
Chapter 2
Polynomials and Series

Abstract This chapter introduces the reader to the numerical aspects of polynomi-
als. In particular, we examine different polynomial bases such as the monomial, the
Chebyshev, and the Lagrange basis; we provide algorithms to evaluate polynomi-
als in many of those bases and examine the different condition numbers in different
bases. We give a first look at the important problem of numerically finding zeros
and pseudozeros of polynomials. We give an algorithmic overview of the numerical
computation of truncated power series including Taylor series. Finally, we give a
brief discussion of asymptotics. �

Computation with polynomials is one of the pillars on which numerical analysis
stands. This book makes extensive use of polynomials, as do all numerical analy-
sis texts, but it takes advantage of several recent theoretical and practical advances
in this foundational discipline. It is perhaps somewhat surprising that there were
advances to be made in so venerable and well-studied an area, but there were,
and almost certainly there still are. This chapter introduces our notations, reviews
the basic ideas of the theory and practice of univariate polynomial computation,
and gives several facts and algorithms. Some of these algorithms and theorems
may be surprising even to people who have some numerical analysis background,
and so we recommend that everyone at least skim this chapter, for notation if
nothing else.

The related topic of series algebra is also one of the pillars of numerical analysis;
indeed, numerical analysis has often been dubbed nothing but “a huge collection of
applications of Taylor’s theorem.” We believe that it isn’t quite true (even when the
assertion is modified to include “—and, of course, linear algebra”). More properly,
the theory of Taylor series provides an interesting and common way of generating
polynomial approximations to functions. While Taylor series are of more than just
marginal value in this book, they aren’t central; but they are useful, and so a section
on how to compute them (which will most likely differ from the way the reader was
taught to compute them, in their first-year calculus class!) is included.

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods:
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0 2,
© Springer Science+Business Media New York 2013

43

44 2 Polynomials and Series

2.1 Polynomials, Their Bases, and Their Roots

Let us begin with a definition of the main object of this chapter.

Definition 2.1 (Polynomial). A polynomial is a function f : C → C such that, for
some nonnegative integer n and for some ak ∈ C, 0 ≤ k ≤ n, with an �= 0,

f (z) =
n

∑
k=0

akzk (2.1)

for all z ∈ C. The functions 1,z,z2, . . . ,zn are called monomials, and the ak are
called the coefficients of the monomials for f (z). By convention, the identically
zero function f (z) ≡ 0 is also called a polynomial, and in this case alone there is
no n with an �= 0. The degree of f (z), written deg f or degz f , is the number n of
Eq. (2.1). Moreover, by convention, the degree of the identically zero polynomial
is −∞. �

The set of all polynomials of degree at most n forms a finite-dimensional vector
space. As we can see from their definitions, polynomials are linear combinations of
1,z,z2,z3, . . . ,zm, for m ≤ n. Moreover, the following fact is obtained:

Theorem 2.1. If a polynomial p(z) is identically zero, that is, if

a0 + a1z+ a2z2 + · · ·+ anzn ≡ 0 ,

then ak = 0 for all k such that 0 ≤ k ≤ n.

The proof is left as Exercise 2.1. As a result, the functions 1,z,z2,z3, . . . ,zn are
linearly independent in C. Also, the functions 1,z,z2,z3, . . . ,zn span the vector space
of polynomials of degrees at most n. Consequently, the monomials form an (n+1)-
dimensional basis. This basis is known as the monomial basis.

There are many other possible bases that can be used to represent spaces of poly-
nomials and, as we will see, what basis we use has important consequences in nu-
merical contexts. The most common bases will be discussed in Sect. 2.2. We can
define bases generally as follows.

Definition 2.2 (Basis). A basis for the space of polynomials of degree at most n is
a set of polynomials {φk(z)}n

k=0 that may be written as

⎡
⎢⎢⎢⎣

φ0(z)
φ1(z)

...
φn(z)

⎤
⎥⎥⎥⎦= B

⎡
⎢⎢⎢⎣

1
z
...

zn

⎤
⎥⎥⎥⎦ (2.2)

for some nonsingular (n+ 1)× (n+ 1) matrix B. In this case, φφφ (z) will denote the
vector [φ0(z), . . . ,φn(z)]T and zk will denote the vector [1,z, . . . ,zn]T , and we will
simply write

2.1 Polynomials, Their Bases, and Their Roots 45

φφφ (z) = Bzk . (2.3)

When the degree of each polynomial in the basis is such that degφk(z) = k, we say
that the basis is degree-graded. �

Moreover, polynomial bases have the properties we expect from bases, most notably
uniqueness of representation.

Theorem 2.2. The coefficients of f (z) in the basis {φk(z)}n
k=0 are unique. That

is, if

f (z) =
n

∑
k=0

ckφk(z) and f (z) =
n

∑
k=0

bkφk(z) (2.4)

for all z ∈ C, then ck = bk for 0 ≤ k ≤ n.

The proof is left as Exercise 2.2.
The role of polynomials in scientific computation is such that we often want to

find their roots. Because of that, we now turn to some important facts about roots of
polynomials that will be used in what follows.

Definition 2.3 (Root, or Zero). A complex number r is called a root (or zero)
of f (z) if f (r) = 0. The multiplicity of r is the least number m such that
f (m)(r) �= 0. It is guaranteed that m ≤ n unless f (z) ≡ 0. A root is called simple
if m = 1. �

One of the most important properties of polynomials is revealed by this theorem,
first proved by Gauss in 1797:

Theorem 2.3 (Fundamental theorem of algebra). If f (z) is a polynomial not
equal to a nonzero constant, that is, if deg f �= 0 (remember that deg f = −∞ if
f = 0 identically), then f has a root.

As Wilkinson (1984) notices,

[t]he Fundamental Theorem of Algebra asserts that every polynomial equation over the
complex field has a root. It is almost beneath such a majestic theorem to mention that in
fact it has precisely n roots.

Remark 2.1. The problem of finding all roots of a polynomial, and in particular find-
ing multiple roots when the data are ambiguous, is quite difficult1; we shall discuss
this material later. A good place for the impatient to start some extra reading is Zeng
(2004). �

We end this subsection with two important theorems that will be used later:

1 With some definitions of “finding,” it is impossible for generic polynomials p(z) of degree 5 or
more. Degree-5 polynomials can be solved using elliptic functions, though, and there are other
tricks. Here, by “finding,” we mean finding a good approximation.

46 2 Polynomials and Series

Theorem 2.4 (Factor theorem). If f (z) has � distinct roots rk, 1 ≤ k ≤ �, each with
multiplicity mk (so n = ∑�

k=1 mk), then

f (z) = an

�

∏
k=1

(z− rk)
mk . (2.5)

Theorem 2.5 (Continuity). (Ostrowski 1940, 1973) The roots of a polynomial are
continuous functions of the coefficients ak (in any fixed basis). Simple roots are
continuously differentiable functions of the coefficients.

2.1.1 Change of Polynomial Bases

One sometimes wants to change a representation of a polynomial p from one basis
to another. In other words, given two bases {φk(z)}n

k=0 and {ψk(z)}n
k=0, what is the

relation between the coefficients ak and bk in the expression

p(z) =
n

∑
k=0

akφk(z) =
n

∑
k=0

bkψk(z) ?

In theory, the answer straightforwardly follows from the definition of a basis: If we
are given a basis {φk(z)}n

k=0, then it can be expressed as the product of a nonsin-
gular matrix B and the vector of monomials zk. The same is true of another basis
{ψk(z)}n

k=0. Thus, if we let φφφ(z) = B1zk and ψψψ(z) = B2zk, the relation between the
bases is given by

φφφ (z) = B1B−1
2 ψψψ(z) . (2.6)

If we let ΦΦΦ = B1B−1
2 denote the change-of-basis matrix,2 we see that change of

basis is the following simple linear transformation:
⎡
⎢⎢⎢⎣

φ0(z)
φ1(z)

...
φn(z)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

φ00 φ01 · · · φ0n

φ10 φ11 · · · φ1n
...

...
. . .

...
φn0 φn1 · · · φnn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ψ0(z)
ψ1(z)

...
ψn(z)

⎤
⎥⎥⎥⎦ . (2.7)

When the basis is degree-graded, the change-of-basis matrix is triangular.
Finally, observe that the relation between the coefficients of the polynomial bases

is as follows. Since

2 Note that, depending on the author and conventions being used, ΦΦΦ or its transpose may refer to
the change-of-basis matrix.

2.1 Polynomials, Their Bases, and Their Roots 47

p(z) =
[
b0 b1 · · · bn

]
⎡
⎢⎢⎢⎣

ψ0(z)
ψ1(z)

...
ψn(z)

⎤
⎥⎥⎥⎦=

[
a0 a1 · · · an

]
⎡
⎢⎢⎢⎣

φ0(z)
φ1(z)

...
φn(z)

⎤
⎥⎥⎥⎦

=
[
a0 a1 · · · an

]
⎡
⎢⎢⎢⎣

φ00 φ01 · · · φ0n

φ10 φ11 · · · φ1n
...

...
. . .

φn0 φn1 · · · φnn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ψ0(z)
ψ1(z)

...
ψn(z)

⎤
⎥⎥⎥⎦ , (2.8)

the relation between the coefficients of p(z) in the bases {φk(z)}n
k=0 and {ψk(z)}n

k=0
is given by

[
b0 b1 · · · bn

]
=
[
a0 a1 · · · an

]
ΦΦΦ . (2.9)

Thus, the same matrix ΦΦΦ relates the bases vectors φφφ and ψψψ and their coefficients.

Remark 2.2. Changing the expression of a polynomial from one basis to another is
a mathematically valid operation, but we remark right now that it is not always (or
even often) a good thing to do numerically. This is why Wilkinson (1959a) claims
that if

the explicit polynomial [in monomial basis] has been derived by expanding some other
expression, then we may well question the wisdom of this step.

As we will see in Sect. 8.6, changing polynomial bases can amplify numerical errors
dramatically: even in the normwise sense, error bounds can grow exponentially with
the degree of the polynomial, and componentwise the relative errors can be infinitely
larger in one basis than in another. Changing the basis must be done with caution, if
at all. �

2.1.2 Operations on Polynomials

The following operations can be performed in any polynomial basis. To begin with,
the sum of two polynomials (say f and g, of degrees n and m) is a polynomial
(just add the coefficients), the negation of a polynomial is a polynomial (just negate
the coefficients), and the product of two polynomials is again a polynomial (in this
case, the coefficients of the product are bilinear functions of the coefficients of the
multiplicands, and the particular function depends on the basis, as we will see).

Polynomial division is a bit more complicated, but not that much. If f (z) =
Q(z)g(z) +R(z) and degR < degg, we say that R(z) is the remainder on division
of f (z) by g(z); if R(z) is identically zero, then we say that g(z) divides (or divides
evenly into) f (z). This cannot happen if g(z) is identically zero. If g does divide
f , then we write g | f (which is read as “g divides f ”). The polynomial Q(z) in
f = Qg+R is called the quotient. It is easy to prove that, given f (z) and g(z), the

48 2 Polynomials and Series

quotient and remainder are unique.3 Polynomial division is merely mentioned in this
book, but is occasionally needed in applications. Again the details of the division
process depend on the basis being used, but note that it amounts to solving a linear
system of equations for the unknown coefficients of Q(z) and R(z), once the bilinear
functions of multiplication in that basis are known.

We also occasionally need the notion of relatively prime polynomials, and for
that we need the notion of greatest common divisor, or GCD. A polynomial d(z) is
a common divisor of f and g if both d | f and d | g. If d has the maximum possible
degree of all common divisors of f and g, we say that it is a GCD of f and g.
Every constant multiple of a common divisor is a common divisor, and so GCDs are
unique only up to multiplication by a constant.

The composition f (g(z)) is also a polynomial, of degree nm. It is sometimes
worthwhile to seek to rewrite a large polynomial F(z) as a composition F(z) =
f (g(z)); finding such f and g is called polynomial decomposition. We will not pur-
sue this further in this book, but it also finds use in some applications.

2.2 Examples of Polynomial Bases

Several polynomial bases are commonly encountered in applications. We have al-
ready encountered the monomial basis, and we will soon see why it should some-
times be avoided in applications. Before that, we examine some of the most common
bases that arise, and indicate some of their advantages and disadvantages.

2.2.1 Shifted Monomials

Shifted monomials (shifted by a constant a ∈ C) are polynomials having the form

φk(z) = (z− a)k , (2.10)

and the set {(z− a)k}n
k=0 forms a basis. The expansion of a polynomial f (z) in this

basis is just its Taylor series:

f (z) = f (a)+ f ′(a)(z− a)+ · · ·+ f (n)(a)
n!

(z− a)n . (2.11)

If a = 0, this is just the standard monomial basis, also called the power basis. The
change-of-basis matrix from the monomials to the shifted monomials is simple. For
n = 3, this is

3 This is more generally true than we need here: the coefficients of our polynomials are complex
numbers or real numbers and this statement is true for more general objects as well.

2.2 Examples of Polynomial Bases 49

⎡
⎢⎢⎣

φ0(z)
φ1(z)
φ2(z)
φ3(z)

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

1
z− a

(z− a)2

(z− a)3

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

1 0 0 0
−a 1 0 0
a2 −2a 1 0

−a3 3a2 −3a 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
z
z2

z3

⎤
⎥⎥⎦ . (2.12)

The change-of-basis matrix that goes from the shifted monomials to the monomials
is just the inverse of this matrix (and that it exists and is nonsingular for any a means
that the shifted monomials are indeed a basis).

Remark 2.3. Multiplication of polynomials expressed in the monomial basis is a fa-
miliar operation. Multiplication of two polynomials expressed in an arbitrary (but
common to the two polynomials) shifted monomial basis may be done by embed-
ding them in Taylor series and using the methods of Sect. 2.6. This can also be done
rapidly by use of the fast Fourier transform (FFT) (see Chap. 9). �

As we have seen in Chap. 1, it is important to compute sums in a stable and
predictable way when we use computer arithmetic. For polynomials expressed in
the shifted monomial basis, we can use Horner’s method, which can be written as

f (z) = f (a)+ (z− a)

(
f ′(a)+ (z− a)

(
f ′′(a)

2

+(z− a)

(
· · ·+(z− a)

(
f (n)(a)

n!

)
· · ·

)))
. (2.13)

The key difference with the use of Eq. (2.11) is that we associate terms in a way
that does not require us to compute higher powers of z− a. In addition, as in this
formula, it is generally preferable to include the factorials in the Taylor coefficients.
For a polynomial of degree n, this formula requires O(n) flops, where explicitly
forming each terms (z− a)k requires more.

Assuming that the coefficients of f in this basis are stored in a vector c indexed
from 1 to n+ 1, so that c(1)= f (a), c(2)= f ′(a), c(3)= f (2)(a)/2!, and so on,
one can use a simple MATLAB program to carry out the computation of f (z) based
on Horner’s method:

p = c(n+1)*ones(size(z));
za = z - a;
for i=n:-1:1,

p = za.*p + c(i);
end;

Note that, in this code, the coefficient of the power-n term is the last component of
the vector of coefficients, as opposed to other commands such as MATLAB’s built-in
command polyval, where the order is reversed. Because polyval can be simply
adapted to use a shifted monomial basis, we show how to use it in an example.

Example 2.1. A monomial basis polynomial is entered as a vector of coefficients
(in decreasing order of exponent, and zero coefficients must be explicitly included).

50 2 Polynomials and Series

Consider the polynomial p(z) = z4 − 4z3 + 3z2 − 2z+ 5 on, say, 0 ≤ z ≤ 2.4 Thus,
we simply need to execute

p = [1, -4, 3, -2, 5];
z = linspace(0, 2, 101);
pz = polyval(p, z);
plot(z, pz, 'k')

This code generates a graph in which we see, by eye, a zero of p(z) near z = 1.5. �

Instead of just evaluating a polynomial, one can change a polynomial from the
monomial basis to a shifted monomial basis (that is, a Taylor series) by using an ex-
tension of Horner’s method called synthetic division. This method, which is widely
discussed in the literature, is described by Algorithm 2.1. We will use this algorithm
occasionally, and so we will discuss its accuracy later, in Sect. 2.2.1.2.

