005), a von Neumann stability analysis is adopted in the

derivation of the stability condition. Therefore, the temperature field at each time

step is assumed in the form

Θn
ðiÞ ¼ ζneΓi

ffiffiffiffiffi�1
p

; (12.78)

where Γ , representing the wavenumber, is a real and positive number and ζ is a

complex number. The condition on the time step size ensures that the solution does

not grow in an unbounded manner over time. In order for the solution to be bounded

over time, the following expression must hold true:

ζj j � 1 (12.79)

for every wavenumber Γ.
The discretized peridynamic thermal diffusion equation may be recast as

ρðiÞcvðiÞ _Θ
n
ðiÞ ¼

XN
j¼1

κ

jξðiÞðjÞj
Θn

ðjÞ � Θn
ðiÞ

� �
VðjÞ þ hs

n
ðiÞ: (12.80)

In the absence of a heat source due to volumetric heat generation, invoking

Eq. 12.78 into Eq. 12.80 leads to

ρðiÞcvðiÞ
Δt

ζnþ1 � ζn
� �

eΓi
ffiffiffiffiffi�1

p
¼
XN
j¼1

κ

jξðiÞðjÞj
ζneΓ j�ið Þ ffiffiffiffiffi�1

p
� ζn

� �
eΓi

ffiffiffiffiffi�1
p

VðjÞ: (12.81)

Canceling out common terms reduces Eq. 12.81 to

ρðiÞcvðiÞ
Δt

ζ � 1ð Þ ¼
XN
j¼1

κ

jξðiÞðjÞj
eΓ j�ið Þ ffiffiffiffiffi�1

p
� 1

� �
VðjÞ

¼
XN
j¼1

κ

jξðiÞðjÞj
cosΓ j� ið Þ � 1ð ÞVðjÞ :

(12.82)

This equation can be recast as

ρðiÞcvðiÞ
Δt

ζ � 1ð Þ ¼ �MΓ; (12.83)

in which MΓ is defined by
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MΓ ¼
XN
j¼1

κ

jξðiÞðjÞj
1� cosΓ j� ið Þð ÞVðjÞ: (12.84)

Solving for ζ in Eq. 12.83 gives

ζ ¼ 1� Δt
ρðiÞcvðiÞ

MΓ: (12.85)

Enforcing the condition jζj � 1 results in the following constraint:

0 � Δt
ρðiÞcvðiÞ

MΓ � 2: (12.86)

The restriction on the time step size is determined as

Δt <
2ρðiÞcvðiÞ

MΓ
: (12.87)

For the condition jζj � 1 to be valid for all wavenumbers, Γ, Eq. 12.84 leads to

the condition of

MΓ �
XN
j¼1

2
κ

jξðiÞðjÞj
VðjÞ: (12.88)

Substituting Eq. 12.88 into Eq. 12.87 leads to the stability condition as

Δt <
ρðiÞcvðiÞPN

j¼1

κ
jξðiÞðjÞjVðjÞ

: (12.89)

Due to the dependence of κ on the horizon, the stability condition given in

Eq. 12.89 is dependent on δ.

12.10 Surface Effects

The PD microconductivity parameter, κ , that appears in the thermal response

function, fh , is determined by computing the thermal potential of a material point

whose horizon is completely embedded in the material. The value of this parameter

depends on the domain of integration defined by the horizon. Therefore, the value

of κ requires correction if the material point is close to free surfaces or material
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interfaces (Fig. 12.7). Since the presence of free surfaces is problem dependent, it is

impractical to resolve this issue analytically. The correction of the material

parameters is achieved by numerically integrating the PD thermal potential at

each material point inside the body for simple temperature distribution and com-

paring it to its counterpart obtained from the classical thermal potential.

The simple temperature distribution can be linear in form, and the corresponding

thermal potential, Z1, of a point completely embedded in the material is calculated

using Eq. 12.33b. Subsequently, the PD thermal potential due to the applied linear

temperature distribution is computed for each material point through numerical

integration over its horizon from

ZðiÞ ¼ 1

2

ð
H

z ξð ÞdVξ ¼ 1

2

XN
j¼1

zðiÞðjÞVðjÞ; (12.90)

in which the micropotential, zðiÞðjÞ, between material points xðiÞ and xðjÞ depends on
the material microconductivity.

As shown in Fig. 12.8, the material point xðiÞ may interact with material points

xðjÞ and xðmÞ . Material points xðiÞ and xðjÞ are embedded in material 1, and xðmÞ is
embedded in material 2. Thus, the microconductivity between points xðiÞ and xðjÞ is
κðiÞðjÞ, and it differs from κðiÞðmÞ between material points xðiÞ and xðmÞ. Because the
material points xðiÞ and xðmÞ are embedded in two different materials, their

microconductivity, κðiÞðmÞ; can be expressed in terms of an equivalent thermal

conductivity as

kðiÞðmÞ ¼
‘1 þ ‘2
‘1
k1
þ ‘2

k2

; (12.91)

Surface Interface

Material 1

Material 2

Point 1

Point 2

Point 3

Fig. 12.7 Surface effects

in the domain of interest
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in which ‘1 represents the segment of the distance between material points xðiÞ and
xðmÞ in material 1 whose thermal conductivity is k1, and ‘2 represents the segment in

material 2 whose thermal conductivity is k2.
The thermal potential of material point xðiÞ is denoted by ZðiÞ . The correction

factor is determined for each material point in the domain as

gðiÞ ¼ Z1
ZðiÞ

: (12.92)

Therefore, the discretized thermal diffusion equation including the correction

factor for point xðiÞ becomes

ρðiÞcvðiÞ _Θ
n
ðiÞ ¼

XN
j¼1

gðiÞðjÞf nhðiÞðjÞVðjÞ þ ρðiÞsb
n
ðiÞ; (12.93)

where gðiÞðjÞ ¼ gðiÞ þ gðjÞ=2. Finally, the discretized equation of motion for material

point xðiÞ, including surface and volume correction, υc, is rewritten as

ρðiÞcvðiÞ _Θn
ðiÞ ¼

XN
j¼1

gðiÞðjÞf nhðiÞðjÞ υcðjÞVðjÞ
� �þ ρðiÞsb

n
ðiÞ: (12.94)

Also, the thermal response functions between material points xðiÞ and xðjÞ and xðiÞ
and xðmÞ are modified to reflect the change in microconductivity as

f nhðiÞðmÞ ¼ κðiÞðmÞ
τnðiÞðmÞ

ξðiÞðmÞ
  and f nhðiÞðjÞ ¼ κðiÞðjÞ

τnðiÞðjÞ

ξðiÞðjÞ
  : (12.95)

Fig. 12.8 Material point

xðiÞ close to an interface
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12.11 Validation

In achieving the numerical results, the bond-based peridynamics approach is

adopted while utilizing the numerical schemes described in the preceding sections.

The predictions from the peridynamic simulations are compared against the classi-

cal solution to establish the validity of the peridynamic heat transfer analysis.

12.11.1 Finite Slab with Time-Dependent
Surface Temperature

A finite slab initially at zero temperature is subjected to a boundary temperature

that increases linearly with time. Its geometric description and discretization are

depicted in Fig. 12.9.

Geometric Parameters

Slab thickness: L ¼ 0:01 m

Material Properties

Specific heat capacity: cv ¼ 64 J=kgK
Thermal conductivity: k ¼ 233 W=mK

Mass density: ρ ¼ 260 kg=m3

Initial Conditions

Θðx; 0Þ ¼ 0	C; 0 � x � L

Boundary Conditions

Θð0; tÞ ¼ 0; ΘðL; tÞ ¼ At with A ¼ 500; 0 � t < 1

PD Discretization Parameters

Total number of material points in the x-direction: 100
Spacing between material points: Δ ¼ 0:0001 m

L

Fig. 12.9 Discretization of the finite slab and the fictitious boundary regions for temperatures
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Incremental volume of material points: ΔV ¼ 1� 10�12 m3

Volume of fictitious boundary layer: Vδ ¼ ð3Þ � ΔV ¼ 3� 10�12 m3

Horizon: δ ¼ 3:015Δ
Time step size: Δt ¼ 10�6 s

The classical analytical solution (Jiji 2009) can be expressed as

Θðx; tÞ ¼ A
x

L
þ A

ρcv2L2

kπ3

�
X1
n¼1

�1ð Þn
n3

sin
nπ

L
x

� �
1� exp � k

ρcv

nπ

L

� �2
t

� �� �
: (12.96)

The temperature variation is predicted at t ¼ 0:0125 s, t ¼ 0:025 s, t ¼ 0:0375 s,

and t ¼ 0:05 s. Both analytical and PD predictions are shown in Fig. 12.10, and they

are in close agreement. Because the temperature on the right boundary increases as

a function of time, the rate of heat transfer from the right boundary also increases, as

expected.

12.11.2 Slab with Convection Boundary Condition

A plate of thickness L, initially at temperature Θðx; 0Þ ¼ FðxÞ, dissipates heat by
convection for times t > 0 from its surfaces into an environment at Θ1 ¼ 0	C.
The plate initially has a linear temperature profile, and two surfaces are subjected
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to convective heat transfer. Its geometric description and discretization are depicted

in Fig. 12.11.

Geometric Parameters

Slab thickness: L ¼ 1 m

Material Properties

Specific heat capacity: cv ¼ 64 J=kgK
Thermal conductivity: k ¼ 233 W=mK

Mass density: ρ ¼ 260 kg=m3

Initial Conditions

Θðx; 0Þ ¼ FðxÞ; 0 � x � L; with FðxÞ ¼ x

Boundary Conditions

�k@Θ=@x ¼ h1 Θ1 � Θð Þ; t > 0; at x ¼ 0

k@Θ=@x ¼ h2 Θ1 � Θð Þ; t > 0; at x ¼ L

with h1 ¼ 10W=m2K; h2 ¼ 20W =m2K; Θ1 ¼ 0	C

PD Discretization Parameters

Total number of material points in the x-direction: 500
Spacing between material points: Δ ¼ 0:002 m

Incremental volume of material points: ΔV ¼ 8� 10�9 m3

Volume of boundary layer: VΔ ¼ 8� 10�9 m3

Horizon: δ ¼ 3:015Δ
Time step size: Δt ¼ 10�6 s

Rate of heat generation per unit volume at x ¼ 0:

hs1ðx; tÞ ¼ h1ðΘ1 � Θðx; tÞÞ=Δ; x 2 Rc1

Rate of heat generation per unit volume at x ¼ L:
hs2ðx; tÞ ¼ h2ðΘ1 � Θðx; tÞÞ=Δ; x 2 Rc2

L

Fig. 12.11 Discretization of the finite slab and boundary regions for convection
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The classical analytical solution of the problem is given by Özişik (1980) as

Θ x; tð Þ ¼
X1
m¼1

e�
k

ρcv
β2mt

1

N βmð ÞX βm; xð Þ
ðL
0

X βm; x
0ð ÞFðx0Þdx0; (12.97)

in which Xðβm; xÞ represents the eigenfunctions, βm represents the eigenvalues, and

NðβmÞ represents the normalization integral. The eigenfunctions, eigenvalues, and

normalization integral are as follows:

X βm; xð Þ ¼ βmCos βmxð Þ þ H1Sin βmxð Þ; (12.98a)

tan βmLð Þ ¼ βm H1 þ H2ð Þ
β2m � H1H2

; (12.98b)

N βmð Þ ¼ 1

2
β2m þ H2

1

� �
Lþ H2

β2m þ H2
2

 !
þ H1

" #
; (12.98c)

withH1 ¼ h1=k andH2 ¼ h2=k. The temperature variation is predicted at t ¼ 0:5 s,

t ¼ 2:5 s, t ¼ 5 s, and t ¼ 10 s. Both analytical and PD predictions are shown in

Fig. 12.12, and they are in close agreement.
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12.11.3 Plate Under Thermal Shock with Insulated
Boundaries

A square plate of isotropic material under thermal shock with insulated boundaries,

shown in Fig. 12.13, was first considered by Hosseini-Tehrani and Eslami (2000)

using the Boundary Element Method (BEM).

