
Chapter 1
Computer Arithmetic and Fundamental
Concepts of Computation

Abstract This chapter introduces the main concepts of error analysis used in this
book. The chapter defines reference problems and modified problems and notation
to distinguish them. Two kinds of modified problems are shown to be particularly
important in numerical analysis, namely, engineered and reverse-engineered prob-
lems. The reader is introduced to three concepts of error: (forward error, backward
error, and residual), to the concept of conditioning, and to residual-based backward
error analysis—which is the method favored in this book. We define numerical prop-
erties of algorithms, including stability and cost. Finally, we apply those concepts
to floating-point arithmetic. �

As we have explained in the preface, there are two main paths that one can follow
with this book: a theoretical path that starts with this chapter, and a pragmatic path
that starts with Chap. 4 (see Fig. 1). If you are following the theoretical path—thus
reading this chapter first, before you read any other chapter—please be aware that it
is among the most abstract: It provides logical and conceptual grounding for the rest
of the book. We believe that the readers who prefer to consider concrete examples
before encountering the general ideas of which they are instances will be better off
on the first reading to start somewhere else, for example, with Chap. 4, and return
to this chapter only after seeing the examples there. But if you are a theory-minded
learner, then by all means this is the place to start.

1.1 Mathematical Problems and Computability of Solutions

We begin by introducing a few foundational concepts that we will use to discuss
computation in the context of numerical methods, adding a few parenthetical re-
marks meant to contrast our perspective from others. We represent a mathematical
problem by an operator ϕ , which has an input (data) space I as its domain and an
output (result, solution) space O as its codomain:

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods:
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0 1,
© Springer Science+Business Media New York 2013

7

8 1 Computer Arithmetic and Fundamental Concepts of Computation

ϕ : I → O ,

and we write y = ϕ(x). In many cases, the input and output spaces will be Rn or Cn,
in which case we will use the function symbols f ,g, . . . and accordingly write

y = f (z1,z2, . . . ,zn) = f (z) .

Here, y is the (exact) solution to the problem f for the input data z.1 But ϕ need
not be a function; for instance, we will study problems involving differential and
integral operators. That is, in other cases, both x and y will themselves be functions.

We can delineate two general classes of computational problems related to the
mathematical objects x,y, and ϕ :

C1. verifying whether a certain output y is actually the value of ϕ for a given input
x, that is, verifying whether y = ϕ(x);

C2. finding the output y determined by applying the map ϕ to a given input x, that
is, finding the y such that y = ϕ(x).2

In this classification, we consider “inverse problems,” that is, trying to find an input
x such that ϕ(x) is a desired (known) value y, to be instances of C2 in that this
corresponds to computation of the possibly many-valued inverse function ϕ−1(y).

The computation required by each type of problem is normally determined by
an algorithm, that is, by a procedure performing a sequence of primitive operations
leading to the solution in a finite number of steps. Numerical analysis is a mathemat-
ical reflection on the complexity and numerical properties of algorithms in contexts
that involve data error and computational error.

In the study of numerical methods, as in many other branches of mathematical
sciences, the reflection involves a subtle concept of computation. With a precise
model of computation at hand, we can refine our views on what’s computationally
achievable, and if it turns out to be, how much effort is required.

The classical model of computation used in most textbooks on logic, computabil-
ity, and algorithm analysis stems from metamathematical problems addressed in the
1930s; specifically, while trying to solve Hilbert’s Entscheidungsproblem, Turing
developed a model of primitive mathematical operations that could be performed
by some type of machine affording finite but unlimited time and memory. This
model, which turned out to be equivalent to other models developed independently
by Gödel, Church, and others, resulted in a notion of computation based on effective
computability. From there, we can form an idea of what is “truly feasible” by further
adding constraints on time and memory.

Nonetheless, scientific computation requires an alternative, complementary no-
tion of computation, because the methods and the objectives are quite different from
those of metamathematics. A first important difference is the following:

1 We use boldface font for vectors and matrices.
2 It is normally computationally simpler to verify whether a certain value satisfies an equation than
finding a value that satisfies it.

1.1 Mathematical Problems and Computability of Solutions 9

[. . .] The Turing model (we call it “classical”), with its dependence on 0s and 1s, is fun-
damentally inadequate for giving such a foundation to the modern scientific computation,
where most of the algorithms—with origins in Newton, Euler, Gauss, et al.—are real num-
ber algorithms. (Blum et al. 1998 3)

Blum et al. (1998) generalize the ideas found in the classical model to include oper-
ations on elements of arbitrary rings and fields. But the difference goes even deeper:

[R]ounding errors and instability are important, and numerical analysts will always be ex-
perts in the subjects and at pains to ensure that the unwary are not tripped up by them.
But our central mission is to compute quantities that are typically uncomputable, from an
analytic point of view, and to do it with lightning speed. (Trefethen 1992)

Even with an improved picture of effective computability, it remains that the con-
cept that matters for a large part of applied mathematics (including engineering) is
the different idea of mathematical tractability, understood in a context where there
are error in the data and error in computation, and where approximate answers can
be entirely satisfactory. Trefethen’s seemingly contradictory phrase “compute quan-
tities that are typically uncomputable” underlines the complementarity of the two
notions of computation.

This second notion of computability addresses the proper computational difficul-
ties posed by the application of mathematics to the solution of practical problems
from the outset. Certainly, both pure and applied mathematics heavily use the con-
cepts of real and complex analysis. From real analysis, we know that every real
number can be represented by a nonterminating fraction:

x = �x�.d1d2d3d4d5d6d7 · · · .

However, in contexts involving applications, only a finite number of digits is ever
dealt with. For instance, in order to compute

√
2, one could use an iterative method

(e.g., Newton’s method, which we cover in Chap. 3) in which the number of accurate
digits in the expansion will depend upon the number of iterations. A similar situation
would hold if we used the first few terms of a series expansion for the evaluation of
a function.

However, one must also consider another source of error due to the fact that,
within each iteration (or each term), only finite-precision numbers and arithmetic
operations are being used. We will find the same situation in numerical linear alge-
bra, interpolation, numerical integration, numerical differentiation, and so forth.

Understanding the effect of limited-precision arithmetic is important in compu-
tation for problems of continuous mathematics. Since computers only store and op-
erate on finite expressions, the arithmetic operations they process necessarily incur
an error that may, in some cases, propagate and/or accumulate in alarming ways.3 In

3 But let’s not panic: “These risks are very real, but the message was communicated all too success-
fully, leading to the current widespread impression that the main business of numerical analysis is
coping with rounding errors (Trefethen 2008b).

10 1 Computer Arithmetic and Fundamental Concepts of Computation

this first chapter, we focus on the kind of error that arises in the context of computer
arithmetic, namely, representation and arithmetic error. In fact, we will limit our-
selves to the case of floating-point arithmetic, which is by far the most widely used.
Thus, the two errors we will concern ourselves with are the error that results from
representing a real number by a floating-point number and the error that results from
computing using floating-point operations instead of real operations. For a brief re-
view of floating-point number systems, the reader is invited to consult Appendix A.

Remark 1.1. The objective of this chapter is not so much an in-depth study of error
in floating-point arithmetic as an occasion to introduce some of the most important
concepts of error analysis in a context that should not pose important technical dif-
ficulty to the reader. In particular, we will introduce the concepts of residual, back-
ward and forward error, and condition number, which will be the central concepts
around which this book revolves. Together, these concepts will give solid concep-
tual grounds to the main theme of this book: A good numerical method gives you
nearly the right solution to nearly the right problem. �

1.2 Representation and Computation Error

Floating-point arithmetic does not operate on real numbers, but rather on floating-
point numbers. This generates two types of roundoff errors: representation error and
arithmetic error. The first type of error we encounter, representation error, comes
from the replacement of real numbers by floating-point numbers. If we let x ∈ R

and © : R → F be an operator for the standard rounding procedure to the nearest
floating-point number4 (see Appendix A), then the absolute representation error
Δx is

Δx =©x− x = x̂− x . (1.1)

(We will usually write x̂ for x+Δx.) If x �= 0, the relative representation error δx is
given by

δx =
Δx
x

=
x̂− x

x
. (1.2)

From those two definitions, we obtain the following useful equality if x �= 0:

x̂ = x+Δx = x(1+ δx) . (1.3)

The IEEE standard described in Appendix A guarantees that |δx|< μM , where μM

is half the machine epsilon εM . In this book, when no specification of which IEEE

4 In this chapter, we will always assume that x and the other real numbers are within the range of F
for the sake of simplicity. See Appendix A for an explanation of what happens outside this domain
(i.e., overflow and underflow).

1.2 Representation and Computation Error 11

standard is given, it will by default be the IEEE-754 standard described in Ap-
pendix A. In a numerical computing environment such as MATLAB, εM = 2−52 ≈
2.2 ·10−16, so that μM ≈ 10−16.

The IEEE standard also guarantees that the floating-point sum of two floating-
point numbers, written ẑ = x̂⊕ ŷ,5 is the floating-point number nearest the real sum
z = x̂+ ŷ of the floating-point numbers; that is, it is guaranteed that

x̂⊕ ŷ =©(x̂+ ŷ) . (1.4)

In other words, the floating-point sum of two floating-point numbers is the correctly
rounded real sum. As explained in Appendix A, similar guarantees are given for
�,⊗, and . Paralleling the definitions of Eqs. (1.1) and (1.2), we define the abso-
lute and relative computation errors (for addition) by

Δz = ẑ− z = (x̂⊕ ŷ)− (x̂+ ŷ) (1.5)

δ z =
Δz
z

=
(x̂⊕ ŷ)− (x̂+ ŷ)

x̂+ ŷ
. (1.6)

As in Eq. (1.3), we obtain

x̂⊕ ŷ = ẑ = z+Δz = z(1+ δ z) (1.7)

with |δ z| < μM . Moreover, the same relations hold for multiplication, subtraction,
and division. These facts give us an automatic way to transform expressions con-
taining elementary floating-point operations into expressions containing only real
quantities and operations.

