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“At its highest level, numerical analysis is a
mixture of science, art, and bar-room brawl.”

T. W. Körner
The Pleasures of Counting, CUP, 1996, p. 505.
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Foreword

It is a great privilege to be able to write these few words of introduction to this
fine book. Computational mathematics is now recognised as a central tool in all
aspects of applied mathematics. Scientific modelling falls well short of the mark
if it attempts to describe problems and predict outcomes, without numerical com-
putations. Thus, an understanding and appreciation of numerical methods are vital
components in the training of scientists and engineers.

What are numerical methods? Clearly, they are methods for obtaining numerical
results. But what numerical results are we looking for? This depends on whom you
ask, but a general point of view is to look for common ideas and systematic struc-
tures. Thus, linear algebra is central to much of numerical analysis because many
scientific problems we need to solve are nothing more than linear equation solu-
tions and eigenvalue calculations. But more than this, many other problem types are
capable of being expressed in linear algebra terms, and other calculations require
efficient linear algebra computations within their core. Many years ago I was told
that it had been estimated that if a random computer was stopped at a random time,
there would be more than even chances that it would be caught in the middle of an
LU factorization. Even if this were true once, it might no longer be true, but it is
no more than an exaggeration of the undoubtedly true statement that computational
linear algebra is very important and fundamental to science.

Numerical linear algebra occupies Part II of this four-part book and covers famil-
iar topics as well as many topics that deserve to be familiar. If all the reader wants
are the algorithms, then these are there, but the authors are scholars and the reader
is not let off so easily. You are dragged gently but firmly to a higher world in which
the algorithms are presented in the context of a deductive science. You learn judg-
ment and understanding, and you benefit from the authors’ combined experience
and knowledge.

But if this is Part II, what of Part I? Even more fundamental issues are needed
before linear algebra can be properly presented, such as the fundamental ideas of
computer arithmetic, and the limitations of practical computation in a finite-word
computer. Questions about the roots of equations, about the evaluation of series

vii



viii Foreword

and about partial fractions are presented in the entertaining, but at the same time
informative, style that characterizes the work as a whole.

If the key ideas in Parts I and II are algebraic, the last two parts are calculus-
based. In terms of complexity, the first half of the book deals mainly with problems
whose solutions in principle are exact, but the second half is about problems for
which there is an intrinsic approximation in what is being evaluated. Central to
Part III is interpolation, where f (x) is estimated from values of f (xi) based on a set
{x1,x2, . . . ,xn}, with an error usually expressed in terms of the behavior of f (n). The
four chapters that comprise this part represent areas in which the authors have made
many of their own original contributions. These chapters represent a high point of
this very high book.

Part IV deals with differential equations and related problems. There are detailed
studies of both initial value and boundary value ordinary differential equation prob-
lems. Finally, there is a chapter each on delay differential equations and on various
types of partial differential equations.

The book is rounded out with three useful appendix chapters, presented at the
end of this book.

I love this book.

Auckland, New Zealand John Butcher



Preface

About This Book

This book is designed to be used by mathematicians, engineers, and computer scien-
tists as a graduate-level introduction to numerical analysis and its methods. Readers
are expected to have had courses or experience in calculus, linear algebra, complex
variables, differential equations, and programming. Of course, many students will
be missing some of that material, and we encourage generalized review, especially
of linear algebra.

The book is intended to be suitable both for one-semester and for two-semester
courses. It gathers important and recent material from floating-point arithmetic, nu-
merical linear algebra, polynomials, interpolation, numerical differentiation and in-
tegration, and numerical solutions of differential equations. Our guiding principle
for the selection of material and the choice of perspective is that numerical methods
should be discussed as a part of a more general practice of mathematical modeling
as is found in applied mathematics and engineering. Once mostly absent from texts
on numerical methods, this desideratum has become an integral part of much of
the active research in various fields of numerical analysis (see, e.g., Enright 2006a).
However, because the intended audience is so broad that we cannot really presume a
common background in application material, while we focus on applicable compu-
tational mathematics, we will not present many actual applications. We believe that
the best-compromise approach is to use a perspective on the quality of numerical
solution known as backward error analysis, together with the theory of condition-
ing or sensitivity of a problem, already known to Turing and widely practiced and
written on by J. H. Wilkinson, W. Kahan, and others.1 These ideas, very important
although not a panacea, will be introduced progressively. The basic underpinning of
the backward error idea, that a numerical method’s errors should be analyzable in

1 The first explicit use of backward error analysis is credited by Wilkinson (1971) to Wallace
Givens, and indeed, it is already present in Von Neumann and Goldstine (1947) (see also Grcar
2011), but it is broadly agreed that it was Wilkinson himself who began the systematic exploitation
of the idea in a broad collection of contexts.
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x Preface

the same terms as whatever physical (or chemical or biological or social or what-
have-you) modeling errors, is readily understandable across all fields of application.
As Wilkinson (1971 p. 554) pointed out, backward error analysis

has the advantage that rounding errors are put on the same footing as errors in the original
data and the effect of these has usually to be considered in any case.

The notion of the sensitivity of the problem to changes in its data is also one that is
easy to get across to application-oriented students. As Chap. 1 explains, this means
that we favor a residual-based a posteriori type of backward error analysis that pro-
vides numerical solutions that are readily interpretable in the broader context of
mathematical modeling.

The pedagogical problem that (we hope!) justifies the existence of this book is
that even though many excellent numerical analysis books exist, no single one of
them that we know of is suitable for such a broad introductory graduate course—at
least, not one that provides a unifying perspective based on the concept of backward
error analysis, which we think is the most valuable aspect of this present book. Some
older books do hold this perspective, most notably Henrici (1982), but that book is
dated in other respects nowadays.

Other differences between this book and the general numerical analysis liter-
ature is that it uses the Lagrange and Hermite interpolational bases heavily, with
a complex-variable focus, both because of the recent recognition of the superior-
ity of this approach, and in order to introduce topics in an example-based format.
Our objective is to provide the reader with a perspective on scientific computing that
provides a systematic method for thinking about numerical solutions and about their
interpretation and assessment.

The closest existing texts to our book in this outlook might be Quarteroni et al.
(2007), or perhaps the pair of books Deuflhard and Bornemann (2002) and Deufl-
hard and Hohmann (2003), but our book differs from those in several other respects.
We believe, for one, that our relatively informal treatment is less demanding on the
mathematical and analytical prerequisites of the students; our students in particu-
lar have a very wide range of backgrounds. The topics we cover are also slightly
different from those in the aforementioned books—for example, we cover delay
differential equations and they do not, whereas their coverage of the numerical so-
lution of PDEs is more complete than ours. But for us, the most important thing
about a graduate-level introduction is to show the essential unity of the subject, and
we feel that aim of this present work is worth pursuing.

Thus, our objective is to present a unified view of numerical computation, inso-
far as that is possible. The book cannot, therefore, be self-contained, or anything
like complete; it can only hit some of the highlights and point to more extensive
discussions of specific points. This is, unfortunately, a necessary tradeoff for such a
book, and in partial compensation the list of references is substantial. Consequently,
the book is not a “standard” numerical analysis text, in several respects. The topic
selection is intended to introduce the reader to important components of a gradu-
ate students’ toolbox, but more on the analysis side than the methods side. It is not
intended to be a book of recipes.
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This brings up the “elephant in the room,” the massively popular and useful
book (Press et al. 1986), which has been cited more than 33,000 times according
to Google Scholar, as we write this. That book is intended for “quick use,” we be-
lieve. If you have a numerical problem to solve, and only a weekend to do something
about it, that book should probably be your first choice of reference. One thing we
certainly do not criticize that book for is its attempt at comprehensive coverage.
However, it is not a textbook and does not serve the purpose of a course in numer-
ical analysis, which we believe includes a unified theoretical view of all numerical
methods. Hence, this present book attempts a complementary view to that of Press
et al. (1986).

Finally, even though a unified view is attempted here, many important topics in
numerical analysis had to be left out altogether. This includes optimization, integral
equations, parallel and high-performance computing, among others. We regret that,2

but we make no promises to remedy this deficit any time soon. Instead, it is our
hope that the reader of this book will have acquired a framework for assessing and
understanding numerical methods generally.

Another difference in perspective of this book is the following. As the reader
might know (or will know very soon!), there tends to be a tension between compu-
tation time, on the one hand, and accuracy and reliability, on the other hand. There
are two points of view in scientific computing nowadays, which are paraphrased
below:

1. I don’t care how correct your answer is if it takes 100 years to get it.
2. I don’t care how quickly you give me the wrong answer.

Of these two blunders, we tend to think the first is worse: Hence, this book concen-
trates on reliability. Therefore, we will not focus on cost very much, nor will we
discuss vectorization of algorithms and related issues.

There are more schemes for computation than just IEEE standard fixed-precision
floating-point arithmetic, which is the main tool used in this book (and, without
much doubt, the main tool used in scientific and engineering computing). There is
also arbitrary-precision floating-point arithmetic, which is used in computer alge-
bra systems such as MAPLE. This is comparatively slow but occasionally of great
interest; some examples will be given in this book. There is also interval arith-
metic, which is discussed concisely, with references, on the Wikipedia page of the
same name: The principle of interval arithmetic is to compute not just answers, but
also bounds for the errors in the answers. Again, this is slower than standard fixed-
precision floating-point arithmetic, but not solely for the reason that more compu-
tation is done with the bounds, but also for the somewhat surprising reason that for
many algorithms of practical interest as implemented in floating-point, the rounding
errors usually cancel, leaving an accurate answer but with overly wide error bounds
in interval arithmetic. As a consequence, other algorithms (usually iterative) have to
be developed specifically for use with intervals, and while this has been done, partic-
ularly for many problems in optimization, and is valuable especially in cases where

2 In particular, we regret not covering the finite-element method; or multigrid; or . . .; you get the
idea.
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the consequences of rounding errors are disastrously expensive, interval arithmetic
is not as widely used as floating-point arithmetic is.

A prominent computer algebra researcher asks, “Why not compute the answer
exactly?” This researcher knows full well that in the vast majority of cases, ex-
act computation is either impossible outright or impossibly expensive. However,
for some problems, particularly some linear algebra problems, the data are indeed
known exactly and the algorithms for computing the exact rational answer have now
been developed to a high degree of efficiency, making it possible nowadays to re-
ally get the exact answer (what we will call the reference answer in this book). We
do not discuss such algorithms here, in part because they are specialized, but really
because this course is about numerical methods with approximate arithmetic.

There are yet other arithmetics that have been proposed: significance arithmetic
(which is similar to interval arithmetic but less rigorous), and “rounded rational”
arithmetic, and others. Some of these are discussed in Knuth (1981). A recent dis-
cussion of computational arithmetic can be found in Brent and Zimmermann (2011).

Finally, we underline the fact that the background theoretical ideas from analysis
and algebra used in this book are explained in a rather informal way, focusing more
on helping visualization and intuition than precise theoretical understanding. This
is justified by the fact that if the reader knows the material already, then it serves
as a good refresher and also introduces the perspective on it that is relevant to the
matter at hand. If the reader does not know the necessary material, or does not know
it well, then it should provide just enough guidance to have a feel of what is going
on, while at the same time give precise indications as to what and where to look to
acquire the required concepts. Just pointing at a book wouldn’t do if we can’t say
what to look for. In this way, we expect to be able to reach the vastly different kinds
of reader who need the course this book was designed to support.

On Programming

Computations in the book are carried out almost exclusively in MATLAB (but we
also use MAPLE on some occasions). Readers not familiar with MATLAB are en-
couraged to acquire the wonderful book Higham and Higham (2005) to help them to
learn MATLAB. We have no commercial commitment to MATLAB, and if the reader
wishes to use SCILAB or OCTAVE instead, then other than some of the advanced
techniques available in MATLAB but not in those two for the numerical solution of
sparse matrices or ordinary differential equations, the substitution might be all right
(but we have not tried). Similarly, the reader may wish to use SAGE or some other
freely available computer algebra package to help get through the more formulaic
aspects of this book.

This book is not a book that teaches programming skills, even by example (our
programs are all short and intended to illustrate one or two numerical techniques
only). The programs in this book are not even intended as good examples of pro-
gramming style, although we hope they meet minimal goals in that respect, with
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an emphasis on readability over efficiency. The elegant little book Johnson (2010)
is a useful guide to a consistent MATLAB style. The style of the programs in this
present book differs slightly from that advocated there, in part because our aesthetic
tastes differ slightly and in part because the purpose of numerical computing, being
more limited than computing that includes, for example, data management, can bear
a simpler style without loss of readability or maintainability. However, we emphat-
ically agree with Johnson that a consistent style is a great help, both to the readers
of the code (which might include the writer, three months later) and to the users of
the code. We also agree that attention to stylistic issues while writing code is a great
help in minimizing the number and severity of bugs.

In this book, MATLAB commands will be typeset in the lstlisting style and
are intended to be typed as shown (with the exception of the line numbers to the left,
when any, which are added for pedagogical purposes). For example, the commands

1 x = linspace( -1, 1, 21 );
2 y = sin( pi*x );
3 plot( x, y, 'k--' )

produce a black dashed-line plot of sin(πx) on the interval −1 ≤ x ≤ 1. One differ-
ence to the style advocated in Johnson (2010) is that spaces are introduced after each
opening parenthesis and before each closing parenthesis; similarly, spaces are used
after commas. These spaces have no significance to MATLAB but they significantly
improve readability for humans (especially in the small font in which this book is
typeset). The programs written for this book are all intended to be made available
over the web, so longer bits of code need not be typed. The code repository can
be accessed at http://www.nfillion.com/coderepository. Similarly,
MAPLE commands will also be typeset in the lstlisting style; since the syn-
taxes for the two languages are similar but not identical, this has a risk of causing
confusion, for which we apologize in advance. However, there are not that many
pieces of MAPLE code in the book, and each of them is marked in the text surround-
ing it, so any confusion will not last long. For example, a similar plot to that created
above can be done in MAPLE by the single command

plot( sin( Pi*x ), x=-1..1, linestyle=3, color=BLACK );

Moreover, we request the reader to minimize the use of sym in MATLAB. If you
are going to do symbolic computation, fire up a computer algebra system (MAPLE,
Sage, MuPAD, whatever you like) and use it and its features separately. Yes, the
Symbolic Toolbox (which uses MuPAD or MAPLE), if you have it, can be helpful
and professionals often do use it for small symbolic computations. In a numerical
course, however, sym can be very confusing and requires more care in handling
than we want to discuss here. This book will not use it at all, and the problems and
exercises have been designed so that you need not use it. If you do choose to use it,
do so on your own recognizance.

Scientific programming is, in our view, seriously underrated as a discipline and
given nowhere near the attention in the curriculum that it deserves or needs. Many
people view the course that this book is intended to support, namely, an introductory
course in numerical analysis for graduate students, as “the” course that a graduate

http://www.nfillion.com/coderepository
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student takes in order to learn how to program. This is a serious mistake. If this
is the only course that you take that has programming in it, you are in trouble. It
takes more than a few weekends to learn how to program (and given the amount of
material here, you won’t have many weekends available, even).

However, you can make a start on programming at the same time as you read
this book if you are willing to really put in some effort. Both MATLAB and MAPLE

are easier to learn than many scientific programming languages, at least for people
with a high level of mathematical maturity and background knowledge. You will
need substantial guidance, though, in addition to this book. The aforementioned
book Higham and Higham (2005) is highly recommended. The older book Cor-
less (2002), while dated in some respects, was intended to teach MAPLE to nu-
merical analysts, and since the programming language for MAPLE has not changed
much since then (although the GUI has), it remains potentially useful. Our col-
league Dhavide Aruliah also recommends the Software Carpentry project by Greg
Wilson http://software-carpentry.org/, which we were delighted to
learn about—there seems to be a wealth of useful material there, including a section
on MATLAB. See also Aruliah et al. (2012).

Large scientific programs require a serious level of discipline and mathematical
thought; this is the discipline nowadays called software engineering. This book does
not teach software engineering at all. For those wishing to have a glimpse, we highly
recommend the (ancient, in computer terms) books by Leo J. Brodie, which use the
curiously lovely computer language Forth.3 In some sense, Forth is natural to teach
those concepts: It is possible to write arbitrarily unreadable code in Forth entirely by
accident, and you need to learn some discipline to write it well; it’s harder to write
unreadable code in MAPLE (although for sure it can be done!).

Writing software that is robust, readable, maintainable, usable, and efficient, and
overall does what it was intended to do is a humbling activity. The first thing that
one learns is—a true scientific lesson—that one’s thought processes are not as reli-
able as one had believed. Numerical analysis and scientific computing (along with
computer programming generally) have overturned many things that were thought
mathematically to be true, and computer programs have had a profound influence on
how we view the world and how we think about it. Indeed, one of us has coined the
term “computer-mediated thinking” to cover some aspects of that profound change
(see Corless 2004, for a discussion of this in a pedagogical context). Put simply,
there is no other way to think about some complex systems than to combine the
power of the mind with the power of the computer. We will see an example due to
Turing, shortly.

3 The book Starting Forth is now available free online at http://www.forth.com/
starting-forth/, and although Forth has very little in common with MATLAB or MAPLE,
the programming concepts and discipline begun in that book will transfer easily. The second book,
Thinking Forth, is also available online at http://thinking-forth.sourceforge.
net/ and is one of the most useful introductions to software engineering, even though it, like
its predecessor, is focused on Forth.

http://thinking-forth.sourceforge.net/
http://thinking-forth.sourceforge.net/
http://www.forth.com/starting-forth/
http://www.forth.com/starting-forth/
http://software-carpentry.org/
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How to Use This Book

We believe, with Trefethen (2008b p. 606), that

the main business of numerical analysis is designing algorithms that converge quickly;
rounding-error analysis, while often a part of the discussion, is rarely the central issue.

Why, then, are the first chapter and the first appendix of this book so heavy on
floating-point arithmetic? The answer is that the material is logically first, not that
it is of the first importance didactically. In fact, when RMC teaches this course, he
begins with Chap. 4 and looks back on the logically prior material when needed: His
approach is “leap ahead, back fill.” But the students’ needs may vary considerably,
and there are those who decidedly prefer an abstract presentation first, filled in with
examples later: For them, they may begin with Chap. 1 and proceed in the order
of Fig. 1a.

The instructor should find that the book can be used in many ways. Follow-
ing the linear order is an option, provided you have enough time (a one-semester
course certainly isn’t enough time). With the time constraint in mind, Fig. 1a fol-
lows the same theoretical order, but it shows what should be considered optional.
As stated before, at Western we start with Chap. 4. That way the course starts with
the material on the QR and SVD factoring, culminating in a definition of condition
number. This approach brings the student to immediately engage a problem that
stimulated the development of numerical analysis in the first place. Then we come
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Fig. 1 Suggested teaching paths for this book, where dashed lines denote options. (a) The theoret-
ical path. (b) A pragmatic path
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back to Chap. 1 (and Appendix A) for a necessary examination of theoretical issues
in finite-precision computation and approximation. We then return to Part II to dis-
cuss eigenvalue problems, sparse systems, and structured systems. We then proceed
to polynomials, function evaluation, and then rootfinding. The course closes with
material covering numerical integration and numerical solution of differential equa-
tions, followed by delay differential equations or partial differential equations, as
the tastes of the students indicate and as time permits. A curriculum closely related
to this pragmatic orientation is in Fig. 1b.

Experience has shown that the material in Chap. 8 is used heavily in almost all
later chapters. Experience has also shown that the later chapters always get short-
changed in a one-semester course: Probably at most one of Chaps. 14, 15, or 16 can
be covered, and Chap. 9, though short and important, is in some danger of being
omitted too. In any case, perhaps that is because RMC is personally focused more
on Chap. 12 and its sequels, not because of the students’ needs. In any case, the
linear algebra topics can (and should!) always be covered.

Some of the chapters may be used for reading only. Good candidates are Chap. 1,
Chap. 3 on the evaluation of functions, and Chap. 7 on iterative methods. Chapter 14,
on delay DE, seems quite popular and goes quickly after the work on IVP and on
interpolation.

Exercises

This book contains many exercises. They are identified as belonging to one of these
categories:

1. Theory and Practice;
2. Investigations and Projects.

The first type of problem will include simple tasks that amount to “getting the go
of it” or to make sure that one understands the basic notions that are assumed in
the various manipulations. This includes practice with basic MATLAB and MAPLE

tricks. It may also involve proofs—either from scratch, sometimes with hints, or
completing proof sketches, including some error analyses (although not too many).
The final type of problem—namely, investigations and projects—typically involves
more time and effort from the students. Typically, these problems will involve ex-
ploring various numerical methods in depth, that is, doing analytic work and then
implementing it, usually in MATLAB. That is, this type of problem is to some extent
a programming assignment although the course we teach is not intended to teach
programming skill.

The instructor may find it convenient to combine problems of different categories
as well as different degrees of difficulty following this scheme. Students thus have
the chance to feel the pleasant breeze of review, get their hands dirty with the tedious
but very important practical work, and feel the ecstatic frustration of working on a
problem of some envergure. For the more challenging projects, the student should
refrain from being frustrated, remembering the words of J. S. Mill (1873 p. 45):
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A pupil from whom nothing is ever demanded which [s]he cannot do, never does all [s]he
can.

One of the authors (NF), upon whom the teaching method used in this book was
tested, has to agree that some of the difficult problems in this book are among those
from which he learned most. We hope the reader will feel the same.

London, ON Robert M. Corless
Nicolas Fillion
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2 I Preliminaries

Computational mathematics, even without computers, is enormously powerful.
Mathematical models of physical, biological, environmental, and social phenomena
greatly increase our understanding of the world in which we live, and offer oppor-
tunities to achieve many desirable outcomes in many situations. This use of mathe-
matical thinking is old: Imhotep (the earliest architect and engineer whose name is
known to us, who worked in the time of Zhoser, about 2700 BCE) likely used math-
ematics in designing the first pyramids. Archimedes was famous for his intellectual
help in the defence of Syracuse and of course his mechanical inventions survive in
use to this day. Analog (not digital) computation is also very old—consider the An-
tikythera mechanism, which dates to about 100 BCE and had a tradition of similar
instruments, now all lost, possibly lasting a 1,000 years.4

However useful mathematics is when only hand or analog computation is
available, it seems obvious that mathematical models that are detailed enough
to explain—and allow means of control over—even moderately complicated sys-
tems need significant computer help in order to provide useful accounts of their
predictions. The main difficulty is the complexity of interactions of subsystems in
each model.

To complicate matters even further, already in the nineteenth century certain im-
possibility results were being obtained: Abel and Galois showed that it is not pos-
sible to solve general polynomial equations of degree five or more in radicals (al-
though there is a less-well-known algorithm using elliptic functions for the quintic
itself). Liouville showed that many important integrals could not be expressed in
terms of elementary functions (and provided a basic theory to decide just when this
could in fact be done). Lindemann showed that π was transcendental. More such
impossibility results arrived in the twentieth century. Yet in order to provide scien-
tific and engineering answers, when the phenomenon of interest is being modelled
by, say, a differential equation or partial differential equation, something has to be
done.

The answer that is the foundation of this book is equally old: approximation. For
example, Archimedes famously used an approximation method based on polygons
to compute lower and upper bounds on π . In general, the basic idea of approximation
is to give up on an exact answer, and to settle for “something close enough.”

The applications of mathematics are everywhere, not just in the traditional sciences of
physics and chemistry, but in biology, medicine, agriculture and many more areas. Tra-
ditionally, mathematicians tried to give an exact solution to scientific problems or, where
this was impossible, to give exact solutions to modified or simplified problems. With the
birth of the computer age, the emphasis started to shift towards trying to build exact models
but resorting to numerical approximations. (Butcher 2008a)

In one sense, the idea of a solution being “close enough” gave birth to the whole of
mathematical analysis. In another, closer to the spirit of this book, it gave birth to
scientific and engineering computation.

4 For details of this, and more, see the lovely book by de Camp (1960). Concerning the Antikythera
mechanism, see Freeth et al. (2008) and http://www.antikythera-mechanism.gr/.
For a more modern ‘classic’ take on mathematical modeling, see Wan (1989).

http://www.antikythera-mechanism.gr/
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We take a specific example, from the classic paper The Chemical Basis of Mor-
phogenesis by Alan Turing (1952), one of the pioneers of modern scientific comput-
ing. Turing considered various mathematical models of chemical reactions involving
an interaction between reaction of the chemical agents (or ‘morphogens’) and dif-
fusion of these agents in the tissues of a cell. These models have the following form
(in two space dimensions x and y, for time t):

∂u
∂ t

= f (u,v)+ ε1Δu

∂v
∂ t

= g(u,v)+ ε2Δv (I.1)

where Δu = ∂ 2u/∂x2 + ∂ 2u/∂y2 = uxx + uyy is the Laplacian. The functions f (u,v) and
g(u,v) vary, depending on what exactly is being modelled, and the constants ε1 and
ε2 model the possibly different rates of diffusion of the ‘morphogens’ u and v.

Turing pointed out that systems behaving in a way described by Eq. (I.1) could,
in theory, start from a homogeneous and boring state and then, by the introduction
of tiny imperfections in that homogeneity, more or less spontaneously evolve under
this dynamic to a pronounced pattern. These patterns could be used as models for
a great many phenomena, including in particular the patterns of spots on a leop-
ard’s coat. Turing’s paper started an entire field of investigations of the properties of
such models, which can potentially explain such diverse things as how cell networks
grow (in particular how neurons connect to one another) and animal or robotic lo-
comotion.5

Turing made great strides in detailed understanding of these model equations
for systems in limited configurations (such as a ring of cells), and fundamental un-
derstanding of what might happen in quite general configurations starting from a
homogeneous initial configuration. However, as to further progress, perhaps it is
best to give Turing’s own words:

Most of an organism, most of the time, is developing from one pattern into another, rather
than from homogeneity into a pattern. One would like to be able to follow this more gen-
eral process mathematically also. The difficulties are, however, such that one cannot hope
[emphasis added] to have any very embracing theory of such processes, beyond the state-
ment of the equations. It might be possible, however, to treat a few particular cases in detail
with the aid of a digital computer. This method has the advantage that it is not so nec-
essary to make simplifying assumptions as it is when doing a more theoretical type of
analysis. (Turing 1952, pp. 71–72)

Turing also points out that such a computational approach has a disadvantage, too,
namely that it only gets results for particular cases; he then claims that this disadvan-
tage is “probably of comparatively little importance.” We agree, and so do the large
number of people doing simulations of specific Turing systems in order to achieve
understanding (and in some cases control) of certain real systems of interest. In par-
ticular, if one is interested in dynamic Turing patterns, as Turing himself alludes to
above, there seems to be no recourse other than computation.

5 See, e.g., Arena and Fortuna (2002). Some recent work can be found at Leppänen et al. (2002),
and this is an active area.
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Fig. I.1 Snapshots of the solution to the Schnakenberg equations at various times. A static Turing
pattern has evolved by t = 2. (a) t = 0.01. (b) t = 0.02. (c) t = 0.03. (d) t = 0.05. (e) t = 0.06. (f)
t = 2.00
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As a definite example6 (of an ultimately static pattern), consider the Schnaken-
berg equations:

ut = λ (0.126779− u+u2v)+Δu

vt = λ (0.792366− u2v)+ 10Δv , (I.2)

where λ = 1000. We will revisit these equations in Chap. 16. For now, note that
these equations, unlike the ones studied by Turing himself, are nonlinear because
of the u2v term. It is extremely unlikely that we will find an exact, closed-form
solution. Yet, using approximate computation, we can simulate the solution and
observe changes as pictured in Fig. I.1.

To understand in what sense these solutions are approximate, and to understand
how to produce controlled solutions of your own to problems like these, we recom-
mend that you continue to read. . .

To solve problems stemming from real applications, it is essential to gain an
understanding of the methods and strategies involved in numerical solutions. More-
over, even if a problem is formulated in terms of partial differential equations, the
numerical strategies used essentially depend on more basic methods that efficiently
and accurately solve problems of arithmetic, function evaluation, finding zeros, lin-
ear algebra, interpolation, differentiation and integration, etc. Step by step, chapter
by chapter, this book will introduce you to elementary and more advanced methods
that are necessary to solve those problems that arise in applications.

6 We take this example from Ruuth (1995).



Chapter 1
Computer Arithmetic and Fundamental
Concepts of Computation

Abstract This chapter introduces the main concepts of error analysis used in this
book. The chapter defines reference problems and modified problems and notation
to distinguish them. Two kinds of modified problems are shown to be particularly
important in numerical analysis, namely, engineered and reverse-engineered prob-
lems. The reader is introduced to three concepts of error: (forward error, backward
error, and residual), to the concept of conditioning, and to residual-based backward
error analysis—which is the method favored in this book. We define numerical prop-
erties of algorithms, including stability and cost. Finally, we apply those concepts
to floating-point arithmetic. �

As we have explained in the preface, there are two main paths that one can follow
with this book: a theoretical path that starts with this chapter, and a pragmatic path
that starts with Chap. 4 (see Fig. 1). If you are following the theoretical path—thus
reading this chapter first, before you read any other chapter—please be aware that it
is among the most abstract: It provides logical and conceptual grounding for the rest
of the book. We believe that the readers who prefer to consider concrete examples
before encountering the general ideas of which they are instances will be better off
on the first reading to start somewhere else, for example, with Chap. 4, and return
to this chapter only after seeing the examples there. But if you are a theory-minded
learner, then by all means this is the place to start.

1.1 Mathematical Problems and Computability of Solutions

We begin by introducing a few foundational concepts that we will use to discuss
computation in the context of numerical methods, adding a few parenthetical re-
marks meant to contrast our perspective from others. We represent a mathematical
problem by an operator ϕ , which has an input (data) space I as its domain and an
output (result, solution) space O as its codomain:

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods:
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0 1,
© Springer Science+Business Media New York 2013

7
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ϕ : I → O ,

and we write y = ϕ(x). In many cases, the input and output spaces will be Rn or Cn,
in which case we will use the function symbols f ,g, . . . and accordingly write

y = f (z1,z2, . . . ,zn) = f (z) .

Here, y is the (exact) solution to the problem f for the input data z.1 But ϕ need
not be a function; for instance, we will study problems involving differential and
integral operators. That is, in other cases, both x and y will themselves be functions.

We can delineate two general classes of computational problems related to the
mathematical objects x,y, and ϕ :

C1. verifying whether a certain output y is actually the value of ϕ for a given input
x, that is, verifying whether y = ϕ(x);

C2. finding the output y determined by applying the map ϕ to a given input x, that
is, finding the y such that y = ϕ(x).2

In this classification, we consider “inverse problems,” that is, trying to find an input
x such that ϕ(x) is a desired (known) value y, to be instances of C2 in that this
corresponds to computation of the possibly many-valued inverse function ϕ−1(y).

The computation required by each type of problem is normally determined by
an algorithm, that is, by a procedure performing a sequence of primitive operations
leading to the solution in a finite number of steps. Numerical analysis is a mathemat-
ical reflection on the complexity and numerical properties of algorithms in contexts
that involve data error and computational error.

In the study of numerical methods, as in many other branches of mathematical
sciences, the reflection involves a subtle concept of computation. With a precise
model of computation at hand, we can refine our views on what’s computationally
achievable, and if it turns out to be, how much effort is required.

The classical model of computation used in most textbooks on logic, computabil-
ity, and algorithm analysis stems from metamathematical problems addressed in the
1930s; specifically, while trying to solve Hilbert’s Entscheidungsproblem, Turing
developed a model of primitive mathematical operations that could be performed
by some type of machine affording finite but unlimited time and memory. This
model, which turned out to be equivalent to other models developed independently
by Gödel, Church, and others, resulted in a notion of computation based on effective
computability. From there, we can form an idea of what is “truly feasible” by further
adding constraints on time and memory.

Nonetheless, scientific computation requires an alternative, complementary no-
tion of computation, because the methods and the objectives are quite different from
those of metamathematics. A first important difference is the following:

1 We use boldface font for vectors and matrices.
2 It is normally computationally simpler to verify whether a certain value satisfies an equation than
finding a value that satisfies it.
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[. . . ] The Turing model (we call it “classical”), with its dependence on 0s and 1s, is fun-
damentally inadequate for giving such a foundation to the modern scientific computation,
where most of the algorithms—with origins in Newton, Euler, Gauss, et al.—are real num-
ber algorithms. (Blum et al. 1998 3)

Blum et al. (1998) generalize the ideas found in the classical model to include oper-
ations on elements of arbitrary rings and fields. But the difference goes even deeper:

[R]ounding errors and instability are important, and numerical analysts will always be ex-
perts in the subjects and at pains to ensure that the unwary are not tripped up by them.
But our central mission is to compute quantities that are typically uncomputable, from an
analytic point of view, and to do it with lightning speed. (Trefethen 1992)

Even with an improved picture of effective computability, it remains that the con-
cept that matters for a large part of applied mathematics (including engineering) is
the different idea of mathematical tractability, understood in a context where there
are error in the data and error in computation, and where approximate answers can
be entirely satisfactory. Trefethen’s seemingly contradictory phrase “compute quan-
tities that are typically uncomputable” underlines the complementarity of the two
notions of computation.

This second notion of computability addresses the proper computational difficul-
ties posed by the application of mathematics to the solution of practical problems
from the outset. Certainly, both pure and applied mathematics heavily use the con-
cepts of real and complex analysis. From real analysis, we know that every real
number can be represented by a nonterminating fraction:

x = �x�.d1d2d3d4d5d6d7 · · · .

However, in contexts involving applications, only a finite number of digits is ever
dealt with. For instance, in order to compute

√
2, one could use an iterative method

(e.g., Newton’s method, which we cover in Chap. 3) in which the number of accurate
digits in the expansion will depend upon the number of iterations. A similar situation
would hold if we used the first few terms of a series expansion for the evaluation of
a function.

However, one must also consider another source of error due to the fact that,
within each iteration (or each term), only finite-precision numbers and arithmetic
operations are being used. We will find the same situation in numerical linear alge-
bra, interpolation, numerical integration, numerical differentiation, and so forth.

Understanding the effect of limited-precision arithmetic is important in compu-
tation for problems of continuous mathematics. Since computers only store and op-
erate on finite expressions, the arithmetic operations they process necessarily incur
an error that may, in some cases, propagate and/or accumulate in alarming ways.3 In

3 But let’s not panic: “These risks are very real, but the message was communicated all too success-
fully, leading to the current widespread impression that the main business of numerical analysis is
coping with rounding errors (Trefethen 2008b).
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this first chapter, we focus on the kind of error that arises in the context of computer
arithmetic, namely, representation and arithmetic error. In fact, we will limit our-
selves to the case of floating-point arithmetic, which is by far the most widely used.
Thus, the two errors we will concern ourselves with are the error that results from
representing a real number by a floating-point number and the error that results from
computing using floating-point operations instead of real operations. For a brief re-
view of floating-point number systems, the reader is invited to consult Appendix A.

Remark 1.1. The objective of this chapter is not so much an in-depth study of error
in floating-point arithmetic as an occasion to introduce some of the most important
concepts of error analysis in a context that should not pose important technical dif-
ficulty to the reader. In particular, we will introduce the concepts of residual, back-
ward and forward error, and condition number, which will be the central concepts
around which this book revolves. Together, these concepts will give solid concep-
tual grounds to the main theme of this book: A good numerical method gives you
nearly the right solution to nearly the right problem. �

1.2 Representation and Computation Error

Floating-point arithmetic does not operate on real numbers, but rather on floating-
point numbers. This generates two types of roundoff errors: representation error and
arithmetic error. The first type of error we encounter, representation error, comes
from the replacement of real numbers by floating-point numbers. If we let x ∈ R

and © : R → F be an operator for the standard rounding procedure to the nearest
floating-point number4 (see Appendix A), then the absolute representation error
Δx is

Δx =©x− x = x̂− x . (1.1)

(We will usually write x̂ for x+Δx.) If x �= 0, the relative representation error δx is
given by

δx =
Δx
x

=
x̂− x

x
. (1.2)

From those two definitions, we obtain the following useful equality if x �= 0:

x̂ = x+Δx = x(1+ δx) . (1.3)

The IEEE standard described in Appendix A guarantees that |δx|< μM , where μM

is half the machine epsilon εM . In this book, when no specification of which IEEE

4 In this chapter, we will always assume that x and the other real numbers are within the range of F
for the sake of simplicity. See Appendix A for an explanation of what happens outside this domain
(i.e., overflow and underflow).
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standard is given, it will by default be the IEEE-754 standard described in Ap-
pendix A. In a numerical computing environment such as MATLAB, εM = 2−52 ≈
2.2 ·10−16, so that μM ≈ 10−16.

The IEEE standard also guarantees that the floating-point sum of two floating-
point numbers, written ẑ = x̂⊕ ŷ,5 is the floating-point number nearest the real sum
z = x̂+ ŷ of the floating-point numbers; that is, it is guaranteed that

x̂⊕ ŷ =©(x̂+ ŷ) . (1.4)

In other words, the floating-point sum of two floating-point numbers is the correctly
rounded real sum. As explained in Appendix A, similar guarantees are given for
�,⊗, and �. Paralleling the definitions of Eqs. (1.1) and (1.2), we define the abso-
lute and relative computation errors (for addition) by

Δz = ẑ− z = (x̂⊕ ŷ)− (x̂+ ŷ) (1.5)

δ z =
Δz
z

=
(x̂⊕ ŷ)− (x̂+ ŷ)

x̂+ ŷ
. (1.6)

As in Eq. (1.3), we obtain

x̂⊕ ŷ = ẑ = z+Δz = z(1+ δ z) (1.7)

with |δ z| < μM . Moreover, the same relations hold for multiplication, subtraction,
and division. These facts give us an automatic way to transform expressions con-
taining elementary floating-point operations into expressions containing only real
quantities and operations.

Remark 1.2. Similar but not identical relationships hold for floating-point complex
number operations. If z = x+ iy, then a complex floating-point number is a pair of
real floating-point numbers, and the rules of arithmetic are inherited as usual. The
IEEE real floating-point guarantees discussed above translate into the following:

fl(z1 ± z2) = (z1 ± z2)(1+ δ ) |δ | ≤ μM

fl(z1z2) = (z1z2)(1+ δ ) |δ | ≤ √
2γ2

fl(z1/z2) = (z1/z2)(1+ δ ) |δ | ≤ √
2γ7,

(1.8)

where the γk notation [in which γk = kμM/(1− kμM)] is as defined in Eq. (1.18) below.
Division is done by a method that avoids unnecessary overflow but is slightly more
complicated than the usual method (see Example 4.15). Proofs of these are given
in Higham (2002). The bounds on the error are thus slightly larger for complex
operations but of essentially the same character. �

5 A note on notation: To make it clear that we are dealing with a floating-point counterpart of one
of the elementary arithmetical operation +,−,×, and ÷, we will circle them. When we will discuss
the floating-point counterparts of other operations, we will simply add ” fl,” such as fl(x ·y) for an
inner product.
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We can usually assume that
√

x also provides the correctly rounded result, but it
is not generally the case for other operations, such as ex, lnx, and the trigonometric
functions (see Muller et al. 2009).

To understand floating-point arithmetic better, it is important to verify whether
the standard axioms of fields are satisfied, or at least nearly satisfied. As it turns
out, many standard axioms do not hold, not even nearly, and neither do their more
direct consequences. Consider the following statements (for x̂, ŷ, ẑ ∈ F), which are
not always true in floating-point arithmetic:

1. Associative law of ⊕:

x̂⊕ (ŷ⊕ ẑ) = (x̂⊕ ŷ)⊕ ẑ (1.9)

2. Associative law of ⊗:

x̂⊗ (ŷ⊗ ẑ) = (x̂⊗ ŷ)⊗ ẑ (1.10)

3. Cancellation law (for x̂ �= 0):

x̂⊗ ŷ = x̂⊗ ẑ ⇒ ŷ = ẑ (1.11)

4. Distributive law:

x̂⊗ (ŷ⊕ ẑ) = (x̂⊗ ŷ)⊕ (x̂⊗ ẑ) (1.12)

5. Multiplication cancelling division:

x̂⊗ (ŷ� x̂) = ŷ. (1.13)

In general, the associative and distributive laws fail, but commutativity still holds,
as you will prove in Problem 1.15. As a result of these failures, mathematicians find
it very difficult to work directly in floating-point arithmetic—its algebraic structure
is weak and unfamiliar. However, thanks to the discussion above, we know how
to translate a problem involving floating-point operations into a problem involving
only real arithmetic on real quantities (x,Δx,δx, . . .). This approach allows us to
use the mathematical structures that we are familiar with in algebra and analysis.
So, instead of making our error analysis directly in floating-point arithmetic, we try
to work on a problem that is exactly (or nearly exactly) equivalent to the original
floating-point problem, by means of the study of perturbations of real (and even-
tually complex) quantities. This insight was first exploited systematically by J. H.
Wilkinson.

1.3 Error Accumulation and Catastrophic Cancellation

In applications, it is usually the case that a large number of operations have to
be done sequentially before results are obtained. In sequences of floating-point
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operations, arithmetic error may accumulate. The magnitude of the accumulating
error will often be negligible for well-tested algorithms.6 Nonetheless, it is im-
portant to be aware of the possibility of massive accumulating rounding error in
some cases. For instance, even if the IEEE standard guarantees that, for x,y ∈ F,
x⊕ y =©(x+ y),7 it does not guarantee that equations of the form

k⊕
i=1

xi =©
k

∑
i=1

xi , k > 2 (1.14)

hold true. This can potentially cause problems for the computation of sums, for
instance, for the computation of an inner product x · y = ∑k

i=1 xiyi. In this case, the
direct floating-point computation would be

k⊕
i=1

(xi ⊗ yi) , (1.15)

summed from left to right following the indices. How big can the error be? Let us
use our results from the last section in the case n = 3:

fl(x ·y) =((x1 ⊗ y1)⊕ (x2 ⊗ y2))⊕ (x3 ⊗ y3)

=
((

x1y1(1+ δ1)+ x2y2(1+ δ2)
)
(1+ δ3)+ x3y3(1+ δ4)

)
(1+ δ5)

=x1y1(1+ δ1)(1+ δ3)(1+ δ5) (1.16)

+ x2y2(1+ δ2)(1+ δ3)(1+ δ5)

+ x3y3(1+ δ4)(1+ δ5).

Note that the δis will not, in general, be identical; however, we need not pay atten-
tion to their particular values, since we are primarily interested in the fact that for
real arithmetic |δi| ≤ γ3 for all of them, and for complex arithmetic |δi| ≤ γ4 in the
θ -γ notation of Higham (2002) that we introduce below in order to clean up the
presentation.

Theorem 1.1. Consider a real floating-point system satisfying the IEEE standards,
so that |δi|< μM. Moreover, let ei =±1 and suppose that nμM < 1. Then

n

∏
i=1

(1+ δi)
ei = 1+θn , (1.17)

where

6 In fact, as explained by Higham (2002 chap. 1), errors can in some cases cancel each other out to
give surprisingly accurate results.
7 We are often only concerned with the arithmetic error resulting from implementing a given
algorithm in floating-point arithmetic. In this case, we will drop the “ ˆ ” symbol when it does not
result in confusion.



14 1 Computer Arithmetic and Fundamental Concepts of Computation

|θn| ≤ nμM

1− nμM
=: γn . (1.18)

Notice that, for double-precision floating-point arithmetic, the supposition nμM < 1
will almost always be satisfied. Then we can rewrite Eq. (1.16) in the real case as

fl(x ·y) = x1y1(1+θ3)+ x2y2(1+θ ′3)+ x3y3(1+θ2), (1.19)

where each |θ j| ≤ γ j, (and where θ3 and θ ′3 each represent three different rounding
errors) so that the computation error satisfies

|x ·y− fl(x ·y)| ≤ γ3
3

∑
i=1

|xiyi|= γ3|x|T |y| . (1.20)

This analysis obviously generalizes to the case of n-vectors, and a similar formula
can be deduced for complex vectors; as explained in the solution to (Higham 2002
Problem 3.7), all that needs to be done is to replace γn in the above with γn+2.
However, note that this is a worst-case analysis, which returns the maximum error
that can result from the mere satisfaction of the IEEE standard. In practice, it will
often be much better. In fact, if you use a built-in routine for inner products, the
accumulating error will be well below that (see, e.g., Problem 1.50).

Example 1.1. Another typical case in which the potential difficulty with sums poses
a problem is in the computation of the value of a function using a convergent se-
ries expansion and floating-point arithmetic. Consider the simple case of the expo-
nential function (from Forsythe 1970), f (x) = ex, which can be represented by the
uniformly convergent series

ex = 1+ x+
x2

2!
+

x3

3!
+

x4

4!
+ · · · . (1.21)

If we work in a floating-point system with a five-digit precision, we obtain the sum

e−5.5 ≈ 1.0000− 5.5000+15.125−27.730+38.129−41.942+38.446

− 30.208+ 20.768−12.692+6.9803−3.4902+1.5997+ · · ·
= 0.0026363 .

This is the sum of the first 25 terms, following which the first few digits do not
change, perhaps leading us to believe (incorrectly) that we have reached an accurate
result. But, in fact, e−5.5 ≈ 0.00408677, so that Δy = ŷ− y ≈ 0.0015. This might
not seem very much, when posed in absolute terms, but it corresponds to δy = 35%,
an enormous relative error! Note, however, that it would be within what would be
guaranteed by the IEEE standard for this number system. To decrease the magnitude
of the maximum rounding error, we would need to add precision to the number
system, thereby decreasing the magnitude of the machine epsilon. But as we will
see below, this would not save us either. We are better off to use a more accurate
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formula for e−x, and it turns out that reciprocating the series for ex works well for
this example. See Problem 1.7. �

There usually are excellent built-in algorithms for the exponential function. But a
similar situation could occur with the computation of values of some transcendental
function for which no built-in algorithm is provided, such as the Airy function. The
Airy functions (see Fig. 1.1) are solutions of the differential equation

..
x − tx = 0
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Fig. 1.1 The Airy function

with certain standard initial conditions. The first Airy function can be defined by the
integral

Ai(t) =
1
π

ˆ ∞

0
cos

(
1
3
ζ 3 + tζ

)
dζ . (1.22)

This function occurs often in physics. For instance, if we study the undamped mo-
tion of a weight attached to a Hookean spring that becomes linearly stiffer with time,
we get the equation of motion

..
x+ tx = 0, and so the motion is described by Ai(−t)

(Nagle et al. 2000). Similarly, the zeros of the Airy function play an important ge-
ometric role for the optics of the rainbow (Batterman 2002). And there are many
more physical contexts in which it arises. So, how are we to evaluate it? The Taylor
series for this function (which converges for all x) can be written as

Ai(t) = 3−2/3
∞

∑
n=0

t3n

9nn!Γ (n+ 2/3)
− 3−4/3

∞

∑
n=0

t3n+1

9nn!Γ (n+ 4/3)
(1.23)

(see Bender and Orszag (1978) and Chap. 3 of this book). As above, we might
consider naively adding the first few terms of the Taylor series using floating-point
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operations, until apparent convergence (i.e., until adding new terms does not change
the solution anymore because they are too small).

Of course, true convergence would require that, for every ε > 0, there existed
an N such that

∣∣∑M
k≥N+1 ak

∣∣< ε for any M > N, that is, that the sequence of partial
sums was a Cauchy sequence. There are many tests for convergence. Indeed, for this
Taylor series, we can easily use the Lagrange form of the remainder and an accurate
plot of the 31st derivative of the Airy function on this interval to establish that 30
terms in the series has an error less than 10−16 on the interval −12 ≤ z ≤ 4. Such
analysis is not always easy, though, and it is often tempting to let the machine decide
when to quit adding terms; and if the terms omitted could make no difference in
floating-point, then we may as well stop anyway. Of course, examples exist where
this approach fails, and some of them are explored in the exercises, but when the
convergence is rapid enough, as it is for this example, then this device should be
harmless though a bit inefficient.

We implement this in MATLAB in the routine below:

1 function [ Ai ] = AiTaylor( z )
2 %AiTaylor. Try to use (naively) the explicitly-known Taylor
3 % series about z=0 to evaluate Ai(z). Ignore rounding errors,
4 % overflow/underflow, NaN. The input z may be a vector of
5 % complex numbers.
6 %
7 % y = AiTaylor( z );
8 %
9 THREETWOTH = 3.0ˆ(-2/3);

10 THREEFOURTH = 3.0ˆ(-4/3);
11

12 Ai = zeros(size(z));
13 zsq = z.*z;
14 n = 0;
15 zpow = ones(size(z)); % zpow = zˆ(3n)
16

17 term = THREETWOTH*ones(size(z))/gamma(2/3);
18 % recall n! = gamma(n+1)
19 nxtAi = Ai + term;
20

21 % Convergence is deemed to occur when adding new terms makes no
difference numerically.

22 while any( nxtAi ˜= Ai ),
23 Ai = nxtAi;
24 zpow = zpow.*z; % zpow = zˆ(3n+1)
25 term = THREEFOURTH*zpow/9ˆn/factorial(n)/gamma(n+4/3);
26 nxtAi = Ai - term;
27 if all( nxtAi == Ai ), break, end;
28 Ai = nxtAi;
29 n = n + 1;
30 zpow = zpow.*zsq; % zpow = zˆ(3n)
31 term = THREETWOTH*zpow/9ˆn/factorial(n)/gamma(n+2/3);
32 nxtAi = Ai + term;
33 end
34

35 % We are done. If the loop exits, Ai = AiTaylor(z).
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Fig. 1.2 Error in a naive MATLAB implementation of the Taylor series computation of Ai

36 end

Using this algorithm, can one expect to have a high accuracy, with error close to
εM? Figure 1.2 displays the difference between the correct result (as computed with
MATLAB’s function airy) and the naive Taylor series approach. So, suppose we
want to use this algorithm to compute f (−12.82), a value near the 10th zero (count-
ing from the origin toward −∞); the absolute error is

Δy = |Ai(x)−AiTaylor(x)|= 0.002593213070374 , (1.24)

resulting in a relative error δy ≈ 0.277. The solution is only accurate to two digits!
Even though the series converges for all x, it is of little practical use. We examine
this example in more detail in Chap. 2 when discussing the evaluation of polynomial
functions.

The underlying phenomenon in the former examples, sometimes known as “the
hump phenomenon,” could also occur in a floating-point number system with higher
precision. What happened exactly? If we consider the magnitude of some of the
terms in the sum, we find out that they are much larger than the returned value
(and the real value). We observe that this series is an alternating series in which
the terms of large magnitude mostly cancel each other out. When such a phe-
nomenon occurs—a phenomenon that Lehmer coined catastrophic cancellation—
we are more likely to encounter erratic solutions. After all, how can we expect that
numbers such as 38.129, a number with only five significant figures, could be used
to accurately obtain the sixth or seventh figure in the answer? This explains why one
must be careful in cases involving catastrophic cancellation.
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Another famous example of catastrophic cancellation involves finding the roots
of a degree-2 polynomial ax2+bx+c using the quadratic equation (Forsythe 1966):

x∗± =
−b±√

b2 − 4ac
2a

.

If we take an example for which b2 � 4ac, catastrophic cancellation can occur.
Consider this example:

a = 1 ·10−2 b = 1 ·107 c = 1 ·10−2.

Such numbers could easily arise in practice. Now, a MATLAB computation returns
x∗+ = 0, which is obviously not a root of the polynomial. In this case, the answer
returned is 100% wrong, in relative terms. Further exploration of this example will
be made in Problem 1.18.

1.4 Perspectives on Error Analysis: Forward, Backward,
and Residual-Based

The problematic cases can provoke a feeling of insecurity. When are the results pro-
vided by actual computation satisfactory? Sometimes, it is quite difficult to know
intuitively whether it is the case. And how exactly should satisfaction be understood
and measured? Here, we provide the concepts that will warrant confidence or non-
confidence in some results based on an error analysis of the computational processes
involved.

Our starting point is that problems arising in scientific computation are such that
we typically do not compute the exact value y = ϕ(x), for the reference problem ϕ ,
but instead some other more convenient value ŷ. The value ŷ is not an exact solution
of the reference problem, so that many authors regard it as an approximate solu-
tion, that is, ŷ ≈ ϕ(x). However, we will regard the quantity ŷ as the exact solution
of a modified problem, that is, ŷ = ϕ̂(x), where ϕ̂ denotes the modified problem.
For reasons that will become clearer later, we also call some modified problems en-
gineered problems, because they arise on deliberately modifying ϕ in a way that
makes computation easier or at least possible. We thus get this general picture:

x y

ŷ

ϕ

Δy
ϕ̂

(1.25)
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Fig. 1.3 Zooming in near a polynomial that we expect to have a double zero at z = 1/2, we see
the curve getting “fuzzy” as we get closer because of computational error in the evaluation of the
polynomial

Example 1.2. Let us consider a simple case. If we have a simple problem of addition
of real numbers to do, instead of computing y = f (x1,x2) = x1 + x2, we might com-
pute ŷ = f̂ (x̂1, x̂2) = x̂1 ⊕ x̂2. Here, we regard the computation of the floating-point
sum as an engineered problem. In this case, we have

ŷ = x̂1 ⊕ x̂2 = x1(1+ δx1)⊕ x2(1+ δx2)

=
(
x1(1+ δx1)+ x2(1+ δx2)

)
(1+ δx3)

= (x1 + x2)

(
1+

x1δx1 + x2δx2

x1 + x2

)
(1+ δx3), (1.26)

and so we regard ŷ as the exact computation of the modified formula (1.26). �

Similarly, if the problem is to find the zeros of a polynomial, we can use vari-
ous methods that will give us so-called pseudozeros, which are usually not zeros.
Instead of regarding the pseudozeros as approximate solutions of the reference prob-
lem “find the zeros,” we regard those pseudozeros as the exact solution to the mod-
ified problem “find some zeros of nearby polynomials,” which is what we mean
by pseudozeros (see Chap. 2). We point out that evaluation near multiple zeros is
especially sensitive to computational error; see Figs. 1.3 and 1.4.

If the problem is to find a vector x such that Ax = b, given a matrix A and a
vector b, we can use various methods that will give us a vector that almost satisfies
the equation, but not quite. Then we can regard this vector as the solution for a
matrix with slightly modified entries (see Chap. 4). The whole book is about cases
of this sort arising from all branches of mathematics.
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Fig. 1.4 Zooming in even closer, we see the curve broken up into discrete samples because of
representation error of the computed values of the polynomial. It has also become apparent that
the double zero has split to become two nearby simple zeros, each about

√μM away from the
reference zero z = 1/2. Exactly which simple zeros best represent the zeros of “the” computational
polynomial is not clear-cut

What is so fruitful about this seemingly trivial change in the way the problems
and solutions are discussed? Once this change of perspective is adopted, we do
not focus so much on the question, “How far is the computed solution from the
exact one?” (i.e., in diagram 1.25, how big is Δy?), but rather on the question,
“How closely related are the original problem and the engineered problem?” (i.e., in
diagram 1.25, how closely related are ϕ and ϕ̂?). If the modified problem behaves
closely like the reference problem, we will say it is a nearby problem.

The quantity labeled Δy in diagram 1.25 is called the forward error, which is
defined by

Δy = y− ŷ = ϕ(x)− ϕ̂(x) . (1.27)

We can, of course, also introduce the relative forward error by dividing by y, pro-
vided y �= 0. In certain contexts, the forward error is in some sense the key quantity
that we want to control when designing algorithms to solve a problem. Then, a very
important task is to carry a forward error analysis; the task of such an analysis is to
put an upper bound on ‖Δy‖ = ‖ϕ(x)− ϕ̂(x)‖. However, as we will see, there are
also many contexts in which the control of the forward error is not so crucial.

Even in contexts requiring a control of the forward error, direct forward error
analysis will play a very limited role in our analyses, for a very simple reason. We
engineer problems and algorithms because we don’t know or don’t have efficient
means of computing the solution of the reference problem. But directly computing
the forward error involves solving a computational problem of type C2 (as defined
on p. 8), which is often unrealistic. As a result, scientific computation presents us
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situations in which we usually don’t know or don’t have efficient ways of comput-
ing the forward error. Somehow, we need a more manageable concept that will also
reveal if our computed solutions are good. Fortunately, there’s another type of a
priori error analysis—that is, antecedent to actual computation—one can carry out,
namely, backward error analysis. We explain the perspective it provides in the next
subsection. Then, in Sects. 1.4.2 and 1.4.3, we show how to supplement a backward
error analysis with the notions of condition and residual in order to obtain an infor-
mative assessment of the forward error. Finally, in the next section, we will provide
definitions for the stability of algorithms in these terms.

1.4.1 Backward Error Analysis

Let us generalize our concept of error to include any type of error, whether it comes
from data error, measurement error, rounding error, truncation error, discretization
error, and so forth. In effect, the success of backward error analysis comes from
the fact that it treats all types of errors (physical, experimental, representational,
and computational) on an equal footing. Thus, x̂ will be some approximation of
x, and Δx will be some absolute error that may be or may not be the rounding
error. Similarly, in what follows, δx will be the relative error, that may or may not
be the relative rounding error. The error terms will accordingly be understood as
perturbations of the initially specified data. So, in a backward error analysis, if we
consider the problem y = ϕ(x), we will in general consider all the values of the data
x̂ = x(1+δx) satisfying a condition |δx|< ε , for some ε prescribed by the modeling
context,8 and not only the rounding errors determined by the real number x and the
floating-point system. In effect, this change of perspective shifts our interest from
particular values of the input data to sets of input data satisfying certain inequalities.

Now, if we consider diagram 1.25 again, we could ask: Can we find a pertur-
bation of x that would have effects on ϕ comparable to the effect of changing the
reference problemϕ by the engineered problem ϕ̂? Formally, we are asking: Can we
find a Δx such that ϕ(x+Δx) = ϕ̂(x)? The smallest such Δx is what is called the
backward error. For input spaces whose elements are numbers, vectors, matrices,
functions, and the like, we use norms as usual to determine what Δx is the back-
ward error.9 For other types of mixed inputs, we might have to use a set of norms
for each component of the input. In case the reader needs it, Appendix C reviews
basic facts about norms. The resulting general picture is illustrated in Fig. 1.5 (see,
e.g., Higham 2002), and we see that this analysis amounts to reflecting the forward
error back into the backward error. In effect, the question that is central to backward
error analysis is, when we modified the reference problem ϕ to get the engineered
problem ϕ̂ , for what set of data have we actually solved the problem ϕ? If solving
the problem ϕ̂(x) amounts to having solved the problem ϕ(x+Δx) for a Δx smaller

8 Note that, since modeling contexts usually include the proper choice of scale, the value of ε will
usually be given in relative rather than absolute terms.
9 The choice of norm may be a delicate issue, but we will leave it aside for the moment.
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Fig. 1.5 Backward error analysis: the general picture. (a) Reflecting back the backward error:
finding maps Δ . (b) Input and output space in a backward error analysis

than the perturbations inherent in the modeling context, then our solution ŷ must be
considered completely satisfactory.10

Adopting this approach, we benefit from the possibility of using well-known
perturbation methods to talk about different problems and functions:

The effects of errors in the data are generally easier to understand than the effects of round-
ing errors committed during a computation, because data errors can be analyzed using per-
turbation theory for the problem at hand, while intermediate rounding errors require an
analysis specific to the given method. (Higham 2002 6)

[T]he process of bounding the backward error of a computed solution is called backward
error analysis, and its motivation is twofold. First, it interprets rounding errors as being
equivalent to perturbations in the data. The data frequently contain uncertainties due to pre-
vious computations or errors committed in storing numbers on the computer. If the back-
ward error is no larger than these uncertainties, then the computed solution can hardly be
criticized—it may be the solution we are seeking, for all we know. The second attraction of
backward error analysis is that it reduces the question of bounding or estimating the forward
error to perturbation theory, which for many problems is well understood (and only to be
developed once, for the given problem, and not for each method). (Higham 2002 7–8)

One can examine the effect of perturbations of the data using basic methods we
know from calculus, various orders of perturbation theory, and the general methods
used for the study of dynamical systems.

Example 1.3. Consider this (almost trivial!) example using only first-year calculus.
Take the polynomial p(x) = 17x3 + 11x2 + 2; if there is a measurement uncertainty
or a perturbation of the argument x, then how big will the effect be? One finds that

Δy = p(x+Δx)− p(x) = 51x2Δx+ 51x(Δx)2 + 17(Δx)3 + 22xΔx+ 11(Δx)2.

Now, since typically |Δx| � 1, we can ignore the higher degrees of Δx, so that

Δy
.
= 51x2Δx .

Consequently, if x = 1± 0.1, we get y
.
= 35± 5.1; the perturbation in the input data

has been magnified by about 50, and that would get worse if x were bigger. Also,

10 There are cases, however, where finding such a Δx will not be possible. See Higham (2002
p. 71).
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we can see from this analysis that if we want to know y to 5 decimal places, we will
in general need an input accurate to 7 decimal places. �

Let us consider an example showing concretely how to reflect back the forward
error into the backward error, in the context of floating-point arithmetic.

Example 1.4. Suppose we want to compute y = f (x1,x2) = x3
1 − x3

2 for the input
x = [12.5,0.333]. For the sake of the example, suppose we have to use a computer
working with a floating-point arithmetic with three-digit precision. So we will re-
ally compute ŷ = ((x1 ⊗ x1)⊗ x1)� ((x2 ⊗ x2)⊗ x2). We assume that x is a pair of
floating-point numbers, so there is no representation error. The result of the com-
putation is ŷ = 1950, and the exact answer is y = 1953.014111, leaving us with a
forward error Δy = 3.014111 (or, in relative terms, δy = 3.014111/1953.014111 ≈ 1.5%).
In a backward error analysis, we want to reflect the arithmetic (forward) error back
in the data; that is, we need to find some Δx1 and Δx2 such that

ŷ = (12.5+ δx1)
3 − (0.333+ δx2)

3

A solution is Δx ≈ [0.0064,0] (whereby δx1 = 0.05%). But as one sees, the condi-
tion determines an infinite set of real solutions S, with real and complex elements.
In such cases, where the entire set of solutions can be characterized, it is possible to
find particular solutions, such as the solution that would minimize the 2-norm of the
vector Δx. See the discussions in Chaps. 4 and 6. �

Most of the time, we will want to use Theorem 1.1 to express the results of
our backward error analyses. Consider again the case of the inner product from
Eq. (1.19). The analysis we did for the three-dimensional case can be interpreted
as showing that we have exactly evaluated the product

(
x+ Δx

) · y, where each
perturbation is componentwise relatively small given by some θn (we could also
have reflected back the error in y). Specifically we have Δx1 = θ3x1, Δx2 = θ3x2,
and Δx3 = θ2x3. Thus, we have

fl(x ·y) = (x+Δx
) ·y ,

with |Δx| ≤ γn|x|. Thus, the floating-point inner product exactly solves the reference
problem for slightly perturbed data (slightly more in the case of complex data). As
a result:

Theorem 1.2. The floating-point inner product of two n-vectors is backward stable.

Note that the order of summation does not matter for this result to obtain. However,
carefully choosing the order of summation will have an impact on the forward error.

1.4.2 Condition of Problems

We have seen how we can reflect back the forward error in the backward error. Now
the question we ask is: What is the relationship between the forward and the back-
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ward error? In fact, in modeling contexts, we are not really after an expression or a
value for the forward error per se. The only reason for which we want to estimate
the forward error is to ascertain whether it is smaller than a certain user-defined
“tolerance,” prescribed by the modeling context. To do so, all you need is to find
how the perturbations of the input data (the so-called backward error we discussed)
are magnified by the reference problem. Thus, the relationship we seek lies in a
problem-specific coefficient of magnification, namely, the sensitivity of the solution
to perturbations in the data, which we call the conditioning of the problem. The
conditioning of a problem is measured by the condition number. As for the errors,
the condition number can be defined in relative and absolute terms, and it can be
measured normwise or componentwise.

The normwise relative condition number κrel is the maximum of the ratio of the
relative change in the solution to the relative change in input, which is expressed by

κrel = sup
x

‖δy‖
‖δx‖ = sup

x

‖Δy/y‖
‖Δx/x‖ = sup

x

‖(ϕ(x̂)−ϕ(x))/ϕ(x)‖
‖x̂− x/x‖

for some norm ‖ · ‖. As a result, we obtain the relation

‖δy‖ ≤ κrel‖δx‖ (1.28)

between the forward and the backward error. Knowing the backward error and the
conditioning thus gives us an upper bound on the forward error.

In the same way, we can define the normwise absolute condition number κabs as
supx

‖Δy‖/‖Δx‖, thus obtaining the relation

‖Δy‖ ≤ κabs‖Δx‖ . (1.29)

If κ has a moderate size, we say that the problem is well-conditioned. Otherwise,
we say that the problem is ill-conditioned.11 Consequently, even for a very good
algorithm, the approximate solution to an ill-conditioned problem may have a large
forward error.12 It is important to observe that this fact is totally independent of any
method used to compute ϕ . What matters is the existence of κ and what its size is.

Suppose that our problem is a scalar function. It is convenient to observe imme-
diately that, for a sufficiently differentiable problem f , we can get an approximation
of κ in terms of derivatives. Since

lim
Δx→0

δy
δx

= lim
Δx→0

Δy
Δx

· x
y
= lim
Δx→0

f (x+Δx)− f (x)
Δx

x
f (x)

=
x f ′(x)

f (x)
,

the approximation of the condition number

κrel ≈ |x|| f ′(x)|
| f (x)| (1.30)

11 When κ is unbounded, the problem is sometimes said to be ill-posed.
12 Note the “may,” which means that backward error analysis often provides pessimistic upper
bounds on the forward error.
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will provide a sufficiently good measure of the conditioning of a problem for small
Δx. In the absolute case, we have κabs ≈ | f ′(x)|. This approximation will become
useful in later chapters, and it will be one of our main tools in Chap. 3. If f is a
multivariable function, the derivative f ′(x) will be the Jacobian matrix

Jf(x1,x2, . . . ,xn) =
[
∂ f/∂x1

∂ f/∂x2 · · · ∂ f/∂xn

]
,

and the norm used for the computation of the condition number will be the in-
duced matrix norm ‖J‖ = max‖x‖=1‖Jx‖. In effect, this approximation amounts to
ignoring the terms O(Δx2) in the Taylor expansion of f (x+Δx)− f (x); using this
approximation will thus result in a linear error analysis.

Though normwise condition numbers are convenient in many cases, it is often
important to look at the internal structure of the arguments of the problem, for ex-
ample, the dependencies between the entries of a matrix or between the components
of a function vector. In such cases, it is better to use a componentwise analysis of
conditioning. The relative componentwise condition number of the problem ϕ is the
smallest number κrel ≥ 0 such that

max
i

| fi(x̂)− fi(x)|
| fi(x)|

.≤ krel max
i

|x̂i − xi|
|xi| , x̂ → x ,

where
.≤ indicate that the inequality holds in the limit Δx → 0 (so, again, it holds

for a linear error analysis). If the condition number is in this last form, we get a
convenient theorem:

Theorem 1.3 (Deuflhard and Hohmann (2003)). The condition number is submul-
tiplicative; that is,

κrel(g ◦ h,x)≤ κrel(g,h(x)) ·κrel(h,x) .

In other words, the condition number of a composed problem g ◦ h evaluated near
x is smaller than or equal to the product of the condition number of the problem h
evaluated at x by the condition number of the problem g evaluated at h(x). �

Consider three simple examples of condition number.

Example 1.5. Let us take the identity function f (x) = x near x = a (this is, of course,
a trivial example). As one would expect, we get the absolute condition number

κabs = sup
| f (a+Δa)− f (a)|

|Δa| =
|a+Δa− a|

|Δa| = 1 . (1.31)

As a result, we get the relation |Δy| ≤ |Δx| between the forward and the backward
error. κabs surely has moderate size in any context, since it does not amplify the
input error. �

Example 1.6. Now, consider addition, f (a,b) = a+ b. The derivative of f is

f ′(a,b) =
[
∂ f/∂a ∂ f/∂b

]
=
[

1 1
]
.
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Suppose we use the 1-norm on the Jacobian matrix. Then the condition numbers are
κabs = ‖ f ′(a,b)‖1 = ‖[1 1

]‖1 = 2 and

κrel =

∥∥∥∥[a
b

]∥∥∥∥
1

‖a+ b‖1

∥∥[1 1
]∥∥

1 = 2
|a|+ |b|
|a+ b| . (1.32)

(Since the function is linear, the approximation of the definitions is an equality.)
Accordingly, if |a+ b| � |a|+ |b|, we consider the problem to be ill-conditioned. �

Example 1.7. Consider the problem

a
ϕ−−→ {x | x2 − a = 0} ;

that is, evaluate x, where x2 − a = 0. Take the positive root. Now here x =
√

a, so

|δx|=
∣∣∣∣ f (a+Δa)− f (a)

f (a)

∣∣∣∣ .≤
∣∣∣∣a f ′(a)

f (a)

∣∣∣∣ Δa
a

=
1
2
δa
a

(1.33)

Thus, κ = 1
2 is of moderate size, in a relative sense. However, note that in the ab-

solute sense, the condition number is
(√

a+Δa+
√

a
)−1

, which can be arbitrarily
large as a → 0. �

We will see many more examples throughout the book. Moreover, many other ex-
amples are to be found in Deuflhard and Hohmann (2003).

1.4.3 Residual-Based A Posteriori Error Analysis

The key concept we exploit in this book is the residual. For a given problem ϕ , the
image y can have many forms. For example, if the reference problem ϕ consists in
finding the roots of the equation ξ 2+xξ+2= 0, then for each value of x, the object
y will be a set containing two numbers satisfying ξ 2 + xξ + 2 = 0; that is,

y =
{
ξ
∣∣ ξ 2 + xξ + 2 = 0

}
. (1.34)

In general, we can then define a problem to be a map

x
ϕ−−−−→ {ξ | φ(x,ξ ) = 0

}
, (1.35)

where φ(x,ξ ) is some function of the input x and the output ξ . The function φ(x,ξ )
is called the defining function and the equation φ(x,ξ ) = 0 is called the defining
equation of the problem. On that basis, we can introduce the very important con-
cept of residual: Given the reference problem ϕ—whose value at x is a y such that
the defining equation φ(x,y) = 0 is satisfied—and an engineered problem ϕ̂ , the
residual r is defined by
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r = φ(x, ŷ) . (1.36)

As we see, we obtain the residual by substituting the computed value ŷ (i.e., the exact
solution of the engineered problem) for y as the second argument of the defining
function.

Let us consider some examples in which we apply our concept of residual to
various kinds of problems.

Example 1.8. The reference problem consists in finding the roots of a2x2 + a1x+
a0 = 0. The corresponding map is ϕ(a) = {x |φ(a,x) = 0}, where the defining equa-
tion is φ(a,x) = a2x2 + a1x+ a0 = 0. Our engineered problem ϕ̂ could consist in
computing the roots to three correct places. With the resulting “pseudozeros” x̂, we
can then easily compute the residual r = a2x̂2 +a1x̂+a0. We revisit this problem in
Chap. 3. �

Example 1.9. The reference problem consists in finding a vector x such that Ax = b,
for a nonsingular matrix A. The corresponding map is ϕ(A,b)={x |φ(A,b,x)=0},
where the defining equation is φ(A,b,x) = b−Ax = 0. In this case, the set is a
singleton since there’s only one such x. Our engineered problem could consist in
using Gaussian elimination in five-digit floating-point arithmetic. With the resulting
solution x̂, we can compute the residual r = b −Ax̂. We revisit this problem in
Chap. 4. �

Example 1.10. The reference problem consists in finding a function x(t) on the in-
terval 0 < t ≤ 1 such that

.
x(t) = f (t,x(t)) = t2 + x(t)− 1

10
x4(t) (1.37)

and x(0) = 0. The corresponding map is

ϕ
(
x(0), f (t,x)

)
= {x(t) |φ(x(0), f (t,x),x(t)) = 0}, (1.38)

where the defining equation is

φ
(
x(0), f (t,x),x(t)

)
=

.
x− f (t,x) = 0, (1.39)

together with x(0) = 0 (on the given interval). In this case, if the solution exists and
is unique (as happens when f is Lipschitz), the set is a singleton since there’s only
one such x(t). Our engineered problem could consist in using, say, a continuous
Runge–Kutta method. With the resulting computed solution ẑ(t), we can compute

the residual r =
.
ẑ− f (t, ẑ). We revisit this theme in Chaps. 12 and 13. �

Many more examples of different kinds could be included, but this should suffi-
ciently illustrate the idea for now.

In cases similar to Example 1.10, we can rearrange the equation r =
.
x̂− f (t, x̂) to

have
.
x̂ = f (t, x̂)+ r, so that the residual is itself a perturbation (or a backward error)
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of the function defining the integral operator for our initial value problem. The new
“perturbed” problem is

ϕ̃(x(0), f (t,x)+ r(t,x)) = {x(t) | φ̃(x(0), f (t,x)+ r(t,x),x(t)) = 0}, (1.40)

and we observe that our computed solution x̂(t) is an exact solution of this problem.
When such a construction is possible, we say that ϕ̃ is a reverse-engineered problem.

The remarkable usefulness of the residual comes from the fact that in scientific
computation we normally choose ϕ̂ so that we can compute it efficiently. Conse-
quently, even if finding the solution of ϕ̂ is a problem of type C2 (as defined on p. 8),
it is normally not too computationally difficult because we engineered the problem
specifically to guarantee it is so. All that remains to do to compute the residual is
the evaluation of φ(x, ŷ), a simpler problem of type C1. Thus, the computational
difficulty of computing the residual is much less than that of the forward error. Ac-
cordingly, we can usually compute the residual efficiently, thereby getting a measure
of the quality of our solution. Consequently, it is simpler to reverse-engineer a prob-
lem by reflecting back the residual into the backward error than by reflecting back
the forward error.

Thus, the efficient computation of the residual allows us to gain important in-
formation concerning the reliability of a method on the grounds of what we have
managed to compute with this method. In this context, we do not need to know
as much about the intrinsic properties of a problem; we can use our computation
method a posteriori to replace an a priori analysis of the reliability of the method.
This allows us to use a feedback-control method to develop an adaptive procedure
that controls the quality of our solution “as we go.” This shows why a posteriori
error estimation is tremendously advantageous in practice.

The residual-based a posteriori error analysis that we emphasize in this book thus
proceeds as follows:

1. For the problem ϕ , use an engineered version of the problem to compute the
value ŷ = ϕ̂(x).

2. Compute the residual r = φ(x, ŷ).
3. Use the defining equation and the computed value of the residual to obtain an

estimate of the backward error. In effect, this amounts to (sometimes only ap-
proximately) reflecting back the residual as a perturbation of the input data.

4. Draw conclusions about the satisfactoriness of the solution in one of two ways:

a. If you do not require an assessment of the forward error, but only need to
know that you have solved the problem for small enough perturbation Δx,
conclude that your solution is satisfactory if the backward error (reflected
back from the residual) is small enough.

b. If you require an assessment of the forward error, examine the condition of
the problem. If the problem is well-conditioned and the computed solution
amounts to a small backward error, then conclude that your solution is satis-
factory.

We still have to add some more concepts regarding the stability of algorithms, and
we will do so in the next section.
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But before, it is important not to mislead the reader into thinking that this type of
error analysis solves all the problems of computational applied mathematics! There
are cases involving a complex interplay of quantitative and qualitative properties
that prove to be challenging. This reminds us of the following:

A useful backward error-analysis is an explanation, not an excuse, for what may turn out to
be an extremely incorrect result. The explanation seems at times merely a way to blame a
bad result upon the data regardless of whether the data deserves a good result. (Kahan 2009)

Thus, even if the perspective on backward error analysis presented here is extremely
fruitful, it does not cure all evils. Moreover, there are cases in which it will not even
be possible to use the backward analysis framework. Here is a simple example:

Example 1.11. The outer product A = xyT multiplies a column vector by a row vec-
tor to produce a rank-1 matrix. In floating-point arithmetic, the entries of the com-
puted matrix Â will be âi j = xi ⊗ y j = xiy j(1+ δ ) such that |δ | ≤ μM . However, it
is not possible to find perturbations Δx and Δy such that

Â = (x+Δx)(y+Δy)T .

See Problem 1.19. Consequently, it certainly cannot hold for small perturbations!
But then, we cannot use backward error analysis to analyze this problem. �

1.5 Numerical Properties of Algorithms

An algorithm to solve a problem is a complete specification of how, exactly, to solve
it: each step must be unambiguously defined in terms of known operations, and there
must only be a finite number of steps. Algorithms to solve a problem ϕ correspond
to the engineered problems ϕ̂ . There are many variants on the definition of an algo-
rithm in the literature, and we will use the term loosely here. As opposed to the more
restrictive definitions, we will count as algorithms methods that may fail to return
the correct answer, or perhaps fail to return at all, and sometimes the method may
be designed to use random numbers, thus failing to be deterministic. The key point
for us is that the algorithms allow us to do computation with satisfactory results,
this being understood from the point of view of mathematical tractability discussed
before.

Whether ϕ̂(x) is satisfactory can be understood in different ways. In the literature,
the algorithm-specific aspect of satisfaction is developed in terms of the numerical
properties known as numerical stability, or just stability for short. Unfortunately
“stability” is perhaps the most overused word in applied mathematics, and there is
a particularly unfortunate clash with the use of the word in the theory of dynamical
systems. In the terms introduced here, the concept of stability used in dynamical
systems—which is a property of problems, not numerical algorithms—correspond
to “well-conditioning.” For algorithms, “stability” refers to the fact that an algorithm
returns results that are about as accurate as the problem and the resources available
allow.
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Remark 1.3. The takeaway message is that, following our terminology, well-condi-
tioning and ill-conditioning are properties of problems, while stability and instabil-
ity are properties of algorithms. �

The first sense of numerical stability corresponds to the forward analysis point of
view: an algorithm ϕ̂ is forward stable if it returns a solution y = ϕ̂(x) with a small
forward error Δy. Note that, if a problem is ill-conditioned, there will typically not
be any forward stable algorithm to solve it. Nonetheless, as we explained earlier, the
solution can still be satisfactory from the backward error point of view. This leads
us to define backward stability:

Definition 1.1. An algorithm ϕ̂ engineered to compute y = ϕ(x) is backward stable
if, for any x, there is a sufficiently small Δx such that

ŷ = f (x+Δx) , ‖Δx‖ ≤ ε .

As mentioned before, what is considered “small,” that is, how big ε is, is prescribed
by the modeling context and, accordingly, is context-dependent. �
For example, the IEEE standard guarantees that x⊕ y = x(1+δx)+ y(1+δy), with
|δx|, |δy| ≤ μM. Hence, the IEEE standard in effect guarantees that the algorithms
for basic floating-point operations are backward stable.

Note that an algorithm returning values with large forward errors can be back-
ward stable. This happens particularly when we are dealing with ill-conditioned
problems. As Higham (2002 p. 35) puts it:

From our algorithm we cannot expect to accomplish more than from the problem itself.
Therefore we are happy when its error f̂ (x)− f (x) lies within reasonable bounds of the
error f (x̂)− f (x) caused by the input error.

On that basis, we can introduce the concept of stability that we will use the most.
It guarantees that we obtain theoretically informative solutions, while at the same
time being very convenient in practice. Often, we only establish that ŷ+Δy = f (x+
Δx) for some small Δx and Δy. We do so either for convenience of proof, or because
of theoretical limitations, or because we are implementing an adaptive algorithm
as we described in Sect. 1.4.3. Nonetheless, this is often sufficient from the point
of view of error analysis. This leads us to the following definition (de Jong 1977;
Higham 2002):

x

x+Dx

y= (x)

ŷ = ˆ (x)

(x+Dx)

≤ h ≤ e

Dy

x

x+Dx

y= (x)

ŷ= (x+Dx)

≤ ≤≈

j

j
j

j

j

h e

a b

Fig. 1.6 Stability in the mixed forward–backward sense. (a) Representation as a commutative
diagram (Higham 2002). (b) Representation as an “approximately” commuting diagram (Robidoux
2002). We can replace ‘≈’ by the order to which the approximation holds
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Definition 1.2. An algorithm ϕ̂ engineered to compute y = ϕ(x) is stable in the
mixed forward–backward sense if, for any x, there are sufficiently small Δx and Δy
such that

ŷ+Δy = f (x+Δx) , ‖Δy‖ ≤ ε‖y‖ , ‖Δx‖ ≤ η‖x‖ . (1.41)

See Fig. 1.6. If this case, Eq. (1.41) is interpreted as saying that ŷ is almost the right
answer for almost the right data or, alternatively, that the algorithm ϕ̂ nearly solves
the right problem for nearly the right data. �

In most cases, when we will say that an algorithm is numerically stable (or just
stable for short), we will mean it in the mixed forward–backward sense of (1.41).

The solution to a problem ϕ(x) is often obtained by replacing ϕ by a finite se-
quence of simpler problems ϕ1,ϕ2, . . . ,ϕn. In effect, given that the domains and
codomains of the simpler subproblems match, this amount to saying that

ϕ(x) = ϕn ◦ϕn−1 ◦ · · · ◦ϕ2 ◦ϕ1(x) . (1.42)

As we see, this is just composition of maps. For example, if the problemϕ(A,b) is to
solve the linear equation Ax = b for x, we might use the LU factoring (i.e., A = LU
for a lower-triangular matrix L and an upper-triangular matrix U) factorization to
obtain the two equations

Ly = Pb (1.43)

Ux = y . (1.44)

We have then decomposed x = ϕ(A,b) into two problems; the first problem y =
ϕ1(L,P,b) consists in the simple task of solving a lower-triangular system and
the second problem x = ϕ2(U,y) consists in the simple task of solving an upper-
triangular system (see Chap. 4).

Remark 1.4. Such decompositions are hardly unique. A good choice ofϕ1,ϕ2, . . . ,ϕn

may lead to a good algorithm for solving ϕ in this way: Solve ϕ1(x) using its stable
algorithm to get ŷ1, then solve ϕ2(ŷ1) using its stable algorithm to get ŷ2, and so on.
If the subproblems ϕ1 and ϕ2 are also well-conditioned, by Theorem 1.3, it follows
that the resulting composed numerical algorithm for ϕ is numerically stable. (The
same principle can be use as a very accurate rule of thumb for the formulations of
the condition number not covered by Theorem 1.3). �

The converse statement is also very useful: Decomposing a well-conditioned ϕ into
two ill-conditioned subproblems ϕ = ϕ2 ◦ϕ1 will usually result in an unstable al-
gorithm for ϕ , even if stable algorithms are available for each of the subproblems
(unless, as seems unlikely, the errors in ϕ̂1 and ϕ̂2 cancel each other out).

To a large extent, any numerical methods book is about decomposing problems
into subproblems, and examining the correct numerical strategies to solve the sub-
problems. In fact, if you take any problem in applied mathematics, chances are that
it will involve as subproblems things such as evaluating functions, finding roots of
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polynomials, solving linear systems, finding eigenvalues, interpolating function val-
ues, and so on. Thus, in each chapter, a small number of “simple” problems will be
examined, so that you can construct the composed algorithm that is appropriate for
your own composed problems.

1.6 Complexity and Cost of Algorithms

So far, we have focused on the accuracy and stability of numerical methods. In fact,
most of the content of this book will focus more on accuracy and stability than
on cost of algorithms and complexity of problems. Nonetheless, we will at times
need to address issues of complexity. To evaluate the cost of some method, we need
two elements: (1) a count of the number of elementary operations required by its
execution and (2) a measure of the amount of resources required by each type of el-
ementary operation, or group of operations. Following the traditional approach, we
will only include the first element in our discussion.13 Thus, when we will discuss
the cost of algorithms, we will really be discussing the number of floating-point op-
erations (flops14) required for the termination of an algorithm. Moreover, following
a common convention, we will consider one flop to be one addition, one multiplica-
tion, and one comparison.

Example 1.12. If we take two vectors x,y ∈ Rn, the inner product

x ·y =
n

∑
i=1

xiyi = x1y1 + x2y2 + · · ·+ xnyn

requires n flops. Thus, the multiplication of two arbitrary n×n matrices requires n3

flops, since each entry is computed by an inner product.
Note that the order of operations may affect the flop count. If we also take z∈Rn,

there will be a difference between (xyT )z and x(yT z). In the former case, the first
operation is an outer product forming an n× n matrix, which require n2 flops. It
is followed by a matrix–vector multiplication; this is equivalent to n inner prod-
ucts, each requiring n flops. Thus, the cost is n2 + n2 = 2n2. However, if we in-
stead compute x(yT z), the first operation is a scalar product (n flops) and the second
operation is a multiplication of a vector by a scalar (n flops), which together require
2n flops. �

Note that sometimes the vectors, matrices, or other objects on which we operate will
have a particular structure that we will be able to exploit to produce more efficient
algorithms. The computational complexity of a problem is the cost of the algorithm

13 The second element, particularly memory resources, is very relevant in practice today; in fact,
possibly more relevant than the cost of floating-point, since one can demonstrate that computation
time can sometimes be accurately be accurately estimated from memory requirements alone.
14 In computer science, the acronym “flops” is sometimes used to denote flop/s, or floating-point
operations per second. Here, the “s” only marks the plural of “flop.”
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solving this problem with the least cost, that is, what it would require to solve the
problem using the cheapest method.

Typically, we will not be too concerned with the exact flop count. Rather, we
will only provide an order of magnitude determined by the highest-order terms of
the expressions for the flop count. Thus, if an algorithm taking an input of size n
requires n2/2+n+2 flops, we will simply say that its cost is n2/2+O(n) flops, or even
just O(n2) flops. This way of describing cost is achieved by means of asymptotic
notation. The asymptotic notation uses the symbols Θ ,O,Ω ,o and ω to describe
the comparative rate of growth of functions of n as n becomes large. In this book,
however, we will only use the big-O and small-o notation, which are defined as
follows:

f (n) = O(g(n)) iff ∃c > 0∃n0∀n ≥ n0 such that 0 ≤ f (n)≤ c ·g(n)
f (n) = o(g(n)) iff ∀c > 0∃n0∀n ≥ n0 such that 0 ≤ f (n)≤ c ·g(n).