Geometric Parameters

Length: L ¼ 10 m

Width: W ¼ 10 m

Thickness: H ¼ 1 m

Material Properties

Specific heat capacity: cv ¼ 1 J=kgK
Thermal conductivity: k ¼ 1 W=mK

Mass density: ρ ¼ 1 kg=m3

Initial Conditions

Θðx; y; t ¼ 0Þ ¼ 0	C

Boundary Conditions

Θ;xðx ¼ 10; yÞ ¼ 0; t > 0

Θ;yðx; y ¼ 
5Þ ¼ 0; t > 0

Θðx ¼ 0; tÞ ¼ 5te�2t; t > 0

L

W
x

y

Fig. 12.13 Peridynamic model of the plate
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PD Discretization Parameters

Total number of material points in the x-direction: 500
Total number of material points in the y-direction: 500
Spacing between material points: Δ ¼ 0:02 m

Incremental volume of material points: ΔV ¼ 4� 10�4 m3

Volume of fictitious boundary layer: Vδ ¼ ð3� 500Þ � ΔV ¼ 0:6 m3

Horizon: δ ¼ 3:015Δ
Time step size: Δ t ¼ 5� 10�4 s

The temperature variations at y ¼ 0 are predicted for t ¼ 3 s and t ¼ 6 s. Both

BEM and PD predictions are shown in Fig. 12.14, and they are in close agreement.

12.11.4 Three-Dimensional Block with Temperature
and Insulated Boundaries

A block of isotropic material is subjected to constant temperatures at both ends

while its lateral surfaces are insulated. The schematic of the problem is described in

Fig. 12.15.

Geometric Parameters

Length: L ¼ 0:01 m

Width: W ¼ 0:001 m

Thickness: H ¼ 0:001 m

PD t = 3 s
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Fig. 12.14 Temperature

variation from

peridynamics and BEM at y
¼ 0 (Hosseini-Tehrani and

Eslami 2000)
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Material Properties

Specific heat capacity: cv ¼ 64 J=kgK
Thermal conductivity: k ¼ 233 W=mK

Mass density: ρ ¼ 260 kg=m3

Initial Conditions

Θðx; y; z; 0Þ ¼ 100	C; 0 � x � L; 0 � y � W; 0 � z � H

Boundary Conditions

Θð0; y; z; tÞ ¼ 0	C; ΘðL; y; z; tÞ ¼ 300oC; t > 0

Θ;yðx; 0; z; tÞ ¼ 0; Θ;yðx;W; z; tÞ ¼ 0; t > 0

Θ;zðx; y; 0; tÞ ¼ 0; Θ;zðx; y;H; tÞ ¼ 0; t > 0

PD Discretization Parameters

Total number of material points in the x-direction: 100
Total number of material points in the y-direction: 10
Total number of material points in the z-direction: 10
Spacing between material points: Δ ¼ 0:0001 m

Incremental volume of material points: ΔV ¼ 1� 10�12 m3

Volume of fictitious boundary layer: Vδ ¼ ð3� 10� 10Þ � ΔV ¼ 3� 10�10 m3

Horizon: δ ¼ 3:015Δ
Time step size: Δt ¼ 10�7 s

Since the block is insulated on its lateral surfaces, the temperature profile along

the block can be compared with the one-dimensional analytical solution of the

problem given by

Θðx; tÞ ¼ Θð0; tÞ � Θð0; tÞ � ΘðL; tÞ
L

x� 2

L

X1
n¼1;3;5;...

sin
nπ

L
x

� �

� L

nπ
Θð0; tÞ � �1ð ÞnΘðL; tÞð Þ

�
� 100L

nπ
�1ð Þn � 1ð Þ

�
e�

k
ρcv

n2π2

L2

� �
t :

(12.99)

Fig. 12.15 Peridynamic model of a three-dimensional block
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The temperature variation is predicted at t ¼ 5� 10�6s, t ¼ 5� 10�5s, t ¼ 5

�10�4s , and t ¼ 5� 10�3s . As the block reaches a steady-state condition, the

temperature profile approaches a linear variation along the block. As observed in

Fig. 12.16, the thermal response predicted by the peridynamic heat transfer model is

in close agreement with the analytical solution.

12.11.5 Dissimilar Materials with an Insulated Crack

In order to verify the peridynamic model in solving for the heat transfer concerning

dissimilar materials, a plate with two different materials having an insulated

interface crack is considered, as shown in Fig. 12.17. The peridynamic predictions

and their comparison with ANSYS are given in Fig. 12.18. As observed, there is a

close agreement.

Geometric Parameters

Length: L ¼ 2 cm

Width : W ¼ 2 cm

Thickness: H ¼ 0:01 cm

Crack length: 2a ¼ 1:0 cm

Material Properties

Specific heat capacity: cv ¼ 1 J=kgK
Thermal conductivity: k ¼ 1:14 W=cmK

Mass density: ρ ¼ 1 kg=cm3
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Initial Conditions

Θðx; y; z; 0Þ ¼ 0; �L =2 � x � L=2; �W=2 � y � W=2

Boundary Conditions

Θðx;W=2; tÞ ¼ 100	C; Θðx;�W=2; tÞ ¼ �100	C; t > 0

Θ;xðL=2; y; tÞ ¼ 0; Θ;xð�L=2; y; tÞ ¼ 0; t > 0

2a

L

W/2

Material 1

Material 2

W/2

Fig. 12.17 Peridynamic model of a plate with an insulated interface crack
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Fig. 12.18 Temperature

variations along x ¼ 0,

across the interface of the

plates with thermal

conductivity k1 for the upper
half and k2 for the lower half
at t ¼ 0:5 s
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PD Discretization Parameters

Total number of material points in the x-direction: 200
Total number of material points in the y-direction: 200
Spacing between material points: Δ ¼ 0:01 cm

Incremental volume of material points: ΔV ¼ 1� 10�6 cm3

Volume of fictitious boundary layer: Vδ ¼ ð3� 200Þ � ΔV ¼ 6� 10�4cm3

Horizon: δ ¼ 3:015� Δ
Time step size: Δ t ¼ 10�4 s

In order to demonstrate the three-dimensional capability of the PD analysis,

the plate geometry with an insulated crack is also discretized in the thickness

direction, as shown in Fig. 12.19. The peridynamic results are compared with the

two-dimensional predictions. As observed in Fig. 12.20, there exists a close agree-

ment between the two models.

Geometric Parameters

Length: L ¼ 2 cm

Width: W ¼ 2 cm

Thickness: H ¼ 0:2 cm

Crack length: 2a ¼ 1:0 cm

Material Properties

Specific heat capacity: cv ¼ 1 J=kgK
Thermal conductivity: k ¼ 1:14 W=cmK

Mass density: ρ ¼ 1 kg=cm3

2a

L

H

t

t

Material 1

Material 22

1

W/2

W/2

Fig. 12.19 Three-dimensional peridynamic model of a plate with a crack
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Initial Conditions

Θðx; y; z; 0Þ ¼ 0� L =2 � x � L=2; �W=2 � y � W=2; �H � z � 0

Boundary Conditions

Θðx;W=2; z; tÞ ¼ 100	C; Θðx;�W=2; z; tÞ ¼ �100	C; t > 0

Θ;xðL=2; y; z; tÞ ¼ 0; Θ;xð�L=2; y; z; tÞ ¼ 0; t > 0

Θ;zðx; y; 0; tÞ ¼ 0; Θ;zðx; y;�H; tÞ ¼ 0; t > 0

PD Discretization Parameters

Total number of material points in the x-direction: 100
Total number of material points in the y-direction: 100
Total number of material points in the z-direction: 10

Spacing between material points: Δ ¼ 0:02 cm

Incremental volume of material points: ΔV ¼ 8� 10�6 cm3

Volume of fictitious boundary layer: Vδ ¼ ð3� 100� 10Þ � ΔV cm3

Horizon: δ ¼ 3:015� Δ
Time step size: Δ t ¼ 10�5s

12.11.6 Thick Plate with Two Inclined Insulated Cracks

In order to further demonstrate the three-dimensional capability of the PD analysis,

a thick plate with two insulated inclined cracks is considered under two different

types of boundary conditions. The plate geometry is symmetric with respect to the
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Fig. 12.20 Temperature

field from two- and three-

dimensional peridynamic

analyses for k1 ¼ k2 ¼ k at
t ¼ 0:5 s (two-dimensional

model ¼ solid line, three-
dimensional

model ¼ dashed line)
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vertical direction. For the first type of boundary condition, the plate is subjected to

constant temperature at the top and bottom surfaces while the remaining surfaces

are insulated. For the second type of boundary condition, the plate is subjected

to constant temperature at the top and bottom surfaces and convective heat transfer

on the left and right surfaces while the remaining surfaces are insulated.

The discretization and PD model of the plate for these two different types of

boundary conditions are shown in Fig. 12.21a, b.

L

W

H

t

t

2e

2a

L

W

H

t

t

2e

2a

c

c

a

b

Fig. 12.21 Peridynamic model of the thick plate: (a) boundary conditions type I; (b) boundary

conditions type-II
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Geometric Parameters

Length: L ¼ 2 cm

Width: W ¼ 2 cm

Thickness: H ¼ 0:2 cm

Crack lengths: 2a ¼ 0:6 cm

Crack orientations from horizontal direction: θ ¼ 60	 and θ ¼ 120	

Distance between crack centers: 2e ¼ 0:66 cm

Material Properties

Specific heat capacity: cv ¼ 1 J=kgK
Thermal conductivity: k ¼ 1:14 W=cmK

Mass density: ρ ¼ 1 kg=cm3

Initial Conditions

Θðx; y; z; 0Þ ¼ 0� L =2 � x � L=2; �W=2 � y � W=2; �H � z � 0

Boundary Conditions-I

Θðx;W=2; z; tÞ ¼ 100	C; Θðx;�W=2; z; tÞ ¼ �100	C; t > 0

Θ;xðL=2; y; z; tÞ ¼ 0; Θ;xð�L=2; y; z; tÞ ¼ 0; t > 0

Θ;zðx; y; 0; tÞ ¼ 0; Θ;zðx; y;�H; tÞ ¼ 0; t > 0

Boundary Conditions-II

Θðx;W=2; z; tÞ ¼ 100	C; Θðx;�W=2; z; tÞ ¼ �100	C; t > 0

�kT;xð�L=2; y; z; tÞ ¼ h Θ1 � Θð Þ; t > 0

kT;xðL=2; y; z; tÞ ¼ h Θ1 � Θð Þ; t > 0

h ¼ 10W=cm2K; Θ1 ¼ 0	C
Θ;zðx; y; 0; tÞ ¼ 0; Θ;zðx; y;�H; tÞ ¼ 0; t > 0

PD Discretization Parameters

Total number of material points in the x-direction: 100
Total number of material points in the y-direction: 100
Total number of material points in the z-direction: 10

Spacing between material points: Δ ¼ 0:02 cm

Incremental volume of material points: ΔV ¼ 8� 10�6 cm3

Volume of boundary layer: VΔ ¼ ð1� 100� 10Þ � ΔV ¼ 8� 10�3cm3

Volume of fictitious boundary layer: Vδ ¼ ð3� 100� 10Þ � ΔV ¼ 24� 10�3cm3

Horizon: δ ¼ 3:015� Δ
Time step size: Δt ¼ 10�5s

Rate of heat generation per unit volume at x ¼ �L =2 and x ¼ L =2:

h sðx; tÞ ¼ 1
Δ h Θ1 � Θðx; tÞð Þ; x 2 Rc
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For the first type of boundary condition, the peridynamic prediction for the

temperature field is shown in Fig. 12.22. They are in close agreement with the

classical solution (Chang and Ma 2001; Chen and Chang 1994). For the second type

of boundary condition, the peridynamic prediction for the temperature field is

shown in Fig. 12.23. For this case, there exists no classical solution for comparison.
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Fig. 12.22 Three-

dimensional peridynamic

temperature predictions on

the mid-plane with a normal

in the þ z direction
at t ¼ 0:45 s for boundary

conditions type-I
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Fig. 12.23 Three-

dimensional peridynamic

temperature predictions on

the mid-plane with a normal

in the þ z direction at

t ¼ 0:45 s for boundary

conditions type-II
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Chapter 13

Fully Coupled Peridynamic

Thermomechanics

This chapter concerns the derivation of the coupled peridynamic (PD)

thermomechanics equations based on thermodynamic considerations. The

generalized peridynamic model for fully coupled thermomechanics is derived

using the conservation of energy and the free-energy function. Subsequently, the

bond-based coupled PD thermomechanics equations are obtained by reducing the

generalized formulation. These equations are also cast into their nondimensional

forms. After describing the numerical solution scheme, solutions to certain coupled

thermomechanical problems with known previous solutions are presented.