Remark 1.2. Similar but not identical relationships hold for floating-point complex
number operations. If z = x+ iy, then a complex floating-point number is a pair of
real floating-point numbers, and the rules of arithmetic are inherited as usual. The
IEEE real floating-point guarantees discussed above translate into the following:

fl(z1 ± z2) = (z1 ± z2)(1+ δ) |δ | ≤ μM

fl(z1z2) = (z1z2)(1+ δ) |δ | ≤ √
2γ2

fl(z1/z2) = (z1/z2)(1+ δ) |δ | ≤ √
2γ7,

(1.8)

where the γk notation [in which γk = kμM/(1− kμM)] is as defined in Eq. (1.18) below.
Division is done by a method that avoids unnecessary overflow but is slightly more
complicated than the usual method (see Example 4.15). Proofs of these are given
in Higham (2002). The bounds on the error are thus slightly larger for complex
operations but of essentially the same character. �

5 A note on notation: To make it clear that we are dealing with a floating-point counterpart of one
of the elementary arithmetical operation +,−,×, and ÷, we will circle them. When we will discuss
the floating-point counterparts of other operations, we will simply add ” fl,” such as fl(x ·y) for an
inner product.

12 1 Computer Arithmetic and Fundamental Concepts of Computation

We can usually assume that
√

x also provides the correctly rounded result, but it
is not generally the case for other operations, such as ex, lnx, and the trigonometric
functions (see Muller et al. 2009).

To understand floating-point arithmetic better, it is important to verify whether
the standard axioms of fields are satisfied, or at least nearly satisfied. As it turns
out, many standard axioms do not hold, not even nearly, and neither do their more
direct consequences. Consider the following statements (for x̂, ŷ, ẑ ∈ F), which are
not always true in floating-point arithmetic:

1. Associative law of ⊕:

x̂⊕ (ŷ⊕ ẑ) = (x̂⊕ ŷ)⊕ ẑ (1.9)

2. Associative law of ⊗:

x̂⊗ (ŷ⊗ ẑ) = (x̂⊗ ŷ)⊗ ẑ (1.10)

3. Cancellation law (for x̂ �= 0):

x̂⊗ ŷ = x̂⊗ ẑ ⇒ ŷ = ẑ (1.11)

4. Distributive law:

x̂⊗ (ŷ⊕ ẑ) = (x̂⊗ ŷ)⊕ (x̂⊗ ẑ) (1.12)

5. Multiplication cancelling division:

x̂⊗ (ŷ x̂) = ŷ. (1.13)

In general, the associative and distributive laws fail, but commutativity still holds,
as you will prove in Problem 1.15. As a result of these failures, mathematicians find
it very difficult to work directly in floating-point arithmetic—its algebraic structure
is weak and unfamiliar. However, thanks to the discussion above, we know how
to translate a problem involving floating-point operations into a problem involving
only real arithmetic on real quantities (x,Δx,δx, . . .). This approach allows us to
use the mathematical structures that we are familiar with in algebra and analysis.
So, instead of making our error analysis directly in floating-point arithmetic, we try
to work on a problem that is exactly (or nearly exactly) equivalent to the original
floating-point problem, by means of the study of perturbations of real (and even-
tually complex) quantities. This insight was first exploited systematically by J. H.
Wilkinson.

1.3 Error Accumulation and Catastrophic Cancellation

In applications, it is usually the case that a large number of operations have to
be done sequentially before results are obtained. In sequences of floating-point

1.3 Error Accumulation and Catastrophic Cancellation 13

operations, arithmetic error may accumulate. The magnitude of the accumulating
error will often be negligible for well-tested algorithms.6 Nonetheless, it is im-
portant to be aware of the possibility of massive accumulating rounding error in
some cases. For instance, even if the IEEE standard guarantees that, for x,y ∈ F,
x⊕ y =©(x+ y),7 it does not guarantee that equations of the form

k⊕

i=1

xi =©
k

∑
i=1

xi , k > 2 (1.14)

hold true. This can potentially cause problems for the computation of sums, for
instance, for the computation of an inner product x · y = ∑k

i=1 xiyi. In this case, the
direct floating-point computation would be

k⊕

i=1

(xi ⊗ yi) , (1.15)

summed from left to right following the indices. How big can the error be? Let us
use our results from the last section in the case n = 3:

fl(x ·y) =((x1 ⊗ y1)⊕ (x2 ⊗ y2))⊕ (x3 ⊗ y3)

=
((

x1y1(1+ δ1)+ x2y2(1+ δ2)
)
(1+ δ3)+ x3y3(1+ δ4)

)
(1+ δ5)

=x1y1(1+ δ1)(1+ δ3)(1+ δ5) (1.16)

+ x2y2(1+ δ2)(1+ δ3)(1+ δ5)

+ x3y3(1+ δ4)(1+ δ5).

Note that the δis will not, in general, be identical; however, we need not pay atten-
tion to their particular values, since we are primarily interested in the fact that for
real arithmetic |δi| ≤ γ3 for all of them, and for complex arithmetic |δi| ≤ γ4 in the
θ -γ notation of Higham (2002) that we introduce below in order to clean up the
presentation.

Theorem 1.1. Consider a real floating-point system satisfying the IEEE standards,
so that |δi|< μM. Moreover, let ei =±1 and suppose that nμM < 1. Then

n

∏
i=1

(1+ δi)
ei = 1+θn , (1.17)

where

6 In fact, as explained by Higham (2002 chap. 1), errors can in some cases cancel each other out to
give surprisingly accurate results.
7 We are often only concerned with the arithmetic error resulting from implementing a given
algorithm in floating-point arithmetic. In this case, we will drop the “ ˆ ” symbol when it does not
result in confusion.

14 1 Computer Arithmetic and Fundamental Concepts of Computation

|θn| ≤ nμM

1− nμM
=: γn . (1.18)

Notice that, for double-precision floating-point arithmetic, the supposition nμM < 1
will almost always be satisfied. Then we can rewrite Eq. (1.16) in the real case as

fl(x ·y) = x1y1(1+θ3)+ x2y2(1+θ ′
3)+ x3y3(1+θ2), (1.19)

where each |θ j| ≤ γ j, (and where θ3 and θ ′
3 each represent three different rounding

errors) so that the computation error satisfies

|x ·y− fl(x ·y)| ≤ γ3

3

∑
i=1

|xiyi|= γ3|x|T |y| . (1.20)

This analysis obviously generalizes to the case of n-vectors, and a similar formula
can be deduced for complex vectors; as explained in the solution to (Higham 2002
Problem 3.7), all that needs to be done is to replace γn in the above with γn+2.
However, note that this is a worst-case analysis, which returns the maximum error
that can result from the mere satisfaction of the IEEE standard. In practice, it will
often be much better. In fact, if you use a built-in routine for inner products, the
accumulating error will be well below that (see, e.g., Problem 1.50).

Example 1.1. Another typical case in which the potential difficulty with sums poses
a problem is in the computation of the value of a function using a convergent se-
ries expansion and floating-point arithmetic. Consider the simple case of the expo-
nential function (from Forsythe 1970), f (x) = ex, which can be represented by the
uniformly convergent series

ex = 1+ x+
x2

2!
+

x3

3!
+

x4

4!
+ · · · . (1.21)

If we work in a floating-point system with a five-digit precision, we obtain the sum

e−5.5 ≈ 1.0000− 5.5000+15.125−27.730+38.129−41.942+38.446

− 30.208+ 20.768−12.692+6.9803−3.4902+1.5997+ · · ·
= 0.0026363 .

This is the sum of the first 25 terms, following which the first few digits do not
change, perhaps leading us to believe (incorrectly) that we have reached an accurate
result. But, in fact, e−5.5 ≈ 0.00408677, so that Δy = ŷ− y ≈ 0.0015. This might
not seem very much, when posed in absolute terms, but it corresponds to δy = 35%,
an enormous relative error! Note, however, that it would be within what would be
guaranteed by the IEEE standard for this number system. To decrease the magnitude
of the maximum rounding error, we would need to add precision to the number
system, thereby decreasing the magnitude of the machine epsilon. But as we will
see below, this would not save us either. We are better off to use a more accurate

1.3 Error Accumulation and Catastrophic Cancellation 15

formula for e−x, and it turns out that reciprocating the series for ex works well for
this example. See Problem 1.7. �

There usually are excellent built-in algorithms for the exponential function. But a
similar situation could occur with the computation of values of some transcendental
function for which no built-in algorithm is provided, such as the Airy function. The
Airy functions (see Fig. 1.1) are solutions of the differential equation

..
x − tx = 0

−15 −10 −5 0 5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t

A
iry

(t
)

Fig. 1.1 The Airy function

with certain standard initial conditions. The first Airy function can be defined by the
integral

Ai(t) =
1
π

ˆ ∞

0
cos

(
1
3

ζ 3 + tζ
)

dζ . (1.22)

This function occurs often in physics. For instance, if we study the undamped mo-
tion of a weight attached to a Hookean spring that becomes linearly stiffer with time,
we get the equation of motion

..
x+ tx = 0, and so the motion is described by Ai(−t)

(Nagle et al. 2000). Similarly, the zeros of the Airy function play an important ge-
ometric role for the optics of the rainbow (Batterman 2002). And there are many
more physical contexts in which it arises. So, how are we to evaluate it? The Taylor
series for this function (which converges for all x) can be written as

Ai(t) = 3−2/3
∞

∑
n=0

t3n

9nn!Γ (n+ 2/3)
− 3−4/3

∞

∑
n=0

t3n+1

9nn!Γ (n+ 4/3)
(1.23)

(see Bender and Orszag (1978) and Chap. 3 of this book). As above, we might
consider naively adding the first few terms of the Taylor series using floating-point

16 1 Computer Arithmetic and Fundamental Concepts of Computation

operations, until apparent convergence (i.e., until adding new terms does not change
the solution anymore because they are too small).