(1.45)

Intuitively, a function f (n) is O(g(n)) when its rate of growth with respect to n is the
same or less than the rate of growth of g(n), as depicted in Fig. 1.7 (in other words,
limn→∞ f (n)/g(n) is bounded). A function f (n) is o(g(n)) in the same circumstances,
except that the rate of growth of f (n) must be strictly less than g(n)’s (in other
words, limn→∞ f (n)/g(n) is zero). Thus, g(n) is an asymptotic upper bound for f (n).
However, with the small-o notation, the bound is not tight.

nn0

f(n)

c ·g(n)

Fig. 1.7 Asymptotic notation: f (n) = O(g(n)) if, for some c, cg(n) asymptotically bounds f (n)
above as n → ∞

In our context, if we say that the cost of a method is O(g(n)), we mean that as n
becomes large, the number of flops required will be at worst g(n) times a constant.
Some standard terminology to qualify cost growth, from smaller to larger growth
rate, in introduced in Table 1.1. We will also use this notation when writing sums.
See Sect. 2.8.
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This notation is also used to discuss accuracy, and work-accuracy relationships.
We will often want to analyze the cost of an algorithm as a function of a parameter,
typically a dimension, say n, or a grid size, say h. The interesting limits are as the
dimension goes to infinity or as the grid size goes to zero. The residual or backward
error will typically go to zero as some power of h or inverse power of n (sometimes
faster, in which case we say the convergence is spectral). If we have the error be-
having as ‖Δ‖ = O(hp) as h → 0, we say the method has order p, and similarly if
‖Δ‖ = O(n−p). The asymptotic O-symbol hides a constant that may or may not be
important.

Table 1.1 Common growth rates

The cost f (n) is The growth rate if the cost is
O(1) Constant
O(logn) Logarithmic
O(n) Linear
O(n logn) Quasilinear
O(n2) Quadratic
O(nk), k = 2,3, . . . Polynomial
O(cn) Exponential

One useful trick for measuring the rate of convergence of a problem is to use a
Fibonacci sequence15 of dimension parameters, measure the errors for each dimen-
sion (this is typically easy if the error is a backward error), and plot the results on a
log–log graph. This is called a work-accuracy diagram because the work increases
as n increases (usually as a power of n itself) and the slope of the line of best fit then
estimates p. We do this at several places in the book.

1.7 Notes and References

For a presentation of the classical model of computation, see, for instance, Davis
(1982), Brassard and Bratley (1996), Pour-El and Richards (1989), and for a specific
discussion of what is “truly feasible,” see Immerman (1999).

Brent and Zimmermann (2011) provides a recent extensive discussion of algo-
rithms and models of computer arithmetic, including floating-point arithmetic.

For an alternative, more formal presentation of the concepts presented here
to systematically articulate backward error analysis, see Deuflhard and Hohmann
(2003 chap. 2). The “reflecting back” terminology goes back to Wilkinson (1963).
For a good historical essay on backward error analysis, see Grcar (2011).

Many other examples of numerical surprises can be found in the paper “Nu-
merical Monsters,” by Essex et al. (2000). The experience of W. Kahan in con-
structing floating-point systems to minimize the impact on computation has been

15 Why use a Fibonacci sequence or something like it? Because they grow exponentially, but not as
quickly as doubling the dimension does, and this often produces a more pleasing density of results
on the graph.
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presented in a systematic way in the entertaining and informative talk (Kahan and
Darcy 1998). Many of his other papers are available on his website at http://
www.cs.berkeley.edu/˜wkahan.

Problems

Theory and Practice

1.1. Suppose you’re an investor who will get interest daily (for an annual rate of,
say 5%) on $1,000,000. Your interest can be calculated in one of two ways: (a) The
sum is calculated every day, and rounded to the nearest cent. This new amount will
be used to calculate your sum on the next day. (b) Your sum is calculated only once
at the end of the year with the formula Mf = Mi(1+ id)d , and then rounded to the
nearest cent.

1. Which method should you choose? How big is the difference? How much
smaller is it than the worst-case scenario obtained from mere satisfaction of
the IEEE standard? Explain in terms of floating-point error.

2. If the rounding procedure used for the floating-point arithmetic was “round to-
ward zero,” would you make the same decision?

Explain the correspondence between computational error and real-world operations.

1.2. An important value to determine in the analysis of alternating current circuits
is the capacitive reactance XC, which is given by

XC =− 1
2π fC

,

where f is the frequency of the signal (in Hertz) and C is the capacitance (in Farads).
It is common to encounter the values f = 60 Hz while C is the range of picofarads
(i.e., 10−12F). Given this, could we expect MATLAB to accurately compute the re-
active capacitance in common situations? Also, look up common values for the
tolerance in the value of C provided by manufacturers. Would the rounding error be
smaller than the error due to the tolerance? In at most a few sentences, discuss the
significance of your last answer for assessing the quality of computed solutions.

1.3. Suppose you want to use MATLAB to help you with some calculations involved
in special relativity. A common quantity to compute is the Lorentz factor γ de-
fined by

γ =
1√

1− v2

c2

,

where v is the relative velocity between two inertial frames in m/s and c is the
speed of light, which is nearly equal to 299,792,458 m/s. Will MATLAB provide

http://www.cs.berkeley.edu/~wkahan
http://www.cs.berkeley.edu/~wkahan
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results sufficiently precise to identify the relativistic effect of a vehicle moving at
v = 100.000 km/h? Given the significant figures of v, is MATLAB’s numerical result
satisfactory? Compare your results with what you obtain from

(1− x2)
−1/2 = 1+ x2/2+O(x4) . (1.46)

1.4. Computing powers zn for integers n and floating-point z can be done by simple
repeated multiplication, or by a more efficient method known as binary powering.
If n = 2k+ 1 is odd, replace the problem with that of computing z · z2k. If n = 2k is
even, replace the problem with that of computing zk · zk. Recursively descend until
k = 1. This can be done efficiently by looking at the bit pattern of the original n.
Estimate the maximum number of multiplications are performed.

1.5. Suppose a,b are real but not machine-representable numbers. Compare the ac-
curacy of computing (a+ b)2 as written and computing instead using the expanded
form a2 + 2ab+ b2. Are both methods backward stable? Mixed forward–backward
stable? Would the difference between the methods, if any, become more important
for (a+ b)n, n > 2? Give examples supporting your theoretical conclusions. You
may use Problem 1.4.

1.6. Show that, for a �= 0 and b �= 0,

1. 25n3 + n2+ n− 4 = O(n3);
2. any linear function f (n) = an+ b is O(nk) and o(nk) for integers k ≥ 2;
3. no quasilinear function an log(bn) is o(n log(n)).

1.7. Rework Example 1.1 using five-digit precision as before but compute instead
exp(5.5) and then take the reciprocal. This uses the same numbers printed in the
text, just all with positive signs. Is your final answer more accurate?

1.8. Euler was the first to discover16 that

∞

∑
k=1

1
k2 =

π2

6
. (1.47)

Write a program in MATLAB to sum the terms of this series in order (i.e., start with
k = 1, then k = 2, etc.) until the double-precision sum is unaffected by adding an-
other term. Record the number of terms taken (we found nearly 108). Compare the
answer to pi2/6 and record the relative accuracy. Write another program to evaluate
the same sum in decreasing order of the values of k. What is the relative forward
error in this case? Is it different? Is it significantly different? That is, is the accumu-
lation of error reduced for a sum of positive numbers if we add the numbers from
smallest to largest? (Higham 2002 1.12.3). Use the “integral test” from first-year
calculus to estimate the true error in stopping the sum where you did, and estimate
the number of terms you would have to take to get π2/6 to as much accuracy as you
could in double precision simply by summing terms.

16 For a historical discussion of this, see the beautiful book Hairer and Wanner (1996), if you like,
though it is not necessary for this problem.
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1.9. The value of the Riemann zeta-function at 3 is

ζ (3) = ∑
k≥1

1
k3 . (1.48)

Quite a lot is known about this number, but all you are asked to do here is to compute
its value by simple summation as in the AiTaylor program and as in the previous
problem, by simply adding terms until the next term is so small it has no effect
after rounding. Use the integral test to estimate the actual error of your sum, and
to estimate how many terms you would really need to sum to get double-precision
accuracy. If you summed in reverse order, would you get an accurate answer?

1.10. Testing for convergence in floating-point arithmetic is tricky due to compu-
tational error. Discuss foreseeable difficulties and workarounds. In particular, you
may wish to address the “method” used in the function AiTaylor of this chapter,
namely to assume “convergence” of a series if adding a term t to a sum s pro-
duces ŝ = s⊕ t that, after rounding, exactly equals s. Consider in particular what
happens if you use this method on a divergent sum such as the harmonic series
H = 1+ 1/2+ 1/3+ 1/4+ · · · . (This is the source of many Internet arguments, by the
way, but there is a clear and unambiguously correct way of looking at it.)

1.11. Show that computing the sum ∑n
i=1 xi naively term by term (a process called

recursive summation) produces the result

n⊕
i=1

xi =
n

∑
i=1

xi(1+ δi), (1.49)

where each |δi| ≤ γn+1−i if i ≥ 2 and |δ1| ≤ γn−1 if i = 1.
There are a surprising number of different ways to sum n real numbers, as dis-

cussed in Higham (2002). Using Kahan’s algorithm for compensated summation as
described below instead returns the computed sum

n

∑
i=1

xi(1+ δi), (1.50)

where now each |δi| < 2μM +O(nμM), according to Higham (2002) (you do not
have to prove this). That is, compensated summation gains a factor of n in backward
accuracy.

The algorithm in question is the following:

Require: A vector x with n components.
s := x1

c := 0
for i from 2 to n do

y := xi − c
t := s+ y
c := (t − s)− y % the order is important, and the parentheses too!
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s := t
end for
return s, the sum of the components of x

Using some examples, compare the accuracy of naive recursive summation and
of Kahan’s sum. If you can, show that Eq. (1.50) really holds for your examples
(Goldberg 1991).

1.12. For this problem, we work with a four-digit precision floating-point system.
Note that 1+1 = 2 gives no error since 1 ∈ F. In exact arithmetic, 1/3+ 1/3 = 2/3, but
floating-point operations imply that 1

3(1+ δ1)+
1
3(1+ δ2) = 0.667, from which we

find that δ1+δ2 = (3 ·0.6667−2)= 0.0001. Show that max(|δ1|, |δ2|) is minimized
if |δ1|= |δ2|= 5 ·10−5.

1.13. The following expressions are theoretically equivalent:

s1 = 1020 + 17− 10+ 130−1020

s2 = 1020 − 10+ 130− 1020+ 17

s3 = 1020 + 17− 1020− 10+ 130

s4 = 1020 − 10− 1020+ 130+ 17

s5 = 1020 − 1020+ 17− 10+ 130

s6 = 1020 + 17+ 130− 1020− 10.

Nonetheless, a standard computer returns the values 0,17,120,147,137,−10 (see,
e.g.,Kulisch 2002 [8]). These errors stem from the fact that catastrophic cancellation
takes place due to very different orders of magnitude. For each expression, find some
values of δxi, 1 ≤ i ≤ 5, such that

s = x1(1+ δx1)+ x2(1+ δx2)+ x3(1+ δx3)+ x4(1+ δx4)+ x5(1+ δx5)

with |δxi|< μM. In each case, find min‖δx‖.

1.14. Show that Eqs. (1.9), (1.10), (1.11), (1.12), and (1.13) do not generally hold
for floating-point numbers.

1.15. Other laws of algebra for inequalities fail in floating-point arithmetic. Let
a,b,c,d ∈ F (Parhami 2000 325):

1. Show that if a < b, then a⊕ c ≤ b⊕ c holds for all c; that is, adding the same
value to both sides of a strict inequality cannot affect its direction but may
change the strict “<” relationship to “≤.”

2. Show that if a < b and c < d, then a⊕ c ≤ b⊕ d.
3. Show that if c > 0 and a < b, then a⊗ c ≤ b⊗ c.

Assume that none of a, b, c, and d are NaN.

1.16. Higham (2002 1.12.2) considers what happens in floating-point computation
when one first takes square roots repeatedly, and then squares the result repeatedly.
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We here look at a slight variation, which (surprisingly for such an innocuous-looking
computation) has something to do with an ancient but effective algorithm known as
Briggs’ method (Higham 2004 chapter 11). Here, write a MATLAB function that
accepts a vector x as input, takes the square root 52 times, and then squares the
result 52 times: theoretically achieving nothing. Call your function Higham. The
algorithm is indicated below.

Require: A vector x
for i from 1 to 52 do

x :=
√

x
end for
for i from 1 to 52 do

x := x2

end for
return a vector x, surprisingly different to the input

Then run

x = logspace( 0, 1, 2013 );
y = Higham( x );
plot( x, y, 'k.', x, x, '--' )

Explain the graph (see Fig. 1.8). (Hint: Identify the points where y = x after all.)

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

Fig. 1.8 The results of the code in Problem 1.16

1.17. We now know that unfortunate subtractions bring loss of significant figures.
In fact, the subtraction per se does not introduce much error, but it reveals earlier
error. On that basis, compare the following two methods to find the two roots of a
second-degree polynomial:
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1. Use the two cases of the quadratic formula;
2. Using the fact that x+x− = c (where x2 + bx+ c = 0, i.e., a = 1), keep the root

among the two obtained with the quadratic formula that has the largest absolute
value, and find the other one using the equation x+x− = c.

Which method is more accurate? Explain.

Investigations and Projects

1.18. Consider the quadratic equation x2 + 2bx+ 1= 0.

1. Show by the quadratic formula or otherwise that x =−b±√
b2 − 1 and that the

product of the two roots is 1.
2. Plot (−b+

√
b2 − 1)(−b−√

b2 − 1), which is supposed to be 1, on a logarith-
mic scale in MATLAB as follows:

b = logspace( 6, 7.5, 1001 );
one = (-b-sqrt(b.ˆ2-1) ).*(-b+sqrt(b.ˆ2-1));
plot( b, one, '.' )

3. Using no more than one page of handwritten text (about a paragraph of typed
text), partly explain why the plot looks the way it does.

4. If b � 1, which is more accurately evaluated in floating-point arithmetic, −b−√
b2 − 1 or −b+

√
b2 − 1? Why?

1.19. Consider the outer product of two vectors x∈Cm and y∈Cn: P= xyH ∈Cm×n

with pi j = xiy j. Show that if mn > m+ n, then rounding errors in computing this
object cannot be modeled as a backward error; in other words, show that P̂ is not
the exact outer product of any two perturbations x+Δx and y+Δy.

1.20. Let p = 1/2. Consider the mathematically equivalent sums

1 = ∑
k≥1

1
kp − 1

(k+ 1)p (1.51)

= ∑
k≥1

(k+ 1)p− kp

kp(k+ 1)p (1.52)

= ∑
k≥1

1
kp(k+ 1)p((k+ 1)p + kp)

. (1.53)

Which of these is the most accurate to evaluate in floating-point using naive recur-
sive summation? Why?

1.21 (Zeno’s paradox: The dichotomy). One of the classical paradoxes of Zeno
runs (more or less) as follows: A pair of dance partners are two units apart and
wish to move together, each moving one unit. But for that to happen, they must first
each move half a unit. After they have done that, then they must move half of the
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distance remaining. After that, they must move half the distance yet remaining, and
so on. Since there are an infinite number of steps involved, logical difficulties seem
to arise and indeed there is puzzlement in the first-year calculus class regarding
things like this, although in modern models of analysis this paradox has long since
been resolved. Roughly speaking, the applied mathematics view is that after a finite
number of steps, the dancers are close enough for all practical purposes!

In MATLAB, we might phrase the paradox as follows. By symmetry, replace one
partner with a mirror. Then start the remaining dancer off at s0 = 0. The mirror
is thus at s = 1. The first move is to s1 = s0 +(1− s0)/2. The second move is to
s2 = s1 + (1− s1)/2. The third move is to s3 = s2 + (1− s2)/2, and so on. This
suggests the following loop.

s = 0
i = 0
while s < 1,

i = i+1;
s = s + (1-s)/2;

end
disp( sprintf( 'Dancer reached the mirror in %d steps', i) )

Does this loop terminate? If so, how many iterations does it take?



Chapter 2
Polynomials and Series

Abstract This chapter introduces the reader to the numerical aspects of polynomi-
als. In particular, we examine different polynomial bases such as the monomial, the
Chebyshev, and the Lagrange basis; we provide algorithms to evaluate polynomi-
als in many of those bases and examine the different condition numbers in different
bases. We give a first look at the important problem of numerically finding zeros
and pseudozeros of polynomials. We give an algorithmic overview of the numerical
computation of truncated power series including Taylor series. Finally, we give a
brief discussion of asymptotics. �

Computation with polynomials is one of the pillars on which numerical analysis
stands. This book makes extensive use of polynomials, as do all numerical analy-
sis texts, but it takes advantage of several recent theoretical and practical advances
in this foundational discipline. It is perhaps somewhat surprising that there were
advances to be made in so venerable and well-studied an area, but there were,
and almost certainly there still are. This chapter introduces our notations, reviews
the basic ideas of the theory and practice of univariate polynomial computation,
and gives several facts and algorithms. Some of these algorithms and theorems
may be surprising even to people who have some numerical analysis background,
and so we recommend that everyone at least skim this chapter, for notation if
nothing else.

The related topic of series algebra is also one of the pillars of numerical analysis;
indeed, numerical analysis has often been dubbed nothing but “a huge collection of
applications of Taylor’s theorem.” We believe that it isn’t quite true (even when the
assertion is modified to include “—and, of course, linear algebra”). More properly,
the theory of Taylor series provides an interesting and common way of generating
polynomial approximations to functions. While Taylor series are of more than just
marginal value in this book, they aren’t central; but they are useful, and so a section
on how to compute them (which will most likely differ from the way the reader was
taught to compute them, in their first-year calculus class!) is included.

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods:
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0 2,
© Springer Science+Business Media New York 2013
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2.1 Polynomials, Their Bases, and Their Roots

Let us begin with a definition of the main object of this chapter.

Definition 2.1 (Polynomial). A polynomial is a function f : C → C such that, for
some nonnegative integer n and for some ak ∈ C, 0 ≤ k ≤ n, with an �= 0,

f (z) =
n

∑
k=0

akzk (2.1)

for all z ∈ C. The functions 1,z,z2, . . . ,zn are called monomials, and the ak are
called the coefficients of the monomials for f (z). By convention, the identically
zero function f (z) ≡ 0 is also called a polynomial, and in this case alone there is
no n with an �= 0. The degree of f (z), written deg f or degz f , is the number n of
Eq. (2.1). Moreover, by convention, the degree of the identically zero polynomial
is −∞. �

The set of all polynomials of degree at most n forms a finite-dimensional vector
space. As we can see from their definitions, polynomials are linear combinations of
1,z,z2,z3, . . . ,zm, for m ≤ n. Moreover, the following fact is obtained:

Theorem 2.1. If a polynomial p(z) is identically zero, that is, if

a0 + a1z+ a2z2 + · · ·+ anzn ≡ 0 ,

then ak = 0 for all k such that 0 ≤ k ≤ n.

The proof is left as Exercise 2.1. As a result, the functions 1,z,z2,z3, . . . ,zn are
linearly independent in C. Also, the functions 1,z,z2,z3, . . . ,zn span the vector space
of polynomials of degrees at most n. Consequently, the monomials form an (n+1)-
dimensional basis. This basis is known as the monomial basis.

There are many other possible bases that can be used to represent spaces of poly-
nomials and, as we will see, what basis we use has important consequences in nu-
merical contexts. The most common bases will be discussed in Sect. 2.2. We can
define bases generally as follows.

Definition 2.2 (Basis). A basis for the space of polynomials of degree at most n is
a set of polynomials {φk(z)}n

k=0 that may be written as⎡⎢⎢⎢⎣
φ0(z)
φ1(z)

...
φn(z)

⎤⎥⎥⎥⎦= B

⎡⎢⎢⎢⎣
1
z
...

zn

⎤⎥⎥⎥⎦ (2.2)

for some nonsingular (n+ 1)× (n+ 1) matrix B. In this case, φφφ (z) will denote the
vector [φ0(z), . . . ,φn(z)]T and zk will denote the vector [1,z, . . . ,zn]T , and we will
simply write
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φφφ (z) = Bzk . (2.3)

When the degree of each polynomial in the basis is such that degφk(z) = k, we say
that the basis is degree-graded. �

Moreover, polynomial bases have the properties we expect from bases, most notably
uniqueness of representation.

Theorem 2.2. The coefficients of f (z) in the basis {φk(z)}n
k=0 are unique. That

is, if

f (z) =
n

∑
k=0

ckφk(z) and f (z) =
n

∑
k=0

bkφk(z) (2.4)

for all z ∈ C, then ck = bk for 0 ≤ k ≤ n.

The proof is left as Exercise 2.2.
The role of polynomials in scientific computation is such that we often want to

find their roots. Because of that, we now turn to some important facts about roots of
polynomials that will be used in what follows.

Definition 2.3 (Root, or Zero). A complex number r is called a root (or zero)
of f (z) if f (r) = 0. The multiplicity of r is the least number m such that
f (m)(r) �= 0. It is guaranteed that m ≤ n unless f (z) ≡ 0. A root is called simple
if m = 1. �

One of the most important properties of polynomials is revealed by this theorem,
first proved by Gauss in 1797:

Theorem 2.3 (Fundamental theorem of algebra). If f (z) is a polynomial not
equal to a nonzero constant, that is, if deg f �= 0 (remember that deg f = −∞ if
f = 0 identically), then f has a root.

As Wilkinson (1984) notices,

[t]he Fundamental Theorem of Algebra asserts that every polynomial equation over the
complex field has a root. It is almost beneath such a majestic theorem to mention that in
fact it has precisely n roots.

Remark 2.1. The problem of finding all roots of a polynomial, and in particular find-
ing multiple roots when the data are ambiguous, is quite difficult1; we shall discuss
this material later. A good place for the impatient to start some extra reading is Zeng
(2004). �

We end this subsection with two important theorems that will be used later:

1 With some definitions of “finding,” it is impossible for generic polynomials p(z) of degree 5 or
more. Degree-5 polynomials can be solved using elliptic functions, though, and there are other
tricks. Here, by “finding,” we mean finding a good approximation.
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Theorem 2.4 (Factor theorem). If f (z) has � distinct roots rk, 1 ≤ k ≤ �, each with
multiplicity mk (so n = ∑�

k=1 mk), then

f (z) = an

�

∏
k=1

(z− rk)
mk . (2.5)

Theorem 2.5 (Continuity). (Ostrowski 1940, 1973) The roots of a polynomial are
continuous functions of the coefficients ak (in any fixed basis). Simple roots are
continuously differentiable functions of the coefficients.

2.1.1 Change of Polynomial Bases

One sometimes wants to change a representation of a polynomial p from one basis
to another. In other words, given two bases {φk(z)}n

k=0 and {ψk(z)}n
k=0, what is the

relation between the coefficients ak and bk in the expression

p(z) =
n

∑
k=0

akφk(z) =
n

∑
k=0

bkψk(z) ?

In theory, the answer straightforwardly follows from the definition of a basis: If we
are given a basis {φk(z)}n

k=0, then it can be expressed as the product of a nonsin-
gular matrix B and the vector of monomials zk. The same is true of another basis
{ψk(z)}n

k=0. Thus, if we let φφφ(z) = B1zk and ψψψ(z) = B2zk, the relation between the
bases is given by

φφφ (z) = B1B−1
2 ψψψ(z) . (2.6)

If we let ΦΦΦ = B1B−1
2 denote the change-of-basis matrix,2 we see that change of

basis is the following simple linear transformation:⎡⎢⎢⎢⎣
φ0(z)
φ1(z)

...
φn(z)

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
φ00 φ01 · · · φ0n

φ10 φ11 · · · φ1n
...

...
. . .

...
φn0 φn1 · · · φnn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
ψ0(z)
ψ1(z)

...
ψn(z)

⎤⎥⎥⎥⎦ . (2.7)

When the basis is degree-graded, the change-of-basis matrix is triangular.
Finally, observe that the relation between the coefficients of the polynomial bases

is as follows. Since

2 Note that, depending on the author and conventions being used, ΦΦΦ or its transpose may refer to
the change-of-basis matrix.
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p(z) =
[
b0 b1 · · · bn

]
⎡⎢⎢⎢⎣
ψ0(z)
ψ1(z)

...
ψn(z)

⎤⎥⎥⎥⎦=
[
a0 a1 · · · an

]
⎡⎢⎢⎢⎣
φ0(z)
φ1(z)

...
φn(z)

⎤⎥⎥⎥⎦

=
[
a0 a1 · · · an

]
⎡⎢⎢⎢⎣
φ00 φ01 · · · φ0n

φ10 φ11 · · · φ1n
...

...
. . .

φn0 φn1 · · · φnn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
ψ0(z)
ψ1(z)

...
ψn(z)

⎤⎥⎥⎥⎦ , (2.8)

the relation between the coefficients of p(z) in the bases {φk(z)}n
k=0 and {ψk(z)}n

k=0
is given by [

b0 b1 · · · bn
]
=
[
a0 a1 · · · an

]
ΦΦΦ . (2.9)

Thus, the same matrix ΦΦΦ relates the bases vectors φφφ and ψψψ and their coefficients.

Remark 2.2. Changing the expression of a polynomial from one basis to another is
a mathematically valid operation, but we remark right now that it is not always (or
even often) a good thing to do numerically. This is why Wilkinson (1959a) claims
that if

the explicit polynomial [in monomial basis] has been derived by expanding some other
expression, then we may well question the wisdom of this step.

As we will see in Sect. 8.6, changing polynomial bases can amplify numerical errors
dramatically: even in the normwise sense, error bounds can grow exponentially with
the degree of the polynomial, and componentwise the relative errors can be infinitely
larger in one basis than in another. Changing the basis must be done with caution, if
at all. �

2.1.2 Operations on Polynomials

The following operations can be performed in any polynomial basis. To begin with,
the sum of two polynomials (say f and g, of degrees n and m) is a polynomial
(just add the coefficients), the negation of a polynomial is a polynomial (just negate
the coefficients), and the product of two polynomials is again a polynomial (in this
case, the coefficients of the product are bilinear functions of the coefficients of the
multiplicands, and the particular function depends on the basis, as we will see).

Polynomial division is a bit more complicated, but not that much. If f (z) =
Q(z)g(z) +R(z) and degR < degg, we say that R(z) is the remainder on division
of f (z) by g(z); if R(z) is identically zero, then we say that g(z) divides (or divides
evenly into) f (z). This cannot happen if g(z) is identically zero. If g does divide
f , then we write g | f (which is read as “g divides f ”). The polynomial Q(z) in
f = Qg+R is called the quotient. It is easy to prove that, given f (z) and g(z), the
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quotient and remainder are unique.3 Polynomial division is merely mentioned in this
book, but is occasionally needed in applications. Again the details of the division
process depend on the basis being used, but note that it amounts to solving a linear
system of equations for the unknown coefficients of Q(z) and R(z), once the bilinear
functions of multiplication in that basis are known.

We also occasionally need the notion of relatively prime polynomials, and for
that we need the notion of greatest common divisor, or GCD. A polynomial d(z) is
a common divisor of f and g if both d | f and d | g. If d has the maximum possible
degree of all common divisors of f and g, we say that it is a GCD of f and g.
Every constant multiple of a common divisor is a common divisor, and so GCDs are
unique only up to multiplication by a constant.

The composition f (g(z)) is also a polynomial, of degree nm. It is sometimes
worthwhile to seek to rewrite a large polynomial F(z) as a composition F(z) =
f (g(z)); finding such f and g is called polynomial decomposition. We will not pur-
sue this further in this book, but it also finds use in some applications.

2.2 Examples of Polynomial Bases

Several polynomial bases are commonly encountered in applications. We have al-
ready encountered the monomial basis, and we will soon see why it should some-
times be avoided in applications. Before that, we examine some of the most common
bases that arise, and indicate some of their advantages and disadvantages.

2.2.1 Shifted Monomials

Shifted monomials (shifted by a constant a ∈ C) are polynomials having the form

φk(z) = (z− a)k , (2.10)

and the set {(z− a)k}n
k=0 forms a basis. The expansion of a polynomial f (z) in this

basis is just its Taylor series:

f (z) = f (a)+ f ′(a)(z− a)+ · · ·+ f (n)(a)
n!

(z− a)n . (2.11)

If a = 0, this is just the standard monomial basis, also called the power basis. The
change-of-basis matrix from the monomials to the shifted monomials is simple. For
n = 3, this is

3 This is more generally true than we need here: the coefficients of our polynomials are complex
numbers or real numbers and this statement is true for more general objects as well.
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φ0(z)
φ1(z)
φ2(z)
φ3(z)

⎤⎥⎥⎦=

⎡⎢⎢⎣
1

z− a
(z− a)2

(z− a)3

⎤⎥⎥⎦=

⎡⎢⎢⎣
1 0 0 0

−a 1 0 0
a2 −2a 1 0

−a3 3a2 −3a 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1
z
z2

z3

⎤⎥⎥⎦ . (2.12)

The change-of-basis matrix that goes from the shifted monomials to the monomials
is just the inverse of this matrix (and that it exists and is nonsingular for any a means
that the shifted monomials are indeed a basis).

Remark 2.3. Multiplication of polynomials expressed in the monomial basis is a fa-
miliar operation. Multiplication of two polynomials expressed in an arbitrary (but
common to the two polynomials) shifted monomial basis may be done by embed-
ding them in Taylor series and using the methods of Sect. 2.6. This can also be done
rapidly by use of the fast Fourier transform (FFT) (see Chap. 9). �

As we have seen in Chap. 1, it is important to compute sums in a stable and
predictable way when we use computer arithmetic. For polynomials expressed in
the shifted monomial basis, we can use Horner’s method, which can be written as

f (z) = f (a)+ (z− a)

(
f ′(a)+ (z− a)

(
f ′′(a)

2

+(z− a)

(
· · ·+(z− a)

(
f (n)(a)

n!

)
· · ·
)))

. (2.13)

The key difference with the use of Eq. (2.11) is that we associate terms in a way
that does not require us to compute higher powers of z− a. In addition, as in this
formula, it is generally preferable to include the factorials in the Taylor coefficients.
For a polynomial of degree n, this formula requires O(n) flops, where explicitly
forming each terms (z− a)k requires more.

Assuming that the coefficients of f in this basis are stored in a vector c indexed
from 1 to n+ 1, so that c(1)= f (a), c(2)= f ′(a), c(3)= f (2)(a)/2!, and so on,
one can use a simple MATLAB program to carry out the computation of f (z) based
on Horner’s method:

p = c(n+1)*ones(size(z));
za = z - a;
for i=n:-1:1,

p = za.*p + c(i);
end;

Note that, in this code, the coefficient of the power-n term is the last component of
the vector of coefficients, as opposed to other commands such as MATLAB’s built-in
command polyval, where the order is reversed. Because polyval can be simply
adapted to use a shifted monomial basis, we show how to use it in an example.

Example 2.1. A monomial basis polynomial is entered as a vector of coefficients
(in decreasing order of exponent, and zero coefficients must be explicitly included).
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Consider the polynomial p(z) = z4 − 4z3 + 3z2 − 2z+ 5 on, say, 0 ≤ z ≤ 2.4 Thus,
we simply need to execute

p = [ 1, -4, 3, -2, 5 ];
z = linspace( 0, 2, 101 );
pz = polyval( p, z );
plot( z, pz, 'k' )

This code generates a graph in which we see, by eye, a zero of p(z) near z = 1.5. �

Instead of just evaluating a polynomial, one can change a polynomial from the
monomial basis to a shifted monomial basis (that is, a Taylor series) by using an ex-
tension of Horner’s method called synthetic division. This method, which is widely
discussed in the literature, is described by Algorithm 2.1. We will use this algorithm
occasionally, and so we will discuss its accuracy later, in Sect. 2.2.1.2.

Algorithm 2.1 Synthetic division of a polynomial f (z) =∑n
j=0 c j(z−a) j expressed

in a shifted monomial basis, evaluating f (z) and its first k derivatives at z = b, re-
turning fk = f (k)(b)/k!

Require: The expansion point a ∈ C, a vector of monomial coefficients c ∈ C
n+1 (indexed from

0 to n) such that f (z) = ∑n
j=0 c j(z−a) j , a new expansion point b and a desired number k ≥ 0 of

Taylor coefficients of f (z) at z = b.
f0 := cn

f(1:k) := 0
for j=n−1:−1:0 do

for i=min(k,n− j):−1:1 do
fi = (b−a) fi + fi−1

end for
f0 = (b−a) f0 + f j

end for
return The (k+1)-vector f such that f (z)=∑k

j=0 f j(z−b) j +O(z−b)k+1. That is, f j = f ( j)(b)/j!.

Example 2.2. Consider Example 2.1 again, and let us expand this polynomial about
z = 1.5, where we saw our approximate zero. We used MAPLE and its series
command to effect Algorithm 2.1, and thus found that

p(z) = 0.3125− 6.5(z− 1.5)−1.5(z−1.5)2+ 2(z− 1.5)3+(z− 1.5)4 . (2.14)

This is a new expression for the polynomial, this time expanded about z = 1.5. �

2.2.1.1 Newton’s Method for Polynomials

As an aside, we briefly introduce Newton’s method for finding zeros of polynomi-
als. This will be taken up in greater detail and generality in the next chapter. Newton

4 This example is drawn from Henrici (1964). In Exercise 2.5, you will be asked to consider instead
Newton’s example, p(z) = z3 −2z−5.
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suggested that we could use the first two coefficients of the shifted polynomial as
a linear approximation to the polynomial and could be used in an attempt to find
a root: In this example, setting the linear approximation 0.3125− 6.5 (z− 1.5) = 0
yields z−1.5 = 0.3125/6.5 ≈ 0.048076923, suggesting that we should shift our expan-
sion point again, this time to z = 1.5+ 0.048076923≈ 1.548. When we do so, we
find

p(z) =−0.002730− 6.630 (z− 1.548)− 1.198 (z− 1.548)2

+ 2.192 (z− 1.548)3 + 1.0 (z− 1.548)4

and since now p(1.548) is smaller than before, we begin to see that the process
might work in an iterative fashion.

In general, suppose that we have expanded the polynomial about z = rk, where
rk is our current approximation of the root:

p(z) = p(rk)+ p ′(rk)(z− rk)+O(z− rk)
2 . (2.15)

Using Newton’s idea, we solve this linear approximation (which is possible if
p ′(rk) �= 0) to find

z
.
= rk − p(rk)

p ′(rk)
, (2.16)

and it makes sense to name this approximation rk+1:

rk+1 = rk − p(rk)

p ′(rk)
. (2.17)

This is, of course, Newton’s method, which we will take up further in Chap. 3. For
now, note two things: First, each approximation rk is the exact root of

p(z)− p(rk) = 0 , (2.18)

and so if p(rk) (which we call the residual) is small, then we have found the exact
solution of a nearby polynomial, and, second, we have found that this process is apt
to fail near multiple roots because if both p(z∗) and p ′(z∗) = 0, then since rk → z∗,
both p(rk)→ 0 and p ′(rk)→ 0, making the solving step problematic.

Continuing our example5 just one more iteration, with rk = 1.548 in Eq. (2.15),
we have rk+1 = 1.548− (−0.0027295)

(−6.62973) , that is, rk+1 ≈ 1.5475883. Shifting to the basis
centered here using synthetic division, we have

p(z) =−0.00000024948774−6.6287459395492(z− 1.5475883)−·· · , (2.19)

5 If you try to reproduce these computations, your results may differ because we were somewhat
cavalier in rounding intermediate results. Keeping all figures—as one should—will make the re-
sults slightly different.
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and we notice that 1.5475883 is an exact root of the nearby polynomial p(z) +
2.494877 . . .× 10−7.

2.2.1.2 Errors in Synthetic Division

We refer to Higham (2002) for a complete accuracy analysis of synthetic division,
but we state a result here connecting rounding errors and the forward error via a
condition number. Let B( j)(z) be defined as

B( j)(z) :=
n

∑
k= j

k j

∣∣∣∣∣ f (k)(a)
k!

∣∣∣∣∣ ∣∣∣(z− a)k− j
∣∣∣ , (2.20)

where k j, read as “k to the j falling,” is defined as

k j =
k!

(k− j)!
= k(k− 1)(k− 2) · · ·(k− j+ 1)

(see Graham et al. 1994). Then the difference between the reference value of
the derivative f ( j)(α) and the value computed by synthetic division, say r̂ j, is
bounded by ∣∣∣ f ( j)(α)− r̂ j

∣∣∣≤ O(nμM)B( j)(α)+O(μ2
M) . (2.21)

We will see later in this chapter many more examples of such B(z) functions, which
are called condition numbers for evaluation of polynomials. In some sense, the
above theorem, which (to first order) bounds the forward error | f ( j) − r̂ j| by the
product of a condition number and a backward error (here O(nμM)), is as important
to numerical analysis as F = ma is to physics.

Changing from bases other than the monomial basis to shifted monomials is
sometimes useful (again, numerically this has to be done with caution, as we will
see). We pursue this in the exercises.

2.2.2 The Newton Basis

We have seen that the shifted monomial basis is defined in reference to a given
data point a. Similarly, the Newton basis is defined in reference to a set of points,
which we call nodes. The Newton basis on the n + 1 nodes τ0, τ1, τ2, . . ., τn is
given by

{φk(z)}n
k=0 = {1,z− τ0,(z− τ0)(z− τ1), . . . ,(z− τ0)(z− τ‘) · · · (z− τn−1)} ,

or, more compactly,
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{φk(z)}n
k=0 =

{
k−1

∏
i=0

(z− τi)

}n

k=0

. (2.22)

Note that, by convention, if m> n, a product∏n
i=m is just 1. Note also and especially

that one node, namely, τn, is omitted from any mention in this basis. We remark that
this permits choice: One speaks of “a” Newton basis, not of “the” Newton basis.
There is a further choice involved, namely, the ordering of the nodes; once one of
the n+ 1 nodes has been omitted, there is a further n! different orderings possible
if the nodes are distinct. Some of them are numerically better than others, as we
will see.

Newton bases are typically used with what are called divided differences (see
Problem 8.13). In fact, de Boor (2005) defines divided differences as the coefficients
of f (z) expressed in a Newton basis. Though divided differences and Newton bases
have a rich theory and practice, they will only rarely be used in this book because
there are better choices available. Trefethen (2013 p. 33) takes a similar stance:

Many textbooks claim that it is important to use this approach for reasons of numerical
stability, but this is not true, and we shall not discuss the Newton approach here.

They are the preferred basis in de Boor (1978), because they are convenient, inex-
pensive, and, for low degrees, accurate. However, as we will see, the barycentric
Lagrange basis that we prefer is much better conditioned for larger degrees on good
sets of nodes. After introducing the Lagrange basis, we will return to this point.

2.2.3 Chebyshev Polynomials

The Chebyshev polynomials can be defined by

φk(z) = Tk(z) = cos(k cos−1 z) (2.23)

for k = 0,1,2, . . .. It is easy to see that, for k = 0 and k = 1, these are indeed poly-
nomials:

T0(z) = cos0 = 1 (2.24)

T1(z) = coscos−1 z = z . (2.25)

Moreover, by applying the angle sum and angle difference formulæ for cosines to
cos((k+ 1)cos−1 z) and cos((k− 1)cos−1 z), it follows that, for k > 1,

Tk+1(z) = 2zTk(z)−Tk−1(z) . (2.26)

Hence, all φk(z) are polynomials. Figure 2.1 displays the first nine Chebyshev poly-
nomials.

A well-known algorithm to compute the values of polynomials expressed in this
basis is provided in Rivlin (1990 156–158). It turns out that this algorithm is called



54 2 Polynomials and Series

Fig. 2.1 The first nine Chebyshev polynomials T0(z) = 1, T1(z) = z, and Tn+1(z) = 2zTn(z)−
Tn−1(z). See Exercise 2.33

the Clenshaw algorithm, which we take up after mentioning other polynomials be-
longing to an important class to which Chebyshev polynomials belong, namely,
orthogonal polynomials. In the real case, Chebyshev polynomials can be shown to
be orthogonal with respect to the inner product

〈 f , g〉 :=
ˆ 1

−1

f (x)g(x)√
1− x2

dx . (2.27)

In the complex case, they are also orthogonal. The zeros of Tn(z) are

ξ (n)k := cos

(
π(k− 1/2)

n

)
(2.28)

for k = 1, 2, . . ., n. The proof is left as Exercise 2.4. Chebyshev polynomials are also
orthogonal with respect to the following discrete inner product:

〈 f , g〉 :=
n

∑
j=1

f (ξ (n)j )g(ξ (n)j ) . (2.29)

See Rivlin (1990 Exercise 1.5.26, p. 53) for a complete enumeration of all cases of
〈Tk, Tp〉. You will be asked to prove in Exercise 2.6 that this discrete orthogonality
relation allows easy computation of the coefficients of the expansion of a degree-
(n− 1) polynomial p(z) if you can evaluate it on the zeros of Tn(z):

p(z) =
A0

2
T0(z)+A1T1(z)+ · · ·+An−1Tn−1(z), (2.30)
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where6

Am =
2
n

n

∑
j=1

p(ξ (n)j )Tm(ξ
(n)
j ) , (2.31)

for m = 0, 1, . . ., n− 1, can be computed with O(n2) floating-point operations.
Another and in some sense more interesting set of discrete points is called the

Chebyshev–Lobatto points or Chebyshev extreme points, which are the places where
Tn(z) achieves its maximum and minimum values on −1 ≤ z ≤ 1. The endpoints
are special, and are always included, because Tn(1) = 1 and Tn(−1) = (−1)n, as
you may easily prove by the definition Tn(z) = cos(ncos−1 z). The interior (rela-
tive) extrema are the zeros of T ′

n(z) and there can be at most n− 1 of them. Since
cos(nθ ) =±1 at these extrema, we can verify that

ηk = η
(n)
k = cos

kπ
n

(2.32)

for k = 0, 1, . . ., n. This gives n+1 extrema on the interval, including the endpoints
with k = 0 and k = n, and thus it must include all possible extrema. Note that both
ξk and ηk run “backward” across the interval, which is sometimes inconvenient but
only trivially so.

Chebyshev polynomials have a large collection of interesting and useful prop-
erties, some of which will be discussed when they come up naturally in the book.
Chebyshev polynomials are the favorite of many numerical analysts. In particu-
lar, the Chebfun package is founded on the properties of Chebyshev polynomials
(it uses the ηk, not the ξk). We will see several examples of its use in this book.
Chebfun uses the syntax chebpoly(n) to pick out a Chebyshev polynomial. See
Exercise 2.7.

2.2.4 Other Orthogonal Polynomials

There are a great many other examples of orthogonal polynomials. The orthog-
onal polynomials implemented in MAPLE include the Chebyshev polynomials,
where the name ChebyshevT is used, with the syntax ChebyshevT(n,z).
Other orthogonal polynomials implemented include the Gegenbauer polynomials
(GegenbauerC), the Hermite orthogonal polynomials7 (HermiteH), and the Ja-
cobi polynomials (JacobiP(n,a,b,z)). The latter include as a special case
(JacobiP(n,0,0,z)), more usually called the Legendre polynomials; these will
be used in Chap. 10 for Gaussian quadrature. Maple has another package for the ma-

6 Note that we use A0/2 in equation (2.30) so that formula (2.31) can be the same for m= 0,1,2, . . .
7 They will almost never be used in this book and are not to be confused with the Hermite interpo-
lational basis polynomials, which will be used.
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nipulation of orthogonal series, namely, the OrthogonalSeries package, which
is quite extensive.

A common characteristic of orthogonal polynomials is that they generally satisfy
a three-term recurrence relation for n ≥ 2, which we write here as

αn−1φn(z) = (z−βn−1)φn−1(z)− γn−1φn−2(z) . (2.33)

As we saw above, the recurrence for the Chebyshev polynomials has αn−1 = γn−1 =
1/2 and βn−1 = 0 for all n. However, for other classes of polynomials, there is a
dependence on n. For instance, the recurrence relation for the Jacobi polynomials
starts with P0(z) = 1, P1(z) = (a−b)/2+(1+(a+b)/2)z, and thereafter

αn−1 =
2n(n+ a+ b)

(2n+ a+ b−1)(2n+ a+ b)

βn−1 =
(b− a)(a+ b)

(2n+ a+ b−2)(2n+ a+ b)

γn−1 =
2(n+ a− 1)(n+ b− 1)

(2n+ a+ b−1)(2n+ a+ b− 2)
. (2.34)

In the special case a = b = 0, for the Legendre polynomials, we have P0(z) = 1,
P1(z) = z, and

αn−1 =
n

2n− 1
βn−1 = 0 and γn−1 =

n− 1
2n− 1

. (2.35)

The first 10 Legendre polynomials are plotted in Fig. 10.4 of Chap. 10.
Recent uses in mathematical handwriting recognition of generalizations of or-

thogonal polynomials—namely, the Legendre–Sobolev polynomials, which include
derivatives in their inner product—can be seen in Golubitsky and Watt (2009) and
in Golubitsky and Watt (2010). See Exercise 4.28.

2.2.5 The Clenshaw Algorithm for Evaluating Polynomials
Expressed in Orthogonal Bases

The Clenshaw algorithm generalizes the idea used in Horner’s method to certain or-
thogonal polynomial bases. If the elements of the polynomial basis φk(z) are related
by a three-term recurrence relation

φk(z) = αk(z)φk−1(z)−βkφk−2(z) (2.36)

(the notation has changed from the previous section, to match the paper Smoktunow-
icz (2002), which we reference ahead) and φ0(z) = 1 and φ1(z) = α1(z), where,
for all the examples we are concerned with, the αk(z) are linear polynomials in
z and the βk are constants, then a polynomial p(z) expressed in this orthogonal
basis as
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p(z) =
n

∑
k=0

bkφk(z) (2.37)

can be evaluated in O(n) flops by the Clenshaw algorithm, as follows.

Algorithm 2.2 The Clenshaw algorithm
Require: A value z, a nonnegative integer n, and a sequence b0, b1, . . ., bn of coefficients
Require: The functions αk(z) and the constants βk

yn+1 := 0
yn := bn

for k from n−1 by −1 to 1 do
yk := bk +αk+1(z)yk+1 −βk+2yk+2

end for
p := (y0 −β2y2)φ0(z)+ y1φ1(z)
return The value of p(z) = ∑n

k=0 bkφk(z)

To see that this algorithm is correct, note that a loop invariant for the algorithm
is the sum

p(z) =−βk+1yk+1φk−1(z)+ ykφk(z)+
k−1

∑
j=0

b jφ j(z) . (2.38)

That is, before the start of the loop i.e. when k = n, this statement is trivially true
because yk+1 = 0, and the update step changes the value of what will be the next
yk and replaces yk+1φk+1(z) with yk+1(φk+1(z)−αk+1φk(z)) or −βk+1yk+1φk−1(z).
The process finishes when there are only two terms left, which sum to p(z) = (b0 −
β2y2)φ0(z)+ y1φ1(z) by the loop invariant.

Now, let us address the numerical stability of this method for the evaluation of
polynomials:

Theorem 2.6 (Backward Stability of the Clenshaw Algorithm). Under natural
assumptions, evaluation of this algorithm is backward stable: that is, for a given z,
the algorithm gives the exact evaluation of p+Δ p, where the coefficients of p+
Δ p are only slightly perturbed: bk +Δbk, where, with a modestly growing function
L of n,

|Δbk| ≤ μML|bk| (2.39)

in the best scenario (this holds only for some bases and polynomials with nonin-
creasing coefficients bk), and

‖Δb‖∞ ≤ μML‖b‖∞ (2.40)

in the usual case.

In particular, for the Chebyshev polynomials, we have L = O(n2) in Eq. (2.39),
showing that the Chebyshev basis evaluated by the Clenshaw algorithm has
excellent backward-stability properties. The proof of this theorem is given in
Smoktunowicz (2002).
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2.2.6 Lagrange Polynomials

We now look at a very important nonorthogonal basis family, the Lagrange bases.
These are different to the previously discussed examples in that they are not degree-
graded: Each element of a particular Lagrange basis has full degree, here n. Given
n+ 1 distinct nodes τk, 0 ≤ k ≤ n, define the numbers βk by the partial fraction
expansion

1
w(z)

=
1

n

∏
k=0

(z− τk)

=
n

∑
k=0

βk

z− τk
. (2.41)

Then, solving for the numbers βk, we obtain

βk =
n

∏
j=0
j �=k

(τk − τ j)
−1 . (2.42)

Definition 2.4 (Lagrange polynomials). Given a set of nodes {τk}n
k=0 and the re-

sulting numbers βk,

φk(z) = Lk(z) = βk

n

∏
j=0
j �=k

(z− τ j) (2.43)

is the kth Lagrange polynomial. �

Note that, using the Kronecker delta, we can write

Lk(τ j) = δ k
j =

{
0 j �= k
1 j = k

, (2.44)

and so for any polynomial f (z) of degree at most n,

f (z) =
n

∑
j=0

f (τ j)Lj(z) . (2.45)

Theorem 2.7. The set of polynomials L j(z), for 0≤ j ≤ n, forms a basis if the nodes
τk, 0 ≤ k ≤ n, are distinct.

Proof. The theorem is equivalent (by definition) to the statement that the change-
of-basis matrix A in [L0(z),L1(z), . . . ,Ln(z)] = [1,z,z2, . . . ,zn]A is nonsingular. That
in turn is equivalent to the statement that the change-of-basis matrix in the other
direction [1,z,z2, . . . ,zn] = LB is nonsingular, and this is easier. By the above
formula, the entries of B are Bk, j = τ j

k . It is an (interesting) exercise to show
that detB = ∏ j>k(τ j − τk), which is nonzero when the nodes are distinct. See
Exercise 4.14. �
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Corollary 2.1. The only polynomial of degree at most n that satisfies f (τi) = 0 for
n+ 1 distinct nodes τi, 0 ≤ i ≤ n, is the identically zero polynomial.

Proof. Since the Lj(z) form a basis, we may express an arbitrary polynomial of
degree at most n as ∑n

j=0 a jL j(z). Evaluating this polynomial at each of τk in turn
gives ak = 0, uniquely resulting in the identically zero polynomial. �

Remark 2.4. This corollary is part of the normal proof that interpolants are unique;
we here see, doing things in a different order, that it is a corollary of the theorem we
proved directly above. That is, this proof is done in a different order than usual but
is equivalent. �

We will see shortly another notation for Eq. (2.45): With ρi := f (τi),

f (z) =
n

∑
i=0
ρiL j(z) =

n

∑
i=0
ρi

w(z)
z− τi

βi = w(z)
n

∑
i=0

ρiβi

z− τi
. (2.46)

This is the first barycentric form of a polynomial expressed in the Lagrange basis.
We will see the second barycentric form in the exercises in this chapter and again in
Chap. 8. The coefficients in the expansion of f (z) in the Lagrange basis on τ0, . . . ,τn

are simply the values f (τ j).
The Lagrange polynomials are wonderfully useful, and we will use them every

chance we get. An algorithm to compute polynomials in this basis is provided by
Berrut and Trefethen (2004) (see Algorithm 2.3).

Algorithm 2.3 First barycentric form for evaluation of a Lagrange interpolating
polynomial
Require: A value z, an integer n > 0, a vector of coefficients ρk, a vector of nodes τk , and a

precomputed vector of barycentric weights βk
if z is identical to any τk then

return ρk
end if
w = 1
for j=0:n do

w = w · (z− τ j)
end for
p = 0
for j=0:n do

p = p+β jρ j/(z− τ j)
end for
return w · p

2.2.6.1 Numerical Stability of the Barycentric Form

The numerical stability for Algorithm 2.3 is interesting. The paper (Higham 2004)
shows that evaluation of this (first) barycentric form is nearly perfectly backward
stable: The computed p̂(z) satisfies
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p̂(z) =
n

∏
j=0

(z− τ j)
n

∑
j=0

β jρ̂ j

z− τ j
= w(z)

n

∑
j=0

β jρ̂ j

z− τ j
, (2.47)

where each perturbed ρ̂ j satisfies

ρ̂ j = ρ j(1+ δ j), (2.48)

such that |δ j|< γ5(n+1). That is, provided n isn’t so large that it is O(1/μM), the com-
puted sum is the exact value of a polynomial passing through only slightly different
data values.

Remark 2.5. This result is one of the most important backward-stability results pre-
sented in this book. What the paper (Higham 2004) provides is a guarantee that eval-
uating the first barycentric form will always produce the exact value of a polynomial
of the same form as the one we started with, with at most only slightly perturbed
data. This result should be compared with the similar result quoted from Smok-
tunowicz (2002) for orthogonal polynomials, and contrasted with the results of the
forward error analysis for Horner’s method presented in Sect. 2.2.1. �

2.2.6.2 Change-of-Basis from a Lagrange Basis

The change-of-basis matrices are deceptively simple from a Lagrange basis. We
say “deceptively” because the change-of-basis itself may be ill advised because of
difficulties related to the conditioning of the matrix, as we will see. However, if it
is desired (in spite of misgivings) to perform the change of basis, it is, in theory,
simple to carry out. Because any polynomial can be written using Eq. (2.45), each
element of a different basis, say φk(z), may be written as

φk(z) =
n

∑
j=0

φk(τ j)Lj(z) . (2.49)

That is, the change-of-basis matrix from a Lagrange basis is just (in the four-by-four
case for simplicity)⎡⎢⎢⎣

φ0(z)
φ1(z)
φ2(z)
φ3(z)

⎤⎥⎥⎦=

⎡⎢⎢⎣
φ0(τ0) φ0(τ1) φ0(τ2) φ0(τ3)
φ1(τ0) φ1(τ1) φ1(τ2) φ1(τ3)
φ2(τ0) φ2(τ1) φ2(τ2) φ2(τ3)
φ3(τ0) φ3(τ1) φ3(τ2) φ3(τ3)

⎤⎥⎥⎦
⎡⎢⎢⎣

L0(z)
L1(z)
L2(z)
L3(z)

⎤⎥⎥⎦ , (2.50)

or, more compactly,

ϕϕϕ(z) = VL(z) . (2.51)

In the particular case when φk(z) = zk, V is called a Vandermonde matrix, and it is
nonsingular precisely when the nodes τk are distinct. For other φk(z), V is called
a generalized Vandermonde matrix (see, for example, Problems 8.36 and 8.37).
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The Vandermonde matrices occurs often enough that, for emphasis, we will display
one here: ⎡⎢⎢⎣

1 1 1 1
τ0 τ1 τ2 τ3

τ2
0 τ2

1 τ2
2 τ2

3
τ3

0 τ3
1 τ3

2 τ3
3

⎤⎥⎥⎦ . (2.52)

That matrix can be generated by the MAPLE command

V := Matrix( 4, 4,
shape = Vandermonde[ [tau[0], tau[1], tau[2], tau[3]] ] );

latex( LinearAlgebra:-Transpose(V) );

The convention of needing the transpose to get a “Vandermonde” matrix in this
notation agrees with the use in Higham (2002); however, in Chap. 8, we often use
the alternative.

In Chap. 8, we will extend the Lagrange basis to the Hermite interpolational ba-
sis, which allows some of the nodes τk to coalesce or “flow together,” in which case
we talk about confluency. This basis is quite distinct from the Hermite orthogonal
basis mentioned briefly earlier, and is not to be confused with it. For change of bases
to other bases, one talks about confluent Vandermonde matrices. This will be taken
up later.

Multiplication and division of polynomials expressed in a Lagrange basis are not
yet widely encountered in practice8; but multiplication is simple enough, provided
there are enough data to represent the product (one needs nm+1 points if the degrees
of the multiplicands are n and m). The entries are simply f (τi)g(τi).9

2.2.6.3 The Degree of Difficulty

Given a polynomial expressed in a Lagrange basis, what is its degree? Clearly, if we
have enough points to capture the polynomial (say n+1), then the degree is at most
n. But it may very well be less than that, and knowledge of the actual degree can
be quite important. We return to this problem in Sect. 11.8, but for now we note a
lemma that you are asked to prove in Exercise 2.12.

Lemma 2.1. If a polynomial f (z) of degree at most n has the values ρk on the n+1
distinct nodes τk, for 0 ≤ k ≤ n, then the degree of f (z) is exactly n if

n

∑
k=0

βkρk �= 0 , (2.53)

where the βk are the barycentric weights of the nodes.

8 We believe this will change, as the realization that working directly in a Lagrange basis is a good
idea gradually percolates through the communities.
9 Division with remainder, on the other hand, requires solving an overspecified linear system, in
order to enforce the degree constraints; see Amiraslani (2004).
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Proof. Left as Exercise 2.12.

What happens if this is not zero, but small relative to ‖ρρρ‖, the norm of the vector
of values of f (z) on the nodes? Does this mean that f (z) is “nearly” of lower degree?
We do not give a complete answer to this, but rather note only that the generic case
with values ρi on nodes τi is that the degree is exactly n; if the values of a low-
degree polynomial are perturbed by arbitrarily small amounts, then almost certainly
the perturbed values are the exact values of a degree-n polynomial.

But how close are the given values, then, to the values of a lower-degree poly-
nomial? This question has been addressed (using the lemma above) in Rezvani and
Corless (2005), and using the witness vector in Hölder’s inequality, we can find an
analytic solution in the case the nearby polynomial is of degree one less than n,
in a manner similar to what we use later in Theorem 2.9. For still-lower degrees,
a computational procedure is available. We take a different tack here and give an
alternative characterization of the degree of a polynomial.

In exact arithmetic, a polynomial of degree n has exactly n complex roots, count-
ing multiplicity. But numerically, the condition number B(z) grows as |z| grows, so
the location of large roots is often very sensitive to perturbations. If a polynomial
p(z) can be perturbed by a small amount in such a way that some large roots go out
to infinity, then the original polynomial is somehow close to a lower-degree polyno-
mial. More precisely, we define the ε-degree of a polynomial p(z) = ∑n

k=0 ckφk(z)
expressed in a basis φφφ with weights wk ≥ 0 not all zero as

degε (p) = min

{
deg(p+Δ p)

∣∣∣∣∣ |Δck| ≤ wkε

}
. (2.54)

In a degree-graded basis, the computation is easy; for the Lagrange and Hermite
interpolational basis, it is not quite so easy. For the Bernstein–Bézier basis (to be
introduced below), quite a bit of attention has been paid to this issue in the CAGD
literature, and we refer you, for instance, to Farin (1996). The choice of norm for
nearness they use is not a coefficientwise norm as we use here, but rather a function
norm. Nonetheless, the ideas are similar.

2.2.7 Bernstein–Bézier Polynomials

The following family of polynomials is a basis for polynomials of degree n and is
positive on the interval a < z < b. Like the Lagrange and Hermite interpolational
bases, these are not degree-graded: Each element of the basis is degree n.

φk(z) = (b− a)−n
(

n
k

)
(z− a)k(b− z)n−k . (2.55)

The Bernstein–Bézier polynomials of degree 8 or less are displayed in Fig. 2.2.
These are extremely useful in computer-aided geometric design. To evaluate poly-
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Fig. 2.2 Bernstein–Bézier basis polynomials of degree at most 8

nomials expressed in this basis, you may use de Casteljau’s algorithm, as discussed,
for example, in Tsai and Farouki (2001). We do not pursue that algorithm further
here, except to note that it is partially implemented in MAPLE.10 This basis has a
number of interesting properties, including an optimal conditioning property, that
we discuss in Chap. 8.

2.3 Condition Number for the Evaluation of Polynomials

Now, let us look at the condition number for evaluation of polynomials. This is
studied in many works (for example, in de Boor (1978)), but we take the following
formulation from Farouki and Rajan (1987).

Theorem 2.8. If we consider a polynomial

f (z) =
n

∑
k=0

ckφk(z) (2.56)

with coefficients ck in the base {φk(z)}n
k=0 = 0n, and a perturbed polynomial

10 The Bernstein–Bézier basis is not yet well supported in MAPLE: For serious use, we recommend
instead the package described in Tsai and Farouki (2001).
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( f +Δ f )(z) =
n

∑
k=0

ck(1+ δk)φk(z) (2.57)

with perturbed coefficients ck(1+ δk), then

|Δ f (z)| ≤
(

n

∑
k=0

|ck||φk(z)|
)
· max

0≤k≤n
|δk| . (2.58)

If we let B(z) = ∑n
k=0 |ck||φk(z)|, we have the simple inequality

|Δ f (z)| ≤ B(z) max
0≤k≤n

|δk| . (2.59)

Here is a compact proof of this very important theorem, which we will use repeat-
edly in this book:

Proof. For the error term Δ f , we have

Δ f (z) =
n

∑
k=0

ckδkφk(z) =
[
c0φ0(z),c1φ1(z), · · · ,cnφn(z)

]
⎡⎢⎢⎢⎣
δ0

δ1
...
δn

⎤⎥⎥⎥⎦ . (2.60)

In this form, we can use Hölder’s inequality (Steele 2004): If 1/p+ 1/q = 1, then

|a ·b| ≤ ‖a‖p‖b‖q . (2.61)

The result follows directly if we take a = [c0φ0(z), . . . ,cnφn(z)], b = [δ0,δ1, . . . ,δn],
p = 1, and q = ∞. �

The number B(z) (and for fixed z, it is indeed just a number) thus serves as an
absolute condition number for evaluation of the polynomial f at the point z: If we
change the coefficients ck by a relative amount |δk| ≤ ε , this means that the value of
f might change by as much as εB(z). Higham (2004) uses instead B(z)/| f (z)|, which
is a relative condition number, and indeed this may be more informative in many
situations.

Remark 2.6. This is the first derivation of an explicit general formula in this book for
a condition number, which was defined for general computation in Sect. 1.4.2 and
used earlier to express the error results for Horner’s method. This notion is usually
introduced in numerical analysis texts not with polynomial evaluation as we have
done here, but rather with the solution of linear systems of equations (which we
begin in Chap. 4). The notion is perhaps the most important in the book, and the
reader will see it in every single chapter. The reader is urged to make a note of this
usage here, and later in Chap. 3, and again in Chap. 4; after that, return and reread
Sect. 1.4.2 before going on. �
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Example 2.3. As an example, we take a single polynomial, f (t), and plot its con-
dition number (2.59) in several different bases. Consider the polynomial f (t) that
takes on the values ρρρ = [1,−1, 1,−1] on τττ = [−1,−1/3, 1/3, 1]. Its Lagrange form is

f (t) =− 9
16

(
t +

1
3

)(
t − 1

3

)
(t − 1)− 27

16
(t + 1)

(
t − 1

3

)
(t − 1)

− 27
16

(t + 1)

(
t +

1
3

)
(t − 1)− 9

16
(t + 1)

(
t +

1
3

)(
t − 1

3

)
, (2.62)

while its monomial form is

f (t) =−9
2

t3 +
7
2

t, (2.63)

and its Newton form, if the nodes are taken in the left-to-right order in which they
are given, is

f (t) =−2− 3 t+
9
2
(t + 1)

(
t +

1
3

)
− 9

2
(t + 1)

(
t +

1
3

)(
t − 1

3

)
. (2.64)

If instead we use the Leja ordering of the nodes (see Chap. 8, Exercise 4), namely,
[−1,1,−1/3, 1/3], the form is

f (t) =−t +
3
2
(t + 1)(t − 1)− 9

2
(t + 1)

(
t +

1
3

)
(t − 1) . (2.65)

For each of these, B(t) is simply the sum of the absolute values of the terms. The
results are displayed in Fig. 2.3. �

Remark 2.7. In Fig. 2.3, we see B(t) plotted for all but that for Eq. (2.64), which is
so large (going up to 25) that it would compress the graph. This example is hardly
unique: The Newton basis is often poorly conditioned and, moreover, depends on
the ordering of the nodes. We will pursue this in great detail in the exercises, and
again in Chap. 8. This book differs from many numerical analysis texts in that it
avoids use of the Newton basis for this reason and uses the Lagrange and Hermite
interpolational bases instead, which are often better conditioned. This understand-
ing in a broad popular sense is a relatively recent development and is due to the
papers Berrut and Trefethen (2004) and Higham (2004), although in a more limited
sense, it was known previously. �

Example 2.4. Let us continue Example 2.3 with another basis, namely, the
Bernstein–Bézier basis, given by

φk(z) = (b− a)−n
(

n
k

)
(z− a)k(b− z)n−k . (2.66)

For polynomials of degree 3 on the interval −1 ≤ z ≤ 1, we just let a = −1, b = 1,
and n = 3, so that the basis elements are easily computed. We then find that if
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Fig. 2.3 Condition number of evaluation of a particular degree-3 polynomial in three different
bases: Lagrange (which is best), Newton with the Leja ordering (which is next-best), and standard
monomials (which is worst in this example)

f (z) =
3

∑
k=0

ckφk(z) ,

c0 = 1, c1 = −17/3, c2 = 17/3, and c3 =−1. Then, the condition number

3

∑
k=0

| ck | · | φk(z) |

is displayed in Fig. 2.4, where it is shown with the condition numbers from
Fig. 2.3. �

Remark 2.8. After this discussion, it is clear that the same polynomial will have dif-
ferent condition numbers in different bases. It is shown in Farouki and Goodman
(1996) that among all polynomial bases that are nonnegative on an interval, the
Bernstein–Bézier basis has optimal condition numbers in a generic sense. Taken as
a whole, one can expect a polynomial to have a smaller condition number in the
Bernstein–Bézier basis than in any other nonnegative basis. The Farouki–Goodman
theorem thus guarantees, for example, that the Bernstein–Bézier basis is better than
the monomial basis in general. For a particular polynomial, however, this need
not be true, as we have seen in the previous example. In Chap. 8, we will show,
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Fig. 2.4 Condition numbers from Fig. 2.3, together with the condition number of the same poly-
nomial expressed in the Bernstein–Bézier basis. This graph shows that, for this example, the
Bernstein–Bézier basis is worse than the Lagrange basis and comparable to the Newton basis with
Leja ordering

using the same techniques as Farouki and Goodman (1996) used, that if we re-
lax the nonnegativity condition, then the Lagrange basis has the same optimal-
ity property. This in some sense explains why the Lagrange basis did so well in
Example 2.3. �

Remark 2.9. The question of “which basis is best overall?” is somewhat vexed. The
answer is, “It really depends on the problem, and what information you want.” In
the simple example above, it is clear that the Lagrange basis has a lower condition
number than either of the Newton bases or the Bernstein–Bézier bases, over the
entire interval. The monomial basis, however, is better than the Lagrange basis, for
all z “near enough” to the origin. For this problem, the conditioning of the Lagrange
basis expression is better for “most” of the z in this restricted interval.

The picture would change if we took a different interval, or if we considered
instead the complex disk |z| < 1 (where, in fact, the monomial basis would show
itself to good advantage). It is the position of this book that the Lagrange basis
is generally to be preferred over other bases, on the principle that you probably
have sampled your polynomial where you know it best; while the Bernstein–Bézier
basis is provably the best on an interval for generic polynomials (and is widely
used in CAGD in part because of that); and that the monomial basis is likely
overused—that is, often used where it shouldn’t be—but can be the best tool for
the job.
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The relative condition number |B(z)|/| f (z)| is also of interest (perhaps of more inter-
est). Since this example polynomial has a zero at t = 0, the monomial basis condition
number shows itself to be best there—Bmonomial(0) = 0 as well, whereas all the other
absolute condition numbers are nonzero at zero, and so the relative condition of the
monomial basis is the only finite one there.

Finally, the flexibility and uniform approximation properties of discrete Cheby-
shev bases—that is, Lagrange interpolation on nodes that are the zeros of Chebyshev
polynomials—make them extremely interesting to the computational scientist. See
the Chebfun package as described in Battles and Trefethen (2004) and subsequent
papers. �

Example 2.5. As we have seen in Chap. 1, the Airy function has a Taylor series that
converges for all z; it can be written as

Ai(z) = 3−2/3
∞

∑
n=0

z3n

9nn!(n− 1/3)!
− 3−4/3

∞

∑
n=0

z3n+1

9nn!(n+ 1/3)!
. (2.67)

Consider using the degree-127 truncation of this Taylor series as a way of approxi-
mating Ai(z) for various z. In applications, for instance, the geometric optics of the
rainbow, the zeros of Ai(z) are often important, so we want to accurately assess it
there. So let us focus on values near z = −7.94, which is somewhat close to a zero
of Ai(z). A preliminary analysis shows that, in theory, the degree-127 truncation has
more than enough terms for convergence—here, we ought to be able to get about
25 significant figures of Ai(−7.94) if we want. We are using so many terms here
in part to show that the mathematical theory of convergence is not at issue for this
example. Write the degree-127 polynomial in Horner form (Exercise 2.29 contains
two programs that implement an efficient, specific variation of Horner form for this
particular polynomial).

If we use only 8 digits in our computation, because we only want 8 digits in our
answer, we get Ai(−7.94) = 0.00359469. Here is how the (general) Horner form
begins, with 8-digit coefficients:

0.35502806+ z(−0.25881940+ z(0.059171345+ · · ·)) . (2.68)

If we use 16 digits, we get a different answer, beginning with

Ai(−7.94) = 0.0039158060872139 .

Only a single significant digit was right the first time! If we don’t use Horner’s
form, the answer is worse, by the way. In order to understand what has gone wrong
with the 8-digit computation, we need to plot the B(z) function, which is the same
Taylor series but with all positive signs and with powers of |z|, not z. This is plotted
in Fig. 2.5. We see that the B(z) function becomes very large, for large z: We say
that the (monomial basis) polynomial approximation to the Airy function that we
derived from Taylor series is ill-conditioned to evaluate for large |z|. This point
deserves emphasis: Taylor series about the origin are often impractical to use for
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large |z| because the resulting polynomial expression, although adequate in theory
to deliver accuracy, is far too ill-conditioned to use. The condition number we see at
the right is about 1015—10 rounding errors, and we cannot count on any accuracy in
the result (and since we are adding up hundreds of terms, we will make many more
than 10 rounding errors). Near z = −7.94, the condition number is about 109. This
phenomenon is sometimes known as “the hump” (see Exercise 2.16).

There is a bit more to say, for this example, though: If we take each separate
series in Eq. (2.67), the one multiplied by 3−2/3 (call it f1(z)) and the other multiplied
by 3−4/3 (call it f2(z)), and plot their condition numbers, we see that each of them
has condition number 1 for z > 0 (because all terms are positive). So we can say
that each of them is accurately evaluated for z > 0. (This is how the programs in
Exercise 2.29 do it, by the way.) Yet the condition number for Ai(z) = 3−2/3 f1(z)−
3−4/3 f2(z) grows very large, even for positive z. This is because each of f1(z) and
f2(z) grows very large for large positive z, while Ai(z) gets very small indeed—that
is, we are computing Ai(z) as the tiny difference of two large numbers. This is a
recipe for catastrophic cancellation. Notice that this shows up automatically in the
condition number analysis: we have discovered directly that the condition number
of this polynomial is very large. We defer analysis of the condition number of Ai(z)
itself to Chap. 3 (Exercise 3.6). �

Fig. 2.5 The condition number for evaluation of the degree-127 Taylor polynomial for the Airy
function Ai(z) on −13 ≤ z ≤ 13. Note that it goes to infinity in very narrow spikes (the graph only
shows a portion of each spike since the singularity is so narrow) around each zero, but even away
from zeros, the condition number grows very rapidly with |z|
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2.4 Pseudozeros

We now look at the relationship between the condition number for evaluation of
polynomials and the condition number for rootfinding for polynomials. In mathe-
matical terms, given ε > 0 and weights wi ≥ 0, 0 ≤ i ≤ n, not all zero, define the set
of pseudozeros

Λε( f ) =

{
z

∣∣∣∣ ( f +Δ f )(z) = 0, where Δ f =
n

∑
i=0
Δciφi(z) and each |Δci| ≤ εwi

}
.

These are the roots of the polynomials that are near f . Studying this set will help us
to understand what happens if the coefficients of our polynomials are changed some-
how (perhaps due to measurement error, or to numerical errors in computation). To
do so, we make use of the following theorem:

Theorem 2.9. Let Λε( f ) be defined as above. Then

Λε( f ) =

{
z

∣∣∣∣ ∣∣( f (z))−1
∣∣≥ (εB(z))−1

}
, (2.69)

where B(z) = ∑n
i=0 wi|φi(z)| or, equivalently for scalar polynomials,

Λε( f ) =

{
z

∣∣∣∣ | f (z)| ≤ εB(z)

}
. (2.70)

Proof. First, suppose z∈Λε( f ). Moreover, if |Δci|≤εwi, andΔ f (z)=∑n
i=0Δciφi(z),

then

|Δ f (z)| ≤
n

∑
i=0

|Δci||φi(z)| ≤
n

∑
i=0

εwi|φi(z)|= εB(z) ,

so that Λε( f ) ⊆
{

z

∣∣∣∣ | f (z)| ≤ εB(z)

}
. Now, suppose | f (z)| ≤ εB(z). Take

Δci =−signum
(
φi(z)

)
wk

f (z)
B(z)

.

Then it follows that

|Δci|=
∣∣∣∣wi

f (z)
B(z)

∣∣∣∣≤ εwi
B(z)
B(z)

= εwi .

Also, observe that

f (z)+
n

∑
i=0

Δciφ(z) = f (z)+
n

∑
i=0

−wi|φi(z)| f (z)
B(z)
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= f (z)− f (z)
B(z)

n

∑
i=0

wi|φi(z)|

= f (z)− f (z) = 0 .

Thus, the set identity is obtained. �

Fig. 2.6 Zeros of a small perturbation of the Wilkinson polynomial W (z) =∏20
k=1(z−k), after first

having been expanded into the monomial basis Wk(z) = z20 −210z19 + · · ·

Remark 2.10. It is no coincidence that the condition number of Theorem 2.8 appears
as the expansion factor in equations in the proof of Theorem 2.9. An ill-conditioned
polynomial, with large B, will have its roots spread widely when the coefficients are
changed.

This is a very useful and important result: It says that if | f (z)| is small, then z is
the exact root of a nearby polynomial f (z)+Δ f (z). Note that this works for only
one root at a time. �

Example 2.6. The Wilkinson polynomial11 can be written as

W (z) =
20

∏
k=1

(z− k) = z20 − 210z19+ · · ·+ 20! (2.71)

11 See, for instance, Wilkinson (1984)
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Fig. 2.7 Pseudozeros of the Wilkinson polynomial expressed in the monomial basis: a plot of the
contours of | f (x+iy)|

B(x+iy)

when expanded into the monomial basis. Compare Figs. 2.6 and 2.7. In the latter
case, we see contours bounding the sets of zeros of all perturbations of the Wilkin-
son polynomial expressed in the monomial basis—as we see, quite small perturba-
tions can have dramatic effects on the location of the zeros. In the former, we have
an explicit perturbation of one coefficient (again in the monomial basis), and the
perturbed zeros lie pretty much along one of the contours of the latter. In contrast,
if we don’t expand it, then the natural basis to recognize in which it is written is the
Lagrange basis on the nodes 1, 2, . . ., 20, and (say) 0, so W (z) = 20! L0(z) has only
one nonzero coefficient. The condition number in this basis is, remarkably, 0 at all
the roots, in an absolute sense; in a relative sense, the condition number is just 1. Of
course, this is unsurprising, and uninformative: If we know the roots, then they are
easy to find. However, there is something more useful in this observation than just
that, and we return to it later. �

2.5 Partial Fractions

Every reader of this book will have encountered the partial fraction decomposition.
However, it is all too common to encounter only the hand practice, and not the
theory or a practical algorithm. We give the theory here, and later we give a practical
algorithm for the easy case that we need for interpolation. The basic object under
study here is the class of rational functions and a simple representation for them.
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Definition 2.5 (Rational function). A function f : C→ C is called a rational func-
tion if there exist polynomials p(z) and q(z) such that

f (z) =
p(z)
q(z)

∀z ∈C , (2.72)

except possibly at the zeros of q(z). If the degree of p(z) is n and the degree of q(z) is
m, then we say that f (z) is here represented as an [n,m]-degree rational function. By
convention, the identically zero function f (z) ≡ 0 is also called a rational function,
for example, taking q(z) = 1. �

Rational functions often arise in approximation theory. One class of these are called
Padé approximants:

Definition 2.6 (Padé approximant). A Padé approximant to a function f (z) is a
rational function whose coefficients are wholly determined by matching the Taylor
series of f (z). �

We can find a unique representative p(z)/q(z) for a rational function f (z) by insisting
that p(z) and q(z) have no common factors (dividing out the GCD) and normaliz-
ing one of f (z) and q(z) in some way—often by making f (z) monic by dividing
the numerator and the denominator by the leading coefficient of q(z), or by making
the norm of the vector of coefficients of q(z) equal to 1 and insisting that one par-
ticular coefficient be positive, or simply by insisting that a · q = 1 for some given
nonzero vector a, where q means the vector of coefficients of the polynomial q(z)
expanded in the monomial basis. Moreover, since the polynomials are linear in their
coefficients, we may divide the numerator and denominator by a constant in order
to make this dot product 1.

We also usually insist that deg p < degq, by first doing polynomial division if
necessary: p = Qq+R and so p/q = Q+ R/q, separating out a polynomial part Q(z)
and leaving a rational part R(z)/q(z) with the desired “proper form.”

We now state and prove the key theorem of this section:

Theorem 2.10 (Partial fraction decomposition). Suppose we have already found
machine number representations of all the roots of the denominator,12 and that

q(z) =
n

∏
k=0

(z− τk)
sk (2.73)

is the unique factorization of monic q(z) into distinct factors over C. That is, τi =
τ j ⇔ i = j, and each integer sk ≥ 1. Let m = ∑n

k=0 sk. Note that the degree of q(z)
is exactly m and that q(z) is not identically zero (if the product is empty with n < 0,
then q(z) = 1 by convention). Suppose that m ≥ 1. Suppose p(z) is a polynomial

12 Of course, this avoids the hard questions of how to do this if we start with q(z) expressed in some
other basis, and also the hard question of what are the consequences of approximating polynomial
roots by machine numbers. But for the interpolation applications that we need in this book, this
assumption suffices.
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with deg p < m having no common factor with q(z). Then there exist m numbers αi, j

(with 0 ≤ i ≤ n and 0 ≤ j ≤ si − 1) such that ∀z �∈ {τ0,τ1, . . .τn},

p(z)
q(z)

=
n

∑
i=0

si−1

∑
j=0

αi, j

(z− τi) j+1 . (2.74)

The numbers αi, j provide the decomposition.

Proof. We proceed by induction on the degree m ≥ 1, which gives a perfectly satis-
factory algorithm to use in hand computation. The base of the induction, m = 1, is
trivial: α0,0 = p0 = p(z), because deg p = 0 and there is nothing to prove. Suppose
now that the theorem is true for all polynomials with degrees m− 1 or less. Let

α0,s0−1 = p(τ0)
n

∏
k=1

(τ0 − τk)
−sk

and consider

p(z)
q(z)

− α0,s0−1

(z− τ0)
s0

=
p(z)−α0,s0−1∏n

k=1(z− τk)
sk

q(z)
.

We claim that the numerator and denominator on the right have a nontrivial common
divisor, z− τ0. Since s0 ≥ 1, it is clear that (z− τ0) | q(z). It only remains to show
that this factor divides the numerator. It is equivalent to show that τ0 is a zero of
the numerator. But this is obvious, because the polynomial at z = τ0 has the value
p(τ0)− p(τ0)∏n

k=1(τ0 − τk)
−sk ∏n

k=1(τ0 − τk)
sk = 0.

On dividing the numerator and denominator on the right by z−τ0 (as many times
as necessary but certainly at least once), we are left with a proper rational function
on the right with denominator of the form (2.73) and having degree strictly less than
m. By the induction hypothesis, this can be expressed uniquely in partial fraction
form, thus completing the proof of the theorem. �

Remark 2.11. This proof provides an excellent hand algorithm: see Scott and
Peeples (1988). It is also “self-checking”: If exact division does not occur at
the second step, we know that we have made an arithmetic blunder. �

Example 2.7. Consider

1
z2(z− 1)2 =

1
z2 +Rest(z)

on taking out the leading term in z as z → 0. Rearranging as in the proof of the
theorem, we get

Rest(z) =
1

z2(z− 1)2 −
1
z2 =

1− (z− 1)2

z2(z− 1)2 =
1− z2 + 2z− 1

z2(z− 1)2

=
z(2− z)

z2(z− 1)2 (2.75)

=
2− z

z(z− 1)2 (2.76)
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and this is a proper rational function with a degree-3 denominator, one less than
we started with. As stated previously, the exact cancellation from Eq. (2.75) to
Eq. (2.76) is necessary, and if it doesn’t happen, then we know that we have made
an arithmetic blunder.

The process can be continued, to get

1
z2(z− 1)2 =

1
z2 +

2
z
− 2

z− 1
+

1
(z− 1)2 . (2.77)

The numerators on the right-hand side are the αi, j desired. �

Remark 2.12. Later we will need this particular partial fraction decomposition many
times: It is the foundation for cubic Hermite interpolation. The reader is urged to
complete the computation above and confirm Eq. (2.77). �

This algorithm can be implemented recursively, once an algorithm for division
of polynomials by linear factors z− τk has been made available (and, of course, this
can be done in any polynomial basis). For our purposes in this book, however, there
is a more practical algorithm for partial fractions, based on local Taylor series. In
order to develop that algorithm (and indeed for many other numerical purposes), we
need to learn to manipulate formal power series, and so we turn to this in the next
section.

Remark 2.13. MAPLE has several commands to compute partial fraction decompo-
sitions. Using exact arithmetic, the command

convert( R, parfrac, z, true );

does the trick (the true flag means that the rational function R has already had its
denominator factored). However, at the time of this writing, for floating-point arith-
metic, this command is not always satisfactory, because it converts internally to a
monomial basis centered at 0, and this can induce numerical instability in the algo-
rithm because the intermediate monomial basis representations are ill-conditioned.
See Exercise 2.28. �

2.6 Formal Power Series Algebra

Numerical methods rely heavily on Taylor series. In this section we give a short
generalized reminder13 of how to operate on them. Suppose that, instead of being
given a function, we are directly given the series and that we want to do standard
operations with it, such as adding it, multiplying it, or dividing it by another series,
differentiating or integrating it, exponentiating it, and so on. We will examine how
to do so in this section. To begin with, suppose we have two series, given by

u =
N

∑
k=0

uk(x− a)k +O(x− a)N+1 (2.78)

13 This generalization includes O(n2) algorithms for computation.
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v =
N

∑
k=0

vk(x− a)k +O(x− a)N+1 . (2.79)

The scalar linear combination is defined to be

αu+βv =
N

∑
k=0

(αuk +βvk)(x− a)k +O(x− a)N+1 . (2.80)

In other words, to add, subtract, and scalar-multiply series, we simply add, subtract,
and scalar-multiply the corresponding coefficients. We examine the other operations
in the following subsections.

2.6.1 Multiplication of Series and the Cauchy Convolution

The product w = uv of two series u and v, as in Eqs. (2.78) and (2.79), can be written

w = uv =
N

∑
k=0

wk(x− a)k +O(x− a)N+1 (2.81)

as any other series. The problem, then, is to express the coefficients wk in terms of
the coefficients of u and v. The relationship in question is simply

wk =
k

∑
j=0

uk− jv j =
k

∑
j=0

u jvk− j . (2.82)

This is the Cauchy product formula or convolution product. It is crucial in what
follows. It can be done faster than the direct sum formula above, by using the fast
Fourier transform: See Henrici (1979b). See also Chap. 9 in this book.

Example 2.8. If we are given the series

u = 1+ 2(x− a)+ 3(x− a)2+ 4(x− a)3+ 5(x− a)4+ 6(x− a)5+O
(
(x− a)6

)
and

v = 2− 3(x− a)+ 4(x−a)2− 5(x− a)3+ 6(x− a)4− 7(x− a)5+O
(
(x− a)6

)
,

then their product w = uv has the series starting

uv = 2+(x− a)+ 4(x−a)2+ 2(x− a)3+ 6(x− a)4+ 3(x− a)5+O
(
(x− a)6

)
.

These series were computed using the series command in MAPLE, which, among
other things, implements the Cauchy convolution product. �
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Is the computation of the Cauchy convolution numerically stable? If N = 0, so
that we are multiplying constants, then (obviously) Cauchy convolution is numeri-
cally stable: u0v0(1+ δ ) can be interpreted as the exact product of u0(1+ δ/2) and
v0(1+ δ )(1 + δ/2)−1 ≈ v0(1+ δ/2) by the IEEE standard. Cauchy convolution is
normwise forward stable, as we will see, for any fixed N; but it is not component-
wise stable for N > 1, as we will also see. But it is stable for N = 1.

Theorem 2.11. Cauchy convolution is componentwise stable if N = 1.

Proof. Suppose N = 1, so that u = u0+u1z+O(z2), and v = v0+v1z+O(z2). Then
uv = u0v0 +(u0v1 + u1v0)z+O(z2) in exact arithmetic. If we are using floating-
point arithmetic instead, then as we just saw, we may choose perturbations in u0

and v0 that allow us to interpret the first term as the exact product of perturbed u0

and v0. Suppose that we have done so, with û0 = u0(1+ δ1) and v̂0 = v0(1+ δ2),
where δ1 and δ2 are such that (1+ δ1)(1+ δ2) = (1+ δ0) with û0v̂0 = u0v0(1+ δ0)
and |δ0| ≤ μM . As shown above, we may choose δ1 and δ2 so that each is also
smaller than μM in magnitude. Now we wish to interpret the floating-point value
u0 ⊗v1⊕u1⊗v0 as û0v̂1 + û1v̂0 with û1 = u1(1+δ3) and v̂1 = v1(1+δ4), with each
of δ3 and δ4 small. We break the proof up into cases.

In the first case, suppose that v1 = 0. Then we are multiplying u by a constant,
and obviously each term in the product is the exact product of v0 with a relatively
minor change in u0 and u1: We have û0 = u0(1+ δ0) and can take û1 = u1(1+ δ3)
directly, and leave v̂0 = v0, and similarly if u1 = 0.

Now suppose we are in the second case, where neither u1 nor v1 is zero. Then

u0 ⊗ v1 ⊕ u1 ⊗ v0 = (u0v1(1+ δ5)+ u1v0(1+ δ6))(1+ δ7)

= (û0v1(1+ δ0)
−1(1+ δ5)+ u1v̂0(1+ δ6))(1+ δ7)

= û0v̂1 + û1v̂0, (2.83)

where v̂1 = v1(1+ δ0)
−1(1+ δ5)(1+ δ7) is only three rounding errors different to

v1 and û1 = u1(1+ δ6)(1+ δ7) is only two rounding errors different to u1. That is,
the computed Cauchy convolution if N = 1 is the exact product of two series that
differ only minutely in a relative sense to each multiplicand series. �

However, for N = 2, this kind of analysis cannot succeed.