Thermomechanics concerns the influence of the thermal state of a solid body on

the deformation and the influence of the deformation on the thermal state. In many

cases, the effect of the deformation field on the thermal state may be ignored.

This leads to a decoupled or uncoupled thermomechanical analysis, for which only

the effect of the temperature field on the deformation is present. However, the

uncoupled thermomechanics may not be satisfactory for certain transient problems.

Experimental verification of the influence of the deformation on the thermal state

exists. It was shown that an adiabatic solid experiences a temperature drop

when it is strained in tension (Chadwick 1960; Fung 1965). Also, elastic bodies

under tensile loading experience cooling below the yield stress; however, beyond

the yield stress the bodies heat up due to the irreversible nature of plasticity

(Nowinski 1978).

Also, the temperature field induced by structural loading may not be uniform.

For example, when a beam with an initially uniform temperature is under bending,

part of the beam is in tension while the other part is in compression. Due to the

thermomechanical coupling, the part of the beam that is in tension cools and the

region that is in compression heats up, establishing a thermal gradient. This leads to

the onset of heat diffusion. The heat flow is irreversible; thus, some of the mechani-

cal energy supplied to bend the beam is dissipated through its conversion to heat

energy. This phenomenon is called thermoelastic damping and it plays a critical

role in vibrations and wave propagation.

It is well known that during fracture in metals a plastic region, in which the

material has locally yielded, occurs ahead of the crack tip. As a result, the

E. Madenci and E. Oterkus, Peridynamic Theory and Its Applications,
DOI 10.1007/978-1-4614-8465-3_13, © Springer Science+Business Media New York 2014
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mechanical energy is dissipated as heat and the temperature rises in the local region

ahead of the crack tip. A slightly different phenomenon is observed for fracture in

polymers. During fracture in polymers, it was experimentally observed that

thermoelastic cooling is followed by a temperature rise due to the plastic zone

and/or fracture process itself, which exposes new surfaces (Rittel 1998). Conse-

quently, in order to accurately model fracture, especially the crack tip, thermal

consideration needs to be taken into account and a coupled thermomechanical analysis

becomes necessary. The thermal and structural interaction becomes especially impor-

tant for high-speed impact and penetration fracture problems (Brünig et al. 2011).

The derivation of the classical thermomechanics equation from a thermody-

namic perspective did not occur till the mid 1950s (Biot 1956). Biot used

generalized irreversible thermodynamics to formulate the classical thermome-

chanical laws in variational form, with the corresponding Euler equations

representing the coupled momentum and energy equations.

The fully coupled thermomechanical equations based on the classical theory are

well established. The classical equations of thermoelasticity are comprised of the

deformation equation of motion with a thermoelastic constitutive law and the heat

transfer equation with a structural (or deformational) heating and cooling term

contributing to the thermal energy. For isotropic materials, the thermoelastic

constitutive law includes the thermal stresses, which are related to the temperature

gradient, while the structural heating and cooling are dependent on the thermal

modulus and rate of dilatation. Depending on the structural idealization, the thermal

modulus is defined as

βcl ¼ ð3λþ 2μÞα ¼ Eα

1� 2ν
for three dimensions; (13.1a)

βcl ¼ ð2λþ 2μÞα ¼ Eα

1� νð Þ for two dimensions; (13.1b)

βcl ¼ ð2μÞα ¼ Eα for one dimension; (13.1c)

in which E is the elastic modulus, α is the coefficient of thermal expansion, and ν is
the Poisson’s ratio. The parameters λ and μ are Lamé’s constants.

Typically, the strength of coupling is measured via the nondimensional quantity

known as the coupling coefficient and defined as

E ¼ βcl
2Θ0

ρ cvðλþ 2μÞ ; (13.2)

for which ρ is the mass density, cv is the specific heat capacity, and Θ0 is the

reference temperature at which the stress in the body is zero (Nowinski 1978). The

coupling coefficients of metals are significantly lower than those of plastics. Steel,

for example, has a coupling coefficient of about 0.011 while certain plastics have a

value of E ¼ 0:43.
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13.1 Local Theory

Various researchers analytically examined plane waves in thermoelastic solids

(Chadwick and Sneddon 1958; Deresiewicz 1957). In a one-dimensional formula-

tion, they showed that the presence of thermal and elastic waves are dispersed and

attenuated. They also studied the effect of frequency on the phase velocity, attenu-

ation, and damping. Later, Chadwick (1962) extended the analysis to two

dimensions and investigated the propagation of thermoelastic waves in thin

plates. Paria (1958) determined the temperature and stress distribution of a

two-dimensional half-space problem using Laplace and Hankel transforms. Laplace

transforms have also been used by Boley and Hetnarski (1968) to characterize

propagating discontinuities in various one-dimensional coupled thermoelastic

problems. Fourier transforms were employed by Boley and Tolins (1962) to

determine the mechanical and thermal response of a one-dimensional semi-infinite

bar with transient boundary conditions. The major challenge with transform

methods is in finding the analytical inverse transforms—in many cases this is not

possible and numerical inversion is necessary. Other analytical solution methods

have been adopted to solve coupled thermoelastic problems. Soler and Brull (1965)

used perturbation techniques and more recently Lychev et al. (2010) determined a

closed-form solution by an expansion of the eigenfunctions generated by the

coupled equations of motion and heat conduction.

Numerical approximations to the classical thermoelastic equations have been

very commonly found using the finite element (FE) method. A transient

thermoelastic FE model was developed by Nickell and Sackman (1968) and Ting

and Chen (1982). The approximations from their FE model were compared against

analytical solutions for various one-dimensional semi-infinite problems. Oden

(1969) and Givoli and Rand (1995) developed dynamic thermoelastic FE models.

Additionally, Chen and Weng (1988, 1989a, b) modeled various thermoelastic

problems such as the transient response of an axisymmetric infinite cylinder and

an infinitely long plate using a finite element formulation in the Laplace transform

domain. Hosseini-Tehrani and Eslami (2000) presented solutions for thermal and

mechanical shocks in a finite domain based on the boundary element method

(BEM) in conjunction with the Laplace-transform method in a time domain. They

provided results for small time durations (early stages of the shock loads) using the

numerical inversion of the Laplace-transform method.

Numerical solution schemes for thermomechanical problems are divided into

two categories—monolithic schemes and staggered schemes. In monolithic

schemes, the differential equations for different variables are solved simulta-

neously. On the other hand, for staggered or partitioned schemes, the solutions of

the different variables are determined separately. In general, the staggered schemes

have been favored over monolithic schemes, as the monolithic systems can be very

large, making it unfeasible to solve practical problems. In addition, the mechanical

and thermal parts of a thermomechanical problem may have very different time

scales, hence requiring different time stepping schemes. However, the very nature

of monolithic schemes renders this impossible.
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One of the major issues associated with staggered numerical analysis of coupled

thermomechanics is the concern of stability. When conditionally stable techniques

are used to solve the coupled momentum and energy equations, a small time step

size is required, which may be computationally impractical for certain problems.

Even when various unconditionally stable methods are used to solve the equation of

motion and heat transfer equation, the overall solution to the coupled problem may

still be conditionally stable. A substantial amount of work has been done to combat

this issue and to develop unconditionally stable staggered algorithms. Examples of

such algorithms based on the finite element method include an adiabatic split

scheme by Armero and Simo (1992) and various implicit-implicit and implicit-

explicit schemes (Farhat et al. 1991; Liu and Zhang 1983; Liu and Chang 1985).

13.2 Nonlocal Theory

Research into nonlocal coupled thermomechanics is undoubtedly emerging. Clas-

sical nonlinear constitutive equations for nonlocal fully coupled thermoelasticity

have been presented by Huang (1999). Ardito and Comi (2009) developed a fully

nonlocal thermoelastic model that has an internal length scale. They analytically

solved the nonlocal equations in order to determine the dissipation in microelec-

tromechanical resonators. Comparison of their results with experimental

observations revealed that the nonlocal model is able to capture the size effect

that the standard local thermoelastic analysis is unable to capture. The work

by Ardito and Comi (2009) illustrates the importance of nonlocality in small-

scale problems. With the peridynamic thermomechanical model, not only are the

problems that require nonlocality solvable, such as the microelectromechanical

problems, but also the problems with discontinuities can be readily modeled. A

crack that forms and propagates in a body with a varying temperature or tempera-

ture gradient is an example of such a problem. Therefore, the peridynamic approach

to thermomechanics is advantageous as it not only accounts for nonlocality but also

allows for coupled deformation and temperature fields to be determined in spite of

cracks and other discontinuities. Uncoupled thermomechanics using the bond-

based theory was developed within the realm of peridynamics by Kilic andMadenci

(2010). However, no work has been published on fully coupled thermomechanics

within the peridynamic framework.

13.3 Peridynamic Thermomechanics

Similar to the derivation of classical thermomechanical equations (Nowinski 1978),

the generalized peridynamics for fully coupled thermomechanics is based on

irreversible thermodynamics, i.e., the conservation of energy and the free-energy

density function.
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13.3.1 Peridynamic Thermal Diffusion with a Structural
Coupling Term

The first law of thermodynamics based on peridynamic quantities, accounting for

the conservation of mechanical and thermal energy, has been given by Silling and

Lehoucq (2010) as

_εs ¼ T � _Yþ �Qb þ sb; (13.3)

where _εs is the time rate of change of the internal energy storage density, and sb is the

prescribed volumetric heat generation per unit mass. The term T � _Y represents the

absorbed power density; it is the dot product of the force state and the time rate of

deformation state. The absorbed power density in peridynamics is analogous to the

stress power, σ � _F in classical continuum mechanics, where σ is the Piola stress

tensor and F is the deformation gradient tensor. The variable �Q is the rate of heat

energy exchange with other material points, and it is given by

�Q ¼
ð
H

h x; tð Þ x0 � xh i � h x0; tð Þ x� x0h ið ÞdV0; (13.4)

in which h is the heat flow scalar state. The quantity �Q is related to �Qb as
�Q ¼ ρ �Qb.

The free-energy density function is defined as (Silling and Lehoucq 2010)

ψ ¼ εs � Θη; (13.5)

whereΘ is the absolute temperature and η is the entropy density. The time derivative

of Eq. 13.5 becomes

_ψ ¼ _εs � _Θη� Θ _η: (13.6)

Substituting for _εs in Eq. 13.6 from the conservation of energy given in Eq. 13.3

leads to the following expression:

_ψ ¼ T � _Yþ �Qb þ sb � _Θη� Θ _η: (13.7)

The functional dependency of the free-energy density and the entropy density

can be defined in terms of the deformation state, time rate of change of the

deformation state, and the temperature in the form

ψ ¼ ψ Y; _Y;Θ
� �

; (13.8a)

η ¼ η Y; _Y;Θ
� �

: (13.8b)
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In conjunction with the chain rule, the time rate of change of the free-energy

density can be expressed as

_ψ ¼ ψ ;Y
� _Yþ ψ ; _Y � €Yþ ψ ;Θ

_Θ; (13.9)

where the variable after the subscript comma indicates differentiation. If it is a state

variable, its differentiation is known as the Fréchet derivative, as explained in the

Appendix.

Substituting from Eq. 13.7 into Eq. 13.9 results in

Θ _η� �Qb � sb
� �þ ψ ;Θ þ η

� �
_Θþ ψ ;Y � T

� �
� _Yþ ψ ; _Y � €Y ¼ 0: (13.10)

Adopting the assumption of Nowinski (1978) that _Y, €Y, and _Θ vary indepen-

dently, Eq. 13.10 leads to

Θ _η� �Qb � sb ¼ 0; (13.11a)

η ¼ �ψ ;Θ; (13.11b)

T ¼ ψ ;Y; (13.11c)

ψ ; _Y ¼ 0: (13.11d)

By using the free-energy density, the first law of thermodynamics, and the

Clausius-Duhem inequality, Silling and Lehoucq (2010) also determined

Eqs. 13.11b and 13.11d. In addition, they obtained expressions for the equilibrium,

Te, and dissipative, Td, parts of force vector state as

Te Y;Θð Þ ¼ ψ ;Y Y;Θð Þ; (13.12a)

Td Y; _Y;Θ
� � � _Y � 0: (13.12b)

Using Eqs. 13.11b, 13.11d, and 13.8b in conjunction with the chain rule, the time

derivative of the entropy density may be rewritten in the form

_η ¼ �ψ ;ΘY
� _Y� ψ ;ΘΘ

_Θ: (13.13)

Substituting from Eq. 13.13 into Eq. 13.11a and multiplying by ρ leads to

ρΘψ ;ΘY
� _Yþ ρΘψ ;ΘΘ

_Θþ �Qþ ρsb ¼ 0: (13.14)
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Based on the classical theory (Nowinski 1978), the specific heat capacity, cv, can
be related to the classical free-energy density, �ψ , as

Θ�ψ ;ΘΘ ¼ �cv: (13.15)

The assumption of the classical free-energy density at a point being equal to the

peridynamic free-energy density, ψ leads to

Θψ ;ΘΘ ¼ �cv: (13.16)

Based on this observation, it is evident that the specific heat capacity has a

similar meaning in the peridynamic theory as in the classical theory. Therefore, the

term Θψ ;ΘΘ in Eq. 13.14 can be replaced by � cv.

