
Chapter 7
Iterative Methods

Abstract This chapter looks at iterative methods to solve linear systems and at some
alternative methods to solve eigenvalue problems. That is, we now look at iteration
instead of using a finite number of noniterative steps. Iterative methods for solving
eigenvalue problems are, of course, completely natural. We looked at power iteration
and at the QR iteration in Chap. 5; here we look at some methods that take advantage
of sparsity or structure. We also use one pass of iterative refinement to improve
structured backward error. �

7.1 Iterative Refinement and Structured Backward Error

Let us begin with the simplest possible iterative method for solving a linear system.
We first consider a 3× 3 example that hardly needs iteration, but we will shortly
extend to larger matrix sizes. So suppose we wish to solve

⎡
⎣

4 1 0
1 4 1
0 1 4

⎤
⎦
⎡
⎣

x1

x2

x3

⎤
⎦=

⎡
⎣

1
−1

1

⎤
⎦ .

The exact solution, which is easy to find by any method, is x = [5,−6,5]/14. Let us
imagine that we don’t know that, but that due to a prior computation, we do know
that the matrix

B =

⎡
⎣

2+
√

3 1
1 4 1

1 4

⎤
⎦

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods:
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0 7,
© Springer Science+Business Media New York 2013

307

308 7 Iterative Methods

has the Cholesky factoring LDLT with

L =

⎡
⎣

1
α 1

α 1

⎤
⎦ ,

α = 1/(2+
√

3), and D= diag(2+
√

3, 2+
√

3, 2+
√

3). As a result, B−1 =L−T D−1L−1

is easy to compute, or, more properly,

Bx = b ⇔ LDLT x = b

is easy to solve. Here, if we let P = B−1 (at least in thinking about it, not in actually
doing it), we have

PAx = Pb =

⎡
⎣

0.3847
−0.4359
0.35898

⎤
⎦ .

Notice that PA is nearly the identity, that is, PA = I−S, where S is a matrix with
small entries:

S =

⎡
⎣

−0.073216421430700 0 0
0.0206191045714862 0 0

−0.00515477614287156 0 0

⎤
⎦ .

Our equation has thus become

(I−S)x = Pb =

⎡
⎣

0.3847
−0.4359
0.35898

⎤
⎦ ,

and we are left with the problem, seemingly as difficult, of solving a linear system
with matrix I − S. However, we have made some progress, since we can use the
smallness of S to solve the system by means of an iterative scheme. First, observe
that (I−S)x= Pb = x0 implies x= x0+Sx. Hence, we can then write the following
natural iteration:

xk+1 = x0 +Sxk .

This is the Richardson iteration, which is about as simple an iterative method as it
gets. Then we obtain

x1 = x0 +Sx0 .

Similarly, we find that

x2 = x0 +Sx0 +S2x0

x3 = x0 +Sx0 +S2x0 +S3x0.

7.1 Iterative Refinement and Structured Backward Error 309

In general, the kth iteration results in

xk =
k

∑
j=0

S jx0 .

This series converges if ‖Sk‖ goes to zero, which it does, exactly as for the geo-
metric series, if there is a ρ < 1 for which ‖Sk‖ ≤ ρk. In this case, ‖S‖ ≤ 0.01.
An obvious induction gives ‖Sk‖ ≤ ‖S‖k ≤ (0.01)k and so this iteration converges;
indeed, already x4 is correct to four digits. Note that max |λ | ≤ ‖S‖ in general, and
it is very possible that max |λ | < 1. In this case the powers eventually decay even
though ‖S‖> 1. We will see examples shortly.

Before we look at larger matrices, let’s look at this iteration in a different way.
Using a matrix P, which is close to the inverse of A, we make the initial guess
x0 = Pb (since Ax = b then implies x ≈ Pb). The residual resulting from this
choice is

r0 = b−Ax0 = b−APb .

Since 0 = b−Ax, we find that

r0 = b−Ax0 − (b−Ax) = Ax−Ax0 = A(x− x0) = AΔx .

Thus, we see that Δx = x− x0 solves

AΔx = r0 .

Now, with this equation, we can use P as above and let x1 − x0 = Pr0. Then

x1 = x0 +Pr0 .

The process can clearly be repeated:

x2 = x1 +Pr1

x3 = x2 +Pr2 ,

where r2 = b−Ax2 and r1 = b−Ax1 are the corresponding residuals. This process
is called iterative refinement. Note that

x1 = x0 +P(b−Ax0) = x0 +Pb−PAx0 = x0 + x0 −PAx0

= x0 +(I−PA)x0 = x0 +Sx0 ,

since PA = I−S in our earlier notation. Similarly, one obtains

x2 = x1 +P(b−Ax1) = x0 +Sx0 +Pb−PA(x0 +Sx0)

= x0 +Sx0 + x0 − (I−S)(x0 +Sx0)

= x0 +Sx0 +S2x0 ,

310 7 Iterative Methods

which is mathematically equivalent to what we had before and converges under the
same conditions.