Algorithm 2.1 Synthetic division of a polynomial f (z) = ∑n
j=0 c j(z−a) j expressed

in a shifted monomial basis, evaluating f (z) and its first k derivatives at z = b, re-
turning fk = f (k)(b)/k!

Require: The expansion point a ∈ C, a vector of monomial coefficients c ∈ C
n+1 (indexed from

0 to n) such that f (z) = ∑n
j=0 c j(z−a) j , a new expansion point b and a desired number k ≥ 0 of

Taylor coefficients of f (z) at z = b.
f0 := cn

f(1:k) := 0
for j=n−1:−1:0 do

for i=min(k,n− j):−1:1 do
fi = (b−a) fi + fi−1

end for
f0 = (b−a) f0 + f j

end for
return The (k+1)-vector f such that f (z)=∑k

j=0 f j(z−b) j +O(z−b)k+1. That is, f j = f (j)(b)/j!.

Example 2.2. Consider Example 2.1 again, and let us expand this polynomial about
z = 1.5, where we saw our approximate zero. We used MAPLE and its series
command to effect Algorithm 2.1, and thus found that

p(z) = 0.3125− 6.5(z− 1.5)−1.5(z−1.5)2+ 2(z− 1.5)3+(z− 1.5)4 . (2.14)

This is a new expression for the polynomial, this time expanded about z = 1.5. �

2.2.1.1 Newton’s Method for Polynomials

As an aside, we briefly introduce Newton’s method for finding zeros of polynomi-
als. This will be taken up in greater detail and generality in the next chapter. Newton

4 This example is drawn from Henrici (1964). In Exercise 2.5, you will be asked to consider instead
Newton’s example, p(z) = z3 −2z−5.

2.2 Examples of Polynomial Bases 51

suggested that we could use the first two coefficients of the shifted polynomial as
a linear approximation to the polynomial and could be used in an attempt to find
a root: In this example, setting the linear approximation 0.3125− 6.5 (z− 1.5) = 0
yields z−1.5 = 0.3125/6.5 ≈ 0.048076923, suggesting that we should shift our expan-
sion point again, this time to z = 1.5+ 0.048076923≈ 1.548. When we do so, we
find

p(z) =−0.002730− 6.630 (z− 1.548)− 1.198 (z− 1.548)2

+ 2.192 (z− 1.548)3 + 1.0 (z− 1.548)4

and since now p(1.548) is smaller than before, we begin to see that the process
might work in an iterative fashion.

In general, suppose that we have expanded the polynomial about z = rk, where
rk is our current approximation of the root:

p(z) = p(rk)+ p ′(rk)(z− rk)+O(z− rk)
2 . (2.15)

Using Newton’s idea, we solve this linear approximation (which is possible if
p ′(rk) �= 0) to find

z
.
= rk − p(rk)

p ′(rk)
, (2.16)

and it makes sense to name this approximation rk+1:

rk+1 = rk − p(rk)

p ′(rk)
. (2.17)

This is, of course, Newton’s method, which we will take up further in Chap. 3. For
now, note two things: First, each approximation rk is the exact root of

p(z)− p(rk) = 0 , (2.18)

and so if p(rk) (which we call the residual) is small, then we have found the exact
solution of a nearby polynomial, and, second, we have found that this process is apt
to fail near multiple roots because if both p(z∗) and p ′(z∗) = 0, then since rk → z∗,
both p(rk)→ 0 and p ′(rk)→ 0, making the solving step problematic.

Continuing our example5 just one more iteration, with rk = 1.548 in Eq. (2.15),
we have rk+1 = 1.548− (−0.0027295)

(−6.62973) , that is, rk+1 ≈ 1.5475883. Shifting to the basis
centered here using synthetic division, we have

p(z) =−0.00000024948774−6.6287459395492(z− 1.5475883)−·· · , (2.19)

5 If you try to reproduce these computations, your results may differ because we were somewhat
cavalier in rounding intermediate results. Keeping all figures—as one should—will make the re-
sults slightly different.

52 2 Polynomials and Series

and we notice that 1.5475883 is an exact root of the nearby polynomial p(z) +
2.494877 . . .× 10−7.

2.2.1.2 Errors in Synthetic Division

We refer to Higham (2002) for a complete accuracy analysis of synthetic division,
but we state a result here connecting rounding errors and the forward error via a
condition number. Let B(j)(z) be defined as

B(j)(z) :=
n

∑
k= j

k j

∣∣∣∣∣
f (k)(a)

k!

∣∣∣∣∣
∣∣∣(z− a)k− j

∣∣∣ , (2.20)

where k j, read as “k to the j falling,” is defined as

k j =
k!

(k− j)!
= k(k− 1)(k− 2) · · ·(k− j+ 1)

(see Graham et al. 1994). Then the difference between the reference value of
the derivative f (j)(α) and the value computed by synthetic division, say r̂ j, is
bounded by

∣∣∣ f (j)(α)− r̂ j

∣∣∣≤ O(nμM)B(j)(α)+O(μ2
M) . (2.21)

We will see later in this chapter many more examples of such B(z) functions, which
are called condition numbers for evaluation of polynomials. In some sense, the
above theorem, which (to first order) bounds the forward error | f (j) − r̂ j| by the
product of a condition number and a backward error (here O(nμM)), is as important
to numerical analysis as F = ma is to physics.

Changing from bases other than the monomial basis to shifted monomials is
sometimes useful (again, numerically this has to be done with caution, as we will
see). We pursue this in the exercises.

2.2.2 The Newton Basis

We have seen that the shifted monomial basis is defined in reference to a given
data point a. Similarly, the Newton basis is defined in reference to a set of points,
which we call nodes. The Newton basis on the n + 1 nodes τ0, τ1, τ2, . . ., τn is
given by

{φk(z)}n
k=0 = {1,z− τ0,(z− τ0)(z− τ1), . . . ,(z− τ0)(z− τ‘) · · · (z− τn−1)} ,

or, more compactly,

2.2 Examples of Polynomial Bases 53

{φk(z)}n
k=0 =

{
k−1

∏
i=0

(z− τi)

}n

k=0

. (2.22)

Note that, by convention, if m> n, a product ∏n
i=m is just 1. Note also and especially

that one node, namely, τn, is omitted from any mention in this basis. We remark that
this permits choice: One speaks of “a” Newton basis, not of “the” Newton basis.
There is a further choice involved, namely, the ordering of the nodes; once one of
the n+ 1 nodes has been omitted, there is a further n! different orderings possible
if the nodes are distinct. Some of them are numerically better than others, as we
will see.

Newton bases are typically used with what are called divided differences (see
Problem 8.13). In fact, de Boor (2005) defines divided differences as the coefficients
of f (z) expressed in a Newton basis. Though divided differences and Newton bases
have a rich theory and practice, they will only rarely be used in this book because
there are better choices available. Trefethen (2013 p. 33) takes a similar stance:

Many textbooks claim that it is important to use this approach for reasons of numerical
stability, but this is not true, and we shall not discuss the Newton approach here.

They are the preferred basis in de Boor (1978), because they are convenient, inex-
pensive, and, for low degrees, accurate. However, as we will see, the barycentric
Lagrange basis that we prefer is much better conditioned for larger degrees on good
sets of nodes. After introducing the Lagrange basis, we will return to this point.

2.2.3 Chebyshev Polynomials

The Chebyshev polynomials can be defined by

φk(z) = Tk(z) = cos(k cos−1 z) (2.23)

for k = 0,1,2, It is easy to see that, for k = 0 and k = 1, these are indeed poly-
nomials:

T0(z) = cos0 = 1 (2.24)

T1(z) = coscos−1 z = z . (2.25)

Moreover, by applying the angle sum and angle difference formulæ for cosines to
cos((k+ 1)cos−1 z) and cos((k− 1)cos−1 z), it follows that, for k > 1,

Tk+1(z) = 2zTk(z)−Tk−1(z) . (2.26)

Hence, all φk(z) are polynomials. Figure 2.1 displays the first nine Chebyshev poly-
nomials.

A well-known algorithm to compute the values of polynomials expressed in this
basis is provided in Rivlin (1990 156–158). It turns out that this algorithm is called

54 2 Polynomials and Series

Fig. 2.1 The first nine Chebyshev polynomials T0(z) = 1, T1(z) = z, and Tn+1(z) = 2zTn(z)−
Tn−1(z). See Exercise 2.33

the Clenshaw algorithm, which we take up after mentioning other polynomials be-
longing to an important class to which Chebyshev polynomials belong, namely,
orthogonal polynomials. In the real case, Chebyshev polynomials can be shown to
be orthogonal with respect to the inner product

〈 f , g〉 :=
ˆ 1

−1

f (x)g(x)√
1− x2

dx . (2.27)

In the complex case, they are also orthogonal. The zeros of Tn(z) are

ξ (n)
k := cos

(
π(k− 1/2)

n

)
(2.28)

for k = 1, 2, . . ., n. The proof is left as Exercise 2.4. Chebyshev polynomials are also
orthogonal with respect to the following discrete inner product:

〈 f , g〉 :=
n

∑
j=1

f (ξ (n)
j)g(ξ (n)

j) . (2.29)

See Rivlin (1990 Exercise 1.5.26, p. 53) for a complete enumeration of all cases of
〈Tk, Tp〉. You will be asked to prove in Exercise 2.6 that this discrete orthogonality
relation allows easy computation of the coefficients of the expansion of a degree-
(n− 1) polynomial p(z) if you can evaluate it on the zeros of Tn(z):

p(z) =
A0

2
T0(z)+A1T1(z)+ · · ·+An−1Tn−1(z), (2.30)

2.2 Examples of Polynomial Bases 55

where6

Am =
2
n

n

∑
j=1

p(ξ (n)
j)Tm(ξ

(n)
j) , (2.31)

for m = 0, 1, . . ., n− 1, can be computed with O(n2) floating-point operations.
Another and in some sense more interesting set of discrete points is called the

Chebyshev–Lobatto points or Chebyshev extreme points, which are the places where
Tn(z) achieves its maximum and minimum values on −1 ≤ z ≤ 1. The endpoints
are special, and are always included, because Tn(1) = 1 and Tn(−1) = (−1)n, as
you may easily prove by the definition Tn(z) = cos(ncos−1 z). The interior (rela-
tive) extrema are the zeros of T ′

n(z) and there can be at most n− 1 of them. Since
cos(nθ) =±1 at these extrema, we can verify that

ηk = η(n)
k = cos

kπ
n

(2.32)

for k = 0, 1, . . ., n. This gives n+1 extrema on the interval, including the endpoints
with k = 0 and k = n, and thus it must include all possible extrema. Note that both
ξk and ηk run “backward” across the interval, which is sometimes inconvenient but
only trivially so.

Chebyshev polynomials have a large collection of interesting and useful prop-
erties, some of which will be discussed when they come up naturally in the book.
Chebyshev polynomials are the favorite of many numerical analysts. In particu-
lar, the Chebfun package is founded on the properties of Chebyshev polynomials
(it uses the ηk, not the ξk). We will see several examples of its use in this book.
Chebfun uses the syntax chebpoly(n) to pick out a Chebyshev polynomial. See
Exercise 2.7.

2.2.4 Other Orthogonal Polynomials

There are a great many other examples of orthogonal polynomials. The orthog-
onal polynomials implemented in MAPLE include the Chebyshev polynomials,
where the name ChebyshevT is used, with the syntax ChebyshevT(n,z).
Other orthogonal polynomials implemented include the Gegenbauer polynomials
(GegenbauerC), the Hermite orthogonal polynomials7 (HermiteH), and the Ja-
cobi polynomials (JacobiP(n,a,b,z)). The latter include as a special case
(JacobiP(n,0,0,z)), more usually called the Legendre polynomials; these will
be used in Chap. 10 for Gaussian quadrature. Maple has another package for the ma-

6 Note that we use A0/2 in equation (2.30) so that formula (2.31) can be the same for m= 0,1,2, . . .
7 They will almost never be used in this book and are not to be confused with the Hermite interpo-
lational basis polynomials, which will be used.

56 2 Polynomials and Series

nipulation of orthogonal series, namely, the OrthogonalSeries package, which
is quite extensive.

A common characteristic of orthogonal polynomials is that they generally satisfy
a three-term recurrence relation for n ≥ 2, which we write here as

αn−1φn(z) = (z−βn−1)φn−1(z)− γn−1φn−2(z) . (2.33)

As we saw above, the recurrence for the Chebyshev polynomials has αn−1 = γn−1 =
1/2 and βn−1 = 0 for all n. However, for other classes of polynomials, there is a
dependence on n. For instance, the recurrence relation for the Jacobi polynomials
starts with P0(z) = 1, P1(z) = (a−b)/2+(1+(a+b)/2)z, and thereafter

αn−1 =
2n(n+ a+ b)

(2n+ a+ b−1)(2n+ a+ b)

βn−1 =
(b− a)(a+ b)

(2n+ a+ b−2)(2n+ a+ b)

γn−1 =
2(n+ a− 1)(n+ b− 1)

(2n+ a+ b−1)(2n+ a+ b− 2)
. (2.34)

In the special case a = b = 0, for the Legendre polynomials, we have P0(z) = 1,
P1(z) = z, and

αn−1 =
n

2n− 1
βn−1 = 0 and γn−1 =

n− 1
2n− 1

. (2.35)

The first 10 Legendre polynomials are plotted in Fig. 10.4 of Chap. 10.
Recent uses in mathematical handwriting recognition of generalizations of or-

thogonal polynomials—namely, the Legendre–Sobolev polynomials, which include
derivatives in their inner product—can be seen in Golubitsky and Watt (2009) and
in Golubitsky and Watt (2010). See Exercise 4.28.

2.2.5 The Clenshaw Algorithm for Evaluating Polynomials
Expressed in Orthogonal Bases

The Clenshaw algorithm generalizes the idea used in Horner’s method to certain or-
thogonal polynomial bases. If the elements of the polynomial basis φk(z) are related
by a three-term recurrence relation

φk(z) = αk(z)φk−1(z)−βkφk−2(z) (2.36)

(the notation has changed from the previous section, to match the paper Smoktunow-
icz (2002), which we reference ahead) and φ0(z) = 1 and φ1(z) = α1(z), where,
for all the examples we are concerned with, the αk(z) are linear polynomials in
z and the βk are constants, then a polynomial p(z) expressed in this orthogonal
basis as

2.2 Examples of Polynomial Bases 57

p(z) =
n

∑
k=0

bkφk(z) (2.37)

can be evaluated in O(n) flops by the Clenshaw algorithm, as follows.

Algorithm 2.2 The Clenshaw algorithm
Require: A value z, a nonnegative integer n, and a sequence b0, b1, . . ., bn of coefficients
Require: The functions αk(z) and the constants βk

yn+1 := 0
yn := bn

for k from n−1 by −1 to 1 do
yk := bk +αk+1(z)yk+1 −βk+2yk+2

end for
p := (y0 −β2y2)φ0(z)+ y1φ1(z)
return The value of p(z) = ∑n

k=0 bkφk(z)

To see that this algorithm is correct, note that a loop invariant for the algorithm
is the sum

p(z) =−βk+1yk+1φk−1(z)+ ykφk(z)+
k−1

∑
j=0

b jφ j(z) . (2.38)

That is, before the start of the loop i.e. when k = n, this statement is trivially true
because yk+1 = 0, and the update step changes the value of what will be the next
yk and replaces yk+1φk+1(z) with yk+1(φk+1(z)−αk+1φk(z)) or −βk+1yk+1φk−1(z).
The process finishes when there are only two terms left, which sum to p(z) = (b0 −
β2y2)φ0(z)+ y1φ1(z) by the loop invariant.

Now, let us address the numerical stability of this method for the evaluation of
polynomials:

Theorem 2.6 (Backward Stability of the Clenshaw Algorithm). Under natural
assumptions, evaluation of this algorithm is backward stable: that is, for a given z,
the algorithm gives the exact evaluation of p+Δ p, where the coefficients of p+
Δ p are only slightly perturbed: bk +Δbk, where, with a modestly growing function
L of n,

|Δbk| ≤ μML|bk| (2.39)

in the best scenario (this holds only for some bases and polynomials with nonin-
creasing coefficients bk), and

‖Δb‖∞ ≤ μML‖b‖∞ (2.40)

in the usual case.