Based on the classical theory (Fung 1965), the thermal modulus βij can be

related to the classical free-energy density �ψ through

βclij ¼ ρ
@2�ψ

@eij@Θ
; (13.17)

where eij is the strain tensor. Note that βclij ¼ βclδij for isotropic materials.

Analogus to the thermal modulus of the classical theory thermal modulus state, a

vector state, B, can be defined as

B ¼ ρψ ;ΘY
: (13.18)

Substituting from Eqs. 13.4, 13.16, and 13.18 into Eq. 13.14 and after

rearranging some of terms results in

ρcv _Θ x; tð Þ ¼
ð
H

h x; tð Þ x0�xh i � h x0; tð Þ x� x0h ið ÞdV0

þΘ x; tð ÞB x; tð Þ � _Y x; tð Þ þ ρsb x; tð Þ :
(13.19)

Applying the definition of the vector state dot product (see Appendix) renders

the equation

ρcv _Θ x; tð Þ ¼
ð
H

h x; tð Þ x0 � xh i � h x0; tð Þ x� x0h ið Þð

þΘ x; tð ÞB x0 � xh i � _Y x0 � xh i�dV0 þ ρsb x; tð Þ;
(13.20)

in which the term B � _Y represents the effect of deformation on temperature.

The final form of this equation can be obtained by defining _Y and B in terms of
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the time rate of change of the extension scalar state, _e, and the thermal modulus

scalar state, β, as

B x0 � xh i ¼ β x0 � xh i y0 � y

y0 � yj j ; (13.21a)

_Y x0 � xh i ¼ _e x0 � xh i y0 � y

y0 � yj j ; (13.21b)

in which the extension scalar state, e , and thermal modulus scalar state, β , are

defined as

e ¼ y� x; (13.21c)

β ¼ ρψ ;Θe; (13.21d)

with y ¼ Yj j and x ¼ Xj j. Thus, Eq. 13.20 can be recast as

ρcv _Θ x; tð Þ ¼
ð
H

h x; tð Þ x0 � xh i � h x0; tð Þ x� x0h ið Þð

þ Θ x; tð Þβ x0 � xh i _e x0 � xh i
�
dV0 þ ρsb x; tð Þ:

(13.22)

13.3.2 Peridynamic Deformation with a Thermal
Coupling Term

Based on the classical linear theory of thermoelasticity (Nowinski 1978), the

free-energy density is a potential function given by

�ψ ¼ �ψ eij; T
� � ¼ 1

2
cijkleijekl � βclijeijT � cv

2Θ0

T2; (13.23)

where cijkl is the elastic moduli of the material, T ¼ Θ� Θ0, andΘ0 is the reference

temperature. A similar approach is adopted herein for the derivation of the

peridynamic deformation equation with a thermal coupling term.

Silling (2009) developed a linearized form of the state-based peridynamics for

small elastic deformation by introducing the force vector state, T, as

T ¼ T Uð Þ; (13.24)
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where U is the displacement vector state. The free-energy density function is

expressed in terms of U as

ψ Uð Þ ¼ ψ Y0
� �þ T0 � Uþ 1

2
U �K � U; (13.25)

where Y0 and T0 are defined as the equilibrated deformation and force states,

respectively. The double state K is called the modulus state, and it is given by

Silling (2009) as

K ¼ T0
;Y: (13.26)

For linear thermoelastic material response, in accordance with Eq. 13.23, this

form of the free energy is modified by including T and U as

ψ U; Tð Þ ¼ ψ Y0
� �þ T0 � Uþ 1

2
U �K � U� B � UT � cv

2Θ0

T2: (13.27)

Invoking this equation into Eq. 13.11c results in the explicit form of the force

state as

T ¼ K � U� BT: (13.28)

It represents the state-based constitutive relation for a linearized peridynamic

thermoelastic material. Substituting from Eq. 13.28 into the peridynamic equation

of motion, Eq. 2.22a results in the following:

ρ€u ¼
ð
H

K � U� BTð Þ x; tð Þ x0 � xh i � K � U� BTð Þ x0; tð Þ x� x0h i½ �dV0

þ bðx; tÞ;
(13.29)

in which the term B x0 � xh iT represents the effect of the thermal state on deforma-

tion. For a nonlinear elastic material model, the free energy is composed of a

thermal and a mechanical component. Therefore, one possible form of the force

state can be

T ¼ rW � BT (13.30)

in which W is the deformational strain energy density and rW is its Fréchet

derivative. The part of the force state, Ts , that includes only the structural

deformation can be defined as

Ts ¼ rW: (13.31)

13.3 Peridynamic Thermomechanics 253

http://dx.doi.org/10.1007/978-1-4614-8465-3_2


Substituting from these equations into the peridynamic equation of motion,

Eq. 2.22a can be recast as

ρ€u x; tð Þ ¼
ð
H

Ts x
0 � xh i � B x0 � xh iTð Þ½ �

� T0
s x� x0h i � B0 x� x0h i T0ð Þ�dV0 þ bðx; tÞ;

(13.32)

where Ts ¼ Ts x; tð Þ and T0
s ¼ Ts x

0; tð Þ; similar notation is used for B and T.
Substituting from Eq. 4.8 into Eq. 2.22b in conjunction with Eqs. 4.11 and 4.12

results in the bond-based PD equation for an isotropic material including the effect

of temperature as

ρ€u x; tð Þ ¼
ð
H

c

2

y0 � yj j � x0 � xj j
x0 � xj j � c

2
α T

� �
y0 � y

y0 � yj j
�

� c

2

y� y0j j � x� x0j j
x� x0j j � c

2
α T0

� �
y� y0

y� y0j j
	
dV0 þ b x; tð Þ :

(13.33)

Comparison of this equation with Eq. 13.32 leads to the explicit forms of

Ts x
0 � xh i ¼ c

2

y0 � yj j � x0 � xj j
x0 � xj j

y0 � y

y0 � yj j (13.34a)

and

B x0 � xh i ¼ c

2
α
y0 � y

y0 � yj j : (13.34b)

Comparison of Eq. 13.34b with Eq. 13.21a results in the expression for the

thermal modulus scalar state β as

β x0 � xh i ¼ c

2
α: (13.35)

13.3.3 Bond-Based Peridynamic Thermomechanics

The difference between the generalized heat transfer equation, Eq. 12.51, and

thermomechanical heat transfer equation for an isotropic material, Eq. 13.22, is

due to the deformational heating and cooling term, ðβ � _eÞ. In light of this difference,
the bond-based heat transfer equation, Eq. 12.51, can be modified to include the

deformational heating and cooling term. Therefore, the bond-based coupled

thermomechanical heat transfer equation can be cast as
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ρcv _Θ x; tð Þ ¼
ð
H

fh � Θ
c

2
α _e

� �
dV0 þ ρsb x; tð Þ; (13.36)

where _e is the time rate of change of the extension between the material points, and

it is defined as

e ¼ ηþ ξj j � ξj j; (13.37a)

with its time rate of change

_e ¼ ηþ ξ
ηþ ξj j � _η; (13.37b)

where _η is the time rate of change of the relative displacement vector. Equa-

tion 13.36 can be rewritten in terms of the change in temperature, T ¼ Θ� Θ0, by

replacing Θ with T þ Θ0 and _Θ with _T as

ρcv _T x; tð Þ ¼
ð
H

fh � T þ Θoð Þ c
2
α _e

� �
dV0 þ ρsb x; tð Þ; (13.38a)

or

ρcv _T x; tð Þ ¼
ð
H

fh � Θo
T

Θo
þ 1

� �
c

2
α _e

� �
dV0 þ ρsb x; tð Þ: (13.38b)

As suggested by Nowinski (1978), if the temperature change, T , is very

small when compared with the reference temperature, Θo , Eq. 13.38b can be

approximated as

ρcv _T x; tð Þ ¼
ð
H

fh � Θo
c

2
α _e

� �
dV0 þ ρsb x; tð Þ: (13.39)

Substituting for the thermal response (heat flow density) function from Eq. 12.55

leads to its final form as

ρcv _T x; tð Þ ¼
ð
H

κ
τ

ξj j � Θo
c

2
α _e

� �
dV 0 þ ρsb x; tð Þ: (13.40)

From Eq. 13.33, the bond-based PD equation of motion including the effect of

temperature can be rewritten as

ρ€u x; tð Þ ¼
ð
H

ξþ η
ξþ ηj j cs� cαTavg

� �
dV0 þ b x; tð Þ; (13.41)
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in which c is the peridynamic material parameter. The initial relative position and

relative displacement vectors are defined as ξ ¼ x0 � x and η ¼ u0�u, respectively.

The parameter s represents the stretch between material points x0 and x, and Tavg is

the mean value of the change in temperatures at material points x0 and x defined as

Tavg ¼ T þ T0

2
: (13.42)

Introducing β as the bond-based peridynamic thermal modulus, the final form of

the fully coupled bond-based thermomechanical equations becomes

ρcv _T x; tð Þ ¼
ð
H

κ
τ

ξj j � Θo
β

2
_e

� �
dV 0 þ hs x; tð Þ; (13.43a)

with hs ¼ ρsb representing the heat source due to volumetric heat generation, and

ρ€u x; tð Þ ¼
ð
H

ξþ η
ξþ ηj j cs� βTavg

� �
dV0 þ b x; tð Þ; (13.43b)

with

β ¼ cα: (13.43c)

The first equation is the conservation of thermal energy (i.e., the heat transfer

equation) with a contribution from deformational heating and cooling, and the

second equation is the conservation of linear momentum (i.e., the equation of

motion) with a thermoelastic constitutive relation.

13.4 Nondimensional Form of Thermomechanical

Equations

The nondimensional form of an equation or system of equations involves

eliminating the units associated with the variables and parameters. For coupled

systems, various parameters may differ in size and the effects of certain parameters

may not be apparent. The nondimensional form of equations can permit the effects

of the different parameters to become more evident. The appropriate scaling,

relative measure of quantities, and characteristic properties of the system, such as

time constants, length scales, and resonance frequencies, can be revealed through

nondimensionalization.
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13.4.1 Characteristic Length and Time Scales

The characteristic length/time quantity for heat conduction is the diffusivity

defined as

γ ¼ k

ρcv
¼ ‘�2

t�
; (13.44)

where ‘� and t� represent the characteristic length and time, respectively. For the

equation of motion, the characteristic length/time is the elastic wave speed. The

square of the elastic wave speed, ~a, is

~a2 ¼ λþ 2μð Þ
ρ

¼ ‘�2

t�2
; (13.45)

where λ and μ are Lamé’s constants. Combining the characteristic length/time

scale from Eqs. 13.44 and 13.45 leads to the characteristic length and time for

thermomechanics as

‘� ¼ γ

~a
and t� ¼ γ

~a2
: (13.46)

The characteristic length and time are typically employed in the non

dimensionalization of the thermomechanical equations.