The matrix P, our approximate inverse, is called a preconditioner (and its inverse
is usually denoted M). Probably the most important part of any iterative method
is choosing the right preconditioner. For solving Ax = b, we need for P to allow
fast evaluation of products Pv and simultaneously be close to A−1. Unfortunately,
these goals are often in opposition. It is useful in practice to use even quite crude
approximations to A−1 as preconditioners, though.

Let us illustrate the usefulness of this method. Suppose we want to solve Ax = b
and, moreover, suppose A = Fn(I+S), where

Fn =

⎡
⎢⎢⎢⎣

2+
√

3 1
1 4 1

1 4 1
. . .

. . .
. . .

⎤
⎥⎥⎥⎦

is n×n and S, off its diagonal, is small [we will allow s11 =(4−(2+
√

3))/(2+
√

3)
to be sort of big]. Then, let P=F−1

n , although because F−1
n is full, we never compute

it. Instead, we note that by symmetric factoring, we have Fn = LnDLT
n , where

Ln =

⎡
⎢⎢⎢⎣

1
α 1

α 1
. . .

. . .

⎤
⎥⎥⎥⎦

and D = diag(2+
√

3,2+
√

3, . . . ,2+
√

3). Note that we won’t compute S, either.
Instead, we solve the sequence of equations

Lnz0 = b

Dny0 = z0

LT
n x0 = y0

in O(n) flops to get x0, by means of which we will use iterative refinement to get an
accurate value of x as shown below:

for k = 1,2, . . . do
Compute rk−1 = b−Axk−1

% Now, we compute xk − xk−1 = Prk−1

Solve Lzk = rk−1
Solve Dyk = zk

Solve LT Δxk = yk
Let xk = xk−1 +Δxk

end for
This is an iterative refinement formulation of the iteration. Because ‖S‖ .

= 0.01, 10
or so iterations of this process gets x accurate to most significant digits; and each

7.1 Iterative Refinement and Structured Backward Error 311

iteration costs O(n) flops. Thus, in O(n) flops, we have solved our system. This is
significantly better than the O(n3) cost for full matrices!

Note that A need not really be tridiagonal: It can have a few more entries here
and there off the main diagonals, contributing to S, if they’re not too large. Even
if there are lots of them, the cost of computing the residual is at most O(n2) per
iteration, and if S is small, we will need only O(1) iterations.

It’s hard to overemphasize the importance of this seemingly trivial change from
direct, algorithmic finite-number-of-steps solution to a convergent iteration, but
most large systems are, in practice, solved with such methods. As Greenbaum notes,

With a sufficiently good preconditioner, each of these iterative methods can be expected to
find a good approximate solution quickly. In fact, with a sufficiently good preconditioner
M, an even simpler iteration method such as xk = xk−1+M−1(b−Axk−1) may converge in
just a few iterations, and this avoids the cost of inner products and other things in the more
sophisticated Krylov space methods (in Hogben 2006, p. 41–10)

(which highlights the importance of choosing P well). The iterative methods in-
cluded in MATLAB are (for Ax = b)

• bicg—biconjugate gradient
• bicgstab—biconjugate gradient stabilized
• cgs—conjugate gradient squared
• gmres—generalized minimum residual
• lsqr—least squares
• minres—minimum residual
• pcg—preconditioned conjugate gradient
• qmr—quasiminimal residual
• symmlq—symmetric LQ

but there is no explicit program for iterative refinement, because it is so simple. See,
for example, Olshevsky (2003b) for pointers to the literature, or perhaps Hogben
(2006).

It was Skeel who first noticed that a single pass of iterative refinement could
be used to improve the structured backward error. He noticed that computing the
residual in the same precision (not twice the precision, which might not be eas-
ily available) gives the exactly rounded residual for (A+ΔA)x = b+ r for some
|ΔA| ≤ O(μM)|A|. That is, the computed residual is the exact residual for only
O(μM) relative backward errors in A, preserving structure. Notice that the com-
puted solution x usually comes only with a normwise backward error guarantee:
It is the correct solution to (A + ΔA)x = b + Δb with ‖ΔA‖ = O(μM‖A‖) and
‖Δb‖ = O(μM‖b‖), which does not preserve structure. A single pass of iterative
refinement can, if the condition number of A is not too large, improve this situation
considerably. Let x1 = x+Δx, where

A(Δx) = r .

Then solving this system gives us, more nearly, a solution of the same sort of
problem.