Theorem 2.12. For N = 2, Cauchy convolution can be componentwise unstable:
That is, the computed product of two series of order O(z3) is not necessarily the
exact product of any two nearby series, where “nearby” means each coefficient is
relatively close to the original.

Proof. Using a more systematic notation to help with the bookkeeping, suppose to
the contrary that we may choose relative perturbations ûk = uk(1+ δ u

k ) and v̂k =
vk(1+ δ v

k ) in order to match the rounding errors in the computation, which we will
denote by εk. We would then have

u0v0(1+ δ u
0 )(1+ δ

v
0) = u0v0(1+ ε0)
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u0v1(1+ δ u
0 )(1+ δ

v
1)+ u1v0(1+ δ u

1 )(1+ δ
v
0) = u0v1(1+ ε1)(1+ ε3)

+ u1v0(1+ ε2)(1+ ε3),

where each |ε j |< μM , the unit roundoff. As we saw in the previous theorem, if we
stop here, we may choose small δ ’s in order to satisfy these constraints: For N = 1,
we may interpret the rounding errors as small relative backward errors. However,
we need one more equation for N = 2:

u2v0(1+ δ u
2 )(1+ δ

v
0)+ u1v1(1+ δ u

1 )(1+ δ
v
1 )+ u0v2(1+ δ u

0 )(1+ δ
v
2)

= u2v0(1+ε4)(1+ε6)(1+ε8)+u1v1(1+ε5)(1+ε6)(1+ε8)+u0v2(1+ε7)(1+ε8).

Because the uk and vk are independent variables, each monomial gives an equation
for the unknown perturbations, so that we have

(1+ δ u
0 )(1+ δ

v
0) = (1+ ε0) (2.84)

(1+ δ u
0 )(1+ δ

v
1) = (1+ ε1)(1+ ε3) (2.85)

(1+ δ u
1 )(1+ δ

v
0) = (1+ ε2)(1+ ε3) , (2.86)

and from the O(z2) term, we will only need

(1+ δ u
1 )(1+ δ

v
1) = (1+ ε5)(1+ ε6)(1+ ε8) (2.87)

to arrive at a contradiction. Multiply Eqs. (2.85) and (2.86) together and divide by
Eq. (2.84) to get

(1+ δ u
1 )(1+ δ

v
1) =

(1+ ε1)(1+ ε3)
2(1+ ε2)

(1+ ε0)
. (2.88)

For this to hold simultaneously with (2.87) requires that the rounding errors ε5, ε6,
and ε8 be perfectly correlated with the earlier rounding errors ε0, ε1, ε2, and ε3. In
general, this does not happen. Therefore, there is no possible set of perturbations δ u

k
and δ v

k that allows rounding errors in Cauchy convolution for N > 1 to be interpreted
as a small relative backward error. �

Remark 2.14. In the forward error sense, this computation also shows that the com-
ponentwise relative error may be infinite. Take an example where u0v2 + u1v1 +
u2v0 = 0 in exact arithmetic. Then the rounding errors, which will be proportional
to |u0v2|+ |u1v1|+ |u2v0|, will be infinitely large in comparison with the reference
result of 0. �

However, there is a forward accuracy result for all N in the normwise sense, as
follows. If cn = ∑n

j=0 u jvn− j, then Eq. (3.5) in (Higham 2002 section 3.1), which
gives us a general result on the forward accuracy of inner products, tells us that

|ĉn − cn| ≤
√

2γn+1

n

∑
j=0

|u j||vn− j| . (2.89)
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If all terms u j and v j are positive, this is a decent relative accuracy (and the constant
in front can be improved with minor modifications of how the sum is done and
in which order). If, however, cn is very small while some u j and v j are large in
magnitude, then there must be cancellation, and the error bound will then be large
to reflect this.

Remark 2.15. This difficulty may be mitigated by performing this recurrence rela-
tion in higher precision, or by using certain compensated summation techniques as
described in Higham (2002). However, the inaccuracy is often of little consequence
in computation with the resulting series, anyway, even if the recurrence relation is
performed in a naive way. The reason is simply that the errors grow at worst in ck

like O((k+1)‖u‖‖v‖μM), and thus for the low-order terms, the error is small in any
case; and the high-order terms are used only together with high powers of (z− a),
which is presumed small. Thus, the total error in the computed sum ∑N

j=0 c j(z− a) j

will be small enough: The terms with larger errors will not contribute much to the
total sum. �

Finally, we leave aside the question of whether the Cauchy convolution is well-
conditioned, which we will take it up in the exercises in Chap. 3.

2.6.2 Division of Series

Let us now consider the case of division. If we consider

r =
u
v
=

N

∑
k=0

rk(x− a)k +O(x− a)N+1 , (2.90)

then we must have u = rv, so that

uk =
k

∑
j=0

r jvk− j = rkv0 +
k−1

∑
j=0

r jvk− j, (2.91)

and we see that for rk to be defined we must have v0 �= 0. Then

rk =
1
v0

(
uk −

k−1

∑
j=0

r jvk− j

)
(2.92)

and the base of the recurrence is (if v0 �= 0)

r0 =
u0

v0
. (2.93)

However, if v0 = 0, then no series for r exists, unless perhaps also u0 = 0 and we
may cancel a factor in u/v.
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Example 2.9. With the same u and v that we used in Example 2.8, we find that

u
v
=

1
2
+

7
4
(x− a)+

25
8
(x− a)2 +

71
16

(x− a)3 +
185
32

(x− a)4 +O
(
(x− a)5

)
,

while

v
u
= 2− 7(x− a)+ 12(x−a)2− 16(x− a)3+ 20(x− a)4+O

(
(x− a)5

)
.

Again these series were computed in MAPLE, which knows how to do series algebra
including division, and cancels common factors in order to avoid division by zero
wherever possible. MAPLE also knows how to work with several generalizations
of Taylor series, including Laurent series, which allow negative integer powers of
(x−a), and Puiseux series, which allow fractional powers. The algebra of these is a
straightforward extension of that for Taylor series. We will occasionally have need
for these generalizations. �

2.6.3 Differentiation and Integration

Differentiation of power series is very straightforward. If we are given a series

u =
N

∑
k=0

uk(x− a)k +O(x− a)N+1 ,

then it is easy to see that its derivative is

du
dx

=
N

∑
k=0

kuk(x− a)k−1 +O(x− a)N

=
N−1

∑
k=0

(k+ 1)uk+1(x− a)k +O(x− a)N .

Moreover, its integral is also directly seen to be

ˆ x

a
u(ξ )dξ = u0(x− a)+ u1

(x− a)2

2
+ . . .

=
N

∑
k=0

uk

k+ 1
(x− a)k+1 +O(x− a)N+2 .

These two simple operations will be applied to many problems in this book.
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2.6.4 The Algebra of Series

The rules we have examined already give us the series for all polynomials and ra-
tional functions. Using these rules, we see how to square a series,

x2 =
(
a+(x− a)+O(x− a)N+1)2

= a2 + 2a(x− a)+ (x− a)2+O(x− a)N+1 ,

or to take higher powers. Moreover, we see that

1
x
=

1+O(x− a)N+1

a+(x− a)+O(x− a)N+1

=
N

∑
k=0

(−1)k

ak+1 (x− a)k +O(x− a)N+1 .

As a result, we can also find the series for ln(x) by using the integration rule. Ob-
serve that

ln(x) =
ˆ x

1

dt
t
=

ˆ a

1

dt
t
+

ˆ x

a

dt
t
.

From this, we obtain

ln(x) = ln(a)+
ˆ x

a

(
N

∑
k=0

(−1)k

ak+1 (x− a)k +O(x− a)N+1

)
dx

= ln(a)+
N

∑
k=0

(−1)k

(k+ 1)ak+1 (x− a)k+1 +O(x− a)N+2 .

Algebraically, the set of truncated power series (TPS) of order N forms an integral
domain: The sum, difference, and product of TPS are TPS, but there are zero di-
visors, and not every element has a reciprocal—indeed, each element with a zero
leading coefficient fails to have a TPS reciprocal. If we allow negative integer pow-
ers of (x− a), then we have truncated Laurent series, which are indeed useful.

2.6.5 The Exponential of a Series

To find the series for ex, we may introduce series reversion (see Exercise 2.24) or
look at the differential equation

dy
dx

= y, y(a) = ea, (2.94)
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which is, of course, satisfied by ex. Now, let y be given by

y =
N

∑
k=0

yk(x− a)k +O(x− a)N+1 . (2.95)

We have y0 = ea and, by differentiation, we also have

N

∑
k=0

kyk(x− a)k−1 +O(x− a)N =
N

∑
k=0

yk(x− a)k +O(x− a)N+1,

or, by rearranging the summation indices,

N−1

∑
k=0

(k+ 1)yk+1(x− a)k +O(x− a)N =
N

∑
k=0

yk(x− a)k +O(x− a)N+1 . (2.96)

By the uniqueness of power series, we can identify the coefficients of corresponding
powers, thereby obtaining the relation

(k+ 1)yk+1 = yk , k = 0,1,2,3, . . . ,N − 1 . (2.97)

Using our initial condition and this recursive relation, we find that

y1 = y0 = ea

2y2 = y1 = ea

3y3 = y2 =
1
2

ea

4y4 = y3 =
1
6

ea ,

and so on, so that the series for the exponential itself is

ex =
N

∑
k=0

ea

k!
(x− a)k +O(x− a)N+1 . (2.98)

However, that was really too easy for such a powerful trick. How about y = eu,
where

u =
N

∑
k=0

uk(x− a)k +O(x− a)N+1

instead? It still works! Let y be as in Eq. (2.95). Then, because

dy
dx

=
dy
du

du
dx

= y
du
dx

,
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we find that

N−1

∑
k=0

(k+ 1)yk+1(x− a)k +O(x− a)N =(
N

∑
k=0

yk(x− a)k +O(x− a)N+1

)(
N

∑
k=0

uk(x− a)k +O(x− a)N+1

)
.

Now, applying the Cauchy convolution rule to the right-hand side gives us

N−1

∑
k=0

(k+ 1)yk+1(x− a)k +O(x− a)N =
N

∑
k=0

ck(x− a)k +O(x− a)N+1 , (2.99)

where

ck =
k

∑
j=0

y juk− j .

By the same method, we thus find the relation

(k+ 1)yk+1 =
k

∑
j=0

y juk− j . (2.100)

Also, it is obviously the case that the recurrence starts with y0 = eu0 . This recurrence
relation allows us to compute the exponential of any series. We will later solve
differential equations with this technique.

Example 2.10. If u(x) has the following series,

u =

√
2

2
+

√
2

2

(
x− π

4

)
−

√
2

4

(
x− π

4

)2
−

√
2

12

(
x− π

4

)3

+

√
2

48

(
x− π

4

)4
+O

((
x− π

4

)5
)
,

then exp(u) has the series beginning

eu = e
√

2/2 +
1
2

e
√

2/2
√

2
(

x− π
4

)
+ e

√
2/2

(
1
4
−

√
2

4

)(
x− π

4

)2

− e
√

2/2

(
1
4
+

√
2

24

)(
x− π

4

)3
− e

√
2/2

(
1
96

+

√
2

24

)(
x− π

4

)4
+O

((
x− π

4

)5
)
.
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Again, MAPLE was used with its series command, which implements the algorithms
discussed here. Specifically, once the series for u was defined, the command

series( exp(u), u=Pi/4 )

generated the above result. �

You may notice that convergence has not entered the discussion. Since we work
only with truncated, finite power series, this is not a serious omission. Truncation
error formulæ, on the other hand, are very useful, even if the series don’t converge.
You may be familiar with the Lagrange form of the remainder (that is, truncation
error) for real Taylor series:

f (x) = f (a)+ f ′(a)(x− a)+ · · ·+ f (n)(a)
n!

(x− a)n +Rn+1(x;a), (2.101)

where

Rn+1(x;a) =
f (n+1)(a+θx)

(n+ 1)!
(x− a)n+1 . (2.102)

Here θ is some number between 0 and 1, which we don’t know exactly. Knowledge
of bounds on the (n+ 1)st derivative allows us to estimate how much accuracy we
have in our real Taylor series when we truncate at n terms. This formula doesn’t
work over the complex numbers, however: Instead, we have (replacing x by z every-
where above)

Rn+1(z;a) =
(z− a)n+1

2π i

ffi
C

f (ζ )
(ζ − a)n+1 (ζ − z)

dζ . (2.103)

Here C is a contour enclosing a and z. This integral can be interpreted as an “average
value” of the (n+1)st derivative; in the complex plane, however, this average value
is not always attained at some point a+ θ z. We will see a generalization of this
formula to the case of interpolation error in Eq. (8.40) in Chap. 8.

We may also need to worry about whether the computed series is well-
conditioned with respect to the data. Again this is taken up in Chap. 3.

2.7 A Partial Fraction Decomposition Algorithm Using Local
Taylor Series

We return to the problem of computing the partial fraction decomposition of p(z)/q(z),
where q(z) has been completely factored down to distinct linear (complex) factors
(z− τk)

sk for 0 ≤ k ≤ n. We will need, first, the local Taylor series of p for each τk:

p(z) = pk,0 + pk,1(z− τk)+ · · ·+ pk,sk−1(z− τk)
sk−1 +O(z− τk)

sk . (2.104)
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In other words, we need to reexpress p(z) in each of the n local (i.e., shifted) mono-
mial bases 1, (z− τk), (z− τk)

2, . . ., (z− τk)
d , except that we only need the first sk

coefficients in each case. This can be done using synthetic division, as discussed
earlier. Assume that this has been done. Then, if

q(z) =
n

∏
k=0

(z− τk)
sk , (2.105)

then the rational function we wish to decompose into partial fractions, p(z)/q(z), can
be written as follows. We choose τ0 as being special, for the moment, and let w0(z) =
∏n

k=1 (z− τk)
−sk , which is analytic at τ0 because all the τk are distinct by hypothesis

(confluency is explicitly known). Thus, we can compute its local Taylor series by
the methods of the previous section. In general, that is, not just for k = 0, let

wi(t) =
n

∏
k=0
k �=i

(t − τk)
−sk .

Then, we obtain the local Taylor series

wi(t) = wi,0 +wi,1(t − τi)+ · · ·= ∑
�≥0

wi,�(t − τi)
� .

Then, observe that

p(z)
q(z)

=
p(z)

n

∏
k=0

(z− τk)
sk

=
p(z)

(z− τi)
si

n

∏
k=0
k �=i

(z− τk)
sk

=
p(z)wi(z)
(z− τi)si

. (2.106)

Now, this is exactly the form required for a partial fraction decomposition. As a
result, the partial fraction decomposition we want may be obtained by Cauchy con-
volution with the local series for p(z).

There are many ways to do this. The following is one method, and it has been
implemented in MATLAB.14 Begin by taking logarithms of wi(z):

lnwi(z) =
n

∑
k=0
k �=i

−sk ln(z− τk)+ complex piecewise constants . (2.107)

When we take derivatives with respect to z, all the piecewise constants (multiples of
2π i) disappear:

w′
i(z)

wi(z)
= ∑

k=0
k �=i

−sk

z− τk
. (2.108)

14 The program is discussed in Chap. 8.
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Note that

1
z− τk

=
1

τi − τk + z− τi

and so the summands in the right-hand sum of Eq. (2.108) can be expressed as
follows:

−sk

z− τk
=

sk

τk − τi

1

1− z−τi
τk−τi

=
sk

τk − τi
∑
�≥0

(
z− τi

τk − τi

)�

.

Therefore,

w′
i(z)

wi(z)
=

n

∑
k=0
k �=i

∑
�≥0

sk

(τk − τi)�+1 (z− τi)
� = ∑

�≥0

⎛⎜⎝ n

∑
k=0
k �=i

sk

(τk − τi)�+1

⎞⎟⎠(z− τi)
� . (2.109)

If we define ui,� as follows,

ui,� =
n

∑
k=0
k �=i

sk

(τk − τi)�+1 , (2.110)

then Eq. (2.109) becomes

w′
i(z)

wi(z)
= ∑

�≥0

uk(z− τi)
� . (2.111)

To simplify things a bit more, let vi,m = wi,m/wi,0 (so vi,0 = 1) and note that

wi,0 =
n

∏
k=0
k �=i

(τi − τk)
−sk .

Now, it follows that

wi(z) = ∑
m≥0

wi,m(z− τi)
m = wi,0 ∑

m≥0
vi,m(z− τi)

m .

Taking derivatives (using ′ to denote d/dz), we have

w′
i(z) = wi,0 ∑

m≥0

mvi,m(z− τi)
m−1 = wi,0 ∑

m≥1

mvi,m(z− τi)
m−1

= wi,0 ∑
m≥0

(m+ 1)vi,m+1(z− τi)
m.

Putting these in (2.111) and rearranging in order to more easily compare coeffi-
cients, we get the following:
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∑
m≥0

(m+ 1)vi,m+1(z− τi)
m =

(
∑

m≥0
vi,m(z− τi)

m

)(
∑
�≥0

ui,�(z− τi)
�

)
= ∑

m≥0
cm(z− τi)

m,

where

cm =
m

∑
�=0

vi,m−�ui,�

is Cauchy’s convolution formula. Equating coefficients gives (remember vi,0 = 1)

vi,m+1 =
1

m+ 1
cm

=
1

m+ 1

m

∑
�=0

vi,m−�ui,� . (2.112)

Recall that (2.110) defines ui,�. The recurrence relation (2.112) is the heart of the
local Taylor series algorithm for partial fractions. Once we have the vi,k, then we
have the desired βi, j.

Algorithm 2.4 Partial fraction decomposition by local Taylor series
Require: A positive integer n, a list of positive integers sk , a list of n distinct zeros τk of the

denominator q(z) =∏n
k=0(z− τk)

sk , and the n+1 lists of local series coefficients pk, j , 0 ≤ j ≤
sk −1 of p(z).
for i=0:n do

for j=i+1:n do
Δτi, j = τi − τ j

end for
vi,0 = 1
for m=0:si −1 do

ui,m = ∑n
k=0
k �=i
Δτ−m−1

i,k

vi,m+1 =
1

m+1 ∑
m
k=0 ui,kvi,m−k

end for
βi =∏n

k=0
k �=i

(τi − τk)
−sk

for m=1:si do
wi,m = βiνi,si−m

end for
for m=1:si do
αi,m = ∑m

k=0 pi,kwi,m−k
end for

end for
return The coefficients αk, j in the partial fraction decomposition

p(z)

∏n
k=0(z− τk)sk

=
n

∑
k=0

sk−1

∑
j=0

αk, j

(z− τk) j+1 (2.113)
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Algorithm 2.4 has been implemented in the MATLAB program genbarywts
and in the MAPLE program BHIP, for the case where the numerator is just 1. You
will be asked to show in the exercises that this algorithm costs O(d2) flops, when
proper care is taken to avoid redundancy. In the case when all sk = 1, the algorithm
reduces merely to the computation of βi for 1 ≤ i ≤ n. In that case, the computation
was proved to be numerically stable by Higham (2004). If any sk > 1, then the
algorithm is not backward stable, in the case when the nodes τk are symmetric about
zero (for example) and some of the partial fraction decomposition coefficients αi, j

are exactly zero. However, the algorithm is stable enough for many purposes.

Example 2.11. Suppose the nodes τk are the Chebyshev–Lobatto nodes τk=cos(πk/n)
for 0≤k≤n. Take first the case n = 5, and execute this code:

tau = cos( pi*k/n );
[w,D] = genbarywts( tau, 1 )

It returns the values

w = 1.6000,−3.2000,3.2000,−3.2000,3.2000,−1.6000 .

By comparison with MAPLE, these answers are correct up to O(μM). When n = 50,
the numbers are larger, O(1013), but still have relative forward error only about
2× 10−14.

When we make each node have confluency s = 2, the situation changes a bit, but
not much, for n = 5:

α =

⎡⎢⎢⎢⎢⎢⎢⎣
−43.520 2.5600
23.978 10.240
3.4984 10.240
−3.4984 10.240
−23.978 10.240
43.520 2.5600

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and again the forward error is O(μM). For n = 50, this is again true. We detect no
instability in this example. For higher confluencies, we expect more trouble. �

2.8 Asymptotic Series in Scientific Computation

Niels Henrik Abel (1802–1829) wrote

The divergent series are the invention of the devil, and it is a shame to base on them any
demonstration whatsoever. By using them, one may draw any conclusion [s]he pleases and
that is why these series have produced so many fallacies and paradoxes [. . . ]. (cited in
Hoffman 1998 p. 218)

Nowadays, the attitude is different, and closer to what Heaviside meant when he
said
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The series is divergent; therefore we may be able to do something with it. (cited in
Hardy 1949)

In fact, asymptotic series will be used a lot in this book, and we will often not care
too much whether they converge. This is because, in many contexts, the first few
terms contain all the numerical information one needs; there’s no need to ponder on
what happens in the tail end of the series.

The key to understanding asymptotic series is to realize that there are two limits
to choose from, with a series. Suppose we have, for example,

f (z) =
N

∑
k=0

f (k)(a)
k!

(z− a)k + RN(z)(z− a)N+1 , (2.114)

as the usual truncated Taylor series for f (z) near z = a. We can take the first limit,
N →∞, to get the familiar mathematical object of the infinite series. This only makes
sense if the limit exists. (There is some freedom to alter the definition of limit that
we use in this case; we do not pursue this here.) If that limit exists, we say the
series is convergent. However, there is another limit to be considered here, which
often leads to very useful results. Namely, do not let N → ∞, but rather keep it fixed
(perhaps even at N = 1 or N = 2). Instead, consider the limit as z → a. Even if the
series is divergent in the first sense, this second limit often gives enormously useful
information, typically because RN(z) (as it is written above) is well behaved near
z = a, and so the term (z− a)N+1 ensures that the remainder term vanishes more
quickly than do the terms that are kept. The rest of this section explores that simple
idea.

We often want to consider the behavior of a function y(x) in the presence of
some perturbations. Then, instead of studying the original function y(x), we study
the asymptotic behavior of a two-parameter function y(x,ε), where ε is considered
“small.” An asymptotic expansion for the function y(x,ε) has the form

y(x,ε) = y0(x)φ0(ε)+ y1(x)φ1(ε)+ y2(x)φ2(ε)+ . . .=
∞

∑
k=0

yk(x)φk(ε) , (2.115)

where φk(ε) are referred to as gauge functions; that is, they are a sequence of func-
tions {φk(ε)} such that, for all k,

lim
ε→0

φk+1(ε)
φk(ε)

= 0 .

The type of gauge function we will use the most often is the power of the per-
turbation ε , namely, φk(ε) = εk, in which case we simply have a formal power
series:

y(x,ε) = y0(x)+ y1(x)ε + y2(x)ε2 + . . .=
∞

∑
k=0

yk(x)εk.
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We then have to solve for the yk(x), k = 0,1, . . . ,N. To find the first coefficient y0(x),
divide Eq. (2.115) by φ0(ε), and then take the limit as ε → 0:

y(x,ε)
φ0(ε)

= y0(x)+
1

φ0(ε)

∞

∑
k=1

yk(x)φk(ε)

lim
ε→0

y(x,ε)
φ0(ε)

= y0(x) .

All the higher-order terms vanish since φk(ε) is a gauge function. This gives us
y0(x). Now, subtract y0(x)φ0(ε) from both sides in Eq. (2.115); we then divide both
sides by φ1(ε) and take the limit as ε → 0:

y(x,ε)− y0(x)φ0(ε)
φ1(ε)

= y1(x)+
1

φ1(ε)

∞

∑
k=2

yk(x)φk(ε),

so

lim
ε→0

y(x,ε)− y0(x)φ0(ε)
φ1(ε)

= y1(x) . (2.116)

As we see, we will in general have

yk(x) = lim
ε→0

1
φk(ε)

(
y(x,ε)−

k−1

∑
�=0

y�(x)φ�(ε)

)
. (2.117)

Convergence of a series is all about the tail, which requires an infinite amount of
work. What we want instead is gauge functions that go to zero very fast; in other
words, the speed at which they go to zero is asymptotically faster from one term to
the next.

Example 2.12. Consider the (convergent) integral and the (divergent) asymptotic
series

ˆ ∞

0

e−t

1+ xt
dt =

n

∑
k=0

(−1)kk!xk +O(xn+1) .

One can discover that series by replacing 1/(1+ xt) with the finite sum 1− xt + x2t2 +

· · · (xt)n + (−xt)n+1

(1+xt) , giving

ˆ ∞

0

e−t

1+ xt
dt =

n

∑
k=0

(−1)kxk
ˆ ∞

0
tke−t dt +(−1)n+1xn+1

ˆ ∞

0

tk+1e−t

1+ xt
dt .

This provides a perfectly definite meaning to each of the entries in the asymptotic
series. Notice that the series diverges for any x �= 0, if we take the limit as n → ∞.
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Nonetheless, taking (say) n = 5 allows us to evaluate the integral perfectly accu-
rately for small enough x, say x = 0.03: summing the six terms gives 0.9716545240,
whereas the exact value (found by the methods of Chap. 10) begins 0.9716549596,
which differs by about 5 ·10−7. �

Remark 2.16. In the previous example, we have used a divergent series to give us
a good approximation to the correct answer. Heaviside was right, and asymptotic
series are extremely useful in numerical analysis. The reason this works is that it is
the limit as x → 0 that is dominating here: If we had wanted an accurate answer for
x= 10, we would have been out of luck. We will often be concerned with the asymp-
totics of the error as the average mesh width (call it h) goes to zero, for example,
and methods will be designed to be accurate in that limit. �

2.9 Chebyshev Series and Chebfun

This generalized review chapter is not the right place to begin explaining the under-
lying methods of the Chebfun package. Here we mention only that the package does
not use Taylor series, but rather interpolation at Chebyshev points (we expand on
this in Chap. 8), which is closely related to Chebyshev series: One can convert back
and forth using the FFT, in a stable and efficient fashion (see Chap. 9). What, then,
are Chebyshev series? Just as with Taylor series, one can find convergent series for
elementary functions, but where now the gauge functions are not shifted monomials
but rather Chebyshev polynomials15; for example,

ex = J0(i)T0(x)+ 2
∞

∑
k=1

ikJk(−i)Tk(x) . (2.118)

The coefficients are evaluations of the Bessel functions Jk(z) at particular arguments
(complex arguments, as it happens, although the results are real). This series is
not expressed in powers of x or of x− a, but rather in higher- and higher-degree
Chebyshev polynomials. One could do this on other intervals by the linear trans-
formation x = 2(t−a)/(b−a)− 1, so a ≤ t ≤ b; the coefficients would be different,
of course. When one has evaluated J0(i) ≈ 1.266 . . . and Jk(−i) for several k,
this series (and series like this) can provide a quite effective method for evaluat-
ing the function under consideration. See, for example, Boyd (2002) for applica-
tions to computing zeros of functions. For example, taking the first 15 terms here
gives us

ex = 1.26606587775201T0(x)+ 1.13031820798497T1(x)

+ 0.271495339534077T2(x)+ 0.0443368498486638T3(x)

+ 0.00547424044209373T4(x)+ 0.000542926311913944T5(x)

+ 0.0000449773229542951T6(x)+ 0.00000319843646240199T7(x)

15 See Rivlin (1990 Chapter 3).
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+ 0.000000199212480667280T8(x)+ 0.0000000110367717255173T9(x)

+ 0.000000000550589607967375T10(x)+ 2.49795661698498×10−11T11(x)

+ 1.03915223067857×10−12T12(x)+ 3.99126335641440×10−14T13(x)

+ 1.42375801082566×10−15T14(x) (2.119)

and this approximation has the relative error (on the interval −1 ≤ x ≤ 1) shown
in Fig. 2.8. We will pursue this concept further in later chapters. For now, note that

Fig. 2.8 The relative error S · exp(−x)−1 in the truncated Chebyshev series (2.119), computed in
high precision in MAPLE

|Tk(x)| ≤ 1, and so the size of the coefficients tells us directly how much each term
contributes (at most) to the sum.

In Chebfun itself, this series can be computed as follows, assuming the Chebfun
package has been installed.

x = chebfun('x',[-1,1]);
y = exp(x);
co = chebpoly(y);
format long e
co(end:-1:1)'
% ans =
%
% 1.266065877752008e+000
% 1.130318207984970e+000
% 2.714953395340767e-001
% 4.433684984866388e-002
% 5.474240442093829e-003
% 5.429263119140007e-004
% 4.497732295430233e-005
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% 3.198436462443460e-006
% 1.992124806757106e-007
% 1.103677179109604e-008
% 5.505895456820691e-010
% 2.497954620928056e-011
% 1.039121170062377e-012
% 4.003147020219850e-014
% 1.395708945243054e-015
%
t = linspace(-1,1,3011);
reler = exp(-t).*y(t)-1;
plot( t, reler, 'k-' );
set(gca, 'fontsize', 16);
axis([-1,1,-1.5E-15,1.5E-15]);
set(gca, 'YTick', -1.5E-15:5E-16:1.5E-15);

As you can see, the numbers do not quite match (although the largest three do):
The series at the beginning of this section was computed using MAPLE in 60 digits
of precision, and then the coefficients were rounded to 15 digits. They are differ-
ent from the Chebfun series coefficients printed above, but not in any important
way because the differences in the smallest coefficient (which are the greatest, rel-
atively speaking) matter the least to the sum. The source of the difference is not
a numerical error, but rather a difference in type of approximation. We will re-
turn to this later, but for now, observe that Chebfun is doing what it is supposed
to—something similar to the Chebyshev series above, but not exactly the same
thing. As we see in Fig. 2.9, it produces a perfectly acceptable (and even somewhat
similar, ignoring the discrete-level effect of being so close to unit roundoff) error
curve.

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
x 10−15

Fig. 2.9 The relative error y ·exp(−x)−1 in the chebfun for y = exp(x), as computed in normal
precision in MATLAB
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2.10 Notes and References

This chapter was originally intended for self-study, although the importance of the
material suggests that it should be more formally included in any course using
this book. A more elementary introduction to the theory of univariate polynomials
can be found in Barbeau (2003). A more detailed introduction to the computation
of Taylor series can be found in Henrici (1974). For a statement and discussion
of the fundamental theorem of algebra, see, for instance, Levinson and Redheffer
(1970).

Variations of Theorem 2.9 can be found throughout the literature, so many that
Stetter (1999) says that it is misleading to cite any; the paper (Rezvani and Corless
2005) points out that it is really just an application of Hölder’s inequality.

Algorithm 2.1, our version of the synthetic division algorithm, is an adaptation
of Algorithm 5.2 in Higham (2002 p. 96). We modify that algorithm here to return
the local Taylor coefficients, that is, p(k)(a)/k! instead of multiplying by factorials as
done there to return values of the derivatives p(k)(a).

The special case τk = −k or τk = k for 0 ≤ k ≤ n− 1 of Newton polynomials is
useful in combinatorics and is sometimes called the Pochhammer basis. We have
already seen this, but called it zk, z to the k falling.

For a thorough treatment of Chebyshev polynomials, see Rivlin (1990).
See Salzer (1972) for more discussion of useful properties of the Chebyshev–
Lobatto points ηk. For a discussion of Chebfun and Chebyshev polynomials,
see Battles and Trefethen (2004) and http://www2.maths.ox.ac.uk/
chebfun/.

Some other orthogonal bases are discussed in the venerable book (Abramowitz
and Stegun 1972). That book has been substantially revised to become the Digital
Library of Mathematical Functions from the National Institute of Standards and
Technology (http://dlmf.nist.gov/). A similar INRIA project, the Dy-
namic Dictionary of Mathematical Functions, may be found at http://ddmf.
msr-inria.inria.fr/1.6/ddmf. More details on many orthogonal polyno-
mials can be found in Andrews et al. (1999), and some important algorithms in Wilf
(1962), available for free for educational purposes from http://www.math.
upenn.edu/˜wilf/website/Mathematics_for_the_Physical_
Sciences.html. A discussion of MAPLE’s methods for othogonal series can
be found in Rebillard (1997) and Ronveaux and Rebillard (2002).

Faster methods of partial fraction decomposition than the one advocated here are
certainly available: Kung and Tong (1977) and Chin (1977) use FFT methods, which
we believe are unstable because they implicitly convert to the monomial basis; the
divided-difference algorithm of Schneider and Werner (1991), which, although not
asymptotically fast, is twice as fast as the algorithm given here, has an unhelpful
dependence on node ordering and again can produce βi, j that do not accurately
reproduce 1. Their method is much more stable than methods that convert to the
monomial basis, however.

Sciences.html
http://www.math.upenn.edu/~wilf/website/ Mathematics_for_the_Physical_
http://www.math.upenn.edu/~wilf/website/ Mathematics_for_the_Physical_
http://ddmf.msr-inria.inria.fr/1.6/ddmf
http://ddmf.msr-inria.inria.fr/1.6/ddmf
http://dlmf.nist.gov/
http://www2.maths.ox.ac.uk/chebfun/
http://www2.maths.ox.ac.uk/chebfun/
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Problems

Theory and Practice

2.1. Prove Theorem 2.1 on page 44.

2.2. Prove Theorem 2.2 on page 45.

2.3. Show that the roots of zn − 1 = 0 are zk = exp(2π ik/n).

2.4. Show that the roots of Tn(z) are

ξk = cos

(
π(2k− 1)

2n

)
, 1 ≤ k ≤ n .

2.5. Consider the polynomial p(x) = x3 − 2x− 5. Plot this on 0 ≤ x ≤ 4 and see
thereby that there is a root near x = 2. Shift the basis to 1, (x− 2), (x− 2)2, and
(x − 2)3. By neglecting all but the first two terms, get an improved approximate
root. Shift the basis again to 1, (x− r), (x− r)2, and (x− r)3, where r is your esti-
mated root. Neglect all but the first two terms again, and solve to get an even more
improved root. Repeat the process until you have identified the root to machine ac-
curacy. As discussed in the text, this is how Newton conceived of what we now call
Newton’s method.

2.6. Prove the discrete orthogonality of the Chebyshev polynomials on the zeros of
Tn(x), and show thereby that Eq. (2.31) gives the Chebyshev coefficients of a given
p(x) with degree at most n− 1.

2.7. Download and install the Chebfun package. Execute the following commands.

close all
plot( chebpoly(0), 'k' );
hold on
for i=1:30,

plot( chebpoly(i), 'k' );
end;
axis('square')

Explain what you see. The discussion by Rivlin (1990) is very extensive, but for this
problem a simple description will suffice (this problem is more about syntax than
anything).

2.8. Use the change of variables x = cosθ to show that
ˆ

Tn(x)dx =
1

2(n+ 1)
Tn+1(x)− 1

2(n− 1)
Tn−1(x)+C

for n ≥ 1, for some constant C. Since
´

T0(x)dx = T1(x)+C, this gives a beautiful
short formula for integrals of Chebyshev polynomials. The formula for derivatives
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of Tn, expressed in terms of lower-degree Chebyshev T polynomials, is not so el-
egant, but useful nonetheless. It is found in Rivlin (1990), and also as an MAPLE

program in Corless (2002).

2.9. Show that the Chebyshev–Lobatto points η(n)
k = cos(kπ/n) are the zeros of the

polynomial

(1− x2)
sin nθ
sinθ

,

where x = cosθ . The polynomial Un−1(x) := sinnθ/nsinθ (note the extra n in the de-
nominator) is called the Chebyshev polynomial of the second kind, and the ηk are
sometimes called the Chebyshev points of the second kind.

2.10. Show that the Chebyshev–Lobatto points η(n)
k = cos(kπ/n) are (also) the zeros

of the monic polynomial

w(x) =
n

∏
k=0

(
x−η(n)

k

)
= 2−n (Tn+1(x)−Tn−1(x))

if n ≥ 1. A discussion of this result can be found in Trefethen (2013).

2.11. Show that Horner’s method recursively applied to p(z) = p(τk)+q(z)(z− τk)
gives Algorithm 2.1.

2.12. Prove Lemma 2.1 on page 61.

2.13. Show that for every pair of sets of polynomial bases φk(x) and ψk(x), 0 ≤ k ≤
n, there exists a nonsingular matrix Aψφ for which[

ψ0(x),ψ1(x), . . . ,ψn(x)
]
=
[
φ0(x),φ1(x), . . . ,φn(x)

]
Aψφ .

Show Aφψ = A−1
ψφ .

2.14. Show that Algorithm 2.4 costs O(d2) flops to execute. Discuss the varying
cases when all sk are small and the opposite case when only one or two nodes have
high confluency.

2.15. Plot the condition numbers for evaluating the scaled Wilkinson polynomial

W20(x) =
20

∏
k=1

(x− k
21

) ,

in each of the following bases:

1. monomial basis φk(x) = xk;
2. Bernstein–Bézier on [0,1],

φk(x) =

(
20
k

)
xk(1− x)20−k;
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3. Lagrange basis on τk =
k

21 , 0 ≤ k ≤ 20;
4. Lagrange basis on random nodes τk chosen from a uniform distribution on [0,1].

2.16. Consider the Taylor series for the Airy function Ai(z). Think about each term
as akzk, for 0≤ k ≤ 127. For z = 10, at which a 127-degree Taylor polynomial ought
to give an accurate answer, compute all 128 of these terms separately, and plot them
on a graph, with k on the horizontal axis. Verify that the largest term occurs at about
k = 30, and has size about 107. This picture is why the phenomenon is known as
“the hump.” What does this have to do with our condition number analysis in the
text?

2.17. Compute ex = ∑∞k=0 xk/k! for various values of x and truncate the series at var-
ious values of N. Does this series converge, in theory? Why, then, does it com-
pute (say) exp(−30) to such poor relative accuracy? Compare with Problems 2.16
and 1.7.

2.18. In this problem, we examine exact formulæ for finding zeros of polynomials
of low degree. To begin with, the zero polynomial f0(z) ≡ 0 is exceptional; with
deg f0(z) = −∞, it is zero no matter what z is. Also, degree-0 polynomials, of the
form f0(z) = a0, a0 �= 0, are never zero; they have no roots. Moreover, degree-1
polynomials, of the form f1(z) = a0 + a1z, a1 �= 0, have one root, which is given
by z = −a0/a1. Notice that, as a1 → 0, unless a0 = 0, this root goes to (complex)
infinity. These are very straightforward cases. Degree-2 polynomials are already
more interesting:

1. Show that f2(z) = a0 + a1z+ a2z2 with a2 �= 0 may be written as

f2(z) = a2

(
z+

a1

2a2

)2

− 1
4a2

(
a2

1 − 4a2a0
)

(because a2 �= 0), and that therefore the two roots of f2(z) are

z =
−a1 ±

√
a2

1 − 4a2a0

2a2
,

and that as a2 → 0, if a1 �= 0 that one root tends to −a0/a1 and the other tends to
∞. If a1 = 0, then both roots tend to ∞ (remember: ak ∈C).

2. What is the absolute condition number of the roots?

Now, let us turn to degree-3 polynomials and, in particular, Cardano’s method:

1. Consider a third-degree polynomial f3(z) = a0 + a1z+ a2z2 + a3z3 = 0. Show
that, using z = t − a2/3a3, this is equivalent to solving t3 + pt + q = 0.

2. Let t = u+ v and gather terms so that

u3 + v3 + q+(3uv+ p)(u+ v)= 0 .
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Conclude that if one can find u and v such that

3uv+ p= 0

u3 + v3 + q = 0

simultaneously, then one can solve any cubic equation.
3. By solving u3v3 =−p3/27 and u3+v3 =−q simultaneously for, say, u3 first, and

then using uv = −p/3 to find v unambiguously, show that you really can solve
cubics.

4. The “condition numbers” ∂x
∂ak

,
[
∂ t
∂ p ,

∂ t
∂q

]
and

[
∂u
∂ p ,

∂u
∂q ,

∂v
∂ p ,

∂v
∂q

]
are different but

related. Discuss. In particular, is the use of Cardano’s formula always numeri-
cally stable?

Finally, let’s have a look at degree-4 polynomials (encountered in quartic equations),
and in particular Descartes’ method:

1. Convert f (z) = a0 + a1z+ a2z2 + a3z3 + a4z4 = 0, with a4 �= 0, to F(t) = t4 +
pt2 + qt + r = 0.

2. Show that if

v+w− u2 = p

u(w− v) = q

vw = r ,

then F(t) = (t2+ut+v)(t2−ut+u). Eliminate v and w to find a cubic equation
for u2.

3. Discuss the conditioning of the transformed problems.

2.19. Show that if

f (z) =
n

∑
k=0

ckφk(z) and ( f +Δ f )(z) =
n

∑
k=0

ck(1+ δk)φk(z)

with |δk| ≤ εwk, that for each simple root ẑ of f , when ε > 0 is small enough, that
there is a simple root z̃ of f +Δ f such that z̃ = ẑ+Δz and

|Δz| ≤ εB(ẑ)
| f ′(ẑ)| +O(ε2) ,

where B(z) = ∑n
k=0 wk|φk(z)|.

2.20. Find a recurrence relation for the series coefficients of y = lnu if

u =
N

∑
k=0

uk(x− a)k +O(x− a)N+1

and u0 �= 0.
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2.21. Find a recurrence relation for the series coefficients of s and c, where s =
sin(u) and c = cos(u), if

u =
N

∑
k=0

uk(x− a)k +O(x− a)N+1 .

2.22. The JCP Miller formula. If y = uα (for constant α), find a recurrence relation
for the series coefficients of y by use of dy/dx, where

u =
N

∑
k=0

uk(x− a)k +O(x− a)N+1 .

2.23. The Airy function Ai(z) satisfies the differential equation

d2y
dz2 = zy(z) (2.120)

with the initial conditions y(0) = 31/3/(3Γ (2/3)) and y′(0) =−31/6Γ (2/3)/(2π). Use
the methods of this section to generate a recurrence relation that determines the
Taylor coefficients of Ai(z) in its series about 0. (That recurrence is used in the
programs in Exercise 2.29.) As for the exponential, sine and cosine, and logarithm,
this can be extended to allow you to generate recurrence relations for the series
coefficients of Ai(u(z)), where u(z) is known by a truncated power series.

2.24. This problem is on series reversion. Suppose that

x = x0 + x1(y− y0)+ x2(y− y0)
2 + . . . ,

that we know the xk, and that x1 �= 0. We wish to find the coefficients yk so that

y = y0 + y1(x− x0)+ y2(x− x0)
2 + . . . .

Proceed as follows. Take

x = x0 + x1(y1(x− x0)+ y2(x− x0)
2 + . . .)+ x2(y1(x− x0)+ y2(x− x0)

2 + . . .)2

+ x3(y1(x− x0)+ . . .)3 + . . . ,

expand, and solve for y1,y2 and y3 in turn. This is the brute force approach. See
Henrici (1974) for a discussion of the Lagrange–Bürmann theorem, which explores
an elegant connection (perhaps originally due to Lambert, if we are to believe his
claims about his Acta Helvetica paper) to powers of the series being reverted.

2.25. Using your answer: For Problem 2.24, find the first three terms of the series
for tan(x) about x = 0 from the series for arctan(x) =

´ x
0

dt
1+t2 .
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2.26. Let f (x,y, t) = 0 with x = x(t),y = y(t), g(x,y, t) = 0, and

f (x0,y0, t0) = g(x0,y0, t0) = 0 .

Show that if the Jacobian determinant

det

[
fx(x0,y0, t0) fy(x0,y0, t0)
gx(x0,y0, t0) gy(x0,y0, t0)

]
(2.121)

is not zero, and f and g are analytic in all variables, then x(t) = x0 + x1(t − t0)+ . . .
and y(t) = y0+y1(t−t0)+ . . . may be constructively developed in Taylor series to as
many terms as one likes. (Hint: differentiate. This is the implicit function theorem.)

2.27. If you have access to MAPLE, solve

x2 + y2 = t2

25xy− 12= 0

in series for x and y near t = 1, when x = 3/5 and y = 4/5 (there are three other
intersections also; just follow this one). (Hint: You can dsolve/series, which
implements the ideas of this chapter, but differentiate first.)

2.28. If you have access to MAPLE, consider the command

convert( R, parfrac, z, true );

when R is a simple factored rational function, say ∏n
i=0(x − τi)

−1, with (say)
Chebyshev–Lobatto nodes computed to 16 digits of precision, via commands simi-
lar to

Digits := 16;
n := 5;
tau := [ seq( evalf( cos(Pi*j/n) ), j = 0..n ) ];
R := 1/mul( z-tau[1+j], j = 0..n);
PF := convert( R, parfrac, z, true );
ONE := PF/R;
plots[logplot]( abs(ONE-1), z = -1 .. 1, colour = BLACK, style=

POINT );

Try these commands for various n. How well does MAPLE do, in your version? At
this time of writing, MAPLE 15 makes acceptable plots for n as large as 15, but it’s
already bad for n = 20.

Investigations and Projects

2.29. The following MAPLE program uses a handwritten version of Horner’s
method to evaluate the degree-N Taylor polynomial at z = 0 for the Airy func-
tion Ai(z).
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1 #
2 # Horner form of Taylor polynomial approximation to AiryAi(z)
3 #
4 TaylorAi := proc( z, N )
5 local Ai0, Aip0, f1, f2, k, n, z3, zsq;
6 Ai0 := evalf( 3ˆ(1/3)/(3*GAMMA(2/3)) );
7 Aip0 := evalf( -3ˆ(1/6)*GAMMA(2/3)/(2*Pi) );
8 z3 := evalf( z*z*z );
9 n := max( floor( (N-2)/3 ), 0 );

10 f1 := 1;
11 f2 := 1;
12 for k from n by -1 to 1 do
13 f1 := evalf( 1 + z3*f1/((3*k)*(3*k-1)) );
14 f2 := evalf( 1 + z3*f2/((3*k+1)*(3*k)) );
15 end do;
16 return Ai0*f1 + Aip0*z*f2
17 end;

When this is translated into MATLAB via the CodeGeneration[Matlab] fea-
ture of MAPLE, and the resulting code is polished a bit by hand, the result is

1 %
2 % Automatic translation of TaylorAi.mpl
3 % which was written by RMC 2011, using
4 % CodeGeneration[Matlab] in Maple
5 % plus fixups GAMMA --> gamma
6 % vectorized multiplications
7 % added "end" to function
8 function TaylorAireturn = TaylorAi( z, N )
9 Ai0 = ((3 ˆ (0.1e1 / 0.3e1) / gamma(0.2e1 / 0.3e1)) / 0.3e1);

10 Aip0 = (-(3 ˆ (0.1e1 / 0.6e1)) * gamma(0.2e1 / 0.3e1) / pi /
0.2e1);

11 z3 = (z .* z .* z);
12 n = max( floor(N / 0.3e1 - 0.2e1 / 0.3e1), 0 );
13 f1 = 1;
14 f2 = 1;
15 for k = n:-1:1
16 f1 = (0.1e1 + z3 .* f1 / k / (3 * k - 1) / 0.3e1);
17 f2 = (0.1e1 + z3 .* f2 / (3 * k + 1) / k / 0.3e1);
18 end
19 TaylorAireturn = Ai0 * f1 + Aip0 * z .* f2;
20 end

The automatically generated and curiously ugly 0.3e1 meaning 3.0, and its ilk,
were left as-is. Notice also that this automatically generated code does not follow the
MATLAB style guidelines of Johnson (2010). The following MATLAB commands

z = linspace( -13, 13, 40012 );
y = TaylorAi( z, 127 );
relerr = y./airy(z) - 1;
semilogy( z, abs(relerr), 'k.' )
xlabel( 'z' ), ylabel( 'relative error' )
axis([-15 15 10E-21 10E14]);
set(gca, 'YTick', [10.ˆ-20, 10.ˆ-15, 10.ˆ-10, 10.ˆ-5, 10.ˆ0,

10.ˆ5, 10.ˆ10, 10.ˆ15]);
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produce the plot in Fig. 2.10. Explain this plot in general. Can you explain the curi-
ous horizontal line starting at about z = 7? If you have access to MAPLE, you might
consider running the original program at varying levels of precision, say Digits
equal to 5, 10, 15, 20, and 25, in order to help.
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Fig. 2.10 The output of the program in Problem 2.29

2.30. Prove that you may algorithmically compute the Taylor coefficients of any
function or set of functions defined by a system of polynomial or rational differential
equations such as this:

dy1

dx
= f1(x,y1,y2, . . . ,yn) (2.122)

dy2

dx
= f1(x,y1,y2, . . . ,yn) (2.123)

...

dyn

dx
= f1(x,y1,y2, . . . ,yn) (2.124)

with y(a) = ya given, and each fi polynomial or rational in its arguments (with no
poles at a, y(a) in any fi). This is quite a large class of functions!

2.31. We know of one function, theΓ function (and its derivatives), that does not fall
into the class of functions in Problem 2.30. Can you think of any others? Describe
some.

2.32. Draw the pseudozero sets for the following polynomials as in Fig. 2.7. Choose
interesting contour levels. Use weights equal to the polynomial coefficients.
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1. T20(x). Compare with the Wilkinson polynomial of degree 20.
2. q(x) = (x− 1)30(x− 2)18(x− 3)12 (Zeng 2004).
3. p(x) = x17 − (4x− 1)3 (Bini and Mourrain 1996).
4. The Fibonacci polynomials fn(x) = xn −∑n−1

k=0 xk for, say, n = 5 and n = 10.
5. For any of the Zeng (2004) test polynomials that you fancy.
6. One of the paper by Wilkinson (1959a).

2.33. Draw the first 30 Chebyshev polynomials on the same graph (like Fig. 2.1 but
with more of them). You should see several smooth curves suggested by the gaps in
the graph; these curves are called “ghost curves.” They can be described analytically.
See Rivlin (1990).

2.34. Functions containing square roots or other radicals may not have Taylor series
at the branch point. A useful extension is Puiseux series, that is, series in terms
of powers of (z− a)1/p for some p. Compute five terms of the Puiseux series of
sin(exp(

√
x)− 1) about x = 0.

2.35. The Mandelbrot polynomials are defined by p0(z) = 1 and

pk+1(z) = zp2
k(z)+ 1 .

Expanding these polynomials in the monomial basis is a bad idea. Demonstrate
this by proving that the coefficients are all positive, the leading coefficient is 1 as
is the trailing coefficient, and at least one coefficient grows doubly exponentially
with k (the degree is exponential in k, so the coefficients grow exponentially in the
degree). Explain why this makes the condition number B(z) of the monomial basis
expression very large on the interval −2 ≤ z ≤ 0.

2.36. Implement and test the Clenshaw algorithm (see Algorithm 2.2) for the Che-
byshev polynomials, which have αk(z) = 2z and βk = 1 for k ≥ 2.

2.37. The first barycentric form is

p(z) = w(z)
n

∑
k=0

βkρk

z− τk
,

where the ρk are the values of p(z) at z = τk; that is, ρk = p(τk). Since this is true
for all p(z), it is in particular true for the constant polynomial 1:

1 = w(z)
n

∑
k=0

βk ·1
z− τk

.

Dividing these two gives us the second barycentric form,

p(z) =
∑n

k=0
βkρk
z−τk

∑n
k=0

βk
z−τk

,
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about which we will learn more in Chap. 8. By cross-multiplying and using the
product rule, find an expression for the derivative of a polynomial expressed in the
second barycentric form of the Lagrange basis. What is the cost to evaluate this,
supposing that the βk are available?

2.38. Once one has found an approximate root r of a polynomial, one usually wants
to deflate, that is, find a new polynomial q(z) = p(z)/(z− r) that has the same roots
as the other roots of p(z) but is one degree less. Done incorrectly, this can lead to
instability; Wilkinson advocated deflating roots from smallest magnitude to largest,
but it has since been realized that by reversing the polynomial, that is, considering
the polynomial P(z) = zn p(1/z), which has as roots the reciprocals of the roots of
p, one can instead deflate from largest to smallest. Use Newton’s method, synthetic
division, and deflation to find all roots of Newton’s example polynomial p(z) =
z3 − 2z− 5.

2.39. Show how to reverse polynomials P(z) = zn p(1/z) that are expressed in a La-
grange basis. Do not convert to the monomial basis.

2.40. Show that if the forward error ek = rk − z∗ in an approximate root to a polyno-
mial p(z) = 0 is small, and p ′(z) �= 0 nearby, then the next iteration rk+1 has forward
error proportional to the square of ek. This is called quadratic convergence.

2.41. We said in the text that elements of the sequence of Newton iterates rk+1 =
rk − p(rk)/p ′(rk) were each exact solutions of the polynomials p(z)− p(rk) = 0. This is
trivial, in one sense, and very useful in another if p(rk) is small enough to be ignored.
There is another way to look at this that is also useful. Given an approximate root
rk for p(z), we can ask, “What is the closest polynomial p(z)+Δ p(z) for which rk

is an exact root?”
We know that the size of Δ p(z) is at most |p(rk)| by the previous “trivial” state-

ment. But are there closer polynomials? The answer is usually yes, and there is an
analytical formula for the coefficients of the optimal Δ p(z) that we can find using
the Hölder inequality, as follows.

Given p(z) = ∑n
k=0 ckφk(z), weights wk ≥ 0 for 0 ≤ k ≤ n not all zero, and

a putative root r, find the minimum ε such that (p + Δ p)(r) = 0 with Δ p(z) =
∑n

k=0(Δck)φk(z) such that each |Δck| ≤ wkε . Then ε is the “minimal backward er-
ror” of the root r; you should find that ε is proportional to |p(r)|, the residual. (Hint:
Reread Theorem 2.9 on page 70 and then use (C.2) in Appendix C.)

2.42. Following the discussion in Sect. 2.2.6.3 and the solution of the previous prob-
lem, find an expression for the nearest polynomial of lower degree.



Chapter 3
Rootfinding and Function Evaluation

Abstract We introduce general methods to evaluate functions and to find roots (or
zeros) of functions of all kinds. We examine various approximation methods and
study their respective numerical accuracy, by examining their backward error and
the condition numbers for evaluation and rootfinding. �

If you execute the MATLAB command y = sin( 3*pi/7 ), you immedi-
ately get the answer y = 0.9749, where, as usual, you can see more figures in
the answer if you execute format long first. Nowadays one can use a calculator,
a web browser, a phone, and the like to get the same answer. This wasn’t always
so. Before computers, humans compiled tables of trigonometric functions by hand,
beginning with geometrical methods. Analog computers to compute functions (es-
pecially the logarithm) were invented next, and when the digital computer arrived,
one of the first things they were made to do was to compute mathematical functions
on demand. In the early days of modern computing, quite a lot of effort was spent
on the task.

However, nearing the end of the 20th century, the computation of simple mathe-
matical functions such as the elementary functions was already old-fashioned. Now,
in the 21st century, it doesn’t seem to form a large part of numerical analysis either,
although approximation theory is alive and well as a mathematical field.

Most of the theory of evaluation of elementary functions was developed under
the forward error model: A subroutine for the evaluation of a mathematical function
f (x) was judged against the standard of requiring

| f̂ (x)− f (x)|< μM| f (x)| ; (3.1)

that is, if the computed function f̂ (x) returned an answer with a relative forward
error less than half εM (“half a Unit in the Last Place,” or ulp, denoted μM in this
book), then the result could be rounded to the machine number nearest to the correct
answer—this is referred to as a correctly rounded result. This was, and is, the gold
standard and is very hard to achieve.

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods:
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0 3,
© Springer Science+Business Media New York 2013
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This chapter treats the issue more lightly. Instead of the gold standard, we take a
backward error point of view: We think that a subroutine has done a perfect job if it
evaluates

f̂ (x) = f (x(1+ δx)) (3.2)

for some |δx|< μM . That is, the subroutine is doing its job if it gives you the exact
value of the function at a point differing only by at most a rounding error from
the argument you asked it to evaluate. This is not quite the same thing. And we
may even relax our requirement a little further, too—we might be happy enough
with only giving nearly the right value of the function at nearly the right point, as
captured by the mixed forward–backward notion of stability introduced in Chap. 1.

Our reasons for taking this point of view are twofold. First, it is unlikely that the
reader will be called on to write an industrial-grade piece of software for the evalua-
tion of an elementary function (and if the reader is indeed so lucky, then reliance on
just this book for a reference would be a mistake anyway, as we only have time for
the general picture, and in practice the details really matter, in a nitty-gritty way).
The real reason, however, is that the theory of evaluation of mathematical func-
tions provides a good opportunity to reinforce the backward error point of view.
Moreover, especially when we come to the sections on rootfinding, it’s even quite a
productive way to look at existing code that was designed to try to meet the “gold
standard” mentioned above.

What would a backward error viewpoint do for the y = sin( 3*pi/7 ) ex-
ample? Well, the answer 0.9749 given is, in fact, the exact sine of a number slightly
different to 3π/7, being arcsin(3π(1−9.31 ·10−4)/7). If, instead, we use all the decimal
places MATLAB computes, we find that MATLAB has given us (pretty nearly) the
exact sine of 3π(1+δx)/7, where δx ≈ −2.342 ·10−17. To find this out, we used a 30-
digit computation in MAPLE. In this case, the two viewpoints don’t disagree: A
small backward error, such as this, entails a small forward error, too, because

sin(x(1+ δx)) = sin(x)+ xcos(x)δx +O(δ 2
x ) .

This is, in essence, a description of the condition number of evaluation of the sine
function. In the next section, we will see how to obtain a general understanding of
such condition numbers.

3.1 Function Evaluation

As before, we will in general discuss the case of complex functions. A complex-
valued function f (z) can be treated directly as a univariate complex-valued function
and approximated by various simpler functions over C, or it can be split into a real
part and an imaginary part. Thus, if we let z = x+ iy and f (z) = u(x,y)+ iv(x,y),
then we are faced with evaluation of two real-valued bivariate functions u(x,y) and
v(x,y). In principle, this is only more complicated, but not intrinsically more difficult
than real-valued univariate functions (although we are now in some sense evaluating
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on boxes (x,y) ∈ [a,b]× [c,d] and not on disks |z− a|< r). Moreover, it is in many
cases even simpler than that. For example,

sin(z) = sin(x+ iy) = sin(x)cosh(y)+ icos(x)sinh(y) ,

and now to evaluate sin(z) we see that we should merely evaluate 4 univariate real
functions. Arcane and clever tricks can be used (and are used, in MATLAB, for
example) to ensure that the functions u(x,y) and v(x,y) that are used are accurate and
efficient. Functions such as the Lambert W function (Corless et al. 1996), however,
are best thought of as needing direct complex approximations. We will begin with
this latter case, and then consider splitting a complex function in two real functions.

3.1.1 Condition Number for Function Evaluation

Consider a complex function y = f (z) and, in particular, the value y+Δy = f (z+
Δz) it takes for a perturbed argument z+Δz. If f (z) is an analytic function of z, then

Δy
y

.
=

z f ′(z)
f (z)

Δz
z

, (3.3)

so that if we let κ( f ) = C = z f ′(z)/f (z), which can be taken as a definition of the
relative condition number for the evaluation of f , we obtain the relation

δy
.
= κ( f )δ z .

The condition number of a composition of functions may be computed by the chain
rule.

Example 3.1. Consider the function f (x) = ez. Its relative condition number is
κ( f ) = z. Thus, ez is badly conditioned only for large |z|. �

Example 3.2. Now, consider the function f (z) = lnz. Its condition number is κ( f ) =
1/ lnz, and so it is badly conditioned near z= 1. It also has a problem near the branch
cut z < 0. The function is discontinuous across the branch cut, so that a rounding
error that went from a zero imaginary part to a negative imaginary part would cause
a jump in value of order 1, essentially, infinitely larger. �

Example 3.3. The function g(z) = ln(1+ z) has the condition number

κ(g) =
z

(1+ z) ln(1+ z)
.

At z = 0, κ is in an indeterminate form, but we can find the condition near this point
by expanding κ as follows:

κ = 1− z
2
+

5
12

z2 − 3
8

z3 +O(z4) .
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From this, we see that κ(g)≈ 1 near z = 0. This is good, which is surprising given
Example 3.2.1 Here, note that these are different functions: one takes a small but
highly precise argument z and then (conceptually) adds 1 to that, whereas the other
starts with a highly precise number near 1, whose difference from 1 will not neces-
sarily be known very well. �

Example 3.4. The function f (z) =
√

z has the condition number

κ( f ) =
z

2
√

z
√

z
=

1
2
, (3.4)

which is good everywhere (except the branch cut). �

Example 3.5. The function f (z) = sinωz has the condition number

κ( f ) =
ωzcosωz

sinωz
, (3.5)

which is good near z = 0, but very bad near z =±π ,±2π , . . .. �

It is important to realize that the condition number κ( f ) estimates relative
changes in output versus small relative changes in input. That is, it is a linear in-
the-limit-of-small-errors perturbation analysis. Nonetheless, it can be very useful.
The reader should be wary, however. Quite a bit of information about the data being
used is contained in the simple assumptions that we care about, for example, Δz/z

and Δ f/f : This model makes sense only if z �= 0 and f (z) �= 0 and is of importance
only if the values of f (or z) differ greatly from 1, either being very large, or very
small (in which case the “nonzero” assumption becomes a bit delicate). The fact
that lnz is ill-conditioned near z = 1 but the function ln(1+ ζ ) is well-conditioned
near ζ = 0 appears to be a contradiction, but Δz/z and Δζ will not be the same thing
at all, and this is the first example of such a delicate argument that most numerical
analysts see.

Example 3.6. The Mandelbrot polynomials, which you met in Problem 2.35, have
a natural recurrence relation definition: p0(z) = 1 and pk+1(z) = zp2

k(z)+ 1 there-
after. It is easy to differentiate this rule, to get p′0(z) = 0 and p′k+1(z) = p2

k(z) +
2zpk(z)p′k(z). This recurrence relation provides an effective method for computa-
tion of pk(z) for any reasonable k. For example, we can take k = 7 and compute the
condition number zp′k(z)/pk(z), and plot its contours on, say, −3 ≤ x ≤ 1, −2 ≤ y ≤ 2,
as follows:

1 function mandelpic
2

3 [X,Y] = meshgrid(-3:.001:1,-2:.001:2);
4 Z=X+1i*Y;
5

6 [p,dp]=mandelbrot(Z,7);
7

1 See Higham (2002) for an extended discussion of this issue.
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8 contour(X,Y,abs(Z.*dp./p),2.ˆ[-4:1:8],'k');
9 axis('square');

10 axis image, axis off;
11

12 end
13

14 function [p,dp]=mandelbrot(z,n)
15 if n<=0
16 p=ones(size(z));
17 dp=zeros(size(z));
18 else
19 [p0,dp0]=mandelbrot(z,n-1);
20 p=z.*p0.ˆ2+1;
21 dp=p0.ˆ2+2.*z.*p0.*dp0;
22 end
23 end

The result displayed was computed with MAPLE with color in Fig. 3.1. �

Fig. 3.1 Contours of the condition number of the Mandelbrot polynomial with k = 7, which is of
degree 2k −1 = 127. The contours are at levels 2m for various m

It will also be important to have a condition number for the evaluation of multi-
variate functions. Thus, if we wish to know how sensitive a function such as

y = f (z1,z2,z3)
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is to changes in any zk, the chain rule gives

δy
.
=
[

x1 f1/f , x2 f2/f , x3 f3/f
] · [δ1,δ2,δ3

]
. (3.6)

Thus, it makes sense to think of a (convenient) vector norm of this vector of scaled
partial derivatives as “the” condition number of this scalar function of a vector of
variables. Similarly, vector-valued multivariate functions give a matrix of scaled
partial derivatives, and the “size” of this matrix (we will study matrix norms in
some detail in upcoming chapters) will give a sense of how errors are amplified
during function evaluation.

3.1.2 Conditioning of Real and Imaginary Parts Separately

If one chooses to treat the real and imaginary parts of f (z) separately, then a matrix
of condition numbers is needed, as we now show. We consider the effects of separate
changes in the real and imaginary parts of z on the real and imaginary parts of f (z).
We write z = x+ iy and f (z) = u(x,y)+ iv(x,y). Then,[

Δu
Δv

]
= C

[
Δx
Δy

]
,

where the 2× 2 matrix C is given by

C =

[
ux(x,y) uy(x,y)
vx(x,y) vy(x,y)

]
. (3.7)

Because of the Cauchy–Riemann equations, if f (z) is analytic, these quantities are
related: ux = vy and uy = −vx. So far, this is just differentiation (and, if f (z) is
analytic, equivalent to Δ f (z) = f ′(z)Δ(z)). However, it sometimes happens that
while |z f ′(z)/f (z)| does not have a problem, one of the four values xux/u, yuy/u, xvx/v,
or yvy/v does have a problem, as (say) v → 0 (but not quite), while u stays bounded
away from 0 (and hence, f (z) stays bounded away from 0). In this case, we may
be able to compute f (z) perfectly well as a complex function, but (say) errors in
its imaginary part will be large (relative to the imaginary part, although not large
relative to | f (z)|).
Example 3.7. Consider the complex function w = log(x+ iy). Its real and imaginary
parts are

u = logr = log
√

x2 + y2

v = arctan(y,x) . (3.8)

Computation of the separate condition numbers gives

x
ux

u
=

x2

(x2 + y2) log(r)
(3.9)
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y
uy

u
=

y2

(x2 + y2) log(r)
(3.10)

x
vx

v
=− xy

(x2 + y2)arctan(y,x)
(3.11)

y
vy

v
=

xy
(x2 + y2)arctan(y,x)

, (3.12)

with the interesting complication that arctan(y,x) has a jump discontinuity across
the negative real axis, that is, x < 0 and y = 0 (and hence, the last two derivative
formulæ are not valid there).

We see from Eqs. (3.9) and (3.10) that the real part is relatively ill-conditioned
on (or near) the unit circle: Small changes in either x or y will cause large relative
changes in the real part of the logarithm. Moreover, we see from Eqs. (3.11) and
(3.12) that there is a problem if both x and y go to zero in such a way that xy/r2

goes to infinity; on the other hand, if just y → 0, then the arctangent will balance
it. An example of where this gets into trouble is if y = ε tanθ and x = ε , when
arctan(y,x) = θ and the condition number is

ε2

(ε2 + ε2 tan2 θ )θ
=

1
θ sec2 θ

=
cos2(θ )
θ

.

This clearly has a problem if θ = 0, but this is fortunately hard to achieve in practice:
The difficulty shows up only when ε is small, while θ is small but not as small as ε .
In practice, this problem is ignored (and in any case, the argument arctan(y,x)
doesn’t make much sense if both x and y are very small).

However, the difficulty along the negative real axis is quite genuine. A small
change in y, from positive to negative, will change the arctangent by nearly 2π .
Thus, the imaginary part is infinitely ill-conditioned along the negative real axis if
perturbations are allowed to cross the branch cut. �

3.2 Rootfinding

At this point, we can already evaluate polynomial and rational functions. The next
simplest kind of function is an algebraic function, which is defined as a root (or
zero) of a bivariate polynomial function. For instance, the function y2 − z = 0 de-
fines y =

√
z, and by the conventional branch choice, Re(y) ≥ 0, and if Re(y) = 0,

then Im(y) ≥ 0 also. Of course, the other branch, y = −√
z, also satisfies this al-

gebraic equation. To evaluate general algebraic functions, we need techniques for
rootfinding, and similarly for transcendental functions, of course. Can we write a
reliable routine that, given y, finds x so that y = f (x)? That is, can we solve the “in-
verse function” problem and compute x = f−1(y)? What about for complex z and w
in w = f (z), instead of real x and y? In this section, we examine how to approach
such questions.
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3.2.1 The Condition Number of a Root

When we took the equation y = f (x) and considered x as the input and y as the
output, and considered the effects of changes in x on the value of y, we arrived at
the condition number for function evaluation C = x f ′(x)/f (x) and at the relation δy

.
=

Cδx. Now the situation is similar, but reversed: We are given y, which is y = 0 for
rootfinding problems, and are asked to find x. We can now think about what happens
if y is changed a bit, or alternatively if the function f is changed to ( f +Δ f )(x).
Considering

0+Δy = f (x+Δx) = f (x)+ f ′(x)Δx+O(Δx)2 ,

we obtain Δy
.
= f ′(x)Δx, which can be rewritten as

Δx
.
=

1
f ′(x)

Δy ,

giving us our absolute condition number. If x �= 0, by considering the relative change
in x, we get Δx/x = δx

.
= (1/(x f ′(x))Δy. Since the ratio Δy/y does not make sense be-

cause y = 0, this gives us a mixed absolute-relative condition number that is related
to the reciprocal of C as computed for function evaluation. Indeed, the pure abso-
lute condition number of function evaluation is just f ′(x), whereas the pure abso-
lute condition number of rootfinding is exactly its reciprocal, 1/f ′(x). This says that,
where a function is vertical, it is hard to evaluate accurately; and where a function
is horizontal at a root, it is hard to locate the root accurately.

Before we examine the conditioning of roots in general in Sect. 3.2.4, consider
the special case in which f (z) = ∑n

k=0 ckφk(z) is a polynomial and the coefficients
are perturbed to ck(1+δk), where each |δk| ≤ ε , and f (z) has a simple root at z = r,
which gets perturbed to r(1+ δr) when we evaluate 0 = ( f +Δ f )(r(1+ δr)), we
find that

0 = ( f +Δ f )(r(1+ δr)) = f (r)+Δ f (r)+ f ′(r)rδr + · · · .
Since f (r) = 0, we have to first order that

|δr|=
∣∣∣∣−Δ f (r)

r f ′(r)

∣∣∣∣= |∑n
k=0 ckδkφk(r)|
|r f ′(r)|

≤ B(r)ε
|r f ′(r)| . (3.13)

The last inequality follows from Hölder’s inequality. Therefore, the condition num-
ber of a simple root r �= 0 of a polynomial f with respect to changes in its
coefficients is

C =
B(r)

|r f ′(r)| .

Here B(z) = ∑n
k=0 |ck||φk(z)| is simply the condition number for evaluation of the

polynomial, which we have seen before in Chap. 2.
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3.2.2 Newton’s Method

For real-valued problems with simple roots, bisection2 is slow but reliable, since one
can often then find a and b with f (a) f (b)< 0. In contrast, Newton’s method, which
we introduced in the last chapter in the context of polynomials, is fast but skittish and
needs derivatives and good initial guesses; the secant method and inverse quadratic
iteration (IQI) are almost as fast but don’t need derivatives. We shall look at all of
these, but let’s begin with Newton’s method.

Newton’s method for solving a general transcendental equation f (x) = 0 is the
iteration

xn+1 = xn − f (xn)

f ′(xn)
,

which is derived from the Taylor series at the initial guess from the supposed root x∗:

0 = f (x∗) = f (x0 +(x∗ − x0))
.
= f (x0)+ f ′(x0)(x

∗ − x0)+O(x∗− x0)
2 .

The iteration usually converges quickly if it is given a good enough starting guess
x0, but it requires a derivative evaluation at each step (and thus can be a bit costly).
Moreover, Newton’s method will have problems if f ′(xn) = 0 or if f ′(x∗) = 0
(where x∗ is the root that we are looking for); and it can get caught in various kinds
of oscillations. Without a good starting guess, convergence can be quite slow ini-
tially.

Example 3.8. We start with a polynomial example. Newton’s method can be used
effectively to find the square root of a number. Suppose we wish to find the square
root of, say, 5. In this case, f (z) = z2 − 5, and so f ′(z) = 2z. We choose an initial
guess, say x0 = 2, and then use this iteration:

xn+1 = xn − x2
n − 5
2xn

.

Unlike many Newton iterations, this one can be usefully rewritten as

xn+1 =
1
2

(
xn +

5
xn

)
; (3.14)

2 Bisection is explained in many numerical analysis texts, and it isn’t quite trivial: If you know
a function is positive somewhere (say at x = 1) and negative somewhere else (say x = 0), have a
look at it halfway between: If it’s zero there, you’ve found the root; if it’s positive, then the root is
between 0 and 1/2, and otherwise it’s between 1/2 and 1. Repeat as necessary.
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that is, divide your guess into what you want to find the square root of (here, 5),
and then take the mean with what you had before. For taking square roots of pos-
itive x, this has very little trouble from rounding error. We get x0 = 2, x1 = 2.25,
x2 = 2.236111111111111, x3 = 2.236067977915804, x4 = 2.236067977499790,
and thereafter all the xk are constant, just the same as x4: The iteration has con-
verged (to the correct square root of 5 to all digits in MATLAB). �

Remark 3.1. Except for square roots as in that example, it’s never good to rewrite
Newton’s method away from its usual form xnew = xold+ small update. In this form,
it tends to minimize the effect of rounding errors. For positive square roots, the
above rewriting does no harm, but this is unusual. �

Theorem 3.1. Newton’s method has quadratic convergence (when it converges).

Proof. Suppose that f (x∗) = 0 and, again, that the relation xn+1 = xn − f (xn)/f ′(xn)

holds. Then

0 = f (x∗) = f (xn − en) = f (xn)− f ′(xn)en +
f ′′

2
e2

n

for some average value f ′′ of the second derivative,3 and

en = xn − x∗ = xn − xn+1 + xn+1 − x∗ = (xn − xn+1)+ en+1 .

So, it follows that

0 = f (xn)− f ′(xn)((xn − xn+1)+ en+1)+
1
2

f ′′e2
n

= f (xn)− f ′(xn)(xn − xn+1)− f ′(xn)en+1 +
1
2

f ′′e2
n .

However, by the definition of the Newton iteration, f (xn)− f ′(xn)(xn − xn+1) = 0.
Hence,

en+1 =
f ′′

2 f ′(xn)
e2

n ,

showing that the convergence is quadratic. �

We remark that if f ′(x∗) �= 0, then f ′(xn) �= 0 for values of xn that are “close enough”
to x∗, and of course, f ′′ → f ′′(x∗) as well if the iteration converges. Hence, if the
iteration converges, it does so ultimately with an approximate doubling of correct
digits each iteration.

3 Phrased this way, the proof works even for complex x with an appropriate definition of “average.”
See the complex form of the Taylor series remainder given in Chap. 2.
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This method has many applications. Schoolchild algorithms for multiplication
and division of decimal fractions are likely known to every reader. A few readers
might know such an algorithm for extracting square roots. As we saw, Newton’s
method is very effective for square root computation, which is not surprising, but it
might be surprising to learn that Newton’s method quite often replaces the division
algorithm. One trick for that is to use Newton’s method on f (y) = 1/y − x to find
y = 1/x, because then the iteration is

yn+1 = yn − f (yn)

f ′(yn)
= yn −

1/yn − x
−1/y2

n

= yn +(yn − xy2
n) = yn(2− xyn) ,

which can be carried out using only multiplication and addition.
Newton’s method is surprisingly important in the computation of functions to

arbitrary precision. For instance, if one has a fast method for computing a logarithm,
then the cost to use Newton’s method to find the exponential adds nothing significant
to the asymptotic cost of the algorithm.

Remark 3.2. Notice that there is a problem with Newton’s method if the root is
multiple, in which case f ′(x∗) = 0. Notice also that in this case the root is ill-
conditioned: A tiny change in the function value forces a potentially large relative
change in the root location. �

To end this subsection, we want to stress that determining when Newton’s method
converges is a complicated issue. Cayley had already proved in the 19th century that,
for the simple equation x2 −a, the basins of attraction for Newton’s method, that is,
the sets of initial points x0 for which Newton’s iteration converges to a root, were
simple: If Re(x0) < 0, then xn → −√

a, and if Re(x0) > 0, then xn → +
√

a. In a
lovely paper, Strang (1991) discusses the chaotic behavior (so that the iteration does
not converge at all) that results from x0 ∈ iR.

−2 −1 0 1 2
−2

−1

0

1

2

Fig. 3.2 Fractal boundary for the basins of attraction of Newton’s map for f (z) = z3 −1
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But it was not realized until the early 20th century that even the simple cubic

f (z) = z3 − 1 ,

which has rootsω1 = 1, ω2 = e2πi/3, and ω3 =ω2, has very complicated convergence
behavior. If we start the iteration with some z ∈C, then for almost all z, the Newton
iteration converges to one of ω1, ω2, or ω3. However, while each basin of attraction
has an open interior, the boundary between basins is more complicated. Julia and
Fatou proved (apparently without looking at a picture!) that, given a point zb in the

boundary, then in every neighborhood |z− zb| < ε , there is a z(i)0 such that z(i)k+1 =

z(i)k − f (z(i)k )/f ′(z(i)k ) has limk→∞ z(i)k = ωi. That is, arbitrarily near to each boundary
point, there are initial points that lead under Newton’s iteration to each root. This
can only mean that the boundary is fractal, as shown in Fig. 3.2. The MATLAB code
to produce this figure is the following:

1 %
2 % Draw an approximate boundary between basins of attraction
3 % in Newton iteration for f(x) = xˆ3 - 1
4 %
5 % RMC November 2010
6 %
7 f = @(x) x.ˆ3-1;
8 df = @(x) 3*x.ˆ2;
9 Newt = @(x) x - f(x)./df(x);

10 % The following takes quite a bit of memory
11 % but makes a nice, lacy picture
12 lots = 1001;
13 x = linspace( -2, 2, lots );
14 y = x';
15 z = ones(lots,1)*x + 1i*y*ones(1,lots);
16 % Simple initial guess
17 r = z;
18 % Thirty iterations is plenty
19 for j=1:30,
20 r = Newt(r);
21 end;
22 % The only points left are the roots or the boundary.
23 contour(x,y,r,'k');
24 axis('square');
25 set(gca,'fontsize',16);

Remark 3.3. Newton’s method is a workhorse for solving transcendental equations.
It does have its problems: Because derivatives are needed for the iteration, one must
find a way to compute or approximate them; it can be sensitive to rounding errors;
it has difficulty with multiple roots; global convergence is by no means given (and
indeed there can be full-measure regions of initial conditions for which convergence
does not occur); even if the method converges, it may converge to the “wrong root”
(perhaps one you have found already); and in any case, it only finds one root at a
time. Nonetheless, in spite of all these difficulties, it remains a powerful method. �
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3.2.3 Wilkinson’s First Example Polynomial

In order to understand the notion of condition number introduced above, and how it
relates to the use of Newton’s particular method to find roots, we now consider in
some detail Wilkinson’s first (and more famous) example polynomial, namely,

p(z) =
20

∏
j=0

(z− j) = (z− 1)(z− 2) · · ·(z− 20) . (3.15)

We have already begun to look at this polynomial in Example 2.6. As we said, the
key misstep in evaluating this polynomial or finding its roots is expanding it into
the monomial basis. Since, as written earlier, the polynomial is expressed in the
Lagrange basis on the nodes 0, 1, . . ., 20, this amounts to a change of basis, and this
is a particularly ill-advised one. As Wilkinson himself notes, in the form above the
polynomial is perfectly conditioned. This is trivial: If we know the roots, we can find
them—this is not a surprise. It is a bit more of a surprise to realize that the values of
p(z) for any z can be computed accurately using this formula (which is already in
barycentric form of course), because the evaluation condition number B(z), namely,

B(z) = |
20

∏
j=0

(z− j)| , (3.16)

is of modest size in comparison to |p(z)|. In fact, the ratio is just 1.
In what follows, we use only the evaluation condition number because the

rootfinding condition number is, from Eq. (3.13), just B(r)/|rp ′(r)|, and the other
two factors are independent of the basis. Thus, by comparing the size of the evalu-
ation condition number in each basis, we are comparing the size of the rootfinding
condition number in each basis as well. The condition numbers that we will compute
are summarized in Fig. 3.3.

Naively converting Wilkinson’s polynomial to the monomial basis results in

p(z) = z20 − 210z19+ 20615z18+ · · ·+ 20! , (3.17)

where the last coefficient is 20! = 2,432,902,008,176,640,000. In this basis,

Bmonomial(z) = |z|20 + 210|z|19+ · · ·+ 20! , (3.18)

which is substantially larger, growing to 3.3537× 1029 at z = 20, compared to the
maximum value in the original of 20! = 2.4329× 1018. That’s 1011 times as big.
The rootfinding condition number B(r)/|rp ′(r)| has a maximum of about 1014, so in
double precision we might lose all but two figures of accuracy (see Problem 3.24).
For N = 30, this is about 1021, and for N = 40, this is about 1029. This is (apparently)
exponential growth in the maximum rootfinding condition number.

Remark 3.4. Stoutemyer’s rule of thumb is, in David Stoutemyer’s own words, this:
“In my experience, it is often wise to use more than n decimal digits of precision
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Fig. 3.3 The condition number B(z) of Wilkinson’s polynomial in two different bases at the roots
of the polynomial: The squares are the “optimal” Bernstein–Béizier basis and the diamonds are a
Lagrange basis on nodes chosen uniformly at random on the interval [0,20]. The monomial basis
condition number is not shown, as it is too large, reaching over 1029 at the right-hand side, and this
would compress the graph unacceptably

when summing n terms of a series, computing nth-degree regressions, computing
the zeros of an nth degree polynomial, etc.” The Wilkinson polynomial examples
have a condition number that grows exponentially with the degree and thus needs a
precision that grows linearly with the degree. To work with N = 20 needs a bit more
than 16 digits; to work with N = 30 requires a bit more than 21 digits; to work with
N = 40 requires a bit more than 29 digits. This provides experimental support for
Stoutemyer’s rule of thumb. �

Farouki and Goodman (1996) show that the condition numbers are much better
and indeed in a certain sense optimal if the polynomial is instead expressed in the
Bernstein–Bézier basis. In this case, the polynomial is (exactly)

14849255421
640000000000000000

(20− z)20 − 617191994979
512000000000000000

z(20− z)19

+
25953467080473

1024000000000000000
z2 (20− z)18 − 60042878381637

204800000000000000
z3 (20− z)17

+
10866631664192427

5120000000000000000
z4 (20− z)16 − 52830616292575641

5120000000000000000
z5 (20− z)15

+
36026164321154639

1024000000000000000
z6 (20− z)14 − 88585902536686877

1024000000000000000
z7 (20− z)13
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+
159947472606929043

1024000000000000000
z8 (20− z)12 − 1071867924710442689

5120000000000000000
z9 (20− z)11

+
1071867924710442689
5120000000000000000

z10 (20− z)10 − 159947472606929043
1024000000000000000

z11 (20− z)9

+
88585902536686877

1024000000000000000
z12 (20− z)8 − 36026164321154639

1024000000000000000
z13 (20− z)7

+
52830616292575641

5120000000000000000
z14 (20− z)6 − 10866631664192427

5120000000000000000
z15 (20− z)5

+
60042878381637

204800000000000000
z16 (20− z)4 − 25953467080473

1024000000000000000
z17 (20− z)3

+
617191994979

512000000000000000
z18 (20− z)2 − 14849255421

640000000000000000
z19 (20− z)

and the maximum value of the condition number in this basis is about 1.078× 1020,
only about two orders of magnitude worse than the original formulation. But it
is actually worse, which seems odd, given the (correct!) characterization of the
Bernstein–Bézier basis as “optimal.” The catch is that the optimality only holds
over all nonnegative bases and for generic polynomials, and the Lagrange bases do
indeed take on negative values—and we are looking at a particular polynomial. This
is a concern. However, they are nonnegative on a particular finite set, namely, the
interpolation nodes (where they take on the values 0 or 1, trivially). This is enough
to extend the optimality result by weakening the conditions, as is done in Chap. 8.

We have already seen that the original Lagrange basis is better for expressing the
Wilkinson polynomial. But that was somehow unfair. What about, say, a Lagrange
basis on nodes chosen at random from a uniform distribution on the interval [0,20]?
Well, sometimes this can be bad, as bad as the monomial basis; but much more
frequently it is better, by as much as six orders of magnitude, than the Bernstein–
Bézier basis! Let us take a particular instance in which we apply Newton’s method
on Wilkinson’s polynomial expressed in the Lagrange basis on the following set of
nodes:

[0.448483409300000,2.13014107314000,3.86279632830000,4.21872857844000,

6.59689183604000,7.72816614900000,7.91437721068000,7.92825446006000,

8.24572571680000,8.55104113738000,9.09488793946000,12.3146413849600,

13.8921437853000,14.6123258589200,14.7320524468800,15.0014414439800,

15.4602596004600,16.0037496891800,16.8524536888400,16.9403753077600,

18.8982670005800,19.9283442836000].

Starting at x0 = 16.5 yields the sequence

x0 = 16.5

x1 = 15.7773942261971

x2 = 16.1676354668247

x3 = 16.0180872226801
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x4 = 16.0003781413965

x5 = 16.0000001763342

x6 = 16.0000000000000,

which is entirely satisfactory. Contrariwise, using the monomial basis, we stopped
the iteration after computing x10 because nothing had settled down (indeed, x8 =
16.4999 had returned quite close to the original starting value). The difficulty is
more than just that we are starting exactly between two roots: Perturbing the mono-
mial basis coefficients by trivial amounts changes the roots by a very large amount,
because this basis is so ill-conditioned. It is almost certainly true that the floating-
point Wilkinson polynomial in the monomial basis does not have 20 real roots, and
the roots near 16 are particularly sensitive.

3.2.4 Backward Error Analysis Again

One can regard a general rootfinding problem as a map ϕ : f →{x | f (x) = 0}, where
“ f (x) = 0” is the defining equation for this problem. For an approximately computed
root x̂ generated by some engineered version ϕ̂ of the map ϕ (e.g., Newton’s map
iterated 5 times, in which case x̂ = x5), the defining equation will not be exactly
satisfied. Rather, we will have f (x̂) = r and, following the definitions from Chap. 1,
we see that this value r is the residual. Moreover, if we simply let g(x) = f (x)− r,
we see that our computed value x̂ is the exact root of a modified function, since
g(x̂) = 0. As we see, in this case the residual and the backward error are the very
same quantities. Thus, if the residual is small, we know that we have found the exact
root of a slightly perturbed equation.

Backward error analysis for rootfinding of a univariate function can be as simple
as that. This observation brings us back to the question of conditioning. That is, how
sensitive is the root x to such changes? In order to find out, observe that, by Taylor
expansion,

f (x) = 0
.
= f (x̂)+ f ′(x̂)(x− x̂) ,

so that if f (x̂) = r, then x− x̂
.
=−r/f ′(x̂). Thus, the forward error is approximately

Δx = x∗ − xn
.
=− f (xn)

f ′(xn)
.