13.4.2 Nondimensional Parameters

The nondimensional form of Eq. 13.43a can be achieved by adopting the approach

by Nickell and Sackman (1968) using Eqs. 13.44 and 13.45 for thermal diffusivity

and the square of the elastic wave speed. The nondimensional variables are denoted

with an overscore. The nondimensionalization procedure for length-related

variables, i.e., x, δ, A, and V (the volume), employs the characteristic length, and

they are defined as

x ¼ γ

~a

� �
�x; δ ¼ γ

~a

� �
�δ; A ¼ γ

~a

� �2
�A and V ¼ γ

~a

� �3
�V: (13.47)

The displacement is nondimensionalized as

u ¼ γ

~a

� � βclΘo

λþ 2μð Þ �u: (13.48)
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The stretch is nondimensionalized as

s ¼ βclΘo

λþ 2μð Þ �s: (13.49)

The time is scaled using the characteristic length as

t ¼ γ

~a2

� �
�t: (13.50)

The nondimensionalization for the velocity-related variables is achieved by

v ¼ βclΘo

λþ 2μð Þ ~a �v and _e ¼ βclΘo

λþ 2μð Þ ~a
�_e: (13.51)

Finally, the temperature and temperature difference are nondimensionalized as

T ¼ Θo
�T and τ ¼ Θo�τ: (13.52)

It is worth noting that the definitions of thermal modulus, bulk modulus,

Lamé constants, shear modulus, peridynamic parameters, and microconductivity

depend on the structural idealization. Their definitions for one-, two-, and three-

dimensional analysis are summarized as:

One-dimensional analysis

λ ¼ 0; μ ¼ E

2
; α ¼ βcl

2μ
; c ¼ 2E

Aδ2
; κ ¼ 2k

Aδ2
: (13.53a)

Two-dimensional analysis

λ ¼ Eν

1� νð Þ 1þ νð Þ ; μ ¼ E

2 1þ νð Þ ; α ¼ βcl
2λþ 2μ

;

c ¼ 9E

πhδ3
; κ ¼ 6k

πhδ3
:

(13.53b)

Three-dimensional analysis

λ ¼ Eν

1þ νð Þ 1� 2νð Þ ; μ ¼ E

2 1þ νð Þ ; α ¼ βcl
3λþ 2μ

;

c ¼ 12E

π δ4
; κ ¼ 6k

πδ4
:

(13.53c)
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Equating the coefficient of thermal expansion from Eqs. 13.1 and 13.43c leads to

the thermal modulus as

β ¼ βcl
3λþ 2μ

c for three dimensions; (13.54a)

β ¼ βcl
2λþ 2μ

c for two dimensions; (13.54b)

β ¼ βcl
2μ

c for one dimension: (13.54c)

Substituting from Eqs. 13.47, 13.48, 13.49, 13.50, 13.51, and 13.52 with the

dimensional considerations from Eq. 13.53, the fully coupled bond-based

thermomechanical equations in the absence of body force and heat source can be

cast into their nondimensional forms:

One-dimensional analysis

@2�u

@�t2
¼ 2

�δ
2 �A

ð
H

ξþ η
ξþ ηj j �s� �Tavg

� �
d �Vx0 þ �b; (13.55a)

@ �T

@�t
¼ 2

�δ
2 �A

Z
H

�τ
�ξ


 

� E

�_e

2

 !
d �Vx0 þ �hs; (13.55b)

Two-dimensional analysis

@2�u

@�t2
¼ 9 1� νð Þ

π�δ
3 �h

Z
H

ξþ η
ξþ ηj j 1þ νð Þ�s� �Tavg

� �
d �Vx0 þ �b; (13.56a)

@ �T

@�t
¼ 6

π�δ
3 �h

Z
H

�τ
�ξ


 

� 3

4
ð1� νÞE�_e

 !
d �Vx0 þ �hs; (13.56b)

Three-dimensional analysis

@2�u

@�t2
¼ 6

π�δ
4

Z
H

ξþ η
ξþ ηj j

1þ ν

1� ν
�s� �Tavg

� �
d �Vx0 þ �b; (13.57a)

@ �T

@�t
¼ 6

π�δ
4

Z
H

�τ
�ξ


 

� 1

2
E�_e

 !
d �Vx0 þ �hs; (13.57b)
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in which the nondimensional coupling coefficient, E, body force density, �b, and heat
source due to volumetric heat generation, �hs, are defined as

E ¼ β2clΘ0

ρcv λþ 2μð Þ ; (13.58a)

�b ¼ γ λþ 2μð Þ
ρ~a3βclΘ0

b; (13.58b)

�hs ¼ γ

ρcv~a
2Θ0

hs: (13.58c)

The coupling coefficient E measures the strength of thermal and deformation

coupling and it appears in the nondimensional thermomechanical equations

associated with the heating and cooling term due to deformation. The coupling

coefficient transpires out of the nondimensional form of these peridynamic

equations in a similar manner as it does out of the classical thermomechanical

equations, as illustrated by Nickell and Sackman (1968). The nondimensional

equation represents decoupled thermomechanics for E ¼ 0. It is worth noting that

the equation of motion still contains the effect of temperature even if E ¼ 0.

13.5 Numerical Procedure

For numerically approximating the solution to the classical fully coupled equations

for thermoelasticity, one of two different time stepping strategies is generally

employed by researchers. The monolithic or simultaneous scheme is one time

stepping strategy. For a monolithic algorithm, the time stepping scheme is applied

simultaneously to the full system of equations and the unknown variables are solved

for at the same time. If the time stepping scheme for the monolithic algorithm is

implicit, unconditional stability is usually achieved. However, monolithic

algorithms can result in practical large systems, in spite of their unconditional

stability. For the staggered or partitioned scheme, the coupled system of equations

are split, typically according to two different fields, the displacement and tempera-

ture fields. Each field is then individually treated with a different time stepping

algorithm. Staggered algorithms generally circumvent the shortcomings of their

monolithic counterparts; however, this is often accomplished at the expense of the

unconditional stability. In many scenarios, even when unconditionally stable time

stepping schemes are used to solve each partitioned equation, the overall stability of

the thermomechanical system of equations is only conditional (Wood 1990). As a

result, a good deal of work has been performed to successfully develop uncondi-

tionally stable staggered algorithms for thermoelasticity (Armero and Simo 1992;

Farhat et al. 1991; Liu and Chang 1985).
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For the numerical treatment of the fully coupled thermoelastic peridynamic

system of equations, a staggered strategy is adopted. The system is partitioned

naturally according to the structural and thermal fields; thus, the equation of motion

is solved for the displacement field and the heat transfer equation is solved for the

temperature field. Explicit time stepping schemes are utilized to approximate the

solutions to both equations.

In order to illustrate the numerical implementation, one-dimensional

peridynamic thermoelastic equations, Eq. 13.55a,b, are considered, and they can

be discretized in the forms

�€unðiÞ ¼
2

�δ
2 �A

XN
j¼1

�ξnðiÞðjÞ þ �ηn
ðiÞðjÞ

�ξnðiÞðjÞ þ �ηn
ðiÞðjÞ




 


 �snðiÞðjÞ � �T
n
ðiÞðjÞ

� �
�VðjÞ (13.59a)

and

�_T
n

ðiÞ ¼
2

�δ
2 �A

XN
j¼1

�τnðiÞðjÞ
�ξnðiÞðjÞ



 


� E

�_e
n
ðiÞðjÞ
2

0
B@

1
CA �VðjÞ; (13.59b)

in which the term 2=ð�δ2 �AÞ is assumed to be constant throughout the domain, n
represents the time step number, i is the collocation point that is being solved for,

and j represents the collocation points within the horizon of i. The nondimensional

volume of the subdomain represented by the collocation point j is denoted by �VðjÞ.
The discretization of a one-dimensional domain is illustrated in Fig. 13.1. The

one-dimensional domain is discretized into subdomains, with the collocation points

at the center of each subdomain.

The horizon is �δ ¼ 3�Δ, where �Δ is the nondimensional spacing between material

points. The material point of interest is denoted by i and it interacts with the three

points to its left and right. Thus, points j within the horizon of i are i�3, i�2, i�1,
i + 1, i + 2, and i + 3, as shown in Fig. 13.1

The nondimensional displacement, velocity, and temperature of all the colloca-

tion points are known at the nth time step, i.e., the current time step. Based on

Fig. 13.1, Eq. 13.55a can be discretized as

x( 3)

x( 2)x( 1)

x( 3) x( 2)

x( 1)

x( )

x( 3)

x( 2)x( 1)

x( 3) x( 2)

x( 1)

x( )
i− i−

i

i+ i+

i+

i−

Fig. 13.1 Discretization

of one-dimensional domain

with collocation points
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�€unðiÞ ¼
2

�δ
2 �A

�ξnðiÞ iþ3ð Þ þ �ηn
ðiÞ iþ3ð Þ

�ξnðiÞ iþ3ð Þ þ �ηn
ðiÞ iþ3ð Þ




 


 �snðiÞ iþ3ð Þ � �T
n
ðiÞ iþ3ð Þ

� �
�V iþ3ð Þ

2
64

þ
�ξnðiÞ iþ2ð Þ þ �ηn

ðiÞ iþ2ð Þ
�ξnðiÞ iþ2ð Þ þ �ηn

ðiÞ iþ2ð Þ



 


 �snðiÞ iþ2ð Þ � �T

n
ðiÞ iþ2ð Þ

� �
�V iþ2ð Þ

þ
�ξnðiÞ iþ1ð Þ þ �ηn

ðiÞ iþ1ð Þ
�ξnðiÞ iþ1ð Þ þ �ηn

ðiÞ iþ1ð Þ



 


 �snðiÞ iþ1ð Þ � �T

n
ðiÞ iþ1ð Þ

� �
�V iþ1ð Þ

þ
�ξnðiÞ i�3ð Þ þ �ηn

ðiÞ i�3ð Þ
�ξnðiÞ i�3ð Þ þ �ηn

ðiÞ i�3ð Þ



 


 �snðiÞ i�3ð Þ � �T

n
ðiÞ i�3ð Þ

� �
�V i�3ð Þ

þ
�ξnðiÞ i�2ð Þ þ �ηn

ðiÞ i�2ð Þ
�ξnðiÞ i�2ð Þ þ �ηn

ðiÞ i�2ð Þ



 


 �snðiÞ i�2ð Þ � �T

n
ðiÞ i�2ð Þ

� �
�V i�2ð Þ

þ
�ξnðiÞ i�1ð Þ þ �ηn

ðiÞ i�1ð Þ
�ξnðiÞ i�1ð Þ þ �ηn

ðiÞ i�1ð Þ



 


 �snðiÞ i�1ð Þ � �T

n
ðiÞ i�1ð Þ

� �
�V i�1ð Þ

3
75; (13.60)

where the nondimensional stretch is denoted by �snðiÞðjÞ, and it is defined as

�snðiÞðjÞ ¼
�ξnðiÞðjÞ þ �ηn

ðiÞðjÞ



 


� �ξnðiÞðjÞ




 



�ξnðiÞðjÞ



 


 : (13.61)

The position of the ith and jth collocation points are given by �xðiÞ and �xðjÞ;
respectively, and, as such, the nondimensional relative initial position is defined as

�ξnðiÞðjÞ ¼ �xðjÞ � �xðiÞ: (13.62)

The nondimensional displacements of the ith and jth collocation points are given
by �unðiÞ and �unðjÞ, respectively. Therefore, the nondimensional relative displacement

becomes

�ηn
ðiÞðjÞ ¼ �unðjÞ � �unðiÞ; (13.63a)

and the term �T
n
ðiÞðjÞ is defined as

�T
n
ðiÞðjÞ ¼

�T
n
ðjÞ þ �T

n
ðiÞ

2
: (13.63b)
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Based on Fig. 13.1, Eq. 13.55b can be discretized as

�_T
n

ðiÞ ¼
2

�δ
2 �A

�τnðiÞ iþ3ð Þ
�ξnðiÞ iþ3ð Þ



 


� E

�_e
n
ðiÞ iþ3ð Þ
2

0
B@

1
CA �V iþ3ð Þ þ

�τnðiÞ iþ2ð Þ
�ξnðiÞ iþ2ð Þ



 


� E

�_e
n
ðiÞ iþ2ð Þ
2

0
B@

1
CA �V iþ2ð Þ

2
64

þ
�τnðiÞ iþ1ð Þ
�ξnðiÞ iþ1ð Þ



 


� E

�_e
n
ðiÞ iþ1ð Þ
2

0
B@

1
CA �V iþ1ð Þ þ

�τnðiÞ i�3ð Þ
�ξnðiÞ i�3ð Þ



 


� E

�_e
n
ðiÞ i�3ð Þ
2

0
B@

1
CA �V i�3ð Þ

þ
�τnðiÞ i�2ð Þ
�ξnðiÞ i�2ð Þ



 


� E

�_e
n
ðiÞ i�2ð Þ
2

0
B@

1
CA �V i�2ð Þ þ

�τnðiÞ i�1ð Þ
�ξnðiÞ i�1ð Þ



 


� E

�_e
n
ðiÞ i�1ð Þ
2

0
B@

1
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where

�τnðiÞðjÞ ¼ �T
n
ðjÞ � �T

n
ðiÞ; (13.65a)

and the nondimensional rate of extension between the material points is given by

�_enðiÞðjÞ ¼
�ηn
ðiÞðjÞ þ �ξnðiÞðjÞ

�ηn
ðiÞðjÞ þ �ξnðiÞðjÞ




 


 � �_unðjÞ � �_unðiÞ
� �

: (13.65b)

As explained in Sects. 7.3 and 12.9, the time integration of Eq. 13.60 can be

performed by using explicit forward and backward difference techniques and

Eq. 13.64 by forward difference time integration scheme.