In particular, for the Chebyshev polynomials, we have L = O(n2) in Eq. (2.39),
showing that the Chebyshev basis evaluated by the Clenshaw algorithm has
excellent backward-stability properties. The proof of this theorem is given in
Smoktunowicz (2002).

58 2 Polynomials and Series

2.2.6 Lagrange Polynomials

We now look at a very important nonorthogonal basis family, the Lagrange bases.
These are different to the previously discussed examples in that they are not degree-
graded: Each element of a particular Lagrange basis has full degree, here n. Given
n+ 1 distinct nodes τk, 0 ≤ k ≤ n, define the numbers βk by the partial fraction
expansion

1
w(z)

=
1

n

∏
k=0

(z− τk)

=
n

∑
k=0

βk

z− τk
. (2.41)

Then, solving for the numbers βk, we obtain

βk =
n

∏
j=0
j �=k

(τk − τ j)
−1 . (2.42)

Definition 2.4 (Lagrange polynomials). Given a set of nodes {τk}n
k=0 and the re-

sulting numbers βk,

φk(z) = Lk(z) = βk

n

∏
j=0
j �=k

(z− τ j) (2.43)

is the kth Lagrange polynomial. �

Note that, using the Kronecker delta, we can write

Lk(τ j) = δ k
j =

{
0 j �= k
1 j = k

, (2.44)

and so for any polynomial f (z) of degree at most n,

f (z) =
n

∑
j=0

f (τ j)Lj(z) . (2.45)

Theorem 2.7. The set of polynomials L j(z), for 0≤ j ≤ n, forms a basis if the nodes
τk, 0 ≤ k ≤ n, are distinct.

Proof. The theorem is equivalent (by definition) to the statement that the change-
of-basis matrix A in [L0(z),L1(z), . . . ,Ln(z)] = [1,z,z2, . . . ,zn]A is nonsingular. That
in turn is equivalent to the statement that the change-of-basis matrix in the other
direction [1,z,z2, . . . ,zn] = LB is nonsingular, and this is easier. By the above
formula, the entries of B are Bk, j = τ j

k . It is an (interesting) exercise to show
that detB = ∏ j>k(τ j − τk), which is nonzero when the nodes are distinct. See
Exercise 4.14. �

2.2 Examples of Polynomial Bases 59

Corollary 2.1. The only polynomial of degree at most n that satisfies f (τi) = 0 for
n+ 1 distinct nodes τi, 0 ≤ i ≤ n, is the identically zero polynomial.

Proof. Since the Lj(z) form a basis, we may express an arbitrary polynomial of
degree at most n as ∑n

j=0 a jL j(z). Evaluating this polynomial at each of τk in turn
gives ak = 0, uniquely resulting in the identically zero polynomial. �

Remark 2.4. This corollary is part of the normal proof that interpolants are unique;
we here see, doing things in a different order, that it is a corollary of the theorem we
proved directly above. That is, this proof is done in a different order than usual but
is equivalent. �

We will see shortly another notation for Eq. (2.45): With ρi := f (τi),

f (z) =
n

∑
i=0

ρiL j(z) =
n

∑
i=0

ρi
w(z)
z− τi

βi = w(z)
n

∑
i=0

ρiβi

z− τi
. (2.46)

This is the first barycentric form of a polynomial expressed in the Lagrange basis.
We will see the second barycentric form in the exercises in this chapter and again in
Chap. 8. The coefficients in the expansion of f (z) in the Lagrange basis on τ0, . . . ,τn

are simply the values f (τ j).
The Lagrange polynomials are wonderfully useful, and we will use them every

chance we get. An algorithm to compute polynomials in this basis is provided by
Berrut and Trefethen (2004) (see Algorithm 2.3).

Algorithm 2.3 First barycentric form for evaluation of a Lagrange interpolating
polynomial
Require: A value z, an integer n > 0, a vector of coefficients ρk, a vector of nodes τk , and a

precomputed vector of barycentric weights βk
if z is identical to any τk then

return ρk
end if
w = 1
for j=0:n do

w = w · (z− τ j)
end for
p = 0
for j=0:n do

p = p+β jρ j/(z− τ j)
end for
return w · p

2.2.6.1 Numerical Stability of the Barycentric Form

The numerical stability for Algorithm 2.3 is interesting. The paper (Higham 2004)
shows that evaluation of this (first) barycentric form is nearly perfectly backward
stable: The computed p̂(z) satisfies

60 2 Polynomials and Series

p̂(z) =
n

∏
j=0

(z− τ j)
n

∑
j=0

β jρ̂ j

z− τ j
= w(z)

n

∑
j=0

β jρ̂ j

z− τ j
, (2.47)

where each perturbed ρ̂ j satisfies

ρ̂ j = ρ j(1+ δ j), (2.48)

such that |δ j|< γ5(n+1). That is, provided n isn’t so large that it is O(1/μM), the com-
puted sum is the exact value of a polynomial passing through only slightly different
data values.

Remark 2.5. This result is one of the most important backward-stability results pre-
sented in this book. What the paper (Higham 2004) provides is a guarantee that eval-
uating the first barycentric form will always produce the exact value of a polynomial
of the same form as the one we started with, with at most only slightly perturbed
data. This result should be compared with the similar result quoted from Smok-
tunowicz (2002) for orthogonal polynomials, and contrasted with the results of the
forward error analysis for Horner’s method presented in Sect. 2.2.1. �

2.2.6.2 Change-of-Basis from a Lagrange Basis

The change-of-basis matrices are deceptively simple from a Lagrange basis. We
say “deceptively” because the change-of-basis itself may be ill advised because of
difficulties related to the conditioning of the matrix, as we will see. However, if it
is desired (in spite of misgivings) to perform the change of basis, it is, in theory,
simple to carry out. Because any polynomial can be written using Eq. (2.45), each
element of a different basis, say φk(z), may be written as

φk(z) =
n

∑
j=0

φk(τ j)Lj(z) . (2.49)

That is, the change-of-basis matrix from a Lagrange basis is just (in the four-by-four
case for simplicity)

⎡
⎢⎢⎣

φ0(z)
φ1(z)
φ2(z)
φ3(z)

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

φ0(τ0) φ0(τ1) φ0(τ2) φ0(τ3)
φ1(τ0) φ1(τ1) φ1(τ2) φ1(τ3)
φ2(τ0) φ2(τ1) φ2(τ2) φ2(τ3)
φ3(τ0) φ3(τ1) φ3(τ2) φ3(τ3)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

L0(z)
L1(z)
L2(z)
L3(z)

⎤
⎥⎥⎦ , (2.50)

or, more compactly,

ϕϕϕ(z) = VL(z) . (2.51)

In the particular case when φk(z) = zk, V is called a Vandermonde matrix, and it is
nonsingular precisely when the nodes τk are distinct. For other φk(z), V is called
a generalized Vandermonde matrix (see, for example, Problems 8.36 and 8.37).

2.2 Examples of Polynomial Bases 61

The Vandermonde matrices occurs often enough that, for emphasis, we will display
one here:

⎡
⎢⎢⎣

1 1 1 1
τ0 τ1 τ2 τ3

τ2
0 τ2

1 τ2
2 τ2

3
τ3

0 τ3
1 τ3

2 τ3
3

⎤
⎥⎥⎦ . (2.52)

That matrix can be generated by the MAPLE command

V := Matrix(4, 4,
shape = Vandermonde[[tau[0], tau[1], tau[2], tau[3]]]);

latex(LinearAlgebra:-Transpose(V));

The convention of needing the transpose to get a “Vandermonde” matrix in this
notation agrees with the use in Higham (2002); however, in Chap. 8, we often use
the alternative.

In Chap. 8, we will extend the Lagrange basis to the Hermite interpolational ba-
sis, which allows some of the nodes τk to coalesce or “flow together,” in which case
we talk about confluency. This basis is quite distinct from the Hermite orthogonal
basis mentioned briefly earlier, and is not to be confused with it. For change of bases
to other bases, one talks about confluent Vandermonde matrices. This will be taken
up later.

Multiplication and division of polynomials expressed in a Lagrange basis are not
yet widely encountered in practice8; but multiplication is simple enough, provided
there are enough data to represent the product (one needs nm+1 points if the degrees
of the multiplicands are n and m). The entries are simply f (τi)g(τi).9

2.2.6.3 The Degree of Difficulty

Given a polynomial expressed in a Lagrange basis, what is its degree? Clearly, if we
have enough points to capture the polynomial (say n+1), then the degree is at most
n. But it may very well be less than that, and knowledge of the actual degree can
be quite important. We return to this problem in Sect. 11.8, but for now we note a
lemma that you are asked to prove in Exercise 2.12.

Lemma 2.1. If a polynomial f (z) of degree at most n has the values ρk on the n+1
distinct nodes τk, for 0 ≤ k ≤ n, then the degree of f (z) is exactly n if

n

∑
k=0

βkρk �= 0 , (2.53)

where the βk are the barycentric weights of the nodes.

8 We believe this will change, as the realization that working directly in a Lagrange basis is a good
idea gradually percolates through the communities.
9 Division with remainder, on the other hand, requires solving an overspecified linear system, in
order to enforce the degree constraints; see Amiraslani (2004).

62 2 Polynomials and Series

Proof. Left as Exercise 2.12.

What happens if this is not zero, but small relative to ‖ρρρ‖, the norm of the vector
of values of f (z) on the nodes? Does this mean that f (z) is “nearly” of lower degree?
We do not give a complete answer to this, but rather note only that the generic case
with values ρi on nodes τi is that the degree is exactly n; if the values of a low-
degree polynomial are perturbed by arbitrarily small amounts, then almost certainly
the perturbed values are the exact values of a degree-n polynomial.

But how close are the given values, then, to the values of a lower-degree poly-
nomial? This question has been addressed (using the lemma above) in Rezvani and
Corless (2005), and using the witness vector in Hölder’s inequality, we can find an
analytic solution in the case the nearby polynomial is of degree one less than n,
in a manner similar to what we use later in Theorem 2.9. For still-lower degrees,
a computational procedure is available. We take a different tack here and give an
alternative characterization of the degree of a polynomial.

In exact arithmetic, a polynomial of degree n has exactly n complex roots, count-
ing multiplicity. But numerically, the condition number B(z) grows as |z| grows, so
the location of large roots is often very sensitive to perturbations. If a polynomial
p(z) can be perturbed by a small amount in such a way that some large roots go out
to infinity, then the original polynomial is somehow close to a lower-degree polyno-
mial. More precisely, we define the ε-degree of a polynomial p(z) = ∑n

k=0 ckφk(z)
expressed in a basis φφφ with weights wk ≥ 0 not all zero as

degε (p) = min

{
deg(p+Δ p)

∣∣∣∣∣ |Δck| ≤ wkε

}
. (2.54)

In a degree-graded basis, the computation is easy; for the Lagrange and Hermite
interpolational basis, it is not quite so easy. For the Bernstein–Bézier basis (to be
introduced below), quite a bit of attention has been paid to this issue in the CAGD
literature, and we refer you, for instance, to Farin (1996). The choice of norm for
nearness they use is not a coefficientwise norm as we use here, but rather a function
norm. Nonetheless, the ideas are similar.

2.2.7 Bernstein–Bézier Polynomials

The following family of polynomials is a basis for polynomials of degree n and is
positive on the interval a < z < b. Like the Lagrange and Hermite interpolational
bases, these are not degree-graded: Each element of the basis is degree n.

φk(z) = (b− a)−n
(

n
k

)
(z− a)k(b− z)n−k . (2.55)

The Bernstein–Bézier polynomials of degree 8 or less are displayed in Fig. 2.2.
These are extremely useful in computer-aided geometric design. To evaluate poly-

2.3 Condition Number for the Evaluation of Polynomials 63

Fig. 2.2 Bernstein–Bézier basis polynomials of degree at most 8

nomials expressed in this basis, you may use de Casteljau’s algorithm, as discussed,
for example, in Tsai and Farouki (2001). We do not pursue that algorithm further
here, except to note that it is partially implemented in MAPLE.10 This basis has a
number of interesting properties, including an optimal conditioning property, that
we discuss in Chap. 8.

2.3 Condition Number for the Evaluation of Polynomials

Now, let us look at the condition number for evaluation of polynomials. This is
studied in many works (for example, in de Boor (1978)), but we take the following
formulation from Farouki and Rajan (1987).

Theorem 2.8. If we consider a polynomial

f (z) =
n

∑
k=0

ckφk(z) (2.56)

with coefficients ck in the base {φk(z)}n
k=0 = 0n, and a perturbed polynomial

10 The Bernstein–Bézier basis is not yet well supported in MAPLE: For serious use, we recommend
instead the package described in Tsai and Farouki (2001).

64 2 Polynomials and Series

(f +Δ f)(z) =
n

∑
k=0

ck(1+ δk)φk(z) (2.57)

with perturbed coefficients ck(1+ δk), then

|Δ f (z)| ≤
(

n

∑
k=0

|ck||φk(z)|
)
· max

0≤k≤n
|δk| . (2.58)

If we let B(z) = ∑n
k=0 |ck||φk(z)|, we have the simple inequality

|Δ f (z)| ≤ B(z) max
0≤k≤n

|δk| . (2.59)

Here is a compact proof of this very important theorem, which we will use repeat-
edly in this book:

Proof. For the error term Δ f , we have

Δ f (z) =
n

∑
k=0

ckδkφk(z) =
[
c0φ0(z),c1φ1(z), · · · ,cnφn(z)

]
⎡
⎢⎢⎢⎣

δ0

δ1
...

δn

⎤
⎥⎥⎥⎦ . (2.60)

In this form, we can use Hölder’s inequality (Steele 2004): If 1/p+ 1/q = 1, then

|a ·b| ≤ ‖a‖p‖b‖q . (2.61)

The result follows directly if we take a = [c0φ0(z), . . . ,cnφn(z)], b = [δ0,δ1, . . . ,δn],
p = 1, and q = ∞. �

The number B(z) (and for fixed z, it is indeed just a number) thus serves as an
absolute condition number for evaluation of the polynomial f at the point z: If we
change the coefficients ck by a relative amount |δk| ≤ ε , this means that the value of
f might change by as much as εB(z). Higham (2004) uses instead B(z)/| f (z)|, which
is a relative condition number, and indeed this may be more informative in many
situations.