An iteration of Newton’s method would use this estimate of the error to improve the
root. Here, we will not use it to improve the root, but rather to estimate the error. If
we divide by the root, so that

δx =
x∗ − xn

x∗
.
=− f (xn)

x∗ f ′(xn)
=

1
x∗ f ′(x∗)

· (−r) , (3.19)
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and if we then scale by a “typical” size of f (x) on the interval in question, say ‖ f‖,
we obtain the relation

δx
.
=

‖ f‖
x∗ f ′(x∗)

·
( −r
‖ f‖
)
= κδy , (3.20)

and so we have obtained a relative condition number for the root.4

Remark 3.5. This is distinct from the condition number of the particular expression
used to evaluate f (x) discussed in Sect. 3.2.1. The notions are related, but here only
the value of the function and its derivatives are used; there is no other perturbation
considered than the perturbation in the value of x, whereas before, the coefficients
of the expression were allowed to change as well. Different condition numbers are
appropriate for different situations. �

3.3 Transcendental Functions

How does a computer evaluate a transcendental function f at a given point z, that
is, find the value of f (z)? Moreover, how does it compute the roots of such func-
tions? In everyday mathematical life, we take the elementary functions

√
z, lnz, ez,

sin z, cosz, arcsinz, arccosz, arctanz, and others for granted.5 But what about other
functions? In application, we are very often also interested in the so-called special
functions, too.6 How are we to proceed, and what sort of guarantees can be expected
for our computed numerical solutions?

As mentioned in Chap. 1, the IEEE 754 floating-point standard guarantees that
addition, subtraction, multiplication, and division (and possibly square root) are cor-
rectly rounded. That is, they give the nearest machine number to the exact results for
those operations. It would be nice if the built-in routines for the elementary func-
tions (and some special functions) also carried this guarantee. They do not, because
of what’s known as the “table maker’s dilemma,” which essentially consists of not
knowing beforehand how many figures to work to in order to ensure that numbers
containing a long string of 0s (is the next bit a 1?) get rounded correctly.7

4 Note that the role of the variables x and y are reversed if we compare it to other relation of
this type derived so far. This is because, as we mentioned, rootfinding is in some sense an inverse
problem.
5 A function is elementary if it can be constructed in a finite tower of Liouvillian extensions of
logarithmic, exponential, or algebraic type: This means that lnx =

´ x
1

dt
t , the exponential function,

all rational polynomials, and all roots of polynomial functions are elementary. The trigonomet-
ric functions are just exponentials, for example, sin x = (eix − e−ix)/2i. A transcendental function is a
function that is not algebraic; some elementary functions are transcendental. Transcendental func-
tions that are not elementary (such as the Gamma function) are called special functions. See, for
example, Geddes et al. (1992) for a fuller discussion.
6 See Gil et al. (2007) for an excellent compendium of methods for numerical evaluation of many
special functions of practical interest.
7 See Muller et al. (2009) for a discussion of recent progress toward that laudable goal.
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So, how do computer subroutines for transcendental functions actually work?
The full story is too complicated for this introductory book (indeed, only specialists
know the full story), especially when it is done in hardware. Rather than attempting
to do that in vain, we will illustrate by examples the sort of reasoning that underlies
numerical methods to solve evaluation and rootfinding problems involving transcen-
dental functions.

3.3.1 Evaluation of Transcendental Functions

There are a few basic, simple ideas that find themselves systematically exploited for
the evaluation of transcendental functions: argument reduction, polynomial and ra-
tional approximation, and special algorithms such as the arithmetic–geometric mean
(AGM) method.8 Rational approximation uses any of several constructive methods
in order to build a good approximant; this is possibly slow and expensive, but, once
constructed, the approximant can be used cheaply thereafter. But in what follows,
we focus on the interplay between the other two ideas.

The method of argument reduction can be used to evaluate a function f (x) when
two things are known: (1) an accurate way to evaluate f (x) on an interval [a,b],
and (2) an effective way of computing f (x) in terms of f (ξ ), with ξ ∈ [a,b], plus
possibly some other functions whose evaluation is unproblematic. A very simple
example of argument reduction would arise if we knew how to evaluate sinξ on
[−π ,π ]; since sin(x+ 2π) = sin x, we can reduce the evaluation of sinx to the eval-
uation of sinξ for some ξ ∈ [−π ,π ].9

Nowadays there is not much call for a numerical analyst to write a subroutine
to evaluate an elementary function. They have almost all been done, and done very
well. In order to understand the basic strategies for evaluation just mentioned, we
will consider the following imaginary scenario in which we are forced to return to
the sources: Robin Crusoe is marooned on an easy-living desert island, where all
material needs are easily satisfied. In order to break the mental monotony, Robin
sets out to do something mentally challenging, but not too taxing. Sand is the only
computing tool available, and Robin will attempt, with its aid, to design a function
for computing the logarithm function. We’ll just follow along in the development.
Our purpose in this hypothetical is not to prepare you for marooning, but rather to
illustrate some of the ideas that have gone into the making of the real subroutines and
chips in use today. We are, of course, going to make full use of MAPLE for solving
the equations, and delicately draw a veil on Robin’s labors on such mechanical
tasks, and we will test Robin’s formulæ by drawing high-precision pictures of the
error curves, something that Robin obviously cannot do.

8 The AGM is used for elliptic functions and for high-precision computation. See Borwein and
Borwein (1984) and Brent (1976).
9 There is a difficulty in this example for very large x; see Problem 3.28.
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To begin with, Robin experiments with Briggs’ method.10 A simple variant
of Briggs’ method (mentioned briefly in Chap. 1) consists in taking 12 succes-
sive square roots of a number, subtracting 1, and then multiplying the result by
212 = 4096. It is left to Exercise 3.16 to explain why this method works at all,
and why ln(x) = 212(ε − ε2/2 + ε3/3 − ε4/4 + · · · ) actually works rather well. The
rule ln(

√
x) = ln(x)/2 isn’t quite enough, all by itself, to explain this, but almost.

Thus, Robin takes the square root of 5 to get 2.236067977499790, then takes
the square root of this number to get 1.495348781221221, and so on, until af-
ter the 12th repetition, the answer is 1.000393006384622. Subtracting 1 results in
ε = 0.000393006384622, and multiplying by 212 gives 1.609754151411712. As it
happens, the true logarithm of 5 is about 1.60943791243410, and so all that labor
produced an answer accurate only to about 4 decimal places.

Robin is not happy with so little accuracy. Could argument reduction help? Dur-
ing this labor, Robin was reminded that iterated square roots make large numbers
small rather quickly, and make small (positive) numbers larger rather quickly—
driving both extremes toward 1. In fact, the maximum real number in IEEE754
arithmetic (realmax in MATLAB) is about 1.8 · 10308, and the minimum positive
real (realmin in MATLAB) is about 2.2 · 10−308. Twelve square roots of each of
these bring them into the interval [1,

√
2]. Even just nine square roots brings them

into the interval [1/5,5]. Robin then realizes that an accurate logarithm function on
the interval [1/5,5], together with (at most) nine square roots (and doubling at most
nine times afterward), would suffice to compute any IEEE754 double-precision real
number. This is, of course, argument reduction. By using ln(x2) = 2lnx, we have
reduced the range of required accurate logarithm from [realmin, realmax] to [1/5,5].
One could reduce it even further, to [0.707,1.414] by using 11 square roots, but we
leave that design choice to the exercises.

Robin also considers another common trick, to make the reduced interval sym-
metric. By introducing the change of variables

x =
1+αu
1−αu

,

with α = 2/3, the symmetric u-interval −1 ≤ u ≤ 1 corresponds uniquely to 1/5 ≤
x ≤ 5 (note that u = (x−1)/(α(x+1), and that neither denominators x+ 1 or 1−αu is
ever zero on −1 ≤ u ≤ 1 or 1/5 ≤ x ≤ 5). Moreover, this symmetry produces an odd
function of u:

ln

(
1+αu
1−αu

)
= 2αu+

2
3
α3u3 +

2
5
α5u5 +

2
7
α7u7 +O

(
u9) . (3.21)

10 Henry Briggs (1561–1630) made the first truly useful tables of the real logarithm function. The
calculations were carried out, by hand, to astonishing 14-digit accuracy; the tables contained tens
of thousands of entries. Nowadays this computing feat seems superhuman; we doubt Robin could
duplicate this, though as we will see, better methods will occur in this hypothetical than in the
actuality of Briggs’ history.
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Because ln(1/r) = − lnr for real r > 0, Robin then saw that only x > 1 has to be
considered, and then the negative is taken.

Now, this series already gives a fairly decent hand algorithm for computing log-
arithms when −1 ≤ u ≤ 1. But Robin still isn’t particularly happy, since it doesn’t
seem accurate enough. We can see that this is true more easily than Robin can:
We can graph the relative error of these approximations, for various degrees (see
Fig. 3.4).

Fig. 3.4 Relative errors in the degree-k Taylor approximations (3.21) for k = 9, 13, 17, and 21.
Higher-degree approximations have smaller error, as expected, but the errors seem to grow rather
quickly near the ends of the interval −1 ≤ u ≤ 1

Robin is wondering: How can better results be achieved? Given the interval to
which our problem has been reduced, the name “Chebyshev” arises from some dim
recess of memory; indeed, the interval [−1,1] is the natural domain of Chebyshev
polynomials (see Chap. 2). Given that, the goal would be now to produce not a Tay-
lor series approximation, which is good near u= 0 and not so good near u=±1 (see
again Fig. 3.4), but rather a Chebyshev series, with error more or less equally small
across the interval. Robin also remembers reading about the Lanczos τ method,
which is a truly simple idea, and well within reach of a desert island computation.11

The idea (which Lanczos used to find an approximation to the exponential function)
is to try to solve a differential equation for our unknown function, here ln(x), in
Chebyshev series, by using a useful property of Chebyshev polynomials: They can
be multiplied and integrated very easily.

11 See the beautiful book Lanczos (1988). Lanczos’ method is indeed alive and well in modern
numerical analysis, nowadays, but mostly for the solution of partial differential equations; our use
of it here is twofold, as we will see.
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To implement this method, the simplest differential equation that can be used for
ln(x) is, of course,

x
dy
dx

− 1 = 0 ,

subject to the initial condition y(1) = 0. The method begins by assigning a Cheby-
shev series for the derivative. As we mentioned, the natural domain for the Cheby-
shev polynomials is the interval [−1,1], which means that we should be working in
the u-variable, not the x-variable. This only necessitates a change of variable, using
dy/dx = (dy/du)/(dx/du), from which we obtain

(1−α2u2)
dy
du

− 2α = 0 . (3.22)

This is a purely polynomial differential equation (no transcendental functions; only
multiplication, addition, and differentiation). Thus, we need to determine recurrence
relations for the product and integration of Chebyshev polynomials. By virtue of
their definitions (see Sect. 2.2.3), the products of those polynomials are given by

uT0(u) = T1(u)

uTk(u) =
Tk+1(u)+Tk−1(u)

2
k ≥ 1 .

This can be iterated as follows to find u2Tk:

u2T0(u) =
1
2

(
T2(u)+T0(0)

)
u2T1(u) =

1
4

T3(u)+
3
4

T1(u)

and

u2Tk(u) =
1
4

(
Tk+2(u)+ 2Tk(u)+Tk−2(u)

)
k ≥ 2 .

Moreover, using the substitution u= cosθ (so that du=−sinθ dθ ) and the trigono-
metric identity 2cosnθ sinθ = sin(n+1)θ−sin(n−1)θ , we find from the definition
of Tk that ˆ

Tk(u)du =

ˆ
cos(k cos−1 u)du =−

ˆ
cos(kθ )sinθ dθ

=−1
2

cos(k− 1)θ
k− 1

+
1
2

cos(k+ 1)θ
k+ 1

+K .

Choosing the constant of integration K so that the integral is zero at u = 0, and so
that the limit as k → 1 gives

ˆ
T1(u)du =

1
4

T2(u)+
1
4

T0(u) ,
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we find that
ˆ

Tk(u)du =
1

2(k+ 1)
Tk+1(u)− 1

2(k− 1)
Tk−1(u)+

k sin(πk/2)

k2 − 1
.

So, Robin was right: Products and integrals of Chebyshev polynomials are straight-
forward.

This being understood, Robin is able to set up and solve a linear system of equa-
tions for the unknown coefficients ak in the derivative of y(u),

dy
du

=
N

∑
k=0

akTk(u) ,

and, once identified, integrate the result to get a Chebyshev series for y as a function
of u. For example, let us take N = 4. If we substitute this series in the differential
equation (3.22), and if we multiply and expand, we obtain a polynomial equation
expressed in the Chebyshev basis:

τ0T0(u)+ τ1T1(u)+ τ2T2(u)+ τ3T3(u)+ τ4T4(u)+ τ5T5(u)+ τ6T6(u) = 0 ,

where τ0 = (1−α2/2)a0 −α2/4a1+2α , and so on for each coefficient. If the polyno-
mial is zero, then each coefficient must be zero. However, notice that even though
we have only N = 4, there are both T5(u) and T6(u) terms because u2Tk adds 2 to the
degree, as a result of applying the recurrence relation. But then, setting all seven of
these coefficients to zero would give seven equations, not five, and we have only five
unknowns ak. Fortunately for Robin, setting the first five to zero and hoping for the
best turns out to work; this is why the τ-method is a good method. Lanczos’ great
observation was that the resulting degree-N polynomial for y was the exact solution
of the differential equation

(1−α2u2)
dy
du

= 2α− τ5T5(u)− τ6T6(u) .

Moreover, Lanczos observed that we can expect these τks to be small (in virtue
of some theorems about fast convergence of Chebyshev series); in any case, we
can compute them explicitly, and measure them. This is, in embryo, the idea of
residual assessment for the solution of differential equations that we will use in great
detail later in this book; it is also an excellent method of constructing an accurate
approximation to a transcendental function on a fixed interval.

In the case examined, the linear system for the unknowns a0, a1, a2, a3, and a4

turns out to be Aααα = b, where

A =

⎡⎢⎢⎢⎢⎣
−1/2α2 + 1 0 −1/4α2 0 0

0 −3/4α2 + 1 0 −1/4α2 0
−1/2α2 0 −1/2α2 + 1 0 −1/4α2

0 −1/4α2 0 −1/2α2 + 1 0
0 0 −1/4α2 0 −1/2α2 + 1

⎤⎥⎥⎥⎥⎦
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and b = [2α,0,0,0,0]T . We will look at general methods for solving such equations
in the next few chapters, but here we see that the equations are simple enough to
think about doing by hand. Well, with enough sunshine and sand, anyway. Once we
are done, with α = 2/3 and N = 4, the solution is [288/161,0, 12/23,0, 12/161]; that is,

dy
du

=
288
161

T0(u)+
12
23

T2(u)+
12

161
T4(u) ,

and τ5 = 0 while τ6 = 4/483. That is, this polynomial is the exact solution of a differ-
ential equation that is only about 1% different to the one that we wanted to solve—
not bad for only five terms, of which only three are nonzero!

Finally, Robin decides to try again and again to find a good enough N. One
problem with the Lanczos method is that if you decide your error is not small
enough, you have to go back to the original system of equations, make it bigger,
and solve again; you can’t just add another term. Here, we just present the solution
with N = 34:

LT =
851461103262246
557288527109761

T1 (u)+
41408833593612
557288527109761

T3 (u)

+
18124402203606

2786442635548805
T5 (u)+

2644314644406
3901019689768327

T7 (u)

+
42866700804

557288527109761
T9 (u)+

56287506246
6130173798207371

T11 (u)

+
8212236486

7244750852426893
T13 (u)+

399383052
2786442635548805

T15 (u)

+
174807606

9473904960865937
T17 (u)+

25504086
10588482015085459

T19 (u)

+
1240332

3901019689768327
T21 (u)+

542886
12817636123524503

T23 (u)

+
79206

13932213177744025
T25 (u)+

428
557288527109761

T27 (u)

+
1686

16161367286183069
T29 (u)+

246
17275944340402591

T31 (u)

+
12

6130173798207371
T33 (u)+

6
19505098448841635

T35 (u) . (3.23)

How accurate is this answer, in the forward sense? Robin has also computed the
leftover τ36 = − 4

1671865581329283 ≈ −2.4 · 10−15. Thus, the polynomial is the exact
solution of a differential equation that differs from the desired one by no more than
this. As a result, by simple integration, Robin knows that

y(u) = ln

(
1+αu
1−αu

)
− τ36

ˆ u

0

T36(u)
1−α2u2 du .

This warrants the conclusion that the relative difference between y and the desired
logarithm is bounded by |τ36|. In fact, as we can tell using high-precision computa-
tion in MAPLE, the error is somewhat better (see Fig. 3.5).
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Fig. 3.5 Error in the 17 nonzero term degree-35 Chebyshev series approximation to logarithm on
−1 ≤ u ≤ 1. Note that the error is quite evenly distributed across the interval, but not perfectly
“equal-ripple”

There are two issues that remain. First, is this a numerically stable expression?
The answer is yes, by the theorem of Smoktunowicz referred to in Chap. 2. Using
Clenshaw’s algorithm, this polynomial can be evaluated as the exact value of a poly-
nomial with only relatively tinily perturbed coefficients (it does so componentwise,
so this preserves the zero coefficients).

Second, is the evaluation of this particular polynomial well-conditioned? In other
words, how big is B(u) = ∑17

k=1 |b2k−1T2k−1(u)|? When we graph this, we see that it
is no larger than about 1.34. That is, an error of about ε in a coefficient translates
into an error of about 1.34ε in the value; this is almost perfect conditioning (see
Problem 3.19 for a comparison to the monomial basis, which for once does even
better). It might be difficult for Robin to ascertain either of these two facts (the
desert island library doesn’t seem to have all the journals that are needed, and the
graphing capabilities on the sand are a little coarse), though they are not hard for us
to see.

We can also collapse this theoretical analysis and experimentally examine and
assess the complete backward error of this formula, in a way that Robin could not.
Using the high-precision facilities of MAPLE, and its exponential function, we can
compute the relative backward error

δx =
eLg(x)

x
− 1 , (3.24)

where Lg(x) is our computed logarithm approximation, done with 15 digits in
MAPLE, using the Clenshaw algorithm, and where the exponential function is com-
puted to higher precision (here 30 digits). The result, on 1/5 ≤ x ≤ 1, is shown in
Fig. 3.6. Curiously, the backward error is larger on 1 ≤ x ≤ 5, by about a factor of
two. In both cases, however, the algorithm appears to have done its job, even in the
face of rounding error. Of course, this plot has only sampled the relative backward
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Fig. 3.6 Backward error in the 17-nonzero-term degree-35 Chebyshev series approximation, as
computed with 15 digits in MAPLE using the Clenshaw algorithm. Here 1/5 ≤ x ≤ 1. Rounding
errors are better on this interval than on 1 ≤ x ≤ 5, by about a factor of 2. The computed logarithm
is seen by this graph to be the exact logarithm of x(1+δx), where |δx| ≤ 10−14, or less than 64εM

Fig. 3.7 Relative forward error Lg(x)/ln(x)− 1 in the 17-nonzero-term degree-35 Chebyshev series
approximation, as computed with 15 digits in MAPLE using the Clenshaw algorithm. Here 1/5 ≤
x ≤ 1. Although the relative backward error is uniformly small on this interval, as seen in Fig. 3.6,
the forward error is not small near x = 1, because the function is ill-conditioned there

error, and it is conceivable that between samples the error skyrockets; but in the face
of the theory, this seems quite unlikely. We thus conclude that Robin Crusoe has
constructed a method for computing log(x) that is acceptable by the backward error
standard: It computes the exact value of log(x(1+ δx)), where δx is very small.
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Fig. 3.8 Zoomed: Relative forward error Lg(x)/ln(x)− 1 in the 17-nonzero-term degree-35 Cheby-
shev series approximation, as computed in 15 digits in MAPLE using the Clenshaw algorithm. Here
0.99 ≤ x ≤ 1.01. As predicted by the condition number formula κ(log(x)) = 1/log(x), the forward
error seems to be going to infinity at x = 1

What about the “gold standard” mentioned on page 105? Does this routine pro-
vide a computed value of log(x) that has small relative forward error? No! See
Figs. 3.7 and 3.8. Because this function is infinitely ill-conditioned near x = 1, tiny
rounding errors (or, equivalently, tiny relative backward errors) are amplified by a
factor 1/log(x). This is unavoidable. Uncertainties in x near 1 will be amplified, full
stop. In some sense this is a victory for backward error analysis and a reason to use
it; we have judged a method acceptable on the basis of it, and with good reason. This
victory, however, does not excuse bad behavior. If one wanted to compute not log(x)
for x near 1 but rather the related function log(1+ x) for x near 0 (the difference is
that, if we know, say, 5 figures of each x, in the first case we have 0.9995 and in the
second −0.49832 · 10−4, which quite different), then it would seem foolish to take
the small x, add 1 to it, round the result (thereby throwing away information), and
then use an ill-conditioned logarithm to evaluate it, even if the approximation being
used there had good backward error.12

Similar tricks can be used for all other elementary functions. The next most natu-
ral function to want to compute is the exponential function, u= exp(z). As, first, it is
a real function, we can similarly think about reducing the range to (say) −1 ≤ x ≤ 1
by using y2 = exp(2x) repeatedly, and then find a polynomial approximation; see
Exercise 3.17. For complex z, we find an equivalence with computing trigonometric
functions. Again, argument reduction and polynomial approximation seem to pro-
vide a method, although there are difficulties in range reduction for the trigonometric

12 There is a very clever trick for recovering some of this information, which can be used to do
nearly this; see Higham (2002). This trick relies on ensuring that the correlated rounding errors
cancel out.
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functions owing to the transcendence of π and the ill-conditioning of the functions
for large argument. Further desert island computations (for arctangent) will be un-
dertaken in Problems 3.20 and 3.21. However, at this point you may resume your
previous acceptance of modern computers and their easy and accurate (although not
necessarily “correctly rounded”) computation of all the elementary functions.

3.3.2 Roots of Transcendental Functions

Rootfinding problems for transcendental functions are essentially similar, but some
subtleties might enter in the computation. We illustrate this by considering the Lam-
bert W function. The function W (x) is defined by

W (x)eW (x)− x = 0 .

See Fig. 3.9. As we see from its definition, the study of this function impor-

Fig. 3.9 The two real branches of the Lambert W function. This graph can be (nearly, except for
the labels and the dot at the branch point) reproduced in MATLAB by using the commands w =
linspace( -3,1,101 ); followed by plot( w.*exp(w), w, ‘k-’)

tantly relates to rootfinding. We have accepted that there are routines for com-
putation of exp(·), and so computing W given x is a perfectly good rootfinding
problem. The rootfinding problem also makes sense over the complex numbers,
although in that case there are an infinite number of possible values for W (z) so that
W (z)exp(W (z)) = z.



132 3 Rootfinding and Function Evaluation

Newton’s method applies immediately to the complex rootfinding problem, since
the formula

zn+1 = zn − f (zn)

f ′(zn)
(3.25)

can be viewed as coming from the linear Taylor approximation to an analytic func-
tion f (z) near z = zn, and is well-studied as to convergence in the complex plane.
For Lambert W , we change the name of the variable to w, and thus the iterates are
wn; now z is considered a constant for the duration of the iteration. The iteration is
thus

wn+1 = wn − wnewn − z
(wn + 1)ewn

. (3.26)

Choosing a good initial guess is an issue (see Corless et al. (1996) for a more com-
plete discussion). But if z is near 0, then it makes sense to use an initial guess based
on the first few terms of the Taylor series for W , namely,

W (z) = z− z2 +
3
2

z3 − 8
3

z4 +
125
24

z5 +O
(

z6
)
. (3.27)

However, if z is large, it makes sense to use an initial guess based on the first few
terms of its asymptotic series:

W (z)∼ ln(z)− ln(ln(z))+
ln(ln(z))

ln(z)

+
− ln(ln(z))+ 1

2 (ln(ln(z)))
2

(ln(z))2 +O
(
(ln(z))−3

)
. (3.28)

For instance, the computation of W (5+ 2i) might start with that asymptotic series
evaluated at z = 5+ 2i (see the sequence in Table 3.1); starting from this initial
guess, Newton’s method converges in four iterations (nearly in three).

Table 3.1 Newton iterates and residuals rn = z−wn exp(wn) for the principal branch of W (5+2i).
Note that at every stage, wn =W (z+ rn) exactly

n wn rn

0 1.33231291412843+0.244389724585471i 0.32494−0.12039 i

1 1.36204391549356+0.219163426087818i −0.44147×10−2 +0.86916×10−2 i

2 1.36187799739461+0.220202860786331i 0.60085×10−5 +0.41220×10−5 i

3 1.36187875186406+0.220203084384894i −2.6264×10−12 −3.0874×10−12 i

4 1.36187875186369+0.220203084384664i −2.3035×10−14 −5.8301×10−15 i

What is the condition number of W (z)? The function W (z) is defined to be the
root w∗ (as a function of w, for constant z) of the equation

f (w) = wew − z = 0 ,
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and its derivative is
f ′(w) = (w+ 1)ew .

As a result, if we suppose that ‖ f‖ = O(1) on the interval of interest, the condition
number is

C =
1

w∗(w∗+ 1)expw∗ =
1

z(1+w∗)
.

This expression is problematic when z = 0, but only because we are considering
relative error. It also has a problem at w = −1, that is, at z = −exp(−1), which is
a genuine difficulty—this is a branch point, and convergence is slowed quite a bit:
Notice that f ′(xn) appears in the denominator in the error analysis, and notice that
for branch points, f ′(x∗) = 0, and therefore, f ′(xn) will be small. This is how the ill-
conditioning affects the convergence: The residuals get quite small near a multiple
root of f (w), but the distance to the “true” root remains large.

To conclude, we emphasize again that, in this case, Newton’s method has an easy
interpretation in terms of backward error. The residual is given by

rn = z−wnewn , (3.29)

and so every iterate wn is the exact root of a slightly different equation, namely,
f (w)+ rn. Thus, the interpretation of the computed value comes from the fact that

wn =W (z− rn) . (3.30)

That is, each iterate is the exact value of the Lambert W function at an increasingly
tiny perturbation of the desired argument z. More, this residual rn is computable
(toward the end, we would need more precision to get it accurately, but at least we
will know it is small). Finally, since the Lambert W function is well-conditioned
(away from its branch point at z =−1/e), this small backward error translates into a
small forward error.

3.4 Best Rational Approximation

In our investigation of function evaluation and rootfinding, we have made use of
polynomials to approximate transcendental functions; specifically, we have used
Taylor polynomials and truncated Chebyshev series polynomials. As we have seen,
the error in the truncated Chebyshev series was smaller, for the same degree of ap-
proximation, and it seemed more equally distributed across the interval of approxi-
mation. This fact can be shown rigorously, and it works for rational approximation
as well.

Theorem 3.2. Let R = P/Q be a reduced rational function of degree (n,m); that is,
the polynomials P(x) (of degree n) and Q(x) (of degree m) have no common factor.
A necessary and sufficient condition that R be the best approximation to f (x) in the
infinity norm sense on an interval a ≤ x ≤ b, that is, that
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‖R− f‖∞ = max
a≤x≤b

|R(x)− f (x)|

is not greater than ‖S− f‖∞ for any other rational function S(x) of degree (n,m), is
that the error function R(x)− f (x) exhibits at least 2+max{m+ degP,n+ degQ}
points of alternation (i.e., values of x for which ‖R− f‖∞ is attained, and with alter-
nating sign).

For a proof, see practically any book on approximation theory. However, we rec-
ommend the detailed, extensive, historical and constructive discussion of Trefethen
(2013).

This theorem is remarkable in many respects. The most immediately striking
thing about it is that it says that the way to get the best possible answer is to make
sure that the worst case occurs as many times as possible—that is, is distributed
among as many places as possible. This turns out to be an important idea for ap-
proximation: make the error equal-ripple, achieving its maximum as many times as
possible in the interval, and you will simultaneously make the total error as small
as possible. In some sense it is a technical instantiation of the proverb “many hands
make light work”! Speaking of proverbs, the book Trefethen (2013) also shows that
“best” approximation might not be what you want, nicely illustrating the proverb
that “the perfect is the enemy of the good.”

As an example, we use an advanced tool in the numapprox package in MAPLE

to actually find such a best rational approximation to a function; this procedure
should seem natural after following the desert island hypothetical on the computa-
tion of the logarithm. We consider a function such that

log

(
1+ 2x/3

1− 2x/3

)
= xF(x2) . (3.31)

In MAPLE, we execute the following code:

with(numapprox);
minimax(log((1+2*sqrt(x)*(1/3))/(1-2*sqrt(x)*(1/3)))/xˆ(1/2),

x = 0 .. 1, [2, 2], 1, 'maxerror');

The answer returned, almost instantly, is

F(x) =
1.76785424617689+(−0.685178491836968+0.0336567597364259x)x
1.32589040187406+(−0.710301545774409+0.0780276560350512x)x

.

This rational function of degree 2 in the numerator and in the denominator is the
best degree-(2,2) approximant on this interval. In Fig. 3.10, we see the character-
istic “equal-ripple” in the error curve; this characterizes best approximations, as
Theorem 3.2 asserts.

Notice that evaluation of the rational approximation F(x) costs only 4 floating-
point operations. By rewriting it as a continued fraction, we can even reduce it to 2
flops (assuming that a division is really just as cheap as a multiplication). By using
the convert( <>, confrac, x ) function in MAPLE, we find that
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Fig. 3.10 Forward error of the best (2,2) approximant to x−1/2 ln((1+ 2
√

x/3)/(1− 2
√

x/3)). Note
the equal-ripple character: the maximum error is achieved six times in the interval, as required by
Chebyshev’s theorem

F(x) = A1 − A2

x−A3 − A4

x−A5

, (3.32)

where we find that A1 = 0.431343980412622, A2 = 4.85461456921422, A3 =
5.94597503089102, A4 = 1.78022517753074, and A5 = 3.15722737025930 are the
coefficients returned by the conversion. We now have to worry about two things.
First, is the evaluation of this continued fraction numerical stable; that is, is its eval-
uation exact for slightly perturbed values of each Ak? Second, is this particular ex-
pression well-conditioned; that is, how sensitive it is to changes?

We don’t have immediately available a standard theorem of backward stability
for such expressions (we will see why we don’t in a moment), and neither do we
have a standard formula for “the” condition number. However, a moment’s reflection
suggests that the vector of condition numbers with entries (Ak∂F/∂Ak)/F will tell us
what we want. For example,

A3∂F/∂A3

F
=−A3A2

(
x−A3 − A4

x−A5

)−2

F−1 . (3.33)

The other entries are similarly easy to compute in MAPLE. In fact, when we plot
these as functions of x by using the values of Ak given above, we find that nowhere
on 0 ≤ x ≤ 1 is any of these vector elements larger than 1. We thereby conclude that
this expression is well-conditioned.

What about numerical stability? It turns out that continued fractions can, in gen-
eral, be unstable. The combination of division and addition is such that rounding
errors cannot (in general) be made equivalent to relatively small perturbations to the
data (in this case, the Ak and the x); the error bounds include the sums of the abso-
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lute values divided by the absolute values of the sums, which can be small. Another
way to view the difficulty is that errors made lower down in the fraction (for exam-
ple, in the computation of r = x−A5) can be revealed by a possible cancellation at
a higher level (here, perhaps, x−A3 − A4/r). But in this particular case, it doesn’t
happen. Since 0 ≤ x ≤ 1, x−A5 must be between about −3.15 and −2.15 and so
no cancellation occurs. Hence, −A4/(x−A5) is between 0.56 and 0.82. Continuing,
x − A3 − A4/(x−A5) is between −5.38 and −4.12, and no cancellation occurs here
either. Therefore, A2 over this is between 0.90 and 1.17. Finally, there is no cancel-
lation in subtracting this from A1, either. Nonetheless, rounding errors do occur, and
because of the subtractions, they cannot, in general, be accounted for as relatively
small perturbations of the Ai or of x. But here, because all of the quantities are of
one sign and are of the right magnitude, rounding errors do not accumulate signifi-
cantly or get revealed by a final subtraction. Indeed, one can write a backward error
bound for this expression, involving the norm of the Ak vector, and this is sufficient
to guarantee a good forward error bound. See Exercise 3.22.

Remark 3.6. By using a degree-(5,6) approximant rather than a degree-(2,2) ap-
proximant, we get an equal-ripple error curve that is everywhere less than 8×10−17.
This can be converted into a continued fraction that costs only 6 divisions to evalu-
ate and, once again, it is normwise numerically stable. This is considerably cheaper
to evaluate than the Chebyshev series that Robin Crusoe found in the story of
Sect. 3.3.1. Indeed, we believe that this best rational approximant is more like the
methods that are actually used in practice. �

Remark 3.7. The equations that determine the equal-ripple curve are multivariate
(the maximum error is unknown, and the locations at which the maximum error is
achieved are unknown) and nonlinear. The algorithm that the function minimax
uses to solve these equations is called the Remez algorithm. It is essentially a spe-
cialized nonlinear equation solver, a particular multivariate function iteration that
starts with an initial guess for all the variables needed, usually derived from a Che-
byshev series approximation. It doesn’t always converge, but it’s pretty good, as is
the implementation in MAPLE.

While we were writing this book, Bill Gosper and Warren D. Smith were pushing
quite hard on efficient and optimal evaluation of the Gamma function on the interval
[−1/2, 1/2] by applying the Remez algorithm in an interesting way; they were able to
achieve 35-decimal-digit accuracy with only 14 parameters, something like a (7,7)
approximation. �

This kind of rational approximation has been devised and implemented for all
elementary functions. As we mentioned, making sure that these elementary func-
tions allow the same guarantee that we have for floating-point arithmetic, namely,
that they give the correctly rounded result, is a very hard problem, because of the
table maker’s dilemma. MAPLE, for example, guarantees only that its elementary
functions are correct to 0.6 units in the last place (and in order to do so, it chooses
quite slow methods to evaluate them).

Finally, we note that the “best approximation” theory is, in practice, not used
as often as one might think; while it is valuable for functions that will be used
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millions (or billions) of times, many functions in applications are not used so of-
ten. Simpler methods, such as using interpolation at Chebyshev nodes, often get
us nearly as accurate approximations on an interval with comparatively much less
effort.

Moreover, there is a theory of best approximation over complex domains similar
to that over real intervals; however, again similar to the real case, there is a sim-
pler and almost as efficient alternative. Taylor series and Padé approximants have
the useful property of being near-best on disks (Geddes and Mason 1975), and we
therefore find ourselves using these simple tools in preference to more complicated
approximations, most of the time.13 As an example, consider the function 1/Γ (z),
which is entire. If we wish to approximate it near zero, we can hardly do better than
its Taylor series. If we take a series correct to O(z17), then the error |p16(z)− 1/Γ (z)|
has near-circular contours, and it is bounded between 4 · 10−9 and 7 · 10−9 on the
unit circle. By the well-known result that an analytic function must achieve its max-
imum magnitude on the boundary of any compact domain, we see that the error is
uniformly less than 7 · 10−9 inside the disk. An alternative might be to interpolate
1/Γ (z) at 17 equally spaced points on the unit circle (see Chaps. 8 and 9). This gives
an error less than 10−8 on the contour plotted in Fig. 3.11. While this is nearly as

Fig. 3.11 The contour L17(z)− 1/Γ (z) = 10−8 exp(iθ ). Inside this contour the Lagrange interpolat-
ing polynomial on the 17 nodes (plotted as crosses in the figure) is accurate to an absolute accuracy
of better than 10−8

13 Despite some of its shortcomings, the monomial basis is very good—near-optimal, in fact—if
the coefficients don’t have too wide a dynamic range—on the unit disk |z| ≤ 1.
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Fig. 3.12 Conditioning of lnΓ on an interval

good as Taylor series (of equivalent degree), it is not quite as good. The optimal
approximation (which we have not computed) will be better than Taylor approxi-
mation, but not much. For another interesting example, that of lnΓ (x), we obtain
Fig. 3.12. However, if we had been working over an interval containing x = 2, then
the ln function would give trouble near x = 2 since Γ (2) = 1. In general, this kind
of thing will be an issue.

The key point is that, with sufficient effort, we can find good rational approx-
imations to our basic building blocks, the elementary functions, and this has been
done (almost completely). Some nagging issues remain, for compositions, because
of potential ill-conditioning (e.g., ln(1+ x) vs ln(x)).

3.5 Other Rootfinding Methods

In this section, we consider some other useful iterative methods to find the roots of
functions. As we will see, there are situations in which their use is advantageous, in
terms of computational cost.

3.5.1 Halley’s Method

A variation that shares most of the flaws of Newton’s method, but converges faster
when it does work, is Halley’s method:

xn+1 = xn − f (xn)

f ′(xn)− 1
2

f (xn) f ′′(xn)

f ′(xn)

. (3.34)
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There is a term in the denominator added to Newton’s method, but it provides
faster convergence. See, for example, Alefeld (1981), who gives a nice explana-
tion, sufficient conditions for convergence in the real case, and references that
show that (xn+1 − x∗)∼ k(xn − x∗)3, namely, ultimately “cubic” convergence to the
root x∗.

Because for the Lambert W function the dominant cost in the iteration is the
computation of expw, derivatives are almost free, and this makes Halley’s method
attractive. Halley’s method is used by MAPLE to compute Lambert W .

Example 3.9. Consider the seemingly simple function giving the Pythagorean dis-
tance, namely, d =

√
a2 + b2, for real a and b. This function is used extremely fre-

quently, for example to find the absolute value of a complex number z = x + iy,
whence |z| =

√
x2 + y2. This function has a bad habit of either overflowing (if one

of a or b is larger than the square root of realmax, i.e., 1.34 ·10154) or underflowing
(if one of a or b is smaller than the square root of realmin, i.e., 1.49 ·10−154). One
might think that this could never happen in a realistic example, but this ignores in-
termediate computations; it is quite possible, and even likely, that during the course
of a computation the size of the intermediate results might be larger or smaller than
these limits; as N.J. Higham points out, half of all floating-point numbers lie outside
these bounds! In particular, since the Pythagorean function first takes the square and
then takes the square root, it is obviously possible that overflow or underflow would
prevent us from getting an answer, quite unnecessarily.

Several remedies have been put forward for this, but the one described in Prob-
lem 27.6 of Higham (2002), originally due to Moler and Morrison (1983), is partic-
ularly interesting and is sketched below. Notionally, one thinks first of computing
a2 + b2; call this p2, and then p is the quantity that we wish to evaluate (accurately,
and avoiding overflow and underflow). If we compute a2+b2 to begin with, then we
have already lost; so we must continue the analysis a bit. In any case, the quantity
we want is a root of the equation x2 − p2 = 0. We can think of applying Halley’s
method to this equation:

xn+1 = xn − x2
n − p2

2xn − x2
n − p2

2xn

. (3.35)

We take x0 = a, and (this is admirably clever) take yn =
√

p2 − x2
n, so that at every

step we have p2 = x2
n + y2

n and initially y0 = b. To make it work, we have to assume
0 < y0 ≤ x0; if this is not so, interchange the roles of x and y. Then the iteration
above can be rewritten as the pair of iterations

xn+1 = xn

(
1+

2y2
n

4x2
n + y2

n

)

yn+1 =
y3

n

4x2
n + y2

n
.
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In this case, overflow and underflow can be avoided by scaling these equations:
Dividing each of xn and yn by the same constant means that each of xn+1 and yn+1

will also be divided by that constant. In particular, we may take rn = (yn/xn)2, that is,
divide by xn, and the iterations become

s =
rn

4+ rn

yn+1 = yns

xn+1 = xn(1+ 2s) .

These equations have only a single squaring per step. Since, by assumption, y0 <
x0, it can be proved not to cause a problem thereafter (it cannot overflow and if it
underflows, we stop and xn is the answer). Therefore, it is “immune to underflow
and overflow (unless the [final] result overflows)” (Higham 2002). Moreover, it can
be shown that yn → 0 cubically and that xn → p cubically, which is the desired
constant. Convergence is so rapid, in fact, that if the machine epsilon is larger than
2−20, then no more than three passes are necessary. �

Example 3.10. The transcendental equation

y+ lny = z (3.36)

has as the solution

y =

⎧⎨⎩
ω(z) if z �= t ± iπ and t ≤−1

ω(z),ω(z− 2π i) if z = t + iπ and t ≤−1
no solution if z = t − iπ and t ≤−1

, (3.37)

where ω(z) := WK(z)(exp(z)) is the Wright ω function (see Corless and Jeffrey
(2002)) and K(z) = (z− lnexp(z))/(2π) is the unwinding number. This function
is a relative of the Lambert W function, but each is useful in different applications.
The Wright ω function is better-behaved as z → ∞, and indeed ω(z)∼ z outside its
two rays of discontinuity. However, its interest here is as an example of rootfinding,
because Halley’s method and higher-order methods can be used on Eq. (3.36) as a
way of computing ω(z), and the function also makes a good example of complex
conditioning. In Lawrence et al. (2012), we find that the complex condition number
of ω(z) is just

C =
z

1+ω(z)
(3.38)

by using implicit differentiation. In Exercise 3.10, you are asked to verify this. The
function is ill-conditioned in the complex sense only when ω(z)→−1, which hap-
pens at the two singularities z=−1± iπ . The conditioning of the real and imaginary
parts separately is also discussed in Lawrence et al. (2012). In Problem 3.13, you
are asked to rederive those results and describe the locations where either the real
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part or the imaginary part of the function is ill-conditioned. These are different and
more extensive than just z =−1± iπ .14 �

3.5.2 The Secant Method

We now turn to the secant method, which is defined by the iteration

xn+1 = xn − f (xn)(xn − xn−1)

f (xn)− f (xn−1)
. (3.39)

This method uses two previous initial guesses and essentially replaces the derivative
f ′(xn) in Newton’s method by the difference quotient ( f (xn)− f (xn−1))/(xn − xn−1). It is
thus cheaper to take a secant step than to take a Newton step (usually). However, we
will have to take more of them, because it converges more slowly.

Theorem 3.3. The secant method, when it converges, ultimately has the golden
mean as convergence rate.

Proof. Let en = xn − x∗ be the error in the kth iterate. Then

en+1 = en − f (x∗+ en)(en − en−1)

f (x∗+ en)− f (x∗+ en−1)
.

If we take the Taylor expansion of f (x∗+ en) and f (x∗+ en−1), we find that

f (x∗+ en) =���f (x∗)+ f ′(x∗)en +
1
2

f ′′(x∗)e2
n + · · ·

f (x∗+ en−1) =���f (x∗)+ f ′(x∗)en−1 +
1
2

f ′′(x∗)e2
n−1 + · · · ,

where the f (x∗) terms are just zero. As a result, we find that

en+1 = en − en( f ′(x∗)+ 1/2 f ′′(x∗)en)(en − en−1)

f ′(x∗)(en − en−1)+ 1/2 f ′′(x∗)(e2
n − e2

n−1)

= en − en
f ′(x∗)+ 1/2 f ′′(x∗)en

f ′(x∗)+ 1/2 f ′′(x∗)(en + en−1)

= en − en
f ′(x∗)+ 1/2 f ′′(x)(en + en−1)− 1/2 f ′′(x∗)en−1

f ′(x∗)+ 1/2 f ′′(x∗)(en − en−1)
,

14 Lawrence et al. (2012) concentrate heavily on finding a good initial guess function to start the
iteration, and regularize the problem near the lines of discontinuity. Indeed, the bulk of the paper
is on those two aspects. However, some time is spent on the iteration methods that might be used,
as well. In addition to considering Newton iteration and Halley iteration, the paper also considers a
family of higher-order methods and settles on one of them as being (marginally) the most efficient
for that function.
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and finally that

en+1 = en − en

(
1+

1/2 f ′′(x∗)
f ′(x∗)

en−1 + h.o.t.

)
=−

1/2 f ′′(x∗)
f ′(x∗)

enen−1 + h.o.t. ,

where “h.o.t.” stands for “higher-order terms.” Thus,

en+1
.
=− f ′′(x∗)

2 f ′(x∗)
enen−1,

which is similar to e2
n. Also,

en =− f ′′(x∗)
2 f ′(x∗)

en−1en−2 .

Therefore, the ratio ρn+1 := en+1/en satisfies the relation ρn+1 = ρnρn−1. Taking loga-
rithms, we obtain logρn+1 = logρn+ logρn+1. Finally, solving this linear recurrence
relation, we see that logρn ∼ c1φn

1 + c2φn
2 . Now, using φ1 = 1+

√
5/2 = 1.618 . . . and

φ2 = 1−√
5/2 =−0.618 . . ., we see that, asymptotically,

ρn+1 ∼ eciφn+1
=
(

ec1φn
)φ

= ρφn .

As a result, we have

en+1

eφn
=

en

eφn−1

,

which is asymptotically constant, that is, en+1 ∼ Keφn , where φ is the golden ratio. �

Neumaier (2001) gives an accounting that estimates that if the cost of computing a
derivative exceeds 40% of the cost of computing the function itself, then the secant
method will usually be cheaper to use.

Example 3.11. Consider the nonlinear equation f (w) =w+ lnw−2 = 0. By inspec-
tion, f (1) < 0 and f (2) > 0, so we know there is a root between 1 and 2. We set
w0 = 1 and w1 = 2, and we let

wn+1 = wn − f (wn)
wn −wn−1

f (wn)− f (wn−1)
. (3.40)

In MATLAB, this can be done with a simple one-line function and a loop (but this is
not optimized for efficiency—here we call f twice per iteration, which is a waste):

f = @(w) w + log(w) - 2;
w = ones(7,1);
w(2) = 2;
for i=3:7,
w(i) = w(i-1) - f(w(i-1))*(w(i-1)-w(i-2))/(f(w(i-1))-f(w(i-2))

);
end;
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r = f(w);
plot( abs(r(2:7)./r(1:6).ˆ(1.618)), 'kx','markersize',12 )
xlabel('iteration','fontsize',16);
ylabel('asymptotic constant','fontsize',16);
set(gca,'fontsize',16);

The final value of the residual is about 10−14, and the values of rn/rφn−1 are plotted in
Fig. 3.13. We see that the ratios are bounded. The convergence of the answer is too
rapid to really see the rate, but it is plausible that convergence is at a golden-mean
rate. �
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Fig. 3.13 Convergence ratios rn/rφn−1 of the residuals for the secant method applied with w0 = 1,
w1 = 2, to f (w) = w+ logw−2 = 0

3.5.3 Inverse Quadratic Interpolation

Inverse quadratic interpolation is an important method that forms a part of the Al-
gorithm fzero used by MATLAB.15 The idea is represented in Fig. 3.14. Assume
no two y-values are identical. The function in Fig. 3.14 is quadratic in y and fits the
data (x0,η0),(x1,η1),(x2,η2). Here, ηk = f (xk). In Lagrange form, we would thus
write

x(y) = x2 +
(y−η1)(y−η2)(x0 − x2)

(η0 −η1)(η0 −η2)
+

(y−η0)(y−η2)(x1 − x2)

(η1 −η0)(η1 −η2)
.

Now, consider the point x3 = x(0), namely, the point where the quadratic cuts the
x-axis at y = 0; this approximates the root. A simple calculation reveals that

x3 = x2 +
η1η2(x0 − x2)

(η0 −η1)(η0 −η2)
+

η0η2(x1 − x2)

(η1 −η0)(η1 −η2)
.

15 It is based on work by Richard Brent (e.g., 1973) and earlier work by Dekker (e.g., 1969).
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Fig. 3.14 Inverse quadratic interpolation

This can be rephrased in a way that gives a general iteration:

xn+1 = xn +
f (xn−1) f (xn)(xn−2 − xn)

( f (xn−2)− f (xn−1))( f (xn−2)− f (xn))

+
f (xn−2) f (xn)(xn−1 − xn)

( f (xn−1)− f (xn−2))( f (xn−1)− f (xn))
.

How accurate is this expression? If we let xk = x∗+ ek, where f (x∗) = 0, then the
first terms of the series analysis gives

e3 =−1
6

e2e1e0

(
D(3)( f )(x∗)D( f )(x∗)− 3D(2)( f )(x∗)2

)
D( f )(x∗)2 ,

so that en+1 ∝ enen−1en−2. Taking ratios as before, we obtain the relation ρn+1 =
ρnρn−1ρn−2, and thus the logarithms satisfy the linear recurrence relation logρn+1 =
logρn + logρn−1 + logρn−2. From this, we find that θ 3 = θ 2 + θ + 1 becomes im-
portant. This equation has the root

θ1 =
1
3
(19+ 3

√
33)

1/3 +
4

3(19+ 3
√

33)1/3
+

1
3

.
= 1.83928
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and two complex roots of modulus about 0.73. Therefore, for large n,

ρn+1 ∼
(

ec1θn+1
1

)
=
(

ec1θn
1

)θ
= ρθ1

n , (3.41)

from which it follows that, ultimately,

en+1

en

.
=

eθ1
n

eθ1
n−1

. (3.42)

So again, en+1/eθ1
n is ultimately constant.

As with Newton’s method, Halley’s method, and the secant method, this method
has superlinear convergence; that is,

en+1
.
= ke1.839...

n for large n . (3.43)

It is asymptotically faster than the secant method, but hardly more expensive.
Asymptotically, it takes more iterations than Newton or Halley because 1.83928< 2,
but the steps are cheaper. It is only in exceptional circumstances, when derivatives
are almost free, that Newton or Halley will be more efficient.

3.5.4 Taking a Step Back

Now that we have seen a number of methods that can be used to tackle rootfinding
problems, let us take a step back and take a look at the tools we have. To begin with,
there is no general answer to the question, “Which algorithm should be used?” With
regards to efficiency, we need to consider both the rate of convergence and the cost
of individual steps. Moreover, all these methods have some common limitations and
difficulties. To begin with, these are univariate methods; what about bivariate (or
multivariate) problems such as

f (x,y) = 0
g(x,y) = 0

?

Also, these methods find one root at a time; but there might, of course, be more than
one. Perhaps even more importantly, these methods may converge very slowly if the
initial guess is bad and may fail to converge at all. In theory, there are theorems of
the form “if x0 is close enough to x∗ and f (x) is smooth enough, then convergence
will be obtained” that guarantee convergence. In practice, it is often simplest just to
try it and see if it works.

This is why it is often said that correctly using iterative rootfinding methods
is all about the initial guess. In our experience, the most common question asked
by people encountering iterative methods for the first time is, “How do you know
where to start?” And, crucially, this is the most important question. A good initial
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guess means the difference between rapid success and expensive time-consuming
failure. To belabor the obvious, nonlinear problems are hard. Globally convergent
algorithms are known only for a few classes of problems.

What is done in practice comes from a variety of tricks. The first one is common-
sensical enough: Use your knowledge of the problem. If you have solved similar
problems before, then use their solutions as initial guesses for this one. This leads to
the next interesting trick: If you haven’t solved a similar problem before, then invent
one and do so now! This idea of looking at similar problems, when developed rig-
orously, leads to the very powerful idea of homotopy; but we will look in this book
only at its simplest expression, that of simple continuation. To do so, we embed
our problem in a family of problems, with a tunable parameter, as in the following
example.16

Example 3.12. Suppose we wish to solve the equation

y+ lny− 2 = 0 ,

and we have no clue about what to use for an initial guess. Introducing a new
parameter, λ , gives us the equation

y+λ lny− 2 = 0 .

We immediately notice that we have our original problem when λ = 1, and that
the case λ = 0 is easy to solve (we find y = 2). One could then try y0 = 2 in the
original problem and use a Newton iteration (and, of course, it works on this simple
example). Suppose that it didn’t work—one could then instead set λ = 0.1, and
hope for success on that (more closely related) problem instead. Indeed, for very
small λ , success is almost guaranteed. Here this gets us y(0.1) = 1.93. We then let
λ = 0.2 and y0 = 1.93 and iterate using Newton’s method once more, finding this
time that y(0.2) = 1.87. Continuing in this way, we find that the solution to our
original problem is y = 1.557 after 8 more steps. �

There is a lot of scope for creativity in this process of introducing a new parameter
to simplify things. A generic template is as follows: If you are given a hard problem
H(y) = 0 to solve, then create an easy problem E(y) = 0 and consider the parame-
terized family λH(y)+ (1−λ )E(y) = 0. Then for λ = 0, this is an easy problem,
and one tracks the zeros for increasing values of λ until one gets to λ = 1, at which
point we have solved the hard problem. However, we should warn you that it doesn’t
always work as nicely as in our example. As Hamming (1973 p. 77) remarks,

It is a complex, difficult task to design a foolproof method of tracking zeros since sooner or
later almost every possible trouble will occur.

16 This is taken up further in the section on multivariate rootfinding in this chapter, and in Chap. 12,
and again in Chap. 14. For an extensive and thorough treatment of this idea for systems of polyno-
mial equations, see Morgan (1987) and Sommese and Wampler (2005).



3.6 The Multivariate Case 147

3.6 The Multivariate Case

Multivariate generalizations of Newton’s method abound. In all cases, the basic idea
is to replace the nonlinear problem with a sequence of linear ones. Thus, we have
a process of linearization and reduction of the nonlinear problem to a sequence
of linear systems of equations. We will leave the discussion of how to solve such
linear systems aside, since it is the object of Part II. But for an explicit, motivating
example, consider the bivariate case in which we wish to find values of x and y such
that both f (x,y) = 0 and g(x,y) = 0. Suppose also that we have an approximation
(xn,yn) already computed or guessed. Then a linear approximation of f and g near
that point gives

f (x,y)
.
= f (xn,yn)+ fxΔx+ fyΔy

g(x,y)
.
= g(xn,yn)+ gxΔx+ gyΔy .

Equivalently, but using vector-matrix notation, we have[
fx(xn,yn) fy(xn,yn)
gx(xn,yn) gy(xn,yn)

][
Δx
Δy

]
=

[− f (xn,yn)
−g(xn,yn)

]
. (3.44)

The matrix is the Jacobian, evaluated at the current guess. The right-hand side is the
negative of the residual vector, −[ f (xn,yn),g(xn,yn)]

T .

Remark 3.8. Notice that, as in the scalar case, the residual vector allows us to
reverse-engineer a problem exactly solved by the current guess, namely, f (x,y)−
f (xn,yn) = 0, and g(x,y)− g(xn,yn) = 0. Of course, this trivially follows from the
definitions; but this obvious fact means that if the residuals are small, compared to
physical or modeling error, we are done! For all we know, we have a solution that is
entirely satisfactory. Of course, we need to know if the multivariate root system is
well-conditioned, but we need to know this anyway. �

To continue with the method, we solve this 2 × 2 linear system for (Δx,Δy)
(again, we will see how to do so in Part II), and then let[

xn+1

yn+1

]
=

[
xn +Δx
yn +Δy

]
. (3.45)

This iterative process can be repeated as necessary. The generalization to n variables
is immediate:

xk+1 = xk − J−1(xk)F(x). (3.46)

Remark 3.9. Note that the inverse matrix is (generally) never formed explicitly—
instead, the techniques of Part II are used to solve the linear system.
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Efficient variations such as BFGS (for optimization problems) or damped New-
ton iteration (in the solution of differential equations) are used extremely frequently.
This is a serious workhorse of numerical computation. �

Let us now consider examples of the multivariate version of Newton’s method.

Example 3.13. To begin with, consider these equations:

f1 − ( f1 − f0)sn2
(

K(k)− π
√

f1 − f2

2
√

6
,k

)
= 0 (3.47)

−2
3

Re = f2
π
2
+
√

6
√

f1 − f2

[
E(k)−E

(√
f1

f1 − f0
,k

)]
. (3.48)

They arise in the analytical solution of a problem of fluid flow in a wedge-shaped
channel.17 The unknowns are f0 and z, and the equations arise in matching the
boundary conditions. Once they are found, the velocity profile across the channel
can be plotted or otherwise analyzed. The equations have a parameter, the Reynolds
number, Re , which is a nondimensional velocity. The equations above are fairly eas-
ily solved when Re is small, but become awkward when Re is large, chiefly because
we have no useful initial guess for f0 or z in that case. As discussed in an earlier
section, the process known as simple continuation is quite helpful: We use the so-
lution for a slightly smaller Re as the initial guess (and, of course, this idea can be
used recursively).

There are two difficulties that may strike you on examining Eqs. (3.47) and
(3.48). First, they require computation of the Jacobian elliptic functions—which
may be unfamiliar—and, second, to use Newton’s method, we have to take
derivatives—and these too may be unfamiliar. In any case, the equations are quite
complicated. It turns out that MAPLE (but not MATLAB18) possesses all the requisite
resources; in fact, MAPLE even has a built-in multivariate solver called fsolve.
The algorithm it uses is more complicated than the Newton iteration but is related
and has similar characteristics. The execution of

fsolve( eval( {e1,e2a}, R=3 ), {f0,z} );

returns (once we edit the output to make it more readable)

{ f0 = -2.02494131289478, z = -2.02599605566010 }

To get this result, MAPLE used an initial guess of f0 = 0 = z0. However, this answer
tells us little about any other roots there might be—and there are many, and indeed
many of them correspond to physically realizable flows. Just like Newton’s method,
fsolve has trouble with multiple roots. �

17 See, for example, the discussion in Corless and Assefa (2007).
18 If we were to try to solve these equations in MATLAB, we would have to first implement
the Jacobian elliptic functions and their derivatives (see the Google project at http://code.
google.com/p/elliptic/, and note that a partial implementation exists in vanilla MATLAB,
ellipj).

http://code.google.com/p/elliptic/
http://code.google.com/p/elliptic/
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Rather than pursuing the inspection of Jacobi elliptic functions and related rootfind-
ing problems in more detail, we turn to a simpler example.19

Example 3.14. Consider the equations

f (x,y) = x2 + y2 − 1 = 0

g(x,y) = 25xy− 8= 0.

In Chap. 6, we will show that a similar equation system, with 25xy−12= 0 instead,
has a solution (x,y) = (3/5, 4/5). This will do for our initial guess. The Jacobian is
simple enough to do by hand:

JJJ =

[
2x 2y

25y 25x

]
. (3.49)

Observe that JJJ is singular when 50x2−50y2 = 0, that is, x =±y. Now, let (x0,y0) =
(3/5, 4/5). Then the first step of Newton’s method is

JJJ(x0,y0)

[
Δx
Δy

]
=

[
6/5 8/5

20 15

][
Δx
Δy

]
=−

[
f (3/5, 4/5)
g(3/5, 4/5)

]
=−

[
0
4

]
, (3.50)

which has the solution [Δx,Δy]T = [−16/35, 12/35]T . This in turn gives[
x1

y1

]
=

[
x0

y0

]
+

[
Δx
Δy

]
=

[
1/7

15/7

]
, (3.51)

and, using MATLAB, we find the next iterations (see Table 3.2). �

Table 3.2 Iterates for the multivariate Newton method for the equation of Example 3.14

Iterates xk yk

(x2,y2) 0.3003 0.9803
(x3,y3) 0.3380 0.9427
(x4,y4) 0.34030 0.94032
(x5,y5) 0.3403312423 0.9403212423
(x6,y6) 0.340312423743285 0.940312423743285

This simple example already shows features common to Newton’s method ap-
plied to larger systems. At each stage we solve a linear system of equations to find
the update. Therefore, at each stage we must evaluate the Jacobian matrix at the cur-
rent guess (which is here trivial but can itself be expensive for larger systems). Also,
we must have some reliable way of solving the system (usually simple LU factoring
will do, but iterative methods are also common: after all, we don’t need a perfect
(Δx,Δy), just a good one). Finally, convergence can initially be slow. Notice that

19 We return to it when we study boundary value problems in Chap. 14.
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the error did not decrease in both components on the first iteration; quadratic con-
vergence only settles in eventually. Here again, the most important thing is getting
a good initial guess; all the other tricks are secondary.

3.7 Chebfun for Evaluation and Rootfinding

Before ending this chapter, we briefly discuss the Chebfun package, based on com-
mented examples. Let us see what Chebfun can do for the evaluation of the function
ln(Γ (x)) on the interval 3 ≤ x ≤ 4. The idea is to get Chebfun to construct a best
approximant to this function; this turns out to be easy to do since MATLAB has a
built-in Γ function that we can use (while pretending that we didn’t). Execute

lng = chebfun('log(gamma(x))', [3,4] );
length(lng)

returns 14. Then we obtain what we want by executing the following code:

t = linspace( 3, 4, 3011 );
err = log(gamma(t)) - lng(t);
figure(2), plot( t, err, 'k')
%help chebfun/remez
[p,err] = remez( lng, 8 );

The value of err is 1.2714 ·10−11. We thus continue with this code:

[p,err] = remez( lng, 10 );
figure(3), plot( t, p(t)-log(gamma(t)), 'k' )

See Fig. 3.15, and, for the sake of comparison, see also Fig. 3.15. As we see, it
turns out that Chebfun is very good at representing functions—in some sense, that

3 3.2 3.4 3.6 3.8 4
−1.5

−1

−0.5

0

0.5

1

1.5
x 10−15

Fig. 3.15 The error in the chebfun representation of ln(Γ (x)) on 3 ≤ x ≤ 4. The equivalent
Chebyshev series has 14 coefficients (and therefore is degree 13)
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Fig. 3.16 The error in the best possible degree-10 polynomial representation of ln(Γ (x)) on 3 ≤
x ≤ 4 as computed by Chebfun/remez, rapidly

is what it was designed for—and is, almost incidentally, very good at computing
the best (polynomial) approximations, because it has an excellent initial guess to
the optimum, namely, the Chebyshev series representation, for the iterative Remez
algorithm (Pachón and Trefethen 2009). Interestingly, the rational approximation we
found using MAPLE earlier in the chapter, which was of degree (4,4), has fewer free
parameters and has slightly better accuracy: It seems that a rational approximation
has some advantages over a polynomial approximation. However, the advantage
seems marginal.20

What about rootfinding? We first look at an easy example, and then a very
hard one. Consider again the equation y+ ln(y)− 2 = 0. A direct use of the com-
mand roots(y+log(y)-2) in Chebfun yields a complaint about the logarith-
mic singularity, which probably can be fixed by the use of various options and
flags. An easy alternative is to replace this equation with the equivalent equation
yexp(y)− exp(2) = 0 and then executing y = chebfun(’x’,[-1,2]), fol-
lowed by roots( y.*exp(y)-exp(2)) yields α = 1.55715. The residual is
α + ln(α)− 2 = 4 · 10−15. Thus, it seems that Chebfun can find simple roots of
nonlinear equations.

Now, we consider a very hard example. Consider the function G : [0,1)→ [0,1)
given by

G(x) =

{
1
x mod 1 x �= 0

0 otherwise
. (3.52)

20 We will see more examples of approximation of functions using Chebfun in Chap. 8, and
many more can be found at http://www2.maths.ox.ac.uk/chebfun/examples/
approx/. A place that Chebfun also shines, however, is in rootfinding. You can find several
very impressive examples at http://www2.maths.ox.ac.uk/chebfun/examples/
roots/.

http://www2.maths.ox.ac.uk/chebfun/examples/roots/
http://www2.maths.ox.ac.uk/chebfun/examples/roots/
http://www2.maths.ox.ac.uk/chebfun/examples/approx/
http://www2.maths.ox.ac.uk/chebfun/examples/approx/


152 3 Rootfinding and Function Evaluation

This function, called the Gauss map, arises in the construction of simple continued
fractions.21 It has an infinite number of jump discontinuities, at x = 1/n, for positive
integers n. Because of its connection to the theory of continued fractions, quite a
lot is known about it. It seems harsh to try to approximate it by a single smooth
polynomial! Boldly, we try it. The command

G = chebfun( @(x) mod(1./x,1), [0,1] )

succeeds (apparently), with a single smooth polynomial, albeit of length 65,537.
Obviously, it can’t be quite right, as polynomials are not discontinuous, and certainly
can’t have an infinite number of discontinuities! But the plot looks pretty good (but
not great, so we don’t show it here). However, when we ask Chebfun to find all the
solutions to G(x)− 0.5 = 0 by the command

roots( G - 0.5 )

it seems that Chebfun has met its match at last. On our computer, it went away,
thinking, and didn’t come back before we lost our patience and hit Ctrl-C to interrupt
it.

Well, it really was an unfair test. We didn’t even tell Chebfun the function was
discontinuous! We can do so, by setting the flag splitting to on:

splitting on;

We can also mellow our harshness a bit more by asking for G only on the restricted
subinterval [1/n,1), where, say, n = 1000. That way, G will only have about a thou-
sand jump discontinuities, not an infinite number (we are giving Chebfun quite a bit
of a break with this concession, don’t you agree?). But we don’t have to be too mel-
low: We can let Chebfun worry about exactly where the singularities are. We mean,
we know where they are (at the points 1/k for positive integers k), and we could tell
Chebfun, but let’s not. Rather, we execute the following code:

n = 10ˆ3;
G = chebfun( @(x) mod(1./x,1), [1/n,1] )
plot(G,'k')

See Fig. 3.17. This time, Chebfun thinks for a bit before answering but comes back
with a 1046-piecewise chebfun as its answer. Examining the pieces, we see that
it puts breaks at what look to be all the right places—its singularity detection seems
pretty good!

Now what about the roots? If we now ask for roots(G - 0.5), we get an
answer back, within the limits of our impatience. But it turns out that there are still
problems: It returns some spurious roots—at the discontinuities. It returns rather a
lot of them: In total, we computed 1997 roots, when we were expecting only 999
(one per subinterval); see Fig. 3.18. Chebfun also (correctly) located the 998 dis-
continuities, with the roots command. If we use the MATLAB command find to
select the ξ j that actually satisfy |G(ξ j)− 1/2| < 0.05, we find that there are only
999 of them, as expected. Now, in this case, we can show that the reference roots

21 See, for example, Olds (1963). The discussion here relates to Corless (1992).
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Fig. 3.17 The chebfun for the Gauss map on the subinterval [1/1000,1]
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Fig. 3.18 G(ξ j), where the ξ j are the results of roots( G - 0.5 ). Clearly, not all of the
returned ξ j are actually roots

are x j = 1/( j+ 1/2) = 2/(2 j+1) for j = 1, 2, . . ., 999. We can therefore compute the
forward errors ξ j−x j. When we plot them (see Fig. 3.19), we see that the largest rel-
ative error is about 5εM . That is, Chebfun has located all roots of this discontinuous
function to essentially full accuracy. We find this impressive.

The roots command is based on eigenvalue techniques. It changes bases, from
the Lagrange basis on the Chebyshev extreme points to the Chebyshev basis itself
(via the FFT, so this isn’t expensive). Then it constructs the Chebyshev companion
matrices and finds the roots by computing their eigenvalues. Then it throws away
roots that are not in the interval being considered. This is a robust and accurate
method.

In summary, Chebfun has performed truly remarkably on this very hard example.
It successfully located nearly a thousand discontinuities. When asked to find the
values where G(x) = 1/2, it found them all, to basically full accuracy. And it did so
very quickly.
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Fig. 3.19 The relative forward errors |ξ j/x j −1|

3.8 Notes and References

The polynomial discussed in Sect. 3.2.3 seems to need little introduction; Wilkin-
son’s Chauvenet prize-winning paper Wilkinson (1984) is probably the best possible
treatment, but there are hundreds, if not thousands, of other discussions of this ap-
parently innocuous polynomial. It is somewhat surprising to find that in this large
volume of work on the polynomial, there are very few explicit computations of its
condition number. We rectify that omission in this section.

Evaluation of the complex elementary functions is surprisingly involved once all
details are taken care of. See, for example, Hull et al. (1994).

A candidate for a fast method to compute the logarithm would be the arithmetic–
geometric mean (AGM) iteration. See Borwein and Borwein (1984) for more details
and a description of earlier work.

For a historical survey of families of high-order iterative rootfinding methods,
see Petković et al. (2010), who finish by showing that a wide variety of rediscovered
methods are actually equivalent to the second method of Schröder, published first in
1870. An attempt at a comprehensive listing of references for polynomial rootfind-
ing can be found in McNamee (1993), which was followed up by McNamee (1997)
and McNamee (2007).

Numerical stability of the evaluation of continued fractions is studied in Jones
and Thron (1974).

We have talked about near-best approximation of interpolation at equally spaced
points on the boundary; that optimality was an Erdös conjecture, proved by De Boor
and Pinkus (1978) (for odd n) and Brutman and Pinkus (1980) (for even n).
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Problems

Theory and Practice

3.1. Use Newton’s method to find the zero of f (x) = x− cos(x) starting from an
initial guess obtained by graphing y = x and y = cos(x) and visually picking out
when the curves intersect.

3.2. Use Newton’s method to try to find the (obvious) zero x = 0 of f (x) = x−sin(x)
starting with the initial guess x0 = 0.1. This will fail; explain why, in detail. Include
in your explanation a plot of f (x) on the interval −3×10−8 ≤ x ≤ 3×10−8. Notice
that this plot, which may look surprising, shows the correctly rounded result of
computing f (x) for x near 0.

3.3. A team of pranksters sneak onto a flat railroad track one cold night and weld
an extra 1 foot of track into a mile-long section of track. The next day, as it warms
up, the 5280+ 1-foot-long track expands and bows up into a perfect arc of a circle.
How high is the track at the top of the arc?

3.4. A man has a circular field, a pole, a rope, and a goat. He puts the pole firmly
into the ground at the edge of the field and ties the rope to the pole and the goat in
such a way that the goat is able to eat the grass on exactly half the field. Given the
radius of the field, find the length of the rope.

3.5. If you can, find a copy of the Mathematica poster “Solving the Quintic,” which
uses elliptic functions to solve n = 5. Abel and Galois proved that there was no
general solution using radicals for the n ≥ 5 case. Discuss.

3.6. Consider the Airy function Ai(z) defined in Eq. (1.22) again. Both MAPLE and
MATLAB know about Ai(z) and its derivative, which MATLAB calls airy(1,x).
Plot the condition number of Ai(z) on 0 ≤ z ≤ 100. Is Ai(z) ill-conditioned on that
interval? Modestly ill-conditioned? Well-conditioned? Is the Taylor polynomial ap-
proximation discussed in Chap. 2 much worse-conditioned than the function itself?

3.7. Compute the overall condition numbers and the separate condition numbers of
the real and imaginary parts of each of the following functions:

1. w = exp(z)
2. w = sin(z)
3. w = arcsin(z)
4. w = tan(z). Note that

tan(x+ iy) =
sin (x)cos(x)

(cos(x))2 +(sinh(y))2 +
isinh(y)cosh(y)

(cos(x))2 +(sinh(y))2 .

Where is each function ill-conditioned overall? Where is the real part of each
function ill-conditioned? Where is the imaginary part of each function ill-
conditioned? (A computer algebra system might be helpful for this problem.)
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3.8. Catastrophic cancellation. Let

f (x) =
1− cosx

x2

Execute

g = @(x) ( (1-cos(x))./(x.ˆ2) )
x = -4*10ˆ(-8):1e-12:4*10ˆ(-8);
plot( x, g(x), 'k.' ), set(gca,'fontsize',16)

in MATLAB. You should get Fig. 3.20.
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Fig. 3.20 The function (1− cosx)/x2 should be approximately constant on this interval

However, on that interval, f (x) is approximately constant, nearly equal to 0.5!
Indeed, show that

| f (x)− 1
2
| ≤ 1

24
(4 ·10−8)4 ≤ 64

24
·10−32 ,

and explain the plot.

3.9. Use MATLAB to compute exp(x) ln(1+exp(−x)) on, first, 0 ≤ x ≤ 20, and then
on 20 ≤ x ≤ 40, and plot the results, with commands such as these:

x = linspace( 0, 20, 1001 );
y = exp(x).*log(1+exp(-x));
plot( x, y, 'k.' )
x = linspace( 20, 40, 1001 );
y = exp(x).*log(1+exp(-x));
plot( x, y, 'k.' )

Discuss any surprising results that you see. Try to find a range of t that has similar
behavior for y = t ln(1+ 1/t).
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3.10. Show that the condition number of the Wright ω function is given by
Eq. (3.38).

3.11. If a0 + a1r+ a2r2 = 0, find ∂ r/∂a0, ∂ r/∂a1, and ∂ r
∂a2

without using the quadratic
formula. Since

Δr
.
= [∂ r/∂a0, ∂ r/∂a1, ∂ r/∂a2]

⎡⎣Δa0

Δa1

Δa2

⎤⎦ , (3.53)

identify all cases where small changes Δak lead to (relatively) large changes in the
roots. Does this contradict Ostrowski’s theorem?

3.12. Suppose that you wish to evaluate the function w = u+ iv = (a+ ib)/z at the
point z = c+ id. Find the relative condition number of this function. Then find the
relative condition numbers of the real part and the imaginary part separately. Are
there any loci where either u or v is ill-conditioned but w is not? In retrospect, is this
surprising? See also the discussion in Example 4.15.

3.13. Let z = x+ iy and ω(z) = u+ iv (where the latter is the Wright ω function).

1. Show that, away from the lines of discontinuity x ≤−1, y =±π ,

x = u+
1
2

ln(u2 + v2) (3.54)

y = v+ arctan(v,u) (3.55)

2. Show that [
Δu/u

Δv/v

]
= C

[
Δx/x

Δy/y

]
(3.56)

where
(
(1+ u)2 + v2

)
C =[ (

u+ u2+ v2
)(

ln
(
u2 + v2

)
/2+ u

)
/u −v(arctan(v,u)+ v)/u

ln
(
u2 + v2

)
/2+ u

(
u+ u2+ v2

)
(arctan(v,u)+ v)/v

]
.

The function arctan(y,x) is the two-argument arctan function that accounts cor-
rectly for quadrant information (atan2 in MATLAB).

3. Describe all the locales in C where either the real part or the imaginary part of
the Wright ω function is ill-conditioned.

3.14. Show that the mixed absolute-relative condition number of rootfinding for an
analytic function w = f (z) at a root z1 is given by 1/(z1 f ′(z1)) if z1 is not zero. Find
a formula for the separate condition numbers of the real part of the root and of the
imaginary part of the root, considered as bivariate real functions x = x(u,v) and
y = y(u,v).

3.15. If w(z) = u(z)v(z), so that the series for w(z) is given by Cauchy convolution
of the series for u(z) and for v(z), that is,
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wk =
k

∑
j=0

u jvk− j , (3.57)

find an expression that tells you how the relative change in wk is related to relative
changes in each coefficient ui and v� of the multiplicand series. That is, find an
expression for the (scalar) change in each wk induced by changes in the (vectors) of
series coefficients for u(z) and v(z). Give an example of a well-conditioned product
of series and an example of an ill-conditioned product of series.

3.16. Briggs’ method says that

ln(x)
.
= 2kLk(x) := 2k

(
x2−k − 1

)
. (3.58)

Why does this work, and why is

ln(x)
.
= 2k

(
Lk(x)− 1

2
L2

k(x)+
1
3

L3
k(x)−·· ·+(−1)N−1 1

N
LN

k (x)

)
(3.59)

a better approximation when k is large?

3.17. Lanczos’ own example demonstrating the τ-method was the computation of
the exponential function, y = exp(x). The differential equation it satisfies is y′ = y,
with initial condition y(0) = 1. Consider the interval −1 ≤ x ≤ 1. Set up and solve,
by hand, the equations for N = 4 (that is, use N = 4 in your Chebyshev series for
y′). How accurate is your approximation (use the τ left over, to answer this)? Is
evaluation of the Chebyshev form numerically stable? Is the (degree-5) Chebyshev
polynomial you get for y(x) well-conditioned to evaluate? Because you have all the
coefficients as exact rationals, you may convert to the monomial basis without error.
(It turns out to be surprisingly similar, but not identical, to the Taylor polynomial of
degree 5.) Is the monomial basis expression better-conditioned than the Chebyshev
basis expression, worse-conditioned, or about the same? You may use a computer
to draw the graphs of the condition number. Everything else can be done by hand.

Investigations and Projects

3.18. The algorithm Robin chose for the logarithm consisted of taking some number
of square roots until the answer was inside the interval [1/5,5], and then of using the
truncated Chebyshev series approximant (found by Lanczos’ τ-method) with N =
34 terms (half of which were zero). Robin did no serious investigation of whether
it would have been better to take more square roots and fewer series terms, or vice
versa. From one point of view, because the square roots are computed by some finite
number of Newton iterations, the whole scheme can be thought of as a family of
rational approximations to the logarithm function. Make a reasonable model of the
cost of executing this kind of algorithm, with k square roots and N (even) Chebyshev
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terms, and give a rationale for choosing k and N. You may choose to optimize the
cost of evaluation, but be sure to guarantee that your method of choice is numerically
stable.

3.19. In the hypothetical story in the text, Robin Crusoe uses a polynomial approx-
imation for log((1+ 2u/3)/(1− 2u/3)) that is expressed in the Chebyshev basis, be-
cause that’s the way it comes out naturally from the Lanczos τ-method. Robin no-
tices, however, that the coefficients in Eq. (3.23) are all exact rationals, and since the
Chebyshev basis coefficients are also exact rationals, therefore the polynomial basis
may be converted without rounding errors to the monomial basis. When Robin does
this (there goes another month of sunny afternoons on the island), the polynomial
turns out to be

Lm =
743051369479680
557288527109761

u+
2342163497184

11857202704463
u3

+
29355115812768
557288527109761

u5 +
65233594664064

3901019689768327
u7

+
3221402159616

557288527109761
u9 +

12886831097856
6130173798207371

u11

+
5716404264960

7244750852426893
u13 +

870244319232
2786442635548805

u15

+
838993575936

9473904960865937
u17 +

1464995414016
10588482015085459

u19

− 714130587648
3901019689768327

u21 +
4465524473856

12817636123524503
u23

− 5984835600384
13932213177744025

u25 +
228438573056

557288527109761
u27

− 4498441371648
16161367286183069

u29 +
2261300281344

17275944340402591
u31

− 231928233984
6130173798207371

u33 +
103079215104

19505098448841635
u35 . (3.60)

It can be shown that (surprisingly) in this case the condition number for the mono-
mial basis expression is actually better than the condition number for the Chebyshev
basis expression (only by about 34%, which means that rounding errors will be am-
plified by a factor 1.34 instead of nearly 1, which isn’t likely significant, but still).
What feature of the coefficients in the monomial expression explains the nearness
to 1 of the condition number?

3.20. Use Lanczos’ method and the differential equation

(1+ x2)
dy
dx

− 1 = 0 (3.61)

subject to y(0) = 0 to give a polynomial, expressed in the Chebyshev basis, that
approximates y(x) = arctan(x) on −1 ≤ x ≤ 1. Note that if x > 1, then arctan(x) =
π/2−arctan(1/x), reducing the domain; one could reduce it further using the fact that
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arctan(x) is odd. Choose N so that your answer is accurate to double-precision.
You may use MAPLE to help with the computations. Is your polynomial well-
conditioned? Convert it to the monomial basis (if you have computed the coefficients
as exact rationals; if not, comment on the expected inaccuracy in the resulting mono-
mial basis coefficients if you did). Is the monomial expression well-conditioned?

3.21. Robin also considered an iterative scheme for the computation of real-valued
arctan. This problem asks you to recapitulate Robin’s steps.

1. Prove that

arctan(v) = 2arctan

(
v

1+
√

1+ v2

)
. (3.62)

2. Show also that the mathematically equivalent form

arctan(v) = 2arctan

(
−1+

√
1+ v2

v

)
(3.63)

suffers from catastrophic cancellation for small v.
3. Show that the iteration

vn+1 =
vn

1+
√

1+ v2
n

(3.64)

with v0 = v > 0 converges initially quickly but ultimately only linearly to 0, and
that arctan(v) = 2n arctan(vn).

4. This analysis suggests the following iterative algorithm for the arctangent: Use
the iteration a few times, say k times, until vk is small enough that it is easy to
compute arctan(vk) accurately by using only a few (say N) terms of the Cheby-
shev series (or even the Taylor series) for arctan. What choices of N and k are
“best”? Are there numerical difficulties with this iteration?

3.22. Use the MAPLE commandnumapprox[minimax] (or another package im-
plementing the Remez algorithm) to find a best rational double-precision approxi-
mant to F(u) on 0 ≤ u ≤ 1, where

arctan(x) = xF(x2) . (3.65)

Convert your result to continued fraction form. Compare the cost and stability of
evaluating this expression to that of the Chebyshev series in Problem 3.20. If this
function is to be evaluated millions of times, is its construction worthwhile?

3.23. Kepler’s equation θ − esinθ = M is an interesting example of an equation
we desire to solve for θ given the eccentricity e and the mass M. Take e = 0.083
and M = 1 and use a program similar to that on page 116 (or better—that program
can certainly be improved) to draw a picture of the fractal boundary of the basins
of attraction for Newton’s method for this equation. We found Fig. 3.21. Have fun
with this one!
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Fig. 3.21 Using contour plot to draw a fractal boundary for the Kepler equation. The half-circles
are artifacts

3.24. Compute the evaluation condition numbers B(z) for the Wilkinson polynomial
of degree 20 expanded in the monomial basis, and plot B(z)/|p(z)| on 0 ≤ z ≤ 21.
Do the same for a similar polynomial of degree 30, defined by

p(z) =
30

∏
k=1

(z− k) . (3.66)

To accurately evaluate the ratio, you will need higher precision than is available in
MATLAB. Note that the condition number of both of these polynomials in a La-
grange basis on (say) τ0 = 0 and τk = k is just 1. Plot also the rootfinding condition
numbers B(r)/|rp ′(r)| at the roots r = 1,2, . . . ,30.

3.25. Split exp(x) into its even and odd parts, exp(z) = cosh(z)+ sinh(z), where, as
usual, cosh(z) = 1

2 (exp(z) + exp(−z)) and sinh(z) = 1
2 (exp(z)− exp(−z)). If one

has an accurate method to evaluate both cosh(z) and sinh(z), suppose, for example,
a “correctly rounded” method whereby the computed value of cosh(x) for a machine
number x is guaranteed to be the correctly rounded value, that is, cosh(x)(1+δ ) for
some |δ | < μM and similarly for sinh(x), can one then accurately evaluate exp(x)
by the split? What happens as x → −∞? Are any of these functions especially ill-
conditioned?

3.26. The function f (u) =
√
−2logcosu2/u2 is difficult to evaluate numerically

near u = 0. Compute its condition number and show it is actually well-conditioned.
Show experimentally that the formulation y = cos(u2), and then if y = 1 to all bits
return 1 and otherwise return

√−2logy/cos−1(y), is more expensive but more ac-
curate (using the built-in acos to compute the arccosine). This formulation is due
to Kahan (1980). Compare it with use of the series

1+
1

12
u4 +

3
160

u8 +
209

40320
u12 +O

(
u16
)

(3.67)



162 3 Rootfinding and Function Evaluation

for small u. You may take more terms if you like, but the function has a singularity
at u =±√π/2 anyway. Show that the function is ill-conditioned at its singularities.

3.27. Compute the condition number of the Bessel function J0(z). Write a pro-
gram to compute also the condition numbers of the real and imaginary parts
separately. The derivative of J0(z) is −J1(z). These are besselj(0,z) and
-besselj(1,z), respectively. Are there any regions where J0(z) or its parts are
ill-conditioned?

3.28. Show that both sinθ and cosθ are ill-conditioned for large values of θ . One
proposal to improve the preservation of identities such as sin2 θ+cos2 θ = 1, due to
W. Kahan, is to consider instead the functions sin(πt) and cos(πt). Notice that the
zeros and maxima of the trigonometric functions occur at integer or half-integer val-
ues of t, and so in a machine environment, this may offer opportunities to recognize
these points. Discuss this proposal.



Part II
Numerical Linear Algebra



164 II Numerical Linear Algebra

This part of the book gives an overview of some of the material contained in
works that aim to give a more complete, self-contained presentation of numeri-
cal linear algebra, such as Wilkinson (1963), Golub and van Loan (1996), Dem-
mel (1997), Trefethen and Bau (1997), Meyer (2001), Higham (2002), and Hogben
(2006). That last book, for example, has over 70 chapters, many of them relevant for
numerical linear algebra, and is highly recommended for the reader as supplemen-
tary material for this course. It’s twice as long as this book, though! We do not try
to duplicate that material here, although there is some overlap with the numerical
chapters there, of course. Instead, the goal of this part, being part of an introductory
course, is only to open doors for you; you’ll have to walk through on your own.

The main emphasis of the treatment here is to place the analysis of numerical
methods for linear algebra completely in the framework of backward error analysis.
As some readers will already know, backward error analysis was first used in nu-
merical linear algebra; Wilkinson credits Givens as the first person to do so, but it is
generally agreed that Wilkinson was the first to use it with the generality it deserves.
John von Neumann seems to deserve some credit for the complementary notion of
condition number, which again first appears in numerical analysis in the field of
linear algebra.

This part of the book assumes that the basics of theoretical linear algebra are
known to the reader. The Handbook referred to above is an excellent source for fill-
ing in gaps. Some important notions are reviewed in Appendix C, for convenience.

This part is perhaps the most important in the book because, sooner or later, every
computation comes down to linear algebra. However, the number and length of the
chapters is not proportional to their importance; instead, we limit ourselves to a
“motivated list of facts” approach, together with some discussion of the meaning of
the algorithms; for lack of space, there are very few proofs. We also use MATLAB as
an exemplar of a collection of high-quality numerical linear algebra software tools;
of course there are others. In particular, MAPLE uses a high-quality LAPACK back-
end to provide efficient and robust numerical linear algebra, and can be used with
confidence.22

If we look at linear algebra from the point of view of its applications, four equa-
tions prove to have a central importance23:

Ax = b (II.1)

AHAx = AHb (II.2)

Ax = λx (II.3)

du
dt

= Au (II.4)

The first two equations will be treated together in Chap. 4; Eq. (II.2)—the so-called
normal equations—will be examined in the context of the solution of overspecified

22 See Anderson et al. (1999) and Hogben (2006 chapter 72) for useful references.
23 This point is emphasized by Strang (2002).
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systems Ax ≈ b.24 Equation (II.3) determines the nature of eigenvalue problems,
which will be examined in Chap. 5. Equation (II.4) arises from the study of linear
systems of differential equations, which will be treated in Part IV.