312 7 Iterative Methods

The following argument, though not “tight,” gives some idea of why this is so.
Suppose we have approximately solved Ax = b and found a computed solution,
which we will call x0. Then, on computing the residual r0 = b −Ax0 in single
precision, we know that we have found the exact solution of

(A+ΔA0)x0 = b− r0 ,

where |ΔA0| ≤ cμM|A| and c is a small constant that depends linearly on the dimen-
sion n. Notice that the ΔA0 is componentwise small. The working-precision residual
r0 is included (it might not be very small), and what this statement says is merely
that we have an accurate residual for a closely perturbed system. How small is r0?
It is easy to see that, normwise,

‖r0‖ .
= ρ‖A‖‖A−1‖‖b‖μM
.
= ρκ(A)‖b‖μM , (7.1)

at most (being sloppy with constants, though). ρ is called a growth factor. Now we
suppose that in solving AΔx = r0 in the same approximate fashion (call the solution
Δx0), we get the same approximate growth, so that the residual in this equation can
be written

(A+ΔA1)Δx = r0 − s0 ,

where again the perturbation ΔA1 is small componentwise compared to A, and s0 is
the residual that we could compute using working precision in the update equation:

s0 = r0 −AΔx0 .

Our “similar growth” assumption says that ‖s0‖ .
= ρκ(A)‖r0‖. This will be, roughly

speaking, ρ2κ(A)2‖b‖μ2
M and might, if we are lucky, be quite a bit smaller. Adding

together the two equations, we find that

(A+ΔA0) (x0 +Δx0) = b+(ΔA0 −ΔA1)Δx0 − s0

= b+O(μ2
M) ,

where we have suppressed the ρ2κ2(A) and the dependence on κ(A) from the other
small term in the order symbol. This loose argument leads us to expect that a single
pass ought to give us nearly the exact solution to a perturbed problem where the
perturbation is componentwise small.

Of course, it takes more effort to establish in detail that it actually does so under
many circumstances, and to describe exactly what those circumstances are. We can
easily see in the above argument though that if the condition number of A or the
growth factor ρ or both are “too large,” there will be trouble. Full details of a much
tighter argument are in Skeel (1980).

Example 7.1. This idea helps in coping with examples where the residual is unac-
ceptably large. This can happen even with well-scaled matrices (in theory, though

7.1 Iterative Refinement and Structured Backward Error 313

as we have discussed it is almost unheard of in practice). Consider the family of
matrices shaped like the following (we show the n = 6 case):

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1
−1 1 0 0 0 0
−1 −1 1 0 0 0
−1 −1 −1 1 0 0
−1 −1 −1 −1 1 0
−1 −1 −1 −1 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (7.2)

This well-known example has a growth factor for Gaussian elimination with partial
pivoting (although pivoting doesn’t actually happen because it is arranged that the
pivots are already in the right place) that is as bad as possible: The largest element
in U where A = LU is 2n + 1. The condition number of the matrix is quite reason-
able, however; it is only 33 or so when n = 32. But the solution with GEPP is not
acceptable, without iterative refinement, as we will see. As proved in Skeel (1980),
a single pass of iterative refinement is enough to stabilize the algorithm in the strong
sense discussed above.

Suppose we take b to be the vector vn corresponding to the smallest singular
value of A. The choice of b doesn’t really matter very much, though this choice is
especially cruel. When we compute (for n = 32) the solution of Ax = b, we should
get un, the final vector of the U matrix from the SVD. Call our computed solution
x0. We compute the residual r0 = b−Ax0, using the same 15-digit precision used to
compute x0. The norm of r0 is about 10−9, and thus the nearest matrix A+ΔA for
which x0 really solves the problem is about the same distance away, componentwise.
If we now solve AΔx = r and put x1 = x0 +Δx, then when we compute the residual
again, we find that ‖r1‖∞ is about 10−17. This produces an entirely satisfactory
backward error.

For n = 64, the situation is much worse, at the beginning. The zeroth solution has
a residual with infinity norm nearly 1; that is, almost no figures in the solution are
correct. A single pass of iterative refinement gives x1 with ‖r1‖∞

.
= 1.22 ·10−13, 13

orders of magnitude better. The 2-norm condition number of the matrix is only about
56.8, mind, and the ∞-norm condition number is 128. The Skeel condition number
(see Eq. (6.9)) cond(A) = ‖|A−1||A|‖∞ is not very different, being very close to 66.
However, the structured condition number for this x is quite a bit smaller:

cond(A,x) =
‖|A−1| |A| |x|‖∞

‖x‖∞

.
= 5.548 .

Thus, for n = 64, we can expect nearly 13 figures of accuracy in x1, because the
residual is so small. �

Remark 7.1. We should point out that |A| does not commute with |A−1| in general,
and in particular does not commute for this example. The Skeel condition number
uses the inverse first. �

314 7 Iterative Methods

7.2 What Could Go Wrong with an Iterative Method?

Let us now return to the iterative idea itself, and no longer think about the effects of
just one pass, but rather now think about what happens if many iterations are needed.
Indeed, thousands of iterations are common in some applications. The basic theo-
retical question is now: when does Sk → 0, and how fast does it do so? A theorem
of eigenvalues, Sk → 0 if all eigenvalues have |λ | ≤ ρ < 1, seems to characterize
things completely. However, as we saw in Sect. 5.5.2, pseudospectra turn out to play
a role for nonnormal S. There are other methods to look at this problem, and there
is an extensive discussion in Higham (2002, chapter 18). We content ourselves here
with an example.