Of course, true convergence would require that, for every ε > 0, there existed
an N such that

∣∣∑M
k≥N+1 ak

∣∣< ε for any M > N, that is, that the sequence of partial
sums was a Cauchy sequence. There are many tests for convergence. Indeed, for this
Taylor series, we can easily use the Lagrange form of the remainder and an accurate
plot of the 31st derivative of the Airy function on this interval to establish that 30
terms in the series has an error less than 10−16 on the interval −12 ≤ z ≤ 4. Such
analysis is not always easy, though, and it is often tempting to let the machine decide
when to quit adding terms; and if the terms omitted could make no difference in
floating-point, then we may as well stop anyway. Of course, examples exist where
this approach fails, and some of them are explored in the exercises, but when the
convergence is rapid enough, as it is for this example, then this device should be
harmless though a bit inefficient.

We implement this in MATLAB in the routine below:

1 function [Ai] = AiTaylor(z)
2 %AiTaylor. Try to use (naively) the explicitly-known Taylor
3 % series about z=0 to evaluate Ai(z). Ignore rounding errors,
4 % overflow/underflow, NaN. The input z may be a vector of
5 % complex numbers.
6 %
7 % y = AiTaylor(z);
8 %
9 THREETWOTH = 3.0ˆ(-2/3);

10 THREEFOURTH = 3.0ˆ(-4/3);
11

12 Ai = zeros(size(z));
13 zsq = z.*z;
14 n = 0;
15 zpow = ones(size(z)); % zpow = zˆ(3n)
16

17 term = THREETWOTH*ones(size(z))/gamma(2/3);
18 % recall n! = gamma(n+1)
19 nxtAi = Ai + term;
20

21 % Convergence is deemed to occur when adding new terms makes no
difference numerically.

22 while any(nxtAi ˜= Ai),
23 Ai = nxtAi;
24 zpow = zpow.*z; % zpow = zˆ(3n+1)
25 term = THREEFOURTH*zpow/9ˆn/factorial(n)/gamma(n+4/3);
26 nxtAi = Ai - term;
27 if all(nxtAi == Ai), break, end;
28 Ai = nxtAi;
29 n = n + 1;
30 zpow = zpow.*zsq; % zpow = zˆ(3n)
31 term = THREETWOTH*zpow/9ˆn/factorial(n)/gamma(n+2/3);
32 nxtAi = Ai + term;
33 end
34

35 % We are done. If the loop exits, Ai = AiTaylor(z).

1.3 Error Accumulation and Catastrophic Cancellation 17

−10 −8 −6 −4 −2 0 2
10−18

10−16

10−14

10−12

10−10

10−8

10−6

t

F
or

w
ar

d
E

rr
or

Fig. 1.2 Error in a naive MATLAB implementation of the Taylor series computation of Ai

36 end

Using this algorithm, can one expect to have a high accuracy, with error close to
εM? Figure 1.2 displays the difference between the correct result (as computed with
MATLAB’s function airy) and the naive Taylor series approach. So, suppose we
want to use this algorithm to compute f (−12.82), a value near the 10th zero (count-
ing from the origin toward −∞); the absolute error is

Δy = |Ai(x)−AiTaylor(x)|= 0.002593213070374 , (1.24)

resulting in a relative error δy ≈ 0.277. The solution is only accurate to two digits!
Even though the series converges for all x, it is of little practical use. We examine
this example in more detail in Chap. 2 when discussing the evaluation of polynomial
functions.

The underlying phenomenon in the former examples, sometimes known as “the
hump phenomenon,” could also occur in a floating-point number system with higher
precision. What happened exactly? If we consider the magnitude of some of the
terms in the sum, we find out that they are much larger than the returned value
(and the real value). We observe that this series is an alternating series in which
the terms of large magnitude mostly cancel each other out. When such a phe-
nomenon occurs—a phenomenon that Lehmer coined catastrophic cancellation—
we are more likely to encounter erratic solutions. After all, how can we expect that
numbers such as 38.129, a number with only five significant figures, could be used
to accurately obtain the sixth or seventh figure in the answer? This explains why one
must be careful in cases involving catastrophic cancellation.

18 1 Computer Arithmetic and Fundamental Concepts of Computation

Another famous example of catastrophic cancellation involves finding the roots
of a degree-2 polynomial ax2+bx+c using the quadratic equation (Forsythe 1966):

x∗± =
−b±√

b2 − 4ac
2a

.

If we take an example for which b2 � 4ac, catastrophic cancellation can occur.
Consider this example:

a = 1 ·10−2 b = 1 ·107 c = 1 ·10−2.

Such numbers could easily arise in practice. Now, a MATLAB computation returns
x∗+ = 0, which is obviously not a root of the polynomial. In this case, the answer
returned is 100% wrong, in relative terms. Further exploration of this example will
be made in Problem 1.18.

1.4 Perspectives on Error Analysis: Forward, Backward,
and Residual-Based

The problematic cases can provoke a feeling of insecurity. When are the results pro-
vided by actual computation satisfactory? Sometimes, it is quite difficult to know
intuitively whether it is the case. And how exactly should satisfaction be understood
and measured? Here, we provide the concepts that will warrant confidence or non-
confidence in some results based on an error analysis of the computational processes
involved.

Our starting point is that problems arising in scientific computation are such that
we typically do not compute the exact value y = ϕ(x), for the reference problem ϕ ,
but instead some other more convenient value ŷ. The value ŷ is not an exact solution
of the reference problem, so that many authors regard it as an approximate solu-
tion, that is, ŷ ≈ ϕ(x). However, we will regard the quantity ŷ as the exact solution
of a modified problem, that is, ŷ = ϕ̂(x), where ϕ̂ denotes the modified problem.
For reasons that will become clearer later, we also call some modified problems en-
gineered problems, because they arise on deliberately modifying ϕ in a way that
makes computation easier or at least possible. We thus get this general picture:

x y

ŷ

ϕ

Δy
ϕ̂

(1.25)

1.4 Perspectives on Error Analysis: Forward, Backward, and Residual-Based 19

−1 −0.5 0 0.5 1

x 10−7

−1

0

1

2

3

4
x 10−17

dt

p(
0.

5+
dt

)

Fig. 1.3 Zooming in near a polynomial that we expect to have a double zero at z = 1/2, we see
the curve getting “fuzzy” as we get closer because of computational error in the evaluation of the
polynomial

Example 1.2. Let us consider a simple case. If we have a simple problem of addition
of real numbers to do, instead of computing y = f (x1,x2) = x1 + x2, we might com-
pute ŷ = f̂ (x̂1, x̂2) = x̂1 ⊕ x̂2. Here, we regard the computation of the floating-point
sum as an engineered problem. In this case, we have

ŷ = x̂1 ⊕ x̂2 = x1(1+ δx1)⊕ x2(1+ δx2)

=
(
x1(1+ δx1)+ x2(1+ δx2)

)
(1+ δx3)

= (x1 + x2)

(
1+

x1δx1 + x2δx2

x1 + x2

)
(1+ δx3), (1.26)

and so we regard ŷ as the exact computation of the modified formula (1.26). �

Similarly, if the problem is to find the zeros of a polynomial, we can use vari-
ous methods that will give us so-called pseudozeros, which are usually not zeros.
Instead of regarding the pseudozeros as approximate solutions of the reference prob-
lem “find the zeros,” we regard those pseudozeros as the exact solution to the mod-
ified problem “find some zeros of nearby polynomials,” which is what we mean
by pseudozeros (see Chap. 2). We point out that evaluation near multiple zeros is
especially sensitive to computational error; see Figs. 1.3 and 1.4.

If the problem is to find a vector x such that Ax = b, given a matrix A and a
vector b, we can use various methods that will give us a vector that almost satisfies
the equation, but not quite. Then we can regard this vector as the solution for a
matrix with slightly modified entries (see Chap. 4). The whole book is about cases
of this sort arising from all branches of mathematics.

20 1 Computer Arithmetic and Fundamental Concepts of Computation

−2 −1 0 1 2

x 10−8

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10−18

dt

p(
0.

5+
dt

)

Fig. 1.4 Zooming in even closer, we see the curve broken up into discrete samples because of
representation error of the computed values of the polynomial. It has also become apparent that
the double zero has split to become two nearby simple zeros, each about

√μM away from the
reference zero z = 1/2. Exactly which simple zeros best represent the zeros of “the” computational
polynomial is not clear-cut

What is so fruitful about this seemingly trivial change in the way the problems
and solutions are discussed? Once this change of perspective is adopted, we do
not focus so much on the question, “How far is the computed solution from the
exact one?” (i.e., in diagram 1.25, how big is Δy?), but rather on the question,
“How closely related are the original problem and the engineered problem?” (i.e., in
diagram 1.25, how closely related are ϕ and ϕ̂?). If the modified problem behaves
closely like the reference problem, we will say it is a nearby problem.

The quantity labeled Δy in diagram 1.25 is called the forward error, which is
defined by

Δy = y− ŷ = ϕ(x)− ϕ̂(x) . (1.27)

We can, of course, also introduce the relative forward error by dividing by y, pro-
vided y �= 0. In certain contexts, the forward error is in some sense the key quantity
that we want to control when designing algorithms to solve a problem. Then, a very
important task is to carry a forward error analysis; the task of such an analysis is to
put an upper bound on ‖Δy‖ = ‖ϕ(x)− ϕ̂(x)‖. However, as we will see, there are
also many contexts in which the control of the forward error is not so crucial.