Suppose we are given a matrix A ∈Cm×n and a vector b ∈Cm. A central problem
in linear algebra consists in finding vector(s) x∈Cn such that Ax= b. There are two
main classes of methods for solving such linear systems of equations:

1. Direct methods for dense matrices, such as Gaussian Elimination (which is
equivalent to an LU factoring, called a Turing factoring if A is rectangular)
or Gram–Schmidt orthogonalization (which is equivalent to a QR factoring);

2. Iterative methods, which are especially suited to sparse matrices (see Chaps. 6
and 7).

To solve problems involving dense matrices, we typically factor the matrices nu-
merically so that the factors have structural properties that make solution easy. The
factorings should be numerically stable, that is, be the exact factors of a matrix near
to the original one. Moreover, the factors should be reasonably cheap to obtain, and
the use of the factors to solve the problem should be similarly cheap (or cheaper).
Some of the most important factorings in linear algebra are the LU factoring and
the Jordan Canonical Form A = XJX−1. Nonetheless, as it will become clear, the
most important factorings for numerical linear algebra include the QR factoring,
the Schur factoring A = QTQH and the singular value decomposition. The latter
factoring will allow us to introduce two of the most important notions, namely, con-
ditioning of a matrix problem and numerical rank.

Before we begin, we note that most books present the real-number case, A ∈
R

m×n, and expect the reader to be able to switch to C when necessary. For various
reasons, we will do the opposite; we assume that A ∈ Cm×n, and switch to Rm×n

when we want simpler examples. Accordingly, instead of talking about the transpose
AT to a matrix A, we will talk about the complex conjugate transpose (alternatively,
Hermitian transpose) matrix AH . If A = [ai j] ∈ Cm×n, AH = [ā ji] ∈ Cn×m. This is
denoted A’ in MATLAB. The real transpose, unconjugated, is accessed via A.’. In
addition, we note that the word ‘orthogonalization’ is often used in the literature in
a way that includes the complex case. We will stick to the common terminology,
instead of using the more peculiar term ‘unitarization.’

24 The normal equations will mostly be left as exercises, since we wish the emphasize the impor-
tance of using the QR factoring. As explained by Stewart (1998 77), “[i]t is hard to argue against
the normal equations in double precision. [. . . ] On the other hand, if one wants a general-purpose
algorithm to run at all levels of precision, orthogonal triangularization is the winner, because of its
stability.” However, we note in passing that the normal equations provide a theoretical approach
and, in many cases, especially when A is sparse and well-conditioned, a practical approach as well.



Chapter 4
Solving Ax=b

Abstract This chapter first shows how to solve Ax = b in the simple cases in which
A is unitary or triangular, and then explains how the QR factoring can be used
to reduce other problems to these simple cases. We show that these methods are
backward stable; that is, they exactly solve a slightly perturbed problem. In order
to understand how these small perturbations affect the solution, we then introduce
the crucial notion of condition number in relation to the most important factoring,
namely, the singular value decomposition (SVD). We also examine the LU factor-
ing (equivalent to Gaussian elimination) and a number of applications of the main
factorings. We end the chapter with a short discussion of nonlinear systems. �

The main goal of this chapter is to give the reader confidence when choosing a
method for solving linear systems numerically: that is, confidence in assessing the
method’s reliability and in assessing the problem’s sensitivity to data error. Implicit
in our objective of giving the reader confidence is that he or she should not have been
too overconfident to begin with. Often, even for simple problems, the numerical
results can be very surprising.

Example 4.1. Consider the linear system

Bx =

[
888445 887112
887112 885781

]
x =

[
1
0

]
= b . (4.1)

It is easy to verify that

x =

[
885781

−887112

]
.

Moreover, since det(B) = 1 �= 0, this solution is unique. Now, what happens if you
solve the problem in MATLAB? In MATLAB, this can be achieved by typing the
command B\b, which returns

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods:
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0 4,
© Springer Science+Business Media New York 2013
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x̂ =

[
885644.0223037927

−886974.8164771678

]
.

The result is different, even in the thousands place! �

In what follows, we will examine one way to understand such surprising events, and
see what the options are if you face such a situation.

In order to achieve this goal, we will apply the general concepts and strategies
articulated in Chap. 1 (the next few paragraphs may be omitted if you have not yet
read Chap. 1—indeed you may as well skip ahead to Sect. 4.1). Our objective is to
solve systems of linear equations of the form Ax = b for the vector of unknowns x;
the reference problem handled in this chapter can thus be represented by the map

ϕ : 〈A,b〉 → {x | φ(A,b,x) = 0} , (4.2)

where φ(A,b,x) = b−Ax = 0 is what we called the defining function. Often, we
will restrict our attention to problems where A has a particular structure. A numer-
ical method computes an approximate solution x̂ such that Ax̂ ≈ b. Alternatively,
from the point of view of backward error analysis, we can say that the numerical
method computes the value of an engineered map ϕ̂ for the input data A and b, as
in Fig. 4.1a. For this problem, the forward error is Δx. For a backward error anal-

〈A,b〉 x

a b

x̂

j

j

D

j

j

jx
ˆ

〈A,b〉 x

x̂

Dx
ˆ

〈A+E,b〉

E

Fig. 4.1 Commutative diagrams for the solution of Ax = b. (a) Engineered problem and forward
error. (b) Backward error diagram

ysis, we are interested in finding a perturbation of the input data that amounts to
the error occasioned by using the numerical method computing ϕ̂ . Since the input
data is a pair of objects, there are three possible kinds of backward error: Only A
is perturbed; only b is perturbed; and both A and b are perturbed. Following the
literature, we will focus on the former case in the beginning of the chapter. Along
this line, a backward error analysis seeks the smallest matrix E (for “error matrix”)
such that ϕ(A+E) = ϕ̂(A), that is, such that the diagram in Fig. 4.1b commutes.
By default, “smallest” will be based on the matrix 2-norm, but we will sometimes
use other norms (see Appendix C.2). Later in the chapter, we will see that there are
great advantages in doing backward error analysis with perturbation of b only. The
main advantage is to make it easy to combine a priori and a posteriori error analyses.

As explained in Chap. 1, the main tool by which we will assess the reliability
of our method a posteriori is the residual. More formally, for the reference problem
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under consideration, the residual is the vector

r = φ(A,b, x̂) = b−Ax̂ , (4.3)

that is, what is left over when we substitute our computed solution back into the
original equation. Because we can compute x̂ by means of the numerical method
we are analyzing, and because we can compute matrix–vector products and vector
differences, the residual is easily computable. A posteriori error analyses will thus
be very handy.

The main tool by which we will assess the sensitivity of our problem is called
the condition number. We note immediately that, despite the fact that we write “the
condition number,” there are many condition numbers, corresponding to differing
vector and matrix norms that are called for in differing physical situations. Condition
numbers were first studied in numerical linear algebra, and the theory is still best-
developed here, but we have condition numbers in every chapter of this book, for
all kinds of computational problem. For the linear algebraic case, we will make
heavy use of the so-called singular value decomposition (or SVD).1 This factoring
is extremely important, and we will discuss it in detail in Sect. 4.6.

This being said, one might wonder: Why not solve linear systems exactly, instead
of solving them numerically and then analyze the error? We begin this chapter by
addressing this question. Then, we will turn to a discussion of how to solve the
simplest kinds of linear systems and, from there, how to solve less simple linear
systems. At the end, we will briefly discuss nonlinear systems.

4.1 Why Not Solve Linear Systems Exactly?

We saw in Example 4.1 that floating-point solutions of even very small systems
can surprise the person doing the computation. One response in keeping with our
support for the point of view “I don’t care how quickly you give me the wrong
answer” is to abandon floating-point and do only exact arithmetic.

Let’s consider only a small subset of the possibilities here, and look at the prob-
lem of doing exact rational arithmetic on matrices that contain rational entries and,
more importantly, have no data errors. For the moment, we ignore square roots,
other algebraic numbers, and also transcendental numbers like π . Let’s further sim-
plify things and suppose that we start with simple rational numbers whose numer-
ators and denominators are no more than (say) d decimal digits long. We could
simplify even further and suppose that we are dealing only with integers, and that
helps more than a little in computation but not completely since we fairly quickly

1 The word “decomposition” is used in the theory of functions: A function f (z) can be decom-
posed into two (usually simpler) functions if it can be written as f (z) = (g ◦ h)(z) = g(h(z)). For
linear transformations, a decomposition like this is equivalent to factoring the matrix of the linear
transformation. We will usually use the word “factoring” in this book (and eschew the longer word
“factorization”); and we can get away with this for the QR and the LU factorings, but for the SVD
the word “decomposition” is indeed entrenched.



170 4 Solving Ax=b

are forced back to rational numbers (solution of linear systems gives us rational
numbers immediately, in general, and the denominator must be a divisor of the de-
terminant).

When we try to find an exact solution, we seem to run immediately into a prob-
lem from the other point of view: “I don’t care how right your answer is, if it takes
a hundred years to get it.” The complexity—that is, the minimal possible cost—of
solving linear systems with rational coefficients must take into account the length of
the exact answer. The solution of a linear system of equations must necessarily allow
for the exact determinant showing up in the answer (you can easily convince your-
self of that by solving a few random linear systems in MAPLE, for example). And
the length of the determinant grows with the dimension of the system. Experiments
show (see Problem 4.13) that the length of the decimal representation of the determi-
nant seems to be of size nd, where n is the dimension of the matrix (this growth can
be estimated using what is known as the Hadamard bound), while we started with
d-digit numbers.2 In contrast, a floating-point answer takes only constant storage,
regardless of the dimension. The cost of doing arithmetic on exact rational numbers
depends on how long they are as well, whereas again floating-point operations cost
the same no matter what the floating-point number is. The best-known algorithms
for multiplication of d-digit rational numbers have a cost proportional to d logd;
hence, nd-digit number operations will cost O(nd log(nd)).

The true complexity of solving a linear system of equations of dimension n is
not known; the algorithms we study in this book take O(n3) operations, but there
are faster algorithms that take O(nω) operations, where ω is known to be at least 2,
but the least-known ω is, at this time of writing, a little bigger than 2.37. However,
with exact arithmetic, the operations have a cost that depends on the length of the
operands (and it depends on n as well), here O(nd log(nd)) by the observation above.
Thus, the total cost of the exact solution using the algorithms we talk about here is
not O(nω) but apparently rather O(nωnd log(nd)). For n = 1000, this is already
more than a thousand times as expensive as floating-point solution, and that’s not
taking into account the speed of special-purpose hardware for floats.

Except in special circumstances, we just cannot afford to wait for the exact so-
lution. Moreover, we would be wasting our time anyway, since the floating-point
solution is (as described in this chapter) the exact solution of a nearby problem—a
much cheaper one to solve, but just as good from the modeling context. Even in the
pure mathematical context, once you add back in numbers like π or square roots,
you must approximate the initial data, and those errors have consequences.

All this being said, a lot of progress has been made recently on exact algo-
rithms. Dixon (1982) gives a p-adic O(n3 log2 n) algorithm3 that is actually practi-
cal, and Storjohann (2005) shows how the exponent 3 can be reduced to ω as above;
if this is done, then these algorithms become more competitive with floating-point
at least for some problems (one might well be willing to live with a factor of a hun-

2 In fact, this is a tight bound, and it is quite close to the average case.
3 The idea of the algorithm in Dixon (1982) is quite strongly related to the algorithm in Sect. 7.1,
and there is a catch to the cost in that it depends on something like the “growth factor” that we will
study in Sect. 4.7. So, even if we do want to use exact algorithms, numerical ideas will help.
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dred increase in cost, for instance). As a result, they become quite attractive in some
circumstances, such as when there are no data errors and no approximations made
initially. However, once approximations are introduced into the data (e.g., even by
replacing π by a finite approximation, even if there are no actual measurements in
the data), then the advantage of exact computation is already lost. Hence, we need
to study the effects of error propagation, anyway.

4.2 Solving Unitary or Orthogonal Systems

Let us begin our study of numerical solutions of systems of linear equations with a
particular case of reference, Problem (4.2), namely, the case in which A is unitary.
If A is unitary, that is, AHA = I, then solving Ax = b is very simple, since

Ax = b ⇒ AHAx = AHb ⇒ Ix = AHb ⇒ x = AHb . (4.4)

If the matrix A is known explicitly, then computation of the conjugate transpose
seems simple enough.4 It merely consists in rearranging the entries of the original
matrix followed by complex conjugation. Thus, the cost of the solution seems to be
one matrix multiplication, plus whatever it costs for the rearranging and conjugation,
which we normally think of as negligible. Hence, a quick estimate of the cost in
terms of the number of floating-point operations (flops) is O(n2).

Now, we turn to the more important question: Is this method numerically stable
in floating-point arithmetic? That is, does floating-point multiplication by AH give
the exact solution of a nearby problem? The answer is yes. It is quite straightforward
to show that this is true in good floating-point arithmetic systems.5 Matrix multipli-
cation is usually implemented as a collection of inner products (of the rows of AH

with the column b), so that the method described is Algorithm 4.1. Thus, we only
need to examine the stability of inner products.

Algorithm 4.1 Solving a system with a unitary matrix
Require: A unitary n×n matrix A and an n×1 vector b

for i from 1 by 1 to n do
xi := AH(i, :) ·b

end for
return The vector x solving Ax = b

To begin with, observe that inner products are not necessarily relatively accu-
rate, in the forward sense: If the value of the inner product in exact arithmetic is 0,

4 However, not all linear systems have matrices that are so known. For example, some matrices
can be accessed only by calling a subroutine to perform matrix–vector multiplication; we reserve
discussion of this case until later, in Chap. 6. Similarly, the case of a very large matrix A is not so
straightforward either owing to memory issues.
5 Readers who have not yet looked at Chap. 1 may postpone reading the rest of this subsection.
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then the result computed in floating-point arithmetic might be infinitely different.
However, more importantly, inner products turn out to be backward stable, in that
the computed inner product a ·b is the exact value of (a+Δa) ·b (with a perturba-
tion wholly in one of the vectors—we get to choose which one) and that, moreover,
the perturbations Δa are very small. As we have shown in Chap. 1, Theorem 1.2,
it turns out that |Δai| ≤ γn|ai| if real arithmetic is used, which is a relatively small
perturbation.6

This leads us to the following theorem:

Theorem 4.1. Assume A is a machine-representable unitary matrix. The method
of Algorithm 4.1 is backward stable in floating-point arithmetic; that is, it exactly
solves (A+ΔA)x = b, where each entry of ΔA is relatively small.

Proof. Left as Exercise 4.1.

This works because each row of AH can be considered as an independent vector,
and all the rounding errors in the inner product with b to obtain the corresponding
result can be considered as perturbations in that row independently, without touch-
ing the vector being multiplied. Therefore, the algorithm for matrix multiplication is
backward stable. However, this supposes that each row of AH is independent. That
is, this part of the argument fails if the entries are correlated, because the round-
ing errors need not be correlated. We return to this in a later chapter, but for now
we suppose entries in A are uncorrelated. This being understood, we conclude that
solving unitary linear systems is expected to be easy, even numerically.7

Example 4.2. In this example we extend the algorithm a bit: The matrix A we choose
will have AHA equal to a diagonal matrix but not the identity. Specifically,

A =

[−3+ i 1− i
2+ i 2

]
.

Suppose the right-hand vector b = [1/3,−1/3]T . Then, in MATLAB, we compute x =
diag(1/15, 1/6)AHb, because AHA = diag(15,6), not the identity. This gives8[ −0.1111111111111111

−0.05555555555555555+0.05555555555555555 i

]
.

6 The γn notation is introduced in Chap. 1. By definition, γn = nμM/(1−nμM), where μM is the unit
roundoff, that is, half the machine epsilon εM . If complex arithmetic is used, the bound increases
to γn+2, which is only marginally larger.
7 A caveat that should be kept in mind is that, in Theorem 4.1, A+ΔA is not in general unitary or
nearly unitary.
8 The MATLAB solution is represented internally in binary. The solution as printed is in decimal
arithmetic. The decimal solution, cut and pasted into a MAPLE worksheet, was what was analyzed.
Conversion to decimal introduces the possibility of further rounding errors, which we ignore here.
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A short computation in MAPLE (not shown here—you will learn the method later)
shows this to be the exact solution of Âx= b, where Â has entries âi, j = ai, j(1+δi, j),
with the matrix of δi, j approximately equal to[

0.74+ 0.25 i −0.25 i
0.77− 0.39 i 0.39+ 0.39 i

]
μM .

We remind you that μM = 2−53 ≈ 10−16. Each of these perturbations is less than
μM in size. The bound from Theorem 4.1 was larger, being γk+2 for some k. Thus,
this (essentially) unitary matrix equation has a numerical solution that is the exact
solution of a nearby linear system of equations. �

Remark 4.1. If A is unitary but not machine-representable, then the true inverse of

the rounded matrix is not obtained by transposing. We have Â
H

Â = I+E, and each
entry of E is O(nμM). We will ignore this complication, which can be interpreted
as increasing the size of the relative forward error by ‖E‖, which is O(μM). See
Exercise 4.22. �

4.3 Solving Triangular Systems

If A is lower-triangular, that is, if it is equal to some matrix L of the form

L =

⎡⎢⎢⎢⎢⎢⎣
�11

�21 �22

�31 �32 �33
...

...
...

. . .
�n1 �n2 �n3 · · · �nn

⎤⎥⎥⎥⎥⎥⎦ , (4.5)

and if �kk �= 0 for all 1 ≤ k ≤ n, then we may easily solve Lx = b by forward elim-
ination, as described by Algorithm 4.2. This includes, by the way, the even easier
case when A is diagonal, in which case all �k j = 0 for k > j. The process is simple.
First, find x1 from �11x1 = b1, namely, x1 = b1/�11. Then find x2 from a rearrange-
ment of the second equation, �22x2 = b2−�21x1, or x2 = (b2 − �21x1)/�22. Obviously, the
process continues with x3, and so on. At each stage only one new unknown needs
to be solved for, and we need �kk �= 0 at every step. As a result, we find that the
components of x are

xi =

bi −
i−1

∑
k=1

�ikxk

�ii
, (4.6)

for i = 1, 2, . . ., n, in turn. Note that if �kk = 1 for all ks, then we say that the matrix
is unit lower-triangular.
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Algorithm 4.2 Forward elimination to solve a nonsingular lower-triangular system
Require: A lower-triangular n×n matrix L with �kk �= 0 (1 ≤ k ≤ n) and an n×1 vector b

for i from 1 by 1 to n do
xi := bi

for j from 1 to i−1 do
xi := xi − �i jx j

end for
xi := xi/�ii

end for
return The vector x solving Lx = b

Similarly, if A is upper-triangular, that is, if it is equal to some matrix U of the
form

U =

⎡⎢⎢⎢⎢⎢⎣
u11 u12 u13 · · · u1n

u22 u23 · · · u2n

u33 u3n
. . .

...
unn

⎤⎥⎥⎥⎥⎥⎦ , (4.7)

and if ukk �= 0 for all 1 ≤ k ≤ n, then we may easily solve Ux = b by back substitu-
tion, as described by Algorithm 4.3. Starting from xn and proceeding backward but
otherwise in a similar fashion, we find that the components of x are

xi =

bi −
n

∑
k=i+1

uikxk

uii
, (4.8)

for i = n, n− 1, . . ., 1, in turn.
The cost of back substitution and forward elimination, in terms of the number of

floating-point operations, is

n+ 1+ 2+ 3+ · · ·+(n− 1) =
1
2

n(n− 1)+ n=
1
2

n2 +O(n) = O(n2) flops . (4.9)

Algorithm 4.3 Back substitution for a nonsingular upper-triangular system
Require: An upper-triangular n×n matrix U with ukk �= 0 (1 ≤ k ≤ n) and an n×1 vector b

for i from n by −1 to 1 do
xi := bi

for j from i+1 to n do
xi := xi −ui jx j

end for
xi := xi/uii

end for
return The vector x solving Ux = b
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Remember that a “flop” is one multiplication or division together with one addi-
tion or substraction. Note that a multiplication by a triangular matrix costs

n+(n− 1)+ · · ·+ 1 =
1
2

n(n+ 1) flops , (4.10)

which is about the same. Thus, we observe that for triangular matrices, solving and
multiplying costs about the same.

As we see, the problem of solving Ax= b when A is triangular is straightforward.
But are these algorithms numerically stable? The answer is an emphatic yes.

Theorem 4.2. Given a real system Tx = b with a nonsingular triangular matrix T,
the methods of Algorithms 4.2 and 4.3 are backward stable in floating-point arith-
metic; that is, they exactly solve (T+ΔT)x= b, where each entry of ΔT is relatively
small. Specifically, |ΔTi j| ≤ γn|Ti j|. Complex-valued systems have a slightly larger
bound, γn+9|Ti j|, because complex division, done in a way to avoid overflow or un-
derflow, incurs a rounding penalty of

√
2γ7 at most; but this happens only once per

equation, and otherwise, each component of the solution is an inner product.

The proof of this theorem is similar to the inner-product proof sketched earlier, in
Theorem 1.2.9 Consequently, the algorithms compute the exact solution of a trian-
gular system that differs only by about rounding level from the original—and zero
elements are not disturbed. That is, these algorithms are both componentwise back-
ward stable, which is just as good as the stability result for solving a unitary system.
In fact, it’s about as good as it gets in numerical analysis.

Example 4.3. Consider the upper-triangular matrices U with diagonal entries 1 and
all entries in the strict upper triangle −2; that is,

ui, j =

{
1 i = j
−2 j > i

.

Moreover, let the right-hand-side vector b be defined by

bi =

{
1 i is odd
−1/3 i is even

.

Let us first consider the 4× 4 case. By construction, the exact solution of the linear
system Ux = b is x = [1,−1,1,−1]T/3.

Does it agree with the results obtained with MATLAB? We can simply execute
this:

U = diag(ones(1,n)) - triu(2*ones(n),1);
b = [1,-1/3,1,-1/3]';
x = U\b;

Then, by executing 3*x-[1,-1,1,-1]’, we find a numerical estimate of the
forward error, which in this case is

9 For full details of the real case, see Higham (1989b, 2002).
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3Δx = 3x̂− 3x = 10−15 [0.4441 0.2220 0 0
]T

,

which shows that the forward error for this small matrix is about what we expect.
However, this example was carefully chosen to show some bad behavior for

larger n.10 If we increase the size of the matrix just to n = 32, then the forward
error is not the same size as the machine epsilon. Generate the system as follows:

b = ones(n,1);
for j=2:2:n,

b(j) = -1/3;
end;
U = diag(ones(1,n)) - triu(2*ones(n),1);
x = U\b;

Then, if we inspect Δx1 by running x(1)-1/3 (where the exact x1 is 1/3), we
find that about 0.004, or 13 orders of magnitude larger than the machine epsilon!
Note that this is in spite of the excellent backward error: The computed solution is
guaranteed to be the exact answer of a linear system whose matrix differs only by
about 10−15 from the specified one. �

Something very strange is going on in this example! Once we get to the SVD in
Sect. 4.6, we will begin an explanation; for now, we will put this (very important!)
issue aside and continue with our discussion of simple algorithms.

4.4 Factoring as a Step Toward Solution

Although the problem of solving Ax = b is simple for unitary and for triangular
systems, we nonetheless have to face the fact that most systems are not unitary or
triangular. Our strategy will then be to reduce these more difficult problems to se-
quences of simpler problem that we know how to solve. To this effect, our main
tool will be matrix factorings: If we can factor the matrices, then we can gener-
ate a product of matrices with special structure that is equal to the original matrix.
Generically, factoring a matrix A into simpler factors F1 and F2 such that A = F1F2

allows us to convert the problem

Ax = b (4.11)

into a sequence of simpler problems:

1. First solve F1y = b for y;
2. Then solve F2x = y for x.

This works because matrix multiplication is associative. Denoting F2x by y, we find
that

Ax = (F1F2)x = F1(F2x) = F1y = b. (4.12)

10 The example is borrowed from Higham (1989b).



4.5 The QR Factoring 177

Given that many factorings provide easily solved systems, this simple idea is very
powerful. For instance, if F1 is lower-triangular and F2 is upper-triangular, then
solving Ax = b only requires the use of Algorithms 4.2 and 4.3.

With this strategy in mind, we will investigate and use a number of factorings:

The QR factoring In this case, A = QR, where Q is unitary (in the real case, or-
thogonal) and R is upper-triangular (i.e., Right-triangular). See Sect. 4.5.

The SVD “SVD” stands for singular value decomposition: A = UΣΣΣVH , where U
and V are unitary (in the real case, orthogonal) and ΣΣΣ is diagonal. See Sect. 4.6.

The LU factoring The basic form is A=LU, but it also includes the variants PA=
LU and PA = LD−1UR, where P is a permutation matrix, L is lower-triangular,
D is a nonsingular diagonal matrix, U is upper-triangular, and R is the unique
reduced row echelon form of A. These factorings correspond to variants of the
well-known Gaussian elimination. See Sect. 4.7.

Notice the reoccurrence of triangular, diagonal, and unitary matrices. These factor-
ings are useful precisely because matrices with such structures are extremely conve-
nient. Many other useful factorings exist, and we will introduce some of them in due
course. The idea of these factorings is always that they allow us to solve problems
(not necessarily Ax = b) by decomposing them into simpler problems.

4.5 The QR Factoring

Let us begin our journey with the QR factoring. Given an equation Ax = b in which
A is not triangular, one cannot directly apply back substitution or forward elimina-
tion. That is where the QR factoring comes in; as we will explain, the QR factoring
will in many cases be the method of choice to solve Ax = b. If we can factor A
as A = QR, where Q is unitary (orthogonal, if A is real) and R is upper-triangular,
then the problem simplifies significantly, since it becomes QRx = b, which is de-
composed as follows:

1. Solve Qy = b for y;
2. Solve Rx = y for x.

Both steps are simple, in that we can use the algorithms just discussed. Solving
Qy = b for y only involves the computation of QHb since Q is unitary, and as we
have seen, this poses no problem once Q is known. Moreover, solving Rx = y is
simply achieved by back substitution, since R is upper-triangular.

Thus, the original problem can be solved by solving two simpler subproblems in
sequence; each of these subproblems comes with a backward error guarantee. Note
that we do not (at this point in this textbook) know whether the overall problem
comes with a backward error guarantee. We reserve discussion of this point until
later, but note for reference that backward error in general does not compose well
in this fashion: It is certainly possible to fail to have good backward error overall
even though each subproblem does; consider the outer product as in Problem 1.19,
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for example; no backward error is possible there even though each subcomputation
has excellent backward error.

Example 4.4. Suppose that we know that the three-by-three matrix A factors as
below:⎡⎣ 2 1 1

−1 1 1
−1 −1 1

⎤⎦=

⎡⎣ 2/
√

6 1/
√

21 2/
√

14

−1/
√

6 4/
√

21 1/
√

14

−1/
√

6 −2/
√

21 3/
√

14

⎤⎦⎡⎣√6
√

6/3 0
0

√
21/3

√
21/7

0 0 3
√

14/7

⎤⎦ , (4.13)

where Q, the first factor on the right-hand side, is orthogonal. This factoring can
be verified simply by multiplying it out. Now suppose also that we want to solve
Ax = b, where b = [1,−1,1]T . Then proceeding as described above, we form

y = QT b =

⎡⎣ 2/
√

6

−5/
√

21
4/
√

14

⎤⎦ (4.14)

and then solve the triangular system Rx= y to get x= [2/3,−1, 2/3]T . When we com-
pute the residual r = b−Ax, we get the zero vector, showing that our arithmetic was
done correctly. The numerical procedure with floating-point arithmetic proceeds in
the same way. �

Now, how do we find the factors Q and R, given a matrix A? There are three
widely used numerically stable algorithms:

1. Gram–Schmidt orthogonalization (modified for stability);
2. Householder reflections;
3. Givens rotations.

The third method is appropriate for sparse or structured matrices and is easily par-
allelized. Reluctantly, we leave the topic aside and focus on the first two. We first
begin with classical Gram–Schmidt, followed by modified Gram–Schmidt, and end-
ing with the method based on Householder reflections. We will investigate their
respective numerical properties at the end of the chapter.

4.5.1 Classical (Unstable) Gram–Schmidt

Let us begin with a warning: Do not use this method for numerical computations!
We will see why. But for pedagogical reasons, the algorithm is important, so a dis-
cussion is included here.

Write the m× n matrix A as a vector of columns,

A =
[
a1 a2 · · · an

]
,

where each column ak is m × 1. Also, write the unknown matrix Q as a similar
vector of columns:
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Q =
[
q1 q2 · · · qn

]
Then A = QR is

[
a1 a2 . . . an

]
=
[
q1 q2 . . . qn

]
⎡⎢⎢⎢⎣

r11 r12 · · · r1n

r22 · · · r2n
. . .

...
rnn

⎤⎥⎥⎥⎦
and we see on multiplying out that

a1 = r11q1

a2 = r12q1 + r22q2 (4.15)

...

an = r1nq1 + r2nq2 + · · ·+ rnnqn .

Since Q is unitary, its columns have unit 2-norm, that is, ‖qk‖2 = 1, and they are
orthogonal, namely,

qH
k q j = δ

j
k ,

where here δ j
i is the Kronecker delta (not to be confused with a relative error term).

Thus, we see immediately that r11 = ‖a1‖ and q1 = r−1
11 a1.

The next equation is processed by multiplying Eq. (4.15) by qH
1 on the left:

qH
1 a2 = r12qH

1 q1 + r22qH
1 q2 = 1 · r12 + 0 · r22 = r12 .

Then, from Eq. (4.15), we obtain

a2 − r12q1 = r22q2 .

Taking the 2-norm of each side and simplifying, we obtain

r22 = ‖a2 − r12q1‖2

and, just by dividing, we obtain

q2 =
a2 − r12q1

r22
.

Therefore, we have found the second vector component of Q.
We see the recursive pattern emerge. This procedure allows us to identify

r13,r23,r33 and then q3 from the next equation:

a3 = r13q1 + r23q2 + r33q3. (4.16)
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By manipulating the terms as above, we obtain

qH
1 a3 = r13

qH
2 a3 = r23

and, from Eq. (4.16),

r33 = ‖a3 − r13q1 − r23q2‖2 ,

together with

q3 =
a3 − r13q1 − r23q2

r33
.

These are the first steps of “classical” Gram–Schmidt orthogonalization, which is
fully described in Algorithm 4.4. As we see, it fails if any rkk = 0, which happens

Algorithm 4.4 Classical (unstable) Gram–Schmidt orthogonalization
Require: A basis [a1,a2, . . . ,an] for a subspace S.

for j from 1 to n do
q j := a j

for i from 1 to j−1 do
ri j := qH

i a j

q j := q j − ri jqi
end for
r j j := ‖q j‖2

q j := r−1
j j q j , so we require r j j �= 0

end for
return A unitary basis Q = [q1,q2, . . . ,qn] for the same subspace, and a matrix R such that
A = QR.

if and only if some columns of A are linearly dependent; our assumption of full
column rank n for A prevents this.

Mathematically, there is nothing wrong with this procedure, but numerically
there is: In floating-point arithmetic, rounding errors can build up in such a way
that the columns of Q are not truly orthogonal. So we will investigate an alternative,
apparently trivially different algorithm, after examining an example.

Example 4.5. Consider the following matrix, chosen by taking integers at random in
the interval [−99,99].

A =

⎡⎢⎢⎢⎢⎢⎣
−81 −98 −76 −4 29

−38 −77 −72 27 44

−18 57 −2 8 92

87 27 −32 69 −31

33 −93 −74 99 67

⎤⎥⎥⎥⎥⎥⎦ . (4.17)
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When we use classical Gram–Schmidt on this matrix (using a routine we wrote that
implements Algorithm 4.4), we get the matrix

Q =

⎡⎢⎢⎢⎢⎢⎣
−0.6215 −0.3574 −0.2833 −0.3015 −0.5611
−0.2916 −0.3711 −0.3417 −0.1309 0.8021

−0.1381 0.4370 −0.7039 0.5393 −0.0598

0.6675 −0.1291 −0.5544 −0.4624 −0.1287

0.2532 −0.7258 −0.0110 0.6224 −0.1469

⎤⎥⎥⎥⎥⎥⎦ .

We can assess the orthogonality of Q by also computing QT Q− I in MATLAB as
follows:

q'*q-eye(5)

In this case, we obtained the result

10−14

⎡⎢⎢⎢⎢⎢⎣
0 −0.0139 0.0067 −0.0028 0.0326

−0.0139 0 0.0023 −0.0500 0.4940

0.0067 0.0023 0.0222 −0.0112 0.3028

−0.0028 −0.0500 −0.0112 −0.0222 0.0167

0.0326 0.4940 0.3028 0.0167 0.0222

⎤⎥⎥⎥⎥⎥⎦
and as we see, the matrix Q is fairly close to being orthogonal—not completely
satisfactory, but not too bad. When we try with a 10 by 10 matrix (not shown, for
brevity), the loss of orthogonality is about 10−15, again not too bad. �

When we look more systematically, still taking matrices at random so as not to
give the impression that we are looking for hard cases, the picture that emerges
is less comforting. In the following script, we first set up a Fibonacci sequence,
because that provides a set of dimensions that looks good on a log scale and is fine
enough to show a trend. We then take 30 random matrices of each dimension (as
generated by rand), compute their QR factoring by classical Gram–Schmidt, and
measure the departure from orthogonality of each result. This test is performed as
follows:

1 n = [2,3,ones(1,10)];
2 for i=3:12,
3 n(i) = n(i-1)+n(i-2);
4 end;
5 nrms = zeros(30,12);
6 for i=1:12,
7 for j=1:30,
8 a = rand(n(i));
9 q = gs(a);

10 nrms(j,i) = norm(q'*q-eye(n(i)),inf);
11 end;
12 end;
13 loglog(n,nrms','k.',n,n.ˆ3/n(12)ˆ3*mean(nrms(:,12)),'k')
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Figure 4.2 shows essentially O(n3) growth of the average departure from orthogo-
nality; by n = 377, the resulting Q is orthogonal only in single precision, not double
precision.

100 101 102 103
10−16

10−14

10−12

10−10

10−8

Fig. 4.2 For each dimension n = 2, 3, 5, . . ., F13, where Fk is the kth Fibonacci number, 30 random
matrices computed by rand are given to the classical Gram–Schmidt procedure, and the departure
from orthogonality ‖QH Q−I‖∞ of the result is recorded, and displayed on a log–log scale, with an
O(n3) line for reference. A substantial loss of orthogonality is seen even for such relatively benign
matrices

4.5.2 Modified Gram–Schmidt Orthogonalization

As before, let us write the equation A = QR in the expanded form

[
a1 a2 . . . an

]
=
[
q1 q2 . . . qn

]
⎡⎢⎢⎢⎣

r11 r12 · · · r1n

r22 · · · r2n
. . .

...
rnn

⎤⎥⎥⎥⎦ ,
but now R is partitioned in the specific way indicated. We find r11 and q1 as

before, but then immediately compute

r12 = qH
1 a2

r13 = qH
1 a3

...

r1n = qH
1 an.
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We then use this information to generate new vectors â2, â3, . . . , ân as follows:

âk = ak − r1kq1, 2 ≤ k ≤ n.

Then the partition gives

[
â2 â3 . . . ân

]
=
[
q2 q3 . . . qn

]
⎡⎢⎢⎢⎣

r22 r23 · · · r2n

r33 · · · r3n
. . .

...
rnn,

⎤⎥⎥⎥⎦ (4.18)

which is a problem of the same type but one dimension smaller. Repeat until the last
1× 1 system gives rnn.

Obviously, this solves the same problem. Indeed, it is not immediately clear that
the algorithm differs at all from the previous one. It turns out that the resulting
algorithm (see Algorithm 4.5) is nearly identical, but not quite, to classical Gram–
Schmidt (see Algorithm 4.4). Modified Gram–Schmidt turns out to be better at pro-

Algorithm 4.5 Modified Gram–Schmidt orthogonalization
Require: A full-rank matrix A ∈ Cn×n

for i from 1 to n do
qi := ai (it leaves ai unchanged)

end for
for i from 1 to n do

rii = ‖qi‖2
qi := r−1

ii qi, so we require rii �= 0
for j from i+1 to n do

ri j := qH
i q j

q j := q j − ri jqi
end for

end for
return A unitary matrix Q and an upper-triangular matrix R such that A = QR.

ducing a numerically unitary Q. However, we will see that it is not perfect either.
We leave it to the exercises to duplicate the “average” random matrix example we
used previously and to show that the growth is O(n2) and not O(n3). By n = 377,
modified Gram–Schmidt seems to produce answers that are usually around n times
better than those of Gram–Schmidt. This is not the worst-case scenario, however.

Example 4.6. We now consider a more difficult example, the 5× 5 Hilbert matrix.
In general, the entry hi j of the n× n Hilbert matrix is

hi j =
1

i+ j− 1
. (4.19)
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The matrix is famously awkward numerically; we will see more of the Hilbert matri-
ces. There are certainly others as awkward! For now, if we compute the QR factoring
of this matrix in MATLAB, using the commands

a = hilb(5);
[q1,r1] = gs(a); %using algorithm classical Gram--Schmidt
[q2,r2] = mgs(a); %using algorithm modified Gram-Schmidt
[q3,r3] = qr(a); %built-in qr routine

we obtain the results displayed in Table 4.1. This represents a dramatic difference.

Table 4.1 Comparing the loss of orthogonality for CGS, MGS, and built-in QR

Method ‖QH Q− I‖2

Gram–Schmidt 3.7 ·10−8

Modified Gram–Schmidt 4.5 ·10−12

Built-in qr 6.4 ·10−16

Even on this 5× 5 matrix, Gram–Schmidt in its classical form behaves very badly,
losing 8 figures of accuracy in Q; mind you, ‖QR−A‖ is zero! �

The factoring is very good—it’s just that Q is not orthogonal, and so our solving
process, which involved multiplying by QH , is therefore compromised. MGS suffers
much less from this loss of orthogonality, losing only 4 figures of accuracy. But the
real winner in the orthogonality sweepstakes is the built-in qr. See Fig. 4.3. How
does it achieve such good orthogonality? This is the object of the next subsection.
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Fig. 4.3 Comparison of CGS (cross), MGS (open diamond), and Householder (open circle). We
plot ‖QH Q− I‖ for each method, where Hn = QR and Hn is the n× n Hilbert matrix. Observe
that the slope of CGS is twice the slope of MGS. However, Smoktunowicz et al. (2006) shows that
unless computation is done carefully, there are no bounds for CGS of this kind in general. There
are simple examples where the loss of orthogonality is complete for CGS
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4.5.3 Householder Reflections

This section describes the method of choice for computing a QR factoring. We begin
with some preliminary formulæ. Given a nonzero vector v, form the matrix

H = I− 2
vvH

vHv
, (4.20)

which is known as a Householder reflector. Note that vvH is a rank-1 matrix and
that vHv is a scalar. Moreover, let a ∈ Cn be a nonzero column vector, and define

v = signum(a1)‖a‖2e1 + a, (4.21)

where

signum(z) =

{
z/|z| if z �= 0
1 if z = 0

and e1 = [1,0,0, . . . ,0]T .
We may proceed recursively to build the factor Q as a product of unitary matrices

(see Problem 4.16) built from such elementary “Householder reflectors.” The basic
idea is simple. Take a to be a1, the first column of A. Form v as in Eq. (4.21) and
then the resulting H; call it H1. Then (with the help of Problem 4.17) we obtain

H1A =

⎡⎢⎢⎢⎣
α â12 · · · â1n

0 â22 · · · â2n
...

...
. . .

...
0 ân2 · · · ânn

⎤⎥⎥⎥⎦
(note that

H1z =
(

I− 2
vvH

vHv

)
z = z− 2

v(vHz)
vHv

is easy to compute for each column z = a1,z = a2, . . . ,z = an). Now partition the
result as ⎡⎢⎢⎢⎣

α â12 · · · â1n

0 â22 · · · â2n
...

...
. . .

...
0 ân2 · · · ânn

⎤⎥⎥⎥⎦ ,

and suppose that we have computed the Q̂R̂ factoring of this smaller matrix (by
Householder reflections also). Then let

H1A =

[
α â12 · · · â1n

0 Q̂R̂

]
.
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So, by rearranging the terms, we obtain

A = HH
1

[
1

Q̂

][
α â12 · · · â1n

0 R̂

]
(4.22)

and, as result, our factor Q is given by

Q = HH
1

[
1

Q̂

]
, (4.23)

which is unitary. Moreover, the right-hand matrix in Eq. (4.22) is upper-triangular
(though not necessarily with nonnegative diagonal entries). We are done, since this
is what we were after. The method is fully described in Algorithm 4.6.

Algorithm 4.6 Householder QR factoring
Require: A ∈Cm×n, m ≥ n, full column rank.

Q := Im

R := A
for k from 1 to n do

a := R(k : m,k) (the current col)
vk := signum(a1)‖a‖2e1 +a (which is in Cm−k+1)
vk := vk/‖vk‖
R(k : m,k : n) := (Im−k+1 −2vkvH

k )R(k : m,k : n)
Q(1 : k−1,k : m) := Q(1 : k−1,k : m)(Im−k+1 −2vkvH

k )
Q(k : m,k : m) := Q(k : m,k : m)(Im−k+1 −2vkvH

k )
end for
return A unitary matrix Q and an upper-triangular matrix R such that A = QR.

Time spent doing a QR factoring can’t be spent doing something else. The time
we take to do the factoring, therefore, can be regarded as a cost. Using this measure,
the cost of the classical Gram–Schmidt method is exactly the same as that of the
modified Gram–Schmidt method: 2mn2 flops. The Householder reflection method
is slightly cheaper at 2n2(m− n/3) flops, provided that one accumulates the Hks but
does not form Q. It is more expensive if you multiply the Hks together to form Q,
but not grossly more. In practice, the Householder method’s greater stability makes
it very attractive.

4.5.4 Numerical Stability of the QR Algorithms

In this section, we examine the numerical stability of the three algorithms we ex-
amined to compute the QR factoring. Both CGS and MGS are stable in a normwise
backward sense. Specifically, if Q̂, R̂ are the computed factors, then there exists an
E such that
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A+E = Q̂R̂ (4.24)

and ‖E‖F ≤ cnμM‖A‖F , where cn is a slowly growing function of n and ‖ · ‖F is
the Frobenius norm. That is, both CGS and MGS give the exact factors of a slightly
perturbed matrix, differing normwise by only a small amount from the original.

However, both CGS and MGS lose orthogonality in the computed factor Q̂. For
MGS,

‖Q̂
H

Q̂− I‖ ≤ cnκ(A)εM ,

where cn is a slowly growing function of n. The function κ(A) is described in detail
in Sect. 4.6. For now, note that it can be large, as it is for the Hilbert matrices, where
it grows exponentially with the dimension. For CGS, we don’t even have this much:
No such bound exists, unless special care is taken (Smoktunowicz et al. 2006).

The situation is better with Householder’s method. If Q̂ and R̂ are the computed
factors, then there exists a unitary matrix (an exactly unitary matrix) Q near Q̂ with

A+E = QR̂ (4.25)

and each column e j of E satisfies ‖e j‖2 ≤ γmn‖a j‖2, where a j is the corresponding
column of the m× n matrix A. Moreover, Q̂ is close to Q: We have

‖Q̂−Q‖F ≤√
nγcmn ,

where c is a small integer constant. This is Theorem 19.4 in Higham (2002). Notice
that the potentially large function κ(A) does not appear in this bound: The House-
holder factoring returns matrices that are guaranteed to be close to orthogonal.

Now, let us turn to the residual r = b− Ax, which turns out to be as impor-
tant. Using the above statements, we can say that, when solving Ax = b using the
Householder QR factoring, the residual is guaranteed to be small in the following
sense:

‖r‖2 ≤ γcn2‖A‖F‖x‖2 , (4.26)

where c is a small constant.
We could have introduced the residual already for triangular systems, but a

stronger and more satisfactory backward error guarantee—namely, exact solution
with a relatively tinily perturbed T—was available. However, the vector r will be
used henceforth as appropriate.

Remark 4.2. The residual, as defined above, is important in assessing the credibility
of a numerical solution of square systems. If the computed residual r has a “small
enough” norm, compared to errors in the right-side vector b, then the method (what-
ever it was) has produced an acceptable answer. As we see above, there is a nice
guarantee for the QR method that the residual will always be small in a normwise
sense. �
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The residual gives an extraordinarily simple method for a posteriori backward er-
ror assessment: Simply compute the residual and examine it. This works for solving
square linear systems (m = n) and for overspecified systems (m > n). It is so simple,
it seems like cheating. To realize how simple its use is, we make the following key
(but trivial) observation: If r = b−Ax, then x is the exact solution of

Ax = b− r ; (4.27)

that is, we have computed the exact solution of a slightly different system of linear
equations, one with a perturbed right-hand side. If the maximum entry in r is (say)
10−13, and the errors in your data vector b are about 10−7, then you are done: For
all you know, you have found the exact solution you are looking for.

A second major point (which we pursue in Sect. 4.6) is that one needs to know
how sensitive a solution is to such changes in the data. Importantly, given our back-
ward error perspective, we have put numerical errors on exactly the same footing as
errors in the data. But one has to understand the effects of perturbation on the data
anyway; so this is already (albeit trivially) a successful analysis.

There is a more subtle point that we have to examine: How do we compute r?
A traditional approach is to use higher precision (such as double precision if you
were working in single precision, or quadruple if you were working in double). The
difficulty is that Ax is very nearly equal to b, and when you subtract, you reveal
rounding errors and don’t leave (much) forward accuracy in r. Sometimes, how-
ever, it is possible to use backward error again: Remember our discussion of matrix
multiplication and backward error. Notice that the computation of Ax (let this be y)
gives you the exact result of (A+ΔA)x, where each entry of ΔA is only a tiny rel-
ative perturbation of the corresponding entry of A: That is, we can regard the result
of the matrix–vector product as being exact if we allow some tiny uncorrelated per-
turbations in A. Now when we subtract the result from b, the subtraction is benign:
Each entry is just (bi−yi)(1+δi), which gives the correctly rounded result (in IEEE
floating-point arithmetic, which has guard digits). That is, each entry of the residual
has been computed to full accuracy if the matrix A is considered to be perturbed
to some very nearby matrix. Thus, we have an argument that the computed residual
and the computed solution together satisfy the following theorem:

Theorem 4.3. The computed residual r̂ is the exactly rounded representation of r
satisfying

(A+ΔA)x = b− r , (4.28)

where each entry in ΔA is O(μM) times the corresponding entry in A.

In practice, the perturbations ΔA are usually much, much smaller than the entries
that appear in r, and are safely ignored. But when the arguments get delicate, one
can fall back to this position and use Eq. (4.28).

Example 4.7. To make this method of analysis more concrete, let us continue Ex-
ample 4.1. It turns out that the symmetric matrix B factors into the product of two
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slightly nicer matrices: B = AHA, where A is as below, as was noticed in Corless
(1993). Here, we want to solve

Ax =

[
666 665
667 666

]
x =

[
1
0

]
= b (4.29)

using the QR factoring, and assess the result on the basis on the computed residual.
The solution is found in MATLAB by executing

[Q,R] = qr(A)
y = Q'*[1;0]
x = R\y

It returns the vector

x̂ = 102
[

6.660000000445352
−6.670000000446023

]
,

which is very close to the exact solution [666,−667]T . If we compute the residual
with the command r = b - A*x, we obtain

r̂ = 10−9
[

0.0582
0.1164

]
.

Thus, the computed solution (which is near to, but not exactly, the exact solution)
is the exact solution to Ax= b−r, where r has an entry about 1.1 ·10−10. Moreover,
by Theorem 4.3, all figures in each entry of r are correct if we allow tiny (of the order
of μM) changes in the entries of A.

However, the truly surprising results in Example 4.1 did not arise for Ax = b,
but rather for Bx = AHAx = b. Using the same solution procedure based on the QR
factoring (using MATLAB’s qr command), we obtain

x̂ = 105
[

8.8575
−8.8709

]
and r̂ = 10−3

[
0.1221
0.1221

]
.

That seems large, until we scale by the norm of B and the size of the solution x: We
can expect rounding errors of size ‖B‖‖x‖ times O(μM), and indeed ‖r‖/‖B‖‖x‖ .

=
7× 10−17.

Even more puzzling though is the computed solution of Bx= [0,1]T and its resid-
ual. Proceeding as above, we find that r is identically zero, not O(10−3)! This is
puzzling, since our solution (not shown here) differs from the exact solution (in
the thousands’ place, already), but we have a zero residual. In fact, the residual is
smaller than when we solved the system with A, which is surprising because we
would expect a larger error when the entries of the matrix are larger. However, The-
orem 4.3 gives us grounds for an explanation. The fact that the computed residual is
0 tells us that, for some matrix δB with |δbi j|= O(μM|bi j|), we have exactly solved
(B + δB)x = b− r, where r̂− r is truly zero (because it is the exactly rounded
result). �
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Remark 4.3. It is now clear that a zero computed residual is not a guarantee that we
have found the reference solution. It is only a guarantee that we have found the exact
solution to a nearby problem. �

This will prove to be true if the computed residual is merely “small,” not exactly
zero, as well. The forward error (which we have not shown here) is not explained by
this approach. This will become possible in Sect. 4.6 when we explore the condition
number of matrices.

4.5.5 Solving Overspecified Systems with the QR Factoring

Suppose we are given A ∈Cm×n and b ∈ Cm and we want to find x ∈ Cn such that

Ax = b . (4.30)

If m = n, then we have a system for which we have the same number of equations
and unknowns. When m > n and when the equations are linearly independent, then
we call the system overspecified11: There are more equations than unknowns. In
overspecified cases, there is often no x that satisfies Eq. (4.30) exactly. This situation
occurs very often in applications; perhaps the most common is found in linear least-
square problems. In such cases, our solution will be a vector x in the equation Ax≈b
for which the 2-norm of the residual is to be minimized. Here, we are looking for
an x such that

x = argmin
x

‖r‖2 = argmin
x

‖b−Ax‖2 = argmin
x

‖b−Ax‖2
2 , (4.31)

where argmin is the value of x at which the minimum occurs. We then say that x
is the solution of Ax = b in the least-square sense. Note that when presented an
overspecified system and asked to find x=A\b, MATLAB will automatically return
the solution in the least-square sense.

We will now examine how to find x for cases in which A is upper-triangular and
for cases where it is not. If A is upper-triangular and has full column rank, such as
the following example in which Ax = b is

⎡⎢⎢⎢⎢⎣
1 2 3
0 4 5
0 0 6
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎣x1

x2

x3

⎤⎦=

⎡⎢⎢⎢⎢⎢⎢⎣
7
8
9
b4

b5

b6

⎤⎥⎥⎥⎥⎥⎥⎦ ,

11 We are indebted to David Jeffrey for this term. The more commonly used term, “overdeter-
mined,” isn’t accurate if conflicting information is given by the equations, and once you realize
this, it’s bothersome: If m > n, there is generally too much conflicting information to determine a
solution at all.
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for any values of b4,b5 and b6, it is easy to determine x. The exact solution of the
upper part of the system gives x3 = 3/2, then x2 = 1/8 and x1 = 57/12. Then, we will
have the residual

r = b−Ax =

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0
b4

b5

b6

⎤⎥⎥⎥⎥⎥⎥⎦ .

If b4,b5, and b6 are 0, then we have found (by back substitution) the vector x that
satisfies Ax = b. If b4,b5 and b6 are not 0, we easily find by inspection that

‖r‖2
2 = |r1|2 + |r2|2 + |r3|2 + |r4|2 + |r5|2 + |r6|2,
ri = bi −A(i, :)xi.

r is as small as it gets, for any choice of x1,x2 and x3, since ri = 0 for 1 ≤ i ≤ 3 and
ri = bi for 4 ≤ i ≤ 6. So

‖r‖2
2 ≥ |b4|2 + |b5|2 + |b6|2

(absolute values are needed because b4,b5 and b6 might be complex). So, for an
upper-triangular A, the process of back substitution for the upper part of the system
gives us the least-squares solution.

However, not all matrices A are upper-triangular. That is where the QR factoring
comes into play. The usefulness of the QR factoring for least-square problems stems
from the following straightforward theorem:

Theorem 4.4. Product by a unitary matrix preserves the 2-norm; that is,

‖x‖2 = ‖Qx‖2 .

Proof. Observe that

‖x‖2
2 = xHx = xHQHQx = ‖Qx‖2

2

follows from definitions. �

It follows from Theorem 4.4 that

min
x

‖b−Ax‖2
2 = min

x
‖QHb−QHAx‖2

2 = min
x

‖QHb−Rx‖2
2 ; (4.32)

that is, the residuals r = b−Ax and QHr = QHb−QHQRx = QHb−Rx have the
same 2-norm. So, the vector x that minimizes ‖r‖2 will also minimize ‖QHr‖2. Con-
sequently, finding minx ‖QHr‖2 is equivalent to finding the least-squares solution of
Ax = b.
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Since R is obtained from the QR factoring, we can let

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 0 a33 · · · a3n

...
...

...
. . .

...

0 0 0 · · · ann

0 0 0 · · · 0
...

...
...

...

0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[
R1

0

]
.

Then we write

Rx =

[
R1x

0

]
, (4.33)

and the entries of QHb−Rx in rows n+ 1,n+ 2, . . . ,m cannot be changed by any
choice of x. But, in a way similar to what we have done for upper-triangular matrices
A, we may choose x to make

R1x = Q(1 : n, :)Hb .

This straightforwardly makes the 2-norm of the residual

b−Ax

minimum.

Example 4.8. Suppose that we have the following data gathered from timing the
execution of an algorithm operating on matrices:

Size n 5 55 105 155 205 255 305 355 405 455 505
Time t 0.0004 0.0012 0.0024 0.0046 0.0080 0.0120 0.0168 0.0232 0.0320 0.0682 0.0604

See Fig. 4.4. We want to find a third-degree polynomial expressing the execution
time in terms of the size n of square matrices.12 Because of other processes on
any given machine, and perhaps because of minor differences in execution paths
for a given matrix, the fit cannot be exact. This gives 11 equations of the form
cost(nk) = c3n3

k + c2n2
k + c1nk + c0 in the four unknowns c js, clearly overspecifying

the answer. The corresponding matrix is then

12 For theoretical reasons, namely, the flop count, we expect that the computing time will increase
as the cube of the dimension for the QR factoring. Therefore, we may wish to summarize our cpu
time data as a third-degree polynomial.
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Fig. 4.4 Time taken to compute the QR factoring for some random n× n matrices, fitted by a
least-squares polynomial. The computer used was a 32-bit tablet PC, circa 2009

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

125 25 5 1
166375 3025 55 1

1157625 11025 105 1
3723875 24025 155 1
8615125 42025 205 1

16581375 65025 255 1
28372625 93025 305 1
44738875 126025 355 1
66430125 164025 405 1
94196375 207025 455 1

128787625 255025 505 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and we wish to solve Ac = b, where the vector b is the timing data and the 4-vector
c contains the coefficients of our polynomial. Simply using MATLAB’s backslash
command uses a QR factoring internally, but we may do that ourselves with the
command [Q,R] = qr(A, 0).13 We then form the 4-vector y = Q′b and solve
the 4× 4 triangular system Rc = y by back substitution. When we do this, we find
that

cost(n) = 3.0427 ·10−10n3 + 1.3273 ·10−7n2 − 1.2808 ·10−5n+ 1.2887 ·10−3

fits the cost, in seconds, to the dimension. The leading coefficient is quite small, but
as we see in Fig. 4.4, the fit is good.14 �

13 We use the argument 0 in order to compute a “thin” matrix Q, 11 by 4; if we leave that argument
off, then MATLAB will give an orthogonal completion of those four vectors and return an 11-by-11
matrix (which we don’t need).
14 The two leading terms are equal already for n = 300, so the leading coefficient is significant for
this fit.
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4.6 SVD and Condition Number

It is now time to discuss the relationship between the condition number and the
singular value decomposition. We begin with a statement of the factoring theorem
that we will use repeatedly.

Theorem 4.5. Every m× n matrix A ∈ Cm×n may be factored as

A = UΣΣΣVH , (4.34)

where U ∈Cm×m and V ∈Cn×n are unitary matrices and ΣΣΣ is an m×n nonnegative
diagonal matrix such that ΣΣΣ = diag(σ1,σ2, . . . ,σp) with p = min(m,n). The σs are
known as singular values, and the factoring is known as the SVD.

For a proof, see Stewart (1998 p. 156). Note that the diagonal entries σk are arranged
such that

σ1 ≥ σ2 ≥ ·· · ≥ σr > σr+1 = 0 = · · ·= σp .

The index r of the last nonzero diagonal entry σr is the rank. Moreover, as shown in
Fig. 4.5, the cost of computing the SVD is relatively high, but we will see here that
it is worth the price.
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Computation time for SVD grows as O(n3)

Fig. 4.5 Time taken to compute the SVD for some random n×n matrices. The computer used was
a 64-bit desktop, vintage 2009, running MATLAB 2009a

There are many important ways to unpack the meaning of this theorem. If we
know the factors U, ΣΣΣ , and V in the SVD, we effectively know everything we want
to know about the matrix A. To begin with a simple example, it follows that we
know the inverse, if m = n and σn �= 0:
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A−1 = VΣΣΣ−1UH .

Of course, the inverse of the diagonal matrix ΣΣΣ is trivial: Just reciprocate the diag-
onal entries. Thus, the SVD gives us a way to solve Ax = b. In practice, we would
not usually form this inverse, of course, but we will see how to use this factoring to
solve various matrix problems.

One of the more important ways to understand singular values is based on the
following theorem.

Theorem 4.6. Suppose A factors as above. If, for k ≤ r, Uk = [u1,u2, . . . ,uk], Vk =
[v1,v2, . . . ,vk], ΣΣΣ k = diag(σ1, σ2, . . ., σk, 0, . . ., 0) with ΣΣΣ k being m×n with enough
zeros to fill out the diagonal, and σ1 ≥ σ2 ≥ . . . ≥ σk > 0, then if we define Ak =
UkΣΣΣ kVH

k , this m× n matrix satisfies the following property:

‖Ak −A‖2 = min
rank(B)≤k

‖B−A‖2 = σk+1 (4.35)

and rank(Ak) = k. That is, Ak is as near (in the 2-norm) to A as any rank-k matrix
can get (see Schmidt 1907).

We do not supply a proof here. One can be found in Golub and van Loan (1996).

Remark 4.4. This theorem has several interesting consequences. First, the distance
to the nearest singular matrix is exactly σr > 0. The relative distance is, therefore,
σr/σ1, because the 2-norm of A is exactly σ1 (see Exercise 4.10). This supplies a
natural metric for the notion of singularity.

In the first exposure to matrices, one learns that they are either singular or non-
singular. This theorem provides a way of putting shades of gray into that black-
and-white distinction: Some matrices, while nonsingular technically, are so nearly
singular that they might as well be actually singular. If the entries of A are not known
to great precision, and some matrices near to A really are singular, then one ought
to consider the case of singularity. �

In light of this remark, we should ask: Given that the entries of A are sometimes
not known with great precision, how are its singular values affected by small vari-
ations in its entries? A great deal can be said about this question, but the simplest
result is due to Weyl.

Theorem 4.7. If A+E has singular values σ̂k and A has singular values σk, then
|σ̂k −σk| ≤ ‖E‖ for 1 ≤ k ≤ n.

Note that these are not relative perturbations—small singular values can indeed be
swamped by changes in the data. However, this theorem says that at least the larger
singular values will be accurate if the data are known with any accuracy.15

It is useful to explore the meaning of the SVD further in geometrical terms (see
Fig. 4.6). Let T= {u : ‖u‖2 = 1} be the unit circle and let

AT = {z
∣∣ z = Au where u ∈ T} (4.36)

15 See Stewart and Sun (1990).
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be a (possibly degenerate) ellipsoid (as you will show in Problem 4.18), where the
singular values σk (1 ≤ k ≤ r) are the lengths of the semiaxes. The aspect ratio of
the ellipsoid AT is given by the quotient σn/σ1 of the largest and smallest singular
values; in other words, this ratio tells us how skinny the ellipsoid is. On the one
hand, the best ratio is σn/σ1 = 1; this happens for “nice” matrices A whose singular
values are all equal. On the other hand, if A is singular, the ellipsoid will degenerate
to a lower-dimension surface.

Example 4.9. Let

A =

[
2 3
1 2

]
. (4.37)

Then AT is drawn together with the circle T in Fig. 4.6. The factors in A = UΣΣΣVH

are as follows:

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

y1

y 2

Fig. 4.6 Transformation of the unit circle by the matrix A = [2,3;1,2]. The largest singular value
(≈ 4.2361) is the length of the longest semiaxis, and the smallest singular value (≈ 0.2361) is
the length of the shortest semiaxis. See also the MATLAB command eigshow, for an animated
explanation that may be more helpful than this static explanation

U ≈
[−0.8507 −0.5257
−0.5257 0.8507

]
, ΣΣΣ ≈

[
4.2361 0

0 0.2361

]
, V ≈

[−0.5257 −0.8507
−0.8507 0.5257

]
.

The vector u1 (the first column of U) points in the direction of the longest semiaxis;
u2 in the direction of the shortest semiaxis. �

4.6.1 The Effect of Data Error in b

If we know that A =UΣΣΣVH is in Cn×n, U = [u1,u2, . . . ,un], and V = [v1,v2, . . . ,vn],
then we may examine a “worst-case scenario” for the effect of errors in the data.
Suppose that we are trying to find x such that
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Ax = u1 .

Then it is easy to see that x = (1/σ1)v1 does the trick:

A
v1

σ1
= UΣΣΣVH v1

σ1
= UΣΣΣ

⎡⎢⎢⎢⎢⎢⎣
1/σ1

0
0
...
0

⎤⎥⎥⎥⎥⎥⎦= U

⎡⎢⎢⎢⎢⎢⎣
1
0
0
...
0

⎤⎥⎥⎥⎥⎥⎦= u1 .

Since A is nonsingular by hypothesis, this must be the unique answer.
Now suppose that we are, in fact, horribly unlucky, and the right-side vector b

is not actually u1 as we thought, but rather is polluted with errors in the direction
of un. So, let b̂ = u1 + εun. If we solve the system again, the solution we get is not
x = 1/σ1v1 as it was before, but rather x+Δx = 1/σ1v1 + ε/σnvn. This can easily be
verified:

A
(

1
σ1

v1 +
ε
σn

vn

)
=

1
σ1

Av1 +
ε
σn

Avn

= u1 +
ε
σn

UΣΣΣ

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎦= u1 +
ε
σn

U

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
σn

⎤⎥⎥⎥⎥⎥⎦= u1 + εun .

How big a difference is caused by this variation of the right-side b? The relative
difference between these two solutions is

‖Δx‖
‖x‖ =

‖ε/σnvn‖
‖1/σ1v1‖ =

σ1

σn
ε ,

whereas the difference between the two sets of data is only

‖Δb‖
‖b‖ =

‖εun‖
‖u1‖ = ε .

In other words, the data error ε has been amplified to (σ1/σn)ε in the solution; note
that σ1/σn ≥ 1 can be very large indeed if the matrix is nearly singular. A little thought
shows that this is the worst possible amplification (see Problem 4.24).

Consequently, we find that

‖Δx‖
‖x‖ ≤ κ2(A)

‖Δb‖
‖b‖ (4.38)

where, if A is nonsingular, we define

κ2(A) = ‖A‖2‖A−1‖2 =
σ1

σn
(4.39)
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since σ1 = ‖A‖2 and σ−1
n = ‖A−1‖2. We call κ2(A) the 2-norm condition number

of A.
Figure 4.7 displays the condition number of random matrices as a function of

their sizes. This number, or related numbers using other norms, was the beginning of
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Fig. 4.7 Condition numbers of some random matrices, A = rand(n). The dashed line shows a
constant times n2

the study of conditioning or sensitivity in the solution of linear systems of equations.
Using this number, we can bound (or estimate) the forward error in a solution given
the backward error of a method.

Example 4.10. Consider again the upper-triangular matrices from Example 4.3. We
generate them in MATLAB as follows:

b = ones(n,1);
for j=2:2:n,

b(j) = -1/3;
end;
U = diag(ones(1,n)) - triu(2*ones(n),1);
x = U\b;

We saw that for n = 32 the accuracy of x1 was about 0.0038. This was in spite of the
excellent backward error: The computed x is the exact solution of an upper triangular
system with entries different from those of U by less than simple rounding.

The difficulty, of course, is the conditioning. We compute the SVD in MATLAB

for n = 32 and find that the first 31 singular values are large enough—we find ap-
proximately σ1 = 39.5134 and σ31 = 2.0006, but σ32 = 2.1 · 10−15, which is less
than μMσ1. Thus, this matrix is within roundoff error of a singular matrix. There-
fore, nearby matrices (even matrices essentially within rounding distance from U)
will have greatly differing solutions to (U+ΔU)x = b.

As it turns out, the actual error (about 0.0038) is quite a bit less than the approx-
imate bound given by the condition number (which is greater than 1/εM) times the
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bound for the rounding error (approximately εM). That is, the real scenario is better
than the worst-case scenario. �

Remark 4.5. We may compute the inverse of the matrix U explicitly, and its first row
contains the entries 1, 2, 6, 18, 54, 162, . . ., which is the sequence 2 ·3k−1. Thus, we
see that the norm of U−1 must grow exponentially with the dimension, being bigger
than any individual element of the matrix such as the U1,n = 2 ·3n−1 entry; further,
since the 2-norm of U−1 is the reciprocal of the smallest singular value of U, we
see that the smallest singular value of U is exponentially small with the dimension
n. This is a somewhat surprising situation: A simple upper-triangular matrix whose
determinant is 1 and whose entries are not larger than −2 can be made arbitrarily
close to being singular simply by increasing the dimension. �

4.6.2 Conditioning, Equilibration, and the Determinant

Is 10−17 zero? How about 16−300? Of course, neither of these numbers is zero.
However, there are situations in which they may as well be, such as in adding 1+
10−17 or evaluating y = x3 for x = 16−100 in IEEE double precision. In the first case,
10−17 is less than the machine epsilon and the result rounds to 1, and in the second
case 16−300 underflows to zero because it is smaller than 10−361, which is less than
realmin.

But there are situations where neither should be zero. Consider the 100× 100
identity matrix I and let A = 16−3I. Then the determinant of A would underflow
to zero, implying that the matrix is singular. Obviously, it isn’t, and indeed all the
singular values σk = 16−3 and so its condition number is 1. It’s even true that solving
Ax = b can be done without rounding error on a binary system (although the result
might overflow if the entries in b are big enough). The two tests for singularity,
namely, the one learned in the first course about the determinant being zero or not,
versus the “nearness to singularity” notion that we get from the SVD, have quite
different behavior, and the second is a good deal more reliable.

The theory of conditioning is elaborate (and indeed we have only just started).
For many reasons, it would be very useful to have a simpler theory, based on some-
thing we know and understand, such as determinants. Unfortunately, there is only
a weak, one-way connection between condition numbers and determinants, as we
will see. Until recently, even this connection was not expected, as is shown by the
following quote from a well-known (and loved) numerical linear algebra book.

It is natural to consider how well determinant size measures ill-conditioning. If det(A) = 0
is equivalent to singularity, is det(A)≈ 0 equivalent to near singularity? Unfortunately, there
is little correlation between det(A) and the condition of Ax = b.

It is evident on a quick inspection that a small determinant does not imply an ill-
conditioned matrix; and the converse is not true either. The examples for both ways
from the book quoted above are
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Bn =

⎡⎢⎢⎢⎣
1 −1 · · · −1
0 1 · · · −1
...

...
. . .

...
0 0 · · · 1

⎤⎥⎥⎥⎦ , (4.40)

which has determinant 1 while 2n−1 < κ(Bn) < n22n−1, and the perfectly condi-
tioned matrix diag(1/10, 1/10, . . . , 1/10) whose determinant is 10−n.

One problem is scaling: If we multiply a matrix A by 10, then the determinant
changes by a factor 10n, while the singular values each change by a factor only
of 10, so that the ratio σ1/σn remains unchanged. Note that scaling by nonconstant
diagonal matrices will indeed affect the singular values, by the way.

If we follow this idea and scale the matrix to make things fair—in particular, if
we equilibrate the matrix by multiplying each row by a factor so that the Euclidean
norm of each new row is just 1—then it turns out that there is a connection, and it is
a very simple one. If M is the equilibrated version of A, then we have

κ(M)<
2

det(M)
(4.41)

and the constant 2 is the best possible. The proofs of this, given in Guggenheimer
et al. (1995), are very instructive and show when this inequality is likely to be tight
(namely, when all singular values but the smallest are roughly equal) and when it
will be loose (namely, when there are many singular values of different orders of
magnitude).

A further difficulty not noted there but worth worrying a little about is the pos-
sibility that row-equilibration might not always improve the condition number; that
is, it might not be necessary that κ(M) ≤ κ(A). But it is shown by Higham (2002
p. 136) that row-equilibration is the optimal row scaling, and in fact we always have
κ(M)≤ κ(A).

This brings up the possibility of column scaling, and there is some interesting
work on this hard problem. As noted by Skeel (1980), to do proper column scaling
for solving a linear system, you have to already know something about the solution,
so this is difficult. However, as noted by van der Sluis (1969), one can find (relatively
simply) a diagonal matrix D1 such that the condition number of AD1 is not too much
larger than the optimal column scaling—at worst, a factor n1/2 larger. The method is
to choose D1 so that

D1AHAD1

has unit diagonal entries. Once that is done, a further row-equilibration can be done
as well. This helps, but automatic scaling isn’t a panacea, and in any case, as the
example below shows, this still doesn’t rescue the determinant as a measure of near-
ness to singularity.

Example 4.11. The row-equilibrated version of the matrix Bn from Eq. (4.40) has
det(Mn) = 1/

√
n!, and hence we know κ(Mn)< 2

√
n!. However, this upper bound is
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Fig. 4.8 Ratio r = (2/det M)/κ2(M) for the matrices Bn after row-equilibration. Dashed line is
without column-equilibration, and we see the bound becoming arbitrarily loose, quickly. With the
simple column scaling first (solid line), the situation is better, but still bad. The closeness of the
determinant to zero cannot be used to measure nearness to singularity

significantly larger than κ(Bn) for large n. That is, this bound can be arbitrarily bad.
Experiments verify that for n ≤ 80, we have κ(Mn) < κ(Bn) < n22n−1 � √

n!. In
this case, the upper bound given by the theorem of Guggenheimer et al. (1995) is
very loose.

For column scaling, computation shows that D1 = diag(1, 1/
√

2, 1/
√

3, . . . , 1/
√

n)
makes the diagonal elements of BT

n B equal to 1. This is within a factor
√

n of opti-
mal column scaling to improve the condition number. When we apply this column
scaling, and then do row-equilibration, we find that, for the example case n = 30,
2/detM is about 52,000 times the 2-norm condition number of M. Without prior col-
umn scaling, the ratio is even higher, namely, about 1.9 · 107. Other dimensions n
are computed and displayed in Fig. 4.8, and we see faster than exponential growth
in the overpredictions by both bounds. This demonstrates that the smallness of the
determinant cannot, even with row and column scaling, always be a good predictor
of nearness to singularity.

Incidentally, the column scaling for this example does improve the condition
number, but not by much; at n = 30, it is only about 6 times better. Most of the
reduction in the ratio is because the determinant is scaled up. In other examples,
column scaling can make the difference between success and failure. The problem
of finding the optimal column scaling is harder than using this simple scaling and is
studied by Watson (1991), for example.

�
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4.6.3 A Naive Way to Compute the SVD

We will not, in this book, study practical or efficient methods to compute the SVD.
However, it is pedagogically valuable to know that there are methods to do so.
Properly, we should leave this story aside until we know how to compute eigen-
values. Yet, at this moment, most readers will believe that there are decent meth-
ods to compute eigenvalues, and so a story that says that we can compute the
SVD if we can compute eigenvalues should be satisfying. This being said, consider
A = UΣΣΣVH ∈ Cm×n. If we further consider the product

AHA = VΣΣΣHUHUΣΣΣVH = VΣΣΣHΣΣΣVH ,

we notice that ΣΣΣHΣΣΣ is diagonal and in Cn×n, with entries σ2
1 ,σ

2
2 , . . . ,σ

2
r ,0,0, . . . ,0

(if r < n) on the diagonal. That is, the eigenvalues of AHA are the squares of the
singular values of A. Incidentally, this shows that, in general, the singular values of
A are not the eigenvalues of A, although if A is symmetric positive definite, they
are. Similarly, we obtain

AAH = UΣΣΣΣΣΣHUH ,

and ΣΣΣΣΣΣH ∈Cm×m and, again, has diagonal entries σ2
1 ,σ

2
2 , . . . ,σ

2
r and possibly some

zeros.
In exact arithmetic or for very small well-conditioned matrices, this is a feasible

method, provided that one grants the capability to compute eigenvalues. But numer-
ically, we are in trouble if σr � σ1, because then σ2

r is even more disadvantaged by
σ2

1 : Rounding errors or data errors will just destroy any accuracy. A better method,
albeit requiring a bit more work, might be to look at the eigenvalues of the matrix[

0 A
AH 0

]
∈C

(m+n)×(m+n) ,

sometimes called the Jordan–Wielandt matrix, which will include ±σ1, ±σ2, . . .,
±σr. This seems to require O((m+ n)3) flops. If m ≈ n, this is 8 times as much
work as an eigenvalue problem of size n× n.

4.6.4 Using Preexisting Software to Compute the SVD

The main algorithms used in practice, the Golub–Kahan–Reinsch and the Chan
algorithms, are described, for example, in Golub and van Loan (1996) and Datta
(2010). Here, we note only that they cost O(n3) flops (with a bigger constant than
QR) and that both algorithms are backward stable (see Fig. 4.9).16 In MATLAB, the

16 In practice, we rely on MATLAB or on LAPACK (Anderson et al. 1999); MAPLE uses the NAG
library code, which itself uses LAPACK.
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computation of the SVD is simplicity itself. For example, let us consider a random
matrix generated by executing a = rand(5); here, in short format, we got⎡⎢⎢⎢⎢⎢⎣

0.8147 0.0975 0.1576 0.1419 0.6557

0.9058 0.2785 0.9706 0.4218 0.0357

0.1270 0.5469 0.9572 0.9157 0.8491

0.9134 0.9575 0.4854 0.7922 0.9340

0.6324 0.9649 0.8003 0.9595 0.6787

⎤⎥⎥⎥⎥⎥⎦ .

We compute the SVD factoring of this matrix by simply executing

100 102 104
10−18

10−16

10−14

10−12

10−10

n

||A
n 

−
 U

 S
 V

’||

Fig. 4.9 Residual in SVD for various random matrices computed by MATLAB’s effective algo-
rithm. The dashed line is a constant times n2

[u s v] = svd(a)

MATLAB returns the following factors:

U =

⎡⎢⎢⎢⎢⎢⎣
−0.2475 −0.5600 0.4131 0.5759 0.3504

−0.3542 −0.5207 −0.7577 −0.0111 −0.1707

−0.4641 0.6013 −0.1679 0.6063 −0.1652

−0.5475 −0.1183 0.4755 −0.3314 −0.5919

−0.5460 0.1992 −0.0298 −0.4369 0.6859

⎤⎥⎥⎥⎥⎥⎦

ΣΣΣ =

⎡⎢⎢⎢⎢⎢⎣
3.3129 0 0 0 0

0 0.9431 0 0 0

0 0 0.8358 0 0

0 0 0 0.4837 0

0 0 0 0 0.0198

⎤⎥⎥⎥⎥⎥⎦
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V =

⎡⎢⎢⎢⎢⎢⎣
−0.4307 −0.8839 0.0530 −0.0884 0.1503

−0.4309 0.2207 0.1961 −0.7322 −0.4370

−0.4617 0.0890 −0.7467 0.3098 −0.3539

−0.4730 0.3701 −0.0798 −0.1023 0.7890

−0.4380 0.1585 0.6283 0.5913 −0.1968

⎤⎥⎥⎥⎥⎥⎦
Moreover, we can compute the residual by executing this command:

resid = a - u * s * v'

In this case, MATLAB returns the matrix

10−15

⎡⎢⎢⎢⎢⎣
−0.1110 0.1943 −0.0278 −0.0278 −0.6661
−0.1110 −0.0555 −0.6661 −0.3331 0.2637
0.1665 −0.3331 0.1110 −0.2220 −0.3331

0 −0.3331 0.1110 0 −0.4441
0.1110 −0.6661 0 −0.1110 −0.2220

⎤⎥⎥⎥⎥⎦
The computed residual above is not, unfortunately, an exact residual (as in the case
of simple matrix–vector multiplication); after all, there are two matrix–matrix mul-
tiplications. But it is a good indication that the factoring is accurate. Given this easy,
reliable way to compute the SVD, we examine some of its applications in what
follows.

4.6.5 Solving Ax = b with the SVD

Let A = UΣΣΣVH , so that U(ΣΣΣ (VHx)) = b. Then we obtain

ΣΣΣ (VHx) = UHb ,

which is computed in m2 flops. If m = n = p = r, we also have

ΣΣΣ =

⎡⎢⎢⎢⎣
σ1

σ2
. . .

σn

⎤⎥⎥⎥⎦ and ΣΣΣ−1 =

⎡⎢⎢⎢⎣
σ−1

1
σ−1

2
. . .

σ−1
n

⎤⎥⎥⎥⎦ .

It is thus easy to compute VHx = ΣΣΣ−1(UHb), an operation that requires O(n) flops.
As a result, we find that

x = V(ΣΣΣ−1(UHb)) .

Alternatively, if we let VHx = y, ΣΣΣy = z, and Uz = b, then we decompose the
problem as follows:
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1. Solve Uz = b for z.
2. Solve ΣΣΣy = z for y.
3. Solve VHx = y for x.

This is equivalent to solving Ax = b for x, but written as a sequence of three simple
“solve” steps.

4.6.6 The SVD and Overspecified Systems

Let A be a tall, skinny matrix with full column rank (i.e., m > n but σn 
 0). Then

ΣΣΣ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

σ1

σ2
. . .

σn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

In this case, Ax = UΣΣΣVHx = b has too many equations, and it is to be solved in
the least-squares sense. But as we have seen, using the SVD, we can minimize the
2-norm of the residual r:

‖r‖2
2 = ‖b−Ax‖2

2 = ‖UHb−UHAx‖2
2 = ‖UHb−ΣΣΣVHx‖2

2.

Now, if we let UHb = w and VHx = z, our objective is to minimize∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
w−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1
. . .

σr

0
. . .

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
z

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

.

We can choose x, which uniquely specifies z. However, we have no choice about w.
In order to minimize the residual, we can choose x so that the entries of z satisfy

zk =
wk

σk
,

but we are helpless thereafter. Choosing zr+1 to zn makes no difference, so that the
residual is given by
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‖r‖2
2 =

can change︷ ︸︸ ︷
r

∑
i=1

|wi −σizi|2 +

cannot change︷ ︸︸ ︷
n

∑
i=r+1

|wi|2 +
m

∑
i=n+1

|wi|2 . (4.42)

This is minimized with the choice zk = wk/σk, for 1 ≤ k ≤ r. We may as well choose
zk = 0 for r+1 ≤ k ≤ n, if any. Then x = Vz gives a least-squares solution. Written
explicitly, it is

x =
r

∑
i=1

wi

σi
vi ,

where wi = ui
Hb, that is, the ith column of U, conjugated and transposed, multiplied

by the right-hand side. Therefore,

x =
r

∑
i=1

uH
i bvi

σi
(4.43)

is “the” least-squares solution. In fact, any choice for zr+1, . . . ,zn gives the same
value for r.

If r < n, A is said to be column rank-deficient, and least-squares solutions are
then nonunique. In that case, the SVD can be used to chose the least-square solution
with minimum norm, which matters in some applications. This idea can be used to
solve linearly constrained least-squares problems, as we will see in Examples 6.9
and 6.10.

4.6.7 Other Applications of the SVD

In what follows, we briefly examine three other interesting applications of the SVD:

1. numerical rank and null space;
2. Moore–Penrose inverse;
3. data compression and approximation by a low-rank matrix.

In addition to being useful, the last one is also very entertaining. There are many
other very nice applications of the SVD given by Muller et al. (2004). We will see
another one in Chap. 6 that has to do with the GCD of approximate polynomials.

Numerical Rank

Suppose that σr+1 �= 0, but that it is pretty tiny, say 10−12σ1. If σr+1/σ1 is small
enough, A can be considered numerically rank-deficient.

Example 4.12. We again return to Example 4.1. As we have noticed, B = AT A,
where
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A =

[
666 665
667 666

]
.

We saw some peculiar behavior when we tried to solve Bx = [0,1]H . Now, we can
explain the forward error, and look at A as well. If we execute A to compute the
singular values, MATLAB returns

103
[

1.3320
0.0000

]
,

and we can find κ(A) = σ1/σn by executing kappa = ans(1)/ans(2), find-
ing the value 1.7742 · 106. Moreover, as we have seen, the reference value of x is
[−665,666]T . Let this be refx. We can then compute the relative forward error, in
2-norm, by executing

relerr = norm( x - refx, 2)/norm( refx )

and find that MATLAB returns 6.6870 ·10−11. For the sake of comparison, comput-
ing a bound for the forward error using Eq. (4.38) by executing

errorbound = kappa*norm(residual,2)/norm([0,1],2)

gives 1.0327 · 10−4. We see in this case that the condition number estimate for the
forward error is a great overestimate; that is, the error is better than it might have
been.

Now let us look at B. In Example 4.7, we have seen how to find a computed so-
lution as well as its residual for Bx = [0,1]H by the QR method. We have found the
residual to be exactly zero and have explained this surprising fact with Theorem 4.1:
The residual is correct only if we allow tiny perturbations to B; thus, we have found
the exact solution to (B+ΔB)x = [0,1]H . This is remarkable, and worth further ex-
ploration, a thing that can be done using the SVD. In Exercise 4.23, you are asked to
see if you can compute (in high precision, say in MAPLE) a tiny perturbation of this
matrix that has this solution. This is followed up by using the SVD in Example 6.9.
Here we also see, as you are asked to show in Exercise 4.25, that the relative forward
error is bounded by the condition number multiplied by the relative backward error,
this time ‖ΔA‖/‖A‖, which we know to be about the size of the machine epsilon. Thus,
for this matrix, the size of the forward error should be about 1012 times 10−16, that
is, 10−4. In fact, if we execute

refx = [-B(2,1), B(1,1)]';
relerr = norm( x - refx, 2)/norm( refx )

MATLAB returns 2.9833 ·10−5. This time, the condition number gave quite a good
estimate of the forward error; that is, the error was very nearly the worst possible.

Notice that B is “almost” a rank-1 matrix. In fact, its singular values are

σ1 = 887113+ 1332
√

443557≈ 1.774 ·106

σ2 =
1
σ1

≈ 5.6362 ·10−7 .
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The matrix A has singular values that are just the square roots of these, so they are
about 103 and 10−3. The condition number of A is about 106, while the condition
number of B is about 1012. Using Theorem 4.6, we can find the nearest rank-1
matrix:

B1 = U
[
σ1

0

]
VH =

⎡⎣ 888445
2 + 591705037

√
443557

887114 443556+ 295408629
√

443557
443557

443556+ 295408629
√

443557
443557

885781
2 + 589930811

√
443557

887114

⎤⎦
≈ B+

[
−0.28128988 ·10−6 0.28181270 ·10−6

0.28181270 ·10−6 0.28223616 ·10−6

]

Remember that ‖B‖2 = σ1 ≈ 1.774 ·106. This matrix, which is so close to B, is, in
fact, singular; in fact, it is the nearest singular matrix. It ought not to be surprising,
then, that solution of this linear system in a floating-point environment will be quite
sensitive to rounding errors; after all, the solution would be quite sensitive to data
errors too. �

If the SVD of A has tiny singular values, say σq+1, σq+2, . . ., σr, and none of
them is zero, then technically the null space of A is empty; but it might be better to
think of the space spanned by vq+1, vq+2, . . ., vr (which is an orthogonal basis, a fact
that is quite convenient) as your “approximate” null space. After all, the norm of Av
will be less than about σq+1 for any vector in that space; in fact, a small O(σq+1)
perturbation of A will have v as a null vector. We remark that each individual vector
in that space is quite sensitive to perturbations, but that the approximate null space
as a whole is relatively stable.

Moore–Penrose Inverse

Let the matrix ΣΣΣ+ be such that ΣΣΣ+ = diag(σ−1
1 ,σ−2

2 , . . . ,σ−r
r ,0, . . . ,0) and

A+ = VΣΣΣ+UH .

Then, the Moore–Penrose conditions, which are

AA+A = A

A+AA+ = A+

(AA+)H = AA+

(A+A)H = A+A ,

all hold (see, e.g. Golub and van Loan 1996). For singular A, and some applications,
A+ is as good as an inverse.
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Data Compression or Approximation by a Lower-Rank Matrix

Let the matrix A be factored using the SVD, so that

A = UΣΣΣVH =

(
r

∑
i=1
σiui

)
VH =

r

∑
i=1
σiuivH

i .

Now, keep only the few largest singular values σi; that is, take

A ≈
few

∑
i=1
σiuiv∗i =: Afew , (4.44)

which uses only a few ui and vi to represent A. The next singular value tells us how
closely this low-rank approximation is to A; namely,

‖A−Afew‖
‖A‖ =

σfew+1

σ1
.

Example 4.13. Consider the closeup photograph of a tawny frogmouth (Podargus
strigoides), displayed in Fig. 4.10. Taking the data for this picture, we get three
matrices each of size 985× 1314 (some digital zoom and select was used). We take
the SVD of those matrices and find by inspection of the singular values that most
of them are quite small compared to the first 25. We compute the nearest rank-
25 matrices to these by zeroing out all singular values but these, and reconstruct
the matrices using Eq. (4.44). This gives the picture displayed in Fig. 4.11. This
compression has been done using the following code, which is worth examining in
order to understand the power and simplicity of the SVD.