50 100 150 200 250 300 350 400
10−20

10−15

10−10

10−5

100

k

sc
al

ed
 r

es
id

ua
l

Fig. 7.1 Scaled residuals for the Richardson iteration solution of a nonnormal matrix with n = 5.
We see fairly monotonic convergence

Example 7.2. Suppose that A = I−S, where S is bidiagonal, with all diagonal en-
tries equal to 8/9 and all entries of the first superdiagonal equal to −1. This is similar
to the example matrix that was used in Sect. 5.5.2. Now, we wish to solve Ax = b,
where, say, b has all entries equal to 1. Because all eigenvalues of S are less than
1 in magnitude, we know that the series I+S+S2 + · · · converges. Moreover, we
know that ultimately the error goes to zero like “some constant” times (8/9)k, and
that k = 400 gives (8/9)400 .

= 1× 10−21. Therefore, the Richardson iteration

xk+1 = b+Sxk

should converge to the reference solution. Incidentally, the reference solution has
xn = 9, x j = O((9/8)n− j) for j = n− 1, . . ., 1 by back substitution. This exponential
growth in the solution suggests that we should evaluate the quality of our solution
by examining the scaled residual,

δ =
‖b−Ax‖
‖A‖‖x‖ .

7.3 Some Classical Variations 315

We will use the kth iterate to scale the residual of the kth solution in the figures
below.

Because the pseudospectrum of this matrix (when the dimension is large) pokes
out into the region |λ | > 1—that is, the pseudospectral radius ρε of Eq. (5.13) is
larger than 1—we expect that this iteration will encounter trouble for large dimen-
sions. In other words, the “constant” that we hid under the blanket called “some
constant” in the previous discussion actually grows exponentially with the dimen-
sion n. While it is constant for any given iteration, the size of the constant gets
ridiculously large. In Problem 7.5, you are asked to give an explicit lower bound,
confirming this. Thus, as might be expected, the iteration works quite well for a
5× 5 matrix, as shown in Fig. 7.1. Also, as predicted, our expectation of trouble is
confirmed by an 89× 89 matrix, as shown in Fig. 7.2. �

50 100 150 200 250 300 350 400
10−2

10−1

100

k

sc
al

ed
 r

es
id

ua
l

Fig. 7.2 Scaled residuals for the Richardson iteration solution of a nonnormal matrix of dimen-
sion 89× 89. Convergence is very slow, which would be unexpected if we were not aware of the
pseudospectra of the matrix S

7.3 Some Classical Variations

In this section, we look at a few variations of the iterative method we have discussed
thus far, namely, Jacobi iteration, Gauss–Seidel iteration, and successive overrelax-
ation (SOR).

Let us begin with Jacobi iteration. Take P= D−1, the inverse of the diagonal part
of the matrix (so, write the matrix as D+E). Then, mathematically, PA = D−1A
and S = I−D−1A is pretty simple, but unless the off-diagonal elements of A are
small compared to D, this won’t converge: I−D−1A has only off-diagonal elements,
−ai j/aii, and we want (ideally) ‖S‖< 1. As an iteration to solve Ax = b, we proceed
as follows. Ax = b is equivalent to (D+E)x = b. Therefore,

316 7 Iterative Methods

Dx = b−Ex

xn+1 = D−1(b−Exn)

= xn − xn +D−1(b−Exn)

= xn +D−1(b−Dxn −Exn)

= xn +D−1(b−Axn) ,

which is the Jabobi iteration.
The Gauss–Seidel method is also worth considering. As Strang (1986, p. 406)

said, “[T]his is called the Gauss–Seidel method, even though Gauss didn’t know
about it and Seidel didn’t recommend it. Nevertheless it is a good method.” Take
P = L−1, where L is the lower-triangular part of A, including the diagonal:

L =

⎡
⎢⎢⎢⎣

a11

a21 a22
...

. . .
an1 an2 · · · ann.

⎤
⎥⎥⎥⎦

The iteration demands, for A = L+U, that we solve

Lxk+1 = b−Uxk

for xk+1 or, alternatively, that use the map

xk+1 = L−1b−L−1Uxk

(at least in theory—in practice, we can write this as a simple iteration, reusing the
same vector x as we go so; it uses less storage than Jacobi iteration). Because L is a
better approximation to A, this often converges twice as fast as Jacobi. This is usu-
ally win–win, although Jacobi iteration can in some cases win by use of parallelism.

But there is a dramatically better method using only trivially more effort, succes-
sive overrelaxation (SOR). Split A = L+D+U, with L now being strictly lower-
triangular. We get, with an “overrelaxation parameter” ω ∈ (0,2),

(D+ωL)x = ωb− (ωU− (ω − 1)D)x

from the following:

Ax = b

ωAx = ωb

Dx+ωAx = ωb+Dx

Dx+ω(L+D+U)x = ωb+Dx

(D+ωL)x = ωb+Dx−ωDx−ωUx

= ωb− (ωU− (ω − 1)D)x.