Even in contexts requiring a control of the forward error, direct forward error
analysis will play a very limited role in our analyses, for a very simple reason. We
engineer problems and algorithms because we don’t know or don’t have efficient
means of computing the solution of the reference problem. But directly computing
the forward error involves solving a computational problem of type C2 (as defined
on p. 8), which is often unrealistic. As a result, scientific computation presents us

1.4 Perspectives on Error Analysis: Forward, Backward, and Residual-Based 21

situations in which we usually don’t know or don’t have efficient ways of comput-
ing the forward error. Somehow, we need a more manageable concept that will also
reveal if our computed solutions are good. Fortunately, there’s another type of a
priori error analysis—that is, antecedent to actual computation—one can carry out,
namely, backward error analysis. We explain the perspective it provides in the next
subsection. Then, in Sects. 1.4.2 and 1.4.3, we show how to supplement a backward
error analysis with the notions of condition and residual in order to obtain an infor-
mative assessment of the forward error. Finally, in the next section, we will provide
definitions for the stability of algorithms in these terms.

1.4.1 Backward Error Analysis

Let us generalize our concept of error to include any type of error, whether it comes
from data error, measurement error, rounding error, truncation error, discretization
error, and so forth. In effect, the success of backward error analysis comes from
the fact that it treats all types of errors (physical, experimental, representational,
and computational) on an equal footing. Thus, x̂ will be some approximation of
x, and Δx will be some absolute error that may be or may not be the rounding
error. Similarly, in what follows, δx will be the relative error, that may or may not
be the relative rounding error. The error terms will accordingly be understood as
perturbations of the initially specified data. So, in a backward error analysis, if we
consider the problem y = ϕ(x), we will in general consider all the values of the data
x̂ = x(1+δx) satisfying a condition |δx|< ε , for some ε prescribed by the modeling
context,8 and not only the rounding errors determined by the real number x and the
floating-point system. In effect, this change of perspective shifts our interest from
particular values of the input data to sets of input data satisfying certain inequalities.

Now, if we consider diagram 1.25 again, we could ask: Can we find a pertur-
bation of x that would have effects on ϕ comparable to the effect of changing the
reference problem ϕ by the engineered problem ϕ̂? Formally, we are asking: Can we
find a Δx such that ϕ(x+Δx) = ϕ̂(x)? The smallest such Δx is what is called the
backward error. For input spaces whose elements are numbers, vectors, matrices,
functions, and the like, we use norms as usual to determine what Δx is the back-
ward error.9 For other types of mixed inputs, we might have to use a set of norms
for each component of the input. In case the reader needs it, Appendix C reviews
basic facts about norms. The resulting general picture is illustrated in Fig. 1.5 (see,
e.g., Higham 2002), and we see that this analysis amounts to reflecting the forward
error back into the backward error. In effect, the question that is central to backward
error analysis is, when we modified the reference problem ϕ to get the engineered
problem ϕ̂ , for what set of data have we actually solved the problem ϕ? If solving
the problem ϕ̂(x) amounts to having solved the problem ϕ(x+Δx) for a Δx smaller

8 Note that, since modeling contexts usually include the proper choice of scale, the value of ε will
usually be given in relative rather than absolute terms.
9 The choice of norm may be a delicate issue, but we will leave it aside for the moment.

22 1 Computer Arithmetic and Fundamental Concepts of Computation

D

ˆ

x

x+Dx

y= (x)

ŷ= (x+Djj

j
j

x)

input space output space

backward error —
— forward error

a b

Fig. 1.5 Backward error analysis: the general picture. (a) Reflecting back the backward error:
finding maps Δ . (b) Input and output space in a backward error analysis

than the perturbations inherent in the modeling context, then our solution ŷ must be
considered completely satisfactory.10

Adopting this approach, we benefit from the possibility of using well-known
perturbation methods to talk about different problems and functions:

The effects of errors in the data are generally easier to understand than the effects of round-
ing errors committed during a computation, because data errors can be analyzed using per-
turbation theory for the problem at hand, while intermediate rounding errors require an
analysis specific to the given method. (Higham 2002 6)

[T]he process of bounding the backward error of a computed solution is called backward
error analysis, and its motivation is twofold. First, it interprets rounding errors as being
equivalent to perturbations in the data. The data frequently contain uncertainties due to pre-
vious computations or errors committed in storing numbers on the computer. If the back-
ward error is no larger than these uncertainties, then the computed solution can hardly be
criticized—it may be the solution we are seeking, for all we know. The second attraction of
backward error analysis is that it reduces the question of bounding or estimating the forward
error to perturbation theory, which for many problems is well understood (and only to be
developed once, for the given problem, and not for each method). (Higham 2002 7–8)

One can examine the effect of perturbations of the data using basic methods we
know from calculus, various orders of perturbation theory, and the general methods
used for the study of dynamical systems.

Example 1.3. Consider this (almost trivial!) example using only first-year calculus.
Take the polynomial p(x) = 17x3 + 11x2 + 2; if there is a measurement uncertainty
or a perturbation of the argument x, then how big will the effect be? One finds that

Δy = p(x+Δx)− p(x) = 51x2Δx+ 51x(Δx)2 + 17(Δx)3 + 22xΔx+ 11(Δx)2.

Now, since typically |Δx| � 1, we can ignore the higher degrees of Δx, so that

Δy
.
= 51x2Δx .

Consequently, if x = 1± 0.1, we get y
.
= 35± 5.1; the perturbation in the input data

has been magnified by about 50, and that would get worse if x were bigger. Also,

10 There are cases, however, where finding such a Δx will not be possible. See Higham (2002
p. 71).

1.4 Perspectives on Error Analysis: Forward, Backward, and Residual-Based 23

we can see from this analysis that if we want to know y to 5 decimal places, we will
in general need an input accurate to 7 decimal places. �

Let us consider an example showing concretely how to reflect back the forward
error into the backward error, in the context of floating-point arithmetic.

Example 1.4. Suppose we want to compute y = f (x1,x2) = x3
1 − x3

2 for the input
x = [12.5,0.333]. For the sake of the example, suppose we have to use a computer
working with a floating-point arithmetic with three-digit precision. So we will re-
ally compute ŷ = ((x1 ⊗ x1)⊗ x1)� ((x2 ⊗ x2)⊗ x2). We assume that x is a pair of
floating-point numbers, so there is no representation error. The result of the com-
putation is ŷ = 1950, and the exact answer is y = 1953.014111, leaving us with a
forward error Δy = 3.014111 (or, in relative terms, δy = 3.014111/1953.014111 ≈ 1.5%).
In a backward error analysis, we want to reflect the arithmetic (forward) error back
in the data; that is, we need to find some Δx1 and Δx2 such that

ŷ = (12.5+ δx1)
3 − (0.333+ δx2)

3

A solution is Δx ≈ [0.0064,0] (whereby δx1 = 0.05%). But as one sees, the condi-
tion determines an infinite set of real solutions S, with real and complex elements.
In such cases, where the entire set of solutions can be characterized, it is possible to
find particular solutions, such as the solution that would minimize the 2-norm of the
vector Δx. See the discussions in Chaps. 4 and 6. �

Most of the time, we will want to use Theorem 1.1 to express the results of
our backward error analyses. Consider again the case of the inner product from
Eq. (1.19). The analysis we did for the three-dimensional case can be interpreted
as showing that we have exactly evaluated the product

(
x+ Δx

) · y, where each
perturbation is componentwise relatively small given by some θn (we could also
have reflected back the error in y). Specifically we have Δx1 = θ3x1, Δx2 = θ3x2,
and Δx3 = θ2x3. Thus, we have

fl(x ·y) = (
x+Δx

) ·y ,

with |Δx| ≤ γn|x|. Thus, the floating-point inner product exactly solves the reference
problem for slightly perturbed data (slightly more in the case of complex data). As
a result:

Theorem 1.2. The floating-point inner product of two n-vectors is backward stable.

Note that the order of summation does not matter for this result to obtain. However,
carefully choosing the order of summation will have an impact on the forward error.

1.4.2 Condition of Problems

We have seen how we can reflect back the forward error in the backward error. Now
the question we ask is: What is the relationship between the forward and the back-

24 1 Computer Arithmetic and Fundamental Concepts of Computation

ward error? In fact, in modeling contexts, we are not really after an expression or a
value for the forward error per se. The only reason for which we want to estimate
the forward error is to ascertain whether it is smaller than a certain user-defined
“tolerance,” prescribed by the modeling context. To do so, all you need is to find
how the perturbations of the input data (the so-called backward error we discussed)
are magnified by the reference problem. Thus, the relationship we seek lies in a
problem-specific coefficient of magnification, namely, the sensitivity of the solution
to perturbations in the data, which we call the conditioning of the problem. The
conditioning of a problem is measured by the condition number. As for the errors,
the condition number can be defined in relative and absolute terms, and it can be
measured normwise or componentwise.

The normwise relative condition number κrel is the maximum of the ratio of the
relative change in the solution to the relative change in input, which is expressed by

κrel = sup
x

‖δy‖
‖δx‖ = sup

x

‖Δy/y‖
‖Δx/x‖ = sup

x

‖(ϕ(x̂)−ϕ(x))/ϕ(x)‖
‖x̂− x/x‖

for some norm ‖ · ‖. As a result, we obtain the relation

‖δy‖ ≤ κrel‖δx‖ (1.28)

between the forward and the backward error. Knowing the backward error and the
conditioning thus gives us an upper bound on the forward error.

In the same way, we can define the normwise absolute condition number κabs as
supx

‖Δy‖/‖Δx‖, thus obtaining the relation

‖Δy‖ ≤ κabs‖Δx‖ . (1.29)

If κ has a moderate size, we say that the problem is well-conditioned. Otherwise,
we say that the problem is ill-conditioned.11 Consequently, even for a very good
algorithm, the approximate solution to an ill-conditioned problem may have a large
forward error.12 It is important to observe that this fact is totally independent of any
method used to compute ϕ . What matters is the existence of κ and what its size is.