Fig. 4.10 A close-up of a tawny frogmouth sitting on RMC’s rental car at Australian National
University in 2011
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Fig. 4.11 The same picture, but with only 25 nonzero singular values instead of 985. This repre-
sents a significant compression: The picture can be stored or transmitted using only 25 u-vectors,
v-vectors, and singular values, reducing the storage per matrix from 985× 1141 bytes (or about
1000 Mbytes) to about 50 Kbytes. Of course, the image quality suffers, but the bird is recognizable

1 function pcargbtawny2
2

3 %Get data
4 Y = imread('tawny.bmp','bmp');
5 [m,n,o]=size(Y)
6 image(Y)
7 %colormap(gray(256))
8 axis image, axis off
9

10 class(Y)
11

12 %Convert matrix to double so that we can use the command svd
13 %we'll have to re-convert to uint8 later to use image properly.
14 X=double(Y);
15

16 % %Now, let's look at a logarithmic plot of the singular values
17 Xr=X(:,:,1);
18 Xg=X(:,:,2);
19 Xb=X(:,:,3);
20 [Ur,Sr,Vr] = svd(Xr);
21 sigmar=diag(Sr);
22 figure
23 semilogy(sigmar,'.')
24 [Ug,Sg,Vg] = svd(Xg);
25 sigmag=diag(Sg);
26 figure
27 semilogy(sigmag,'.')
28 [Ub,Sb,Vb] = svd(Xb);
29 sigmab=diag(Sb);
30 figure
31 semilogy(sigmab,'.')
32
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33 %Finally, let's compress the image, keeping only k singular
values.

34 k=25;
35 AppXr=zeros(m,n);
36 AppXg=zeros(m,n);
37 AppXb=zeros(m,n);
38 for i=1:k
39 AppXr=AppXr+sigmar(i)*Ur(:,i)*Vr(:,i)';
40 AppXg=AppXg+sigmag(i)*Ug(:,i)*Vg(:,i)';
41 AppXb=AppXb+sigmab(i)*Ub(:,i)*Vb(:,i)';
42 end
43 AppX(:,:,1)=AppXr;
44 AppX(:,:,2)=AppXg;
45 AppX(:,:,3)=AppXb;
46

47

48 AppX=uint8(AppX);
49 figure
50 image(AppX)
51 axis image, axis off
52

53 end

�

4.7 Solving Ax=b with the LU Factoring

We at last rejoin the mainstream of numerical analysis texts, with a consideration
of Gaussian elimination. We begin with a small example. Suppose we are given a
system of equations such as

2x1 + 2x2 + 4x3 =−10

3x1 + 5x2 + 7x3 =−11

x1 + 7x2 + 7x3 =−6 .

We know that we can solve this system using Gaussian elimination, adding multiples
of one row to another in order to remove (eliminate) variables from equations, one
by one. To begin with, we could add −3/2 times the first row to the second, and −1/2

times the first row to the third. Continuing in this way, working with the augmented
matrix, we obtain

[
A b

]
=

⎡⎣2 2 4 −10
3 5 7 −11
1 7 7 −6

⎤⎦ elimination−−−−−−→
⎡⎣ 2 2 4 −10

0 2 1 4
0 0 2 −12

⎤⎦=
[

U b2
]
. (4.45)

From the upper-trapezoidal augmented matrix, we then find that x = [2,5,−6]T by
back substitution.
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In the process of reduction, we have subtracted multiples of rows from other
rows. Specifically, to reduce the first column, we have added −3/2 times row 1 to row
2, and −1/2 times row 1 to row 3. To reduce the second column, we have added −3
times the new second row to the new third row. In this form, however, the operations
executed are not recorded. But we can record those operations, by encoding the row
operations as matrix multiplications. The so-called elementary matrix L1 and its
inverse L−1

1 (also an elementary matrix), given by

L1 =

⎡⎣ 1 0 0
3/2 1 0
1/2 0 1

⎤⎦ and L−1
1 =

⎡⎣ 1 0 0
−3/2 1 0
−1/2 0 1

⎤⎦ ,

play a starring role. When multiplied on the left to A, L−1
1 can be interpreted as

adding −3/2 times row 1 to row 2, and adding −1/2 times row 1 to row 3. Thus, we
can write

A = L1L−1
1 A = L1

⎡⎣ 2 2 4
0 2 1
0 6 −1

⎤⎦ ,

and we have now reduced the 3× 3 problem to a 2× 2 problem. The next step pro-
ceeds in the same way; indeed, this construction provides a viable recursive formu-
lation for the LU factoring if we embed the smaller factoring in the lower-right-hand
corner, as follows:

A = L1

[
1 0
0 L2

]⎡⎣ 2 2 4
0 2 1
0 0 −4

⎤⎦ with L2 =

[
1 0
3 1

]
.

Grouping the lower-triangular elementary matrices together, we arrive at A = LU,
all by the simple act of recording the multiples of the “pivot” row used for elimina-
tion.

Just to be absolutely clear, the key step requires understanding what the inverse
L−1 of an elementary matrix L is. Another example of this would be

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 4 1 0 0 0 0
0 0 5 0 1 0 0 0
0 0 6 0 0 1 0 0
0 0 7 0 0 0 1 0
0 0 8 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and L−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 −4 1 0 0 0 0
0 0 −5 0 1 0 0 0
0 0 −6 0 0 1 0 0
0 0 −7 0 0 0 1 0
0 0 −8 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The product of a sequence of such elementary triangular pieces (in the right order)
will build up a lower-triangular matrix; inserting pairs LL−1 into A1A2=A1LL−1A2
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allows the gradual splitting of two initial factors IA into a product of a lower-
triangular factor and an upper-triangular factor. That is so, provided that no zero
pivots are encountered.

Why factor, when one can use elimination? The first answer to this is that one
might wish to solve Ax= b for several right-hand-side vectors b. In that case, rather
than redo the elimination each time, one can store the factors and for each b solve
the two triangular systems to get the correct x each time. Another answer is that
the factoring often reveals useful information about the matrix itself; sometimes the
factoring is the solution to the question one ought to have been asking.

4.7.1 Instability of Elimination Without Pivoting

That Gaussian elimination is the same as LU factoring is a basic fact of linear alge-
bra. However, the story does not end here in numerical linear algebra. Consider the
following system: [

ε 1
1 1

][
x1

x2

]
=

[
3
7

]
.

By inspection, we see that if |ε| � 1, the solution should be close to x = [4, 3]T .
Using Gaussian elimination, but this time with floating-point arithmetic, we obtain
the following:

[
ε 1 3
1 1 7

] R2 � 1
ε
⊗R1

−−−−−−−−−−−−→
[
ε 1 3
0 1− 1/ε 7− 3/ε

]
,

We follow this operation with a back substitution, also in floating-point arithmetic:

x2 =

(
7− 3

ε

)
�
(

1− 1
ε

)
x1 = (3� x2)� ε

In MATLAB, if we let ε = 10−16, we obtain the solution

x =

[
8.881784197001252
2.999999999999999

]
,

which is a far cry from the reference answer near [4,3]. And yet, this matrix is quite
well-conditioned. It is easy to see that, for floating-point arithmetic of any given
precision, we will be able to find some values of ε for which Gaussian elimination
will return dramatically wrong answers. The source of the error lies in the bad nu-
merical management of matrix entries of very different orders of magnitude. Since
the pivot (i.e., the akk entry occurring as divisor in the multiplier) is very small
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compared with the other subdiagonal entries, the multiplier is very large, much
larger than the largest subdiagonal entries. Consequently, significant floating-point
error will accumulate through the algorithm.

The backward error way of viewing the difficulty is to realize that there is, in
general, no bound on ΔA such that the computed L and U are the exact factors of
A+ΔA. For this example,[

ε 1
1 1

]
=

[
1 0

1/ε 1

][
ε 1
0 1− 1/ε

]
if exact arithmetic is used. The problematic case in floating-point is the computa-
tion of 1− 1/ε, which will round to −1/ε (assuming ε is such that this is machine-
representable) if ε < μM, the unit roundoff. Even with just this single rounding error
(no accumulation of error is necessary to demonstrate the problem) we have that the
computed factors are the exact factors not of the original matrix, but of[

ε 1
1 0

]
which differs by 1 from the original matrix, which is unboundedly larger than the
size of ε . That is, the computed LU factors are not the exact factors of any nearby
matrix.

On the other hand, a conventional way of viewing the difficulty is to use the
growth factor bound ρ , which is the ratio of the maximum element growth that

occurs in elimination. Let a(k)i, j be the entries in the matrix after k steps of elimination.
Then ρ is defined as follows:

ρ :=
max
i, j,k

∣∣∣a(k)i, j

∣∣∣
max

i, j
|ai, j| .

In the example above, the multiplier for the row-reduction is ε−1. Thus, the growth
factor is such that ρ = O(1/ε). The significance of the growth factor is seen from the
following consideration. Assuming that no actual zero pivots are encountered (in
which case the algorithm terminates incomplete), Gaussian elimination produces a
solution x̂ that is the exact solution of (A+ΔA) x̂ = b, with

‖ΔA‖∞ ≤ cn3ρu‖A‖∞ ,

where c is a modest constant. However, for Gaussian elimination without pivoting,
ρ can be unboundedly large as we have seen. As a result. the forward error can
subsequently be large as well.

One solution to this problem consists in partial pivoting, which simply exchanges
two rows in the current submatrix to ensure that the pivot used has the largest
magnitude in the remainder of the column. This is not the only possible strategy,
although it is very commonly used. Complete pivoting consists in looking at the
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not-yet-reduced submatrix for the largest entry in absolute value; we then inter-
change rows and columns so that the pivot is this entry. Partial pivoting is less
costly, since it only searches one column used to find a multiplier. We refer to Gaus-
sian elimination with partial pivoting as GEPP.

To be concrete, if, at the kth step of Gaussian elimination, we have a matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1k . . . a1n

a22 . . . a2k . . . a2n
. . .

...
...

akk . . . akn
...

...
amk . . . amn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

then we want the pivot pk to be

pk = max
{|akk|, |ak+1,k|, . . . , |am−1,k|, |amk|

}
.

We thus exchange the rows (or, equivalently, pointers to the rows) so that pk be-
comes the new akk entry.

As is the case for simple Gaussian elimination, GEPP can be understood as a
factoring. First, observe that just as adding a multiple of a row to another can be
encoded as a multiplication on the left by an elementary matrix, also note that a
row exchange can be encoded as a left multiplication by an elementary permuta-
tion matrix, namely, an identity matrix in which rows have been interchanged. For
instance, if

P =

⎡⎢⎢⎣
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎤⎥⎥⎦ ,

then PA would exchange rows 1 and 4 in A. Second, one should understand how the
elementary permutations that we need for pivoting percolate through elementary
matrix encodings of row operations. Once that is understood, then it is obvious that
GEPP can be understood as a matrix factoring. The key observations, which are
easier to understand by running the MATLAB demo lugui than reading this, are
that elementary row-permutation matrices are their own inverses (exchanging rows
back again) and that when multiplied on the left, they interchange columns; in order
to make the result lower-triangular again, one has to interchange rows again. Briefly,
A =LU=L(PP)U, and then A= (LP)Û, so PA= (PLP) Û. If the matrix L has an
identity matrix block in the lower-right corner, then exchanging any two columns of
that block, followed by exchanging any two rows of that block, as the product PLP
does, leaves the result lower-triangular.

Thus, GEPP proceeds in a way similar to GE, except that a sequence of permuta-
tion matrices is included, so that the pivots have the largest magnitude entries. If all
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possible pivots have zero magnitude (unlikely as this is in floating-point arithmetic),
then the matrix is singular. The permutation matrix is determined by the indices k
and the number of the row j (k ≤ j ≤ m) with the largest entry. We thus obtain a
product of matrices of the form

U = Rn−1Pn−1 . . .RkPk . . .R2P2R1P1A .

Note that all the subdiagonal entries of RkPk . . .R2P2R1P1A are zero, so U is upper-
triangular.

Percolating the permutation matrices through the elementary lower-triangular
matrices as discussed shows that Gaussian elimination with partial pivoting is equiv-
alent to a

PA = LU

factoring, where P is a permutation matrix (being a product of the elementary per-
mutations that encode the row exchanges that took place), L is unit lower-triangular,
and U is upper-triangular. If A is rectangular, we can use the Turing factoring
PA = LD−1UR, where R is the row-echelon form.17 Indeed, there are a great many
variations of the LU factoring.

On the basis of the PA = LU factoring, we can also solve the equation Ax = b
in a straightforward manner. We need only notice the following implications (in the
square nonsingular case):

Ax = b ⇒ PAx = Pb ⇒ LUx = Pb.

So, we can split the system so that L(Ux) = Pb and solve

Ly = Pb ,

where y = Ux. Then we solve

Ux = y .

These are cheap to solve: O(n2) given the factoring, which costs O(n3) (see
Fig. 4.12). In MATLAB, we use lu or \ (backslash).

The alert reader will have noticed that we have not provided a formal algorithm
for PA = LU factoring. Algorithms can be found, for example, in Golub and van
Loan (1996) and in many other places; but implementing such algorithms is another
story. There are a great many details that deserve attention (for example, efforts to
avoid overflow and underflow if it isn’t necessary). Frankly, we’re all better served
to use the very fine implementations provided by LAPACK (and thereby MATLAB

and MAPLE, for instance). One hopes that the essence of the algorithms will have
been conveyed by the foregoing discussion.

17 See Corless and Jeffrey (1997).
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PA = LU factoring takes cpu time O(n3)

Fig. 4.12 Computing time for PA=LU. Notice that we may solve larger systems with PA=LU in
the time it takes SVD to solve smaller systems; but there is more information in an SVD solution.
The reference line is a constant times n3

4.7.2 Numerical Stability of Gaussian Elimination

If Gaussian elimination without pivoting does not encounter a zero pivot, Wilkinson
(1963) showed that there exists a matrix E such that

(A+E)x̂ = b ,

with ‖E‖∞ ≤ cn3ρ‖A‖∞, where ρ measures the growth of the maximum element
during the process. It can happen that ρ is arbitrarily large, for general matrices.
For some restricted classes of matrices, such as diagonally dominant or tridiagonal
matrices, ρ is bounded.

As we have mentioned, pivoting improves the situation. The PA = LU factoring
(which can be computed with n3/3 flops) is such that

ρ ≤ 2n−1

for nonsingular matrices and attains this bound only in rare examples (see Trefethen
and Schreiber 1990). Both complete pivoting and rook pivoting have better bounds,
but are not used as often because they are more expensive and partial pivoting usu-
ally works well in practice.

In practice, ρ is almost always small for GEPP, but this fact calls out for a serious
explanation, such as is begun in the reference just cited. We do not discuss this fur-
ther in this book, but instead rely on a posteriori computation of the residual, which
provides a guarantee for any particular computation.18 See Fig. 4.13 this backward

18 Moreover, the Oettli–Prager result that we will see in Sect. 6.6 gives us a computable minimal
backward error. Also, as we will see in Chap. 6, a single pass of iterative improvement will fix
many cases where the growth factor is unacceptably large.
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error bound difficulty is why we have postponed the LU factoring until the end of
the chapter.

100 101 102 103 104 105

10−16

10−15

Residuals ||PA − LU||/||A|| grow like O(n1/2)

n

||P
A

 −
 L

U
||/

||A
||

Fig. 4.13 Scaled residual in PA = LU, that is, ‖PA−LU‖/‖A‖ vs n, for A = rand(n), with n
being some Fibonacci number up to n = 10,946

Example 4.14. Again, let A = BT B, where

B =

[
666 665
667 666

]
.

We will again solve the equation Ax = b, where b = [0,1]T . Here, instead of using
the QR factoring, we use MATLAB’s built-in backslash solver, which in this case
uses the LU factoring. We will see a behavior similar to what was observed when
we used the QR factoring or the SVD to solve the problem. So let us execute the
command

x = A\b,

which returns

x = 105
[−8.871583031996495

8.884913727761688

]
.

We can then compute the residual a posteriori by simply executingr = b - A*x;
once again, we find that the computed residual is r = [0,0]T .

The entries of x ought to be (and would be if we were using exact arithmetic) just
integers; they are not. Indeed, they are different from what we expect, already in the
fifth significant digit. When we compute the residual (using IEEE double-precision)
the answer is exactly zero, as it was for the SVD solution—that is, MATLAB is con-
tending that we have found the exact solution. And so we have. We have found the
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exact solution to (A+ΔA)x = [0,1]H , and moreover we know that the entries of
ΔA are at most εM times the corresponding entries of A. We saw this before, but it
seems so extraordinary that we want to verify it by computing in higher precision
(as you are asked to do yourself in Problem 4.23). We import the MATLAB results
into MAPLE, and compute using (say) 100 digits there. We look for minimal per-
turbations δi j so that the perturbed matrix equation has this exact solution, and we
find that

ΔA =

[−1.8214× 10−11 1.8242× 10−11

1.1186× 10−11 −1.1203× 10−11

]
works very well.19 Notice that each entry of A is about 106; indeed, when we divide
each of the entries in ΔA above by the corresponding entry of A, we get[−2.0501× 10−17 2.0563× 10−17

1.2609× 10−17 −1.2648× 10−17

]
.

That is, MATLAB did not lie to us: That solution, strange as it seems, is the exact
solution of a linear system that is within machine epsilon (in a relative sense) of the
specified (integer) system.

We can again use the SVD to help us to explain the forward error. As we noted,
the ratio of the largest to the smallest singular values was about 1012. Thus, the
forward error can be expected to be about 1012 · 10−16, that is, 10−4. When we
compute the relative forward error by executing

relerr = norm( x - refx, 2)/norm( refx )

(where x=A\[0,1]’), we find the value 5.2195 ·10−5, which is the right order of
magnitude (and about twice what the forward error in the SVD solution was). �

Remark 4.6. Above we have shown how to compute the residual a posteriori. This
being said, we emphasize that until you compute the condition number, you haven’t
finished solving your problem. The condition number explains forward error, given
numerical rounding and approximation errors in the solution, yes; but that’s not its
most important purpose. It also explains the sensitivity of the solution to data error,
which you have to think about anyway. �

4.8 Why Not Use A−1?

In a first course in linear algebra, one is taught about the inverse: If the determinant
is not zero, the inverse exists, and the solution of Ax = b is just x = A−1b. In this
section, we ask whether the matrix A−1 should be used in numerical linear algebra.

19 It’s not symmetric, though; but with about the same effort we can, in fact, find a symmetric
perturbation that is very nearly as small.
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The question arises because we typically don’t have to use it; as Forsythe and Moler
(1967) observe, “[A]lmost anything you can do with A−1 can be done without it.”

The first reason for which one does not usually compute the inverse in order to
solve the system is simply cost. One way to compute the inverse, often the cheapest
way, is to use Gaussian elimination on an augmented matrix, and one can easily
check that the cost is about the same as that of one LU factoring plus 2n solutions of
triangular systems, plus a final matrix multiplication. This should be compared with
the cost of one LU factoring plus 2 solutions of triangular systems. Since a matrix
multiplication costs about twice what the solution of a triangular system is, one sees
that, in terms of cost, the PA = LU factoring wins.

The second reason is more subtle. Backward error results exist for the solution of
Ax = b; each computed solution is the exact solution of a nearby linear system. But
the computed matrix inverse is not usually the exact inverse of a very nearby matrix!
Instead, each column of the computed inverse is the exact column of the inverse of
a nearby matrix—which is not quite the same thing. This distinction complicates
some numerical analyses.

Nonetheless, for some applications, one indeed wants to know the inverse—the
entries of the inverse may be the numbers one wants to know. In that case, it turns
out that a mixed backward and forward error analysis is best. The computed entries
of the inverse are then supposed to be (and estimated to be) nearly the exact entries
of the inverse of nearly the right matrix. We do not pursue this further here.

Example 4.15. Consider the usual formula for complex division:

u+ iv =
a+ ib
c+ id

=
(a+ ib)(c− id)

c2 + d2 =
ac+ bd
c2 + d2 + i

bc− ad
c2 + d2 . (4.46)

As discussed by Higham (2002), although this formula looks innocuous enough, it
is susceptible to overflow or underflow at intermediate stages in the computation—
both bc and c2 may overflow, for example, while their ratio would fit quite nicely into
the range of standard floating-point numbers. This difficulty has produced several
responses.20 Here we look at a very simple approach21: Replace a formula with an
algorithm directly motivated by factoring a matrix problem. The underlying idea is
that complex numbers can be concretely realized as matrices; indeed, the complex
number c+ di can be thought of as the real matrix[

c −d
d c

]
and the process of complex division above can be interpreted as the solution of the
linear system

20 They include a much-used algorithm due to Smith (1962), a modification for increased robust-
ness and accuracy by Stewart (1985), and most recently an efficient and very robust algorithm
discussed in Priest (2004).
21 We admit that this approach is not practical since it is at least 50% too expensive, because it
doesn’t use the symmetry. This is really just for practice with factoring.
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c −d
d c

][
u
v

]
=

[
a
b

]
.

Of course, the inverse of this 2×2 matrix is easily available and leads us directly to
the formula used above, which suffers from overflow and/or underflow.22 What if,
instead of using the inverse, we factor the matrices? For example, we might choose
to use the PA = LU factoring, pivoting if |d|> |c| (or, equivalently, dividing −i(a+
ib) by −i(c+ id)).23 Because of the pivoting, we can assume therefore that |d| ≤ |c|.
Then no overflow can occur if we divide c by d, although underflow certainly may.
If we do so, we find that the factoring is[

c −d
d c

]
=

[
1 0

d/c 1

][
c −d
0 c+(d/c)d

]
,

where the parenthesized formula c+(d/c)d is used because again it almost always
won’t overflow (whereas d2/c is much more likely to). Then, solving the factored
equations and unrolling the loops gives us the following algorithm for complex
division:

t0 = d/c

t1 = b− t0a

t2 = c+ t0d

v =
t1
t2

u = a/c+ t0v . (4.47)

This is no more susceptible to overflow or underflow than the ordinary solution of
2× 2 systems,24 and it has the usual normwise backward error together with the
usual normwise condition number forward error. This is quite good—much better
than the formula arising from the inverse matrix—but not perfect, and in partic-
ular not as good as the method described by Stewart (1985). Note that while the
backward error is good, it does not respect the structure of the matrix (i.e., it does
not automatically show that we have done an exact division by a different complex
number c(1+ δc)+ id(1+ δd), although we will show how this can work, below),
and it does not guarantee relative accuracy in each of the real and imaginary parts
of the answer, u and v. But it works and avoids overflow and underflow to a large
extent.25

22 This is a bit of a straw man; of course, we could fix up the inverse formula, so this example isn’t
really a strong argument against using the inverse explicitly but still it gives some flavor.
23 An alternative would be to use QR, which is greatly assisted by the fact that the columns of
the matrix are already orthogonal; indeed, this amounts to converting the denominator to polar
coordinates. We ignore that option for now.
24 And it is no less susceptible, either. We did say this wasn’t a practical algorithm. But it’s better
than the naive formula.
25 Its real flaw is that it takes 6 real flops, whereas the formula of Smith takes only 4, making this
example only of didactic interest.
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Continuing the analysis, we want to find the residual, which is given by

r =
[

a
b

]
−
[

c −d
d c

][
û
v̂

]
.

We can then try to look at the minimum backward error (in some sense; below we
use least-squares); that is, find perturbations c+Δc, d +Δd, a+Δa, and b+Δb
such that

(û+ iv̂)(c+Δc+ i(d+Δd)) = a+Δa+ i(b+Δb) ,

in a way that makes some norm of the vector [Δa,Δb,Δc,Δd] as small as possible.
When we use least-squares, a short computation gives

Δa =− r1

1+ρ2 , Δb =− r2

1+ρ2 , Δc =
ûr1 + r2v̂

1+ρ2 and Δd =
ûr2 − r1v̂

1+ρ2 , (4.48)

where ρ is the magnitude of the computed answer, ρ =
√

û2 + v̂2. Since by the
standard backward error results we have that the residual components r1 and r2 are
of the order of εM‖[a,b,c,d]‖∞, this shows that the backward error of this approach
is also small. For the condition number, see Problem 3.12. �

4.9 Relative Costs of the Different Factorings

We have already discussed the cost of various factorings and algorithms in the previ-
ous sections of this chapter by means of the flop count. As previously mentioned, the
flop count does not fully reflect the actual computation time that an actual modern
computer will use, although for MATLAB it does give a rough idea. In this section,
we explain how to evaluate the relative costs of different factorings in a simple and
practical way. The Schur factoring is discussed in Chap. 5. To begin, consider this
code:

1 function [tlu,tqr,tschur,tsvd] = cost(n)
2 % [tlu,tqr,tschur,tsvd] = cost(n)
3 % avg time for five tries.
4 % Each routine called once before timing starts, to eliminate

loading effects
5 a = rand(n);
6 t0 = clock;
7 [u,s,v] = svd(a);
8 [q,r] = qr(a);
9 [u,t] = schur(a);

10 [L,u,p] = lu(a);
11 t = etime(clock,t0);
12 f=1; % retain dependence on n, expected to be O(nˆ3)
13 tlu=0;
14 tqr=0;
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15 tschur=0;
16 tsvd=0;
17 for i = 1:5,
18 a = rand(n);
19 t0 = clock;
20 [L,u,p] = lu(a);
21 tlu = tlu + etime(clock,t0);
22 t0 = clock;
23 [q,r] = qr(a);
24 tqr = tqr + etime(clock,t0);
25 t0 = clock;
26 [u,t] = schur(a);
27 tschur = tschur + etime(clock,t0);
28 t0 = clock;
29 [u,s,v] = svd(a);
30 tsvd = tsvd + etime(clock,t0);
31 end;
32 tlu = tlu/5/f;
33 tqr = tqr/5/f;
34 tschur = tschur/5/f;
35 tsvd = tsvd/5/f;

It measures the computation time in MATLAB for four different factorings: LU, QR,
Schur, and the SVD. We can then execute this code:

1 nstart = 11;
2 nmax = 50;
3 data = zeros(nmax-nstart+1,4);
4 for n=nstart:nstart+nmax,
5 [tlu,tqr,tschur,tsvd] = cost(5*n);
6 data(n-nstart+1,1) = tlu;
7 data(n-nstart+1,2) = tqr;
8 data(n-nstart+1,3) = tschur;
9 data(n-nstart+1,4) = tsvd;

10 end;
11 en = linspace( 5*nstart, 5*(nmax+nstart)+nmax, 6*nmax-5*nstart );
12 n = (nstart:nstart+nmax);
13 A = [ (5*n).ˆ3', (5*n).ˆ2', 5*n', ones(size(n))' ];
14 lufit = A\data(:,1);
15 qrfit = A\data(:,2);
16 schurfit = A\data(:,3);
17 svdfit = A\data(:,4);
18 lun = polyval( lufit, en );
19 qrn = polyval( qrfit, en );
20 schurn = polyval( schurfit, en );
21 svdn = polyval( svdfit, en );
22 figure(1), plot( en, lun, 'k-', 5*n, data(n-nstart+1,1), 'k+' )
23 figure(2), plot( en, qrn, 'k-', 5*n, data(n-nstart+1,2), 'k+' )
24 figure(3), plot( en, schurn, 'k-', 5*n, data(n-nstart+1,3), 'k+'

)
25 figure(4), plot( en, svdn, 'k-', 5*n, data(n-nstart+1,4), 'k+' )
26 figure(5), semilogy( en, lun, 'k-', 5*n, data(n-nstart+1,1), 'k+'

, ...
27 en, qrn, 'k--', 5*n, data(n-nstart+1,2), 'ko',

...
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28 en, schurn, 'k-.', 5*n, data(n-nstart+1,3), '
kx', ...

29 en, svdn, 'k:', 5*n, data(n-nstart+1,4), 'k.'
)...

30 , axis( [5*nstart,nstart+6*nmax,10ˆ(-3)
,2*10ˆ(0)]);

31 set(gca,'fontsize',16);
32 xlabel('n','fontsize',16);
33 ylabel('cpu time (seconds)','fontsize',16);

On a 2009 tablet PC, we obtained the following results:

>> data(end,:)
ans =

0.0166 0.0622 0.8326 0.2678

These numbers are the average number of seconds required to compute the LU fac-
toring, the QR factoring, the Schur factoring, and the SVD of five random matrices
of dimension 555× 555, respectively. We observe that

SVD ≈ 16 ·LU

Schur ≈ 50 ·LU

QR ≈ 3.7 ·LU .

This explains why the LU factoring is so often the method of choice: It is much
the fastest. We also observe an O(n3) behavior, as theory says that we should. See
Fig. 4.14. With this type of behavior in mind, we can estimate answers to questions
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Fig. 4.14 Average timings for various factorings: LU (solid line, with + for data); QR (dashed
line, with circles); SVD (dotted line, with . for data); and the Schur factoring (dash-dot line, with
x’s). The lines are least-squares fit to the data of polynomials cubic in the dimension n
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of this kind: If LU decomposition takes 0.0166s for n = 555, how long would it take
for n = 600,000? Evaluating our polynomial fit, we predict by executing

polyval( lufit, 600000 )/3600/24/7/4

that it will take 1.2813 (in units of four-week months). Or rather, it would be the
case if the computer could even store the 600,000× 600,000 matrix!

4.10 Solving Nonlinear Systems

At the end of Chap. 3, we showed how to transform the question of solving a non-
linear system of equations F(x) = 0 into a sequence of linear systems of equations.
We began with an initial guess x0, and linearized the problem about that point:

0 = F(x0)+ JF(x0)(x− x0)+ · · · (4.49)

leading to the linear equations

JF(x0)Δx =−F(x0) . (4.50)

To solve this, the matrix J is then factored, often with a PA = LU factoring, and the
unknown vector Δx is solved for. We then put x1 = x0 +Δx and repeat the process.
On every step of this process as laid out here we must evaluate the function F,
evaluate the Jacobian matrix JF(xk), and factor the matrix once evaluated (it is this
cost that is often the largest on any step).

Notice also that at each stage the function F must be evaluated at the current
estimate of the root. The size—the norm of the vector—of this function value tells
us something about the backward error: xk is the exact solution of the (possibly
nearby) function F(x)−F(xk). It is up to the modeler to decide if this modified
problem is near enough to the one whose solution was desired.

As usual, it is also possible to estimate the forward error in some cases, by look-
ing at the norm of the Jacobian matrix JF(xk). Once the iteration has started to
converge, the next iterate will be more correct than the current one: Comparing two
successive iterates is equivalent to using the condition number estimate from the
Jacobian to decide the accuracy of the earlier iterate.

Newton’s method can be sped up, or made more reliable (sometimes both) by
various modifications. Reusing a Jacobian matrix (and its factoring) for a few iter-
ations can be helpful sometimes; this lowers the asymptotic convergence rate but
also lowers the cost per step. One can choose a damping parameter μ < 1 and up-
date xk+1 = xk + μΔx; that is, we don’t take the full Newton step but proceed cau-
tiously. Again, this lowers the asymptotic convergence rate but can damp unwanted
oscillations about the reference solution. There are many variants. For a thorough
exploration of the current state-of-the-art, see Deuflhard (2011).

Example 4.16. Consider the Lorenz system, which is a system of three first-order
differential equations:
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.
x = yz−βx x(0) = a
.
y = σ(z− y) y(0) = b
.
z = y(ρ− x)− z z(0) = c

. (4.51)

We use Saltzman’s values of the parameters: σ = 10,ρ = 28, and β = 8/3. We will
take a= 27, b=−8, and c= 8 initially. The following nonlinear system of equations
arises on using the implicit midpoint rule (to be studied in Chap. 13) for solving the
Lorenz system:

x = a+Δt

(
(b+ y)(c+ z)

4
− β (a+ x)

2

)
y = b+

Δtσ (c+ z− b− y)
2

z = c+Δt

((
b
2
+ y/2

)(
ρ− a

2
− x

2

)
− c

2
− z

2

)
, (4.52)

where the unknowns to be solved for are (x,y,z), the constants a, b, and c are known
(they are the midpoint rule approximations of the components at the current value
of t), and the time-step Δt is also known during the solution process and presumed
to be “small,” although in practice we want to take it as large as possible. Moreover,
we find that the Jacobian matrix is

J =

⎡⎣1+ Δtβ/2 −Δt (c+ z)/4 −Δt (b+ y)/4

0 1+ Δtσ/2 −Δtσ/2

Δt (b+ y)/4 −Δt/2 (ρ− a/2− x/2) 1+ Δt/2

⎤⎦ . (4.53)

As you can see, it depends not only on the parameters and on a, b, c, and Δt , but
also on the (so far unknown) x, y, and z.

To get started, we need an initial guess. One could use an Euler method predictor,
or a higher-order explicit predictor, but for the purposes of this example we will just
use x0 = a, y0 = b, z0 = c (with the Saltzman values), and Δt = 0.05. Then the value
of F is ⎡⎣ 6.8

−8.0
0.80

⎤⎦ , (4.54)

which isn’t very small. Moreover, the value of the Jacobian at the initial guess is

J0 =

⎡⎣1.06666666666667 −0.2 0.2
0 1.25 −0.25

−0.2 −0.025 1.025

⎤⎦ , (4.55)

and this matrix factors as follows:

J0 =

⎡⎣ 1 0 0
0.0 1 0

−0.1875 −0.05 1

⎤⎦⎡⎣1.06666666666667 −0.2 0.2
0.0 1.25 −0.25
0.0 0.0 1.05

⎤⎦ . (4.56)
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Finally, the first change is

Δ0 =

⎡⎣−4.93571428571436055
6.08095238095237888
−1.59523809523810932

⎤⎦
As a result, the next iterate [x(1),y(1),z(1)] is⎡⎣ 22.0642857142856386

−1.91904761904762111
6.40476190476189089

⎤⎦ . (4.57)

This is already a better solution (mostly because h = 0.05 is pretty small); its resid-
ual is

F(x1) =

⎡⎣ 0.121257086167793737
8.88178419700125232×10−16

−0.375173044217692376

⎤⎦ . (4.58)

But three more iterations get us to

x4 =

⎡⎣ 21.9216316009086648
−1.84806892654072974
6.75965536729635108

⎤⎦ , (4.59)

and the norm of the residual F(x4) is then 5 · 10−16; then no further iterations are
necessary.

We remark that in this example the Jacobian matrix was very well-conditioned
so the linear system solving was very accurate. The nonlinear system is also very
well-conditioned, and these two facts are related. We also remark that the nonlinear
system of equations has more than just this one solution. In fact, there are three
pairs (x,y) that solve these polynomial equations (we found these by an eigenvalue
technique that will be sketched in Chap. 5):⎡⎣ 21.9216 −1.8481 6.7597

−380.1483+ 47.8430 i 6.5240+ 82.9117 i 48.6202+ 414.5585 i
−380.1483− 47.8430 i 6.5240− 82.9117 i 48.6202− 414.5585 i

⎤⎦ .
You see the solution found by Newton’s method appears in the first line and also that
there are in addition two complex roots. The solution found by Newton’s method
is indeed the desired solution for this application—the solution near the values of
x(t),y(t), and z(t) at the previous value of t is what is wanted—but you can also see
that in other cases there may be trouble if some of the unwanted solutions are too
close to the initial guess; this happens especially if the Jacobian is singular or nearly
singular, for example. Finally, note that this solution process must be carried out at
every time-step of the method, so it seems important to worry about efficiency as
well as stability. �
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4.11 Notes and References

The notion of condition number of a linear system goes back at least to Alan
Turing. However, the quantities Turing called “condition numbers” were each dif-
ferent to the 2-norm condition number favored here, while Von Neumann and Gold-
stine (1947) had already used exactly this, though they called it a “figure of merit.”
See Grcar (2011), and also Wilkinson (1971).

It isn’t traditional to begin with the QR factoring; here, we follow Trefethen
and Bau (1997), who make a persuasive case that the QR factoring is numerically
simpler than Gaussian elimination (the LU factoring), being provably stable and
much better understood. We left aside the method of Givens rotation; for details,
consult Golub and van Loan (1996) or Higham (2002). A complex-valued Givens
rotation is explored briefly in Problem 4.15. A beautiful paper on the development
of Gram–Schmidt orthogonalization has been written by Leon et al. (2013).

Theorem 4.6 related to the SVD has been generalized to other norms by Kahan,
who attributes the result to Gastinel. See Higham (2002).

In addition to the elimination methods discussed here, there is also “rook” piv-
oting, less expensive than complete pivoting, but more stable than partial pivoting.
See Higham (2002). There is also Neville elimination, less expensive and less stable
than partial pivoting, but which is useful for totally positive matrices.

Finally, our running example that we first introduce in Example 4.1 is taken from
Nievergelt (1991).

Problems

Theory and Practice

4.1. Prove Theorem 4.1. (Hint: Fill in the discussion that follows it in the text.)

4.2. Implement Algorithm 4.2 in MATLAB.

4.3. Implement Algorithm 4.3 in MATLAB.

4.4. Implement Algorithms 4.4 and 4.5 and test your programs.

4.5. Suppose the upper-triangular matrix U is in addition bidiagonal:

U =

⎡⎢⎢⎢⎢⎢⎢⎣

u11 u12

u22 u23

u33
. . .
. . . un−1,n

unn

⎤⎥⎥⎥⎥⎥⎥⎦ .
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Write an algorithm to solve Ux = b under the condition that each ukk �= 0, and then
show that your algorithm costs about 2n flops.

4.6. Factoring structured matrices is often cheaper than factoring unstructured ma-
trices. For example, tridiagonal or pentadiagonal matrices can be factored into
banded lower and upper factors if no pivoting is used. Discuss.

4.7. Show that the cost, in flops, of solving the sequence of problems

Ly = Pb

Ux = y ,

where P is a permutation matrix that exchanges rows, L is unit lower-triangular,
and U is upper-triangular, is almost the same as multiplying to get x = Zb, where
Z = A−1 is known and presumed dense, or full. The conclusion we want you to
draw is that knowing P,L,U for which PA = LU is, in some sense, just as useful as
knowing Z = A−1. (But not for all applications—sometimes you want Z itself.)

4.8. Show that the cost, in flops, of solving the sequence of problems

Qy = b

Rx = y ,

where Q is unitary and R is upper-triangular, is 50% more than that of problem 4.7.
Note, however, that this is applied to rectangular systems. Compare also to the cost
of solving AHAx = AHb if the Cholesky factors LLH are known for LLH = AHA.

4.9. Find by hand the singular values of

A =

⎡⎣ 1 0
1 1
0 1

⎤⎦ .

4.10. Show that the largest singular value of A is the 2-norm of A. Recall that

‖A‖2 := max
‖x‖�=0

‖Ax‖2

‖x‖2
.

4.11. Consider the Pascal matrices (pascal(n) in MATLAB). How does their con-
dition number grow with n? You may do this experimentally.

4.12. Choose n = 100. Choose a random complex vector of length n, and call it x.
Choose a random complex matrix of size n×n, and call it A. Solve the equation b =
Ax in MATLAB using the QR factoring, the SVD, and the PA = LU factoring (for
the latter, you may use the backslash operator). In each case, compute the residual
of the computed solution and compute the condition number of the matrix A. Since
you know what x you were supposed to get, compare the forward error with the
estimate obtained by the product of the condition number with the norm of the
residual. Discuss your results.
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4.13. This problem requires MAPLE or another computer algebra system. Take
dimensions equal to the first 9 distinct Fibonacci numbers 1,2,3, . . . ,34, and cre-
ate random rational matrices of each dimension n. Compute the lengths of the exact
rational determinants of these matrices and show that the lengths grow as a power
of n.

4.14. By using a variation of Gaussian elimination where you add a multiple of the
previous row, show that the determinant of the Vandermonde matrix⎡⎢⎢⎢⎢⎣

1 1 1 1 1
τ0 τ1 τ2 τ3 τ4

τ0
2 τ1

2 τ2
2 τ3

2 τ4
2

τ0
3 τ1

3 τ2
3 τ3

3 τ4
3

τ0
4 τ1

4 τ2
4 τ3

4 τ4
4

⎤⎥⎥⎥⎥⎦
is ∏i> j(τi − τ j).

4.15. A complex-valued Givens rotation matrix G(i, j,θ ) is equal to the identity
matrix except that four matrix elements are different:

G(i, j,θ ) = I+(c− 1)eieT
i − seieT

j + se jeT
i +(c− 1)e jeT

j ,

where |c|= cosθ and |s|= sinθ . Show that G is unitary independent of the complex
sign of either c or s. Show that c and s can be chosen to zero out the (i, j) entry of
GA. Show that a sequence of such transformations can factor A into a product of a
unitary matrix Q and an upper-trapezoidal matrix R.

4.16. Show that HHH = I so H is unitary if H is defined as in Eq. (4.20).

4.17. Consider Eq. (4.21). Show that

H = I− 2
vvH

vHv
(4.60)

satisfies Ha = αe1 with α =−signum(a1)‖a‖2.

4.18. Show that AT as defined in Eq. (4.36) is an ellipsoid.

4.19. Show that the product of row-exchange matrices (P35P45)
2 �= I.

4.20. The so-called normal equations for solving overspecified systems Ax = b are
AHAx = AHb. Show that if we solve these equations, we minimize the 2-norm
of the residual ‖b−Ax‖. Use this method to solve the least-squares problem of
Example 4.8.

4.21. Modify the cost program so that it uses complex random matrices, and run it.
Comment on what happens. (Timing results on some machines can be quite differ-
ent. The results on one machine surprised us. Perhaps yours will also be surprising.)

4.22. Fill in the details of the argument in Remark 4.1.



4.11 Notes and References 231

Investigations and Projects

4.23. In Example 4.12, we solved Ax = [0,1]′ by QR factoring, and got (printing all
digits this time)

x =
-8.870855351158672e+005
8.884184953489713e+005

and the computed residual was r = [0,1]′ −Ax = [0,0]′. Using high precision, per-
haps in MAPLE or in another CAS, say working to 32 digits, explicitly find a matrix
ΔA such that (for this x exactly!) (A+ΔA)x = [0,1]′ and each entry of ΔA is less
than μMAi, j. One method is to try to minimize the sum of the squares of the entries
of ΔA, using Lagrange multipliers to ensure the two constraints are satisfied; but the
problem only asks for a “small enough” perturbation and other approaches will also
work. Do it again but this time looking for a symmetric perturbation matrix ΔA.

4.24. Let ‖ · ‖ be any vector norm, for example, any p-norm

‖x‖p :=

(
n

∑
i=1

|xi|p
)1/p

,

and let
‖A‖p := max

x �=0

‖Ax‖p

‖x‖p
,

be the subordinate (or “induced”) norm of the matrix A.

1. Show that this matrix norm is submultiplicative, that is, that ‖AB‖ ≤ ‖A‖‖B‖.
2. Show that if Ax = b, where A ∈ Cn×n is nonsingular, and x,b ∈ Cn, and per-

turbing b gives
A(x+Δx) = b+Δb ,

then ‖Δx‖
‖x‖ ≤ κ(A)

‖Δb‖
‖b‖ , (4.61)

where κ(A) := ‖A‖‖A−1‖. κ(A) is called the condition number of A.
3. Show that κ(A)≥ 1, and that κ2(U) = 1 for unitary matrices U when the 2-norm

is used: ‖A‖= ‖A‖2.
4. Show that κ(AB) ≤ κ(A)κ(B), unlike the case of determinants where there is

an equality sign. Give an example where inequality is strict.
5. Draw the unit “circles” ‖x‖∞ = 1 and ‖x‖1 = 1. Compare to the usual circle,

‖x‖2 = 1.
6. Show that

‖A‖1 =max
j

n

∑
i=1

|ai j| (i.e., maximum column sum)

‖A‖∞ =max
i

n

∑
j=1

|ai j| (i.e., maximum row sum) .

(4.62)



232 4 Solving Ax=b

7. If A = [2,3;−1,2], compute each of ‖A‖1, ‖A‖2, ‖A‖F , and ‖A‖∞. Show your
work, but you may check your answers with MATLAB.

8. Explain in words the geometric meaning of Eq. (4.61), using the 2-norm and
the singular value decomposition. You may suppose b and Δb are chosen dia-
bolically, so as to induce the worst possible error Δx, in relation to the size of
‖x‖.

4.25. Show that, in a linearized sense, the solution to

(A+ΔA) (x+Δx) = b (4.63)

differs from the solution to Ax = b in norm by at most

‖Δx‖
‖x‖ ≤ κ(A)

‖ΔA‖
‖A‖ +O(Δ2) . (4.64)

4.26. The determinant of a square matrix is justifiably famous for being useful in the
theory of matrices. For example, it is used in the well-known theoretical algorithm
known as Cramer’s rule for the solution of nonsingular linear systems: If detA �= 0,
then the ith component of the solution of Ax = b is

xi =

det

(
A ←−

i
b
)

detA
,

where det
(
A←

i b
)

means that we replace the ith column of A with the vector b.
Thus, the solution of the linear system has been reduced to the computation of
determinants. But how does one compute determinants? Laplace expansion, as
taught in a first linear algebra class, is combinatorially expensive—that is, the
growth in cost is faster than exponential in the dimension n—and becomes hideously
impractical even for modest n. That is, unless A has some very special structure that
can be exploited.

A more or less practical method for computing the determinant is to factor the
matrix, and use det(F1F2) = det(F1)det(F2). If the QR factoring is used, for ex-
ample, then detA is just detR, because detQ = 1. Moreover, since the determinant
of an upper triangular matrix is the product of the diagonal entries, detR is easily
evaluated. LU factoring with partial pivoting is, of course, even cheaper. This being
said, consider these problems:

1. Show that the cost of evaluating the determinant of a dense n× n matrix by
using Laplace expansion is n times the cost of evaluating the determinant of an
(n− 1)× (n− 1) matrix, plus some arithmetic to combine the results. Give a
three-by-three example and count the multiplications.

2. Estimate the cost of solving Ax = b using Cramer’s rule, with QR factoring to
evaluate the determinants. Compare with the cost of solving Ax = b by direct
use of the factoring.
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3. As if the overly high cost were not already enough to discourage its use in
general, Cramer’s rule by Laplace expansion is also known not to be back-
ward stable. For n = 2, it has reasonable forward accuracy (see Problem 1.9
in Higham (2002)), but not if n ≥ 3. Find an example that shows instability.
That is, find a 3×3 matrix A and a right-side b for which the solution computed
in MATLAB by Cramer’s rule using Laplace expansion for the determinants has
a much worse residual than is expected from (say) solving the problem by QR
factoring instead. Note that even for a 3× 3 matrix there are several choices
for Laplace expansion, so you can see that already analysis is difficult; and
indeed no good error bounds are known. Recently, Habgood and Arel (2011)
have found that the use of the so-called condensation (which seems to be just
the Schur complement) can improve the cost of Cramer’s rule, and seems to
confer stability; but this is not really a “pure” Cramer’s rule anymore.

4.27. The matrices

A0 =

[
1 1
−1 1

]
A1 =

⎡⎣ 1 0 1
−1 1 0
−1 −1 1

⎤⎦ A2 =

⎡⎢⎢⎣
1 1
−1 1
−1 −1 1
−1 −1 −1 1

⎤⎥⎥⎦
and so on, which are lower-triangular except for a 1 in the northeast corner, have an
interesting didactic role to play with LU factoring.

1. Show that Ak = LkUk, where

LkUk =

⎡⎢⎢⎢⎢⎢⎣
1
−1 1
−1 −1 1

...
...

. . .
−1 −1 −1 · · ·1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
1 1

1 1
1 2

. . .
...

2k + 1

⎤⎥⎥⎥⎥⎥⎦
and the final column of Uk is [1,1,2,4,8, . . . ,2k−1,2k + 1]T .

2. Show that both Lk and Uk are ill-conditioned, that is, that κ(Lk) = O(2k)
and κ(Uk) = O(2k). You may use any norm you like in κ(A) = ‖A‖p‖A−1‖p

(clearly, both Lk and Uk are invertible).
3. Show that, in contrast, Ak is well-conditioned (you may show this experimen-

tally if you like).
4. Since pivoting is not needed in this factoring, this example shows that the algo-

rithm for solving Akx = b given by Gaussian elimination with partial pivoting
(solve Lky = b, then solve Ukx = y) is numerically unstable. Discuss. Wilkin-
son claimed that matrices like these were almost never seen in practice, and
indeed GEPP is in heavy use today:

There are rather special matrices for which the upper bound is attained, so that the final
pivot is 2n−1a, but in practice such growth is very rare. (Wilkinson 1963 p. 97)

Trefethen and Schreiber (1990) go some way toward explaining this.
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4.28. The Gram–Schmidt orthogonalization procedure can be carried out on poly-
nomials, not just vectors. Indeed, this is one way of generating orthogonal polyno-
mials. With the Legendre–Sobolev inner product, defined as

〈 f ,g〉 :=
ˆ 1

−1
f (t)g(t)dt + μ

ˆ 1

−1
f ′(t)g′(t)dt

for μ > 0, and the initial polynomials L0 = 1/2 and L1 = 3t/
√

6+ 18μ, find the
first few orthogonal polynomials by using the modified Gram–Schmidt process. Be
aware that using symbolic μ generates enormously long expressions, even for com-
puter algebra systems. Is it easier using a vector of values for μ , or perhaps quasi-
matrices in Chebfun? See also Trefethen (2010). If using Chebfun, it may be helpful
to orthogonalize starting from chebpoly( i-1, [-1,1] ), that is, the Che-
byshev polynomials themselves. The interval used in this problem is different from
the one used in Golubitsky and Watt (2010), to make the answers look simpler.

4.29. The Clement matrix family (Clement 1959) is one of the example families in
MATLAB’s gallery:

gallery('clement',6)

yields ⎡⎢⎢⎢⎢⎢⎢⎣
0 5
1 0 4

2 0 3
3 0 2

4 0 1
5 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

These matrices have a number of interesting properties. With these integer entries,
it is also known as the Kac matrix, after Mark Kac.

1. Show that the 6× 6 Clement matrix⎡⎢⎢⎢⎢⎢⎢⎣
0 a5

a1 0 a4

a2 0 a3

a3 0 a2

a4 0 a1

a5 0

⎤⎥⎥⎥⎥⎥⎥⎦ (4.65)

is nonsingular if the odd entries a2k+1 are nonzero.
2. Find the inverse (MAPLE or another CAS is helpful).
3. Show that if a2k = 1 and a2k−1 = 1/2, then the n × n Clement matrix is ill-

conditioned; that is, κ(Cn) grows exponentially with n.
4. Estimate the growth of κ(Cn) for the n × n Kac matrix, which has n − 1,

n− 2, . . . on the superdiagonal and the same numbers in reverse order on the
subdiagonal.
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4.30. Let A,B ∈ C
m×n. The Hadamard product or elementwise product A ◦B is

defined by

(A◦B)i j = (A)i j · (B)i j = ai jbi j. (4.66)

The Hadamard product is what one obtains in MATLAB by typing A.*B.

1. Let A,B,C ∈ Cm×n and let α ∈C. Show that

a. It is commutative; that is, A◦B = B◦A.
b. It is associative; that is, A◦ (B◦C) = (A◦B)◦C.
c. It is distributive; that is, A◦ (B+C) = A◦B+A◦C.
d. A◦ (λB) = α(A◦B).
e. Cm×n is closed under ◦.

2. What are the identity under ◦ and the inverse under ◦ (when it exists)?
3. Show that if A,B are diagonal, then A◦B = AB.
4. Show that if A ∈C

n×n has an eigenvalue factoring A= XΛΛΛX−1 [so that (ΛΛΛ )ii =
λi for 1 ≤ i ≤ n], and if we let (A)i j = ai j, then⎡⎢⎢⎢⎣

a11

a22
...

ann

⎤⎥⎥⎥⎦=
[
X◦ (X−1)T

]
⎡⎢⎢⎢⎣
λ1

λ2
...
λn

⎤⎥⎥⎥⎦ (4.67)

So, if you have the eigenvectors of A, finding the eigenvalues only involves
solving a system of linear equation of the form Ax = b.

5. Show that if A ∈Cn×n has an SVD factoring A = UΣΣΣVH (so that (ΣΣΣ)ii = σi for
1 ≤ i ≤ n), and if we let (A)i j = ai j, then⎡⎢⎢⎢⎣

a11

a22
...

ann

⎤⎥⎥⎥⎦=
[
U◦V

]
⎡⎢⎢⎢⎣
σ1

σ2
...
σn

⎤⎥⎥⎥⎦ (4.68)

So, if you have the eigenvectors of AAH , finding the singular values of A only
involves solving a system of linear equation of the form Ax = b.

4.31. One extremely common use of Newton’s method is to find zeros of the gra-
dient ∇F , in attempting to optimize the scalar objective F(x). This is often called
Gauss–Newton iteration, and the Jacobian needed is actually the matrix of second
derivatives of F , also called the Hessian matrix. This particular application is so
important that it has attracted a significant amount of attention, and there is a great
deal to be said about how to do this efficiently, reliably, and robustly. We will content
ourselves here with a single problem, namely, that of fitting the nonlinear function

y = Aexp(−λ t)+Bexp(−μt)



236 4 Solving Ax=b

to data; that is, the coefficients A and B that appear linearly are not known, but
neither are the decay rates λ and μ .26 This exponential fitting problem is well un-
derstood to be ill-conditioned, as you will see.

Suppose that we are given the data

y = [2.3751,1.4591,0.90357,0.57181,

0.35802,0.23126,0.14492,0.099135]

attained at t = 30, 60, 90, . . ., 240 s. Try to find A, B, λ , and μ that minimize the
objective function

O =
8

∑
j=0

(
y j −Ae−λ t j −Be−μt j

)2
.

There are many ways to do this. Try an initial guess of λ = 0.01 and μ = 0.02,
together with a linear least-squares fit for A and B with those values of the decay
rates. (Once the nonlinear parameters are guessed, then the linear parameters must
then be the solution of the linear subproblem. Your first task is to find that A and B.)

After you have found your full nonlinear solution, try changing the initial guess
to λ = 0.015 and μ = 0.025, solve it again, and see if the answer changes much.
If your second solution is different, which one is better? Now change the data a
little bit and solve the problem yet again. Is this instance of this exponential fitting
problem ill-conditioned?

4.32. We look again at the backward stability of the QR factoring.27 Consider doing
a QR factoring of a matrix for which we know the answer already, namely, one we
build ourselves:

1 % Taken directly from Ray Spiteri's notes,
2 % http://www.cs.usask.ca/˜spiteri/M313/notes/Lecture16.pdf
3 % which themselves were taken from Trefethen and Bau:
4 R=triu(randn(50)+1i*randn(50)); % Set R to a 50x50 upper-

triangular matrix
5 % with normal random entries
6 [Q,X]=qr(randn(50)+1i*randn(50)); % Set Q to a 50x50 random

orthogonal matrix
7 % by orthogonalizing a random matrix
8 A=Q*R; % Set A=QR, up to rounding errors
9 [Q2,R2]=qr(A); % Compute QR factorization by Householder

10 %-------------------------------------
11 % Modified from here (RMC)
12 % Make sure the signs are the same even
13 % in the complex case (which this isn't now, but might be)
14 D1 = diag(diag(sign(R)));
15 D2 = diag(diag(sign(R2)));
16 % in each case Dbar * D = eye

26 This particular optimization problem has a method all its own, by the way, called Prony’s method
(see the references in Giesbrecht et al. (2009)); but here we simply use Newton’s method on the
gradient.
27 This problem owes its genesis to Trefethen and Bau (1997 Lecture 16).
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17 % A = Q2*R2
18 % Good factoring initially
19 norm( A - Q2*R2, inf )
20 % A = Q2*Dbar*D*R2
21 Dbar = conj( D1*D2 );
22 D = D1*D2;
23 Q3 = Q2*Dbar;
24 R3 = D*R2;
25 norm( A - Q3*R3, inf )

We test that we have adjusted MATLAB’s output so that the signs match:

norm( A - Q2*R2, inf )
norm( A - Q3*R3, inf )

We find 2.6906 · 10−14 and 2.6906 · 10−14, respectively, which is fine. But now we
look at the forward errors:

norm( Q - Q3, inf )
norm( R - R3, inf )

This time, we find 2.1400 ·10−5 and 2.5755 ·10−5, respectively. These are, as stated
in the source, “huge.” Yet we are able to compute the solution accurately to Ax =
b using these computed factorings, because of the backward error results that are
available.

Write a one-paragraph summary of why the backward error theorems discussed
in the text justify the accuracy of the solution to linear systems using House-
holder QR. You may also wish to comment on the perturbations in A + ΔA =
(Q+ΔQ) (R+ΔR), which you can compute explicitly for this case.



Chapter 5
Solving Ax = λx

Abstract This chapter aims to introduce the reader to the numerical treatment of
eigenvalue problems, that is, to the solution of the equation Ax = λx. This chapter
is shorter than the previous one, as it relies on many notions already introduced in
the context of numerical linear algebra: factoring, backward error, condition num-
ber, and residual. We examine additional factorings relevant to eigenvalue problems,
namely, the Schur factoring and the Jordan canonical form. We also outline algo-
rithms to compute eigenvalues and eigenvectors, namely, the power method and
the QR algorithm. Then, a condition number of simple eigenvalues is derived and,
finally, the concept of pseudospectrum is introduced to further characterize the con-
ditioning of eigenvalue problems. �

5.1 Generalized Eigenvalues

An eigenvalue λ of a square matrix A∈Cn×n is a complex number λ such that there
exists a nonzero vector x ∈ Cn for which

Ax = λx . (5.1)

The set Λ(A) of eigenvalues is called the spectrum of A. Also, the vector x satisfy-
ing this equation is called the right eigenvector of A corresponding to λ . It is easy
to geometrically interpret the meaning of eigenvalues and eigenvectors of a matrix
A from Eq. (5.1): A vector x is an eigenvector of A precisely when the vector Ax
is in the direction of x, where λ represents by how much the vector Ax is stretched
in comparison to x. It is important to remember that eigenvectors are not unique;

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods:
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0 5,
© Springer Science+Business Media New York 2013
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indeed, if x is an eigenvector, so is kx for some constant k. However, if we normal-
ize them using some norm, for instance, if we impose the condition ‖x‖2 = 1 and
also insist that the first nonzero component x� be strictly positive by dividing by
exp(iθ ) =signum(x�), then we may speak of the eigenvector corresponding to an
eigenvalue.

Similarly, it will be useful in what follows to introduce the concept of left eigen-
vector. A left eigenvector yH (which is a row vector) corresponding to an eigenvalue
λ is a vector such that

yHA = λyH . (5.2)

The ordered set (yH ,λ ,x) is called an eigentriplet. If we leave off yH , we have the
eigenpair (λ ,x).

A generalized eigenvalue of a matrix pair (A,B) is a pair of numbers (α,β ) that
are not both zero and such that there exists a nonzero vector x satisfying

αAx = βBx . (5.3)

If B = I, then this reduces to the ordinary eigenvalue problem and λ = β/α. It can
happen in the generalized case when B is singular that one or more of the pairs
(α,β ) has α = 0, in which case we say that the matrix pair has an infinite general-
ized eigenvalue (we will get lazy and drop the word “generalized” henceforth except
when we wish to emphasize the distinction). It can also happen that det(zB−A) is
identically zero, in which case we say that the problem itself is singular. As is easily
seen from the definition, if (α,β ) is a generalized eigenvalue, then so is (μα,μβ )
for any nonzero μ . Again, the eigenvalues are usually normalized in some conve-
nient fashion; for ease of interpretation in terms of standard eigenvalues, one often
takes μ = 1/α if α �= 0, but it is often better to impose the condition |α|2 + |β |2 = 1,
α > 0, or if α = 0 then β > 0. Finally, the expression A− zB, for indeterminate
z, is called a matrix pencil, for a rather obscure reason.1 Because of the one-to-one
correspondence between pencils and pairs, precise use of the terminology is not
necessary.

Example 5.1. Eigenvalues are easily computed in MATLAB and MAPLE. Consider
the matrix

A =

⎡⎣ 1.0+ 1.0 i 0.50000− 0.14286 i 0.33333+ 0.020408 i
0.50000+ 1.0 i 0.33333+ 0.090909 i 0.25000+ 0.0082645 i
0.33333+ 1.0 i 0.25000+ 0.23077 i 0.20000+ 0.053254 i

⎤⎦ .

Then, if we execute the command eig(A) in MATLAB or Eigenvalues(A) in
MAPLE, we obtain the eigenvalues[

1.6019+ 1.1621i −0.1189− 0.0518i 0.0504+ 0.0339i
]
.

1 There is a reason, but we feel it takes longer to explain than it is worth.
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Moreover, in MAPLE, the eigenvectors can be obtained by executing the command
Eigenvectors(A). �

Note that MATLAB’s command eig can be used to compute generalized eigen-
values in a similar way. In fact, to find generalized eigenvalues as in Eq. (5.3), one
simply executes the command with two arguments, that is, eig(A,B). Let’s look
at an example with an infinite eigenvalue.

Example 5.2. Consider the matrices associated with MATLAB’s commands A =
gallery(’grcar’,5) and B = gallery(’clement’,5), respectively,

A =

⎡⎢⎢⎢⎢⎣
1 1 1 1 0
−1 1 1 1 1
0 −1 1 1 1
0 0 −1 1 1
0 0 0 −1 1

⎤⎥⎥⎥⎥⎦ and B =

⎡⎢⎢⎢⎢⎣
0 1 0 0 0
4 0 2 0 0
0 3 0 3 0
0 0 2 0 4
0 0 0 1 0

⎤⎥⎥⎥⎥⎦ .

The matrix pair (A,B) has a singular B, and therefore at least one infinite eigenvalue.
This can be seen by executing svd(B), which returns[

4.8990 4.3589 4.0000 1.0000 0
]
,

showing that the last singular value of B is zero. Thus, as we expect, executing

eig(A,B)

shows that the last generalized eigenvalue is infinite:[
5.0874 1.1322 −0.3946 −0.8250 inf

]
A separate computation in MAPLE (which makes numerical sense since the entries
of these example matrices are all integers) shows that the characteristic polynomial
det(zB−A) is the degree-4 polynomial −8z4 + 40z3 + 12z2 − 40z− 15, which has
roots approximately [−0.82502,−0.39457, 1.1322, 5.0874] computed via MAPLE’s
fsolve routine. Since the degree of the determinant is 4 although the matrices are
5×5, we know that the pencil has an infinite eigenvalue. The relative forward error
in the finite eigenvalues computed by MATLAB is about 5× 10−15. �

In the next example, we show how to obtain not only the eigenvalues, but some
useful factors, and how to verify how accurate the factoring is by computing its
residual.

Example 5.3. The gallery(3)matrix from MATLAB is a well-known eigenvalue
example matrix:

A =

⎡⎣−149 −50 −154
537 180 546
−27 −9 −25

⎤⎦



242 5 Solving Ax = λx

In MATLAB, we compute both eigenvalues and eigenvectors as follows:

A = gallery(3);
[V E] = eig(A)

These commands return

V =

⎡⎣ 0.3162 −0.4041 −0.1391
−0.9487 0.9091 0.9740
−0.0000 0.1010 −0.1789

⎤⎦ and E =

⎡⎣ 1.0000 0 0
0 2.0000 0
0 0 3.0000

⎤⎦ .

The column V(:,k) of the matrix V returned by MATLAB is the eigenvector corre-
sponding to the eigenvalue λk, which is given as the entry (E)kk of the matrix E
returned by MATLAB.

The exact eigenvalues of this matrix are 1, 2, and 3, but they’re a bit delicate to
obtain (as we’ll soon say, they’re a bit ill-conditioned). For now, let A−VEV−1

be the residual. Computing it in MATLAB, we find that it has norm about 10−10,
which seems surprisingly large given that the computation happened in double
precision. �

Let us consider one more example exploring the relation between eigenvalues
and generalized eigenvalues in a problem that may arise in applications.

Example 5.4. Linear vibration analysis in the undamped case studies differential
equations of the form M

..
x+Kx = 0. Both M and K are symmetric and positive

definite matrices (so long as no mass is zero and no spring constant is zero). Substi-
tution of x(t) = sin(ωt)v into the equation leads to the matrix equation(

K−ω2M
)

v = 0 .

Consider first

M =

⎡⎣4 1 0
1 4 1
0 1 4

⎤⎦ and K =

⎡⎣ 2 1 0
1 2 1
0 1 2

⎤⎦ .

We can convert this generalized eigenproblem into a standard eigenproblem as fol-
lows. To begin with, take the Cholesky factoring of M = LLT , which is possible
and reasonably stable since M is symmetric positive definite. Then, form the matrix

A = L−1K
(
LT )−1

.

It is easily verified that

det(K−ω2M) = detLdet
(
A−ω2I

)
detLT .

Thus, the generalized eigenvalues ω2 of the original problem are standard eigen-
values of A. Alternatively, we could have formed B = KM−1, but this destroys the
symmetry. We will see that symmetric matrices have perfectly conditioned eigen-
values, and so we want to preserve this property if we can.
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To compute the value of ω in MATLAB, we first enter the matrices, and then we
compute the Cholesky factoring (plus its residual to make sure that things are as
expected):

M = [4 1 0; 1 4 1; 0 1 4];
K = [2 1 0; 1 2 1; 0 1 2;];
U = chol(M)
U'*U - M

This gives us, respectively,⎡⎣ 2.0000 0.5000 0
0 1.9365 0.5164
0 0 1.9322

⎤⎦ and 10−15

⎡⎣ 0 0 0
0 0 −0.1110
0 −0.1110 0

⎤⎦ ,

and so we see that the factoring has a small residual. We then form the matrix A and
check its symmetry. Executing

A = inv(U')*K*inv(U)
A-A'

gives us, respectively,⎡⎣ 0.5000 0.1291 −0.0345
0.1291 0.4333 0.1514
−0.0345 0.1514 0.4238

⎤⎦ and 10−16

⎡⎣0 0 0
0 0 −0.2776
0 0.2776 0

⎤⎦ .

We can then simply execute eig(A), which returns the eigenvalues⎡⎣0.2265
0.5000
0.6306

⎤⎦ .

Their square roots are [0.4760,0.7071,0.7941]T; those values indeed match those
resulting from the direct computation of the generalized eigenvalues, using the com-
mand eig(K,M) and only displaying MATLAB’s short format.

In this example, the cost of solving the original generalized eigenproblem is still
very small. For larger systems, the cost of a generalized eigenproblem can be a
modest factor (say, 5) times that of solving a standard eigenproblem; so, if one can
make the transformation, one ought to do so.

Now, if the mass matrix M is singular, this transformation is not possible. For
example, if the final entry is not 4 but rather 4/15, then M is singular. Then, we can
directly compute the generalized eigenvalues as follows:

M = [4 1 0; 1 4 1; 0 1 0.4e1 / 0.15e2;];
K = [2 1 0; 1 2 1; 0 1 2;];
eig( K, M )
ans.ˆ(1/2)

The resulting values are 0.5338, 0.7691, and
√

2.8503 ·1016. This compares well

with the true answers of
√

3471± 89
√

186/89 and ∞. Of course, if we had instead
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performed the Cholesky factoring of K and put λ = 1/ω2, we could have again used
a standard eigenproblem. This simple example is intended to show you what can be
done. �

As we see, the use of MATLAB or MAPLE to find eigenvalues and eigenvectors
is straightforward. Formerly, eigenvalues and eigenvectors were considered difficult
to compute; nowadays, unless the matrices are very large or have some other spe-
cial property, the solution is pretty much routine, with the right software, although
somewhat more expensive than, say, LU factoring. Nonetheless, there are important
numerical subtleties to consider; in what follows, we will look at the numerical as-
pects of the study of eigenvalues, eigenvectors, and eigenspaces. The main purpose
of this chapter is to help you to realize exactly the way in which these computations
are routine: The methods pretty quickly give you the exact eigenvalues of slightly
different problems, and you have to worry (a bit) about the conditioning of the eigen-
values (and worry a bit more about the conditioning of the eigenvectors, which tend
to be quite a bit more sensitive).

5.2 Schur Factoring Versus Jordan Canonical Form

In this section, we examine and compare two factorings that can be used to solve
problems involving eigenvalues: the Jordan canonical form and the Schur factoring.
We will show that the first one might be problematic numerically and that the second
is to be preferred. Let us begin the discussion with this theorem:

Theorem 5.1. Every square matrix A can be brought by similarity transformation
to Jordan canonical form (abbreviated as “JCF”) J; that is, we have the relation

A = XJX−1 , (5.4)

where the eigenvalues of A are arranged in convenient blocks, called Jordan blocks,
of the form ⎡⎢⎢⎢⎢⎢⎣

λ 1
λ 1

. . .
. . .
λ 1
λ

⎤⎥⎥⎥⎥⎥⎦
along the diagonal of J.

For a proof, see, for instance, Meyer (2001). There is a related form, the Weyr form,
that has been receiving some attention at the time of this writing.

Remark 5.1. The Jordan form is, as a function of the entries of A, discontinuous,
because the eigenvector’s existence is discontinuous. The discontinuity of the JCF
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and of its generalization, the Krönecker canonical form, for matrix pencils, does not
entirely preclude its numerical utility in some circumstances, as shown in Demmel
and Kågström (1993a,b), but it does make life difficult.

Why is the discontinuity of the Jordan form as a function of the entries of A a
problem? It is because a nonzero backward error, however small, possibly means an
O(1) forward error; that is, the condition number of the eigenvectors and hence the
JCF may be infinite. �

To illustrate the last remark concretely, we examine a simple case.

Example 5.5. Consider the matrix

Aε =

[
1 1
ε2 1

]
,

whose eigenvalues are 1± ε . For ε �= 0, the JCF is

J =

[
1− ε 0

0 1+ ε

]
,

for which limε→0 J = I. However, the JCF of A0 is not such that A0 = I; rather, we
have

J0 =

[
1 1
0 1

]
�= lim
ε→0

[
1− ε 0

0 1+ ε

]
.

Note that there are two eigenvectors for all ε > 0, but there is only one for ε = 0. �

For most purposes, a factoring that is computationally superior to the Jordan
form—that is, one that does not suffer the numerical difficulties that arise from
discontinuity—is the Schur form, which uses unitary similarity.

Theorem 5.2. Every square matrix A ∈ Cn×n can be brought by unitary similarity
transformation to triangular form. The eigenvalues of A may appear in any order
on the diagonal of the result. That is, there exist unitary U and upper-triangular T
such that

A = UTUH . (5.5)

The columns of U are called Schur vectors, and Eq. (5.5) is called the Schur
factoring.

For a proof, see, for instance, Stewart (1998), who gives a proof by induction.

Remark 5.2. There is a “real-only” form for real matrices, which does not give a
strict upper triangle if any roots are complex but rather two-by-two blocks that
specify a complex conjugate pair of eigenvalues. This bookkeeping device improves
speed for some applications but just gets in the way for our purpose; henceforth, we
ignore the option (which is the default in MATLAB, and when we issue the command
schur below, we must use the “complex” option to override the real form). �

For Hermitian matrices, the Schur factoring has an important property. If AH =
A, that is, A is Hermitian, then because
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(UTUH)H = UTHUH = AH = A = UTUH ,

we must have T = TH , so that T is also Hermitian. But then T is diagonal (and not
just upper-triangular) and, moreover, the diagonal entries satisfy t̄ii = tii and hence
are real.

What of the effect of perturbations of the entries of A on this factoring? Suppose
that A = UTUH , and consider

UH (A+ΔA)U = T+UHΔAU . (5.6)

If the subdiagonal elements are small, and they will be if ΔA is small, say O(ε), be-
cause multiplication by unitary matrices does not amplify the size of entries much,
then the eigenvalues of the result are going to be within O(ε 1/n) of those of T—this is
a standard eigenvalue perturbation result, and handles the case when all eigenvalues
are equal (and therefore most sensitive to perturbation). In essence, multiplication
by unitary matrices does not disturb the well-known result that eigenvalues are con-
tinuous functions of the matrix parameters, although they may be sensitive. But at
least they are not discontinuous.

To be fair, the eigenvalues in the Jordan form are not discontinuous either—it is
the eigenvectors that are the problem. For the Schur form, eigenvector computation
is not involved, and the Schur vectors are better behaved because the matrices are
unitary.

Example 5.6. Execute A=rand(3) in MATLAB to generate a random 3×3 matrix;
in our case, it has generated the matrix

A =

⎡⎣ 0.8147 0.9134 0.2785
0.9058 0.6324 0.5469
0.1270 0.0975 0.9575

⎤⎦ .

We then use the command

[U,T]=schur(A,'complex')

As stated previously, using the complex option so as to guarantee that we get a
genuine upper-triangular matrix T results in the matrices

U =

⎡⎣ 0.6752 −0.7248 −0.1368
−0.7375 −0.6604 −0.1413
−0.0120 −0.1963 0.9805

⎤⎦ and T =

⎡⎣−0.1879 0.0326 −0.2271
0 1.7527 −0.4150
0 0 0.8399

⎤⎦ .

As it happened, the matrix had real eigenvalues and so the option wasn’t needed—
but running the command again with another random matrix as input might
have produced a different result. The column vector U(:,1) is an eigenvector,
but U(:,2) and U(:,3) are not; they are Schur vectors. The diagonal elements
dT = [−0.1879,1.7527,0.8399] are eigenvalues.

Now, we compute a residual—in this case, the residual is A−UTUH , which is a
matrix—to assess the quality of this computation. By executing
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A-U*T*U'

we find the matrix

10−14

⎡⎣ 0.0111 0.0999 0
0.0444 0.1110 0.0111
0.0250 0.0389 −0.0333

⎤⎦ .

We see that the residual is small. Strictly speaking, that residual may not be very
accurate; inner products in one matrix–vector product can be considered (backward)
exact, but it’s trickier with matrix–matrix–matrix products. By executing

U*U'-eye(3)

to determine whether a loss of orthogonality happened, we find that

10−15

⎡⎣−0.1110 0.0035 −0.1110
0.0035 −0.5551 −0.0833
−0.1110 −0.0833 0.2220

⎤⎦ .

The 10−15 shows that the factor U is orthogonal up to a quantity of the order of
roundoff error. �

The implementation of the Schur factoring in MATLAB does not always reflect
the continuity of the Schur vectors. Choices are made about the possible signs of the
Schur vectors, and these can differ when the input differs by trivial amounts. Let us
consider an example.

Example 5.7. Consider the matrices

A =

⎡⎣1 1 0
0 1 1
0 0 1

⎤⎦ and A+ΔA =

⎡⎣ 1 1 0
0 1 1
μM 0 1

⎤⎦ .
They are identical, to the exception of the unit roundoff μM entry in the lower-left
corner. We can compute their respective Schur factorings; that is, we can compute
the matrices U and T factoring A and the matrices U+ΔU and T+ΔT factoring
A+ΔA. By executing

[U,T] = schur(A,'complex')
[UDU,TDT] = schur(ADA,'complex')

we find the following matrices:

U =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ T =

⎡⎣1 1 0
0 1 1
0 0 1

⎤⎦
U+ΔU =

⎡⎣ 1 0 0
0 −1 0
0 0 1

⎤⎦ T+ΔT =

⎡⎣ 1 −1 0
0 1 −1
0 0 1

⎤⎦ .
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Notice that while the eigenvalues on the diagonal of T are identical to those of
T+ΔT, the Schur vectors have differing signs. This will occasionally require book-
keeping. �

In the next section, after some preamble, we introduce the QR algorithm to com-
pute the Schur factoring. This algorithm computes A=UTUH and tries to guarantee
that the computed matrices T̂ and Û are such that (A+E) = UT̂UH for some U near
Û and ‖E‖F ≤ cnμM‖A‖F . The algorithm also ensures that the computed U is nearly

unitary; that is, ‖Û
H

Û− I‖= O(μM).

5.3 Algorithms for Eigenvalue Problems

In this section, we examine the algorithms used to compute eigenvalues and eigen-
vectors. The objective is not to provide a detailed analysis of multiple algorithms,
but rather to simply outline the main ideas that come into the best algorithms that
are used, for instance, to compute the Schur factoring.

5.3.1 Simple Iterative Methods

We begin with a very simple method that can be used to find approximate eigen-
values. As we will see, more refined algorithms build on its core idea. Suppose that
a square matrix A has distinct eigenvalues λ1,λ2, . . . ,λn and, moreover, that λ1 is
strictly the largest one. How can we find λ1? As we know, the defining equation of
eigenvalue problems is Ax= λx. Thus, if the jth entry of the eigenvector x is x j and
is nonzero, then

λ =
(Ax) j

x j
.

This suggests that if we find an eigenvector first, then we will have our eigenvalue.
How might we do that? We first describe an amazingly simple algorithm known as
the power method or power iteration.

To begin, take some random unit vector as an initial guess for x and call it x0.
Then, let x1 = Ax0, x2 = Ax1, and so on. The hope is that this sequence of iterates
converges to the eigenvector corresponding to λ1; and so it does, in certain circum-
stances. We also take care to normalize each iterate xk in order to avoid overflow
and underflow (also, by normalizing, the iterates will form a sequence on the unit
sphere). That is, we let yk = Axk−1 and

xk =
yk

‖yk‖
,

so that each xk is a unit vector.
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Example 5.8. Consider the matrix

A =

⎡⎣−2 1
1 −2 1

1 −2

⎤⎦ .

Take x0 = [1,0,0]T (which isn’t very random) as the initial guess. Then our first
iteration results in

y1 =

⎡⎣−2 1
1 −2 1

1 −2

⎤⎦⎡⎣1
0
0

⎤⎦=

⎡⎣−2
1
0

⎤⎦ and so x1 =

⎡⎣−2/
√

5
1/
√

5

0

⎤⎦ .
=

⎡⎣−0.8944
0.4472

0

⎤⎦ .

Continuing our computation with the MATLAB commands

1 %% Power iteration
2 A = [-2, 1, 0; 1,-2,1;0,1,-2]
3 x=[1;0;0]
4 for i=1:19,
5 y = A*x
6 x = y/norm(y,2)
7 end

we eventually find

x9 =

⎡⎣−0.5081
0.7071
−0.4918

⎤⎦ and x10 =

⎡⎣ 0.5647
−0.7071
0.4952

⎤⎦ ,
which looks promising. If we look further, we find

x18 =

⎡⎣−0.5001
0.7071
−0.4999

⎤⎦ and x19 =

⎡⎣ 0.5000
−0.7071
0.5000

⎤⎦ ,

which appears to have converged. (The sign changes at each iteration, but we could
normalize the yks differently to account for the direction of the eigenvector.) Indeed,
we can verify that this result is correct:⎡⎣−2 1

1 −2 1
1 −2

⎤⎦⎡⎣−1/2
1/
√

2
−1/2

⎤⎦=

⎡⎣ 1+ 1/
√

2

−√
2− 1

1/
√

2+ 1

⎤⎦= λ

⎡⎣−1/2
1/
√

2

−1/2

⎤⎦ .

From this, we find that

λ1 =
1+ 1/

√
2

−1/2
=−2−

√
2
.
=−3.414

is the largest, dominant eigenvalue. �
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Why did this simple iterative method work? First of all, it is because, as we
supposed, the matrix A had distinct eigenvalues and that one of them, λ1, was strictly
largest. When a matrix such as A has distinct eigenvalues, then its eigenvectors form
a basis for Cn. That is, every vector x0 can be expressed as a linear combination of
the eigenvectors v1,v2, . . . ,vn:

x0 =
n

∑
k=1

αkvk.

We know neither the coefficients αk nor the eigenvectors vk at this point, but we
know that they exist and are unique. Then we can rewrite our first iterate x1 as
follows:

x1 = Ax0 = A
n

∑
k=1

αkvk =
n

∑
k=1

αkAvk =
n

∑
k=1

αkλkvk .

Similarly, the second iterate can be written as x2 =∑n
k=1αkλ 2

k vk. It is then a simple
matter to show by induction that all the iterates xm can be written as

xm =
n

∑
k=1

αkλm
k vk .

From this expression, it is easy to see why the iterative method works: Since λ1 is
larger than all other eigenvalues, λm

1 grows faster than all others; that is, we have

xm = λm
1 α1v1 +

n

∑
k=2

αkλm
k vk = λm

1 α1v1

(
1+O

((
λ2

λ1

)m))
,

where λ2 is the next-largest eigenvalue. Thus, the iteration picks out the eigenvector
v1 corresponding to the largest eigenvalue λ1.

Under the same assumptions, a similar iterative method can be used to find
other eigenvalues λk with k �= 1. This method, known as the inverse-power itera-
tion, is investigated in Problem 5.16. The underlying idea for this method is that if
λ1,λ2, . . . ,λn are the eigenvalues of A, then (λ1 −μ)−1,(λ2 −μ)−1, . . . ,(λn −μ)−1

are the eigenvalues of (A−μI)−1. Moreover, by an argument similar to that for the
simple power iteration above, the dominant eigenvalue of (A− μI)−1 will be the
eigenvalue of A closest to μ . So, with an estimate of an eigenvalue, we can choose
a μ to find a refined computed value.

However, as usual, we don’t want to actually compute inverse matrices. Instead,
we start from a random vector x0, normalize it to get z0 = x0/‖x0‖, and then solve

(A− μI)x = z0

for x. Then we let z1 = x, and repeat the process.
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Example 5.9. We continue Example 5.8, but this time we will use inverse-power
iteration to find the smallest magnitude eigenvalue λ3. For this matrix, we can use
the shift value μ = 0 and simply execute this code:

1 %% Inverse power iteration
2 A = [-2, 1, 0; 1,-2,1;0,1,-2]
3 x=[1;0;0]
4 mu=0
5 for i=1:10,
6 y = (A-mu*eye(3))\x
7 x = y/norm(y,2)
8 end

After 10 iterations only, we obtain the eigenvector

x =

⎡⎣0.5000
0.7071
0.5000

⎤⎦ ,

which seems to be correct to four digits (i.e., MATLAB’s short format). From it, we
find that the smallest eigenvalue is λ3 = (Ax)1/x1 = −0.5858. By comparing the
result with MATLAB’s built-in eig function, we find that the forward error is of the
expected order; namely, it is −1.3204 ·10−5. �

For the rest of this section, we will not look at all the theory of convergence and
stability for such algorithms. Instead, we turn immediately to the go-to algorithm
for eigenvalue problems.

5.3.2 The QR Algorithm for Ax = λx

In this section, we convey the main idea of the QR algorithm for computing eigen-
values. This algorithm is almost magical in the simplicity of its basic formulation
and is one of the most highly valued numerical algorithms of the 20th century. Its
key step is connected with the inverse-power iteration. Jumping ahead a bit, we are
trying to find a unitary similarity Q transform that changes

A =

[
B h
gH μ

]
to

[
B̂ ĥ
ĝH μ̂

]
(5.7)

in a way that makes ‖ĝH‖ smaller than ‖gH‖. By the Gershgorin circle theorem,
it will follow that μ̂ is a better approximate eigenvalue than the original μ was.
Moreover, as Problem 5.9 asks you to show, if we can make ĝH = 0, then we will
have found an eigenvalue, namely, μ̂ (to show that the ideal choice for Q in QHAQ
is Q = [Q1,q], where q is the eigenvector associated with λ ).

This being said, we know neither q nor λ : That’s what we’re trying to find out.
We instead try to “bootstrap”: If gH is already small in norm, then the standard basis
vector eH

n is an approximate eigenvector, though not good enough of one for the
transform to make gH smaller (try it!). But we can improve eH

n by one step of the
inverse-power iteration:
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1. Solve qH(A− sI) = eH
n for q

2. Let q = q/‖q‖.

Here the shift s might be the Rayleigh quotient eH
n Aen, or we might choose another;

a better choice will mean faster convergence.
Now comes the real magic of the QR algorithm. Using the QR factoring, we

factor the matrix A− sI:

A− sI = QR .

The final column of this Q is exactly the q that arises on the step of the inverse-
power iteration. To see this, note QH = R(A− sI)−1 and, as a result,

eH
n QH = qH = rnneH

n (A− sI)−1 . (5.8)

Moreover, ‖qH‖= 1. But another way to express the inverse iteration q is

qH =
eH

n (A− sI)−1

‖eH
n (A− sI)−1‖ , (5.9)

and these are now seen to be the same. Finally, we wish to form the similarity
transformation QHAQ. Since we have

RQ = QH(A− sI)Q = QHAQ− sI ,

we find that RQ+ sI = QHAQ is what we want. We thus reach the heart of the QR
algorithm:

1. A− sI = QR (shift and factor)
2. A1 = RQ+ sI (reverse the factors and put back the shift).

Let’s look at an example to grasp how it works more concretely.

Example 5.10. In this example, we carry out three explicit steps of this process for
this small matrix randomly generated:

A =

⎡⎣ 0.9649 0.9572 0.1419
0.1576 0.4854 0.4218
0.9706 0.8003 0.9157

⎤⎦ .
We take a small complex shift to begin with (this also works for real eigenvalues,
but a real shift won’t help find a complex eigenvalue). The first step of the iteration
is obtained by executing

s = 0.5i;
[Q,R] = qr( A - s*eye(3) );
A1 = R*Q + s*eye(3)



5.3 Algorithms for Eigenvalue Problems 253

which produces the matrix

A1 =

⎡⎣1.5888− 0.1579i 0.8763− 0.4759i −0.5453+ 0.2804i
0.3077+ 0.3348i 0.4831− 0.1208i 0.1224+ 0.1884i
0.3461− 0.0000i −0.0019− 0.1338i 0.2941+ 0.2787i

⎤⎦ .

This does not look like it has made progress, but we now take the corner element
0.2941+ 0.2787i as our approximate eigenvalue and shift by that amount. We then
take a second step:

s = A1(3,3);
[Q,R] = qr( A1 - s*eye(3) );
A2 = R*Q + s*eye(3)

From the newly produced matrix

A2 =

⎡⎣ 1.7227− 0.0076i −0.3520+ 0.5627i −0.6601+ 0.5240i
−0.0466− 0.1935i 0.3711− 0.2913i 0.3187− 0.2840i
−0.0076+ 0.0000i −0.0107− 0.0032i 0.2722+ 0.2989i

⎤⎦ ,

we already see progress, since the elements in the last row are concentrated on the
diagonal. Once again, we take the corner element 0.2722+ 0.2989i as our approxi-
mate eigenvalue and shift and iterate one more time:

s = A2(3,3);
[Q,R] = qr( A2 - s*eye(3) );
A3 = R*Q + s*eye(3)

This time, we find the matrix

A3 =

⎡⎣ 1.8036+ 0.0241i 0.3029+ 0.3767i −0.7026− 0.4352i
−0.0216− 0.0827i 0.2865− 0.3301i −0.0238+ 0.4331i
−0.0000+ 0.0000i −0.0002− 0.0000i 0.2758+ 0.3061i

⎤⎦ ,

and convergence is now obvious. We have one eigenvalue to approximately four
places. In comparison, the result of eig is [1.8146, 0.2757+ 0.3061i, 0.2757−
0.3061i]. �

There are some important details left out: converting A into Hessenberg form for
efficiency, deciding when to stop iterating, managing deflation in case the problem
becomes reducible, determining how best to pick the shifts, and how to do it effi-
ciently in real arithmetic. There are important theoretical considerations, too: No
global convergence theorem is known, although in practice it works very well, in
O(n3) flops. The stability can always be checked afterward by forming a posteriori
the residual matrix R =QTQH −A and checking that it satisfies ‖R‖= O(μM)—as
it should, so that the computed eigenvalues are the eigenvalues of a nearby matrix
A + R̂ (thus giving computed elements in what we will call the pseudospectrum
of A in Sect. 5.5). Note that one cannot have an eigenvalue without (at least one)
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eigenvector; therefore, the computed eigenvectors will also be exact eigenvectors of
nearby matrices. But in the end, the QR algorithm for finding the Schur factoring
is one of the most efficient and stable algorithms going—one of the jewels in the
crown of numerical analysis.