7.4 Large Eigenvalue Problems 317

Here, P = ω(L+ωD)−1 and we have a free parameter ω , the relaxation parameter,
to choose. We may choose it differently for every iteration, to try to minimize the
maximum eigenvalue of what we have been calling S. As information is extracted
from the solution estimating the largest Jacobi iteration matrix eigenvalue, we may
improve our choice. Here S = (L+ωD)−1((ω − 1)D−ωU), and for some finite-
difference applications the optimal ω is known. For the right choice of ω , this can
seriously outperform Gauss–Seidel.

Example 7.3. We use A = delsq(numgrid(‘B’, n)) as an example
for SOR, even though direct methods are actually better for this nearly banded
matrix. We look first at small-dimension matrices, specifically for n = 5, 8, 13,
21, and 34. The dimension of A is O(n2)×O(n2). By fitting the data from these
smaller matrices, the largest eigenvalue of the Jacobi iteration matrix D−1 (A−D)

seems to be μ = 1− 16.65/n2, which means that the optimal ω = 2/(1+
√

1− μ2) is
about 2/(1+ 16.65/n), and the eigenvalues of the SOR error matrix are then less than
(1− 16.65/n)/(1+ 16.65/n), approximately.

When we use 150 iterations of SOR to solve the system for n = 80 (so the ma-
trix is 4808× 4808), we find that the residual behaves on the kth iteration as ap-
proximately 103 × (ω − 1)k, and after 150 iterations, the residual is 4.5× 10−7. In
contrast, the same number of Jacobi iterations cannot be expected even to give one
figure of accuracy, and Gauss–Seidel is not much better. The difference between
(1−O(1/n))k and (1−O(1/n2))k is huge. The constant 103 above changes, of course,
with the dimension n. It seems experimentally to vary as (n2)2 or the square of the
dimension of A, which, though growing with n, is at least not growing exponentially
with n. �

Remark 7.2. These classical methods are still useful in some circumstances, but
there have been serious advances in iterative methods since these were invented.
Multigrid methods and conjugate gradient methods seem to be the methods of
choice. See Hogben (2006, chapter 41), by Anne Greenbaum, for an entry point
to the literature. �

7.4 Large Eigenvalue Problems

All methods for finding eigenvalues are iterative1; so, unlike the case where we
were solving Ax = b, where there was a distinction between finite, terminating “di-
rect” methods (such as QR factoring or LU factoring) and nonterminating “iterative”
methods such as SOR, when we tackle Ax = λ x, the distinction in algorithm classes
is a bit fuzzy and depends chiefly on how large a “large matrix” is today. On a tablet
PC in 2010, not a high-end machine by any means, it took MATLAB five seconds to
compute all 1,000 eigenvalues and eigenvectors of a random 1,000×1,000 matrix,
as follows:

1 Yes, even for n = 2, because while square roots are “legal,” they are not finite—extracting them
is iterative, too.

318 7 Iterative Methods

%% Eigenvalues of a 1000 by 1000 Random Matrix
A = rand(1000);
e = eig(A);
plot(real(e), imag(e), 'k.')
axis('square'), axis([-10,10,-10,10]),set(gca,'Fontsize',16)
xlabel('Real Part'),ylabel('Imaginary Part')

So today a 1,000×1,000 matrix is not large, even though it and its matrix of eigen-
vectors have a million entries each. See Fig. 7.3.

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Real Part

Im
ag

in
ar

y
P

ar
t

Fig. 7.3 Nine hundred ninety-nine eigenvalues of a random 1,000× 1,000 real matrix. The odd
eigenvalue is about 500.3294 (because all entries of this matrix are positive, the Perron–Frobenius
theorem applies, and thus there is a unique eigenvalue with largest magnitude, which is real). Note
the conjugate symmetry, and the confinement to a disk with radius about 10

For many applications, however, we might not need all 1,000 eigenvalues and
eigenvectors, but perhaps just the six largest, or six smallest. Consider the following
situation. Suppose we execute

a=rand(1000);
eigs(a)

in MATLAB and receive the following warning:

Warning: Only 5 of the 6 requested eigenvalues converged.
In eigs>processEUPDinfo at 1474
In eigs at 367

This command had some sort of iteration failure—it only found five of the six largest
eigenvalues. We will see in a moment a possible way to work around this failure.
But before, notice that if we execute

eigs(a,6,0)

7.4 Large Eigenvalue Problems 319

we successfully and quickly find the six smallest eigenvalues. Note that eigs is not
eig. The “s” is for “sparse,” although it works (as in this case) on a dense matrix.
The following simple kludge avoids the convergence failure in this example:

eigs(a - 10.032*speye(1000))
ans + 10.032

That is, we simply shifted the matrix a random amount, and this was enough to kick
the iteration over its difficulties. Then we correctly find the eigenvalues:

102

⎡
⎢⎢⎢⎢⎢⎢⎣

5.0033
−0.0908− 0.0118i
−0.0908+ 0.0118i
−0.0882+ 0.0119i
−0.0882− 0.0119i
−0.0880+ 0.0016i

⎤
⎥⎥⎥⎥⎥⎥⎦
.