13.6 Validation

The validity of the fully coupled PD thermomechanical equations is established by

constructing PD solutions to previously considered problems. The first problem is a

semi-infinite bar subjected to a transient thermal boundary condition. The second

problem concerns the dynamic response of a thermoelastic bar with an initial

sinusoidal velocity. The solutions to these problems are obtained by constructing

one-dimensional PD models.

The third problem is a finite plate subjected to either a pressure shock or a

thermal shock, and their combination. The solutions to these problems are obtained

by constructing two-dimensional PD models. The fourth is a block of material

subjected to a transient thermal boundary condition. The solution to this problem is

obtained by constructing a three-dimensional PD model.
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13.6.1 A Semi-infinite Bar Under Thermal Loading

A semi-infinite bar is subjected to the temperature boundary condition on the

bounding end. The bounding end is stress free and is gradually heated. The

stress-free condition on the bounding end is represented by not specifying any

displacement or velocity conditions. The peridynamic discretization of the bar for

thermal and deformational fields is shown in Fig. 13.2.

The peridynamic predictions for the nondimensional temperature and displace-

ment for the three different coupling scenarios are compared against the classical

solution reported by Nickell and Sackman (1968). The coupling coefficient values of

E ¼ 0; 0:36; 1 are used to depict the decoupled, moderate, and strong coupling

situations, respectively. The temperature boundary condition is imposed through the

fictitious regionRt, as explained in Chap. 12. The solution is obtained by specifying

the geometric parameters, material properties, initial and boundary conditions, as well

as the peridynamic discretization and time integration parameters as:

Geometric Parameters

Length of bar: �L ¼ 5

Area of cross section: �A ¼ 6:25� 10�4

Boundary Conditions

�Tð0; �tÞ ¼ ð�t=�t0ÞHð�t0 � �tÞ þ Hð�t� �t0Þ ; with �to ¼ 0:25

Initial Conditions

�uð�x; 0Þ ¼ @�uð�x; 0Þ=@�t ¼ �Tð�x; 0Þ ¼ 0

PD Discretization Parameters

Total number of material points in the �x- direction: 200

Spacing between material points: �Δ ¼ 0:025

Incremental volume of material points: Δ �V ¼ 1:5625� 10�5

Volume of fictitious boundary layer: �V�δ ¼ ð3Þ � Δ �V ¼ 4:6875� 10�5

Horizon: �δ ¼ 3:015�Δ
Time step size: Δ�t ¼ 0:5� 10�3

t

L

L

a

b

Fig. 13.2 Peridynamic

model of the fields in the

one-dimensional bar: (a)

thermal, (b) deformation
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Numerical Results: Figure 13.3 provides a comparison of the temperature and

displacement distribution predicted by the peridynamic simulation against the finite

element predictions using ANSYS at �x ¼ 1 for E ¼ 0; 0:36; 1: These results also
agree extremely well with those reported by Nickell and Sackman (1968). It is
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Fig. 13.3 For different coupling coefficients: (a) Displacement and (b) temperative predictions

at �x ¼ 1
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evident that for all three degrees of coupling the temperature at �x ¼ 1 increases with

time in a very similar fashion while the displacement remains zero up until �t ¼ 0:5.
At about time �t ¼ 0:5, the point �x ¼ 1 starts to be displaced in the positive direction.

The effects of coupling become apparent beyond �t ¼ 0:5 . The temperature and

displacement variation for the three degrees of coupling are no longer similar. The

amplitudes of the temperature and displacement decrease as the strength of the

coupling is increased. The coupling accelerates the diffusion of heat as there appears

to be an increase in the amount of thermal and mechanical energy dissipated.

13.6.2 Thermoelastic Vibration of a Finite Bar

A bar of finite length is initially subjected to a sinusoidal velocity with zero

displacement and temperature. The initial velocity is applied with a specified

wavenumber. The ends of the bar are fixed with zero temperature and displacement.

This particular thermoelastic vibration problem was considered by Armero and

Simo (1992) using the finite element method. Construction of the PD solution is

achieved by using the nondimensional form of the equations. The geometric

parameters and the peridynamic discretization for the thermal and deformational

fields are shown in Fig. 13.4. The temperature and displacement boundary

conditions are imposed through the fictitious regions Rt and Ru, respectively.

The solution is obtained by specifying the geometric parameters, material

properties, initial and boundary conditions, as well as the peridynamic

discretization and time integration parameters as:

Geometric parameters

Length of bar: �L ¼ 100

Boundary Conditions

�Tð0; �tÞ ¼ �Tð�L; �tÞ ¼ 0

�uð0; �tÞ ¼ �uð�L; �tÞ ¼ 0

t

L

t

u

L

u

a

b

Fig. 13.4 Peridynamic

model of the fields in the

one-dimensional bar: (a)

thermal, (b) deformation
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Initial Conditions

�uð�x; 0Þ ¼ �Tð�x; 0Þ ¼ 0

@�uð�x; 0Þ=@t ¼ sinðπ�x=�LÞ

PD Discretization Parameters

Total number of material points in the �x- direction: 5000

Spacing between material points: �Δ ¼ 0:02

Incremental volume of material points: Δ �V ¼ 8� 10�6

Volume of fictitious boundary layer: �V�δ ¼ ð3Þ � Δ �V ¼ 24� 10�6

Horizon: �δ ¼ 3:015� �Δ
Time step size: Δ�t ¼ 1� 10�4

Numerical Results: The resulting elastic waves are progressive traveling waves.

In the case of a fully coupled thermoelastic problem, there exist two types of waves:

elastic and thermal. Both types of waves have been modified from their uncoupled

forms. The modified elastic waves are attenuated, compared to the uncoupled

elastic waves, and are subjected to dispersion and damping in time. The modified

thermal waves also exhibit dispersion and damping in time. The peridynamic

predictions for the temporal distribution of displacement and temperature at �x ¼ 50

and �x ¼ 25, respectively, are shown in Fig. 13.5 for coupling coefficients of E ¼ 0

and E ¼ 1. The peridynamic predictions are also compared with the classical finite

element approximations given by Armero and Simo (1992).

13.6.3 Plate Subjected to a Shock of Pressure
and Temperature, and Their Combination

The fully coupled nondimensional PD thermomechanical equations are further

verified by solving a problem previously considered by Hosseini-Tehrani and Eslami

(2000) using the Boundary Element Method. It concerns a square plate of isotropic

material under either a pressure shock or a thermal shock, and their combination on

the free edge in the positive �x-direction: As shown in Fig. 13.6, it is clamped at the

other edge and the insulated horizontal edges are free of any loading. The thermome-

chanical equations are solved for both uncoupled and coupled cases.

Geometric Parameters

Length: �L ¼ 10

Width: �W ¼ 10

Thickness: �H ¼ 1

Initial Conditions

�T �x; �y; 0ð Þ ¼ 0

�u�x �x; �y; 0ð Þ ¼ �u�y �x; �y; 0ð Þ ¼ 0
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Boundary Conditions

�T;�x �x ¼ 10; �y; �tð Þ ¼ 0
�T;�y �x; �y ¼ �5;�tð Þ ¼ 0

�u�x �x ¼ 10; �y; �tð Þ ¼ �u�y �x ¼ 10; �y; �tð Þ ¼ 0
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Fig. 13.5 Variation of (a) displacement at �x ¼ 50 and (b) temperature at �x ¼ 25
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σ�y�y �x; �y ¼ �5;�tð Þ ¼ σ�x�y �x; �y ¼ �5; �tð Þ ¼ 0

where �t is the nondimensional time.

Pressure Shock

�Tð�x ¼ 0; �y; �tÞ ¼ 0

σ�x�xð�x ¼ 0; �y; �tÞ ¼ �Pð�tÞ ¼ �5�t e�2�t

Thermal Shock

�Tð�x ¼ 0; �y; �tÞ ¼ 5�t e�2�t

σ�x�xð�x ¼ 0; �y; �tÞ ¼ 0

Combined Pressure and Thermal Shock

�Tð�x ¼ 0; �y; �tÞ ¼ 5�te�2�t

σ�x�xð�x ¼ 0; �y; �tÞ ¼ �Pð�tÞ ¼ �5�t e�2�t

PD Discretization Parameters

Total number of material points in the �x- direction: 200
Total number of material points in the �y- direction: 200

Spacing between material points: �Δ ¼ 0:05

Incremental volume of material points: Δ �V ¼ 1:25� 10�4

Volume of fictitious boundary layer: �V�δ ¼ ð3� 200Þ � Δ �V ¼ 0:075

Volume of boundary layer: �V �Δ ¼ ð1� 200Þ � Δ �V ¼ 0:025

Horizon: �δ ¼ 3:015� �Δ
Time step size: Δ�t ¼ 0:5� 10�3

The peridynamic discretization for the thermal field is shown in Fig. 13.7. The

temperature boundary condition is imposed in fictitious regionRt. The peridynamic

discretization for the deformational field is shown in Fig. 13.8. The displacement

y

x

W

L

P t

T t

( )
or
( )

Fig. 13.6 Geometry and

boundary conditions of the

plate under pressure or

thermal shock
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boundary condition is imposed in fictitious region Ru . The pressure is applied

through boundary layer region Rp.

Numerical results: Figure 13.9 shows the temperature and displacement variations

at �y ¼ 0 due to the pressure shock at times �t ¼ 3 and �t ¼ 6. When the coupling

coefficient is zero, no temperature change is expected. However, when the coupled

effect is included, even thoughmechanical loading is applied, temperature change is

expected. The compressive stress along the boundary causes a temperature rise. As

observed in this figure, the peak of the temperature distribution moves to the right as

time progresses. Figure 13.9 also shows the axial displacement along the �x -axis. The
PD results are also in close agreement with the BEM results (Hosseini-Tehrani and

Eslami 2000). Figure 13.10 shows the temperature and displacement variations at

�y ¼ 0due to thermal shock at times�t ¼ 3and�t ¼ 6. As observed, the coupling term in

the thermal field causes a temperature drop, and the peridynamic predictions are in

close agreement with the BEM solution published by Hosseini-Tehrani and Eslami

(2000). Figure 13.11 shows the temperature and displacement variations at�y ¼ 0due

to combined pressure and thermal shock at times�t ¼ 3and�t ¼ 6. The PD predictions

are in close agreement with the BEM results byHosseini-Tehrani and Eslami (2000).