Remark 2.6. This is the first derivation of an explicit general formula in this book for
a condition number, which was defined for general computation in Sect. 1.4.2 and
used earlier to express the error results for Horner’s method. This notion is usually
introduced in numerical analysis texts not with polynomial evaluation as we have
done here, but rather with the solution of linear systems of equations (which we
begin in Chap. 4). The notion is perhaps the most important in the book, and the
reader will see it in every single chapter. The reader is urged to make a note of this
usage here, and later in Chap. 3, and again in Chap. 4; after that, return and reread
Sect. 1.4.2 before going on. �

2.3 Condition Number for the Evaluation of Polynomials 65

Example 2.3. As an example, we take a single polynomial, f (t), and plot its con-
dition number (2.59) in several different bases. Consider the polynomial f (t) that
takes on the values ρρρ = [1,−1, 1,−1] on τττ = [−1,−1/3, 1/3, 1]. Its Lagrange form is

f (t) =− 9
16

(
t +

1
3

)(
t − 1

3

)
(t − 1)− 27

16
(t + 1)

(
t − 1

3

)
(t − 1)

− 27
16

(t + 1)

(
t +

1
3

)
(t − 1)− 9

16
(t + 1)

(
t +

1
3

)(
t − 1

3

)
, (2.62)

while its monomial form is

f (t) =−9
2

t3 +
7
2

t, (2.63)

and its Newton form, if the nodes are taken in the left-to-right order in which they
are given, is

f (t) =−2− 3 t+
9
2
(t + 1)

(
t +

1
3

)
− 9

2
(t + 1)

(
t +

1
3

)(
t − 1

3

)
. (2.64)

If instead we use the Leja ordering of the nodes (see Chap. 8, Exercise 4), namely,
[−1,1,−1/3, 1/3], the form is

f (t) =−t +
3
2
(t + 1)(t − 1)− 9

2
(t + 1)

(
t +

1
3

)
(t − 1) . (2.65)

For each of these, B(t) is simply the sum of the absolute values of the terms. The
results are displayed in Fig. 2.3. �

Remark 2.7. In Fig. 2.3, we see B(t) plotted for all but that for Eq. (2.64), which is
so large (going up to 25) that it would compress the graph. This example is hardly
unique: The Newton basis is often poorly conditioned and, moreover, depends on
the ordering of the nodes. We will pursue this in great detail in the exercises, and
again in Chap. 8. This book differs from many numerical analysis texts in that it
avoids use of the Newton basis for this reason and uses the Lagrange and Hermite
interpolational bases instead, which are often better conditioned. This understand-
ing in a broad popular sense is a relatively recent development and is due to the
papers Berrut and Trefethen (2004) and Higham (2004), although in a more limited
sense, it was known previously. �

Example 2.4. Let us continue Example 2.3 with another basis, namely, the
Bernstein–Bézier basis, given by

φk(z) = (b− a)−n
(

n
k

)
(z− a)k(b− z)n−k . (2.66)

For polynomials of degree 3 on the interval −1 ≤ z ≤ 1, we just let a = −1, b = 1,
and n = 3, so that the basis elements are easily computed. We then find that if

66 2 Polynomials and Series

Fig. 2.3 Condition number of evaluation of a particular degree-3 polynomial in three different
bases: Lagrange (which is best), Newton with the Leja ordering (which is next-best), and standard
monomials (which is worst in this example)

f (z) =
3

∑
k=0

ckφk(z) ,

c0 = 1, c1 = −17/3, c2 = 17/3, and c3 =−1. Then, the condition number

3

∑
k=0

| ck | · | φk(z) |

is displayed in Fig. 2.4, where it is shown with the condition numbers from
Fig. 2.3. �

Remark 2.8. After this discussion, it is clear that the same polynomial will have dif-
ferent condition numbers in different bases. It is shown in Farouki and Goodman
(1996) that among all polynomial bases that are nonnegative on an interval, the
Bernstein–Bézier basis has optimal condition numbers in a generic sense. Taken as
a whole, one can expect a polynomial to have a smaller condition number in the
Bernstein–Bézier basis than in any other nonnegative basis. The Farouki–Goodman
theorem thus guarantees, for example, that the Bernstein–Bézier basis is better than
the monomial basis in general. For a particular polynomial, however, this need
not be true, as we have seen in the previous example. In Chap. 8, we will show,

2.3 Condition Number for the Evaluation of Polynomials 67

Fig. 2.4 Condition numbers from Fig. 2.3, together with the condition number of the same poly-
nomial expressed in the Bernstein–Bézier basis. This graph shows that, for this example, the
Bernstein–Bézier basis is worse than the Lagrange basis and comparable to the Newton basis with
Leja ordering

using the same techniques as Farouki and Goodman (1996) used, that if we re-
lax the nonnegativity condition, then the Lagrange basis has the same optimal-
ity property. This in some sense explains why the Lagrange basis did so well in
Example 2.3. �

Remark 2.9. The question of “which basis is best overall?” is somewhat vexed. The
answer is, “It really depends on the problem, and what information you want.” In
the simple example above, it is clear that the Lagrange basis has a lower condition
number than either of the Newton bases or the Bernstein–Bézier bases, over the
entire interval. The monomial basis, however, is better than the Lagrange basis, for
all z “near enough” to the origin. For this problem, the conditioning of the Lagrange
basis expression is better for “most” of the z in this restricted interval.

The picture would change if we took a different interval, or if we considered
instead the complex disk |z| < 1 (where, in fact, the monomial basis would show
itself to good advantage). It is the position of this book that the Lagrange basis
is generally to be preferred over other bases, on the principle that you probably
have sampled your polynomial where you know it best; while the Bernstein–Bézier
basis is provably the best on an interval for generic polynomials (and is widely
used in CAGD in part because of that); and that the monomial basis is likely
overused—that is, often used where it shouldn’t be—but can be the best tool for
the job.

68 2 Polynomials and Series

The relative condition number |B(z)|/| f (z)| is also of interest (perhaps of more inter-
est). Since this example polynomial has a zero at t = 0, the monomial basis condition
number shows itself to be best there—Bmonomial(0) = 0 as well, whereas all the other
absolute condition numbers are nonzero at zero, and so the relative condition of the
monomial basis is the only finite one there.

Finally, the flexibility and uniform approximation properties of discrete Cheby-
shev bases—that is, Lagrange interpolation on nodes that are the zeros of Chebyshev
polynomials—make them extremely interesting to the computational scientist. See
the Chebfun package as described in Battles and Trefethen (2004) and subsequent
papers. �

Example 2.5. As we have seen in Chap. 1, the Airy function has a Taylor series that
converges for all z; it can be written as

Ai(z) = 3−2/3
∞

∑
n=0

z3n

9nn!(n− 1/3)!
− 3−4/3

∞

∑
n=0

z3n+1

9nn!(n+ 1/3)!
. (2.67)

Consider using the degree-127 truncation of this Taylor series as a way of approxi-
mating Ai(z) for various z. In applications, for instance, the geometric optics of the
rainbow, the zeros of Ai(z) are often important, so we want to accurately assess it
there. So let us focus on values near z = −7.94, which is somewhat close to a zero
of Ai(z). A preliminary analysis shows that, in theory, the degree-127 truncation has
more than enough terms for convergence—here, we ought to be able to get about
25 significant figures of Ai(−7.94) if we want. We are using so many terms here
in part to show that the mathematical theory of convergence is not at issue for this
example. Write the degree-127 polynomial in Horner form (Exercise 2.29 contains
two programs that implement an efficient, specific variation of Horner form for this
particular polynomial).

If we use only 8 digits in our computation, because we only want 8 digits in our
answer, we get Ai(−7.94) = 0.00359469. Here is how the (general) Horner form
begins, with 8-digit coefficients:

0.35502806+ z(−0.25881940+ z(0.059171345+ · · ·)) . (2.68)

If we use 16 digits, we get a different answer, beginning with

Ai(−7.94) = 0.0039158060872139 .

Only a single significant digit was right the first time! If we don’t use Horner’s
form, the answer is worse, by the way. In order to understand what has gone wrong
with the 8-digit computation, we need to plot the B(z) function, which is the same
Taylor series but with all positive signs and with powers of |z|, not z. This is plotted
in Fig. 2.5. We see that the B(z) function becomes very large, for large z: We say
that the (monomial basis) polynomial approximation to the Airy function that we
derived from Taylor series is ill-conditioned to evaluate for large |z|. This point
deserves emphasis: Taylor series about the origin are often impractical to use for

2.3 Condition Number for the Evaluation of Polynomials 69

large |z| because the resulting polynomial expression, although adequate in theory
to deliver accuracy, is far too ill-conditioned to use. The condition number we see at
the right is about 1015—10 rounding errors, and we cannot count on any accuracy in
the result (and since we are adding up hundreds of terms, we will make many more
than 10 rounding errors). Near z = −7.94, the condition number is about 109. This
phenomenon is sometimes known as “the hump” (see Exercise 2.16).

There is a bit more to say, for this example, though: If we take each separate
series in Eq. (2.67), the one multiplied by 3−2/3 (call it f1(z)) and the other multiplied
by 3−4/3 (call it f2(z)), and plot their condition numbers, we see that each of them
has condition number 1 for z > 0 (because all terms are positive). So we can say
that each of them is accurately evaluated for z > 0. (This is how the programs in
Exercise 2.29 do it, by the way.) Yet the condition number for Ai(z) = 3−2/3 f1(z)−
3−4/3 f2(z) grows very large, even for positive z. This is because each of f1(z) and
f2(z) grows very large for large positive z, while Ai(z) gets very small indeed—that
is, we are computing Ai(z) as the tiny difference of two large numbers. This is a
recipe for catastrophic cancellation. Notice that this shows up automatically in the
condition number analysis: we have discovered directly that the condition number
of this polynomial is very large. We defer analysis of the condition number of Ai(z)
itself to Chap. 3 (Exercise 3.6). �

Fig. 2.5 The condition number for evaluation of the degree-127 Taylor polynomial for the Airy
function Ai(z) on −13 ≤ z ≤ 13. Note that it goes to infinity in very narrow spikes (the graph only
shows a portion of each spike since the singularity is so narrow) around each zero, but even away
from zeros, the condition number grows very rapidly with |z|

70 2 Polynomials and Series

2.4 Pseudozeros

We now look at the relationship between the condition number for evaluation of
polynomials and the condition number for rootfinding for polynomials. In mathe-
matical terms, given ε > 0 and weights wi ≥ 0, 0 ≤ i ≤ n, not all zero, define the set
of pseudozeros

Λε(f) =

{
z

∣∣∣∣ (f +Δ f)(z) = 0, where Δ f =
n

∑
i=0

Δciφi(z) and each |Δci| ≤ εwi

}
.

These are the roots of the polynomials that are near f . Studying this set will help us
to understand what happens if the coefficients of our polynomials are changed some-
how (perhaps due to measurement error, or to numerical errors in computation). To
do so, we make use of the following theorem:

Theorem 2.9. Let Λε(f) be defined as above. Then

Λε(f) =

{
z

∣∣∣∣
∣∣(f (z))−1

∣∣≥ (εB(z))−1
}
, (2.69)

where B(z) = ∑n
i=0 wi|φi(z)| or, equivalently for scalar polynomials,

Λε(f) =

{
z

∣∣∣∣ | f (z)| ≤ εB(z)

}
. (2.70)

Proof. First, suppose z∈Λε(f). Moreover, if |Δci|≤εwi, and Δ f (z)=∑n
i=0 Δciφi(z),

then

|Δ f (z)| ≤
n

∑
i=0

|Δci||φi(z)| ≤
n

∑
i=0

εwi|φi(z)|= εB(z) ,

so that Λε(f) ⊆
{

z

∣∣∣∣ | f (z)| ≤ εB(z)

}
. Now, suppose | f (z)| ≤ εB(z). Take

Δci =−signum
(

φi(z)
)

wk
f (z)
B(z)

.

Then it follows that

|Δci|=
∣∣∣∣wi

f (z)
B(z)

∣∣∣∣≤ εwi
B(z)
B(z)

= εwi .

Also, observe that

f (z)+
n

∑
i=0

Δciφ(z) = f (z)+
n

∑
i=0

−wi|φi(z)| f (z)
B(z)

2.4 Pseudozeros 71

= f (z)− f (z)
B(z)

n

∑
i=0

wi|φi(z)|

= f (z)− f (z) = 0 .

Thus, the set identity is obtained. �

Fig. 2.6 Zeros of a small perturbation of the Wilkinson polynomial W (z) = ∏20
k=1(z−k), after first

having been expanded into the monomial basis Wk(z) = z20 −210z19 + · · ·

Remark 2.10. It is no coincidence that the condition number of Theorem 2.8 appears
as the expansion factor in equations in the proof of Theorem 2.9. An ill-conditioned
polynomial, with large B, will have its roots spread widely when the coefficients are
changed.

This is a very useful and important result: It says that if | f (z)| is small, then z is
the exact root of a nearby polynomial f (z)+Δ f (z). Note that this works for only
one root at a time. �

Example 2.6. The Wilkinson polynomial11 can be written as

W (z) =
20

∏
k=1

(z− k) = z20 − 210z19+ · · ·+ 20! (2.71)

11 See, for instance, Wilkinson (1984)

72 2 Polynomials and Series

Fig. 2.7 Pseudozeros of the Wilkinson polynomial expressed in the monomial basis: a plot of the
contours of | f (x+iy)|

B(x+iy)

when expanded into the monomial basis. Compare Figs. 2.6 and 2.7. In the latter
case, we see contours bounding the sets of zeros of all perturbations of the Wilkin-
son polynomial expressed in the monomial basis—as we see, quite small perturba-
tions can have dramatic effects on the location of the zeros. In the former, we have
an explicit perturbation of one coefficient (again in the monomial basis), and the
perturbed zeros lie pretty much along one of the contours of the latter. In contrast,
if we don’t expand it, then the natural basis to recognize in which it is written is the
Lagrange basis on the nodes 1, 2, . . ., 20, and (say) 0, so W (z) = 20! L0(z) has only
one nonzero coefficient. The condition number in this basis is, remarkably, 0 at all
the roots, in an absolute sense; in a relative sense, the condition number is just 1. Of
course, this is unsurprising, and uninformative: If we know the roots, then they are
easy to find. However, there is something more useful in this observation than just
that, and we return to it later. �

2.5 Partial Fractions

Every reader of this book will have encountered the partial fraction decomposition.
However, it is all too common to encounter only the hand practice, and not the
theory or a practical algorithm. We give the theory here, and later we give a practical
algorithm for the easy case that we need for interpolation. The basic object under
study here is the class of rational functions and a simple representation for them.

2.5 Partial Fractions 73

Definition 2.5 (Rational function). A function f : C→ C is called a rational func-
tion if there exist polynomials p(z) and q(z) such that

f (z) =
p(z)
q(z)

∀z ∈C , (2.72)

except possibly at the zeros of q(z). If the degree of p(z) is n and the degree of q(z) is
m, then we say that f (z) is here represented as an [n,m]-degree rational function. By
convention, the identically zero function f (z) ≡ 0 is also called a rational function,
for example, taking q(z) = 1. �

Rational functions often arise in approximation theory. One class of these are called
Padé approximants:

Definition 2.6 (Padé approximant). A Padé approximant to a function f (z) is a
rational function whose coefficients are wholly determined by matching the Taylor
series of f (z). �

We can find a unique representative p(z)/q(z) for a rational function f (z) by insisting
that p(z) and q(z) have no common factors (dividing out the GCD) and normaliz-
ing one of f (z) and q(z) in some way—often by making f (z) monic by dividing
the numerator and the denominator by the leading coefficient of q(z), or by making
the norm of the vector of coefficients of q(z) equal to 1 and insisting that one par-
ticular coefficient be positive, or simply by insisting that a · q = 1 for some given
nonzero vector a, where q means the vector of coefficients of the polynomial q(z)
expanded in the monomial basis. Moreover, since the polynomials are linear in their
coefficients, we may divide the numerator and denominator by a constant in order
to make this dot product 1.

We also usually insist that deg p < degq, by first doing polynomial division if
necessary: p = Qq+R and so p/q = Q+ R/q, separating out a polynomial part Q(z)
and leaving a rational part R(z)/q(z) with the desired “proper form.”

We now state and prove the key theorem of this section:

Theorem 2.10 (Partial fraction decomposition). Suppose we have already found
machine number representations of all the roots of the denominator,12 and that

q(z) =
n

∏
k=0

(z− τk)
sk (2.73)

is the unique factorization of monic q(z) into distinct factors over C. That is, τi =
τ j ⇔ i = j, and each integer sk ≥ 1. Let m = ∑n

k=0 sk. Note that the degree of q(z)
is exactly m and that q(z) is not identically zero (if the product is empty with n < 0,
then q(z) = 1 by convention). Suppose that m ≥ 1. Suppose p(z) is a polynomial

12 Of course, this avoids the hard questions of how to do this if we start with q(z) expressed in some
other basis, and also the hard question of what are the consequences of approximating polynomial
roots by machine numbers. But for the interpolation applications that we need in this book, this
assumption suffices.

74 2 Polynomials and Series

with deg p < m having no common factor with q(z). Then there exist m numbers αi, j

(with 0 ≤ i ≤ n and 0 ≤ j ≤ si − 1) such that ∀z �∈ {τ0,τ1, . . .τn},

p(z)
q(z)

=
n

∑
i=0

si−1

∑
j=0

αi, j

(z− τi) j+1 . (2.74)

The numbers αi, j provide the decomposition.

Proof. We proceed by induction on the degree m ≥ 1, which gives a perfectly satis-
factory algorithm to use in hand computation. The base of the induction, m = 1, is
trivial: α0,0 = p0 = p(z), because deg p = 0 and there is nothing to prove. Suppose
now that the theorem is true for all polynomials with degrees m− 1 or less. Let

α0,s0−1 = p(τ0)
n

∏
k=1

(τ0 − τk)
−sk

and consider

p(z)
q(z)

− α0,s0−1

(z− τ0)
s0

=
p(z)−α0,s0−1 ∏n

k=1(z− τk)
sk

q(z)
.