This is, of course, not entirely satisfactory, but we shall pursue this in a bit of detail
shortly.

For large sparse matrices, special methods of iterating are needed: The construc-
tion of an upper Hessenberg intermediate matrix is already too expensive, so the QR
iteration (as is) is also too expensive. The techniques of choice are Arnoldi iteration
(as implemented in ARPACK and in MATLAB’s eigs routine) and other special-
purpose routines, such as Rayleigh quotient iteration for the symmetric eigenprob-
lem. Before moving on to this method, we consider the so-called Krylov subspaces

[
v Av A2v A3v . . . Akv

]
,

which can be generated using only k matrix–vector multiplications. The power
method considered only the latest Akv (and perhaps the previous). In exact arith-
metic, as noted before, the characteristic polynomial can be constructed from the
finite sequence [v,Av, . . . ,Anv] because these vectors must be linearly dependent;
but in the presence of rounding errors, we are much better off using other techniques;
if we’re at all lucky, we will get good eigenvalue information with k iterations for
k 	 n.

Rayleigh quotient iteration—or RQI—is easily described (see Problem 6.16).
Given an initial guess for an eigenvector x0, form

μ =
xH

0 Ax0

xH
0 x0

,

the Rayleigh quotient. We make the crucial simplification of assuming A ∈ R
n×n

and AH = A; that is, A is symmetric. More, let A be positive-definite, and sparse
(or at least fast to make matrix–vector products y = Av with). Finally, we suppose
eigenvalues are simple. Once we have μ , which is the best least-squares approxima-
tion to an eigenvalue corresponding to x0, we now use it to improve x0. Solve

(A− μI)z = x0, (7.3)

320 7 Iterative Methods

and put x1 = z/‖z‖. You may use any convenient method to solve Eq. (7.3); since
A is sparse (or Av is easy), you may choose a sparse iterative method. You may
choose not to solve it very accurately; after all, x1 will just be another approximate
eigenvector, and we’re going to do the iteration again. When do we stop? If

‖Axi − μixi‖< ε ,

then we know that μi is an exact eigenvalue for A+ΔA with ‖ΔA‖ ≤ ε‖A‖. Hence,
this is a reliable test for convergence, from a backward error point of view. Since
symmetric matrices have perfectly conditioned eigenvalues (normwise), this may be
satisfactory from the forward point of view, too. Thus, we get Algorithm 7.1.

Algorithm 7.1 Rayleigh quotient iteration
Require: A vector x0, a method to compute y = Av, a method to solve (A−μI)z = b

for i = 1,2, . . . until converged do
μi−1 = xT

i−1(Axi−1)/(xT
i−1xi−1)

Solve (A−μi−1I)z = xi−1
xi = z/‖z‖

end for

We may want to find generalizations of this method; for example, we wish to find
more than one eigenvector at a time. Suppose x0 ∈R

n×k (k 	 n). Then if xT
0 x0 = I,

H = xT
0 Ax0 ∈ R

k×k

shares some interesting features with the 1× 1 case. The eigenvalues of H, called
Ritz values, are approximations to eigenvalues of A, in some sense. Alternatively,
one can think of the following iteration:

for i = 1,2, . . . until converged do
H = xT

i−1Axi−1

μ = diag(H)
for j = 1,2, . . . ,k do

Solve (A− μ j jI)z j = (xi−1) j

(xi) j = z j

end for
(X j,R) = qr(X j)

end for
This essentially does k independent Rayleigh iterations at once; the qr step just
makes sure the eigenvalues are kept separate.

We might also wish to solve unsymmetric problems. The difficulties here are
worse, as we must solve for left eigenvectors, too; this is called broken iteration, or
Ostrowski iteration for some variations. In the symmetric case, convergence is often
cubic; for the nonsymmetric case, this is true only sometimes. More seriously, if all
we can do with A is make Av, how do we make yHA? This can be done without

7.4 Large Eigenvalue Problems 321

constructing A explicitly [which costs O(n2)], but it can be awkward.2 Still, we have
a method:

Require: For x0,y0 ∈ C
n, a way to compute Av and a way to solve both

(A− μI)z = x and
(
AH − μI

)
wH = yH

for i = 1,2, . . . until converged do
μi−1 = (yH

i−1Axi−1)/(yH
i−1xi−1) (N.B. fails if yH

i−1xi−1 is too small)
Solve (A− μi−1I)z = xi−1

xi = z/‖z‖
Solve (AH − μI)w = yi−1
yi = w/‖w‖

end for
Convergence in residual happens if

‖Axi − μixi‖ ≤ ε

as before, but note that now the eigenvalue may be very ill-conditioned, in which
case μi ∈ Λε (A) does not mean |λ − μi|= O(ε) for a modest multiple of ε .3