The algorithm used to solve generalized eigenvalue problems is similar; it is
called the QZ algorithm. A generalization of the Schur factoring is available: Us-
ing two unitary matrices U and Z, we can bring the matrix pair simultaneously to
upper-triangular form. Then, from the diagonal entries of each triangular matrix, the
generalized eigenvalues can be read off. The algorithm tries to guarantee that

QH
0 (A+E)Z0 = R̂

QH
0 (B+F)Z0 = Ŝ ,

where Q0, Z0 are unitary and ‖E‖= O(μM‖A‖) and ‖F‖= O(μM‖B‖). The cost of
the QZ algorithm is approximately 15n3 flops to compute R̂ and Ŝ, plus an additional
8n3 to compute Q and 10n3 to compute Z.

5.4 Condition Number of a Simple Eigenvalue

In the preceding sections, we have once again interpreted computation errors as
backward errors, similar to data errors. What, then, are the consequences of these
errors? We find an answer to this question by determining the conditioning of eigen-
problems. Let us consider the case of a simple (nonrepeated) eigenvalue.

Suppose that Ax = λx, where x is a right eigenvector. Also suppose that yHA =
λyH , where y is a left eigenvector. Consider the perturbed system

(A+E)(x+Δx) = (λ +Δλ )(x+Δx) ,

and simplify this by ignoring quadratically small terms:

AΔx+Ex+���EΔx = λΔx+Δλx+���ΔλΔx.

We multiply by yH , so that

����yHAΔx+ yHEx =����λyHΔx+ΔλyHx.

We require that yHx �= 0; in the exercises, you will prove that yHx �= 0 for a simple
eigenvalue. As a result, we find that

Δλ =
yHEx
yHx

. (5.10)

This says that if yHx is small relative to yHEx, then Δλ will be large. This can hap-
pen. Data errors may make λ inaccurate. In Problem 5.4, you will show that (yHx)−1

can indeed be used as an absolute condition number for a simple eigenvalue.
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Multiple eigenvalues are ill-conditioned: A tiny change in the data of size ε can
cause a change in the eigenvalues of O(ε 1/m), where m is the multiplicity of the
eigenvalue. The problem of ill-conditioned eigenvectors is worse. Eigenvectors can
fail to exist when eigenvalues are multiple, so the problem of computing them is
ill-posed (and thus ill-conditioned). Even when eigenvalues are simple, eigenvalues
can be close together; and this closeness strongly affects the conditioning of the
eigenvectors. See Hogben (2006 chapter 43).

The conditioning of eigenvalues is crudely measured by the (ordinary) condition
number of the matrix of eigenvectors.

Example 5.11. Consider the matrix

A =

[
4− ε2 2− 2ε
−2− 2ε ε2

]
,

for a small ε . This matrix has eigenvalues 2± ε2, which are simple, but close. The
matrix of eigenvectors is [−(1+ ε)−1 −1+ ε

1 1

]
,

and its inverse has norm O(ε−2). Thus, the eigenvalues are ill-conditioned. �

5.5 Pseudospectra and Eigenvalue Conditioning

5.5.1 Spectra and Pseudospectra

We have already seen that the set of eigenvalues Λ(A) of a matrix A is called its
spectrum. Pseudospectra are eigenvalues of perturbed matrices. Given an ε > 0, a
pseudospectrumΛε(A) is defined by

Λε(A) =
{

z
∣∣ ∃ΔA with ‖ΔA‖ ≤ ε and det(zI− (A+ΔA)) = 0

}
. (5.11)

That is, z is an eigenvalue of a matrix not too different from A. For just one eigen-
value at a time, Stewart (1998) has a simple pseudospectral result. If μ ∈ C is an
approximate eigenvalue and

r = Ax− μx ,

then let

E =− rxH

‖x‖2
2

,
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and notice that Ex =−r. It follows that

(A+E)x = μx .

As a result, μ is an exact eigenvalue of A+E, and

‖E‖2 =
‖r‖2

‖x‖2
. (5.12)

So, if the residual r has a small norm, then we have the exact eigenvalue of a com-
putably nearby matrix; again, μ is in the pseudospectrum of A.

How different from Λ(A) can Λε(A) be? That is, how sensitive to changes in
A are the eigenvalues of A? In one sense, not very sensitive: Eigenvalues are con-
tinuous functions of the entries of A. In another, they can be arbitrarily sensitive.
Consider the matrix ⎡⎣1 1

1 1
1

⎤⎦ ,
which, being a defective matrix, is particularly sensitive. Perturb the (3,1) entry to
ε3, and the eigenvalues change to 1+ωkε , with ω = 1

2 (i
√

3−1). That is, changing
A by O(ε3) changes the eigenvalues by O(ε). Increasing the dimension makes it
worse.

More generally, consider the following pragmatic observation or rule of thumb.
The MATLAB function schur will always produce a matrix Û unitary up to the
order of unit roundoff, that is, such that

Û
H

Û = I+O(μM) ,

and an upper-triangular matrix T such that

A = ÛTÛ
H
+O(μM)‖A‖ .

That is, the residual R = A − ÛTÛ
H

will have entries not much bigger than
μM‖A‖—at worst, a small constant depending only on n times worse. Therefore,
by computing T, we are computing elements of the pseudospectra of A, not exactly
eigenvalues, where the ε is just a smidgen bigger than ‖R‖.

Remark 5.3. The QR algorithm that underlies MATLAB’s schur function has a
very clever design, many years of refinement, and has been tested on millions of
matrices. But the global convergence of the iteration is not proved. One of the more
interesting lines of attack might be via isospectral flows and the Toda lattice, where
the QR iteration is interpreted as steps along the flow of a dynamical system (see
Watkins 1982, 1984; Chu 1984). �
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5.5.2 Powers and Exponentials with Spectra and Pseudospectra

The connection between powers and eigenvalues is well known, and between ma-
trix exponentials and eigenvalues also: If A is diagonalizable, say A = XΛΛΛX−1,
then both matrix powers Ak = XΛΛΛ kX−1 and the matrix exponential exp(tA) =
Xexp(tΛΛΛ )X−1 become simpler, essentially reducing to a collection of scalar cases.
If A is not diagonalizable, then in theory one uses the Jordan canonical form; in
practice, the Schur form can be used instead. In either situation, more bookkeeping
is needed, but the connection between powers and spectra is still unquestioned. We
get well-known theorems that say, for example, that the limiting behavior of Ak is
determined entirely by its eigenvalues. To be precise, if xn+1 = Axn or

.
y = By, then

the following results hold. In the first case, xn = Anx0 goes to zero eventually if all
eigenvalues of A satisfy |λ | ≤ ρ < 1. In the second case, y(t) = eBty0 goes to zero
eventually if all eigenvalues satisfy Reλ < 0. But this is not the whole story!

Let A be an m×m matrix such that

A =

⎡⎢⎢⎢⎢⎢⎢⎣

1/2 1
1/2 1

1/2
. . .
. . . 1

1/2

⎤⎥⎥⎥⎥⎥⎥⎦ .

This is in Jordan form, but that doesn’t matter. All eigenvalues are 1/2, so there ought
to be no problem. But even for m = 5, we don’t get what we expect! The matrix–
vector products Ax0, A2x0, A3x0, . . . initially grow. And when m = 50, they grow
very rapidly. Let us look at the details, using MATLAB. To generate the matrix, we
can use this command:

nna=@(n) eye(n)/2+triu(ones(n),1)-triu(ones(n),2);
a=nna(5);

This being done, we can produce the Akx0 as follows:

x=rand(5,1);
nrms=zeros(10,1);
nrms(1)=1;
for i=2:10, x=a*x; nrms(i)=norm(x);end;

The resulting values are 1.0000, 2.1400, 3.0207, 4.1047, 5.1064, 5.6831, 5.6926,
5.2177, 4.4492, and 3.5781. As we see, the size initially increases, only eventually
decaying. It is true that An → 0 as n → ∞, just like (1/2)n. But the eigenvalues told
us nothing about transient growth.

Now, consider now the same example but with n = 50:

a=nna(50);
x=rand(50,1);
nrms=zeros(200,1);
nrms(1)=1;
for i=2:200, x=a*x; nrms(i)=norm(x); end;
semilogy(1:200,nrms)
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0 50 100 150 200
100

105

1010

1015

Fig. 5.1 Initial growth of matrix powers of a 50×50 matrix, not forbidden by all eigenvalues being
1/2 but not predicted by that, either

We see in Fig. 5.1 that the powers are going to zero via 1014, which might present
a problem. Compare the related system x̃n+1 = Axn + small noise. In this case, the
noise may continually activate the growth; the decay may never happen.

To understand such difficulties, one trick is instead to compute pseudospectra
according to (5.11). The reason that pseudospectra bear on this dynamical behavior
comes from the following observation. Define the ε-pseudospectral abscissa of A
to be

αε (A) := sup
z∈Λε (A)

Re(z) ,

that is, the largest that any real part of any pseudo-eigenvalue of A can be. Then a
lower bound for the norm of exp(tA) is2

sup
t≥0

‖etA‖2 ≥ αε (A)

ε
.

Similarly, define the ε-pseudospectral radius ρε(A) by

ρε(A) := sup
z∈Λε (A)

|z| . (5.13)

Then powers of A have norms that must grow at least as so much that

sup
k≥0

‖Ak‖ ≥ ρε(A)− 1
ε

.

2 See Trefethen and Embree (2005).
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For the 50× 50 matrix above, the package eigtool computes3 the pseudospectral
radius for ε = 10−12 to be 1.08018, which gives a lower bound on the norms of
powers of A as 8 ·1010 (see Exercise 5.12). We do indeed have growth at least this
large in Fig. 5.1. That is, pseudospectra provide a partial explanation of behavior
that we see in this graph, behavior that eigenvalues alone cannot explain.

Of course, matrix powers are easier to compute than the pseudospectrum is;
therefore, using pseudospectra to predict such behavior is something that will hap-
pen only if we have prior knowledge. An alternative characterization that is easier
to use computationally is the following:

Λε =
{

z : ‖(A− zI)−1‖ ≥ ε−1} ; (5.14)

that is, the norm of the resolvent (A− zI)−1 is large. Rather than prove this al-
ternative characterization for the ordinary (simple) eigenproblem, we generalize to
matrix polynomials,

P(z) =
n

∑
k=0

Ckφk(z) ,

where the Ck ∈ Cn×n are matrices and the φk(z) are basis polynomials. The simple
eigenvalue problem has C0 = A and C1 =−I, φ0(z) = 1 and φ1(z) = z. A nonlinear
eigenvalue λ has detP(λ ) = 0. The spectrum

Λ(P) :=
{

z
∣∣ detP(z) = 0

}
is the set of nonlinear eigenvalues. This is a simultaneous generalization of polyno-
mial zeros p(z) = 0 and generalized eigenvalues det(zB−A) = 0. Matrix polyno-
mials find many applications, and we will see some later.

The following proposition allows us to separate the influence of the basis from
the influence of the matrix polynomial.

Theorem 5.3 (Amiraslani 2006; Green and Wagenknecht 2006). Given weights
wk ≥ 0, not all zero, and a basis φk(z), define the weighted ε-pseudospectrum of
P(z) as

Λε(P) = {λ ∈ C : det(P+ΔP)(λ ) = 0,‖ΔCk‖ ≤ εwk,k = 0, . . . ,n}

and suppose that

ΔP(z) =
n

∑
k=0

ΔCkφk(z) .

Moreover, let

B(λ ) =
n

∑
k=0

wk|φk(λ )| .

3 The routine issues a warning, stating that it is not confident that the result is accurate. For ε =
10−9, the result is 1.168, giving a more certain lower bound of 1.6 ·108.
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Then the pseudospectrum of P(z) may be alternatively characterized as

Λε(P) = {λ ∈C : ‖P−1(λ )‖ ≥ (εB(λ ))−1} . (5.15)

Proof. Let

S = {λ ∈ C : ‖P−1(λ )‖ ≥ (εB(λ ))−1}.
We show that this set is equal to Λε(P).

First, take λ ∈Λε(P), and we show that λ ∈S . There are two cases. First, if λ is
an eigenvalue of P(z), then by convention, ‖P−1(λ )‖ = ∞, and so λ ∈ S . Second,
if λ is not an eigenvalue of P(z), then P(λ ) is nonsingular. Since P(λ )+ΔP(λ ) =
P(λ )

(
I+P−1(λ )ΔP(λ )

)
is singular, ‖P−1(λ )ΔP(λ )‖ ≥ 1 must hold and so we

obtain

1 ≤ ‖P−1(λ )‖
(

n

∑
k=0

‖ΔCk‖|φk(λ )|
)

≤ ‖P−1(λ )‖
(

n

∑
k=0

εwk|φk(λ )|
)

≤ ‖P−1(λ )‖εB(λ ) .

Hence, λ ∈ S .
Now, let λ ∈ S and assume P(λ ) is nonsingular. The insight comes from this:

1. Choose a unit vector y such that ‖P−1(λ )y‖= ‖P−1(λ )‖ .
2. Consider the vector u = P−1(λ )y

‖P−1(λ )‖ , which is also a unit vector.

Then, there exists a matrix H such that ‖H‖= 1 and Hu = y (see Higham (2002)).
Now define E to be E =−H/‖P−1(λ )‖. Then

(P(λ )+E)u =
y

‖P−1(λ )‖ − y

‖P−1(λ )‖ = 0

and

‖E‖= 1

‖P−1(λ )‖ ≤ εB(λ ) .

Define

ΔCk = signum(φk(λ ))wkB−1(λ )E ,

where signum(z) = z/|z| if z �= 0, and 0 otherwise. Then it follows that

ΔP(λ ) =
n

∑
k=0

ΔCkφk(λ ) =
n

∑
k=0

signum(φk(λ ))φk(λ )wkB−1(λ )E

=
n

∑
k=0

|φk(λ )|wkB−1(λ )E = B(λ )B−1(λ )E = E .

This proves the theorem. �
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Remark 5.4. This proposition allows us to separate some of the properties of the
polynomial P(z) from the properties of the basis. In particular, notice that the left-
hand side of the inequality in this characterization of the pseudospectrum is basis-
independent, being merely a property of the size of P−1(λ ), whereas the right-hand
side of the inequality depends only on the tolerance ε and the value of the scalar
function B(z) at z = λ , which depends only on the basis and on the weights wk.
More, it was noticed in Green and Wagenknecht (2006) that the basis functions need
not even be polynomials—this gives a pseudospectral theorem for general nonlinear
eigenvalues as well. �

Remark 5.5. When all weights wk = 1, the function B(z), in the case of Lagrange
interpolation, is precisely what is known as the Lebesgue function of the set of in-
terpolation nodes (Rivlin 1990). There is an extensive theory of such functions, and
their connection to the problem of conditioning. In the standard notation, for wk ≡ 1,
B(z) = λn(x;z). �

To end this section, we provide an example of how to generate a contour plot of
pseudospectra.

Example 5.12. The following degree-2 matrix polynomial is expressed in the La-
grange basis at the three points τk = 0,−1,−2. The pseudospectra can be analyzed
with the help of the following MATLAB code:

1 %
2 % Example 2 by 2 matrix polynomial pseudospectrum
3 % in the Lagrange basis, using Mandelbrot polynomials
4 %
5 % RMC 13.12.2010 after an idea by Piers Lawrence
6 % and after discussion with Nic Fillion
7 %
8 %
9 % This first section just sets up the matrix polynomial of degree

10 % 2ˆlevel - 1, formed by interpolating at n+2 = 2ˆ(level-1)+1
11 % points giving 2 by 2 matrices at each interpolation point.
12 %
13 level = 6;
14 p = 1;
15 rts = [-1];
16 for i=2:level,
17 % Evaluate the matrix polynomials at x=0, x=-2, and x=all
18 % roots previous.
19 n = 2ˆ(i-1) - 1; % n roots available
20 tau = [0, rts', -2 ]; % n+2 evaluation points
21 gamma = genbarywts( tau, 1 );
22 gamma = gamma/norm(gamma,inf);
23 A = zeros( 2*(n+2)+2, 2*(n+2)+2 ); % extra block at end
24 B0 = eye( 2*(n+2)+2, 2*(n+2)+2 );
25 B0(end-1:end, end-1:end ) = zeros(2,2);
26 A(1:2, 1:2) = [ 0, 0; 0, 0 ];
27 A(1:2, end-1:end) = [ 0, -1; 1, 1];
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28 A(end-1:end,1:2) = [gamma(1), 0; 0, gamma(1)];
29 for j=1:n,
30 A( 2 + 2*j-1:2+2*j, 2+2*j-1:2+2*j ) = [ tau(j+1), 0 ; 0,

tau(j+1) ];
31 A( 2+2*j-1:2+2*j, end-1:end ) = [ 0, -1; 1, 0 ];
32 A( end-1:end, 2+2*j-1:2+2*j ) = [ gamma(j+1), 0; 0, gamma

(j+1) ];
33 end;
34 A(end-3:end-2,end-3:end-2) = [-2, 0; 0, -2];
35 A(end-3:end-2,end-1:end) = [2, -1; 1, -1];
36 A(end-1:end,end-3:end-2) = [gamma(end),0; 0, gamma(end)];
37 rts = eig( A, B0 );
38 k = find( abs(rts) < 3 );
39 rts = rts(k);
40 end;
41 %
42 % At this point, we have our matrix, interpolated at the

nonlinear
43 % eigenvalues of the previous level matrix polynomial.
44

45 % Compute the weights for B as the 2-norms of the polynomial
coefficients

46 alpha = zeros( 1, n+2 );
47 for i=1:n+2,
48 alpha(i) = norm( A( 2*i-1:2*i, end-1:end ), 2 );
49 end;
50

51 % Now evaluate the matrix polynomial at a bunch of points and
compute

52 % the 2-norm of its inverse, by simple svd computation.
53 nsamp = 400;
54 x = linspace(-2.5,0.7,nsamp);
55 y = linspace(-2,2,nsamp);
56 % z(j,k) = x(j) + i*y(k)
57 V = zeros(nsamp,nsamp);
58 for j=1:nsamp,
59 for k=1:nsamp,
60 z = x(j)+sqrt(-1)*y(k);
61 w = prod( z - tau );
62 P = gamma(1)*[ 0, -1; 1, 1]/(z-0) + gamma(end)*[2, -1; 1,

-1]/(z+2);
63 B = abs(alpha(1)*gamma(1)/z) + abs(alpha(end)*gamma(end)

/(z+2));
64 for ell=1:n,
65 P = P + gamma(ell+1)*[ 0, -1; 1, 0 ]/(z-tau(ell+1));
66 B = B + abs( alpha(ell+1)*gamma(ell+1)/(z-tau(ell+1))

);
67 end;
68 S = svd( w*P );
69 V(k,j) = S(2)/(abs(w)*B);
70 end;
71 end;
72 % Choose among the following options by commenting out as

appropriate.
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73 % The first two lines, with level=2, were used to generate the
figure

74 % in the text.
75 %[C,h] = contour( x, y, log(V)/log(10), [-2,-1.5,-1,-0.75, -0.5,

-0.25], 'k-' );
76 [C,h] = contour( x, y, log(V)/log(10), [-22,-18,-14,-10,-6,-2], '

k-' );
77 clabel( C, h );
78 %contour( x, y, log(V)/log(10),[0,-2,-4], 'k-' );
79 %[C,h] = contour( x, y, log(V)/log(10), 'k-' );
80 %clabel( C, h );
81 axis('square')

The resulting contour plot of the pseudospectra is displayed in Fig. 5.2. �
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Fig. 5.2 Pseudospectrum of a 2×2 matrix polynomial of degree 3

5.6 Notes and References

Once again, a useful reference for the themes discussed in this chapter is the Hand-
book by Hogben (2006). For an introduction to the Weyr form, which we have
merely mentioned, see O’Meara et al. (2011).
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Our discussion of the QR algorithm follows that of Stewart (1998 chap. 15),
where the algorithm is described in detail. Golub and Uhlig (2009) contains histori-
cal details surrounding the development of the QR algorithm.

The proof of Theorem 5.3 is taken from Amiraslani (2006) and was modeled
there exactly on the one for the monomial basis in Tisseur and Higham (2001).

Problems

Theory and Practice

5.1. Show that a left eigenvector yH of A with eigenvalue λ corresponds to a right
eigenvector y of AH with eigenvector λ̄ .

5.2. Suppose that Ax = λx. Show that

1. A− sI has eigenvalues λ − s.
2. Ak has eigenvalues λ k.
3. Consider the polynomial f (z) = ∑n

k=0αkzk and the matrix polynomial f (A) =

∑n
k=0αkAk. Show that the eigenvalues of f (A) are f (λ ).

4. If A is nonsingular, then the eigenvalues of A−1 are λ−1.
5. Let h(z) = f (z)/g(z) be a rational function ( f and g are polynomials). Suppose

g(A) is nonsingular. Define h(A) = g(A)−1 f (A). Show that h(A) has eigenval-
ues h(λ ).

6. Show that g(A) is singular if g(λ ) = 0 for any eigenvalue λ of A.

5.3. If λ is a simple eigenvalue of A, that is, of multiplicity 1, show that its left and
right eigenvectors yH and x satisfy

yHx �= 0.

(Hint: Unitary similarity transformations of A, say to T = UHAU, do not change
yHx (show this). Then you can work with T, and you may assume λ is in the (1,1)
position, and because it is simple, that’s the only diagonal entry where it appears.)

5.4. Show that if λ is a simple eigenvalue of A with left and right eigenvectors yH

and x, and E is a matrix with small enough norm, then there is an eigenvalue λ̂ of
A+E such that

λ̂ = λ +
yHEx
yHx

+O(‖E‖2
2) .

Moreover, show that, as a result,

|λ̂ −λ | ≤ secθ‖E‖2 +O(‖E‖2
2) ,
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where θ is the angle between the vectors x and y. Therefore, secθ = (yHx)−1 serves
as an absolute condition number for a simple eigenvalue λ if ‖x‖= ‖y‖= 1.

5.5. Show that the eigenvalues of the matrix[
2 1
ε2 2

]
are increasingly ill-conditioned as ε → 0.

5.6. MAPLE or another CAS may be helpful for this problem.

1. Show that you may choose a1,a2, . . . ,a10 leaving a11,a12, . . . ,a19 free in such
a way that the eigenvalues of the 20× 20 Clement matrix of Problem (4.29)(a)
are±1/2,±3/2,±5/2, . . . ,±9/2, so that 21/2I+C has eigenvalues 1,2,3, . . . ,20 (the
same as the roots of the first Wilkinson polynomial).

2. Choose a11 through a19 to minimize κ1(V) = ‖V‖1‖V−1‖1 (the 1-norm condi-
tion number) as best you can.

3. Letting αi = ‖V−1
(i) ‖2, the 2-norm of the ith row of V−1, and βi = ‖Vi‖2, the

2-norm of the ith column of V, show that αiβi is the condition number of the ith
eigenvalue. What are these numbers, and how do they compare to κ1(V)?

5.7. Use the normalized power method to find the largest eigenvalue of the Clement
matrix of order 10, to three digits of accuracy. Use the fact that if r = Ax−μx, then
μ is an eigenvalue of A+E with E =−rxH/‖x‖2

2 to argue for the accuracy of your
result. What is the condition number of the largest eigenvalue?

5.8. The most common use of the power method is to find an eigenvalue of
(A − μI)−1 close to μ . That is, for random x0, define z0 = x0/‖x0‖ and zm for
m = 1,2, . . . by solve (A− μI)x = zi and put zi+1 = x/‖x‖. Use this iteration to
find an eigenvector for the smallest eigenvalue of the symmetric Clement matrix of
order 10.

5.9. If qH is a left eigenvector of A corresponding to λ , and Q = [Q1,q] is unitary,
show that

QHAQ =

[
QH

1 AQ1 QH
1 Aq

0 λ

]
and that the other eigenvalues of A are the eigenvalues of the smaller matrix
QH

1 AQ1.

5.10. In this problem, we examine how to construct a unitary matrix Q with a given
unit vector q ∈ Cn as the last column, that is, such that Q = [Q1,q].

1. Put u = q+ μen, where μ = signum(qn) = qn/|qn| unless qn = 0, when you take
μ = 1. Show that uHu = 2(1+ |qn|).

2. Show that R = I− 2 uuH

uH u is unitary.
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3. Show that Ren = −μ−1q. Put Q = R · diag(1,1, . . . ,−μ) and show that Q is
unitary and Qen = q.

4. Show that Ru =−u (so R is a “reflector”), Rq =−μen.

5.11. Let

T =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1/2 0 0 0 0
1 0 1/2 0 0 0
0 1/2 0 1/2 0 0
0 0 1/2 0 1/2 0
0 0 0 1/2 0 1/2

0 0 0 0 1/2 0

⎤⎥⎥⎥⎥⎥⎥⎦ (5.16)

and P(z) = (zT)7−I. Draw the pseudospectra of the matrix polynomial P(z), choos-
ing pleasing or informative contour levels (or both).

5.12. Suppose Jn(r exp(iθ )) is an n× n Jordan block matrix with eigenvalue z =
r exp(iθ ), where 0 ≤ r < 1, so powers of J must ultimately decay. By taking ε =
ern, where e is the base of the natural logarithms, and using the analytic formula
for R = (zI − J)−1 [all you need is the (1,n) entry], give a lower bound on the
pseudospectral radius and thus a lower bound on the maximum value of ‖Jk‖. Take
r = 1/2 and n = 50 and compare your results with Fig. 5.1.

5.13. Show that by using Householder reflectors, one may find a matrix H = QHAQ

similar to A that is upper Hessenberg in structure, meaning that the entries below
the first subdiagonal are zero.

5.14. Show that the QR factoring of an upper Hessenberg matrix costs O(n2) flops.
So, QR iteration is much cheaper if it is preceded by a similarity transformation to
upper Hessenberg form.

Investigations and Projects

5.15. The matrix gallery(3) in MATLAB

A =

⎡⎣−149 −50 −154
537 180 546

−27 −9 −25

⎤⎦ , (5.17)

is known to have somewhat sensitive eigenvalues. The exact eigenvalues of this
matrix are λ = 1, 2, and 3. If we perturb this to A+ tE, where

E =

⎡⎣−390 1170 0
−129 387 0
−399 1197 0

⎤⎦ , (5.18)
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which happens to be an outer product yxT , where x and y are eigenvectors of the
smallest eigenvalue λ = 1 of A, then we find for

t =−2.612641635322647× 10−7

(approximately) that A+ tE has a double eigenvalue. This means that if we change
the matrix by approximately 10−7, one of the eigenvalues must change at least by
1/2. Compute the condition number of each eigenvalue of A in MATLAB or MAPLE

and plot the eigenvalues of A+ tE on −5× 10−7 ≤ t ≤ 0 for, say, 300 values of t.
Compute the pseudospectral contours of A using eigtool. Discuss.

5.16. Suppose AX = XΛΛΛ for ΛΛΛ = diag(λ1,λ2, . . . ,λn) and nonsingular matrix X of
eigenvectors. Suppose further that the eigenvalues λk are distinct.

1. If we know μ , and it happens to be true that μ = λ1+ε , for some |ε| � 1, show
that one step of inverse-power iteration

(A− μI)y = z

improves on z as an estimate of the first eigenvector x1 by a factor 1/ε. Hint:
Write

z = a1x1 +
n

∑
k=2

akxk

and (as a theoretical tool) use the above factoring in the conceptual solution
process. (Of course, when we actually solve this system, we’d use something
like an LU factoring. But for the purpose of analysis, you can use the (unknown)
eigenvector–eigenvalue decomposition.)

2. Fill in the details as to why, if the residual

r = z− (A− μI)y

is small compared to ‖A‖, then rounding errors in the solution of the system for
the inverse-power iteration don’t matter much even if ε is very tiny, so that A−
μI is very nearly singular and thus extremely ill-conditioned. Can we expect,
though, that the residual r will be small?

5.17. A companion matrix for z2 − 2bz+ 1= 0 is

C =

[
0 −1
1 2b

]
. (5.19)

1. Compute the condition number for each eigenvalue of C. Identify any values of
b for which the eigenproblem is ill-conditioned.

2. Forgetting the companion matrix for the moment, compute the condition num-
ber of each root of z2 − 2bz+ 1 = 0 as a function of b. This is a structured
condition number of the eigenvalue problem. Compare with your previous an-
swer.
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3. In Question 1.18, you used the quadratic formula to compute each root and com-
puted the product, which should have been 1, but instead gave curious “tiger
stripes” for b ≈ 107 and ultimately became zero if b was large enough. Is this
behavior a result of ill-conditioning, or is it instead a result of numerical insta-
bility? Justify your choice.



Chapter 6
Structured Linear Systems

Abstract We define structured linear systems to include sparse systems or systems
with correlated entries or both. We define the structured backward error and a
structured condition number. We give examples of various classes of structured
linear systems and examples of algorithms that take advantage of the special
structure. �

6.1 Taking Advantage of Structure

Taking advantage of structure is an very important aspect of numerical linear al-
gebra. We articulate the discussion that follows around the notions of sparsity and
correlation of matrix entries.

Definition 6.1. A sparse matrix has a large proportion of entries that are equal to
zero.

The zero entries do not need to be stored, and arithmetic with zero is, of course, easy
and accurate.1 See Fig. 6.1 for a simple visualization of a particular sparse matrix.2

Definition 6.2. A matrix has correlated entries when all entries of the matrix are
determined wholly by a small number of parameters.

The following simple example should make the idea of correlation clear.

1 See Davis and Hu (2011) for a beautiful collection of useful sparse matrices. See http://
www.cise.ufl.edu/research/sparse/matrices/synopsis/ for an introduction to
visualizing large sparse matrices by minimizing the “energy” in a graph related to the matrix.
2 Also, see Fig. 16.15 for spy pictures of sparse matrices arising in finite-difference solutions to
partial differential equations.

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods:
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0 6,
© Springer Science+Business Media New York 2013

269

http://www.cise.ufl.edu/research/sparse/matrices/synopsis/
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Fig. 6.1 A simple visualization of the inverse of the 64× 64 Mandelbrot matrix, using the spy
command. This sparse matrix has only 150 nonzero entries out of a possible 64×64= 4096 entries,
or about 3.6%

Example 6.1. The 2× 2 matrix [
cosθ sinθ

−sinθ cosθ

]
is determined entirely by one parameter, θ . Thus, all entries are correlated, in this
case nonlinearly. �

Definition 6.3. We call a matrix structured if it is sparse, has correlated entries, or
both.

Example 6.2. We have already seen examples of structured matrices, including the
generalized Vandermonde matrices whose n2 entries are completely determined by
just the n nodes τ0, τ1, . . ., τn−1 and the choice of basis functions. Another espe-
cially nice example family are the circulant matrices, which we discuss in detail in
Chap. 9. Consider a 4× 4 circulant matrix:

C =

⎡⎢⎢⎣
a b c d
d a b c
c d a b
b c d a

⎤⎥⎥⎦ .

The pattern is as follows: The first row is repeated but shifted cyclically, then again
for the next row, and so on. Thus, each row is correlated with the first one. We will
shortly see other structures that are important in practice. �
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Until now, we took no advantage of any structure that happened to be present in
our examples, except for unitary or triangular matrices: otherwise, A ∈ Cm×n was
treated as a collection of m · n independent complex nonzero numbers. But if there
is one lesson to draw from the applications of linear algebra, it is this: Many, if not
most, system matrices found in applications are structured. To solve such systems
accurately, efficiently, or at all (when they are really large), the structure must be
used. Sparsity is especially helpful. Correlations in the entries also have a large
impact but often introduce nonlinearities and so are usually much harder to take
advantage of. This chapter gives a too-brief introduction to these ideas. We look at
some of the most elementary techniques for solving structured linear systems and
for structured eigenproblems.

First, though, we remind the reader of the unstructured case. The techniques of
LU factoring, pivoting, QR factoring, and the SVD were presented in the two pre-
vious chapters for dense matrices. Such matrices are called dense in the literature
because most entries ai j in the matrix A are presumed to be nonzero and indepen-
dent. In that case, the cost of solving a typical n× n dense system by each of those
methods, using a serial (nonparallel, nonvector) computer, is reasonably well known
and typically is considered to vary as the cube of n:

• LU factoring costs 2
3 n3 + o(n3) flops.

• QR factoring costs 4n3 + o(n3) flops.
• SVD costs (about) 11n3 + o(n3) flops.

We see that the SVD is in theory the most expensive. These estimates are reasonable
models for many computers, as we see in simulation.

Nonetheless, as a matter of fact, GOOGLE plays with its PageRank matrix, where
n is measured in billions. They get answers in (pretty much) real time. How? Fast
computers, sure. But really: fast algorithms. The key to fast algorithms is parsimony.
As the philosopher Seneca is said to have said:

Economy is in itself a significant source of revenue.

A parsimonious approach can often be adopted in order to take advantage of the
structure of matrices.

Example 6.3. Consider the following structured matrix:

T =

⎡⎢⎢⎢⎢⎢⎢⎣
4 1
1 4 1

1 4 1
1 4 1

1 4 1
1 4

⎤⎥⎥⎥⎥⎥⎥⎦ .

We focus first on its sparsity and ignore the correlations between the nonzero entries.
Such a matrix is an example of a “banded matrix,” in this case with three bands, or
in other words “tridiagonal.” It is not necessary to store the zeros. We just store the
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diagonal entries. If we note the symmetry (which is a correlation), then we only
need to store the diagonal and one copy of the other bands, that is,[

4 4 4 4 4 4
]

and
[
1 1 1 1 1

]
.

We will take further advantage later of the fact that all entries of these vectors are
identical. Note that the LU factoring of this tridiagonal matrix, in which T = LDLH

with

L =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0

1/4 1 0 0 0
0 4/15 1 0 0
0 0 15/56 1 0
0 0 0 56/209 1

⎤⎥⎥⎥⎥⎦ (6.1)

and D = diag(15/4, 56/15, 209/56, 780/209), may be done with O(n) work, not O(n3). The
savings are substantial for large n. Again, the zeros in L need not be stored, and
neither need the entries along the diagonal, which are all 1. �

Remark 6.1. In the previous example, notice also that the inverse matrix T−1 is full:

T−1 =

⎡⎢⎢⎢⎢⎣
209/780 −14/195 1/52 −1/195 1/780
−14/195 56/195 −1/13 4/195 −1/195

1/52 −1/13 15/52 −1/13 1/52
−1/195 4/195 −1/13 56/195 −14/195

1/780 −1/195 1/52 −14/195 209/780

⎤⎥⎥⎥⎥⎦ .
Thus, the inverse does not have the sparsity T has. Therefore, knowledge of the
factors is better, that is, more economical, and has the same utility as knowledge of
the inverse. �

Tridiagonal LU factoring (without pivoting, true, so we have to worry about nu-
merical stability) is good in this case, but we may do even better by writing an
algorithm specifically conceived for this type of problem. One trick is to not even
store the 4s and 1s, and to use a program to multiply Tx:

1 function y=Seneca(x)
2 [n,ignore]=size(x(:));
3 y = zeros(n,1);
4 y(1)=4*x(1)+x(2);
5 for i=2:n-1,
6 y(i)=-x(i-1)+4*x(i)+x(i+1);
7 end;
8 y(n)=-x(n-1)+4*x(n);
9 end;

Notice this program occupies constant storage, independent of n. Even better than
this code is to eliminate the loop, as follows:



6.2 Real Symmetric Positive-Definite Matrices 273

1 function y=Seneca(x)
2 [n,ignore]=size(x(:));
3 y = zeros(n,1);
4 y(1)=4*x(1)+x(2);
5 y(2:n-1)=-x(1:n-2)+4*x(2:n-1)+x(3:n);
6 y(n)=-x(n-1)+4*x(n);
7 end;

This makes things a constant factor better. As Cleve Moler emphasized, “[W]hen
you have mastered the colon, you have mastered MATLAB.”

But if all we can do is call a subroutine to multiply x by a matrix A (such as T
above), how can we solve Ax= b? Basically, we use powers of the matrix, as we will
see in Chap. 7; if we can compute y =Ax, then it is easy to compute w =Ay =A2x,
and so on. These vectors can be used to find a solution. But for now, before turning to
those iterative methods, we will look at examples of classes of structured matrices.
Even simple structures can be very important.

6.2 Real Symmetric Positive-Definite Matrices

We begin with a venerable and benign class: real symmetric positive-definite (SPD)
matrices. It is easy to verify that the matrix T from Example 6.3 was of this type.

Definition 6.4. A matrix A ∈ C
n×n is real symmetric positive-definite if

1. A ∈ Rn×n, that is, A is real,
2. AH = AT = A, that is, A is symmetric,
3. A is positive-definite, a condition that can be formulated in three equivalent

ways:

a. xT Ax > 0 for all nonzero x ∈ Rn;
b. all eigenvalues λ of A are real and positive;
c. all pivots in the LU factoring (without pivoting) are positive.

Such matrices are very common in applications.

In what follows, we will expand on this appropriate description of PSD matrices by
Higham (2002,196):

Symmetric positive definiteness is one of the highest accolades to which a matrix can aspire.
Symmetry confers major advantages in the eigenproblem and [. . . ] positive definiteness
permits economy and numerical stability in the solution of linear systems.

To begin with, if A is SPD, A = LU, the factoring arising from Gaussian elimina-

tion without pivoting, can be expressed as A = L̂L̂
T

(the Cholesky factoring); in this
book, we will also loosely call the factoring A = LDLT [the symmetric (no square
root) factoring] Cholesky factoring. This saves a (modest) factor of two in compu-
tation cost and in storage cost; but a factor of two is not nothing, especially for large
systems.
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More importantly, if we had to pivot, we would potentially have had to destroy
the structure. Avoidance of pivoting means more efficiency, in this case. Of course,
eschewing pivots means accepting possibly worse accuracy because, as we saw in
Chap. 4, LU factoring without pivoting was numerically unstable in general, giving
rise to growth factors arbitrarily larger than the worst-case 2n−1 of partial pivoting.
Indeed, the condition number of A, κ2(A), for solving Ax = b, can be large, and
is in some applications. That is, even if we did use pivoting, our answers might be
inaccurate; numerical instability could only make things worse. For SPD matrices,
though, we hope that any instability is not too serious, because we are in a hurry
for a solution. And we are in luck: Theorem 10.4 of Higham (2002) assures us that
for SPD matrices, Cholesky factoring is perfectly stable in a normwise backward
error sense. Indeed, the growth factor is just 1 and is not much worse even in a
componentwise sense.

In addition, the simple eigenvalues of A are perfectly conditioned, because left
eigenvectors are also right eigenvectors; that is,

Ax = λx ⇔ xT A = λxT .

So the condition number (yT x)−1 is just 1 (normalizing so ‖x‖ = 1). In fact, the
Schur factoring

A = UTUT (6.2)

has a diagonal matrix T (not just upper triangular) and so A is unitarily diago-
nalizable, even if A has multiple eigenvalues. Up to this point, this is true of all
real-symmetric matrices; we haven’t used positive-definiteness. If all λ > 0, then
Eq. (6.2) gives the SVD of A, not just the Schur factoring! For symmetric positive-
definite matrices A, eigenvalues are singular values.

Algorithms for solving the symmetric eigenproblem are significantly faster and
more reliable than those for the unsymmetric eigenproblem, as a result of the sym-
metry (see Problem 6.16). This extends to Hermitian matrices A ∈ Cm×n with
AH = A, but not to “complex symmetric” matrices with AT = A (about which more
appears later). For example,

A =

[
2 i
i 0

]
is complex symmetric but not Hermitian, since AT = A but

AH =

[
2 −i
−i 0

]
�= A .

Also, by inspection (actually by construction),

A
[

1
i

]
=

[
2 i
i 0

][
1
i

]
=

[
2− 1

i

]
=

[
1
i

]
.
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So 1 is an eigenvalue with eigenvector [1, i]T . By symmetry, [1, i] is the left eigen-
vector, but yT x is

[
1 i
][1

i

]
= 1− 1 = 0,

and so 1 is infinitely ill-conditioned as an eigenvalue (in fact, 1 is a double eigen-
value). Contrast this case with a different A, such as

A =

[
1 i
−i 1

]
,

which is Hermitian, since AH = A, and has eigenvectors [1, i]T and [1,−i]T . The
corresponding left eigenvectors are [1,∓i], with

[
1 ∓i

][ 1
±i

]
= 2, (6.3)

not 0, and indeed, if we normalize the eigenvectors, we have perfect condition num-
ber 1.

6.3 Banded Matrices

Perhaps the next most commonly useful structured matrices are banded, either tridi-
agonal, such as we have already seen, or as below:⎡⎢⎢⎣

2 −1
−1 2 −1

−1 2 −1
−1 2

⎤⎥⎥⎦ or

⎡⎢⎢⎣
2 −1

−1 3 −1
−1/2 4 −3/2

−17 1

⎤⎥⎥⎦ .

The first is also symmetric positive-definite, a double benefit, while the second is not
even symmetric. If the matrix has five bands, it is sometimes called pentadiagonal.
For instance, consider the matrix⎡⎢⎢⎢⎢⎣

2 −1/2 −1/4

−1/2 2 −1/2 −1/4

−1/4 −1/2 2 −1/2 −1/4

−1/4 −1/2 2 −1/2

−1/4 −1/2 2

⎤⎥⎥⎥⎥⎦ ,

which has two subdiagonals and two superdiagonals. Again, this example is sym-
metric positive-definite; it thus permits LU factoring without pivoting, in which ei-
ther the Cholesky factoring or the symmetric factoring can be banded; in fact, we
have A = LDLT with
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L =

⎡⎢⎢⎢⎢⎣
1

−1/4 1
−1/8 −3/10 1

−2/25 −23/72 1
−5/36 −324/1027 1

⎤⎥⎥⎥⎥⎦ and D =

⎡⎢⎢⎢⎢⎣
1

15/8
9/5

1027/576

5474/3081

⎤⎥⎥⎥⎥⎦ .

Once again, we emphasize that the zero entries need not be stored, for a banded
matrix. That is, a matrix with k bands occupies about k ·n units of memory, not n2;
for n > 100 and k ≤ 5, this become significant, indeed crucial. A less obvious point
(which we have made already but which we repeat here) is that A−1 is dense and
takes O(n2) storage and costs O(n2) flops to use. We are thus in better position with
a banded symmetric positive-definite matrix not to have the inverse explicitly! To
compute A−1b, just solve the sequence of problems

Lz = b

Dw = z

LT x = w

instead, for O(n) cost in total. Savings are so great that we will even tolerate some in-
stability and fix that by iterative refinement (see the next chapter, and Problem 6.6).

6.4 Block Structure

The third most commonly useful structure has entries occurring in distinct blocks,
such as

,

which is “almost block diagonal” in that the blocks align on the diagonal, with
overlap. Among other things, this type of matrix occurs in the numerical solution of
boundary value problems for ODE (see Ascher et al. (1988) and Chap. 14).

A slightly different block idea occurs when matrices are naturally represented by
the Krönecker product (tensor product), defined by

A⊗B =

⎡⎢⎢⎢⎣
a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

⎤⎥⎥⎥⎦ .
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Finally, the following partitioned matrix,

A =

⎡⎢⎢⎢⎢⎢⎢⎣

A11 A12

A21 A22 A23

A32 A33
. . .

. . .
. . . An−1,n

An,n−1 Ann

⎤⎥⎥⎥⎥⎥⎥⎦ ,

which has been carved up into blocks, is block tridiagonal. Often the blocks are the
same size, but this is not necessary. If we take, say, the matrix[

A11 A12

A21 A22

]
,

then the blocks A11 and A21 must have the same column dimension, and the blocks
A11 and A12 must have the same row dimension; in other words, the blocks must be
such that the partition is conformal.

Matrix multiplication of conformally blocked matrices follows the same sort of
rules as scalar matrix multiplication:[

A11 A12

A21 A22

][
B11 B12

B21 B22

]
=

[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
,

where each product inside is itself a smaller matrix–matrix product. B11 has to have
the same number of rows as A11 has columns, and so on, and these products are
not, of course, commutative. Given this, we have block LU factoring and the Schur
complement (see Appendix C.4):[

A11 A12

A21 A22

]
=

[
A11

A21 I

][
I A−1

11 A12

S

]
,

where S = A22 −A21A−1
11 A12 is the Schur complement of A22 in A; clearly, A11 has

to be nonsingular for this to make sense (this is the block analog of a nonzero pivot).
Block algorithms have interesting data locality advantages and on some comput-

ers can perform significantly better when organized one way rather than another.
However, we note that there can be severe compromises to numerical stability as
a price.3

6.5 Other Structured and Sparse Matrices

In the context of polynomial interpolation and approximation, we often encounter
the Vandermonde matrices, defined by (V)i j = φ j(τi) for some polynomial basis
φ j(x). Obviously, the entries of this matrix are correlated. These can be inverted or

3 Here, we only warn the reader. See Higham (2002, chap. 13) for a detailed introduction to these
issues.
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solved in O(n2) time, often stably in spite of notorious ill-conditioning. We have also
encountered circulant matrices in Example 6.2. They have remarkable properties
and can be easily solved using the Fourier transform.

Toeplitz and Hankel matrices (defined in the problems) similarly depend only on
O(n) parameters, and the Sylvester matrices consist of two stacked Toeplitz blocks,
for instance, ⎡⎢⎢⎢⎢⎣

f3 f2 f1 f0

f3 f2 f1 f0

g2 g1 g0

g2 g1 g0

g2 g1 g0

⎤⎥⎥⎥⎥⎦ .

Such matrices arise in computing the GCD of f (z) = f3z3 + f2z2 + f1z+ f0 and
g(z) = g2z2 + g1z+ g0. This is taken up further in Example 6.10. Many structured
matrices including Sylvester matrices have “low displacement rank”(see Kailath and
Sayed 1995). Low-displacement-rank matrices are determined by an O(n) number
of entries, and algorithms exist to take advantage of these correlations. For exam-
ple, “diagonal-plus-rank-one” matrices are useful in several applications (see, e.g.,
Gemignani 2005); and there are yet more.

In contrast, a general sparse matrix has no apparent pattern. It is characterized
by not having many nonzero entries; perhaps only a few percent of the entries of A
are nonzero. MATLAB caters to this kind of matrix, where instead of storing entries
contiguously, entries are recorded together with (i, j) indices, which necessitates
careful bookkeeping by the computer. True advantage can be taken of sparsity and
structure by using graph-theoretic ideas.4

Example 6.4. In MATLAB, we can generate random sparse matrices with the com-
mand sprand. For example, we can solve a random sparse 3,000× 3,000 system
by executing

A=sprand(3000,3000,0.1);
b=sprand(3000,1,0.2);
x=A\b;
res=b-A*x;
norm(res,inf)

which returns the residual

‖r‖∞ = 1.253702003323198 ·10−13 .

The sparse random matrix here has about 10% nonzeros, so instead of (3 ·103)2 =
9 ·106 entries, it has about 9 ·105 entries; MATLAB then quickly solves Ax = b (for
a random 3000 vector with about 600 nonzeros) with an accuracy in the residual of
about 10−13—all in time barely noticeable. �

4 See Davis (2006), whose techniques are used under the hood in MATLAB and in many other
problem-solving environments.
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Consider another example in which sparsity can be used to our advantage by
reordering matrices.

Example 6.5. Consider the example bfwa398 from the Florida Sparse Matrix Col-
lection.5 Its spygraph is shown in Fig. 6.2. The matrix is not symmetric, though
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250

300

350

nz=3678

Fig. 6.2 The structure of the sparse matrix bfwa393 from the Florida Sparse Matrix Collection

it looks as though it might be. Because it’s not very large, we can actually do a
PA = LU factoring directly, although the resulting factors are not very sparse. The
original matrix is about 2.3% nonzero and the rest zero. However, as we see in
Fig. 6.3, each of the factors L and U is about 30% full. In this example, we could
still solve the problem because it is of small enough dimension. However, for larger
problems, such “fill-in” can make the factoring completely impractical.

For various classes of matrices, it can help significantly to reorder the variables
and thus the columns. MATLAB has several routines to do so, such as colamd,
which tries to reorder the variables to get an “approximate minimal degree” order-
ing. When we do this for this example, by executing

p = colamd( Problem.A );
[L,U,P] = lu( Problem.A(:,p) );
figure(3), spy( L, 'k' );

we get the factor shown in Fig. 6.4. �

Finally, we mention the black-box matrix. This is a matrix given only in proce-
dure form, which perhaps all you are permitted to do with is call with a vector v,

5 Available at http://www.cise.ufl.edu/research/sparse/matrices/Bai/
bfwa398.html.

http://www.cise.ufl.edu/research/sparse/matrices/Bai/bfwa398.html
http://www.cise.ufl.edu/research/sparse/matrices/Bai/bfwa398.html
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Fig. 6.3 The LU factoring of bfwa398 exhibits considerable fill-in. The factors are not sparse
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Fig. 6.4 Using colamd significantly reduces the fill-in for this example, bfwa398

and get back another vector w together with a certificate that w really is Av (an
example of this is the Seneca function on page 272). You could, of course, probe the
procedure n times with v = e1,v = e2, . . . ,v = en in turn and recover the matrix: But
if n = 109, perhaps you don’t want to do that (even one call may take a while!).

What can be done with just a black box? We can take v0 at random (or,
for example, if we’re trying to solve Ax = b, we might try v0 = b) and com-
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pute the sequence vk = BB(vk−1), that is, vk = Avk−1 = Akv0. The sequence
v0,Av0,A2v0, . . . ,Akv0 is called a Krylov sequence, and if we can discover (some-
how) a relation between these vectors, say

α0v0 +α1v1 + · · ·+αkvk = 0 ,

then (if α0 �= 0), we have

A
(
−α1

α0
v0 − α2

α0
v1 −·· ·− αk

α0
vk−1

)
= v0 = b ,

and so we will have solved Ax = b. This trick works in exact arithmetic6 because if
p(x) is the minimal polynomial of A, then

p(A) =
k

∑
j=0

pkAk = 0

(note that p(x) divides the characteristic polynomial), and thus

p0I =−
k

∑
j=1

p jA j = A(−
k

∑
j=1

p jA j−1) .

As a result, we have effectively identified the inverse. To discover the αks, you only
have to solve a (k− 1)× (k− 1) linear system.

Example 6.6. In Chap. 11, we will take up finite differences, which replace deriva-
tives with sums of function values, somewhat like

f ′(x) =
f (x+ h)− f (x− h)

2h
+O(h2) .

The use of finite differences to approximate derivatives generates sparse matrices
from linear differential equations. MATLAB has several two-dimensional grids built
into its example function numgrid and has an approximation to the Laplacian op-
erator ∇2u called delsq that relates the value of u(x,y) to the four surrounding
values u(x− h,y), u(x+ h,y), u(x,y+ h), and u(x,y− h). At each node, therefore,
there is an equation relating these five values. There may be many nodes and equa-
tions, but each one relates only a few variables. Therefore, the matrix will be sparse.
Asking for a square 5× 5 grid by executing numgrid(’S’,5) returns⎡⎢⎢⎢⎢⎣

0 0 0 0 0
0 1 4 7 0
0 2 5 8 0
0 3 6 9 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ .

6 Using exact arithmetic, this is really practical only if k � n (Chen et al. 2002).
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The boundary conditions u(x,y) = 0 are applied on the edges, leaving only the
values at the nine interior nodes unknown. The finite-difference Laplacian matrix
is constructed and shown by

A = delsq( numgrid( 'S',5 ) );
spy(A,'k')

This graph is shown in Fig. 6.5. Larger square grids are sparser; if one makes the
grids large enough, the spy picture looks as though it has a thick diagonal, but it’s
really banded. The matrix is symmetric.
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Fig. 6.5 The Laplacian approximation on a 5×5 square grid, numbered as in the text

Other built-in grids are available. See the documentation for numgrid for a
listing. The C option cuts out a semicircular section of the square grid (as closely
as it can, given the discretization). See Fig. 6.6. When we construct the Laplacian
approximation on this 20× 20 grid, we get a “widening” band matrix. See Fig. 6.7.
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Fig. 6.6 The result of spy( numgrid(’C’,20), ‘k.’ )
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Fig. 6.7 The shape of the discrete Laplacian on the 20×20 grid in Fig. 6.6. Notice that the bands
appear to spread apart as we move farther down the matrix

This entails “fill-in” if we perform Cholesky factoring: The original A has 1228
nonzero entries out of a possible 260× 260, or about 1.8%. This count is from the
call nnz(A). If we form

L = lu( A );

we find that L has 3971 nonzero entries, meaning that about 5% of the possible
entries are nonzero. This growth of the number of nonzero entries (a factor of about
three for n = 20, and this factor grows linearly with n) is not terribly significant
for this example, but can be a problem for other examples. Sometimes the grid
numbering needs to be reordered (and can be reordered) to minimize the bandwidth
or minimize the fill-in in the factoring. For an example of that, see the sparsity demo
(type doc sparsity at the command line, or simply just sparsity) and also
the documentation for symamd. �

6.6 Structured Backward Error and Conditioning

For dense matrices, we have concentrated on the relatively accessible normwise sta-
bility results, for instance, that the matrix R̂ computed by Householder QR factoring
is the exact R of A+E with ‖E‖ ≤ cnμM‖A‖. However, for matrices with particular
structure—because they either are sparse or have correlated entries—some addi-
tional guarantees may be required. In this section, we examine such cases.

6.6.1 Structured Backward Errors and Componentwise Bounds

When they are available, componentwise bounds—for example, for triangular sys-
tems, (U+E)x̂ = b with |ei j| ≤ cnμM|ui j|—are much superior: Tiny but important
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entries ui j are not potentially polluted by errors from larger coefficients, due to the
fact that ‖U‖ could be very much larger than |ui j|. This is a real difficulty with many
problems, and in particular sometimes with the SVD: The smaller singular values
may not be accurate, especially if σk ≤ μMσ1. As a consequence, a componentwise
backward error bound is a tighter constraint on an algorithm; it is easier to satisfy
normwise bounds, since a given solution may require a larger ε to have a compo-
nentwise backward error of ε . In some structured cases, componentwise bounds can
be obtained.

The componentwise backward error Higham (2002,122)

ωE,f(y) := min
{
ε
∣∣ (A+ΔA)y = b+Δb, |ΔA| ≤ εE, |Δb| ≤ ε f

}
(6.4)

uses absolute values on matrices and vectors to mean that the inequalities hold com-
ponentwise: For all i, j,

|Δai j| ≤ εei j and |Δbi| ≤ ε fi .

ei j and fi are assumed to be nonnegative, and some, though not all, may be zero. In
such a case, no change is permitted in that particular component, which may rep-
resent an intrinsic coefficient, in Stetter’s terminology; If the coefficient has arisen
from measurement, then it may more reasonably be permitted to change; Stetter
calls such a coefficient empiric.

We have at hand all the machinery we need to prove the following version of a
classic result in structured backward error, originally due to Oettli et al. (1965).

Theorem 6.1. If the matrices A and E are elements of Cm×n, the vectors x, b, and f
are in C

n, and the elements of E and f are nonnegative, then the minimum structured
backward error ε is

ε = min{t : (A+ΔA)x = b+Δb & |ΔA| ≤ tE & |Δb| ≤ tf}

= max
1≤i≤m

|ri|
∑n

j=1 ei, j|x j|+ fi
, (6.5)

where r = b−Ax is the residual. If any ri �= 0 while the denominator is zero, the
structured backward error is infinite.

Proof. As pointed out in Oettli et al. (1965), we may consider this problem one row
at a time. Taking the ith row of the rearrangement ΔAx−Δb = r, we have

n

∑
j=1

Δai, jx j −Δbi = ri . (6.6)

We define the components of the (n+ 1)-vectors c and d as follows:

c j =

{
Δai, j/ei, j , if ei, j �= 0
0 , otherwise

1 ≤ j ≤ n

cn+1 =

{
Δbi/fi , if fi �= 0
0 , otherwise .
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Then put d j = ei, jx j for 1 ≤ j ≤ n and dn+1 =− fi. Equation (6.6) is then just c ·d =
ri, and we may use the Hölder inequality (see Appendix C.2) to find the minimum
infinity norm of the vector c. Hölder’s inequality gives

|ri|= |c ·d| ≤ ‖c‖∞‖d‖1

with equality iff each |c j| = λ , a constant, and all the complex angles of c jd j = θ ,
again a constant. That is,

‖c‖∞ ≥ |ri|
‖d‖1

,

and note that the right-hand side is independent of our choice of Δai, j or Δbi. Putting
c j = |c j|exp(iφ j) (here i is the square root of −1, not to be confused with the row
index) and d j = |d j|exp(iψ j), we must then have φ j +ψ j = θ . Notice that the ψ j

are given—they are the arguments of the x j for 1 ≤ j ≤ n, and ψn+1 = π . Therefore,
c j = |c j|exp(i(θ−ψ j)). Using |c j|= λ and substituting into c ·d = ri, we may solve
for λ :

λ =
e−iθ ri

n

∑
j=1

ei, jx j + fi

.

If ri = 0, we simply take the perturbations to be zero, regardless. If ri �= 0, then this
expression for λ gives

Δai, j =

⎧⎪⎪⎨⎪⎪⎩
e−iargx j ei, j ri
n

∑
j=1

ei, jx j + fi

if
n

∑
j=1

ei, jx j + fi �= 0

∞ otherwise

Δbi =

⎧⎪⎪⎨⎪⎪⎩
− firi

n

∑
j=1

ei, jx j + fi

if
n

∑
j=1

ei, jx j + fi �= 0

∞ otherwise

.

By the Hölder inequality, each entry in c has the same magnitude, which means
that with this choice we have the guaranteed minimum ε for the ith row. Taking the
maximum over all rows gives us the theorem. �

Example 6.7. Consider the matrix

A =

⎡⎢⎢⎣
0 0 0 −1
1 0 0 ε−1 + ε+ 2
0 1 0 −2ε−1 − 2ε− 2
0 0 1 ε−1 + ε+ 2

⎤⎥⎥⎦ .

This kind of matrix will be taken up in detail in Sect. 6.6.3. The characteristic poly-
nomial of this matrix is (λ−1)2(λ−ε)(λ−1/ε), which is a “reciprocal polynomial”



286 6 Structured Linear Systems

in that all its roots come in reciprocal pairs. The polynomial is monic, which means
that its trailing coefficient (in the monomial basis, which we’re using here) is also
1. Because this is a “companion matrix” (we explain more about this in the next
section), the only matrix entries that can reasonably be perturbed are the ones com-
ing from the coefficients of the polynomial, namely, the last column. Because this is
a reciprocal polynomial, the (1,4) entry should not be changed either. This means
that the matrix E can be taken quite reasonably to be zero unless j = 4 and i = 2,
3, or 4. Taking ei, j = |ai, j| in those cases also seems reasonable; we will allow only
relatively small perturbations in those coefficients.

Let ε = 3.27×10−8. We choose as our right-hand side an approximate eigenvec-
tor for the double eigenvalue 1, namely,

b =

⎡⎢⎢⎣
(−0.0158857− 4.6244530i) ·10−8

0.0048580+ 1.4142050i
−0.0044964− 1.4142060i

(0.0147031+ 4.6244550i) ·10−8

⎤⎥⎥⎦ .

When we solve this linear system using LU factoring, we get an answer near

x =

⎡⎢⎢⎣
(−0.0142444− 5.4172453i) ·10−7

0.0052197+ 1.4142051i
−0.0048580− 1.4142058i

(0.0158857+ 4.6244528i) ·10−8

⎤⎥⎥⎦ .

The residual, computed in 30 digits precision but printed only to 2 significant figures
here, is

r =

⎡⎢⎢⎣
0.0+ 0.0i

−2.0 ·10−18− 6.5 ·10−16i
−1.0 ·10−17− 3.2 ·10−15i
−1.6 ·10−18− 6.2 ·10−16i

⎤⎥⎥⎦ .

Since the residual in the first component is exactly zero, no change need be made
in the first row of A or b to accommodate it—which is lucky, as there are no co-
efficients that can be perturbed in the first row of A. For the other rows, we have
∑ei, j|x j|= |ai,4||x4|, and so

εi =
|ri|

|ai,4||x4|+ |bi| ,

which gives 2.3× 10−16, 7.5× 10−16, and 4.4× 10−16 for i = 2, 3, and 4. Thus, the
maximum structured backward error is 7.5× 10−16.

If instead we distributed this error over all entries of A, the overall size might be
less (the optimum cannot be larger, of course), but it probably isn’t much less; after
all, it can’t be much smaller than the unit roundoff, after scaling. �
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Although the structured backward error must be at least as large as the unstruc-
tured backward error, a structured condition number may be much, much smaller
than the unstructured condition number. Perturbations that don’t change tiny but
important components much may produce better-quality solutions. The following
definition makes this idea more precise. Let

condE,f(A,x) := lim
ε→0

sup

{‖Δx‖∞
ε‖x‖∞

∣∣∣∣ (A+ΔA)(x+Δx) = b+Δb,

|ΔA| ≤ εE, |Δb| ≤ ε f

}
. (6.7)

In the important case when E = |A| and f = |b|, this can be shown to be within a
factor of 2 of

cond(A,x) =
‖ |A−1| |A| |x| ‖∞

‖x‖∞ (6.8)

(a ratio of two vector norms, with a product by two positive matrices |A| and |A−1|
on top). See Problem 6.10. This is (up to an irrelevant constant factor) bounded by
what is called the Skeel condition number:

cond(A) = cond(A,e) = ‖ |A−1| |A| ‖∞ ≤ κ∞(A). (6.9)

The Skeel condition number is invariant under row scaling DAx = Db. Moreover,
the gain can be great:

min{κ∞(DA)|D is diagonal}= cond(A),

and if DR equilibrates the rows of A, then

κ∞(A)

κ∞(DR)
≤ cond(A)≤ κ∞(A).

We will see further discussion of this in the next chapter. The computation of
cond(A) involves the computation of |A−1|, which is usually too expensive to do,
especially if the matrix is sparse.

Example 6.8. In this example, we continue to examine the companion matrix of
Example 6.7. The Skeel condition number of A is

cond(A) = ‖|A||A|−1‖∞ = 1.22 ·108,

which seems large, but the unstructured condition number is 3.74 · 1015, which is
considerably larger. Multiplying the structured condition number by the structured
backward error gives an error bound of 8.76 ·10−8, whereas using the unstructured
condition number gives a bound of O(1). The true error, found by computing the
solution at 30 digits, is approximately 1.4 ·10−9, and the structured bound is within
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a factor of two of being tight. Thus, we can say with confidence that the solution
of this linear system produced an exact solution of a nearby problem with the same
structure. �

As noted already by Oettli et al. (1965), this backward error result can be used to
guarantee that a single computed eigenvalue μ with corresponding eigenvector x is
an exact eigenpair of a nearby structured matrix A+ΔA with |ΔA| ≤ εE. It cannot
be used to show that all computed eigenpairs are the exact eigenpairs of the same
nearby structured matrix; but often we are interested in only the largest eigenvalue,
for example, and so this is a useful application of the theorem. To see this extension,
suppose that A, x, and μ are given. Define r = μx−Ax. Take f = 0 and E as desired
to preserve structure, and then consider the problem

min{t | ΔAx = r & |ΔA| ≤ tE} .

Using the same reasoning as before, we find that the minimum is attained if ΔA
is chosen by using the witness vectors for Hölder’s inequality as before, and the
minimum value is

ε = max
1≤i≤n

|ri|
n

∑
j=1

ei, j|x j|

if this is finite.

6.6.2 Structured Backward Error for Matrices
with Correlated Entries

We have already seen in the previous chapter some computation of a “minimal”
backward error for a matrix with correlated entries, namely, a symmetric ma-
trix, where we used Lagrange multipliers to enforce the constraints and used least
squares. The Oettli–Prager infinity norm-minimization approach can also be ex-
tended and results in a linear programming problem. We do something different
here, and use the SVD. Specifically, we use the property of the SVD where solu-
tion of a column-rank-deficient matrix produces the minimal 2-norm solution. We
demonstrate by example.

Example 6.9. We begin with the symmetric 2× 2 linear system that we have seen
before:

B =

[
885781 887112
887112 888445

]
.

In MATLAB using backslash to find the x that solves Bx = [0,1]T , we find x =
[−8.871583031996495,8.884913727761688]T ·105, which is not the integer answer
we were expecting. Nonetheless, the residual is zero, and so we know that there
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exists a relatively small perturbation ΔB for which (B+ΔB)x = [0,1]T exactly. Is
there a symmetric such perturbation? We have already answered this in the affirma-
tive using Lagrange multipliers in Problem 4.23; let us now try to use the SVD. The
equations are δb1,1b1,1x1 + δb1,2b1,2x2 = 0 and δb2,1b2,1x1 + δb2,2b2,2x2 = 0, with
the further equation δb1,2 − δb2,1 = 0, which we simply apply. This gives us two
equations in three unknowns, which will then be column rank-deficient. Notice that
the xk will appear in the matrix entries! The 2× 3 matrix is

1011
[−7.882 7.882 0.0

0.0 −7.870 7.870

]
,

and its singular values are both large. The SVD has a 2× 2 matrix U, a rectangular
2× 3 matrix ΣΣΣ , and a 3× 3 matrix V. Using the SVD to solve this gives us the
minimum 2-norm solution; since we are looking for any small perturbation that
makes our residual actually zero, this works. When we do this, we find that our
perturbed matrix is, to 20 digits,[

888444.99999999998316 887112.00000000001961
887112.00000000001961 885780.99999999999721

]
and that (computing to the appropriate internal precision) the residual of the
MATLAB-computed x with this matrix is indeed zero. Moreover, this matrix, when
entered into MATLAB, rounds to B.

Now, the residual as computed in higher precision in MAPLE is [0.323664 ·
10−4 − 0.198776 · 10−4]T . Using that, we solve the system using the SVD. This
says a symmetric perturbation of relative size less than μM in each of the entries of
B guarantees that the computed solution is exact for that perturbed system. Thus, we
have used the SVD to compute a structured, correlated, backward error that verifies
Theorem 4.3. �

Example 6.10. The matrix A below is a Sylvester matrix, which occurs in trying to
find the greatest common divisor of two polynomials. If the polynomials f (x) =
f0 + f1x+ f2x2 + f3x3 and g(x) = g0 + g1x+ g2x2 + g3x3 have a common zero, say
x∗, then all of f (x∗), x∗ f (x∗), (x∗)2 f (x∗), and so on are zero, and so are g(x∗),
x∗g(x∗), (x∗)2g(x∗), and so on. By taking enough powers to make a square matrix,
we find that the following linear system of equations must hold: SX = 0, where

S =

⎡⎢⎢⎢⎢⎣
f3 f2 f1 f0 0
0 f3 f2 f1 f0

g2 g1 g0 0 0
0 g2 g1 g0 0
0 0 g2 g1 g0

⎤⎥⎥⎥⎥⎦ (6.10)

and X = [1,x∗,(x∗)2, . . . ,(x∗)4]T . A little thought shows that if f and g have any
other common roots, there must be another null vector of the same form; and if the
common root is a double root, then [0,1,2x∗, . . . ,4(x∗)3]T is in the nullspace. The
rank deficit of S is the degree of the GCD, in fact.
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What could it mean, though, to have only “approximate” common roots? This
question has been the subject of quite a bit of research at least since 1988, mostly
because of applications in computer-aided geometric design. We won’t go into much
detail in this example, but we will consider the following question. Suppose we have
(by some means or other) identified some potential approximate common roots. Can
we find ‘minimal’ perturbations in the coefficients, call them Δ fk and Δg j, so that
all the approximate common roots are exact common roots? That is, can we find the
“nearest” f +Δ f and g+Δg that have the specified GCD? The answer depends on
what you mean by “nearest,” but one answer could be to look for perturbations such
that Δ fk was small compared to fk, and similarly for g.

Accordingly, suppose our approximate common zeros were x1 and x2. Compute
the residuals f (x1), x1 f (x1), . . ., x4

1 f (x1), g(x1), x1g(x1), . . ., and similarly for x2.
This gives 10 residuals apparently, but they are obviously dependent, and the SVD
will pick that up automatically. Writing our equations for the perturbations, we have
Bd = r, where the vector d contains our desired perturbations Δ fk, divided by our
normalization constants fk, and similarly for g. That is, we put Δ fk = fkδ fk and
Δgk = gkδgk, and use the relative variables instead. We will want to keep both f and
g monic, so we insist that Δg2 = Δ f3 = 0. Rearranging the equations so that all the
δ ’s appear on the left-hand side [for example, with x2

1(g(x1)+Δg(x1)) = 0], we get

g2x1
4 +(g1 + δg1g1)x1

3 +(g0 + δg0g0)x1
2 = 0 ,

which we rearrange to get

g0x2
1δg0 + g1x3

1δg1 =−g2x1
4 − g1x1

3 − g0x1
2 .

Doing this for all 10 equations, we get the linear system Bδ = R, where

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0x1 f1x1
2 f2x3

1 0 0

f0 f1x1 f2x2
1 0 0

0 0 0 g0x2
1 g1x3

1

0 0 0 g0x1 g1x2
1

0 0 0 g0 g1x1

f0x2 f1x2
2 f2x3

2 0 0

f0 f1x2 f2x2
2 0 0

0 0 0 g0x2
2 g1x3

2

0 0 0 g0x2 g1x2
2

0 0 0 g0 g1x2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The residuals R are just the negatives of the values of x j
1 f (x1) and similarly for x2

and g: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− f3x4
1 − f2x3

1 − f1x2
1 − f0x1

− f3x3
1 − f2x2

1 − f1x1 − f0

−g2x4
1 − g1x3

1 − g0x2
1

−g2x1
3 − g1x1

2 − g0x1

−g2x1
2 − g1x1 − g0

− f3x2
4 − f2x2

3 − f1x2
2 − f0x2

− f3x2
3 − f2x2

2 − f1x2 − f0

−g2x2
4 − g1x2

3 − g0x2
2

−g2x2
3 − g1x2

2 − g0x2

−g2x2
2 − g1x2 − g0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

These look complicated, but given numerical values for the coefficients of f and g,
and putative common roots x1 and x2, they are just a numerical matrix (10× 5) and
a numerical vector, of length 10, which is really just values of the polynomial, times
some constants. With numerical values input, the matrix is not rank 5, but rank 4
(one could predict that from the structure); thus, the least-squares problem is column
rank-deficient. If the residuals are small (that is, the values of f and g are small at
the putative common roots), then the solution (by the SVD) will also be small.

To make this analysis more concrete, we take f = x3 − 6.0x2 + 11.0196x−
6.0588 and g = x2 −3.04x+2.0503, and we suppose that our approximate common
roots are 1 and 2 (just to make it a bit simpler). We allow changes in all coefficients
except the leading coefficients, and we look for small relative changes—that is, we
take Δ fk = fkδ fk and similarly for g. Our matrix becomes⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−6.0588 11.0196 −6.0 0 0
−6.0588 11.0196 −6.0 0 0

0 0 0 2.0503 −3.04
0 0 0 2.0503 −3.04
0 0 0 2.0503 −3.04

−12.1176 44.0784 −48.0 0 0
−6.0588 22.0392 −24.0 0 0

0 0 0 8.2012 −24.32
0 0 0 4.1006 −12.16
0 0 0 2.0503 −6.08

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.11)

The right-hand side is (printing the column vector on two lines horizontally to save
space) [

0.0392 0.0392 −0.0103 −0.0103 −0.0103
0.0392 0.0196 0.1188 0.0594 0.0297

]
,

and the entries are all modestly small. Thus, we expect that the structured back-
ward error will also be small. Now, take the SVD, B = UΣΣΣVH . The dimensions
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are 10× 10 for U, there are four nonzero entries in ΣΣΣ , and V is 10× 5 (called the
“thin” SVD). On using this factoring to solve the system, we find that our relative
perturbations are ⎡⎢⎢⎢⎢⎣

δ f0

δ f1

δ f2

δg0

δg1

⎤⎥⎥⎥⎥⎦ .
=

⎡⎢⎢⎢⎢⎣
−0.00393
0.00298
0.00291
−0.0245
−0.0132

⎤⎥⎥⎥⎥⎦ .

These are all tolerably small. When we add these perturbations to f and g, we get
polynomials whose roots are (for f ), 1.00000000000000, 2.00000000000000, and
3.01748941581046, and for g just the first two. Thus, we have used the SVD to find
a structured, correlated backward error. It’s true that the correlations were linear
(the change in one entry in the matrix was exactly the same as the change in some
other entries of the matrix, in fact); otherwise, we would not have been able to use
the SVD. However, you see that it can be done.

It is, of course, a nonlinear problem to find the putative common roots (here 1
and 2), but again it can be attacked at least initially with the SVD, or even just with
the QR factoring. A very practical method uses Gauss–Newton iteration (see Zeng
2004), although the use of displacement rank in Zhi (2003) and, most recently, Bini
and Boito (2010), seems the most promising theoretically. See Problem 4.31 for
an introduction to the Gauss–Newton method for solving nonlinear optimization
problems.

One final remark on the use of the SVD to find the putative common roots:
If we take the SVD of the Sylvester matrix (6.10), with the numerical values of
the coefficients used in this example, the singular values are [19.03, 8.250, 1.880,
0.004775, 0.0006711]. The fact that two of the singular values are small suggests
that the degree of the GCD is two; the nearest rank-deficit-two matrix is a distance
0.004775/19.03

.
= 2.5 · 10−4 away. But that finds the nearest matrix of rank-deficit-

two, not the nearest Sylvester matrix of rank deficit two. However, this is often
enough all by itself, and the approximate null vectors from V can give us decent
putative common roots; alternatively, they can be used as starting points for Gauss–
Newton iteration, which in effect computes a kind of structured SVD. Note also the
discussion in Dahlquist and Björck (2008). �

6.6.3 Structured Backward Error for Eigenvalue Problems

One of the things we learn in a first-year algebra course is that, to find eigenval-
ues, we find the roots of the characteristic polynomial. Yet, “[a]lthough the char-
acteristic equation is important in theory, it plays no role in practical eigenvalue
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computations.”7 In fact, it is quite practical (though somewhat more expensive than
necessary) to use eigenvalues to find polynomial roots. In the last section, we talked
about structured backward error for matrices with correlated entries. Prior to that,
we looked at structured backward error for a single eigenvalue, using the Oettli–
Prager theorem. Something can also be done about structured backward error for all
eigenvalues simultaneously, at least for some classes of eigenproblems. We sketch
one such example in this section and give another in Chap. 8.

6.6.3.1 Univariate Polynomials

Let us begin with univariate polynomial roots where the polynomial is expressed, as
usual, in the monomial basis about x = 0:

p(x) = p0 + p1x+ p2x+ · · ·+ pnxn . (6.12)

If pn �= 0, there are n roots in C. We can find these by eigenvalues as follows. First,
observe this fact:

Theorem 6.2. Consider the matrix

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1
0 0 1
0 0 0 1
...

...
...

...
. . .

0 0 0 0 · · · 1
−p0 −p1 −p2 −p3 · · · −pn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
− x

⎡⎢⎢⎢⎢⎢⎣
1

1
1

. . .
pn

⎤⎥⎥⎥⎥⎥⎦ .

This matrix has zero determinant when p(x) = 0. This is a companion matrix pencil.

Proof. One can show this either by direct expansion or by the Schur complement as
below (see Appendix C). We have

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x 1
−x 1

−x 1

−x
. . .
. . . 1

−x 1
−p0 −p1 −p3 −p4 · · · −pn−2 −xpn − pn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and, by inspection,

7 This is a quote from David S. Watkins, in Hogben (2006 chapter 43).
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A−1 =

⎡⎢⎢⎢⎣
−1/x −1/x2 · · · −1/xn−1

−1/x · · · −1/xn−2

. . .
...

−1/x

⎤⎥⎥⎥⎦ .

As a result,

det(C0 − xC1) = xn−1 det(D−CA−1B) ,

where B = [0,0, . . . ,0,1]T , so A−1B is the final column of A−1, namely,[
− 1

xn−1 , − 1
xn−2 , . . . , −1

x

]
.

Thus, CA−1B is

[−p0 −p1 · · · −pn−2
]
⎡⎢⎢⎢⎣
−1/xn−1

−1/xn−2

...
−1/x

⎤⎥⎥⎥⎦=
p0

xn−1 +
p1

xn−2 + · · ·+ pn−1

x
,

and, finally, D−CA−1B is

−pn−1 − xpn − p0

xn−1 − p1

xn−2 −·· ·− pn−2

x

and det(C0 − xC1) is xn−1 times this or

−(p0 + p1x+ p2x2 + · · ·+ pn−2xn−2 + pn−1xn−1 + pnxn)=−p(x) .

Thus, the determinant is zero when p(x) = 0, and we may find polynomial roots by
eigenvalues. �

This is how MATLAB’s roots function works. A matrix polynomial version is
coded in polyeig. A series of interesting papers has been written on the structured
numerical stability of this approach.8 The reason, as deduced in Arnol’d (1971) and
refined by others, is that perturbations tangent to the similarity orbit do not matter, to
first order, and the other (normal) direction can be accounted for by small changes
in the polynomial coefficients. We will discuss a simpler version of this further
in subsequent chapters. In essence, the method is numerically stable: It produces
pseudozeros, which are exact roots of polynomials with only slightly perturbed co-
efficients. That is, the unstructured backward error results from ordinary eigenvalue
computations can be improved to show that the eigenvalues returned are not just ex-
act eigenvalues of C+ΔC for some small but dense perturbation ΔC, but also exact

8 To name two, Toh and Trefethen (1994) and Edelman and Murakami (1995).



6.6 Structured Backward Error and Conditioning 295

roots of a polynomial p+Δ p, where the changes to the coefficients are small. As
usual, one has to worry about the conditioning of the polynomial roots with respect
to such perturbations, but that is what we have just done in the previous chapter,
with the theory of pseudospectra for matrix polynomials; for scalar polynomials,
the theory in Chap. 3 suffices and one needs to compute the function B(z).

6.6.3.2 Multivariate Polynomials

Similarly, multivariate systems of polynomials occur very frequently in applica-
tions. Two common problems consist of finding all complex roots and finding all
real roots. The first problem is already difficult, and there may be many roots in C.
The second problem is harder to do efficiently: there may be many fewer real roots,
and we don’t want to waste time with the complex roots only to throw them away.
For systems of polynomial equations, we may compute companion-like matrices for
each variable, using what are known as Gröbner bases or resultants or Bézoutians.
The companion-like matrices, which commute with each other, have a common set
of eigenvectors. For each such eigenvector, the eigenvalues give the components of
the roots.

Example 6.11. Consider the following system of equations:

x2 + y2 = 1

25xy− 12= 0

We can compute with MAPLE that

X =

⎡⎢⎢⎣
0 0 1 0

12/25 0 0 0
1 0 0 −1
0 12/25 0 0

⎤⎥⎥⎦ and Y =

⎡⎢⎢⎣
0 1 0 0
0 0 0 1

12/25 0 0 0
0 1 −12/25 0

⎤⎥⎥⎦ .

It can be shown that XY = YX, from which it follows that X and Y are simulta-
neously upper-triangularizable by orthogonal similarity.9 Indeed, XV = VΛΛΛ x and
YV = VΛΛΛ y, where

V =

⎡⎢⎢⎣
25/9 25/16 25/16 25/9

5/3 −5/4
5
4 −5/3

20/9 −15/16 15/16 −20/9

1 1 1 1

⎤⎥⎥⎦
and

ΛΛΛ x = diag

(
4
5
,−3

5
,

3
5
,−4

5

)
9 See Corless et al. (1997) and, for example, Graillat and Trébuchet (2009).
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ΛΛΛ y = diag

(
3
5
,−4

5
,

4
5
,−3

5

)
.

Therefore, the four roots (x,y) are(
4
5
,

3
5

) (
−3

5
,−4

5

) (
3
5
,

4
5

) (
−4

5
,−3

5

)
,

and these are all the roots. See Fig. 6.8, which is not drawn to scale, in order to show
the separate roots clearly. �

Fig. 6.8 The implicit curves 25xy = 12 and x2 + y2 = 1

A similar method that uses a simpler construction, called the Bézoutian, runs as
follows. Suppose f (x,y) and g(x,y) are given bivariate polynomials. One forms the
Cayley quotient after introducing a new variable η :

C(x,η ,y) =
f (x,y)g(η ,y)− f (η ,y)g(x,y)

x−η .

Then, one notices that this quotient is, in fact, a polynomial since, considered as a
univariate polynomial in x, the numerator is exactly divisible by x−η . Then, one
notices that the resulting trivariate polynomial can be written as a quadratic form:
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C(x,η ,y) = [φ0(η),φ1(η), . . . ,φm(η)]B(y)

⎡⎢⎢⎢⎣
φ0(x)
φ1(x)

...
φm(x)

⎤⎥⎥⎥⎦ .

Here the φ j(x) are some polynomial basis, usually φ j(x) = x j in the literature. Fi-
nally, one notices that, at a common zero (x∗,y∗) of f (x,y) and g(x,y), it must be
that C(x∗,η ,y∗) = 0, and that means that the vector [φ0(x∗),φ1(x∗), . . . ,φm(x∗)] is an
eigenvector of B(y∗). Solving this polynomial eigenproblem (for example, by lin-
earization) identifies all possible such y∗. This is the method that is implemented in
the MAPLE package RootFinding[BivariatePolynomial].10 This can be
generalized using the Macaulay resultant to higher-dimensional systems. One diffi-
culty with it is that it often introduces spurious roots, which must be examined and
discarded.

Example 6.12. Take f = x2 +y2−1 and g = 25xy−12 as before. When we form the
Cayley quotient as above, we find that

f (x,y)g(η ,y)− f (η ,y)g(x,y)
x−η = [1,η ] B(y)

[
1
x

]
,

where

B(y) =
[−25y 12

12 25
(
y2 − 1

)
y

]
.

This matrix polynomial is of degree 3 in y, and we may find a linearization—that
is, a companion matrix for the matrix polynomial—simply by using a block version
of the companion matrix pencil used earlier. All values of y that make B(y) singular
will be eigenvalues of the matrix pencil (A0,B0), where

A0 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0 −12
0 0 0 0 −12 0
1 0 0 0 25 0
0 1 0 0 0 25
0 0 1 0 0 0
0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ and B0 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 25

⎤⎥⎥⎥⎥⎥⎥⎦ .

The finite eigenvalues of this pencil are exactly the y-values that make B(y) singular,
namely, 3/5, 4/5, −3/5, and −4/5. Once y has been found, the corresponding x can be
found, indeed from the null vectors of B(y). �

10 See Manocha (1994) and Shakoori (2008).
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Finally, we remark that, to our knowledge, no structured backward error results
have been proven for multivariate rootfinding by means of eigenvalue problems as
sketched in this section. This material was included here partly for continuity rea-
sons, and partly to point out a place where the reader may contribute.

6.7 Cauchy Matrices

We close this chapter with a discussion of a special-purpose algorithm for LU fac-
toring of Cauchy matrices, that is, matrices C with entries

ci j =
1

xi + y j

for some fixed vectors x and y with nonnegative entries. These are matrices with cor-
related entries and are not sparse, but O(n) parameters determine the O(n2) entries
of the matrix. This class includes the infamous Hilbert matrix, with xi = yi = i− 1/2.
The Hilbert matrix is notoriously ill-conditioned in an unstructured sense, but the
following algorithm allows an accurate computation of the LU factors of a Cauchy
matrix.

1 function [ L, D, U ] = CauchyDecomp( x, y )
2 %CAUCHYDECOMP Accurate LDU factoring [1/(x(i)+y(j)]
3 % From Jim Demmel's ISSAC talk 2001
4 % See also N. J. Higham, Accuracy and Stability
5 % in Numerical Analysis, 2nd ed, SIAM, 2002, p. 514
6 % which points to Cho, Math Comp 2(104) 819--825 1968.
7 % Cho and Higham give explicit O(n) formulas
8 % for entries of L, D, and U.
9 n = length(x);

10

11 U = 1.0./(diag(x)*ones(n)+ones(n)*diag(y));
12 L = eye(n);
13 D = eye(n);
14

15 for k=1:n,
16 D(k,k) = U(k,k);
17 L(k:n,k) = U(k:n,k)/D(k,k);
18 U(k,k:n) = U(k,k:n)/D(k,k);
19 U(k+1:n,k) = zeros(n-k,1);
20 for i=k+1:n,
21 for j=k+1:n,
22 U(i,j) = U(i,j)*(x(i)-x(k))*(y(j)-y(k))/(x(k)+y(j))/(

x(i)+y(k));
23 end
24 end
25 end
26 % Shockingly accurate.
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Why does this work? Consider partitioning the matrix C as[
c11 C12

C21 C22

]
with c11 being 1× 1. Then the Schur complement gives (see Sect. C.4)[

c11

C21 I

][
I c−1

11 C12

C22 −C21c−1
11 C12

]
(this is really just LU factoring). Now, we do some analytic work to do the cancel-
lations analytically, which dramatically improves the stability:

1
xi + y j

− 1
xi + y1

(x1 + y1)
1

x1 + y j
=

1
xi + y j

(xi − x1)(y j − y1)

(x1 + y j)(xi + y1)
.