We claim that the numerator and denominator on the right have a nontrivial common
divisor, z− τ0. Since s0 ≥ 1, it is clear that (z− τ0) | q(z). It only remains to show
that this factor divides the numerator. It is equivalent to show that τ0 is a zero of
the numerator. But this is obvious, because the polynomial at z = τ0 has the value
p(τ0)− p(τ0)∏n

k=1(τ0 − τk)
−sk ∏n

k=1(τ0 − τk)
sk = 0.

On dividing the numerator and denominator on the right by z−τ0 (as many times
as necessary but certainly at least once), we are left with a proper rational function
on the right with denominator of the form (2.73) and having degree strictly less than
m. By the induction hypothesis, this can be expressed uniquely in partial fraction
form, thus completing the proof of the theorem. �

Remark 2.11. This proof provides an excellent hand algorithm: see Scott and
Peeples (1988). It is also “self-checking”: If exact division does not occur at
the second step, we know that we have made an arithmetic blunder. �

Example 2.7. Consider

1
z2(z− 1)2 =

1
z2 +Rest(z)

on taking out the leading term in z as z → 0. Rearranging as in the proof of the
theorem, we get

Rest(z) =
1

z2(z− 1)2 −
1
z2 =

1− (z− 1)2

z2(z− 1)2 =
1− z2 + 2z− 1

z2(z− 1)2

=
z(2− z)

z2(z− 1)2 (2.75)

=
2− z

z(z− 1)2 (2.76)

2.6 Formal Power Series Algebra 75

and this is a proper rational function with a degree-3 denominator, one less than
we started with. As stated previously, the exact cancellation from Eq. (2.75) to
Eq. (2.76) is necessary, and if it doesn’t happen, then we know that we have made
an arithmetic blunder.

The process can be continued, to get

1
z2(z− 1)2 =

1
z2 +

2
z
− 2

z− 1
+

1
(z− 1)2 . (2.77)

The numerators on the right-hand side are the αi, j desired. �

Remark 2.12. Later we will need this particular partial fraction decomposition many
times: It is the foundation for cubic Hermite interpolation. The reader is urged to
complete the computation above and confirm Eq. (2.77). �

This algorithm can be implemented recursively, once an algorithm for division
of polynomials by linear factors z− τk has been made available (and, of course, this
can be done in any polynomial basis). For our purposes in this book, however, there
is a more practical algorithm for partial fractions, based on local Taylor series. In
order to develop that algorithm (and indeed for many other numerical purposes), we
need to learn to manipulate formal power series, and so we turn to this in the next
section.

Remark 2.13. MAPLE has several commands to compute partial fraction decompo-
sitions. Using exact arithmetic, the command

convert(R, parfrac, z, true);

does the trick (the true flag means that the rational function R has already had its
denominator factored). However, at the time of this writing, for floating-point arith-
metic, this command is not always satisfactory, because it converts internally to a
monomial basis centered at 0, and this can induce numerical instability in the algo-
rithm because the intermediate monomial basis representations are ill-conditioned.
See Exercise 2.28. �

2.6 Formal Power Series Algebra

Numerical methods rely heavily on Taylor series. In this section we give a short
generalized reminder13 of how to operate on them. Suppose that, instead of being
given a function, we are directly given the series and that we want to do standard
operations with it, such as adding it, multiplying it, or dividing it by another series,
differentiating or integrating it, exponentiating it, and so on. We will examine how
to do so in this section. To begin with, suppose we have two series, given by

u =
N

∑
k=0

uk(x− a)k +O(x− a)N+1 (2.78)

13 This generalization includes O(n2) algorithms for computation.

76 2 Polynomials and Series

v =
N

∑
k=0

vk(x− a)k +O(x− a)N+1 . (2.79)

The scalar linear combination is defined to be

αu+β v =
N

∑
k=0

(αuk +β vk)(x− a)k +O(x− a)N+1 . (2.80)

In other words, to add, subtract, and scalar-multiply series, we simply add, subtract,
and scalar-multiply the corresponding coefficients. We examine the other operations
in the following subsections.

2.6.1 Multiplication of Series and the Cauchy Convolution

The product w = uv of two series u and v, as in Eqs. (2.78) and (2.79), can be written

w = uv =
N

∑
k=0

wk(x− a)k +O(x− a)N+1 (2.81)

as any other series. The problem, then, is to express the coefficients wk in terms of
the coefficients of u and v. The relationship in question is simply

wk =
k

∑
j=0

uk− jv j =
k

∑
j=0

u jvk− j . (2.82)

This is the Cauchy product formula or convolution product. It is crucial in what
follows. It can be done faster than the direct sum formula above, by using the fast
Fourier transform: See Henrici (1979b). See also Chap. 9 in this book.

Example 2.8. If we are given the series

u = 1+ 2(x− a)+ 3(x− a)2+ 4(x− a)3+ 5(x− a)4+ 6(x− a)5+O
(
(x− a)6

)

and

v = 2− 3(x− a)+ 4(x−a)2− 5(x− a)3+ 6(x− a)4− 7(x− a)5+O
(
(x− a)6

)
,

then their product w = uv has the series starting

uv = 2+(x− a)+ 4(x−a)2+ 2(x− a)3+ 6(x− a)4+ 3(x− a)5+O
(
(x− a)6

)
.

These series were computed using the series command in MAPLE, which, among
other things, implements the Cauchy convolution product. �

2.6 Formal Power Series Algebra 77

Is the computation of the Cauchy convolution numerically stable? If N = 0, so
that we are multiplying constants, then (obviously) Cauchy convolution is numeri-
cally stable: u0v0(1+ δ) can be interpreted as the exact product of u0(1+ δ/2) and
v0(1+ δ)(1 + δ/2)−1 ≈ v0(1+ δ/2) by the IEEE standard. Cauchy convolution is
normwise forward stable, as we will see, for any fixed N; but it is not component-
wise stable for N > 1, as we will also see. But it is stable for N = 1.

Theorem 2.11. Cauchy convolution is componentwise stable if N = 1.

Proof. Suppose N = 1, so that u = u0+u1z+O(z2), and v = v0+v1z+O(z2). Then
uv = u0v0 +(u0v1 + u1v0)z+O(z2) in exact arithmetic. If we are using floating-
point arithmetic instead, then as we just saw, we may choose perturbations in u0

and v0 that allow us to interpret the first term as the exact product of perturbed u0

and v0. Suppose that we have done so, with û0 = u0(1+ δ1) and v̂0 = v0(1+ δ2),
where δ1 and δ2 are such that (1+ δ1)(1+ δ2) = (1+ δ0) with û0v̂0 = u0v0(1+ δ0)
and |δ0| ≤ μM . As shown above, we may choose δ1 and δ2 so that each is also
smaller than μM in magnitude. Now we wish to interpret the floating-point value
u0 ⊗v1⊕u1⊗v0 as û0v̂1 + û1v̂0 with û1 = u1(1+δ3) and v̂1 = v1(1+δ4), with each
of δ3 and δ4 small. We break the proof up into cases.

In the first case, suppose that v1 = 0. Then we are multiplying u by a constant,
and obviously each term in the product is the exact product of v0 with a relatively
minor change in u0 and u1: We have û0 = u0(1+ δ0) and can take û1 = u1(1+ δ3)
directly, and leave v̂0 = v0, and similarly if u1 = 0.

Now suppose we are in the second case, where neither u1 nor v1 is zero. Then

u0 ⊗ v1 ⊕ u1 ⊗ v0 = (u0v1(1+ δ5)+ u1v0(1+ δ6))(1+ δ7)

= (û0v1(1+ δ0)
−1(1+ δ5)+ u1v̂0(1+ δ6))(1+ δ7)

= û0v̂1 + û1v̂0, (2.83)

where v̂1 = v1(1+ δ0)
−1(1+ δ5)(1+ δ7) is only three rounding errors different to

v1 and û1 = u1(1+ δ6)(1+ δ7) is only two rounding errors different to u1. That is,
the computed Cauchy convolution if N = 1 is the exact product of two series that
differ only minutely in a relative sense to each multiplicand series. �

However, for N = 2, this kind of analysis cannot succeed.

Theorem 2.12. For N = 2, Cauchy convolution can be componentwise unstable:
That is, the computed product of two series of order O(z3) is not necessarily the
exact product of any two nearby series, where “nearby” means each coefficient is
relatively close to the original.

Proof. Using a more systematic notation to help with the bookkeeping, suppose to
the contrary that we may choose relative perturbations ûk = uk(1+ δ u

k) and v̂k =
vk(1+ δ v

k) in order to match the rounding errors in the computation, which we will
denote by εk. We would then have

u0v0(1+ δ u
0)(1+ δ v

0) = u0v0(1+ ε0)

78 2 Polynomials and Series

u0v1(1+ δ u
0)(1+ δ v

1)+ u1v0(1+ δ u
1)(1+ δ v

0) = u0v1(1+ ε1)(1+ ε3)

+ u1v0(1+ ε2)(1+ ε3),

where each |ε j |< μM , the unit roundoff. As we saw in the previous theorem, if we
stop here, we may choose small δ ’s in order to satisfy these constraints: For N = 1,
we may interpret the rounding errors as small relative backward errors. However,
we need one more equation for N = 2:

u2v0(1+ δ u
2)(1+ δ v

0)+ u1v1(1+ δ u
1)(1+ δ v

1)+ u0v2(1+ δ u
0)(1+ δ v

2)

= u2v0(1+ε4)(1+ε6)(1+ε8)+u1v1(1+ε5)(1+ε6)(1+ε8)+u0v2(1+ε7)(1+ε8).

Because the uk and vk are independent variables, each monomial gives an equation
for the unknown perturbations, so that we have

(1+ δ u
0)(1+ δ v

0) = (1+ ε0) (2.84)

(1+ δ u
0)(1+ δ v

1) = (1+ ε1)(1+ ε3) (2.85)

(1+ δ u
1)(1+ δ v

0) = (1+ ε2)(1+ ε3) , (2.86)

and from the O(z2) term, we will only need

(1+ δ u
1)(1+ δ v

1) = (1+ ε5)(1+ ε6)(1+ ε8) (2.87)

to arrive at a contradiction. Multiply Eqs. (2.85) and (2.86) together and divide by
Eq. (2.84) to get

(1+ δ u
1)(1+ δ v

1) =
(1+ ε1)(1+ ε3)

2(1+ ε2)

(1+ ε0)
. (2.88)

For this to hold simultaneously with (2.87) requires that the rounding errors ε5, ε6,
and ε8 be perfectly correlated with the earlier rounding errors ε0, ε1, ε2, and ε3. In
general, this does not happen. Therefore, there is no possible set of perturbations δ u

k
and δ v

k that allows rounding errors in Cauchy convolution for N > 1 to be interpreted
as a small relative backward error. �

Remark 2.14. In the forward error sense, this computation also shows that the com-
ponentwise relative error may be infinite. Take an example where u0v2 + u1v1 +
u2v0 = 0 in exact arithmetic. Then the rounding errors, which will be proportional
to |u0v2|+ |u1v1|+ |u2v0|, will be infinitely large in comparison with the reference
result of 0. �

However, there is a forward accuracy result for all N in the normwise sense, as
follows. If cn = ∑n

j=0 u jvn− j, then Eq. (3.5) in (Higham 2002 section 3.1), which
gives us a general result on the forward accuracy of inner products, tells us that

|ĉn − cn| ≤
√

2γn+1

n

∑
j=0

|u j||vn− j| . (2.89)

2.6 Formal Power Series Algebra 79

If all terms u j and v j are positive, this is a decent relative accuracy (and the constant
in front can be improved with minor modifications of how the sum is done and
in which order). If, however, cn is very small while some u j and v j are large in
magnitude, then there must be cancellation, and the error bound will then be large
to reflect this.

Remark 2.15. This difficulty may be mitigated by performing this recurrence rela-
tion in higher precision, or by using certain compensated summation techniques as
described in Higham (2002). However, the inaccuracy is often of little consequence
in computation with the resulting series, anyway, even if the recurrence relation is
performed in a naive way. The reason is simply that the errors grow at worst in ck

like O((k+1)‖u‖‖v‖μM), and thus for the low-order terms, the error is small in any
case; and the high-order terms are used only together with high powers of (z− a),
which is presumed small. Thus, the total error in the computed sum ∑N

j=0 c j(z− a) j

will be small enough: The terms with larger errors will not contribute much to the
total sum. �

Finally, we leave aside the question of whether the Cauchy convolution is well-
conditioned, which we will take it up in the exercises in Chap. 3.

2.6.2 Division of Series

Let us now consider the case of division. If we consider

r =
u
v
=

N

∑
k=0

rk(x− a)k +O(x− a)N+1 , (2.90)

then we must have u = rv, so that

uk =
k

∑
j=0

r jvk− j = rkv0 +
k−1

∑
j=0

r jvk− j, (2.91)

and we see that for rk to be defined we must have v0 �= 0. Then

rk =
1
v0

(
uk −

k−1

∑
j=0

r jvk− j

)
(2.92)

and the base of the recurrence is (if v0 �= 0)

r0 =
u0

v0
. (2.93)

However, if v0 = 0, then no series for r exists, unless perhaps also u0 = 0 and we
may cancel a factor in u/v.

80 2 Polynomials and Series

Example 2.9. With the same u and v that we used in Example 2.8, we find that

u
v
=

1
2
+

7
4
(x− a)+

25
8
(x− a)2 +

71
16

(x− a)3 +
185
32

(x− a)4 +O
(
(x− a)5

)
,

while

v
u
= 2− 7(x− a)+ 12(x−a)2− 16(x− a)3+ 20(x− a)4+O

(
(x− a)5

)
.

Again these series were computed in MAPLE, which knows how to do series algebra
including division, and cancels common factors in order to avoid division by zero
wherever possible. MAPLE also knows how to work with several generalizations
of Taylor series, including Laurent series, which allow negative integer powers of
(x−a), and Puiseux series, which allow fractional powers. The algebra of these is a
straightforward extension of that for Taylor series. We will occasionally have need
for these generalizations. �

2.6.3 Differentiation and Integration

Differentiation of power series is very straightforward. If we are given a series

u =
N

∑
k=0

uk(x− a)k +O(x− a)N+1 ,

then it is easy to see that its derivative is

du
dx

=
N

∑
k=0

kuk(x− a)k−1 +O(x− a)N

=
N−1

∑
k=0

(k+ 1)uk+1(x− a)k +O(x− a)N .

Moreover, its integral is also directly seen to be

ˆ x

a
u(ξ)dξ = u0(x− a)+ u1

(x− a)2

2
+ . . .

=
N

∑
k=0

uk

k+ 1
(x− a)k+1 +O(x− a)N+2 .

These two simple operations will be applied to many problems in this book.

2.6 Formal Power Series Algebra 81

2.6.4 The Algebra of Series

The rules we have examined already give us the series for all polynomials and ra-
tional functions. Using these rules, we see how to square a series,

x2 =
(
a+(x− a)+O(x− a)N+1)2

= a2 + 2a(x− a)+ (x− a)2+O(x− a)N+1 ,

or to take higher powers. Moreover, we see that

1
x
=

1+O(x− a)N+1

a+(x− a)+O(x− a)N+1

=
N

∑
k=0

(−1)k

ak+1 (x− a)k +O(x− a)N+1 .

As a result, we can also find the series for ln(x) by using the integration rule. Ob-
serve that

ln(x) =
ˆ x

1

dt
t
=

ˆ a

1

dt
t
+

ˆ x

a

dt
t
.

From this, we obtain

ln(x) = ln(a)+
ˆ x

a

(
N

∑
k=0

(−1)k

ak+1 (x− a)k +O(x− a)N+1

)
dx

= ln(a)+
N

∑
k=0

(−1)k

(k+ 1)ak+1 (x− a)k+1 +O(x− a)N+2 .

Algebraically, the set of truncated power series (TPS) of order N forms an integral
domain: The sum, difference, and product of TPS are TPS, but there are zero di-
visors, and not every element has a reciprocal—indeed, each element with a zero
leading coefficient fails to have a TPS reciprocal. If we allow negative integer pow-
ers of (x− a), then we have truncated Laurent series, which are indeed useful.