Again, when to stop the iteration? Since the residuals are being computed at each
stage, one can in principle stop if the residuals get small enough that the backward
error interpretation of r, namely, that we have solved Ax = b− r, suggests that the
residual is negligible. However, rounding errors (especially if the matrix S is not
normal) can prevent the residuals from getting as small as we like.4

Example 7.4. The popular Jenkins–Traub method (Jenkins and Traub 1970) for find-
ing roots of polynomials expressed in the monomial basis has at its core an iteration
related to the Rayleigh quotient iteration on the companion matrix for the polyno-
mial. In this example, we use RQI on the companion matrix of a polynomial to find
some of its roots, as follows. Recall that a companion matrix for a monic polyno-
mial p(z) = a0 + a1z+ · · ·+ zn can be written as a sparse matrix, all zero except
for the first subdiagonal, which is just 1s, and the final column, which is the nega-
tive of the polynomial coefficients. It is a short exercise to see that if z is a root of
p(z), then the vector [1,z,z2, . . . ,zn−1] is a left eigenvector of C, and a corresponding
right eigenvector is [α1(z),α2(z), . . . ,αn(z)], where αn(z) = 1, αn−1(z) = an−1 + z,
αn−2(z) = an−2 + z(an−1 + z), and so on up until α1(z) = a1 + z(a2 + z(a3 + · · ·),
which must also equal −a0/z if z
= 0 (and, of course, a0 = 0 if z = 0). These are
the successive evaluations of the polynomial that one gets by executing Horner’s
method. That is, for this kind of matrix, a guess at an eigenvalue λ will automati-
cally give us a pair of approximate left and right eigenvectors. It is simple to form
the Rayleigh quotient (xHCx)/(xHx) or the Ostrowski quotient (yHCx)/(yHx) from
these to give us a hopefully improved estimate of the eigenvalue (which then can be

2 See Bostan et al. (2003). For a history of the transposition principle, see http://cr.yp.to/
transposition.html.
3 Please consult Demmel (1997) or Hogben (2006) for more information on general techniques
such as the implicitly restarted Arnoldi iteration.
4 For more on this, see the discussion in Higham (2002).

http://cr.yp.to/transposition.html
http://cr.yp.to/transposition.html

322 7 Iterative Methods

fed back into the eigenvector formulae to use on the next iteration). This works, and
it’s faster than solving (which also works, and works more generally).

Consider Newton’s example, p(z) = z3 − 2z− 5. A companion matrix for this is

C =

⎡
⎣

0 0 5
1 0 2
0 1 0

⎤
⎦ .

If we start with an initial approximation z0 = −1+ i and use the formulae above
for Ostrowski iteration, we get convergence in five iterations. If instead we solve for
our approximate eigenvectors at each step via C− z(i))x(i+1) = x(i), and similarly
for the left eigenvector, neither of which is hard because this matrix is sparse, then
this is more like a normal Rayleigh quotient case where we don’t know what the
eigenvectors look like. In both cases the convergence appears to be quadratic, but
the Rayleigh quotient only converges if solving for the new eigenvector happens
each time. That is, with the formulae for the left and right eigenvectors instead of
solving, only Ostrowski (also called “broken”) iteration converges, but Rayleigh
quotient iteration converges if the new eigenvectors are solved for.

Once a root has been found, it is necessary to deflate the matrix (or the polyno-
mial); we do not discuss this in any detail here, although note that this is entirely
possible within the framework of matrices—using either the left or right eigenvec-
tors, one can in theory find a matrix one dimension smaller that has all the remaining
roots as eigenvalues. Let

X =

⎡
⎣

α1 0 0
α2 1 0
α3 0 1

⎤
⎦ ,

where the first column is the right eigenvector corresponding to the root z that we
have found. Note that α1 = −a0/z, which we assume is nonzero, so that X is invert-
ible. Then X−1CX has [z,0,0]T as its first column, and the remaining two eigen-
values of C are the two eigenvalues of the 2× 2 block in the second two rows and
columns. Similarly, one could deflate instead with the left eigenvector (which works
even if a0 = 0, though trivially since the matrix is already deflated in that case).

This is mathematically equivalent to synthetic division if the right eigenvector is
used, and the deflated matrix is also a companion matrix; if the left eigenvector is
used, then a different matrix is obtained. However, there is a tendency for round-
ing errors to accumulate in this process when one works with polynomials of high
degree.