13.6.4 A Block of Material Under Thermal Loading

A three-dimensional finite block of material is gradually heated at one end, and the

remaining surfaces are insulated. As shown in Fig. 13.12, it is clamped at the other

end without any other type of loading. The PD discretization of the thermal and

deformational fields is shown in Fig. 13.13

t

y

x
W

L

Fig. 13.7 Peridynamic model of the thermal field in a plate
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The solution is obtained by specifying the geometric parameters, initial and

boundary conditions, as well as the peridynamic discretization and time integration

parameters as:

Geometric Parameters

Length: �L ¼ 5

Width: �W ¼ 0:15

Thickness: �H ¼ 0:15

Initial Conditions

�uð�x; �y; �z; 0Þ ¼ @�uð�x; �y; �z; 0Þ=@�t ¼ �Tð�x; �y; �z; 0Þ ¼ 0

u

y

x
W

L

p

u

y

x
W

L

a

b

Fig. 13.8 Peridynamic model of deformational field in a plate: (a) pressure shock, (b) thermal

shock
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Boundary Conditions

�Tð0; �y; �z; �tÞ ¼ ð�t=�t0ÞHð�t0 � �tÞ þ Hð�t� �t0Þ
�T;�x �x ¼ �L; �y; �z; �tð Þ ¼ 0
�T;�y �x; �y ¼ 0; �z;�tð Þ ¼ 0
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Fig. 13.9 Variations along the centerline in the plate for uncoupled (E ¼ 0) and coupled (E 6¼ 0)

cases under pressure shock loading: (a) temperature, and (b) displacement
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�T;�y �x; �y ¼ �W; �z; �tð Þ ¼ 0
�T;�z �x; �y; �z ¼ 0; �tð Þ ¼ 0
�T;�z �x; �y; �z ¼ �H;�tð Þ ¼ 0

�u�x �x ¼ �L; �y; �z; �tð Þ ¼ �u�y �x ¼ �L; �y; �z; �tð Þ ¼ �u�z �x ¼ �L; �y; �z; �tð Þ ¼ 0
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Fig. 13.10 Variations along the centerline in the plate for uncoupled (E ¼ 0) and coupled (E 6¼ 0)

cases under thermal shock loading: (a) temperature, and (b) displacement
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σ�x�x �x ¼ 0; �y; �z;�tð Þ ¼ σ�x�y �x ¼ 0; �y; �z;�tð Þ ¼ σ�x�z �x ¼ 0; �y; �z; �tð Þ ¼ 0

σ�y�y �x; �y ¼ 0; �z;�tð Þ ¼ σ�x�y �x; �y ¼ 0; �z;�tð Þ ¼ σ�y�z �x; �y ¼ 0; �z; �tð Þ ¼ 0

σ�y�y �x; �y ¼ �W; �z; �tð Þ ¼ σ�x�y �x; �y ¼ �W; �z;�tð Þ ¼ σ�y�z �x; �y ¼ �W; �z; �tð Þ ¼ 0

σ�z�z �x; �y; �z ¼ 0; �tð Þ ¼ σ�x�z �x; �y; �z ¼ 0; �tð Þ ¼ σ�y�z �x; �y; �z ¼ 0;�tð Þ ¼ 0

σ�z�z �x; �y; �z ¼ �H; �tð Þ ¼ σ�x�z �x; �y; �z ¼ �H; �tð Þ ¼ σ�y�z �x; �y; �z ¼ �H; �tð Þ ¼ 0
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Fig. 13.11 Variations along the centerline in the plate for uncoupled (E ¼ 0) and coupled (E 6¼ 0)

cases under combined thermal and pressure shock loading: (a) temperature, and (b) displacement
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PD Discretization Parameters

Total number of material points in the �x- direction: 200
Total number of material points in the �y- direction: 6
Total number of material points in the �z- direction: 6

Spacing between material points: �Δ ¼ 0:025

Incremental volume of material points: Δ �V ¼ 1:5625� 10�5

Volume of fictitious boundary layer: �V�δ ¼ ð3� 6� 6Þ � Δ �V ¼ 1:6875� 10�3

Horizon: �δ ¼ 3:015� �Δ
Time step size: Δ�t ¼ 1� 10�4

Numerical Results: As shown in Fig. 13.14, the PD predictions for temperature and

displacement variations along the length of the block are compared with the FEA

results from ANSYS at �t ¼ 1 and 2 for E ¼ 0 and E ¼ 1. The comparison indicates

excellent agreement.
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Fig. 13.12 Geometry

and boundary conditions

of the block under
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Fig. 13.13 Three-dimensional peridynamic model of the fields: (a) thermal, (b) deformation
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Fig. 13.14 Predictions at ð�y ¼ �W=2; �z ¼ �H=2Þ for coupled and uncoupled cases: (a) displace-

ment, and (b) temperature
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Appendix

A.1 Concept of State

Acontinuous functiongðxÞfor �1 < x < 1can begðxiÞconsidered as a combination

of an infinite number of discrete function values, for i ¼ 1; ::::;1 . These discrete

function values can be stored in an infinite-dimensional array, or a “state,” g as

g ¼

g x1ð Þ
..
.

gðxiÞ
..
.

g x1ð Þ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
: (A.1)

For notation purposes, all states are denoted with an underscore.

The states of order 2 (double state) are written in an upper case font,A. States of
order 1 (vector state) are written in a bold upper case font, A . States of order

0 (scalar state) are written in a lower case (nonbold) font,a. When the double stateA
operates on an angle bracket �h i, the result is the second-order tensorA �h i; when the
vector state A operates on an angle bracket �h i, the result is the vector A �h i; and
when the scalar state a operates on �h i, the result is the scalar a �h i.

The “state” concept is not restricted to continuous functions. It is also applicable

to discontinuous functions. As explained by Silling et al. (2007), “states” can also

be described as a general form of tensors. It is possible to convert states to tensors or

vice versa. The process of converting a tensor to a state is referred to as “expansion”
and the process of converting a state to a tensor as “reduction.”

If a second-order tensor, F, operates on a vector ðxðjÞ � xðkÞÞ, the corresponding
vector ðyðjÞ � yðkÞÞ is obtained as

yðjÞ � yðkÞ
� �

¼ F xðjÞ � xðkÞ
� �

; (A.2)
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where j ¼ 1; . . . ;1 . All the ðyðjÞ � yðkÞÞ vectors can be stored in an infinite-

dimensional array, or a vector state, Y:

Y ¼
yð1Þ � yðkÞ

� �
..
.

yð1Þ � yðkÞ
� �

8>>><
>>>:

9>>>=
>>>;

or Y ¼
F xð1Þ � xðkÞ
� �

..

.

F xð1Þ � xðkÞ
� �

8><
>:

9>=
>;: (A.3)

In this equation, there is a direct relationship between the vector state Y and the

second-order tensor F. This relationship can be expressed as the “expansion” of the
second-order tensor F . The “expansion” process can be visualized as shown in

Fig. A.1. In this figure, the second-order tensor F operates on an infinite number of

vectors, forming a circle, ðxðjÞ � xðkÞÞ with j ¼ 1; . . . ;1, and the resulting vectors,

ðyðjÞ � yðkÞÞ, form an ellipse.

Therefore, the “state” can be viewed as a data bank to extract information about

the state of material points. For example, the vector states of reference position X

and deformationYprovide information about the relative position of material points

in the reference and deformed configurations. The mathematical operations for such

extraction of information are denoted as

X x0 � xh i ¼ x0 � x (A.4a)

and

Y x0 � xh i ¼ y0 � y; (A.4b)

in which x0 � x and y0 � y represent the relative position of the points x0 and x in the
reference and deformed configurations. Similarly, a temperature scalar state, τ, can
provide information about the temperatures,T 0 andT, at these two material points in

the form

τ x0�xh i ¼ T0 � T: (A.4c)

As presented by Silling et al. (2007), the dot product of two vector states,AandD

, and two scalar states, a and d, can be cast as

(x( j)-x(k)) F(x( j)-x(k))

(y( j)-y(k))
Fig. A.1 The “expansion”
of the second-order tensor F
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A � D ¼
Z
H

A x0 � xh i � D x0 � xh idH (A.5a)

and

a � d ¼
Z
H

a x0 � xh id x0 � xh idH: (A.5b)

Their point products are expressed as

ADð Þ x0 � xh i ¼ A x0 � xh i � D x0 � xh i (A.6a)

and

a dð Þ x0 � xh i ¼ a x0 � xh id x0 � xh i: (A.6b)

The tensor product of vector states A and D is defined as

A � D ¼
Z
H

�w x0 � xh iA x0 � xh i � D x0 � xh idH; (A.7)

where �w is the influence function, a scalar state, and � represents the dyadic

product of two vectors i.e., C ¼ a� b or Cij ¼ ai bj.
The reverse transformation from a vector state to a second-order tensor, which is

called the “reduction” process, can be approximated by the expression given by

Silling et al. (2007). The tensorR Yf g is the vector state reduction of the vector state
Y and is defined as

R Yf g ¼ Y � Xð ÞK�1: (A.8)

Hence, a vector state Y can be reduced to a second-order tensor F

F ¼ R Yf g: (A.9)

The shape tensor, K, is defined as

K ¼ X � X: (A.10)

Therefore, the shape tensor, K, can be obtained as

K ¼
Z
H

w x0 � xh iX x0 � xh i � X x0 � xh i dH: (A.11)
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The influence function, w x0 � xh i, as discussed in Chap. 4, can be defined as

w x0 � xh i ¼ δ

x0 � xj j ; (A.12)

with δ defining the radius of the horizon, H . The shape tensor, K , has a direct

relationship with the volume of the horizon. Defining the position vector in the form

ξ ¼ x0 � x, the shape tensor can be rewritten as

K ¼
Z
H

ω ξh iξ� ξ dH (A.13a)

or

Kij ¼
Z
H

ω ξh i ξi ξj dH; with i; j ¼ 1; 2; 3: (A.13b)

The components ðξx; ξy; ξzÞ of the position vector ξ in reference to a Cartesian

coordinate system ðx; y; zÞ, whose origin is located at x, between material points at x

and x0 can be expressed as

ξ1 ¼ ξx ¼ ξ sin ϕð Þ sin θð Þ; (A.14a)

ξ2 ¼ ξy ¼ ξ cos ϕð Þ; (A.14b)

ξ3 ¼ ξz ¼ ξ sin ϕð Þ cos θð Þ; (A.14c)

where ξ ¼ jξj is the length of the position vector; definitions of anglesϕ 2 ð0; πÞand
θ 2 ð0; 2πÞ are shown in Fig. A.2.

The components of the shape tensor, K, become

Kij ¼
Z
H

δ

ξ
ξi ξj dH; i; j ¼ 1; 2; 3 (A.15a)

x

y

z

x
y

x

z

x

Fig. A.2 Components

of the position vector, ξ,
between material points

at x and x0
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or

Kij ¼
Zδ

0

Z2π
0

Zπ

0

δ

ξ
ξi ξj ξ

2 sin ϕð Þ dϕ dθ dξ: (A.15b)

After performing the integration in Eq. A.15b, the components of the shape

tensor, K, are obtained as

Kij ¼ π δ5

3
δij; (A.16)

where δij is the Kronecker delta with i; j ¼ 1; 2; 3. By defining the volume of the

horizon, V ¼ 4=3 π δ3, the shape tensor, K, can be expressed as

K ¼ V δ2

4
I; (A.17)

with I representing the identity matrix. Therefore, the shape tensor can be viewed as

a quantity that serves as volume averaging of the tensor product of vector states,

ðY � XÞ.
Based on the definition of reduction, Eq. A.8, a scalar state,a, can be reduced to a

vector, R af g, as

R af g ¼ a � xð Þm�1: (A.18)

Hence, a vector state, a, can be reduced to a vector, f , as

f ¼ R af g: (A.19)

The scalar weighted volume, m, is defined as

m ¼
Z
H

�w x0�xh i Xj j x0�xh i � Xj j x0�xh idH: (A.20)

The dyadic, � , operation annuls because both ahx0 � xi and jXjhx0�xi ¼ jx0�xj
are scalar; thus, the reduction expression can be rewritten as

f ¼ 1

m

Z
H

w x0 � xh iX x0 � xh ia x0 � xh i dH; (A.21a)

with

m ¼
Z
H

w x0�xh i x0�xj j x0�xj jdH: (A.21b)
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Substituting for the influence function, w x0 � xh i , from Eq. A.12, the scalar

weighted volume can be evaluated as

m ¼ δ

Z
H

x0�xj jdH: (A.22)

In light of Fig. A.2, it can be explicitly evaluated as

m ¼ δ

Zδ

0

Z2π
0

Zπ

0

ξξ2 sin ϕð Þ dϕ dθ dξ ¼ 3

4
V δ2: (A.23)

The scalar weighted volume can be viewed as a quantity that serves as volume

averaging of the product of a scalar and vector states, a � X.