2.6.5 The Exponential of a Series

To find the series for ex, we may introduce series reversion (see Exercise 2.24) or
look at the differential equation

dy
dx

= y, y(a) = ea, (2.94)

82 2 Polynomials and Series

which is, of course, satisfied by ex. Now, let y be given by

y =
N

∑
k=0

yk(x− a)k +O(x− a)N+1 . (2.95)

We have y0 = ea and, by differentiation, we also have

N

∑
k=0

kyk(x− a)k−1 +O(x− a)N =
N

∑
k=0

yk(x− a)k +O(x− a)N+1,

or, by rearranging the summation indices,

N−1

∑
k=0

(k+ 1)yk+1(x− a)k +O(x− a)N =
N

∑
k=0

yk(x− a)k +O(x− a)N+1 . (2.96)

By the uniqueness of power series, we can identify the coefficients of corresponding
powers, thereby obtaining the relation

(k+ 1)yk+1 = yk , k = 0,1,2,3, . . . ,N − 1 . (2.97)

Using our initial condition and this recursive relation, we find that

y1 = y0 = ea

2y2 = y1 = ea

3y3 = y2 =
1
2

ea

4y4 = y3 =
1
6

ea ,

and so on, so that the series for the exponential itself is

ex =
N

∑
k=0

ea

k!
(x− a)k +O(x− a)N+1 . (2.98)

However, that was really too easy for such a powerful trick. How about y = eu,
where

u =
N

∑
k=0

uk(x− a)k +O(x− a)N+1

instead? It still works! Let y be as in Eq. (2.95). Then, because

dy
dx

=
dy
du

du
dx

= y
du
dx

,

2.6 Formal Power Series Algebra 83

we find that

N−1

∑
k=0

(k+ 1)yk+1(x− a)k +O(x− a)N =

(
N

∑
k=0

yk(x− a)k +O(x− a)N+1

)(
N

∑
k=0

uk(x− a)k +O(x− a)N+1

)
.

Now, applying the Cauchy convolution rule to the right-hand side gives us

N−1

∑
k=0

(k+ 1)yk+1(x− a)k +O(x− a)N =
N

∑
k=0

ck(x− a)k +O(x− a)N+1 , (2.99)

where

ck =
k

∑
j=0

y juk− j .

By the same method, we thus find the relation

(k+ 1)yk+1 =
k

∑
j=0

y juk− j . (2.100)

Also, it is obviously the case that the recurrence starts with y0 = eu0 . This recurrence
relation allows us to compute the exponential of any series. We will later solve
differential equations with this technique.

Example 2.10. If u(x) has the following series,

u =

√
2

2
+

√
2

2

(
x− π

4

)
−

√
2

4

(
x− π

4

)2
−

√
2

12

(
x− π

4

)3

+

√
2

48

(
x− π

4

)4
+O

((
x− π

4

)5
)
,

then exp(u) has the series beginning

eu = e
√

2/2 +
1
2

e
√

2/2
√

2
(

x− π
4

)
+ e

√
2/2

(
1
4
−

√
2

4

)(
x− π

4

)2

− e
√

2/2

(
1
4
+

√
2

24

)(
x− π

4

)3
− e

√
2/2

(
1
96

+

√
2

24

)(
x− π

4

)4
+O

((
x− π

4

)5
)
.

84 2 Polynomials and Series

Again, MAPLE was used with its series command, which implements the algorithms
discussed here. Specifically, once the series for u was defined, the command

series(exp(u), u=Pi/4)

generated the above result. �

You may notice that convergence has not entered the discussion. Since we work
only with truncated, finite power series, this is not a serious omission. Truncation
error formulæ, on the other hand, are very useful, even if the series don’t converge.
You may be familiar with the Lagrange form of the remainder (that is, truncation
error) for real Taylor series:

f (x) = f (a)+ f ′(a)(x− a)+ · · ·+ f (n)(a)
n!

(x− a)n +Rn+1(x;a), (2.101)

where

Rn+1(x;a) =
f (n+1)(a+θx)

(n+ 1)!
(x− a)n+1 . (2.102)

Here θ is some number between 0 and 1, which we don’t know exactly. Knowledge
of bounds on the (n+ 1)st derivative allows us to estimate how much accuracy we
have in our real Taylor series when we truncate at n terms. This formula doesn’t
work over the complex numbers, however: Instead, we have (replacing x by z every-
where above)

Rn+1(z;a) =
(z− a)n+1

2π i

ffi
C

f (ζ)
(ζ − a)n+1 (ζ − z)

dζ . (2.103)

Here C is a contour enclosing a and z. This integral can be interpreted as an “average
value” of the (n+1)st derivative; in the complex plane, however, this average value
is not always attained at some point a+ θ z. We will see a generalization of this
formula to the case of interpolation error in Eq. (8.40) in Chap. 8.

We may also need to worry about whether the computed series is well-
conditioned with respect to the data. Again this is taken up in Chap. 3.

2.7 A Partial Fraction Decomposition Algorithm Using Local
Taylor Series

We return to the problem of computing the partial fraction decomposition of p(z)/q(z),
where q(z) has been completely factored down to distinct linear (complex) factors
(z− τk)

sk for 0 ≤ k ≤ n. We will need, first, the local Taylor series of p for each τk:

p(z) = pk,0 + pk,1(z− τk)+ · · ·+ pk,sk−1(z− τk)
sk−1 +O(z− τk)

sk . (2.104)

2.7 A Partial Fraction Decomposition Algorithm Using Local Taylor Series 85

In other words, we need to reexpress p(z) in each of the n local (i.e., shifted) mono-
mial bases 1, (z− τk), (z− τk)

2, . . ., (z− τk)
d , except that we only need the first sk

coefficients in each case. This can be done using synthetic division, as discussed
earlier. Assume that this has been done. Then, if

q(z) =
n

∏
k=0

(z− τk)
sk , (2.105)

then the rational function we wish to decompose into partial fractions, p(z)/q(z), can
be written as follows. We choose τ0 as being special, for the moment, and let w0(z) =
∏n

k=1 (z− τk)
−sk , which is analytic at τ0 because all the τk are distinct by hypothesis

(confluency is explicitly known). Thus, we can compute its local Taylor series by
the methods of the previous section. In general, that is, not just for k = 0, let

wi(t) =
n

∏
k=0
k �=i

(t − τk)
−sk .

Then, we obtain the local Taylor series

wi(t) = wi,0 +wi,1(t − τi)+ · · ·= ∑
�≥0

wi,�(t − τi)
� .

Then, observe that

p(z)
q(z)

=
p(z)

n

∏
k=0

(z− τk)
sk

=
p(z)

(z− τi)
si

n

∏
k=0
k �=i

(z− τk)
sk

=
p(z)wi(z)
(z− τi)si

. (2.106)

Now, this is exactly the form required for a partial fraction decomposition. As a
result, the partial fraction decomposition we want may be obtained by Cauchy con-
volution with the local series for p(z).

There are many ways to do this. The following is one method, and it has been
implemented in MATLAB.14 Begin by taking logarithms of wi(z):

lnwi(z) =
n

∑
k=0
k �=i

−sk ln(z− τk)+ complex piecewise constants . (2.107)

When we take derivatives with respect to z, all the piecewise constants (multiples of
2π i) disappear:

w′
i(z)

wi(z)
= ∑

k=0
k �=i

−sk

z− τk
. (2.108)

14 The program is discussed in Chap. 8.

86 2 Polynomials and Series

Note that

1
z− τk

=
1

τi − τk + z− τi

and so the summands in the right-hand sum of Eq. (2.108) can be expressed as
follows:

−sk

z− τk
=

sk

τk − τi

1

1− z−τi
τk−τi

=
sk

τk − τi
∑
�≥0

(
z− τi

τk − τi

)�

.

Therefore,

w′
i(z)

wi(z)
=

n

∑
k=0
k �=i

∑
�≥0

sk

(τk − τi)�+1 (z− τi)
� = ∑

�≥0

⎛
⎜⎝

n

∑
k=0
k �=i

sk

(τk − τi)�+1

⎞
⎟⎠(z− τi)

� . (2.109)

If we define ui,� as follows,

ui,� =
n

∑
k=0
k �=i

sk

(τk − τi)�+1 , (2.110)

then Eq. (2.109) becomes

w′
i(z)

wi(z)
= ∑

�≥0

uk(z− τi)
� . (2.111)

To simplify things a bit more, let vi,m = wi,m/wi,0 (so vi,0 = 1) and note that

wi,0 =
n

∏
k=0
k �=i

(τi − τk)
−sk .

Now, it follows that

wi(z) = ∑
m≥0

wi,m(z− τi)
m = wi,0 ∑

m≥0
vi,m(z− τi)

m .

Taking derivatives (using ′ to denote d/dz), we have

w′
i(z) = wi,0 ∑

m≥0

mvi,m(z− τi)
m−1 = wi,0 ∑

m≥1

mvi,m(z− τi)
m−1

= wi,0 ∑
m≥0

(m+ 1)vi,m+1(z− τi)
m.

Putting these in (2.111) and rearranging in order to more easily compare coeffi-
cients, we get the following:

2.7 A Partial Fraction Decomposition Algorithm Using Local Taylor Series 87

∑
m≥0

(m+ 1)vi,m+1(z− τi)
m =

(
∑

m≥0
vi,m(z− τi)

m

)(
∑
�≥0

ui,�(z− τi)
�

)

= ∑
m≥0

cm(z− τi)
m,

where

cm =
m

∑
�=0

vi,m−�ui,�

is Cauchy’s convolution formula. Equating coefficients gives (remember vi,0 = 1)

vi,m+1 =
1

m+ 1
cm

=
1

m+ 1

m

∑
�=0

vi,m−�ui,� . (2.112)

Recall that (2.110) defines ui,�. The recurrence relation (2.112) is the heart of the
local Taylor series algorithm for partial fractions. Once we have the vi,k, then we
have the desired βi, j.

Algorithm 2.4 Partial fraction decomposition by local Taylor series
Require: A positive integer n, a list of positive integers sk , a list of n distinct zeros τk of the

denominator q(z) = ∏n
k=0(z− τk)

sk , and the n+1 lists of local series coefficients pk, j , 0 ≤ j ≤
sk −1 of p(z).
for i=0:n do

for j=i+1:n do
Δτi, j = τi − τ j

end for
vi,0 = 1
for m=0:si −1 do

ui,m = ∑n
k=0
k �=i

Δτ−m−1
i,k

vi,m+1 =
1

m+1 ∑m
k=0 ui,kvi,m−k

end for
βi = ∏n

k=0
k �=i

(τi − τk)
−sk

for m=1:si do
wi,m = βiνi,si−m

end for
for m=1:si do

αi,m = ∑m
k=0 pi,kwi,m−k

end for
end for
return The coefficients αk, j in the partial fraction decomposition

p(z)

∏n
k=0(z− τk)sk

=
n

∑
k=0

sk−1

∑
j=0

αk, j

(z− τk) j+1 (2.113)

88 2 Polynomials and Series

Algorithm 2.4 has been implemented in the MATLAB program genbarywts
and in the MAPLE program BHIP, for the case where the numerator is just 1. You
will be asked to show in the exercises that this algorithm costs O(d2) flops, when
proper care is taken to avoid redundancy. In the case when all sk = 1, the algorithm
reduces merely to the computation of βi for 1 ≤ i ≤ n. In that case, the computation
was proved to be numerically stable by Higham (2004). If any sk > 1, then the
algorithm is not backward stable, in the case when the nodes τk are symmetric about
zero (for example) and some of the partial fraction decomposition coefficients αi, j

are exactly zero. However, the algorithm is stable enough for many purposes.

Example 2.11. Suppose the nodes τk are the Chebyshev–Lobatto nodes τk=cos(πk/n)
for 0≤k≤n. Take first the case n = 5, and execute this code:

tau = cos(pi*k/n);
[w,D] = genbarywts(tau, 1)

It returns the values

w = 1.6000,−3.2000,3.2000,−3.2000,3.2000,−1.6000 .

By comparison with MAPLE, these answers are correct up to O(μM). When n = 50,
the numbers are larger, O(1013), but still have relative forward error only about
2× 10−14.

When we make each node have confluency s = 2, the situation changes a bit, but
not much, for n = 5:

α =

⎡
⎢⎢⎢⎢⎢⎢⎣

−43.520 2.5600
23.978 10.240
3.4984 10.240
−3.4984 10.240
−23.978 10.240
43.520 2.5600

⎤
⎥⎥⎥⎥⎥⎥⎦
,

and again the forward error is O(μM). For n = 50, this is again true. We detect no
instability in this example. For higher confluencies, we expect more trouble. �

2.8 Asymptotic Series in Scientific Computation

Niels Henrik Abel (1802–1829) wrote

The divergent series are the invention of the devil, and it is a shame to base on them any
demonstration whatsoever. By using them, one may draw any conclusion [s]he pleases and
that is why these series have produced so many fallacies and paradoxes [. . .]. (cited in
Hoffman 1998 p. 218)

Nowadays, the attitude is different, and closer to what Heaviside meant when he
said

2.8 Asymptotic Series in Scientific Computation 89

The series is divergent; therefore we may be able to do something with it. (cited in
Hardy 1949)

In fact, asymptotic series will be used a lot in this book, and we will often not care
too much whether they converge. This is because, in many contexts, the first few
terms contain all the numerical information one needs; there’s no need to ponder on
what happens in the tail end of the series.

The key to understanding asymptotic series is to realize that there are two limits
to choose from, with a series. Suppose we have, for example,

f (z) =
N

∑
k=0

f (k)(a)
k!

(z− a)k + RN(z)(z− a)N+1 , (2.114)

as the usual truncated Taylor series for f (z) near z = a. We can take the first limit,
N →∞, to get the familiar mathematical object of the infinite series. This only makes
sense if the limit exists. (There is some freedom to alter the definition of limit that
we use in this case; we do not pursue this here.) If that limit exists, we say the
series is convergent. However, there is another limit to be considered here, which
often leads to very useful results. Namely, do not let N → ∞, but rather keep it fixed
(perhaps even at N = 1 or N = 2). Instead, consider the limit as z → a. Even if the
series is divergent in the first sense, this second limit often gives enormously useful
information, typically because RN(z) (as it is written above) is well behaved near
z = a, and so the term (z− a)N+1 ensures that the remainder term vanishes more
quickly than do the terms that are kept. The rest of this section explores that simple
idea.

We often want to consider the behavior of a function y(x) in the presence of
some perturbations. Then, instead of studying the original function y(x), we study
the asymptotic behavior of a two-parameter function y(x,ε), where ε is considered
“small.” An asymptotic expansion for the function y(x,ε) has the form

y(x,ε) = y0(x)φ0(ε)+ y1(x)φ1(ε)+ y2(x)φ2(ε)+ . . .=
∞

∑
k=0

yk(x)φk(ε) , (2.115)

where φk(ε) are referred to as gauge functions; that is, they are a sequence of func-
tions {φk(ε)} such that, for all k,

lim
ε→0

φk+1(ε)
φk(ε)

= 0 .

The type of gauge function we will use the most often is the power of the per-
turbation ε , namely, φk(ε) = εk, in which case we simply have a formal power
series:

y(x,ε) = y0(x)+ y1(x)ε + y2(x)ε2 + . . .=
∞

∑
k=0

yk(x)εk.

90 2 Polynomials and Series

We then have to solve for the yk(x), k = 0,1, . . . ,N. To find the first coefficient y0(x),
divide Eq. (2.115) by φ0(ε), and then take the limit as ε → 0:

y(x,ε)
φ0(ε)

= y0(x)+
1

φ0(ε)

∞

∑
k=1

yk(x)φk(ε)

lim
ε→0

y(x,ε)
φ0(ε)

= y0(x) .

All the higher-order terms vanish since φk(ε) is a gauge function. This gives us
y0(x). Now, subtract y0(x)φ0(ε) from both sides in Eq. (2.115); we then divide both
sides by φ1(ε) and take the limit as ε → 0:

y(x,ε)− y0(x)φ0(ε)
φ1(ε)

= y1(x)+
1

φ1(ε)

∞

∑
k=2

yk(x)φk(ε),

so

lim
ε→0

y(x,ε)− y0(x)φ0(ε)
φ1(ε)

= y1(x) . (2.116)

As we see, we will in general have

yk(x) = lim
ε→0

1
φk(ε)

(
y(x,ε)−

k−1

∑
�=0

y�(x)φ�(ε)

)
. (2.117)

Convergence of a series is all about the tail, which requires an infinite amount of
work. What we want instead is gauge functions that go to zero very fast; in other
words, the speed at which they go to zero is asymptotically faster from one term to
the next.