Suppose that our problem is a scalar function. It is convenient to observe imme-
diately that, for a sufficiently differentiable problem f , we can get an approximation
of κ in terms of derivatives. Since

lim
Δx→0

δy
δx

= lim
Δx→0

Δy
Δx

· x
y
= lim

Δx→0

f (x+Δx)− f (x)
Δx

x
f (x)

=
x f ′(x)

f (x)
,

the approximation of the condition number

κrel ≈ |x|| f ′(x)|
| f (x)| (1.30)

11 When κ is unbounded, the problem is sometimes said to be ill-posed.
12 Note the “may,” which means that backward error analysis often provides pessimistic upper
bounds on the forward error.

1.4 Perspectives on Error Analysis: Forward, Backward, and Residual-Based 25

will provide a sufficiently good measure of the conditioning of a problem for small
Δx. In the absolute case, we have κabs ≈ | f ′(x)|. This approximation will become
useful in later chapters, and it will be one of our main tools in Chap. 3. If f is a
multivariable function, the derivative f ′(x) will be the Jacobian matrix

Jf(x1,x2, . . . ,xn) =
[

∂ f/∂ x1
∂ f/∂ x2 · · · ∂ f/∂ xn

]
,

and the norm used for the computation of the condition number will be the in-
duced matrix norm ‖J‖ = max‖x‖=1‖Jx‖. In effect, this approximation amounts to
ignoring the terms O(Δx2) in the Taylor expansion of f (x+Δx)− f (x); using this
approximation will thus result in a linear error analysis.

Though normwise condition numbers are convenient in many cases, it is often
important to look at the internal structure of the arguments of the problem, for ex-
ample, the dependencies between the entries of a matrix or between the components
of a function vector. In such cases, it is better to use a componentwise analysis of
conditioning. The relative componentwise condition number of the problem ϕ is the
smallest number κrel ≥ 0 such that

max
i

| fi(x̂)− fi(x)|
| fi(x)|

.≤ krel max
i

|x̂i − xi|
|xi| , x̂ → x ,

where
.≤ indicate that the inequality holds in the limit Δx → 0 (so, again, it holds

for a linear error analysis). If the condition number is in this last form, we get a
convenient theorem:

Theorem 1.3 (Deuflhard and Hohmann (2003)). The condition number is submul-
tiplicative; that is,

κrel(g ◦ h,x)≤ κrel(g,h(x)) ·κrel(h,x) .

In other words, the condition number of a composed problem g ◦ h evaluated near
x is smaller than or equal to the product of the condition number of the problem h
evaluated at x by the condition number of the problem g evaluated at h(x). �

Consider three simple examples of condition number.

Example 1.5. Let us take the identity function f (x) = x near x = a (this is, of course,
a trivial example). As one would expect, we get the absolute condition number

κabs = sup
| f (a+Δa)− f (a)|

|Δa| =
|a+Δa− a|

|Δa| = 1 . (1.31)

As a result, we get the relation |Δy| ≤ |Δx| between the forward and the backward
error. κabs surely has moderate size in any context, since it does not amplify the
input error. �

Example 1.6. Now, consider addition, f (a,b) = a+ b. The derivative of f is

f ′(a,b) =
[

∂ f/∂ a ∂ f/∂ b
]
=
[

1 1
]
.

26 1 Computer Arithmetic and Fundamental Concepts of Computation

Suppose we use the 1-norm on the Jacobian matrix. Then the condition numbers are
κabs = ‖ f ′(a,b)‖1 = ‖[1 1

]‖1 = 2 and

κrel =

∥∥∥∥

[
a
b

]∥∥∥∥
1

‖a+ b‖1

∥∥[1 1
]∥∥

1 = 2
|a|+ |b|
|a+ b| . (1.32)

(Since the function is linear, the approximation of the definitions is an equality.)
Accordingly, if |a+ b| � |a|+ |b|, we consider the problem to be ill-conditioned. �

Example 1.7. Consider the problem

a
ϕ−−→ {x | x2 − a = 0} ;

that is, evaluate x, where x2 − a = 0. Take the positive root. Now here x =
√

a, so

|δx|=
∣∣∣∣

f (a+Δa)− f (a)
f (a)

∣∣∣∣
.≤
∣∣∣∣
a f ′(a)

f (a)

∣∣∣∣
Δa
a

=
1
2

δa
a

(1.33)

Thus, κ = 1
2 is of moderate size, in a relative sense. However, note that in the ab-

solute sense, the condition number is
(√

a+Δa+
√

a
)−1

, which can be arbitrarily
large as a → 0. �

We will see many more examples throughout the book. Moreover, many other ex-
amples are to be found in Deuflhard and Hohmann (2003).

1.4.3 Residual-Based A Posteriori Error Analysis

The key concept we exploit in this book is the residual. For a given problem ϕ , the
image y can have many forms. For example, if the reference problem ϕ consists in
finding the roots of the equation ξ 2+xξ +2= 0, then for each value of x, the object
y will be a set containing two numbers satisfying ξ 2 + xξ + 2 = 0; that is,

y =
{

ξ
∣∣ ξ 2 + xξ + 2 = 0

}
. (1.34)

In general, we can then define a problem to be a map

x
ϕ−−−−→ {

ξ | φ(x,ξ) = 0
}
, (1.35)

where φ(x,ξ) is some function of the input x and the output ξ . The function φ(x,ξ)
is called the defining function and the equation φ(x,ξ) = 0 is called the defining
equation of the problem. On that basis, we can introduce the very important con-
cept of residual: Given the reference problem ϕ—whose value at x is a y such that
the defining equation φ(x,y) = 0 is satisfied—and an engineered problem ϕ̂ , the
residual r is defined by

1.4 Perspectives on Error Analysis: Forward, Backward, and Residual-Based 27

r = φ(x, ŷ) . (1.36)

As we see, we obtain the residual by substituting the computed value ŷ (i.e., the exact
solution of the engineered problem) for y as the second argument of the defining
function.

Let us consider some examples in which we apply our concept of residual to
various kinds of problems.

Example 1.8. The reference problem consists in finding the roots of a2x2 + a1x+
a0 = 0. The corresponding map is ϕ(a) = {x |φ(a,x) = 0}, where the defining equa-
tion is φ(a,x) = a2x2 + a1x+ a0 = 0. Our engineered problem ϕ̂ could consist in
computing the roots to three correct places. With the resulting “pseudozeros” x̂, we
can then easily compute the residual r = a2x̂2 +a1x̂+a0. We revisit this problem in
Chap. 3. �

Example 1.9. The reference problem consists in finding a vector x such that Ax = b,
for a nonsingular matrix A. The corresponding map is ϕ(A,b)={x |φ(A,b,x)=0},
where the defining equation is φ(A,b,x) = b−Ax = 0. In this case, the set is a
singleton since there’s only one such x. Our engineered problem could consist in
using Gaussian elimination in five-digit floating-point arithmetic. With the resulting
solution x̂, we can compute the residual r = b −Ax̂. We revisit this problem in
Chap. 4. �

Example 1.10. The reference problem consists in finding a function x(t) on the in-
terval 0 < t ≤ 1 such that

.
x(t) = f (t,x(t)) = t2 + x(t)− 1

10
x4(t) (1.37)

and x(0) = 0. The corresponding map is

ϕ
(
x(0), f (t,x)

)
= {x(t) |φ(x(0), f (t,x),x(t)) = 0}, (1.38)

where the defining equation is

φ
(
x(0), f (t,x),x(t)

)
=

.
x− f (t,x) = 0, (1.39)

together with x(0) = 0 (on the given interval). In this case, if the solution exists and
is unique (as happens when f is Lipschitz), the set is a singleton since there’s only
one such x(t). Our engineered problem could consist in using, say, a continuous
Runge–Kutta method. With the resulting computed solution ẑ(t), we can compute

the residual r =
.
ẑ− f (t, ẑ). We revisit this theme in Chaps. 12 and 13. �

Many more examples of different kinds could be included, but this should suffi-
ciently illustrate the idea for now.

In cases similar to Example 1.10, we can rearrange the equation r =
.
x̂− f (t, x̂) to

have
.
x̂ = f (t, x̂)+ r, so that the residual is itself a perturbation (or a backward error)

28 1 Computer Arithmetic and Fundamental Concepts of Computation

of the function defining the integral operator for our initial value problem. The new
“perturbed” problem is

ϕ̃(x(0), f (t,x)+ r(t,x)) = {x(t) | φ̃(x(0), f (t,x)+ r(t,x),x(t)) = 0}, (1.40)

and we observe that our computed solution x̂(t) is an exact solution of this problem.
When such a construction is possible, we say that ϕ̃ is a reverse-engineered problem.

The remarkable usefulness of the residual comes from the fact that in scientific
computation we normally choose ϕ̂ so that we can compute it efficiently. Conse-
quently, even if finding the solution of ϕ̂ is a problem of type C2 (as defined on p. 8),
it is normally not too computationally difficult because we engineered the problem
specifically to guarantee it is so. All that remains to do to compute the residual is
the evaluation of φ(x, ŷ), a simpler problem of type C1. Thus, the computational
difficulty of computing the residual is much less than that of the forward error. Ac-
cordingly, we can usually compute the residual efficiently, thereby getting a measure
of the quality of our solution. Consequently, it is simpler to reverse-engineer a prob-
lem by reflecting back the residual into the backward error than by reflecting back
the forward error.

Thus, the efficient computation of the residual allows us to gain important in-
formation concerning the reliability of a method on the grounds of what we have
managed to compute with this method. In this context, we do not need to know
as much about the intrinsic properties of a problem; we can use our computation
method a posteriori to replace an a priori analysis of the reliability of the method.
This allows us to use a feedback-control method to develop an adaptive procedure
that controls the quality of our solution “as we go.” This shows why a posteriori
error estimation is tremendously advantageous in practice.