One can use a code such as this to implement this idea:

1 %% Rayleigh Quotient Iteration for a Companion Matrix
2 %
3 % Newton's example polynomial was $p(z) = zˆ3 - 2z - 5 = 0$.
4 %
5 C = [0 0 1.67608204095197550; 1 0 2; 0 1 -0.66478359180960489;];
6 x0 = -6 + 5i;

7.4 Large Eigenvalue Problems 323

7 x = @(z) [-C(2,end)+z*(C(3,end)+z); C(3,end)+z; 1];
8 niters = 19;
9 xi = zeros(niters, 1);

10 xia = zeros(niters, 1);
11 % Now solve at each step for new eigenvector.
12 xi(1) = x0;
13 xia(1)= x0;
14 x1 = x(x0); % Initial eigenvector
15 xa = x1;
16 x1 = x1/norm(x1,2);
17 for i=2:niters,
18 x1 = (C-xi(i-1)*eye(3))\x1;
19 x1 = x1 / norm(x1,2) ;
20 xi(i) = (x1' * C * x1); %(x1'*x1) =1
21 xia(i) = (xa' * C * xa)/(xa'*xa);
22 xa = x(xi(i)); % analytic eigenvector formula
23 end
24 ers = xi(:) - xi(end);
25 close(figure(1))
26 figure(1), semilogy(abs(ers), 'ko'), set(gca,'fontsize',16),

hold on
27 ersa = xia(:)-xi(end);
28 semilogy(abs(ersa), 'kS')

It is straightforward to adapt this code for other similar problems. �

Problems

7.1. Add an iterative refinement step to your solution of Problem 6.6. Note that
evaluation of the residual is comparable in cost to the solution of the system, so this
is a significantly costly step in this case. Does this help?

7.2. Consider the following system:

2x1 − x2 = 1

−x j−1 + 2x j − x j+1 = j, j = 2, . . . ,n− 1

−xn−1 + 2x2 = n

with n = 100. Parts 1–2 are from Moler (2004, prob. 2.19).

1. Use diag or spdiags to form the coefficient matrix and then use lu, \, and
tridisolve to solve the system.

2. Use condest to estimate the condition of the coefficient matrix.
3. Solve the same problem as above, but changing 2 to be θ > 2, say θ = 2.1,

and using the approach of Seneca.m to encode the matrix–vector product, use
Jacobi iteration instead (note that P−1 = θ I and so Px = 1

θ x is particularly easy).
How large can the size of the problem be, before it takes MATLAB at least 60 s to
solve the problem this way? How large can the problem be using a direct method?

324 7 Iterative Methods

(And, even more, the comparison is unfair; MATLAB’s method is built-in, and
Jacobi iteration must be “interpreted.” Still, . . .)

7.3. Implement in MATLAB the SOR method as described in the text. Be careful not
to invert any matrices. Use your implementation with ω = 2−O(1/n) to solve the
linear system described in Problem 7.2 with θ = 2.1.

7.4. Take A = hilb(8), the 8× 8 Hilbert matrix. Use MGS to factor A approxi-
mately:

A = QR

with QT Q .
= I. In fact, QT Q = I +E, where ‖E‖ ≤ κ(A) · c · μM, where c is a

modest constant and μM is the unit roundoff. Solve Ax = b by using this Q and R
in a factoring, as follows:

Qy = b

Rx = y ,

and use the solution process

ŷ = QT b

x̂ = R\ŷ .

Use one or two iterations of refinement to improve your solution. Discuss.

7.5. Consider the matrix from Example 7.2. Use the formula for the pseudospectral
radius, namely, Eq. (5.13), and the estimate ‖((A)− zI)−1 ‖2 ≥ |z−8/9|n [this is easy
to see, because the (n,1) entry of the resolvent is just that, and the 2-norm must be at
least as large as any element of the matrix] to derive a reasonably tight lower bound
on the maximum ‖Sk‖2 when n = 89. Verify your bound by computation of Sk for
1 ≤ k ≤ 1600. Hint: Take ε = e/9

n and use e1/n > 1+ 1/n. Ultimately, of course, ‖Sk‖2

must go to zero as k → ∞, but this analysis shows that it gets quite large along the
way. This is why Richardson iteration is so slow for the system (I−S)x = b.

7.6. The diagonal dominance of the matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−10 1
1 −10 1

1 −10 1
1 −10 1

1 −10 1
1 −10

⎤
⎥⎥⎥⎥⎥⎥⎦

tempts us to try Jacobi iteration xn+1 = xn +D−1 (b−Axn).

1. For b = [1, 1, 1, 1, 1, 1]T and an initial guess of x0 =−[1, 1, 1, 1, 1, 1]T/10, carry
out two iterations by hand. (The arithmetic for this problem is not out of reach:

7.4 Large Eigenvalue Problems 325

The numbers were chosen to be nice enough to do on a midterm exam.) Can you
estimate how accurate your final answer is?

2. Using symmetry and the eigenvalue formula for tridiagonal Toeplitz matrices
λk = −10+ 2cos(πk/(n+1)) (here n = 6), estimate the 2-norm condition num-
ber. The Skeel condition number cond(A) = ‖|A−1| |A|‖ can be shown to have
exactly the same value. Using the phrases “structured condition number” and
“structured backward error” in a sentence, explain what this means.

	Chapter7 Iterative Methods
	7.1 Iterative Refinement and Structured Backward Error
	7.2 What Could Go Wrong with an Iterative Method?
	7.3 Some Classical Variations
	7.4 Large Eigenvalue Problems
	Problems