Example 2.12. Consider the (convergent) integral and the (divergent) asymptotic
series

ˆ ∞

0

e−t

1+ xt
dt =

n

∑
k=0

(−1)kk!xk +O(xn+1) .

One can discover that series by replacing 1/(1+ xt) with the finite sum 1− xt + x2t2 +

· · · (xt)n + (−xt)n+1

(1+xt) , giving

ˆ ∞

0

e−t

1+ xt
dt =

n

∑
k=0

(−1)kxk
ˆ ∞

0
tke−t dt +(−1)n+1xn+1

ˆ ∞

0

tk+1e−t

1+ xt
dt .

This provides a perfectly definite meaning to each of the entries in the asymptotic
series. Notice that the series diverges for any x �= 0, if we take the limit as n → ∞.

2.9 Chebyshev Series and Chebfun 91

Nonetheless, taking (say) n = 5 allows us to evaluate the integral perfectly accu-
rately for small enough x, say x = 0.03: summing the six terms gives 0.9716545240,
whereas the exact value (found by the methods of Chap. 10) begins 0.9716549596,
which differs by about 5 ·10−7. �

Remark 2.16. In the previous example, we have used a divergent series to give us
a good approximation to the correct answer. Heaviside was right, and asymptotic
series are extremely useful in numerical analysis. The reason this works is that it is
the limit as x → 0 that is dominating here: If we had wanted an accurate answer for
x= 10, we would have been out of luck. We will often be concerned with the asymp-
totics of the error as the average mesh width (call it h) goes to zero, for example,
and methods will be designed to be accurate in that limit. �

2.9 Chebyshev Series and Chebfun

This generalized review chapter is not the right place to begin explaining the under-
lying methods of the Chebfun package. Here we mention only that the package does
not use Taylor series, but rather interpolation at Chebyshev points (we expand on
this in Chap. 8), which is closely related to Chebyshev series: One can convert back
and forth using the FFT, in a stable and efficient fashion (see Chap. 9). What, then,
are Chebyshev series? Just as with Taylor series, one can find convergent series for
elementary functions, but where now the gauge functions are not shifted monomials
but rather Chebyshev polynomials15; for example,

ex = J0(i)T0(x)+ 2
∞

∑
k=1

ikJk(−i)Tk(x) . (2.118)

The coefficients are evaluations of the Bessel functions Jk(z) at particular arguments
(complex arguments, as it happens, although the results are real). This series is
not expressed in powers of x or of x− a, but rather in higher- and higher-degree
Chebyshev polynomials. One could do this on other intervals by the linear trans-
formation x = 2(t−a)/(b−a)− 1, so a ≤ t ≤ b; the coefficients would be different,
of course. When one has evaluated J0(i) ≈ 1.266 . . . and Jk(−i) for several k,
this series (and series like this) can provide a quite effective method for evaluat-
ing the function under consideration. See, for example, Boyd (2002) for applica-
tions to computing zeros of functions. For example, taking the first 15 terms here
gives us

ex = 1.26606587775201T0(x)+ 1.13031820798497T1(x)

+ 0.271495339534077T2(x)+ 0.0443368498486638T3(x)

+ 0.00547424044209373T4(x)+ 0.000542926311913944T5(x)

+ 0.0000449773229542951T6(x)+ 0.00000319843646240199T7(x)

15 See Rivlin (1990 Chapter 3).

92 2 Polynomials and Series

+ 0.000000199212480667280T8(x)+ 0.0000000110367717255173T9(x)

+ 0.000000000550589607967375T10(x)+ 2.49795661698498×10−11T11(x)

+ 1.03915223067857×10−12T12(x)+ 3.99126335641440×10−14T13(x)

+ 1.42375801082566×10−15T14(x) (2.119)

and this approximation has the relative error (on the interval −1 ≤ x ≤ 1) shown
in Fig. 2.8. We will pursue this concept further in later chapters. For now, note that

Fig. 2.8 The relative error S · exp(−x)−1 in the truncated Chebyshev series (2.119), computed in
high precision in MAPLE

|Tk(x)| ≤ 1, and so the size of the coefficients tells us directly how much each term
contributes (at most) to the sum.

In Chebfun itself, this series can be computed as follows, assuming the Chebfun
package has been installed.

x = chebfun('x',[-1,1]);
y = exp(x);
co = chebpoly(y);
format long e
co(end:-1:1)'
% ans =
%
% 1.266065877752008e+000
% 1.130318207984970e+000
% 2.714953395340767e-001
% 4.433684984866388e-002
% 5.474240442093829e-003
% 5.429263119140007e-004
% 4.497732295430233e-005

2.9 Chebyshev Series and Chebfun 93

% 3.198436462443460e-006
% 1.992124806757106e-007
% 1.103677179109604e-008
% 5.505895456820691e-010
% 2.497954620928056e-011
% 1.039121170062377e-012
% 4.003147020219850e-014
% 1.395708945243054e-015
%
t = linspace(-1,1,3011);
reler = exp(-t).*y(t)-1;
plot(t, reler, 'k-');
set(gca, 'fontsize', 16);
axis([-1,1,-1.5E-15,1.5E-15]);
set(gca, 'YTick', -1.5E-15:5E-16:1.5E-15);

As you can see, the numbers do not quite match (although the largest three do):
The series at the beginning of this section was computed using MAPLE in 60 digits
of precision, and then the coefficients were rounded to 15 digits. They are differ-
ent from the Chebfun series coefficients printed above, but not in any important
way because the differences in the smallest coefficient (which are the greatest, rel-
atively speaking) matter the least to the sum. The source of the difference is not
a numerical error, but rather a difference in type of approximation. We will re-
turn to this later, but for now, observe that Chebfun is doing what it is supposed
to—something similar to the Chebyshev series above, but not exactly the same
thing. As we see in Fig. 2.9, it produces a perfectly acceptable (and even somewhat
similar, ignoring the discrete-level effect of being so close to unit roundoff) error
curve.

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
x 10−15

Fig. 2.9 The relative error y ·exp(−x)−1 in the chebfun for y = exp(x), as computed in normal
precision in MATLAB

94 2 Polynomials and Series

2.10 Notes and References

This chapter was originally intended for self-study, although the importance of the
material suggests that it should be more formally included in any course using
this book. A more elementary introduction to the theory of univariate polynomials
can be found in Barbeau (2003). A more detailed introduction to the computation
of Taylor series can be found in Henrici (1974). For a statement and discussion
of the fundamental theorem of algebra, see, for instance, Levinson and Redheffer
(1970).

Variations of Theorem 2.9 can be found throughout the literature, so many that
Stetter (1999) says that it is misleading to cite any; the paper (Rezvani and Corless
2005) points out that it is really just an application of Hölder’s inequality.

Algorithm 2.1, our version of the synthetic division algorithm, is an adaptation
of Algorithm 5.2 in Higham (2002 p. 96). We modify that algorithm here to return
the local Taylor coefficients, that is, p(k)(a)/k! instead of multiplying by factorials as
done there to return values of the derivatives p(k)(a).

The special case τk = −k or τk = k for 0 ≤ k ≤ n− 1 of Newton polynomials is
useful in combinatorics and is sometimes called the Pochhammer basis. We have
already seen this, but called it zk, z to the k falling.

For a thorough treatment of Chebyshev polynomials, see Rivlin (1990).
See Salzer (1972) for more discussion of useful properties of the Chebyshev–
Lobatto points ηk. For a discussion of Chebfun and Chebyshev polynomials,
see Battles and Trefethen (2004) and http://www2.maths.ox.ac.uk/
chebfun/.

Some other orthogonal bases are discussed in the venerable book (Abramowitz
and Stegun 1972). That book has been substantially revised to become the Digital
Library of Mathematical Functions from the National Institute of Standards and
Technology (http://dlmf.nist.gov/). A similar INRIA project, the Dy-
namic Dictionary of Mathematical Functions, may be found at http://ddmf.
msr-inria.inria.fr/1.6/ddmf. More details on many orthogonal polyno-
mials can be found in Andrews et al. (1999), and some important algorithms in Wilf
(1962), available for free for educational purposes from http://www.math.
upenn.edu/˜wilf/website/Mathematics_for_the_Physical_
Sciences.html. A discussion of MAPLE’s methods for othogonal series can
be found in Rebillard (1997) and Ronveaux and Rebillard (2002).

Faster methods of partial fraction decomposition than the one advocated here are
certainly available: Kung and Tong (1977) and Chin (1977) use FFT methods, which
we believe are unstable because they implicitly convert to the monomial basis; the
divided-difference algorithm of Schneider and Werner (1991), which, although not
asymptotically fast, is twice as fast as the algorithm given here, has an unhelpful
dependence on node ordering and again can produce βi, j that do not accurately
reproduce 1. Their method is much more stable than methods that convert to the
monomial basis, however.

http://www2.maths.ox.ac.uk/chebfun/
http://www2.maths.ox.ac.uk/chebfun/
http://dlmf.nist.gov/
http://ddmf.msr-inria.inria.fr/1.6/ddmf
http://ddmf.msr-inria.inria.fr/1.6/ddmf
http://www.math.upenn.edu/~wilf/website/ Mathematics_for_the_Physical_
http://www.math.upenn.edu/~wilf/website/ Mathematics_for_the_Physical_
Sciences.html

2.10 Notes and References 95

Problems

Theory and Practice

2.1. Prove Theorem 2.1 on page 44.

2.2. Prove Theorem 2.2 on page 45.

2.3. Show that the roots of zn − 1 = 0 are zk = exp(2π ik/n).

2.4. Show that the roots of Tn(z) are

ξk = cos

(
π(2k− 1)

2n

)
, 1 ≤ k ≤ n .

2.5. Consider the polynomial p(x) = x3 − 2x− 5. Plot this on 0 ≤ x ≤ 4 and see
thereby that there is a root near x = 2. Shift the basis to 1, (x− 2), (x− 2)2, and
(x − 2)3. By neglecting all but the first two terms, get an improved approximate
root. Shift the basis again to 1, (x− r), (x− r)2, and (x− r)3, where r is your esti-
mated root. Neglect all but the first two terms again, and solve to get an even more
improved root. Repeat the process until you have identified the root to machine ac-
curacy. As discussed in the text, this is how Newton conceived of what we now call
Newton’s method.

2.6. Prove the discrete orthogonality of the Chebyshev polynomials on the zeros of
Tn(x), and show thereby that Eq. (2.31) gives the Chebyshev coefficients of a given
p(x) with degree at most n− 1.

2.7. Download and install the Chebfun package. Execute the following commands.

close all
plot(chebpoly(0), 'k');
hold on
for i=1:30,

plot(chebpoly(i), 'k');
end;
axis('square')

Explain what you see. The discussion by Rivlin (1990) is very extensive, but for this
problem a simple description will suffice (this problem is more about syntax than
anything).

2.8. Use the change of variables x = cosθ to show that
ˆ

Tn(x)dx =
1

2(n+ 1)
Tn+1(x)− 1

2(n− 1)
Tn−1(x)+C

for n ≥ 1, for some constant C. Since
´

T0(x)dx = T1(x)+C, this gives a beautiful
short formula for integrals of Chebyshev polynomials. The formula for derivatives

96 2 Polynomials and Series

of Tn, expressed in terms of lower-degree Chebyshev T polynomials, is not so el-
egant, but useful nonetheless. It is found in Rivlin (1990), and also as an MAPLE

program in Corless (2002).

2.9. Show that the Chebyshev–Lobatto points η(n)
k = cos(kπ/n) are the zeros of the

polynomial

(1− x2)
sin nθ
sinθ

,

where x = cosθ . The polynomial Un−1(x) := sinnθ/nsinθ (note the extra n in the de-
nominator) is called the Chebyshev polynomial of the second kind, and the ηk are
sometimes called the Chebyshev points of the second kind.

2.10. Show that the Chebyshev–Lobatto points η(n)
k = cos(kπ/n) are (also) the zeros

of the monic polynomial

w(x) =
n

∏
k=0

(
x−η(n)

k

)
= 2−n (Tn+1(x)−Tn−1(x))

if n ≥ 1. A discussion of this result can be found in Trefethen (2013).

2.11. Show that Horner’s method recursively applied to p(z) = p(τk)+q(z)(z− τk)
gives Algorithm 2.1.

2.12. Prove Lemma 2.1 on page 61.

2.13. Show that for every pair of sets of polynomial bases φk(x) and ψk(x), 0 ≤ k ≤
n, there exists a nonsingular matrix Aψφ for which

[
ψ0(x),ψ1(x), . . . ,ψn(x)

]
=
[
φ0(x),φ1(x), . . . ,φn(x)

]
Aψφ .

Show Aφψ = A−1
ψφ .

2.14. Show that Algorithm 2.4 costs O(d2) flops to execute. Discuss the varying
cases when all sk are small and the opposite case when only one or two nodes have
high confluency.

2.15. Plot the condition numbers for evaluating the scaled Wilkinson polynomial

W20(x) =
20

∏
k=1

(x− k
21

) ,

in each of the following bases:

1. monomial basis φk(x) = xk;
2. Bernstein–Bézier on [0,1],

φk(x) =

(
20
k

)
xk(1− x)20−k;

2.10 Notes and References 97

3. Lagrange basis on τk =
k

21 , 0 ≤ k ≤ 20;
4. Lagrange basis on random nodes τk chosen from a uniform distribution on [0,1].

2.16. Consider the Taylor series for the Airy function Ai(z). Think about each term
as akzk, for 0≤ k ≤ 127. For z = 10, at which a 127-degree Taylor polynomial ought
to give an accurate answer, compute all 128 of these terms separately, and plot them
on a graph, with k on the horizontal axis. Verify that the largest term occurs at about
k = 30, and has size about 107. This picture is why the phenomenon is known as
“the hump.” What does this have to do with our condition number analysis in the
text?

2.17. Compute ex = ∑∞
k=0 xk/k! for various values of x and truncate the series at var-

ious values of N. Does this series converge, in theory? Why, then, does it com-
pute (say) exp(−30) to such poor relative accuracy? Compare with Problems 2.16
and 1.7.

2.18. In this problem, we examine exact formulæ for finding zeros of polynomials
of low degree. To begin with, the zero polynomial f0(z) ≡ 0 is exceptional; with
deg f0(z) = −∞, it is zero no matter what z is. Also, degree-0 polynomials, of the
form f0(z) = a0, a0 �= 0, are never zero; they have no roots. Moreover, degree-1
polynomials, of the form f1(z) = a0 + a1z, a1 �= 0, have one root, which is given
by z = −a0/a1. Notice that, as a1 → 0, unless a0 = 0, this root goes to (complex)
infinity. These are very straightforward cases. Degree-2 polynomials are already
more interesting:

1. Show that f2(z) = a0 + a1z+ a2z2 with a2 �= 0 may be written as

f2(z) = a2

(
z+

a1

2a2

)2

− 1
4a2

(
a2

1 − 4a2a0
)

(because a2 �= 0), and that therefore the two roots of f2(z) are

z =
−a1 ±

√
a2

1 − 4a2a0

2a2
,

and that as a2 → 0, if a1 �= 0 that one root tends to −a0/a1 and the other tends to
∞. If a1 = 0, then both roots tend to ∞ (remember: ak ∈C).

2. What is the absolute condition number of the roots?

Now, let us turn to degree-3 polynomials and, in particular, Cardano’s method:

1. Consider a third-degree polynomial f3(z) = a0 + a1z+ a2z2 + a3z3 = 0. Show
that, using z = t − a2/3a3, this is equivalent to solving t3 + pt + q = 0.

2. Let t = u+ v and gather terms so that

u3 + v3 + q+(3uv+ p)(u+ v)= 0 .