A.2 The Fréchet Derivative

Let a scalar function, Ψ , be dependent on a state, A, i.e., Ψ ¼ ΨðAÞ. Its variation is

defined as

dΨ ¼ Ψ Aþ dAð Þ �Ψ Að Þ; (A.24)

in which dA is the differential of A . Silling et al. (2007) notes that if Ψ is

differentiable then the variation of Ψ can be defined as

dΨ ¼ �rΨ Að Þ � dA (A.25a)

or

dΨ ¼ Ψ;A Að Þ � dA; (A.25b)

and the term �rΨ Að Þ ¼ Ψ;A Að Þ is called the Fréchet derivative ofΨ atA. SinceΨ is

a scalar value function,Ψ;A Að Þ is a state of the same order asA. Fréchet derivatives

of various functions of states are given by Silling et al. (2007) and Silling and

Lehoucq (2010).
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Index

A

Absorbed power density, 249

Adiabatic split scheme, 248

Assembly operator, 193

Atomistic lattice models, 4

B

Balance laws, 32–36

balance of angular momentum, 32

balance of linear momentum, 32

conservation of energy, 32, 245, 248, 249

conservation of linear momentum, 256

conservation of thermal energy, 256

Bar, 197, 264–267

semi-infinite bar, 263

Bimaterial strip, 177–178

Block, 235–237, 270–276

Bond-based peridynamic theory, 13, 36–37

equation of motion, 255

thermal diffusion, 219

thermal modulus, 256

thermomechanics, 254–256

Bond-constant, 37, 56

Boundary conditions, 126, 143, 213–219

body load, 195

constraint condition, 28–32

displacement constraints, 29–30

distributed pressure, 143

external loads, 30–32

extreme loading conditions, 126, 144

high velocity boundary conditions, 126

impact problems, 126

insulated boundaries, 234–237

large displacement boundary

constraints, 126

real material layer, 32, 215

thermal loading, 12, 264–266, 270–276

time-dependent surface temperature,

230–231

velocity boundary conditions, 173–177

velocity constraints, 30

Boundary element method (BEM), 234,

247, 267

Branching, 11

Buckling, 166

buckling load, 166

C

Characteristic length scale, 257

Characteristic time scale, 257

Charpy V-notch test, 11

Classical local theory, 7

classical continuum mechanics, 8, 45

classical heat conduction, 213

classical linear theory of

thermoelasticity, 252

classical theory of elasticity, 19

local theory, 46, 247–248

Clausius-Duhem inequality, 250

Coarse-graining method, 9

Collocation method, 125, 127

collocation point, 125

Composite, 13

fiber-reinforced laminated composites, 75
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Composite (cont.)
lamina, 75, 157

laminated composites, 79–88

specially orthotropic, 75

stacking sequence, 79

unidirectional lamina, 75

Compression, 164–167

compression after impact, 11

compressive waves, 185

Constitutive relation, 57

Contact, 181

Convection, 215, 231–233

Coupling, 191–201

direct coupling, 192

force-based blended model, 12, 192

morphing, 12, 192

Coupling coefficient, 246, 260

Crack, 10

crack growth, 11, 144–146

crack initiation, 11

crack path, 146

crack path prediction, 122–124

crack tip, 146, 245

emerging discontinuities, 205

inclined insulated crack, 240–243

insulated crack, 237–240

pre-existing crack, 126, 143–144,

171, 173–177

Critical material failure parameter, 11

critical energy density, 11

critical energy release rate, 11, 119

critical equivalent strain, 11

critical stretch, 11, 115–120

Cryogenics systems, 204

D

Damage, 7, 115–124

damage initiation, 121

local damage, 121–122, 126

Deformation, 20–21

gradient tensor, 41, 249

state, 23, 249

vector state, 20

Deformational heating and cooling term, 254

Delamination, 79

Diffusivity, 257

Dilatation, 11, 50, 59, 68, 246

bulk modulus, 258

dilatational energy density, 49

volumetric deformation, 38

volumetric strain, 11

Directional dependency, 77

Displacement vector state, 253

Dissimilar materials, 237–240

Distortion, 37

distortional deformation, 37, 38

distortional energy density, 49

volumetric deformation, 37

Dot product, 280

Dyadic product, 42, 281

Dynamic relaxation, 10

adaptive dynamic relaxation, 125,

136–139, 193

damping coefficient, 136, 196

fictitious damping term, 136

fictitious diagonal density matrix, 136

Greschgorin’s theorem, 136, 137, 193

Rayleigh’s quotient, 136, 138

E

Elastic, 11

linear elastic, 10

nonlinear elastic, 10, 253

Entropy density, 249, 250

Equations of motion, 24–27, 45–46

Euler-Lagrange equation, 205, 208

Lagrange’s equation, 24, 26, 27, 84

Lagrangian, 24, 25, 83, 205, 207

Extension, 255

extension scalar state, 252

F

Failure load, 122–124

Fast Galerkin method, 10

Fictitious inertia term, 136

Fictitious regions, 215, 264, 266

fictitious boundary layer, 215, 264

fictitious boundary region, 143

fictitious material layer, 29, 213

Finite difference approximation, 47

Finite element method (FEM), 2, 247, 248

cohesive zone, 3

extended finite element method

(XFEM), 3, 11

First law of thermodynamics, 249, 250

Force

force density, 21–23

force state, 23, 43, 249

force vector state, 22

point force, 143

Fourier transform, 247

Fréchet derivative, 250, 253, 284

Free-energy density, 249, 250
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Free-energy function, 245, 248

Fully coupled thermomechanics, 13,

245–276

G

Green-Lagrange strain tensor, 41

H

Heat, 219

exchange of heat energy, 205

heat conduction, 203

heat energy, 210

heat energy exchange, 249

heat flow density, 219

heat flow rate, 216

heat flow scalar state, 208, 211, 249

heat flux, 211–214, 216–218

heat flux vector, 203

heat gain, 204

heat generation, 210, 211, 216, 218,

226, 249

heat loss, 204

heat source, 206, 210

rate of heat, 203

rate of heat generation, 206, 242

Heat diffusion, 13

Horizon, 8, 10, 19, 88, 139, 144, 209, 222

family members, 126, 147

I

Impact, 181–189

deformable impactor, 181

flexible impactor, 183

high-speed impact, 246

rigid disk, 186–188

rigid impactor, 181–182

Incompressibility, 37, 38

Influence function, 10, 281

Initial conditions, 28–32, 126, 143, 213–219

Initial imperfection, 164

Integral equations, 7

integro-differential equation, 9, 125

Interface element, 191

Internal energy storage density, 210, 249

Internal length, 8

Irreversible thermodynamics, 246, 248

Isotropic, 13, 154–157, 267

Isotropic expansion, 57, 58

J

J-integral, 11

K

Kalthoff-Winkler experiment, 11, 183,

188–189

Kinetic energy, 24

L

Lamé’s constants, 257, 258

Lamina, 157–160

Laplace transform, 247

Linear elastic fracture mechanics

(LEFM), 2, 8

Local, 144–146

M

Material (natural) coordinates, 75

Material layer, 143

Material point, 125

material point spacing, 144

Material property matrix, 57, 61

Melting, 205

Meshless scheme, 125

Microbranching, 11

Microconductivity, 258

Microcracking, 6

Micropolar peridynamic model, 9

Micropotential, 19, 23

Modulus state, 251

Molecular dynamics, 4, 13

Monolithic scheme, 247, 260

N

No fail zone, 126, 144

Nondimensional form of thermomechanical

equations, 256–260

Nondimensional parameters, 257–260

Nonlocality, 10, 203

gradient-type nonlocal models, 6

integral-type nonlocal material

models, 6

nonlocal continuum theory, 5

nonlocal heat conduction theory, 204

nonlocal thermal diffusion, 204–205

weakly nonlocal model, 204

Nonlocal theory, 248

Notch, 188

Numerical integration, 10

discretization, 224–225

Gaussian integration points, 128

Gaussian quadrature, 10

grid size, 139

numerical convergence, 139–141

spatial discretization, 127–128
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O

One-dimensional structures, 56, 66–68

Overlap region, 192, 196

P

Pairwise heat flow density, 219

Pairwise interactions, 8, 36

Parallel computing, 10, 126, 148–149

binary space decomposition, 148

central processing unit (CPU), 148

graphics processing units (GPU), 10, 148

load balancing, 148–149

spatial partitioning, 146–148

Partitioned scheme, 260

Penetration fracture, 246

Peridynamic theory, 7–8

peridynamic force, 47–48

peridynamic material parameters, 88

peridynamic parameter, 12, 258

peridynamic states, 9, 23

Perturbation technique, 247

Phase transformation, 10

Plastic, 10

plastic zone, 246

Plate, 173–177, 186–188, 231,

267–270

isotropic plate under uniaxial

tension, 154–157

plate with a hole, 197

thick plate, 240–243

thin plate, 56

Polymer, 246

Position vector, 282

Potential energy, 24

potential energy of a laminate, 80, 82

Principle of virtual displacements, 39

Principle of virtual work, 24

Q

Quasi-static loading, 171–173

R

Race condition, 148

Radial extension, 167–169

Relative displacement vector, 130, 255

Relative position vector, 130

Response function, 37

thermal response function, 219, 224,

227, 255

Rewetting problem, 205

S

Second-order tensor, 279–281

Shape functions, 192

Shape tensor, 281

Shear

shear modulus, 258

simple shear, 57, 59, 62, 64, 70, 71, 89

simple transverse shear, 98–104

Shock, 191, 247

pressure shock, 263

thermal shock, 234–235, 263

Short-range force, 183

Slab, 230–233

Slit, 188

Solidification, 205

Specific heat capacity, 210, 246

Spherical cavity, 167–169

Staggered scheme, 247, 260

State

double state, 9, 279

infinite-dimensional array, 279

reduction, 279

scalar state, 279

vector state, 21, 279

vector state reduction, 41

State-based peridynamics, 9, 252

nonordinary state-based peridynamic

theory, 11, 39–43

ordinary state-based peridynamics, 13,

38–39

state-based peridynamic thermal

diffusion, 205–210

Steady-state solution, 136

Stefan-Boltzman constant, 218

Stefan problem, 205

Stiffness matrix, 75, 137, 139

element stiffness matrix, 194

local stiffness matrix, 196

Strain energy density, 23–24, 48–51, 60, 68, 80

Strain tensor, 251

Stress

Cauchy stress, 47–48

first Piola-Kirchhoff (Lagrangian) stress

tensor, 41

PD stress tensor, 9

Piola-Kirchhoff stress tensor, 9, 41

second Piola-Kirchhoff (Kirchhoff) stress

tensor, 41

stress power, 249

Stretch, 37, 256, 258

biaxial stretch, 89, 95–98

uniaxial stretch, 68

uniaxial stretch in fiber direction, 90
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uniaxial stretch in fiber transverse

direction, 89

uniaxial stretch in transverse direction,

89, 93–95

St. Venant’s principle, 191

Surface effects, 68–74, 104–113, 142–143,

227–229

free surface, 227

material interface, 227–228

surface correction factor, 105, 126, 142

T

Target, 181

Temperature, 178–180, 203, 236, 248, 255

absolute temperature, 249

gradient of temperature, 203

nonuniform temperature change, 178

reference temperature, 246, 255

temperature change, 53, 255

temperature difference, 210

temperature gradient, 178–180

temperature scalar state, 209, 212

uniform temperature change, 151,

154–160, 177–178

Tension, 151, 157–160

tensile loading, 197–201

tension waves, 185

uniaxial tension, 151, 154–157

Thermal coupling term, 252–254

Thermal diffusion, 203–243

Fourier’s law of heat conduction, 203

heat flow state, 211–213

PD thermal diffusion equation, 224

peridynamic heat conduction equation,

13, 219

peridynamic microconductivity, 221, 227

peridynamic thermal diffusion

equation, 223

thermal conductivity, 203

thermal microconductivity, 220

Thermal modulus, 246, 251

Thermal potential, 206, 219

microthermal potential scalar state, 209

Thermoelasticity

linearized peridynamic thermoelastic

material, 253

linear thermoelastic material response, 253

thermoelastic damping, 245

thermoelastic wave, 247

Three-dimensional structures, 57–61

Time integration, 130–132

Adams-Bashforth method, 125

Adams-Moulton method, 125

backward difference scheme, 125, 130, 263

central difference, 133, 137, 196

explicit time integration, 10, 125, 132,

137, 196, 261

forward difference scheme, 125, 130,

223, 263

incremental time step, 125

mixed explicit-implicit time integration, 10

numerical stability, 132–136, 225–227

Runge-Kutta method, 125

stability criterion (condition), 10, 125, 226

time stepping, 223

time step size, 132

unconditional stability, 260

Traction vector, 45

internal traction vector, 45

Transverse loading, 163–164

material properties for transverse

deformation, 75

transverse normal deformation, 88

transverse normal stretch, 98

transverse shear deformation, 88

Two-dimensional structures, 56, 61–66

U

Uncoupled (decoupled) thermomechanical

analysis, 245, 248

V

van der Waals forces, 8

van der Waals interactions, 13

Vibration, 191

longitudinal vibration, 151–153

thermoelastic vibration, 266–267

Viscoelastic, 10

Viscoplastic, 10

Volume correction, 129

volume correction factor, 125, 129

von Neumann stability analysis, 132, 226

W

Wave

elastic wave, 267

elastic wave speed, 257

thermal wave, 267

wave dispersion, 8

wave number, 226

Weighted volume, 213, 283

Workload estimate, 149
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