The residual-based a posteriori error analysis that we emphasize in this book thus
proceeds as follows:

1. For the problem ϕ , use an engineered version of the problem to compute the
value ŷ = ϕ̂(x).

2. Compute the residual r = φ(x, ŷ).
3. Use the defining equation and the computed value of the residual to obtain an

estimate of the backward error. In effect, this amounts to (sometimes only ap-
proximately) reflecting back the residual as a perturbation of the input data.

4. Draw conclusions about the satisfactoriness of the solution in one of two ways:

a. If you do not require an assessment of the forward error, but only need to
know that you have solved the problem for small enough perturbation Δx,
conclude that your solution is satisfactory if the backward error (reflected
back from the residual) is small enough.

b. If you require an assessment of the forward error, examine the condition of
the problem. If the problem is well-conditioned and the computed solution
amounts to a small backward error, then conclude that your solution is satis-
factory.

We still have to add some more concepts regarding the stability of algorithms, and
we will do so in the next section.

1.5 Numerical Properties of Algorithms 29

But before, it is important not to mislead the reader into thinking that this type of
error analysis solves all the problems of computational applied mathematics! There
are cases involving a complex interplay of quantitative and qualitative properties
that prove to be challenging. This reminds us of the following:

A useful backward error-analysis is an explanation, not an excuse, for what may turn out to
be an extremely incorrect result. The explanation seems at times merely a way to blame a
bad result upon the data regardless of whether the data deserves a good result. (Kahan 2009)

Thus, even if the perspective on backward error analysis presented here is extremely
fruitful, it does not cure all evils. Moreover, there are cases in which it will not even
be possible to use the backward analysis framework. Here is a simple example:

Example 1.11. The outer product A = xyT multiplies a column vector by a row vec-
tor to produce a rank-1 matrix. In floating-point arithmetic, the entries of the com-
puted matrix Â will be âi j = xi ⊗ y j = xiy j(1+ δ) such that |δ | ≤ μM . However, it
is not possible to find perturbations Δx and Δy such that

Â = (x+Δx)(y+Δy)T .

See Problem 1.19. Consequently, it certainly cannot hold for small perturbations!
But then, we cannot use backward error analysis to analyze this problem. �

1.5 Numerical Properties of Algorithms

An algorithm to solve a problem is a complete specification of how, exactly, to solve
it: each step must be unambiguously defined in terms of known operations, and there
must only be a finite number of steps. Algorithms to solve a problem ϕ correspond
to the engineered problems ϕ̂ . There are many variants on the definition of an algo-
rithm in the literature, and we will use the term loosely here. As opposed to the more
restrictive definitions, we will count as algorithms methods that may fail to return
the correct answer, or perhaps fail to return at all, and sometimes the method may
be designed to use random numbers, thus failing to be deterministic. The key point
for us is that the algorithms allow us to do computation with satisfactory results,
this being understood from the point of view of mathematical tractability discussed
before.

Whether ϕ̂(x) is satisfactory can be understood in different ways. In the literature,
the algorithm-specific aspect of satisfaction is developed in terms of the numerical
properties known as numerical stability, or just stability for short. Unfortunately
“stability” is perhaps the most overused word in applied mathematics, and there is
a particularly unfortunate clash with the use of the word in the theory of dynamical
systems. In the terms introduced here, the concept of stability used in dynamical
systems—which is a property of problems, not numerical algorithms—correspond
to “well-conditioning.” For algorithms, “stability” refers to the fact that an algorithm
returns results that are about as accurate as the problem and the resources available
allow.

30 1 Computer Arithmetic and Fundamental Concepts of Computation

Remark 1.3. The takeaway message is that, following our terminology, well-condi-
tioning and ill-conditioning are properties of problems, while stability and instabil-
ity are properties of algorithms. �

The first sense of numerical stability corresponds to the forward analysis point of
view: an algorithm ϕ̂ is forward stable if it returns a solution y = ϕ̂(x) with a small
forward error Δy. Note that, if a problem is ill-conditioned, there will typically not
be any forward stable algorithm to solve it. Nonetheless, as we explained earlier, the
solution can still be satisfactory from the backward error point of view. This leads
us to define backward stability:

Definition 1.1. An algorithm ϕ̂ engineered to compute y = ϕ(x) is backward stable
if, for any x, there is a sufficiently small Δx such that

ŷ = f (x+Δx) , ‖Δx‖ ≤ ε .

As mentioned before, what is considered “small,” that is, how big ε is, is prescribed
by the modeling context and, accordingly, is context-dependent. �
For example, the IEEE standard guarantees that x⊕ y = x(1+δx)+ y(1+δy), with
|δx|, |δy| ≤ μM. Hence, the IEEE standard in effect guarantees that the algorithms
for basic floating-point operations are backward stable.

Note that an algorithm returning values with large forward errors can be back-
ward stable. This happens particularly when we are dealing with ill-conditioned
problems. As Higham (2002 p. 35) puts it:

From our algorithm we cannot expect to accomplish more than from the problem itself.
Therefore we are happy when its error f̂ (x)− f (x) lies within reasonable bounds of the
error f (x̂)− f (x) caused by the input error.

On that basis, we can introduce the concept of stability that we will use the most.
It guarantees that we obtain theoretically informative solutions, while at the same
time being very convenient in practice. Often, we only establish that ŷ+Δy = f (x+
Δx) for some small Δx and Δy. We do so either for convenience of proof, or because
of theoretical limitations, or because we are implementing an adaptive algorithm
as we described in Sect. 1.4.3. Nonetheless, this is often sufficient from the point
of view of error analysis. This leads us to the following definition (de Jong 1977;
Higham 2002):

x

x+Dx

y= (x)

ŷ= ˆ (x)

(x+Dx)

≤ h ≤ e

Dy

x

x+Dx

y= (x)

ŷ= (x+Dx)

≤ ≤≈

j

j
j

j

j

h e

a b

Fig. 1.6 Stability in the mixed forward–backward sense. (a) Representation as a commutative
diagram (Higham 2002). (b) Representation as an “approximately” commuting diagram (Robidoux
2002). We can replace ‘≈’ by the order to which the approximation holds

1.5 Numerical Properties of Algorithms 31

Definition 1.2. An algorithm ϕ̂ engineered to compute y = ϕ(x) is stable in the
mixed forward–backward sense if, for any x, there are sufficiently small Δx and Δy
such that

ŷ+Δy = f (x+Δx) , ‖Δy‖ ≤ ε‖y‖ , ‖Δx‖ ≤ η‖x‖ . (1.41)

See Fig. 1.6. If this case, Eq. (1.41) is interpreted as saying that ŷ is almost the right
answer for almost the right data or, alternatively, that the algorithm ϕ̂ nearly solves
the right problem for nearly the right data. �

In most cases, when we will say that an algorithm is numerically stable (or just
stable for short), we will mean it in the mixed forward–backward sense of (1.41).

The solution to a problem ϕ(x) is often obtained by replacing ϕ by a finite se-
quence of simpler problems ϕ1,ϕ2, . . . ,ϕn. In effect, given that the domains and
codomains of the simpler subproblems match, this amount to saying that

ϕ(x) = ϕn ◦ϕn−1 ◦ · · · ◦ϕ2 ◦ϕ1(x) . (1.42)

As we see, this is just composition of maps. For example, if the problem ϕ(A,b) is to
solve the linear equation Ax = b for x, we might use the LU factoring (i.e., A = LU
for a lower-triangular matrix L and an upper-triangular matrix U) factorization to
obtain the two equations

Ly = Pb (1.43)

Ux = y . (1.44)

We have then decomposed x = ϕ(A,b) into two problems; the first problem y =
ϕ1(L,P,b) consists in the simple task of solving a lower-triangular system and
the second problem x = ϕ2(U,y) consists in the simple task of solving an upper-
triangular system (see Chap. 4).

Remark 1.4. Such decompositions are hardly unique. A good choice of ϕ1,ϕ2, . . . ,ϕn

may lead to a good algorithm for solving ϕ in this way: Solve ϕ1(x) using its stable
algorithm to get ŷ1, then solve ϕ2(ŷ1) using its stable algorithm to get ŷ2, and so on.
If the subproblems ϕ1 and ϕ2 are also well-conditioned, by Theorem 1.3, it follows
that the resulting composed numerical algorithm for ϕ is numerically stable. (The
same principle can be use as a very accurate rule of thumb for the formulations of
the condition number not covered by Theorem 1.3). �

The converse statement is also very useful: Decomposing a well-conditioned ϕ into
two ill-conditioned subproblems ϕ = ϕ2 ◦ϕ1 will usually result in an unstable al-
gorithm for ϕ , even if stable algorithms are available for each of the subproblems
(unless, as seems unlikely, the errors in ϕ̂1 and ϕ̂2 cancel each other out).

To a large extent, any numerical methods book is about decomposing problems
into subproblems, and examining the correct numerical strategies to solve the sub-
problems. In fact, if you take any problem in applied mathematics, chances are that
it will involve as subproblems things such as evaluating functions, finding roots of

32 1 Computer Arithmetic and Fundamental Concepts of Computation

polynomials, solving linear systems, finding eigenvalues, interpolating function val-
ues, and so on. Thus, in each chapter, a small number of “simple” problems will be
examined, so that you can construct the composed algorithm that is appropriate for
your own composed problems.

1.6 Complexity and Cost of Algorithms

So far, we have focused on the accuracy and stability of numerical methods. In fact,
most of the content of this book will focus more on accuracy and stability than
on cost of algorithms and complexity of problems. Nonetheless, we will at times
need to address issues of complexity. To evaluate the cost of some method, we need
two elements: (1) a count of the number of elementary operations required by its
execution and (2) a measure of the amount of resources required by each type of el-
ementary operation, or group of operations. Following the traditional approach, we
will only include the first element in our discussion.13 Thus, when we will discuss
the cost of algorithms, we will really be discussing the number of floating-point op-
erations (flops14) required for the termination of an algorithm. Moreover, following
a common convention, we will consider one flop to be one addition, one multiplica-
tion, and one comparison.