98 2 Polynomials and Series

Conclude that if one can find u and v such that

3uv+ p= 0

u3 + v3 + q = 0

simultaneously, then one can solve any cubic equation.
3. By solving u3v3 =−p3/27 and u3+v3 =−q simultaneously for, say, u3 first, and

then using uv = −p/3 to find v unambiguously, show that you really can solve
cubics.

4. The “condition numbers” ∂x
∂ak

,
[

∂ t
∂ p ,

∂ t
∂q

]
and

[
∂u
∂ p ,

∂u
∂q ,

∂v
∂ p ,

∂v
∂q

]
are different but

related. Discuss. In particular, is the use of Cardano’s formula always numeri-
cally stable?

Finally, let’s have a look at degree-4 polynomials (encountered in quartic equations),
and in particular Descartes’ method:

1. Convert f (z) = a0 + a1z+ a2z2 + a3z3 + a4z4 = 0, with a4 �= 0, to F(t) = t4 +
pt2 + qt + r = 0.

2. Show that if

v+w− u2 = p

u(w− v) = q

vw = r ,

then F(t) = (t2+ut+v)(t2−ut+u). Eliminate v and w to find a cubic equation
for u2.

3. Discuss the conditioning of the transformed problems.

2.19. Show that if

f (z) =
n

∑
k=0

ckφk(z) and (f +Δ f)(z) =
n

∑
k=0

ck(1+ δk)φk(z)

with |δk| ≤ εwk, that for each simple root ẑ of f , when ε > 0 is small enough, that
there is a simple root z̃ of f +Δ f such that z̃ = ẑ+Δz and

|Δz| ≤ εB(ẑ)
| f ′(ẑ)| +O(ε2) ,

where B(z) = ∑n
k=0 wk|φk(z)|.

2.20. Find a recurrence relation for the series coefficients of y = lnu if

u =
N

∑
k=0

uk(x− a)k +O(x− a)N+1

and u0 �= 0.

2.10 Notes and References 99

2.21. Find a recurrence relation for the series coefficients of s and c, where s =
sin(u) and c = cos(u), if

u =
N

∑
k=0

uk(x− a)k +O(x− a)N+1 .

2.22. The JCP Miller formula. If y = uα (for constant α), find a recurrence relation
for the series coefficients of y by use of dy/dx, where

u =
N

∑
k=0

uk(x− a)k +O(x− a)N+1 .

2.23. The Airy function Ai(z) satisfies the differential equation

d2y
dz2 = zy(z) (2.120)

with the initial conditions y(0) = 31/3/(3Γ (2/3)) and y′(0) =−31/6Γ (2/3)/(2π). Use
the methods of this section to generate a recurrence relation that determines the
Taylor coefficients of Ai(z) in its series about 0. (That recurrence is used in the
programs in Exercise 2.29.) As for the exponential, sine and cosine, and logarithm,
this can be extended to allow you to generate recurrence relations for the series
coefficients of Ai(u(z)), where u(z) is known by a truncated power series.

2.24. This problem is on series reversion. Suppose that

x = x0 + x1(y− y0)+ x2(y− y0)
2 + . . . ,

that we know the xk, and that x1 �= 0. We wish to find the coefficients yk so that

y = y0 + y1(x− x0)+ y2(x− x0)
2 +

Proceed as follows. Take

x = x0 + x1(y1(x− x0)+ y2(x− x0)
2 + . . .)+ x2(y1(x− x0)+ y2(x− x0)

2 + . . .)2

+ x3(y1(x− x0)+ . . .)3 + . . . ,

expand, and solve for y1,y2 and y3 in turn. This is the brute force approach. See
Henrici (1974) for a discussion of the Lagrange–Bürmann theorem, which explores
an elegant connection (perhaps originally due to Lambert, if we are to believe his
claims about his Acta Helvetica paper) to powers of the series being reverted.

2.25. Using your answer: For Problem 2.24, find the first three terms of the series
for tan(x) about x = 0 from the series for arctan(x) =

´ x
0

dt
1+t2 .

100 2 Polynomials and Series

2.26. Let f (x,y, t) = 0 with x = x(t),y = y(t), g(x,y, t) = 0, and

f (x0,y0, t0) = g(x0,y0, t0) = 0 .

Show that if the Jacobian determinant

det

[
fx(x0,y0, t0) fy(x0,y0, t0)
gx(x0,y0, t0) gy(x0,y0, t0)

]
(2.121)

is not zero, and f and g are analytic in all variables, then x(t) = x0 + x1(t − t0)+ . . .
and y(t) = y0+y1(t−t0)+ . . . may be constructively developed in Taylor series to as
many terms as one likes. (Hint: differentiate. This is the implicit function theorem.)

2.27. If you have access to MAPLE, solve

x2 + y2 = t2

25xy− 12= 0

in series for x and y near t = 1, when x = 3/5 and y = 4/5 (there are three other
intersections also; just follow this one). (Hint: You can dsolve/series, which
implements the ideas of this chapter, but differentiate first.)

2.28. If you have access to MAPLE, consider the command

convert(R, parfrac, z, true);

when R is a simple factored rational function, say ∏n
i=0(x − τi)

−1, with (say)
Chebyshev–Lobatto nodes computed to 16 digits of precision, via commands simi-
lar to

Digits := 16;
n := 5;
tau := [seq(evalf(cos(Pi*j/n)), j = 0..n)];
R := 1/mul(z-tau[1+j], j = 0..n);
PF := convert(R, parfrac, z, true);
ONE := PF/R;
plots[logplot](abs(ONE-1), z = -1 .. 1, colour = BLACK, style=

POINT);

Try these commands for various n. How well does MAPLE do, in your version? At
this time of writing, MAPLE 15 makes acceptable plots for n as large as 15, but it’s
already bad for n = 20.

Investigations and Projects

2.29. The following MAPLE program uses a handwritten version of Horner’s
method to evaluate the degree-N Taylor polynomial at z = 0 for the Airy func-
tion Ai(z).

2.10 Notes and References 101

1 #
2 # Horner form of Taylor polynomial approximation to AiryAi(z)
3 #
4 TaylorAi := proc(z, N)
5 local Ai0, Aip0, f1, f2, k, n, z3, zsq;
6 Ai0 := evalf(3ˆ(1/3)/(3*GAMMA(2/3)));
7 Aip0 := evalf(-3ˆ(1/6)*GAMMA(2/3)/(2*Pi));
8 z3 := evalf(z*z*z);
9 n := max(floor((N-2)/3), 0);

10 f1 := 1;
11 f2 := 1;
12 for k from n by -1 to 1 do
13 f1 := evalf(1 + z3*f1/((3*k)*(3*k-1)));
14 f2 := evalf(1 + z3*f2/((3*k+1)*(3*k)));
15 end do;
16 return Ai0*f1 + Aip0*z*f2
17 end;

When this is translated into MATLAB via the CodeGeneration[Matlab] fea-
ture of MAPLE, and the resulting code is polished a bit by hand, the result is

1 %
2 % Automatic translation of TaylorAi.mpl
3 % which was written by RMC 2011, using
4 % CodeGeneration[Matlab] in Maple
5 % plus fixups GAMMA --> gamma
6 % vectorized multiplications
7 % added "end" to function
8 function TaylorAireturn = TaylorAi(z, N)
9 Ai0 = ((3 ˆ (0.1e1 / 0.3e1) / gamma(0.2e1 / 0.3e1)) / 0.3e1);

10 Aip0 = (-(3 ˆ (0.1e1 / 0.6e1)) * gamma(0.2e1 / 0.3e1) / pi /
0.2e1);

11 z3 = (z .* z .* z);
12 n = max(floor(N / 0.3e1 - 0.2e1 / 0.3e1), 0);
13 f1 = 1;
14 f2 = 1;
15 for k = n:-1:1
16 f1 = (0.1e1 + z3 .* f1 / k / (3 * k - 1) / 0.3e1);
17 f2 = (0.1e1 + z3 .* f2 / (3 * k + 1) / k / 0.3e1);
18 end
19 TaylorAireturn = Ai0 * f1 + Aip0 * z .* f2;
20 end

The automatically generated and curiously ugly 0.3e1 meaning 3.0, and its ilk,
were left as-is. Notice also that this automatically generated code does not follow the
MATLAB style guidelines of Johnson (2010). The following MATLAB commands

z = linspace(-13, 13, 40012);
y = TaylorAi(z, 127);
relerr = y./airy(z) - 1;
semilogy(z, abs(relerr), 'k.')
xlabel('z'), ylabel('relative error')
axis([-15 15 10E-21 10E14]);
set(gca, 'YTick', [10.ˆ-20, 10.ˆ-15, 10.ˆ-10, 10.ˆ-5, 10.ˆ0,

10.ˆ5, 10.ˆ10, 10.ˆ15]);

102 2 Polynomials and Series

produce the plot in Fig. 2.10. Explain this plot in general. Can you explain the curi-
ous horizontal line starting at about z = 7? If you have access to MAPLE, you might
consider running the original program at varying levels of precision, say Digits
equal to 5, 10, 15, 20, and 25, in order to help.

−15 −10 −5 0 5 10 15
10−20

10−15

10−10

10−5

100

105

1010

1015

z

re
la

tiv
e

er
ro

r

Fig. 2.10 The output of the program in Problem 2.29

2.30. Prove that you may algorithmically compute the Taylor coefficients of any
function or set of functions defined by a system of polynomial or rational differential
equations such as this:

dy1

dx
= f1(x,y1,y2, . . . ,yn) (2.122)

dy2

dx
= f1(x,y1,y2, . . . ,yn) (2.123)

...

dyn

dx
= f1(x,y1,y2, . . . ,yn) (2.124)

with y(a) = ya given, and each fi polynomial or rational in its arguments (with no
poles at a, y(a) in any fi). This is quite a large class of functions!

2.31. We know of one function, the Γ function (and its derivatives), that does not fall
into the class of functions in Problem 2.30. Can you think of any others? Describe
some.

2.32. Draw the pseudozero sets for the following polynomials as in Fig. 2.7. Choose
interesting contour levels. Use weights equal to the polynomial coefficients.

2.10 Notes and References 103

1. T20(x). Compare with the Wilkinson polynomial of degree 20.
2. q(x) = (x− 1)30(x− 2)18(x− 3)12 (Zeng 2004).
3. p(x) = x17 − (4x− 1)3 (Bini and Mourrain 1996).
4. The Fibonacci polynomials fn(x) = xn −∑n−1

k=0 xk for, say, n = 5 and n = 10.
5. For any of the Zeng (2004) test polynomials that you fancy.
6. One of the paper by Wilkinson (1959a).

2.33. Draw the first 30 Chebyshev polynomials on the same graph (like Fig. 2.1 but
with more of them). You should see several smooth curves suggested by the gaps in
the graph; these curves are called “ghost curves.” They can be described analytically.
See Rivlin (1990).

2.34. Functions containing square roots or other radicals may not have Taylor series
at the branch point. A useful extension is Puiseux series, that is, series in terms
of powers of (z− a)1/p for some p. Compute five terms of the Puiseux series of
sin(exp(

√
x)− 1) about x = 0.

2.35. The Mandelbrot polynomials are defined by p0(z) = 1 and

pk+1(z) = zp2
k(z)+ 1 .

Expanding these polynomials in the monomial basis is a bad idea. Demonstrate
this by proving that the coefficients are all positive, the leading coefficient is 1 as
is the trailing coefficient, and at least one coefficient grows doubly exponentially
with k (the degree is exponential in k, so the coefficients grow exponentially in the
degree). Explain why this makes the condition number B(z) of the monomial basis
expression very large on the interval −2 ≤ z ≤ 0.

2.36. Implement and test the Clenshaw algorithm (see Algorithm 2.2) for the Che-
byshev polynomials, which have αk(z) = 2z and βk = 1 for k ≥ 2.

2.37. The first barycentric form is

p(z) = w(z)
n

∑
k=0

βkρk

z− τk
,

where the ρk are the values of p(z) at z = τk; that is, ρk = p(τk). Since this is true
for all p(z), it is in particular true for the constant polynomial 1:

1 = w(z)
n

∑
k=0

βk ·1
z− τk

.

Dividing these two gives us the second barycentric form,

p(z) =
∑n

k=0
βkρk
z−τk

∑n
k=0

βk
z−τk

,

104 2 Polynomials and Series

about which we will learn more in Chap. 8. By cross-multiplying and using the
product rule, find an expression for the derivative of a polynomial expressed in the
second barycentric form of the Lagrange basis. What is the cost to evaluate this,
supposing that the βk are available?

2.38. Once one has found an approximate root r of a polynomial, one usually wants
to deflate, that is, find a new polynomial q(z) = p(z)/(z− r) that has the same roots
as the other roots of p(z) but is one degree less. Done incorrectly, this can lead to
instability; Wilkinson advocated deflating roots from smallest magnitude to largest,
but it has since been realized that by reversing the polynomial, that is, considering
the polynomial P(z) = zn p(1/z), which has as roots the reciprocals of the roots of
p, one can instead deflate from largest to smallest. Use Newton’s method, synthetic
division, and deflation to find all roots of Newton’s example polynomial p(z) =
z3 − 2z− 5.

2.39. Show how to reverse polynomials P(z) = zn p(1/z) that are expressed in a La-
grange basis. Do not convert to the monomial basis.

2.40. Show that if the forward error ek = rk − z∗ in an approximate root to a polyno-
mial p(z) = 0 is small, and p ′(z) �= 0 nearby, then the next iteration rk+1 has forward
error proportional to the square of ek. This is called quadratic convergence.

2.41. We said in the text that elements of the sequence of Newton iterates rk+1 =
rk − p(rk)/p ′(rk) were each exact solutions of the polynomials p(z)− p(rk) = 0. This is
trivial, in one sense, and very useful in another if p(rk) is small enough to be ignored.
There is another way to look at this that is also useful. Given an approximate root
rk for p(z), we can ask, “What is the closest polynomial p(z)+Δ p(z) for which rk

is an exact root?”
We know that the size of Δ p(z) is at most |p(rk)| by the previous “trivial” state-

ment. But are there closer polynomials? The answer is usually yes, and there is an
analytical formula for the coefficients of the optimal Δ p(z) that we can find using
the Hölder inequality, as follows.

Given p(z) = ∑n
k=0 ckφk(z), weights wk ≥ 0 for 0 ≤ k ≤ n not all zero, and

a putative root r, find the minimum ε such that (p + Δ p)(r) = 0 with Δ p(z) =
∑n

k=0(Δck)φk(z) such that each |Δck| ≤ wkε . Then ε is the “minimal backward er-
ror” of the root r; you should find that ε is proportional to |p(r)|, the residual. (Hint:
Reread Theorem 2.9 on page 70 and then use (C.2) in Appendix C.)

2.42. Following the discussion in Sect. 2.2.6.3 and the solution of the previous prob-
lem, find an expression for the nearest polynomial of lower degree.

	Chapter 2 Polynomials and Series
	2.1 Polynomials, Their Bases, and Their Roots
	2.1.1 Change of Polynomial Bases
	2.1.2 Operations on Polynomials

	2.2 Examples of Polynomial Bases
	2.2.1 Shifted Monomials
	2.2.1.1 Newton's Method for Polynomials
	2.2.1.2 Errors in Synthetic Division

	2.2.2 The Newton Basis
	2.2.3 Chebyshev Polynomials
	2.2.4 Other Orthogonal Polynomials
	2.2.5 The Clenshaw Algorithm for Evaluating Polynomials Expressed in Orthogonal Bases
	2.2.6 Lagrange Polynomials
	2.2.6.1 Numerical Stability of the Barycentric Form
	2.2.6.2 Change-of-Basis from a Lagrange Basis
	2.2.6.3 The Degree of Difficulty

	2.2.7 Bernstein–Bézier Polynomials

	2.3 Condition Number for the Evaluation of Polynomials
	2.4 Pseudozeros
	2.5 Partial Fractions
	2.6 Formal Power Series Algebra
	2.6.1 Multiplication of Series and the Cauchy Convolution
	2.6.2 Division of Series
	2.6.3 Differentiation and Integration
	2.6.4 The Algebra of Series
	2.6.5 The Exponential of a Series

	2.7 A Partial Fraction Decomposition Algorithm Using Local Taylor Series
	2.8 Asymptotic Series in Scientific Computation
	2.9 Chebyshev Series and Chebfun
	2.10 Notes and References
	Problems