Example 1.12. If we take two vectors x,y ∈ R
n, the inner product

x ·y =
n

∑
i=1

xiyi = x1y1 + x2y2 + · · ·+ xnyn

requires n flops. Thus, the multiplication of two arbitrary n×n matrices requires n3

flops, since each entry is computed by an inner product.
Note that the order of operations may affect the flop count. If we also take z∈R

n,
there will be a difference between (xyT)z and x(yT z). In the former case, the first
operation is an outer product forming an n× n matrix, which require n2 flops. It
is followed by a matrix–vector multiplication; this is equivalent to n inner prod-
ucts, each requiring n flops. Thus, the cost is n2 + n2 = 2n2. However, if we in-
stead compute x(yT z), the first operation is a scalar product (n flops) and the second
operation is a multiplication of a vector by a scalar (n flops), which together require
2n flops. �

Note that sometimes the vectors, matrices, or other objects on which we operate will
have a particular structure that we will be able to exploit to produce more efficient
algorithms. The computational complexity of a problem is the cost of the algorithm

13 The second element, particularly memory resources, is very relevant in practice today; in fact,
possibly more relevant than the cost of floating-point, since one can demonstrate that computation
time can sometimes be accurately be accurately estimated from memory requirements alone.
14 In computer science, the acronym “flops” is sometimes used to denote flop/s, or floating-point
operations per second. Here, the “s” only marks the plural of “flop.”

1.6 Complexity and Cost of Algorithms 33

solving this problem with the least cost, that is, what it would require to solve the
problem using the cheapest method.

Typically, we will not be too concerned with the exact flop count. Rather, we
will only provide an order of magnitude determined by the highest-order terms of
the expressions for the flop count. Thus, if an algorithm taking an input of size n
requires n2/2+n+2 flops, we will simply say that its cost is n2/2+O(n) flops, or even
just O(n2) flops. This way of describing cost is achieved by means of asymptotic
notation. The asymptotic notation uses the symbols Θ ,O,Ω ,o and ω to describe
the comparative rate of growth of functions of n as n becomes large. In this book,
however, we will only use the big-O and small-o notation, which are defined as
follows:

f (n) = O(g(n)) iff ∃c > 0∃n0∀n ≥ n0 such that 0 ≤ f (n)≤ c ·g(n)
f (n) = o(g(n)) iff ∀c > 0∃n0∀n ≥ n0 such that 0 ≤ f (n)≤ c ·g(n).

(1.45)

Intuitively, a function f (n) is O(g(n)) when its rate of growth with respect to n is the
same or less than the rate of growth of g(n), as depicted in Fig. 1.7 (in other words,
limn→∞ f (n)/g(n) is bounded). A function f (n) is o(g(n)) in the same circumstances,
except that the rate of growth of f (n) must be strictly less than g(n)’s (in other
words, limn→∞ f (n)/g(n) is zero). Thus, g(n) is an asymptotic upper bound for f (n).
However, with the small-o notation, the bound is not tight.

nn0

f(n)

c ·g(n)

Fig. 1.7 Asymptotic notation: f (n) = O(g(n)) if, for some c, cg(n) asymptotically bounds f (n)
above as n → ∞

In our context, if we say that the cost of a method is O(g(n)), we mean that as n
becomes large, the number of flops required will be at worst g(n) times a constant.
Some standard terminology to qualify cost growth, from smaller to larger growth
rate, in introduced in Table 1.1. We will also use this notation when writing sums.
See Sect. 2.8.

34 1 Computer Arithmetic and Fundamental Concepts of Computation

This notation is also used to discuss accuracy, and work-accuracy relationships.
We will often want to analyze the cost of an algorithm as a function of a parameter,
typically a dimension, say n, or a grid size, say h. The interesting limits are as the
dimension goes to infinity or as the grid size goes to zero. The residual or backward
error will typically go to zero as some power of h or inverse power of n (sometimes
faster, in which case we say the convergence is spectral). If we have the error be-
having as ‖Δ‖ = O(hp) as h → 0, we say the method has order p, and similarly if
‖Δ‖ = O(n−p). The asymptotic O-symbol hides a constant that may or may not be
important.

Table 1.1 Common growth rates

The cost f (n) is The growth rate if the cost is
O(1) Constant
O(logn) Logarithmic
O(n) Linear
O(n logn) Quasilinear
O(n2) Quadratic
O(nk), k = 2,3, . . . Polynomial
O(cn) Exponential

One useful trick for measuring the rate of convergence of a problem is to use a
Fibonacci sequence15 of dimension parameters, measure the errors for each dimen-
sion (this is typically easy if the error is a backward error), and plot the results on a
log–log graph. This is called a work-accuracy diagram because the work increases
as n increases (usually as a power of n itself) and the slope of the line of best fit then
estimates p. We do this at several places in the book.

1.7 Notes and References

For a presentation of the classical model of computation, see, for instance, Davis
(1982), Brassard and Bratley (1996), Pour-El and Richards (1989), and for a specific
discussion of what is “truly feasible,” see Immerman (1999).

Brent and Zimmermann (2011) provides a recent extensive discussion of algo-
rithms and models of computer arithmetic, including floating-point arithmetic.

For an alternative, more formal presentation of the concepts presented here
to systematically articulate backward error analysis, see Deuflhard and Hohmann
(2003 chap. 2). The “reflecting back” terminology goes back to Wilkinson (1963).
For a good historical essay on backward error analysis, see Grcar (2011).

Many other examples of numerical surprises can be found in the paper “Nu-
merical Monsters,” by Essex et al. (2000). The experience of W. Kahan in con-
structing floating-point systems to minimize the impact on computation has been

15 Why use a Fibonacci sequence or something like it? Because they grow exponentially, but not as
quickly as doubling the dimension does, and this often produces a more pleasing density of results
on the graph.

1.7 Notes and References 35

presented in a systematic way in the entertaining and informative talk (Kahan and
Darcy 1998). Many of his other papers are available on his website at http://
www.cs.berkeley.edu/˜wkahan.

Problems

Theory and Practice

1.1. Suppose you’re an investor who will get interest daily (for an annual rate of,
say 5%) on $1,000,000. Your interest can be calculated in one of two ways: (a) The
sum is calculated every day, and rounded to the nearest cent. This new amount will
be used to calculate your sum on the next day. (b) Your sum is calculated only once
at the end of the year with the formula Mf = Mi(1+ id)d , and then rounded to the
nearest cent.

1. Which method should you choose? How big is the difference? How much
smaller is it than the worst-case scenario obtained from mere satisfaction of
the IEEE standard? Explain in terms of floating-point error.

2. If the rounding procedure used for the floating-point arithmetic was “round to-
ward zero,” would you make the same decision?

Explain the correspondence between computational error and real-world operations.

1.2. An important value to determine in the analysis of alternating current circuits
is the capacitive reactance XC, which is given by

XC =− 1
2π fC

,

where f is the frequency of the signal (in Hertz) and C is the capacitance (in Farads).
It is common to encounter the values f = 60 Hz while C is the range of picofarads
(i.e., 10−12F). Given this, could we expect MATLAB to accurately compute the re-
active capacitance in common situations? Also, look up common values for the
tolerance in the value of C provided by manufacturers. Would the rounding error be
smaller than the error due to the tolerance? In at most a few sentences, discuss the
significance of your last answer for assessing the quality of computed solutions.

1.3. Suppose you want to use MATLAB to help you with some calculations involved
in special relativity. A common quantity to compute is the Lorentz factor γ de-
fined by

γ =
1√

1− v2

c2

,

where v is the relative velocity between two inertial frames in m/s and c is the
speed of light, which is nearly equal to 299,792,458 m/s. Will MATLAB provide

http://www.cs.berkeley.edu/~wkahan
http://www.cs.berkeley.edu/~wkahan

36 1 Computer Arithmetic and Fundamental Concepts of Computation

results sufficiently precise to identify the relativistic effect of a vehicle moving at
v = 100.000 km/h? Given the significant figures of v, is MATLAB’s numerical result
satisfactory? Compare your results with what you obtain from

(1− x2)
−1/2 = 1+ x2/2+O(x4) . (1.46)

1.4. Computing powers zn for integers n and floating-point z can be done by simple
repeated multiplication, or by a more efficient method known as binary powering.
If n = 2k+ 1 is odd, replace the problem with that of computing z · z2k. If n = 2k is
even, replace the problem with that of computing zk · zk. Recursively descend until
k = 1. This can be done efficiently by looking at the bit pattern of the original n.
Estimate the maximum number of multiplications are performed.

1.5. Suppose a,b are real but not machine-representable numbers. Compare the ac-
curacy of computing (a+ b)2 as written and computing instead using the expanded
form a2 + 2ab+ b2. Are both methods backward stable? Mixed forward–backward
stable? Would the difference between the methods, if any, become more important
for (a+ b)n, n > 2? Give examples supporting your theoretical conclusions. You
may use Problem 1.4.

1.6. Show that, for a �= 0 and b �= 0,

1. 25n3 + n2+ n− 4 = O(n3);
2. any linear function f (n) = an+ b is O(nk) and o(nk) for integers k ≥ 2;
3. no quasilinear function an log(bn) is o(n log(n)).

1.7. Rework Example 1.1 using five-digit precision as before but compute instead
exp(5.5) and then take the reciprocal. This uses the same numbers printed in the
text, just all with positive signs. Is your final answer more accurate?

1.8. Euler was the first to discover16 that

∞

∑
k=1

1
k2 =

π2

6
. (1.47)

Write a program in MATLAB to sum the terms of this series in order (i.e., start with
k = 1, then k = 2, etc.) until the double-precision sum is unaffected by adding an-
other term. Record the number of terms taken (we found nearly 108). Compare the
answer to pi2/6 and record the relative accuracy. Write another program to evaluate
the same sum in decreasing order of the values of k. What is the relative forward
error in this case? Is it different? Is it significantly different? That is, is the accumu-
lation of error reduced for a sum of positive numbers if we add the numbers from
smallest to largest? (Higham 2002 1.12.3). Use the “integral test” from first-year
calculus to estimate the true error in stopping the sum where you did, and estimate
the number of terms you would have to take to get π2/6 to as much accuracy as you
could in double precision simply by summing terms.

16 For a historical discussion of this, see the beautiful book Hairer and Wanner (1996), if you like,
though it is not necessary for this problem.

1.7 Notes and References 37

1.9. The value of the Riemann zeta-function at 3 is

ζ (3) = ∑
k≥1

1
k3 . (1.48)

Quite a lot is known about this number, but all you are asked to do here is to compute
its value by simple summation as in the AiTaylor program and as in the previous
problem, by simply adding terms until the next term is so small it has no effect
after rounding. Use the integral test to estimate the actual error of your sum, and
to estimate how many terms you would really need to sum to get double-precision
accuracy. If you summed in reverse order, would you get an accurate answer?

1.10. Testing for convergence in floating-point arithmetic is tricky due to compu-
tational error. Discuss foreseeable difficulties and workarounds. In particular, you
may wish to address the “method” used in the function AiTaylor of this chapter,
namely to assume “convergence” of a series if adding a term t to a sum s pro-
duces ŝ = s⊕ t that, after rounding, exactly equals s. Consider in particular what
happens if you use this method on a divergent sum such as the harmonic series
H = 1+ 1/2+ 1/3+ 1/4+ · · · . (This is the source of many Internet arguments, by the
way, but there is a clear and unambiguously correct way of looking at it.)

1.11. Show that computing the sum ∑n
i=1 xi naively term by term (a process called

recursive summation) produces the result

n⊕

i=1

xi =
n

∑
i=1

xi(1+ δi), (1.49)

where each |δi| ≤ γn+1−i if i ≥ 2 and |δ1| ≤ γn−1 if i = 1.
There are a surprising number of different ways to sum n real numbers, as dis-

cussed in Higham (2002). Using Kahan’s algorithm for compensated summation as
described below instead returns the computed sum

n

∑
i=1

xi(1+ δi), (1.50)

where now each |δi| < 2μM +O(nμM), according to Higham (2002) (you do not
have to prove this). That is, compensated summation gains a factor of n in backward
accuracy.

The algorithm in question is the following:

Require: A vector x with n components.
s := x1

c := 0
for i from 2 to n do

y := xi − c
t := s+ y
c := (t − s)− y % the order is important, and the parentheses too!

38 1 Computer Arithmetic and Fundamental Concepts of Computation

s := t
end for
return s, the sum of the components of x

Using some examples, compare the accuracy of naive recursive summation and
of Kahan’s sum. If you can, show that Eq. (1.50) really holds for your examples
(Goldberg 1991).

1.12. For this problem, we work with a four-digit precision floating-point system.
Note that 1+1 = 2 gives no error since 1 ∈ F. In exact arithmetic, 1/3+ 1/3 = 2/3, but
floating-point operations imply that 1

3(1+ δ1)+
1
3(1+ δ2) = 0.667, from which we

find that δ1+δ2 = (3 ·0.6667−2)= 0.0001. Show that max(|δ1|, |δ2|) is minimized
if |δ1|= |δ2|= 5 ·10−5.

1.13. The following expressions are theoretically equivalent:

s1 = 1020 + 17− 10+ 130−1020

s2 = 1020 − 10+ 130− 1020+ 17

s3 = 1020 + 17− 1020− 10+ 130

s4 = 1020 − 10− 1020+ 130+ 17

s5 = 1020 − 1020+ 17− 10+ 130

s6 = 1020 + 17+ 130− 1020− 10.

Nonetheless, a standard computer returns the values 0,17,120,147,137,−10 (see,
e.g.,Kulisch 2002 [8]). These errors stem from the fact that catastrophic cancellation
takes place due to very different orders of magnitude. For each expression, find some
values of δxi, 1 ≤ i ≤ 5, such that

s = x1(1+ δx1)+ x2(1+ δx2)+ x3(1+ δx3)+ x4(1+ δx4)+ x5(1+ δx5)

with |δxi|< μM. In each case, find min‖δx‖.

1.14. Show that Eqs. (1.9), (1.10), (1.11), (1.12), and (1.13) do not generally hold
for floating-point numbers.

1.15. Other laws of algebra for inequalities fail in floating-point arithmetic. Let
a,b,c,d ∈ F (Parhami 2000 325):

1. Show that if a < b, then a⊕ c ≤ b⊕ c holds for all c; that is, adding the same
value to both sides of a strict inequality cannot affect its direction but may
change the strict “<” relationship to “≤.”

2. Show that if a < b and c < d, then a⊕ c ≤ b⊕ d.
3. Show that if c > 0 and a < b, then a⊗ c ≤ b⊗ c.

Assume that none of a, b, c, and d are NaN.

1.16. Higham (2002 1.12.2) considers what happens in floating-point computation
when one first takes square roots repeatedly, and then squares the result repeatedly.

1.7 Notes and References 39

We here look at a slight variation, which (surprisingly for such an innocuous-looking
computation) has something to do with an ancient but effective algorithm known as
Briggs’ method (Higham 2004 chapter 11). Here, write a MATLAB function that
accepts a vector x as input, takes the square root 52 times, and then squares the
result 52 times: theoretically achieving nothing. Call your function Higham. The
algorithm is indicated below.

Require: A vector x
for i from 1 to 52 do

x :=
√

x
end for
for i from 1 to 52 do

x := x2

end for
return a vector x, surprisingly different to the input

Then run

x = logspace(0, 1, 2013);
y = Higham(x);
plot(x, y, 'k.', x, x, '--')

Explain the graph (see Fig. 1.8). (Hint: Identify the points where y = x after all.)

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

Fig. 1.8 The results of the code in Problem 1.16

1.17. We now know that unfortunate subtractions bring loss of significant figures.
In fact, the subtraction per se does not introduce much error, but it reveals earlier
error. On that basis, compare the following two methods to find the two roots of a
second-degree polynomial:

40 1 Computer Arithmetic and Fundamental Concepts of Computation

1. Use the two cases of the quadratic formula;
2. Using the fact that x+x− = c (where x2 + bx+ c = 0, i.e., a = 1), keep the root

among the two obtained with the quadratic formula that has the largest absolute
value, and find the other one using the equation x+x− = c.

Which method is more accurate? Explain.

Investigations and Projects

1.18. Consider the quadratic equation x2 + 2bx+ 1= 0.

1. Show by the quadratic formula or otherwise that x =−b±√
b2 − 1 and that the

product of the two roots is 1.
2. Plot (−b+

√
b2 − 1)(−b−√

b2 − 1), which is supposed to be 1, on a logarith-
mic scale in MATLAB as follows:

b = logspace(6, 7.5, 1001);
one = (-b-sqrt(b.ˆ2-1)).*(-b+sqrt(b.ˆ2-1));
plot(b, one, '.')

3. Using no more than one page of handwritten text (about a paragraph of typed
text), partly explain why the plot looks the way it does.

4. If b � 1, which is more accurately evaluated in floating-point arithmetic, −b−√
b2 − 1 or −b+

√
b2 − 1? Why?

1.19. Consider the outer product of two vectors x∈C
m and y∈C

n: P= xyH ∈C
m×n

with pi j = xiy j. Show that if mn > m+ n, then rounding errors in computing this
object cannot be modeled as a backward error; in other words, show that P̂ is not
the exact outer product of any two perturbations x+Δx and y+Δy.

1.20. Let p = 1/2. Consider the mathematically equivalent sums

1 = ∑
k≥1

1
kp − 1

(k+ 1)p (1.51)

= ∑
k≥1

(k+ 1)p− kp

kp(k+ 1)p (1.52)

= ∑
k≥1

1
kp(k+ 1)p((k+ 1)p + kp)

. (1.53)

Which of these is the most accurate to evaluate in floating-point using naive recur-
sive summation? Why?

1.21 (Zeno’s paradox: The dichotomy). One of the classical paradoxes of Zeno
runs (more or less) as follows: A pair of dance partners are two units apart and
wish to move together, each moving one unit. But for that to happen, they must first
each move half a unit. After they have done that, then they must move half of the

1.7 Notes and References 41

distance remaining. After that, they must move half the distance yet remaining, and
so on. Since there are an infinite number of steps involved, logical difficulties seem
to arise and indeed there is puzzlement in the first-year calculus class regarding
things like this, although in modern models of analysis this paradox has long since
been resolved. Roughly speaking, the applied mathematics view is that after a finite
number of steps, the dancers are close enough for all practical purposes!

In MATLAB, we might phrase the paradox as follows. By symmetry, replace one
partner with a mirror. Then start the remaining dancer off at s0 = 0. The mirror
is thus at s = 1. The first move is to s1 = s0 +(1− s0)/2. The second move is to
s2 = s1 + (1− s1)/2. The third move is to s3 = s2 + (1− s2)/2, and so on. This
suggests the following loop.

s = 0
i = 0
while s < 1,

i = i+1;
s = s + (1-s)/2;

end
disp(sprintf('Dancer reached the mirror in %d steps', i))

Does this loop terminate? If so, how many iterations does it take?

	Chapter1 Computer Arithmetic and Fundamental Concepts of Computation
	1.1 Mathematical Problems and Computability of Solutions
	1.2 Representation and Computation Error
	1.3 Error Accumulation and Catastrophic Cancellation
	1.4 Perspectives on Error Analysis: Forward, Backward, and Residual-Based
	1.4.1 Backward Error Analysis
	1.4.2 Condition of Problems
	1.4.3 Residual-Based A Posteriori Error Analysis

	1.5 Numerical Properties of Algorithms
	1.6 Complexity and Cost of Algorithms
	1.7 Notes and References
	Problems