Amazingly, this pattern persists, because every minor of C is a Cauchy matrix, and
thus each entry in D is a ratio of determinants of such minors. This allows us to
replace the central statement in the LU decomposition loop by

U(i,j) = U(i,j)*(x(i)-x(k))*(y(j)-y(k))/(x(k)+y(j))/(x(i)+y(k));

For the 150× 150 Hilbert matrix, this gives

6.046669307767589e-180

in MATLAB, in an eyeblink. MAPLE, using exact arithmetic, gets (in less than 12 s)

6.04666930776759510e-180

Well, really it gets a fraction, which we then approximate. So, we see that MATLAB

was wrong by 6 units in the 16th place, a relative error of nearly 10−15. This is out-
standing, given that K∞(H150) is about 4 ·10227! For n = 250, MATLAB takes 0.33 s
to get the factoring, while MAPLE takes 79 s (only about 8 times what it took for
n = 150; this is actually a remarkable performance on a tablet PC), which is about
180 times slower. Again, the relative error in dnn was less than 10−15; now, however,
dnn ≈ 2 ·10−300, getting close to underflow! The (unstructured) condition number?
4.35 · 10380, which does overflow in MATLAB. So, with this special technique, we
get an accurate (perfectly accurate!) answer to a question that involves a matrix so
ill-conditioned that its unstructured condition number overflows!

However, we do remark that for solving Hnx = b, we’re still in vast trouble:
errors in b will be magnified by this huge condition number, giving us no correct
digits in x at all. But, the accurate LDLT factoring is used for finding eigenvalues
and singular values via special techniques, and this is useful.11

In conclusion, we have seen that it is important to consider the structure of matri-
ces and to take advantage of it. Moreover, we have reached a very important lesson:
“It is important to use the right condition number for the occasion” (Higham 2002
124). But as this last example shows, it is also important to understand the actual
limitations imposed by the condition numbers in reference to the particular prob-
lems under consideration.

11 For more on this, see Demmel and Koev (2005).
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6.8 Notes and References

The literature on algorithms and applications of structured matrices is vast. A good
entry point is Golub and van Loan (1996); another is the Handbook of Linear Al-
gebra (Hogben 2006), especially Chap. 48. Asymptotically fast algorithms are dis-
cussed in Bini and Pan (1994). Analytical properties are discussed in Horn and
Johnson (1990). The papers in the conference proceedings Structured Matrices in
Mathematics, Computer Science and Engineering (Olshevsky 2001a,b) and Fast
Algorithms for Structured Matrices: Theory and Applications (Olshevsky 2003a)
are particularly valuable. The book Böttcher and Grudsky (1987) contains many
results on spectra and pseudospectra of Toeplitz matrices, and they point out that
the structured condition numbers of Toeplitz matrices grow roughly as quickly as
the unstructured condition numbers do. Structured condition numbers are studied in
Higham and Higham (1992), and structured backward error for Toeplitz systems is
studied in Varah (1994). Together these results give the curious result that the for-
ward error bound predicted by the product of the structured condition number and
the structured backward error is larger than the product of the unstructured condi-
tion number and the unstructured backward error. This shows that structured error
analysis is not always helpful.

The literature on general sparse matrices is equally vast, and the work of Davis
and Hu (2011) has already been mentioned.

Problems

Warm up and Review

6.1. Verify that the structured condition number in Eq. (6.7) is invariant under row
scaling.

6.2. Compute or estimate the growth of cond(A) for the symmetric tridiagonal ma-
trix of Problem 6.17 as n → ∞ and compare it with κ2(A).

6.3. Download the Problem ncvxqp9 from the Florida Sparse Matrix Collection.
This symmetric matrix is quite large, with dimension n = 16,554 and has over
50,000 nonzero entries. LU factoring without reordering does not work on our tablet
PC, but reordering helps. Reorder the matrix using colamd and spy on the result.
Factor the reordered matrix and spy on the result. Estimate the structured condition
number cond(A).

6.4. Consider the “Filbert” matrix, with A j,k = 1/Fj+k−1, where F0 = 0, F1 = 1, and
Fn = Fn−1+Fn−2 thereafter; that is, each entry of the Filbert matrix is the reciprocal
of a Fibonacci number. Estimate the condition number of the n× n Filbert matrix
(this problem is from Bill Gosper).
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6.5. A variation, which we shall call the Cauchy–Filbert matrix, is defined as fol-
lows: Cj,k = 1/(Fj +Fk −1). Show that this can be written as a Cauchy matrix. Estimate
its condition number, but show that the code of this chapter can factor it accurately.

6.6. Write a MATLAB program to solve tridiagonal systems by LU factoring with-
out pivoting. Compare the speed and accuracy of your program with the built-in
backslash operator of MATLAB on several large tridiagonal systems of your own
choosing. Include both symmetric and nonsymmetric problems, diagonally domi-
nant and nondominant problems in your test suite.

6.7. The west0479 matrix can be loaded into MATLAB by the command load
west0479. The matrix is sparse and unsymmetric. Graph the sparsity pattern using
the spy command. Show that using PA=LU factoring on this matrix is more costly
than solving the system using the colamd reordering. Suppose the right-side vector
b is all ones for this example. You may estimate the size of the forward error by
computing the residual of your solution (using the original matrix, after reordering
your solution).

6.8. Download in MATLAB format from the Florida Sparse Matrix Collection the
matrix memplus, at http://www.cise.ufl.edu/research/sparse/
matrices/Hamm/memplus.html. Once loaded, the data are contained in a
structure named Problem and the matrix is available in the field Problem.A.
Compare LU factoring for the original matrix versus the reordered matrix from
colamd. Compare also the solution of the linear system Ax = b, where the right-
hand side is available in the field Problem.b by use of the MATLAB backslash.
Estimate the structured condition number.

6.9. A stochastic matrix has each column containing only nonnegative entries that
sum to 1, representing probabilities. Alternatively, each row could contain only non-
negative entries that sum to 1; if both are true, the matrix is termed doubly stochastic.
Therefore, in the first case, the row vector ones(1,n) is a left eigenvector with
eigenvalue 1. Show that unstructured pseudospectra of stochastic matrices always
have eigenvalues larger than 1 if ε > 0, and therefore one should consider only
structured pseudospectra. For the 2× 2 case,[

α 1−β
1−α β

]
,

find the eigenvalues explicitly and show that structured pseudospectra correspond
precisely to changes α(1+ δα) and β (1+ δβ).

6.10. Prove that Eq. (6.7) implies that cond|A|,|b|(A,x) ≤ 2cond(A,x). Since the
factor 2 is relatively unimportant, the Skeel condition number is therefore useful
for understanding the effect of perturbations on structured systems.

6.11. Write down a formula for the structured condition number of the solution of
a Cauchy linear system Cz = b, where the Cauchy matrix depends on the param-
eters xi and y j by ci, j = 1/(xi + y j). That is, find a procedure to compute ∂ z/∂xi and

http://www.cise.ufl.edu/research/sparse/matrices/Hamm/memplus.html
http://www.cise.ufl.edu/research/sparse/matrices/Hamm/memplus.html
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similarly for y j. Is the structured condition number that you get from this analysis
much less than the unstructured condition number ‖C−1‖‖C‖? You may look at
small-dimensional examples instead of a general analysis.

6.12. We once again return to Example 4.1, and note here that is an instance of the
structured family of matrices

Az =

[
z z+ 1

z− 1 z

]
,

which has detA = 1 for all z. Forming B = AHA, we have another matrix with
correlated entries. The solution of Bx = [0,1]H is a function of the parameter z. Is
the numerical solution of this system by MATLAB, call it x̂, the exact solution of
this linear system with a perturbed matrix B(z+Δz) for some Δz? If not, then the
structured backward error (in this sense) is infinite.

6.13. Prove the Sherman–Morrison formula:(
A+uvH)−1

= A−1 +
A−1uvHA−1

1+ vHA−1u
(6.13)

if A is nonsingular and 1+ vHA−1u �= 0. This is useful in computation if Ax = b
can be solved quickly, because then the related system

(
A+uvH

)
x = b, which has

a matrix related by a rank-1 update, can also be solved quickly.

6.14. This question was inspired by a discussion from Neumaier (2001, pp. 97–101).

1. Prove that if ‖I−A‖ ≤ β < 1, then A is nonsingular and

‖A−1‖ ≤ 1
1−β .

2. If A is nonsingular and B is a singular matrix such that |B−A| ≤ δ |A|, where | · |
of a matrix, means that the inequality holds componentwise, that is, |Bi j−Ai j| ≤
δ |Ai j|, and in particular means that if Ai j = 0 then so is Bi j, then prove that

δ ≥ 1
κ(D1AD2)

,

where D1 and D2 are any nonsingular diagonal matrices, and κ(A) =
‖A‖‖A−1‖ is the condition number of A in this norm. [Hint: If B is singu-
lar, then so is A−1B; now consider I −A−1B and use the result of part (a).]

3. Finally, if A is well-conditioned, can it be close to a singular matrix?
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Investigations and Projects

6.15. This investigation concerns companion matrices.

1. Recall that orthogonal polynomials satisfy a three-term recurrence relation of
the form xφn(x) = αn−1φn+1(x)+βn−1φn(x)+ γn−1φn−1(x) [with special cases
happening for xφ0(x) and possibly xφ1(x)]. By thinking about multiplying the
vector [φ0(x),φ1(x), . . . ,φn(x)]T , write down a companion matrix for p(x) =
∑n

k=0 ckφk(x). These are implemented in MAPLE (see CompanionMatrix,
but don’t look unless you’re stuck). The original invention is due to Good (1961)
and independently to Specht (1960).

2. Use the result of Problem 6.15 and the recurrence relation xTn(x) = (Tn+1(x)+
Tn−1(x))/2 for n ≥ 1 to write down the companion matrix for polynomials ex-
pressed in the Chebyshev basis. Use your companion matrix to find the zeros of
T5(x)+T4(x)+T3(x)+T2(x)+T1(x)+T0(x). Compare with Boyd (2002). Are
the computed eigenvalues the exact eigenvalues of a nearby polynomial? Give
the changes in the Chebyshev coefficients explicitly.

3. Invent a companion matrix pencil for polynomials expressed in Bernstein–
Bézier form. Again this is implemented in MAPLE, so if you get stuck, you
can find an answer (but there is more than one way to do this, so perhaps you
will find a better answer).

6.16. Consider the Rayleigh quotient iteration:

Require: x0 (or else random x0) and Hermitian matrix A.
for i = 1,2, . . . until converged do
μi := (xH

i−1Axi−1)/(xH
i−1xi−1)

Solve (A− μiI)x = xi−1.
end for
xi := x/‖x‖.

It is (nearly) everyone’s favorite method for the symmetric eigenvalue problem, al-
though the general-purpose codes use QR iteration. Given an approximate eigen-
vector x for a Hermitian matrix A, you proved elsewhere that μ = xHAx/xHx is the
best 2-norm estimate for the eigenvalue corresponding to x.

1. Prove that μi is an eigenvalue of A+E with E small enough if at any stage
‖xi−1‖/‖x‖ is small enough.

2. Convergence of this iteration is supposed to be usually cubic, that is, em+1 ∝
e3

m, for large enough m (while rounding errors don’t dominate). Under what
circumstances would you expect this to break down? Try to find an example.

3. The two-sided RQI needs initial approximations to yH as well as x,
and it costs at least twice as much, but it can work for nonsymmetric
matrices A:

for 1,2, . . . until converged do
μi := (yH

i−1Axi−1)/(yH
i−1xi−1)

Solve (A− μiI)x = xi−1

xi := x/‖x‖
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Solve yH(A− μiI) = yH
i−1

yH
i := yH/‖yH‖

end for
Try this algorithm out on a nonsymmetric matrix, say the Clement matrix of
order 10, using random x0,yH

0 . Try a different matrix with complex eigenvalues,
of your choice; choose complex x0 and yH

0 in that case.

6.17. Let A be the n × n symmetric tridiagonal matrix with constant diagonal 2
and unit sub- and superdiagonals. Consider its factoring without pivoting into A =
LDLT with D = diag(d1,d2, . . . ,dn) and

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

�2 1

�3 1

. . .
. . .

�n 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (6.14)

1. Show that d1 = 2, dk = 2− 1/dk−1 for 2 ≤ k ≤ n, and �k = 1/dk−1.
2. Write a short, memory-efficient MATLAB script to solve Ax = b, given an n-

vector b that you may overwrite with the solution. Use as little extra memory as
is consistent with good practice. (Hint: Use an analytical formula for dk.)

3. Use the formula

λk = b+ 2(ac)
1/2 cos

(
kπ

n+ 1

)
, 1 ≤ k ≤ n,

for the eigenvalues of a constant-tridiagonal matrix⎡⎢⎢⎢⎢⎣
b c

a b c

a b c

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎦
and the fact that this A is symmetric (a = c) to find a formula for the condition
number κ2(An) = σ1/σn. How does κ2(An) grow as n → ∞?

4. Find a formula for L−1 and thereby estimate κ1(L) = ‖L‖1‖L−1‖1.
5. Is this algorithm for solving Ax = b numerically stable? (A full proof is not

necessary: Use the preceding answers, together with numerical experiments, to
justify your case.)
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6.18. A Toeplitz matrix is constant along diagonals:⎡⎢⎢⎢⎢⎢⎢⎣

t0 t1 t2 t3 t4
t−1 t0 t1 t2 t3
t−2 t−1 t0 t1 t2
t−3 t−2 t−1 t0 t1
t−4 t−3 t−2 t−1 t0

⎤⎥⎥⎥⎥⎥⎥⎦ . (6.15)

A Hankel matrix (which is strongly related) is instead constant along antidiagonals:⎡⎢⎢⎢⎢⎣
h4 h3 h2 h1 h0

h3 h2 h1 h0 h−1

h2 h1 h0 h−1 h−2

h1 h0 h−1 h−2 h−3

h0 h−1 h−2 h−3 h−4

⎤⎥⎥⎥⎥⎦ (6.16)

These matrices arise in many application areas, including signal processing and
sparse reconstruction.

1. Prove that if T is a Toeplitz matrix and P is the “anti-identity”⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

.
.

.
1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(also called an exchange matrix) having ones along its principal antidiagonal
but otherwise zero, then H = PT is a Hankel matrix. Similarly show that if H is
Hankel, then T = PH is Toeplitz.

2. Faster-than-O(n3) algorithms for solving Toeplitz (or Hankel) systems are
widely known. Golub and van Loan (1996) discuss O(n2) algorithms and their
normwise, unstructured stability for symmetric positive-definite Toeplitz matri-
ces. Luk and Qiao (2003) discuss an O(n2 logn) algorithm for computing the
SVD of Hankel matrices. Heinig (2001) analyzes the stability of some (poten-
tially FFT-based) algorithms. Bini and Pan (1994) discuss cost and complexity.
Choose one or more of these. Read and discuss.



Chapter 7
Iterative Methods

Abstract This chapter looks at iterative methods to solve linear systems and at some
alternative methods to solve eigenvalue problems. That is, we now look at iteration
instead of using a finite number of noniterative steps. Iterative methods for solving
eigenvalue problems are, of course, completely natural. We looked at power iteration
and at the QR iteration in Chap. 5; here we look at some methods that take advantage
of sparsity or structure. We also use one pass of iterative refinement to improve
structured backward error. �

7.1 Iterative Refinement and Structured Backward Error

Let us begin with the simplest possible iterative method for solving a linear system.
We first consider a 3× 3 example that hardly needs iteration, but we will shortly
extend to larger matrix sizes. So suppose we wish to solve⎡⎣ 4 1 0

1 4 1
0 1 4

⎤⎦⎡⎣x1

x2

x3

⎤⎦=

⎡⎣ 1
−1

1

⎤⎦ .

The exact solution, which is easy to find by any method, is x = [5,−6,5]/14. Let us
imagine that we don’t know that, but that due to a prior computation, we do know
that the matrix

B =

⎡⎣ 2+
√

3 1
1 4 1

1 4

⎤⎦

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods:
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0 7,
© Springer Science+Business Media New York 2013
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has the Cholesky factoring LDLT with

L =

⎡⎣ 1
α 1
α 1

⎤⎦ ,

α = 1/(2+
√

3), and D= diag(2+
√

3, 2+
√

3, 2+
√

3). As a result, B−1 =L−T D−1L−1

is easy to compute, or, more properly,

Bx = b ⇔ LDLT x = b

is easy to solve. Here, if we let P = B−1 (at least in thinking about it, not in actually
doing it), we have

PAx = Pb =

⎡⎣ 0.3847
−0.4359
0.35898

⎤⎦ .
Notice that PA is nearly the identity, that is, PA = I−S, where S is a matrix with
small entries:

S =

⎡⎣ −0.073216421430700 0 0
0.0206191045714862 0 0

−0.00515477614287156 0 0

⎤⎦ .
Our equation has thus become

(I−S)x = Pb =

⎡⎣ 0.3847
−0.4359
0.35898

⎤⎦ ,

and we are left with the problem, seemingly as difficult, of solving a linear system
with matrix I − S. However, we have made some progress, since we can use the
smallness of S to solve the system by means of an iterative scheme. First, observe
that (I−S)x= Pb = x0 implies x= x0+Sx. Hence, we can then write the following
natural iteration:

xk+1 = x0 +Sxk .

This is the Richardson iteration, which is about as simple an iterative method as it
gets. Then we obtain

x1 = x0 +Sx0 .

Similarly, we find that

x2 = x0 +Sx0 +S2x0

x3 = x0 +Sx0 +S2x0 +S3x0.
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In general, the kth iteration results in

xk =
k

∑
j=0

S jx0 .

This series converges if ‖Sk‖ goes to zero, which it does, exactly as for the geo-
metric series, if there is a ρ < 1 for which ‖Sk‖ ≤ ρk. In this case, ‖S‖ ≤ 0.01.
An obvious induction gives ‖Sk‖ ≤ ‖S‖k ≤ (0.01)k and so this iteration converges;
indeed, already x4 is correct to four digits. Note that max |λ | ≤ ‖S‖ in general, and
it is very possible that max |λ | < 1. In this case the powers eventually decay even
though ‖S‖> 1. We will see examples shortly.

Before we look at larger matrices, let’s look at this iteration in a different way.
Using a matrix P, which is close to the inverse of A, we make the initial guess
x0 = Pb (since Ax = b then implies x ≈ Pb). The residual resulting from this
choice is

r0 = b−Ax0 = b−APb .

Since 0 = b−Ax, we find that

r0 = b−Ax0 − (b−Ax) = Ax−Ax0 = A(x− x0) = AΔx .

Thus, we see that Δx = x− x0 solves

AΔx = r0 .

Now, with this equation, we can use P as above and let x1 − x0 = Pr0. Then

x1 = x0 +Pr0 .

The process can clearly be repeated:

x2 = x1 +Pr1

x3 = x2 +Pr2 ,

where r2 = b−Ax2 and r1 = b−Ax1 are the corresponding residuals. This process
is called iterative refinement. Note that

x1 = x0 +P(b−Ax0) = x0 +Pb−PAx0 = x0 + x0 −PAx0

= x0 +(I−PA)x0 = x0 +Sx0 ,

since PA = I−S in our earlier notation. Similarly, one obtains

x2 = x1 +P(b−Ax1) = x0 +Sx0 +Pb−PA(x0 +Sx0)

= x0 +Sx0 + x0 − (I−S)(x0 +Sx0)

= x0 +Sx0 +S2x0 ,
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which is mathematically equivalent to what we had before and converges under the
same conditions.

The matrix P, our approximate inverse, is called a preconditioner (and its inverse
is usually denoted M). Probably the most important part of any iterative method
is choosing the right preconditioner. For solving Ax = b, we need for P to allow
fast evaluation of products Pv and simultaneously be close to A−1. Unfortunately,
these goals are often in opposition. It is useful in practice to use even quite crude
approximations to A−1 as preconditioners, though.

Let us illustrate the usefulness of this method. Suppose we want to solve Ax = b
and, moreover, suppose A = Fn(I+S), where

Fn =

⎡⎢⎢⎢⎣
2+

√
3 1

1 4 1
1 4 1

. . .
. . .

. . .

⎤⎥⎥⎥⎦
is n×n and S, off its diagonal, is small [we will allow s11 =(4−(2+

√
3))/(2+

√
3)

to be sort of big]. Then, let P=F−1
n , although because F−1

n is full, we never compute
it. Instead, we note that by symmetric factoring, we have Fn = LnDLT

n , where

Ln =

⎡⎢⎢⎢⎣
1
α 1
α 1

. . .
. . .

⎤⎥⎥⎥⎦
and D = diag(2+

√
3,2+

√
3, . . . ,2+

√
3). Note that we won’t compute S, either.

Instead, we solve the sequence of equations

Lnz0 = b

Dny0 = z0

LT
n x0 = y0

in O(n) flops to get x0, by means of which we will use iterative refinement to get an
accurate value of x as shown below:

for k = 1,2, . . . do
Compute rk−1 = b−Axk−1

% Now, we compute xk − xk−1 = Prk−1

Solve Lzk = rk−1
Solve Dyk = zk

Solve LTΔxk = yk
Let xk = xk−1 +Δxk

end for
This is an iterative refinement formulation of the iteration. Because ‖S‖ .

= 0.01, 10
or so iterations of this process gets x accurate to most significant digits; and each



7.1 Iterative Refinement and Structured Backward Error 311

iteration costs O(n) flops. Thus, in O(n) flops, we have solved our system. This is
significantly better than the O(n3) cost for full matrices!

Note that A need not really be tridiagonal: It can have a few more entries here
and there off the main diagonals, contributing to S, if they’re not too large. Even
if there are lots of them, the cost of computing the residual is at most O(n2) per
iteration, and if S is small, we will need only O(1) iterations.

It’s hard to overemphasize the importance of this seemingly trivial change from
direct, algorithmic finite-number-of-steps solution to a convergent iteration, but
most large systems are, in practice, solved with such methods. As Greenbaum notes,

With a sufficiently good preconditioner, each of these iterative methods can be expected to
find a good approximate solution quickly. In fact, with a sufficiently good preconditioner
M, an even simpler iteration method such as xk = xk−1+M−1(b−Axk−1) may converge in
just a few iterations, and this avoids the cost of inner products and other things in the more
sophisticated Krylov space methods (in Hogben 2006, p. 41–10)

(which highlights the importance of choosing P well). The iterative methods in-
cluded in MATLAB are (for Ax = b)

• bicg—biconjugate gradient
• bicgstab—biconjugate gradient stabilized
• cgs—conjugate gradient squared
• gmres—generalized minimum residual
• lsqr—least squares
• minres—minimum residual
• pcg—preconditioned conjugate gradient
• qmr—quasiminimal residual
• symmlq—symmetric LQ

but there is no explicit program for iterative refinement, because it is so simple. See,
for example, Olshevsky (2003b) for pointers to the literature, or perhaps Hogben
(2006).

It was Skeel who first noticed that a single pass of iterative refinement could
be used to improve the structured backward error. He noticed that computing the
residual in the same precision (not twice the precision, which might not be eas-
ily available) gives the exactly rounded residual for (A+ΔA)x = b+ r for some
|ΔA| ≤ O(μM)|A|. That is, the computed residual is the exact residual for only
O(μM) relative backward errors in A, preserving structure. Notice that the com-
puted solution x usually comes only with a normwise backward error guarantee:
It is the correct solution to (A + ΔA)x = b + Δb with ‖ΔA‖ = O(μM‖A‖) and
‖Δb‖ = O(μM‖b‖), which does not preserve structure. A single pass of iterative
refinement can, if the condition number of A is not too large, improve this situation
considerably. Let x1 = x+Δx, where

A(Δx) = r .

Then solving this system gives us, more nearly, a solution of the same sort of
problem.
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The following argument, though not “tight,” gives some idea of why this is so.
Suppose we have approximately solved Ax = b and found a computed solution,
which we will call x0. Then, on computing the residual r0 = b −Ax0 in single
precision, we know that we have found the exact solution of

(A+ΔA0)x0 = b− r0 ,

where |ΔA0| ≤ cμM|A| and c is a small constant that depends linearly on the dimen-
sion n. Notice that the ΔA0 is componentwise small. The working-precision residual
r0 is included (it might not be very small), and what this statement says is merely
that we have an accurate residual for a closely perturbed system. How small is r0?
It is easy to see that, normwise,

‖r0‖ .
= ρ‖A‖‖A−1‖‖b‖μM
.
= ρκ(A)‖b‖μM , (7.1)

at most (being sloppy with constants, though). ρ is called a growth factor. Now we
suppose that in solving AΔx = r0 in the same approximate fashion (call the solution
Δx0), we get the same approximate growth, so that the residual in this equation can
be written

(A+ΔA1)Δx = r0 − s0 ,

where again the perturbation ΔA1 is small componentwise compared to A, and s0 is
the residual that we could compute using working precision in the update equation:

s0 = r0 −AΔx0 .

Our “similar growth” assumption says that ‖s0‖ .
= ρκ(A)‖r0‖. This will be, roughly

speaking, ρ2κ(A)2‖b‖μ2
M and might, if we are lucky, be quite a bit smaller. Adding

together the two equations, we find that

(A+ΔA0) (x0 +Δx0) = b+(ΔA0 −ΔA1)Δx0 − s0

= b+O(μ2
M) ,

where we have suppressed the ρ2κ2(A) and the dependence on κ(A) from the other
small term in the order symbol. This loose argument leads us to expect that a single
pass ought to give us nearly the exact solution to a perturbed problem where the
perturbation is componentwise small.

Of course, it takes more effort to establish in detail that it actually does so under
many circumstances, and to describe exactly what those circumstances are. We can
easily see in the above argument though that if the condition number of A or the
growth factor ρ or both are “too large,” there will be trouble. Full details of a much
tighter argument are in Skeel (1980).

Example 7.1. This idea helps in coping with examples where the residual is unac-
ceptably large. This can happen even with well-scaled matrices (in theory, though
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as we have discussed it is almost unheard of in practice). Consider the family of
matrices shaped like the following (we show the n = 6 case):

A =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 1
−1 1 0 0 0 0
−1 −1 1 0 0 0
−1 −1 −1 1 0 0
−1 −1 −1 −1 1 0
−1 −1 −1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (7.2)

This well-known example has a growth factor for Gaussian elimination with partial
pivoting (although pivoting doesn’t actually happen because it is arranged that the
pivots are already in the right place) that is as bad as possible: The largest element
in U where A = LU is 2n + 1. The condition number of the matrix is quite reason-
able, however; it is only 33 or so when n = 32. But the solution with GEPP is not
acceptable, without iterative refinement, as we will see. As proved in Skeel (1980),
a single pass of iterative refinement is enough to stabilize the algorithm in the strong
sense discussed above.

Suppose we take b to be the vector vn corresponding to the smallest singular
value of A. The choice of b doesn’t really matter very much, though this choice is
especially cruel. When we compute (for n = 32) the solution of Ax = b, we should
get un, the final vector of the U matrix from the SVD. Call our computed solution
x0. We compute the residual r0 = b−Ax0, using the same 15-digit precision used to
compute x0. The norm of r0 is about 10−9, and thus the nearest matrix A+ΔA for
which x0 really solves the problem is about the same distance away, componentwise.
If we now solve AΔx = r and put x1 = x0 +Δx, then when we compute the residual
again, we find that ‖r1‖∞ is about 10−17. This produces an entirely satisfactory
backward error.

For n = 64, the situation is much worse, at the beginning. The zeroth solution has
a residual with infinity norm nearly 1; that is, almost no figures in the solution are
correct. A single pass of iterative refinement gives x1 with ‖r1‖∞ .

= 1.22 ·10−13, 13
orders of magnitude better. The 2-norm condition number of the matrix is only about
56.8, mind, and the ∞-norm condition number is 128. The Skeel condition number
(see Eq. (6.9)) cond(A) = ‖|A−1||A|‖∞ is not very different, being very close to 66.
However, the structured condition number for this x is quite a bit smaller:

cond(A,x) =
‖|A−1| |A| |x|‖∞

‖x‖∞
.
= 5.548 .

Thus, for n = 64, we can expect nearly 13 figures of accuracy in x1, because the
residual is so small. �

Remark 7.1. We should point out that |A| does not commute with |A−1| in general,
and in particular does not commute for this example. The Skeel condition number
uses the inverse first. �
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7.2 What Could Go Wrong with an Iterative Method?

Let us now return to the iterative idea itself, and no longer think about the effects of
just one pass, but rather now think about what happens if many iterations are needed.
Indeed, thousands of iterations are common in some applications. The basic theo-
retical question is now: when does Sk → 0, and how fast does it do so? A theorem
of eigenvalues, Sk → 0 if all eigenvalues have |λ | ≤ ρ < 1, seems to characterize
things completely. However, as we saw in Sect. 5.5.2, pseudospectra turn out to play
a role for nonnormal S. There are other methods to look at this problem, and there
is an extensive discussion in Higham (2002, chapter 18). We content ourselves here
with an example.
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Fig. 7.1 Scaled residuals for the Richardson iteration solution of a nonnormal matrix with n = 5.
We see fairly monotonic convergence

Example 7.2. Suppose that A = I−S, where S is bidiagonal, with all diagonal en-
tries equal to 8/9 and all entries of the first superdiagonal equal to −1. This is similar
to the example matrix that was used in Sect. 5.5.2. Now, we wish to solve Ax = b,
where, say, b has all entries equal to 1. Because all eigenvalues of S are less than
1 in magnitude, we know that the series I+S+S2 + · · · converges. Moreover, we
know that ultimately the error goes to zero like “some constant” times (8/9)k, and
that k = 400 gives (8/9)400 .

= 1× 10−21. Therefore, the Richardson iteration

xk+1 = b+Sxk

should converge to the reference solution. Incidentally, the reference solution has
xn = 9, x j = O((9/8)n− j) for j = n− 1, . . ., 1 by back substitution. This exponential
growth in the solution suggests that we should evaluate the quality of our solution
by examining the scaled residual,

δ =
‖b−Ax‖
‖A‖‖x‖ .
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We will use the kth iterate to scale the residual of the kth solution in the figures
below.

Because the pseudospectrum of this matrix (when the dimension is large) pokes
out into the region |λ | > 1—that is, the pseudospectral radius ρε of Eq. (5.13) is
larger than 1—we expect that this iteration will encounter trouble for large dimen-
sions. In other words, the “constant” that we hid under the blanket called “some
constant” in the previous discussion actually grows exponentially with the dimen-
sion n. While it is constant for any given iteration, the size of the constant gets
ridiculously large. In Problem 7.5, you are asked to give an explicit lower bound,
confirming this. Thus, as might be expected, the iteration works quite well for a
5× 5 matrix, as shown in Fig. 7.1. Also, as predicted, our expectation of trouble is
confirmed by an 89× 89 matrix, as shown in Fig. 7.2. �
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Fig. 7.2 Scaled residuals for the Richardson iteration solution of a nonnormal matrix of dimen-
sion 89× 89. Convergence is very slow, which would be unexpected if we were not aware of the
pseudospectra of the matrix S

7.3 Some Classical Variations

In this section, we look at a few variations of the iterative method we have discussed
thus far, namely, Jacobi iteration, Gauss–Seidel iteration, and successive overrelax-
ation (SOR).

Let us begin with Jacobi iteration. Take P= D−1, the inverse of the diagonal part
of the matrix (so, write the matrix as D+E). Then, mathematically, PA = D−1A
and S = I−D−1A is pretty simple, but unless the off-diagonal elements of A are
small compared to D, this won’t converge: I−D−1A has only off-diagonal elements,
−ai j/aii, and we want (ideally) ‖S‖< 1. As an iteration to solve Ax = b, we proceed
as follows. Ax = b is equivalent to (D+E)x = b. Therefore,
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Dx = b−Ex

xn+1 = D−1(b−Exn)

= xn − xn +D−1(b−Exn)

= xn +D−1(b−Dxn −Exn)

= xn +D−1(b−Axn) ,

which is the Jabobi iteration.
The Gauss–Seidel method is also worth considering. As Strang (1986, p. 406)

said, “[T]his is called the Gauss–Seidel method, even though Gauss didn’t know
about it and Seidel didn’t recommend it. Nevertheless it is a good method.” Take
P = L−1, where L is the lower-triangular part of A, including the diagonal:

L =

⎡⎢⎢⎢⎣
a11

a21 a22
...

. . .
an1 an2 · · · ann.

⎤⎥⎥⎥⎦
The iteration demands, for A = L+U, that we solve

Lxk+1 = b−Uxk

for xk+1 or, alternatively, that use the map

xk+1 = L−1b−L−1Uxk

(at least in theory—in practice, we can write this as a simple iteration, reusing the
same vector x as we go so; it uses less storage than Jacobi iteration). Because L is a
better approximation to A, this often converges twice as fast as Jacobi. This is usu-
ally win–win, although Jacobi iteration can in some cases win by use of parallelism.

But there is a dramatically better method using only trivially more effort, succes-
sive overrelaxation (SOR). Split A = L+D+U, with L now being strictly lower-
triangular. We get, with an “overrelaxation parameter” ω ∈ (0,2),

(D+ωL)x = ωb− (ωU− (ω− 1)D)x

from the following:

Ax = b

ωAx = ωb

Dx+ωAx = ωb+Dx

Dx+ω(L+D+U)x = ωb+Dx

(D+ωL)x = ωb+Dx−ωDx−ωUx

= ωb− (ωU− (ω− 1)D)x.
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Here, P = ω(L+ωD)−1 and we have a free parameter ω , the relaxation parameter,
to choose. We may choose it differently for every iteration, to try to minimize the
maximum eigenvalue of what we have been calling S. As information is extracted
from the solution estimating the largest Jacobi iteration matrix eigenvalue, we may
improve our choice. Here S = (L+ωD)−1((ω − 1)D−ωU), and for some finite-
difference applications the optimal ω is known. For the right choice of ω , this can
seriously outperform Gauss–Seidel.

Example 7.3. We use A = delsq( numgrid( ‘B’, n ) ) as an example
for SOR, even though direct methods are actually better for this nearly banded
matrix. We look first at small-dimension matrices, specifically for n = 5, 8, 13,
21, and 34. The dimension of A is O(n2)×O(n2). By fitting the data from these
smaller matrices, the largest eigenvalue of the Jacobi iteration matrix D−1 (A−D)

seems to be μ = 1− 16.65/n2, which means that the optimal ω = 2/(1+
√

1− μ2) is
about 2/(1+ 16.65/n), and the eigenvalues of the SOR error matrix are then less than
(1− 16.65/n)/(1+ 16.65/n), approximately.

When we use 150 iterations of SOR to solve the system for n = 80 (so the ma-
trix is 4808× 4808), we find that the residual behaves on the kth iteration as ap-
proximately 103 × (ω− 1)k, and after 150 iterations, the residual is 4.5× 10−7. In
contrast, the same number of Jacobi iterations cannot be expected even to give one
figure of accuracy, and Gauss–Seidel is not much better. The difference between
(1−O(1/n))k and (1−O(1/n2))k is huge. The constant 103 above changes, of course,
with the dimension n. It seems experimentally to vary as (n2)2 or the square of the
dimension of A, which, though growing with n, is at least not growing exponentially
with n. �

Remark 7.2. These classical methods are still useful in some circumstances, but
there have been serious advances in iterative methods since these were invented.
Multigrid methods and conjugate gradient methods seem to be the methods of
choice. See Hogben (2006, chapter 41), by Anne Greenbaum, for an entry point
to the literature. �

7.4 Large Eigenvalue Problems

All methods for finding eigenvalues are iterative1; so, unlike the case where we
were solving Ax = b, where there was a distinction between finite, terminating “di-
rect” methods (such as QR factoring or LU factoring) and nonterminating “iterative”
methods such as SOR, when we tackle Ax = λx, the distinction in algorithm classes
is a bit fuzzy and depends chiefly on how large a “large matrix” is today. On a tablet
PC in 2010, not a high-end machine by any means, it took MATLAB five seconds to
compute all 1,000 eigenvalues and eigenvectors of a random 1,000×1,000 matrix,
as follows:

1 Yes, even for n = 2, because while square roots are “legal,” they are not finite—extracting them
is iterative, too.
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%% Eigenvalues of a 1000 by 1000 Random Matrix
A = rand( 1000 );
e = eig( A );
plot( real(e), imag(e), 'k.' )
axis('square'), axis([-10,10,-10,10]),set(gca,'Fontsize',16)
xlabel('Real Part'),ylabel('Imaginary Part')

So today a 1,000×1,000 matrix is not large, even though it and its matrix of eigen-
vectors have a million entries each. See Fig. 7.3.
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Fig. 7.3 Nine hundred ninety-nine eigenvalues of a random 1,000× 1,000 real matrix. The odd
eigenvalue is about 500.3294 (because all entries of this matrix are positive, the Perron–Frobenius
theorem applies, and thus there is a unique eigenvalue with largest magnitude, which is real). Note
the conjugate symmetry, and the confinement to a disk with radius about 10

For many applications, however, we might not need all 1,000 eigenvalues and
eigenvectors, but perhaps just the six largest, or six smallest. Consider the following
situation. Suppose we execute

a=rand(1000);
eigs(a)

in MATLAB and receive the following warning:

Warning: Only 5 of the 6 requested eigenvalues converged.
In eigs>processEUPDinfo at 1474
In eigs at 367

This command had some sort of iteration failure—it only found five of the six largest
eigenvalues. We will see in a moment a possible way to work around this failure.
But before, notice that if we execute

eigs(a,6,0)
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we successfully and quickly find the six smallest eigenvalues. Note that eigs is not
eig. The “s” is for “sparse,” although it works (as in this case) on a dense matrix.
The following simple kludge avoids the convergence failure in this example:

eigs( a - 10.032*speye(1000) )
ans + 10.032

That is, we simply shifted the matrix a random amount, and this was enough to kick
the iteration over its difficulties. Then we correctly find the eigenvalues:

102

⎡⎢⎢⎢⎢⎢⎢⎣
5.0033

−0.0908− 0.0118i
−0.0908+ 0.0118i
−0.0882+ 0.0119i
−0.0882− 0.0119i
−0.0880+ 0.0016i

⎤⎥⎥⎥⎥⎥⎥⎦ .

This is, of course, not entirely satisfactory, but we shall pursue this in a bit of detail
shortly.

For large sparse matrices, special methods of iterating are needed: The construc-
tion of an upper Hessenberg intermediate matrix is already too expensive, so the QR
iteration (as is) is also too expensive. The techniques of choice are Arnoldi iteration
(as implemented in ARPACK and in MATLAB’s eigs routine) and other special-
purpose routines, such as Rayleigh quotient iteration for the symmetric eigenprob-
lem. Before moving on to this method, we consider the so-called Krylov subspaces[

v Av A2v A3v . . . Akv
]
,

which can be generated using only k matrix–vector multiplications. The power
method considered only the latest Akv (and perhaps the previous). In exact arith-
metic, as noted before, the characteristic polynomial can be constructed from the
finite sequence [v,Av, . . . ,Anv] because these vectors must be linearly dependent;
but in the presence of rounding errors, we are much better off using other techniques;
if we’re at all lucky, we will get good eigenvalue information with k iterations for
k � n.

Rayleigh quotient iteration—or RQI—is easily described (see Problem 6.16).
Given an initial guess for an eigenvector x0, form

μ =
xH

0 Ax0

xH
0 x0

,

the Rayleigh quotient. We make the crucial simplification of assuming A ∈ Rn×n

and AH = A; that is, A is symmetric. More, let A be positive-definite, and sparse
(or at least fast to make matrix–vector products y = Av with). Finally, we suppose
eigenvalues are simple. Once we have μ , which is the best least-squares approxima-
tion to an eigenvalue corresponding to x0, we now use it to improve x0. Solve

(A− μI)z = x0, (7.3)
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and put x1 = z/‖z‖. You may use any convenient method to solve Eq. (7.3); since
A is sparse (or Av is easy), you may choose a sparse iterative method. You may
choose not to solve it very accurately; after all, x1 will just be another approximate
eigenvector, and we’re going to do the iteration again. When do we stop? If

‖Axi − μixi‖< ε ,

then we know that μi is an exact eigenvalue for A+ΔA with ‖ΔA‖ ≤ ε‖A‖. Hence,
this is a reliable test for convergence, from a backward error point of view. Since
symmetric matrices have perfectly conditioned eigenvalues (normwise), this may be
satisfactory from the forward point of view, too. Thus, we get Algorithm 7.1.

Algorithm 7.1 Rayleigh quotient iteration
Require: A vector x0, a method to compute y = Av, a method to solve (A−μI)z = b

for i = 1,2, . . . until converged do
μi−1 = xT

i−1(Axi−1)/(xT
i−1xi−1)

Solve (A−μi−1I)z = xi−1
xi = z/‖z‖

end for

We may want to find generalizations of this method; for example, we wish to find
more than one eigenvector at a time. Suppose x0 ∈Rn×k (k � n). Then if xT

0 x0 = I,

H = xT
0 Ax0 ∈ R

k×k

shares some interesting features with the 1× 1 case. The eigenvalues of H, called
Ritz values, are approximations to eigenvalues of A, in some sense. Alternatively,
one can think of the following iteration:

for i = 1,2, . . . until converged do
H = xT

i−1Axi−1

μ = diag(H)
for j = 1,2, . . . ,k do

Solve (A− μ j jI)z j = (xi−1) j

(xi) j = z j

end for
(X j,R) = qr(X j)

end for
This essentially does k independent Rayleigh iterations at once; the qr step just
makes sure the eigenvalues are kept separate.

We might also wish to solve unsymmetric problems. The difficulties here are
worse, as we must solve for left eigenvectors, too; this is called broken iteration, or
Ostrowski iteration for some variations. In the symmetric case, convergence is often
cubic; for the nonsymmetric case, this is true only sometimes. More seriously, if all
we can do with A is make Av, how do we make yHA? This can be done without
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constructing A explicitly [which costs O(n2)], but it can be awkward.2 Still, we have
a method:

Require: For x0,y0 ∈ Cn, a way to compute Av and a way to solve both
(A− μI)z = x and

(
AH − μI

)
wH = yH

for i = 1,2, . . . until converged do
μi−1 = (yH

i−1Axi−1)/(yH
i−1xi−1) (N.B. fails if yH

i−1xi−1 is too small)
Solve (A− μi−1I)z = xi−1

xi = z/‖z‖
Solve (AH − μI)w = yi−1
yi = w/‖w‖

end for
Convergence in residual happens if

‖Axi − μixi‖ ≤ ε

as before, but note that now the eigenvalue may be very ill-conditioned, in which
case μi ∈Λε (A) does not mean |λ − μi|= O(ε) for a modest multiple of ε .3

Again, when to stop the iteration? Since the residuals are being computed at each
stage, one can in principle stop if the residuals get small enough that the backward
error interpretation of r, namely, that we have solved Ax = b− r, suggests that the
residual is negligible. However, rounding errors (especially if the matrix S is not
normal) can prevent the residuals from getting as small as we like.4

Example 7.4. The popular Jenkins–Traub method (Jenkins and Traub 1970) for find-
ing roots of polynomials expressed in the monomial basis has at its core an iteration
related to the Rayleigh quotient iteration on the companion matrix for the polyno-
mial. In this example, we use RQI on the companion matrix of a polynomial to find
some of its roots, as follows. Recall that a companion matrix for a monic polyno-
mial p(z) = a0 + a1z+ · · ·+ zn can be written as a sparse matrix, all zero except
for the first subdiagonal, which is just 1s, and the final column, which is the nega-
tive of the polynomial coefficients. It is a short exercise to see that if z is a root of
p(z), then the vector [1,z,z2, . . . ,zn−1] is a left eigenvector of C, and a corresponding
right eigenvector is [α1(z),α2(z), . . . ,αn(z)], where αn(z) = 1, αn−1(z) = an−1 + z,
αn−2(z) = an−2 + z(an−1 + z), and so on up until α1(z) = a1 + z(a2 + z(a3 + · · ·),
which must also equal −a0/z if z �= 0 (and, of course, a0 = 0 if z = 0). These are
the successive evaluations of the polynomial that one gets by executing Horner’s
method. That is, for this kind of matrix, a guess at an eigenvalue λ will automati-
cally give us a pair of approximate left and right eigenvectors. It is simple to form
the Rayleigh quotient (xHCx)/(xHx) or the Ostrowski quotient (yHCx)/(yHx) from
these to give us a hopefully improved estimate of the eigenvalue (which then can be

2 See Bostan et al. (2003). For a history of the transposition principle, see http://cr.yp.to/
transposition.html.
3 Please consult Demmel (1997) or Hogben (2006) for more information on general techniques
such as the implicitly restarted Arnoldi iteration.
4 For more on this, see the discussion in Higham (2002).

http://cr.yp.to/transposition.html
http://cr.yp.to/transposition.html
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fed back into the eigenvector formulae to use on the next iteration). This works, and
it’s faster than solving (which also works, and works more generally).

Consider Newton’s example, p(z) = z3 − 2z− 5. A companion matrix for this is

C =

⎡⎣0 0 5
1 0 2
0 1 0

⎤⎦ .

If we start with an initial approximation z0 = −1+ i and use the formulae above
for Ostrowski iteration, we get convergence in five iterations. If instead we solve for
our approximate eigenvectors at each step via C− z(i))x(i+1) = x(i), and similarly
for the left eigenvector, neither of which is hard because this matrix is sparse, then
this is more like a normal Rayleigh quotient case where we don’t know what the
eigenvectors look like. In both cases the convergence appears to be quadratic, but
the Rayleigh quotient only converges if solving for the new eigenvector happens
each time. That is, with the formulae for the left and right eigenvectors instead of
solving, only Ostrowski (also called “broken”) iteration converges, but Rayleigh
quotient iteration converges if the new eigenvectors are solved for.

Once a root has been found, it is necessary to deflate the matrix (or the polyno-
mial); we do not discuss this in any detail here, although note that this is entirely
possible within the framework of matrices—using either the left or right eigenvec-
tors, one can in theory find a matrix one dimension smaller that has all the remaining
roots as eigenvalues. Let

X =

⎡⎣α1 0 0
α2 1 0
α3 0 1

⎤⎦ ,

where the first column is the right eigenvector corresponding to the root z that we
have found. Note that α1 = −a0/z, which we assume is nonzero, so that X is invert-
ible. Then X−1CX has [z,0,0]T as its first column, and the remaining two eigen-
values of C are the two eigenvalues of the 2× 2 block in the second two rows and
columns. Similarly, one could deflate instead with the left eigenvector (which works
even if a0 = 0, though trivially since the matrix is already deflated in that case).

This is mathematically equivalent to synthetic division if the right eigenvector is
used, and the deflated matrix is also a companion matrix; if the left eigenvector is
used, then a different matrix is obtained. However, there is a tendency for round-
ing errors to accumulate in this process when one works with polynomials of high
degree.

One can use a code such as this to implement this idea:

1 %% Rayleigh Quotient Iteration for a Companion Matrix
2 %
3 % Newton's example polynomial was $p(z) = zˆ3 - 2z - 5 = 0$.
4 %
5 C = [0 0 1.67608204095197550; 1 0 2; 0 1 -0.66478359180960489;];
6 x0 = -6 + 5i;
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7 x = @(z) [-C(2,end)+z*(C(3,end)+z); C(3,end)+z; 1];
8 niters = 19;
9 xi = zeros( niters, 1 );

10 xia = zeros( niters, 1 );
11 % Now solve at each step for new eigenvector.
12 xi(1) = x0;
13 xia(1)= x0;
14 x1 = x(x0); % Initial eigenvector
15 xa = x1;
16 x1 = x1/norm(x1,2);
17 for i=2:niters,
18 x1 = (C-xi(i-1)*eye(3))\x1;
19 x1 = x1 / norm(x1,2) ;
20 xi(i) = (x1' * C * x1 ); %(x1'*x1) =1
21 xia(i) = (xa' * C * xa )/(xa'*xa);
22 xa = x(xi(i)); % analytic eigenvector formula
23 end
24 ers = xi(:) - xi(end);
25 close( figure(1) )
26 figure(1), semilogy( abs(ers), 'ko' ), set(gca,'fontsize',16),

hold on
27 ersa = xia(:)-xi(end);
28 semilogy( abs( ersa ), 'kS' )

It is straightforward to adapt this code for other similar problems. �

Problems

7.1. Add an iterative refinement step to your solution of Problem 6.6. Note that
evaluation of the residual is comparable in cost to the solution of the system, so this
is a significantly costly step in this case. Does this help?

7.2. Consider the following system:

2x1 − x2 = 1

−x j−1 + 2x j − x j+1 = j, j = 2, . . . ,n− 1

−xn−1 + 2x2 = n

with n = 100. Parts 1–2 are from Moler (2004, prob. 2.19).

1. Use diag or spdiags to form the coefficient matrix and then use lu, \, and
tridisolve to solve the system.

2. Use condest to estimate the condition of the coefficient matrix.
3. Solve the same problem as above, but changing 2 to be θ > 2, say θ = 2.1,

and using the approach of Seneca.m to encode the matrix–vector product, use
Jacobi iteration instead (note that P−1 = θ I and so Px = 1

θ x is particularly easy).
How large can the size of the problem be, before it takes MATLAB at least 60 s to
solve the problem this way? How large can the problem be using a direct method?
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(And, even more, the comparison is unfair; MATLAB’s method is built-in, and
Jacobi iteration must be “interpreted.” Still, . . .)

7.3. Implement in MATLAB the SOR method as described in the text. Be careful not
to invert any matrices. Use your implementation with ω = 2−O(1/n) to solve the
linear system described in Problem 7.2 with θ = 2.1.

7.4. Take A = hilb(8), the 8× 8 Hilbert matrix. Use MGS to factor A approxi-
mately:

A = QR

with QT Q .
= I. In fact, QT Q = I +E, where ‖E‖ ≤ κ(A) · c · μM, where c is a

modest constant and μM is the unit roundoff. Solve Ax = b by using this Q and R
in a factoring, as follows:

Qy = b

Rx = y ,

and use the solution process

ŷ = QT b

x̂ = R\ŷ .

Use one or two iterations of refinement to improve your solution. Discuss.

7.5. Consider the matrix from Example 7.2. Use the formula for the pseudospectral
radius, namely, Eq. (5.13), and the estimate ‖((A)− zI)−1 ‖2 ≥ |z−8/9|n [this is easy
to see, because the (n,1) entry of the resolvent is just that, and the 2-norm must be at
least as large as any element of the matrix] to derive a reasonably tight lower bound
on the maximum ‖Sk‖2 when n = 89. Verify your bound by computation of Sk for
1 ≤ k ≤ 1600. Hint: Take ε = e/9

n and use e1/n > 1+ 1/n. Ultimately, of course, ‖Sk‖2

must go to zero as k → ∞, but this analysis shows that it gets quite large along the
way. This is why Richardson iteration is so slow for the system (I−S)x = b.

7.6. The diagonal dominance of the matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎣
−10 1

1 −10 1
1 −10 1

1 −10 1
1 −10 1

1 −10

⎤⎥⎥⎥⎥⎥⎥⎦
tempts us to try Jacobi iteration xn+1 = xn +D−1 (b−Axn).

1. For b = [1, 1, 1, 1, 1, 1]T and an initial guess of x0 =−[1, 1, 1, 1, 1, 1]T/10, carry
out two iterations by hand. (The arithmetic for this problem is not out of reach:
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The numbers were chosen to be nice enough to do on a midterm exam.) Can you
estimate how accurate your final answer is?

2. Using symmetry and the eigenvalue formula for tridiagonal Toeplitz matrices
λk = −10+ 2cos(πk/(n+1)) (here n = 6), estimate the 2-norm condition num-
ber. The Skeel condition number cond(A) = ‖|A−1| |A|‖ can be shown to have
exactly the same value. Using the phrases “structured condition number” and
“structured backward error” in a sentence, explain what this means.



Part III
Interpolation, Differentiation,

and Quadrature
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Numerical analysis itself is concerned with the problems of continuous mathe-
matics, as we have discussed. We have examined in previous chapters the use of
numerical methods for evaluating continuous functions of various kinds at discrete
points, and solving sets of discrete equations. Experimental sampling also produces
discrete points. If we wish to then apply numerical methods further on the results
of either of these processes, it seems natural to consider the problem of “filling in
the gaps,” moving from the discrete samples to a continuous function—back to the
original function if possible, but in any case back to a convenient representation of
something close to that function, if not.

This is the problem of interpolation. Let f (t) be a (possibly unknown) function
defined on a certain interval or complex set I. Suppose that are given the values ρ
of f at n+1 points (hereafter called nodes) τ0, τ1, τ2, . . ., τn. In other words, we are
given a set of equations

f (τi) = ρi, i = 0,1,2, . . . ,n, (III.1)

Given this data, we may then want to find the values of f (t) for t �∈ I, or perhaps to
find values of the derivatives f ′(t). We may simply want to find a formula for such
t, for further mathematical investigation, or we may want to find an efficient method
to evaluate these quantities given a numerical value for t.

Our first problem, then, is to find a function f (t), for t ∈ I at points t �= τi

(i = 0,1, . . . ,n), given the numerical data available (see Fig. III.1). Of course this
problem does not have a unique solution. We will make restrictions on the space of
functions that we look for solutions, in order to make a choice of solution. To help
remember that this problem is called interpolation, notice that the same problem for
t /∈ I is called, in contrast, extrapolation.

As one would expect (and as previously stated), because only a finite amount
of information is specified, the information given (the vectors τττ and ρρρ) will not
in general be sufficient to uniquely identify the function f (t). Typically, we select
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(3.5, f (3.5))

Fig. III.1 The problem of interpolation. (a) Data of the problem. In some cases, we also have some
values of f (k)(τ). (b) Interpolation and extrapolation: two function evaluation problems
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a finite-dimensional subspace of functions in which to look for the p(t) that will
approximate the function. At the end of this introduction we will consider what
happens if we do not restrict to a finite-dimensional subspace. Here, the resulting
absolute interpolation error will be

f (x)− p(x) , x ∈ I .

We will also be concerned with the size of the difference between our reconstructed
(“reverse engineered”) p(t) and the underlying reference function f (t) from which
the samples were taken, namely

‖ f (x)− p(x)‖ , x ∈Ω \ I .

We may not always be able to say much about this kind of interpolation error,
however.

How do we proceed to select p(t)? Four things have to be determined
(see Hamming 1973, 230):

1. What data is available?
2. Given the type of data available, to what class of functions do we want to restrict

p(t)?
3. Given the type of data and the class of function, which function p(t) should be

selected, i.e., what selection criterion should be used?
4. Where should the criterion be applied?

In applications, there are common combinations of answers to these questions; this
part of the book is written with these in mind.

With respect to the data, a first question one should ask is whether one can choose
the nodes. If choosing the nodes is possible—a case that obtains when we gather ex-
perimental data or when we sample a function f at strategic points—then a good
node selection method will have to be determined, since different node choices
will usually change the interpolation error. In many cases, however, nodes are just
given to us, without possibility of choosing them strategically. Sometimes, we also
have information concerning the values of the derivatives f (k)(τi). This information
should allow us to obtain more accurate approximations of f . Next, one should ask
how reliable the data are. If the data are very accurate, then it makes sense to restrict
our selection criteria by requiring that

f (τi) = p(τi), i = 0,1,2, . . . ,n, (III.2)

i.e., by requiring that p be exact at the nodes. If we require this condition, and that
the degree be less than or equal to n, then we notice that τττ and ρρρ together determine
a unique polynomial, called the interpolational polynomial (see Sect. 8.1). Further,
if values of f (k)(τi) are available, we can also require that the values of the kth
derivatives also match, i.e., we can require that

f (k)(τi) = p(k)(τi), i = 0,1,2, . . . ,n (III.3)
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in addition to the satisfaction of (III.2). Then p(t) is called the osculating5 polyno-
mial (see Sect. 8.2). As we will see in Sect. 8.5, we can then find a general formula
for interpolation error.

As one sees, we spend a significant amount of space on polynomial interpola-
tion. Polynomial interpolation must be considered fundamental for many reasons.
To begin with, polynomials are extremely useful, since they are easy to compute, as
are their derivatives and integrals; in practice, this is a tremendous advantage. More-
over, their error theory serves as a paradigm for the more difficult cases. Finally, if
they are used judiciously, they often provide satisfying approximations.

One important problem that we do not discuss in as much detail as perhaps we
should is the question of degree. Deciding the degree of a polynomial is not always
straightforward, if all one has to go on is imperfect data, data containing unknown
errors. We do return to this question, but there’s a lot to be said, here.

We note that it could also be possible to generate polynomials in a way that
Eqs. (III.1) and (III.3) are only approximately satisfied, using least-squares or min-
imax, but we will not examine this problem much here (see Hamming 1973).
Nonetheless, simple polynomial interpolation can often be improved upon by means
of so-called piecewise interpolation, in which p(t) is taken to be a piecewise poly-
nomial function. Working with piecewise polynomials allows a greater flexibility
for adaptation, which we will take great advantage of.

What about interpolation with other functions? A natural extension is to ratio-
nal functions, and this provides some new challenges but some useful flexibility.
Rational interpolation will be discussed briefly. But there are other, more exotic
forms of interpolation. The most famous mathematical example is the interpolation
of the factorial function with the Gamma function, a problem posed by Goldbach
and Daniel Bernoulli, and solved first by Euler. For this famous problem, one does
not need a finite-dimensional space in which to work, but rather only a short list of
desirable geometric features.6

Another interesting class of interpolation problems arises from trying to interpo-
late discrete dynamical systems—that is, to find a continuous dynamical system that
interpolates the discrete one. What does it mean to take half a Newton iteration step,
when the integer steps are given by xn+1 = xn− f (xn)/f ′(xn)? This is also called “taking
the logarithm of the homomorphism.” We have already mentioned one application
of this idea in Chap. 5, namely the Toda lattice differential equations used to analyze
the QR iteration: the QR iteration is treated as a discrete dynamical system, which
is then interpolated by a Toda flow, that can then be analyzed. We will see this again
when we look at the numerical solution of differential equations in Part IV.

5 From the latin osculare, to kiss.
6 See Andrews et al. (1999 chapter 1) for a discussion.



Chapter 8
Polynomial and Rational Interpolation

Abstract This chapter gives a detailed discussion of barycentric Lagrange and
Hermite interpolation and extends this to rational interpolation with a specified
denominator. We discuss the conditioning of these interpolants. A numerically sta-
ble method to find roots of polynomials expressed in barycentric form via a gen-
eralized eigenvalue problem is given. We conclude with a section on piecewise
polynomial interpolants. �

This chapter gives a detailed discussion of one of this book’s key tools, namely,
polynomial interpolation. Polynomial interpolation is widely used and has a long
history that is slightly complicated by numerical pitfalls, which we shall point out
how to avoid.

Generations of textbooks have warned readers that polynomial interpolation is dangerous. In
fact, if the interpolation points are clustered and a stable algorithm is used, it is bulletproof.
(Trefethen 2013 summary of chapter 14)

The approach we use is somewhat different to that of most numerical analysis books,
in that we concentrate on the use of Lagrange bases and the Hermite interpolational
bases. We use contour integration as our fundamental tool in deriving the formulæ
that we need. The process boils down to the computation of partial fractions: If you
can do a partial fraction expansion, and the “most singular” coefficients are not zero,
then you can interpolate.

Interpolation is needed in several senses; for instance, we need interpolants as
a means of thinking about constructive approximation (in which case we need for-
mulæ). We also need ways to stably evaluate those formulæ. It will turn out to be
important in several applications that interpolants not only accurately approximate
the original function, but also that the derivatives of the interpolant should also ac-
curately approximate the derivatives of the original function. We reserve discussion
of how to compute derivatives of polynomials expressed in a Lagrange or Hermite
interpolational basis until Chap. 11, though.

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods:
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0 8,
© Springer Science+Business Media New York 2013
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8.1 Lagrange Interpolation

We here repeat (for convenience) and expand on the material in Sect. 2.2.6 from
Chap. 2. We suppose first that we are given a set of distinct nodes τi and some
values of a function ρi = f (τi), and we want to find a polynomial p(t) with degree
at most n such that p(τi) = f (τi) for i = 0, 1, 2, . . ., n. Since the nodes are distinct,
there is a unique such polynomial. Here we will find the Lagrange representation of
that unique interpolating polynomial,

p(z) =
n

∑
k=0

ρkLk(z) , (8.1)

where the Lagrange basis polynomials Lk(z) are1

Lk(z) =
n

∏
i=0
i�=k

z− τi

τk − τi
. (8.2)

As is easy to verify, the Lagrange polynomials Lk corresponding to the node τk

satisfy

Lk(τ j) =

{
1 j = k
0 j �= k

In this form, the Lagrange interpolating polynomial is simple to compute.

Example 8.1. Let τττ = [3,−2,1,4] and ρρρ = [2,5,−3,1]. First, we compute the Lk(z).
We find L0(z) as follows:

L0(z) =
(z− (−2))(z− 1)(z− 4)
(3− (−2))(3− 1)(3− 4)

=− 1
10

(z+ 2)(z− 1)(z− 4)

Similarly,

L1(z) =
(z− 3)(z− 1)(z− 4)

(−2− 3)(−2− 1)(−2−4)
=− 1

90
(z− 3)(z− 1)(z− 4)

L2(z) =
(z− 3)(z− (−2))(z− 4)
(1− 3)(1− (−2))(1− 4)

=
1

18
(z− 3)(z+ 2)(z− 4)

L3(z) =
(z− 3)(z− (−2))(z− 1)
(4− 3)(4− (−2))(4− 1)

=
1

18
(z− 3)(z+ 2)(z− 1) .

Therefore,

1 Note the different use of “Lagrange interpolating polynomial” and “Lagrange basis polynomials.”
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p(z) =−1
5
(z+ 2)(z− 1)(z− 4)− 1

18
(z− 2)(z− 1)(z− 4)

− 1
6
(z− 3)(z+ 2)(z− 4)+

1
18

(z− 3)(z+ 2)(z− 1). (8.3)

It is easy to verify that p(z) = f (z) at τi, i = 0,1,2,3. The resulting polynomial is
plotted in Fig. 8.1. Note that this can be done in a straightforward way in MAPLE:

with(CurveFitting);
PolynomialInterpolation([tau[0], tau[1], tau[2],tau[3]], [rho[0],

rho[1], rho[2],rho[3]], z, form = Lagrange)

results in

ρ0 (z− τ1) (z− τ2)(z− τ3)

(τ0 − τ1)(τ0 − τ2)(τ0 − τ3)
+
ρ1 (z− τ0)(z− τ2)(z− τ3)

(τ1 − τ0)(τ1 − τ2)(τ1 − τ3)

+
ρ2 (z− τ0)(z− τ1)(z− τ3)

(τ2 − τ0)(τ2 − τ1) (τ2 − τ3)
+
ρ3 (z− τ0)(z− τ1)(z− τ2)

(τ3 − τ0) (τ3 − τ1) (τ3 − τ2)

for a given set of nodes. �

Fig. 8.1 Interpolant of Eq. (8.3) for τττ = [3,−2,1,4] and ρρρ = [2,5,−3,1]

One sees that this form of the Lagrange interpolating polynomial cannot handle
repeated nodes, that is, two nodes τi = τ j with 0 ≤ i �= j ≤ n, since it would entail a
division by zero. Also, from the numerical point of view, this formula seems likely
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to be numerically unstable when the nodes are close, that is, when for some 0 ≤ i <
j ≤ n, |τi − τ j| � 1. This fact used to bring about comments of the following sort
concerning the virtues of Lagrange interpolation:

Lagrangian interpolation is praised for analytic utility and beauty but deplored for numerical
practice. (cited in Berrut and Trefethen 2004)

Nonetheless, that paper goes on to show that the Lagrange interpolating polynomial
can be written in another form that is numerically stable. Quoting further from that
paper,

the Lagrange approach is in most cases the method of choice for dealing with polynomial
interpolants. The key is that the Lagrange polynomial must be manipulated through the
formulæ of barycentric interpolation. (Berrut and Trefethen 2004)

Thus, in this chapter, we will focus on barycentric Lagrange interpolation and its
extensions to different types of data.

Here is how we obtain the barycentric forms of the Lagrange polynomials. First,
we define w(z) to be

w(z) = (z− τ0)(z− τ1) · · · (z− τn) =
n

∏
i=0

(z− τi).

Now, let us reconsider the Lagrange polynomials:

Lk(z) =
n

∏
i=0
i�=k

z− τi

τk − τi
=

n

∏
i=0
i�=k

(z− τi)

n

∏
i=0
i�=k

(τk − τi)

.

The numerator can then be rewritten as
n

∏
i=0
i�=k

(z− τi) =
w(z)
z− τk

,

where w(z) = ∏i(z − τi). Moreover, we define the n+ 1 barycentric weights βk,
k = 0,1,2, . . . ,n, as follows:

βk =
1

n

∏
i=0
i�=k

(τk − τi)

, k = 0,1,2, . . . ,n . (8.4)

The Lagrange basis polynomials can then be rewritten as

Lk(z) = w(z)
βk

z− τk
.
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Definition 8.1. From Eq. (8.1), we then obtain (for z �= τk for any node τk)

p(z) = w(z)
n

∑
k=0

βkρk

z− τk
. (8.5)

This is the first barycentric form of the Lagrange interpolation polynomial. �

We will discuss the advantages of this form shortly. However, before that, we want to
obtain yet another and in some ways even better form of the Lagrange interpolation
polynomial. Suppose we interpolate the constant polynomial p(z) = 1. Then, for
any selection of nodes τk, we will have p(τk) = ρk = 1. Applying this in Eq. (8.5),
we obtain

1 = w(z)
n

∑
k=0

βk

z− τk
. (8.6)

Now, if we divide Eq. (8.5) by this equation, we obtain (again for z �= τk for any
node τk) this second form:

Definition 8.2. The expression

p(z) =

n

∑
k=0

βkρk

z− τk
n

∑
k=0

βk

z− τk

(8.7)

is the second barycentric form of the Lagrange interpolating polynomial.2 �

The weights corresponding to a set of nodes are easily computed with formula (8.4),
and only divisions and summations will then remain to be done. With regard to cost,
these formulæ allow us to evaluate the Lagrange polynomial at a single point t using
O(n) flops only. Computing all the βk requires O(n2), so this is best done ahead of
time, once and for all.

The stability of this formula can be grasped intuitively:

[. . . ] what if the value of x [we use t] in [(8.7)] is very close to one of the interpolation
points xk or, in an extreme case, exactly equal? Consider first the case x ≈ xk but x �= xk .
The quotient wk/(x− xk) will be very large, and it would seem that there might be a risk
of inaccuracy in this number associated with the subtraction of two nearby quantities in the
denominator. However, as pointed out [by] Henrici [1982], this is not, in fact, a problem.
Loosely speaking, there is indeed inaccuracy of this kind, but the same inaccurate numbers
appear in both the numerator and the denominator of [(8.7)], and the inaccuracies cancel
out; the formula remains stable overall. Rigorous arguments that make this intuitive idea
precise are provided by Higham [2004]. (Berrut and Trefethen 2004 508-9)

This last point is crucial. The barycentric forms are numerically stable to use.
If the forms were not stable, it wouldn’t matter that they are reasonably cheap to
evaluate. Once we get to the section on rational interpolation, we expand briefly on
the accuracy of the second form.

2 A useful fact, from the numerical point of view, is that we may scale all βk by any common factor.
This can prevent unnecessary overflow or underflow.
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Example 8.2. Consider the nodes τττ = [3,−2,1,4] and the values ρρρ = [2,5,−3,1]
again. The barycentric weights are

β0 = ((3+ 2)(3− 1)(3− 4))−1 =− 1
10

β1 = ((−2− 3)(−2− 1)(−2−4))−1 =− 1
90

β2 = ((1− 3)(1+ 2)(1− 4))−1 =
1

18

β3 = ((4− 3)(4+ 2)(4− 1))−1 =
1

18
.

Thus, we find that (unless t is exactly equal to one of our nodes 3, −2, 1, or 4, in
which case we simply return the known values)

p(z) =

− 1
10 ·2

z− 3
+

− 1
90 ·5

z+ 2
+

1
18 · (−3)

z− 1
+

1
18 ·1
z− 4

− 1
10

z− 3
+

− 1
90

z+ 2
+

1
18

z− 1
+

1
18

z− 4

.

This can be evaluated using 9 flops for every value of t thereafter, which compares
reasonably with the cost of evaluation by other methods. We emphasize that it is
the numerical stability of the method that recommends it, however: For a good set
of nodes, this form is accurate even if z differs by one bit from a node, where we
would expect the most numerical difficulty through cancellation. In Algorithm 8.1,
you will see a useful test for exact floating-point equality, which is quite unusual
in a floating-point algorithm: If any input t is exactly any τk, then the result of the
computation (which will be an Inf over an Inf resulting in a NaN) is replaced
with the correct data value ρk. �

Remark 8.1. Not all sets of nodes are created equal, though. The condition number
of the polynomial expressed in the Lagrange basis on one set of nodes can be quite
a bit larger than the condition number of the same polynomial expressed in another
Lagrange basis on another set of nodes: Equally spaced nodes are notoriously bad, in
that the barycentric weights vary widely, making the expression ill-conditioned and
very sensitive to errors and uncertainties in the data (and also to rounding errors).
As we will see, Chebyshev nodes and (even better) uniformly spaced nodes on the
complex unit circle, on the other hand, have near-constant barycentric weights (af-
ter scaling, for use in the second barycentric form) and are well-conditioned. With
an ill-conditioned Lagrange basis, it might not be enough that you use the good
barycentric forms—your answer still may be inaccurate. With a well-conditioned
Lagrange basis, then using a bad numerical method instead of the barycentric forms
can destroy the accuracy that is available. It is important to compute the barycentric
weights accurately as well—we will return to this point. �

Example 8.3. Take the polynomial p(z) = T16(2z− 1) on 0 ≤ z ≤ 1 and construct
barycentric interpolants for it on two different sets of nodes: first, the scaled
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Algorithm 8.1 Computation of the second barycentric form of the Lagrange
interpolating polynomial
Require: A vector z of evaluation points, a vector of distinct nodes τττ ∈ Cn+1, and a vector of

function values ρρρ ∈ Cn+1.
for k = 0 to n (if not already precomputed) do
βk :=∏n

i=0
i �=k

(τk − τi)
−1

end for
Q := vector the same length as z containing zeros
P := vector the same length as z containing zeros
set exact := logical vector the same length as t containing zeros (zero meaning false)
for k = 0 to n do
Δz := z− τk (componentwise subtraction)
exact(i) = k for each i such that Δz(i) = 0 with exact floating-point equality
Q := Q+βk(z− τk)

−1

P := P+βkρk(z− τk)
−1

end for
p = P/Q Hadamard (componentwise) division
j = indexes where exact is true (use find(exact) in MATLAB)
p( j) = ρρρ(exact( j)) replace with known data for any z such that z is exactly equal in floating-
point to one of the τk

return p(t) =

(
n

∑
k=0

βkρk

z− τk

)
/

(
n

∑
k=0

βk

z− τk

)
, which is the second barycentric form of the

Lagrange interpolating polynomial p(t).

Chebyshev–Lobatto nodes τk = (1+ηk)/2, where ηk = cos(πk/16) for 0 ≤ k ≤ 16. Sec-
ond, use equispaced nodes xk = k/N. Each barycentric interpolant is mathematically
equivalent: They represent the same polynomial. Now compute the condition num-
bers for each of the two expressions: B(z) = ∑ |ρkLk(z)| (see Chap. 2). These two
condition numbers are plotted in Fig. 8.2. We see that the condition number for the
equally spaced nodes is vastly worse, near the edges, being many orders of magni-
tude larger. Near the middle, it’s actually slightly better than the scaled Chebyshev
node interpolant, but not enough to outweigh the difficulty near the ends. This be-
havior gets exponentially worse as the degree of the polynomial (and the number of
necessary nodes) gets larger. �

8.2 Interpolating from Values of a Function and Its Derivatives
(Hermite Interpolation)

We now allow a different problem specification. We still assume that we are given a
set of nodes τi, i = 0,1,2, . . . ,n, where the nodes are distinct, that is, τi = τ j ⇔ i = j.
However, in addition to the function values f (τi) = ρi, we now have values of some
of the derivatives of f at the nodes. We can then introduce the so-called Hermite
data as follows:
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Fig. 8.2 The solid line is the condition number B(z) of the Lagrange interpolant to p(z) =
T16(2z− 1) on the scaled Chebyshev nodes, and the dashed line is the condition number BE(z)
of the Lagrange interpolant to the same polynomial on equispaced nodes k/16 for 0 ≤ k ≤ 16. Even
for so modest a polynomial, the condition number for equally spaced nodes is many orders of mag-
nitude worse at the edges, although slightly better in the middle, where the Chebyshev nodes are
more widely spaced than 1/16

f (k)(τi)

k!
= ρik, 0 ≤ i ≤ n, 0 ≤ k ≤ si − 1, (8.8)

where the integers si ≥ 1 are the “confluencies,” that is, the number of values of
derivatives available at a node (including the 0th derivative). Note that the ρi we had
for Lagrange interpolation are just the ρi,0 we have here; the 1/k! factor is added to
ensure that ρik are the coefficients of the terms (x− a)k in the local Taylor series
of f . See Table 8.1 for a schematic example.

As we will see, we can then obtain a formula analogous to Eq. (8.7):

Definition 8.3. The second barycentric form of the Hermite interpolant is

p(z) =

n

∑
i=0

si−1

∑
j=0

j

∑
k=0

βi, jρik(z− τi)
k− j−1

n

∑
i=0

si−1

∑
j=0

βi, j(z− τi)
− j−1

. (8.9)
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Table 8.1 A tabulated schematic of Hermite data
����τi

ρik ρi,0 ρi,1 ρi,2 ρi,3 ρi,4 ρi,5 si

τ0 f (τ0) f ′(τ0)
f ′′(τ0)

2
3

τ1 f (τ1) f ′(τ1)
f ′′(τ1)

2
f (3)(τ1)

3!
f (4)(τ1)

4!
f (5)(τ1)

5!
6

τ2 f (τ2) f ′(τ2)
f ′′(τ2)

2
f (3)(τ2)

3!
f (4)(τ2)

4!
5

τ3 f (τ3) 1

τ4 f (τ4) f ′(τ4)
f ′′(τ4)

2!
f (3)(τ4)

3!
4

The generalized barycentric weights βi, j that appear in that formula are just the
coefficients in the partial fraction expansion that will be shown in Eq. (8.11), and
which can be stably computed by Algorithm 2.4. �

We put off discussion of the stability, conditioning and cost of this formula, but note
that if the confluencies sk are not “too large,” then it has similar properties to the
Lagrange interpolant.

Example 8.4. Consider again the Mandelbrot polynomials that you met in Prob-
lem 2.35, defined by p0(x) = 1, and pk+1(x) = xp2

k(x) + 1 for k ≥ 0. Expanding
the first three fully in the monomial basis, we have p0(x) = 1, p1(x) = x+ 1, and
p2(x) = x3 + 2x2 + x+ 1. Quite clearly, the degrees of pk increase with k, and it
doesn’t take very long to realize that the expansion process is unwieldy, with large
coefficients being generated. But at certain points, there is an elegant Hermite inter-
polational representation. Let ωk be the three zeros of p2(x), for k = 1, 2, 3, say, in
this order (to 15 digits, by MAPLE):

ω = [−1.75487766624669,−0.122561166876654−0.744861766619744i,

− 0.122561166876654+0.744861766619744i].

At these points, p3(ωk) = ωk p2
2(ωk) + 1 = 1. Also, p′3(x) = p2

2(x) + 2xp2(x), so
p′3(ωk) = 0. This gives six pieces of information, which is not enough to describe
p3(x) because it is degree 7. Finally, p3(0) = 1, and p′3(0) = p2

2(0) = 1.

x p(x) p ′(x)
0 1 1
ω1 1 0
ω2 1 0
ω3 1 0

This gives us eight pieces of information, enough to describe this degree-7 polyno-
mial perfectly. In MAPLE, this comes out in the first barycentric form as something
quite ugly to look at. Instead of printing it explicitly, we give a matrix of the values
of β , namely (printing only 5 decimals of the computed values),



340 8 Polynomial and Rational Interpolation[−2.0+0.0 i 0.099256+0.0 i 0.95037−0.54389 i 0.95037+0.54389 i
1.0+0.0 i 0.031332+0.0 i 0.093030+0.22733 i 0.093030− 0.22733 i

]
,

where the first row is βi,0 and the second row is βi,1 for 1 ≤ i ≤ 4. Putting w(z) =
z2(z−ω1)

2(z−ω2)
2(z−ω3)

2, we then have the first barycentric representation:

p(z) = w(z)
4

∑
i=1

1

∑
j=0

j

∑
k=0

βi, jρi,k(z− τi)
k− j−1 .

This can be written out explicitly, but it occupies several lines of text and we’d rather
not see it.

This indeed looks quite a bit uglier than the monomial basis form, p3(x) =
x7 + 4x6 + 6x5 + 6x4 + 5x3 + 2x2 + x + 1, but most of that ugliness is because
each of the barycentric weights (and the ωk’s) are ugly. We have also suppressed
some rounding errors: 2.00 . . .02, for instance, and 5.5 . . . ·10−16. We left in the 0.0i,
which is a complex signed zero in MAPLE. However, written as a table of values,
as above, the polynomial is quite simple—in that we can safely leave the evaluation
and differentiation of p3(x) to a computer and need not look on its ugliness. The
results of doing so on the interval −2 ≤ z ≤ 0 are shown in Fig. 8.3. This form will
show its advantages better in the next section. �

−2 −1.5 −1 −0.5 0
−4

−2

0

2

4

Fig. 8.3 Hermite interpolation of p3(z) (solid line) and its derivative (dashed line). Though the
interpolation nodes and values were complex, the results are real (although MATLAB complains
about roundoff-level imaginary parts when it plots)

8.2.1 Rootfinding for Polynomials Expressed in Hermite
Interpolational Bases

Recall the discussion in Sect. 6.6.3 on companion matrices as methods for finding
roots of polynomials. Companion pencils are known for other bases and, in partic-
ular, are known for the Lagrange and Hermite bases. This can be used without the
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creation of a specialized rootfinding routine to find easily the zeros of p(z) given in
a Lagrange or Hermite interpolational basis without changing basis.

Example 8.5. Consider the Lagrange interpolational case first, because it is sim-
pler. Suppose that we know p(τk) = ρk for k = 0, 1, 2, and 3, so that the poly-
nomial p(z) is of degree at most 3. For simplicity, let τττ = [−1,−1/2, 1/2,1] (these
are Chebyshev nodes of the second kind, places where T3(z) achieves extrema).
Construct the following 5× 5 matrix pencil (A,B) from the barycentric weights
βββ = [−2/3, 4/3,−4/3, 2/3] and from the values of the polynomial ρk = p(τk):

A =

⎡⎢⎢⎢⎢⎣
0 −2/3 4/3 −4/3 2/3

−ρ3 1 0 0 0
−ρ2 0 1/2 0 0
−ρ1 0 0 −1/2 0
−ρ0 0 0 0 −1

⎤⎥⎥⎥⎥⎦ ,

and B ≈ I, the 5×5 identity matrix, except that we set B1,1 = 0. Then it can easily be
shown by the Schur complement that det(zB−A) = p(z) is a degree-3 polynomial
and has p(τk) = ρk for each τk. This companion matrix pencil allows us to find the
roots of p(z) by finding the generalized eigenvalues of a companion matrix pencil.

This process is numerically stable: That is, if we use the QZ algorithm on a
system using IEEE arithmetic, then the computed eigenvalues will include two
copies of Float(infinity) and n other values λ1,λ2, . . . ,λn. These eigenvalues
are the exact eigenvalues of the pencil (A + ΔA,B + ΔB) with ‖(ΔA,ΔB)‖F ≤
c(n)‖A,B‖FεM , but, moreover—and this is important—both ΔA11 = 0 and ΔB11 =
0, and so the two spurious infinite eigenvalues are computed exactly. Then, it can
be shown that with proper scaling, (p+Δ p)(z) := det(z(B+ΔB)− (A+ΔA)) has
deg(p+Δ p)≤ n and

(p+Δ p)(τi) = ρi + kiε+O(ε2) ,

for some constants ki bounded by a constant times ‖ρρρ‖ ·max |βi|/min |βi|/min |τi −
τ j |. See Problem 8.34.3 This result, in turn, allows the theory of polynomial con-
ditioning in the Lagrange basis to be used directly. The conclusion is that this is
a stable numerical method, and (depending on the nodes) the polynomial is often
much better conditioned than the mathematically equivalent polynomial expressed
in the more usual monomial basis.

Here, suppose that ρk = (−1)k. The eigenvalues computed by MAPLE are two
copies of -Float(∞)+0.0i, and 15-digit-accurate approximations to −√

3/2, 0, and√
3/2 = 0.866 . . .. �

Example 8.6. Consider the polynomial p(z) = (z− 1/4)2(z− 1/2)2(z− 3/4)2, which is
degree 6. Interpolate p(z) using Hermite data at z = 0, z = 1/4, z = 3/4, and z = 1.
That is, we specify both p(z) and p ′(z) at those four points, giving eight pieces of

3 See also the forthcoming paper Stability of rootfinding for barycentric Lagrange enterpolants by
Lawrence et al. (2013).
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data to (over)specify this degree-6 polynomial. We then plot the resulting Hermite
interpolant evaluated using the barycentric form at many points close to the midpoint
z = 1/2 at which there should be a double zero. We have seen these plots already, in
Figs. 1.3 and 1.4.

Because of interpolation error, there is not exactly a double zero. Because of
rounding errors, even those simple-but-close zeros are somewhat fuzzily specified.
The example is a good one in that the evaluation and interpolation are all quite
stable, giving the exact interpolant of nearby data and for each evaluation point
giving the exact value (up to nearly roundoff) of a nearby polynomial. Still, roundoff
errors are visible if you zoom in close enough.

The zeros, computed as the eigenvalues of the following companion pencil, are
also accurate. The cluster near 1/2 has average 1/2 up to roundoff, as expected. The
companion pencil has the same kind of matrix B, which is an identity matrix except
the (1,1) entry is set to zero, and the matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 28.4444 −360.2963 113.7778 151.7037 113.7778 −151.7037 28.4444 360.2963
−0.1289 1.0000 1.0000 0 0 0 0 0 0
−0.0088 0 1.0000 0 0 0 0 0 0

0 0 0 0.7500 1.0000 0 0 0 0
0 0 0 0 0.7500 0 0 0 0
0 0 0 0 0 0.2500 1.0000 0 0
0 0 0 0 0 0 0.2500 0 0

0.1289 0 0 0 0 0 0 0 1.0000
−0.0088 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

The computed eigenvalues (once the first row of A has been scaled to have norm
1, which we can do because the second barycentric form has generalized barycen-
tric weights both in numerator and denominator, so scaling the βi, j doesn’t affect
the eigenvalues) are exactly 1/4 (twice), exactly 3/4 (twice), and 0.499 . . .9± 1.31×
10−8. Because multiple roots often split symmetrically when perturbed, their arith-
metic mean is often less sensitive to rounding errors; indeed, the arithmetic mean
of these two roots is 0.5 to one ulp, or within εM = 2μM of the exact result. The
imaginary part cancels exactly. �

Example 8.7. For another Hermite interpolational example, if we know that the
degree-5 polynomial p(z) satisfies the six conditions p(τk) = ρk,0 and p ′(τk) = ρk,1
for k = 0, 1, and 2, where τ0 =−1, τ1 = 0, τ2 = 1, then the barycentric weights are
found by the following partial fraction expansion:

1
(z+ 1)2z2(z− 1)2 =

1/4

(z+ 1)2 +
3/4

z+ 1
+

1
z2 +

0
z
+

1/4

(z− 1)2 −
3/4

z− 1
.

Then, if we construct the matrices

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

1
1

1
1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1/4 3/4 −1 0 −1/4 −3/4

−ρ3,1 1 1 0 0 0 0
−ρ3,0 0 1 0 0 0 0
−ρ2,1 0 0 0 1 0 0
−ρ2,0 0 0 0 0 0 0
−ρ1,1 0 0 0 0 −1 1
−ρ1,0 0 0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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we have the relation

det(zB−A) = p(z) . (8.10)

Note the occurrence of Jordan blocks for each of the nodes τk, of size equal to the
confluency of the node (here, each node has two pieces of information associated
with it, so the blocks are each 2× 2). In the Lagrange case, the Jordan block is just
1× 1, so scalar. Note also that this formulation has the local Taylor coefficients in
reverse order in the first column. Each local Taylor series is in the same rows as the
corresponding block node τi. The generalized barycentric weights βi, j appear in the
first row, in the columns corresponding to node τi. The general pattern should be
clear from this example, with the proviso that confluency 3 at a node should give
rise to a 3× 3 Jordan block, and that mixed confluencies are possible. The original
derivation of this matrix came from letting nodes τi → τ j , or “flow together,” and
performing a similarity transformation that replaced ρi with (ρi −ρ j)/(τi − τ j), but a
direct Schur complement proof is simpler. This matrix pencil has been coded in
gcmp.m in MATLAB and bhip.mpl in MAPLE.

The reader is invited to prove this eigenvalue formula, perhaps using the Schur
complement as suggested above. We could give the proof here, but it amounts to no
more than a representative computation of the row vector of the βk, js for a fixed k
times an inverse Jordan-like matrix times the column vector of the ρk, j for the same
k; the other blocks are the same and showing that this row-matrix-column product
gives the same result as the inner two sums of the barycentric form then gives the
complete barycentric form by adding all the blocks for each k. We believe it’s better
that you do it for yourself (a 3× 3 block is quite convincing, and not too tedious).
In any case, the generalized eigenvalues of the matrix pencil (A,B) are indeed the
roots of p(z).

Thus, we may find roots of polynomials expressed in the Hermite basis (or the
Lagrange basis), by finding the eigenvalues of this matrix pencil, without changing
into the monomial basis. The reason for that concern is, as usual, that a polynomial
may be well-conditioned to evaluate (or rootfind) in the given Hermite interpola-
tional basis, but very poorly conditioned in the monomial basis. Indeed, if the roots
are outside the unit disk, this is almost guaranteed to be the case. �

Example 8.8. Continuing the Mandelbrot polynomial example, suppose again that
p0(x) = 1, and pk+1(x) = xp2

k(x) + 1 for k ≥ 0. Then deg pk(x) = 2k − 1, and if

ξ (k)j are the zeros of pk(x), then the next iterate pk+1(x) satisfies pk+1(ξ
(k)
j ) = 1

and p′k+1(ξ
(k)
j ) = 0; finally, pk+1(0) = p′k+1(0) = 1. This gives 2k+1 values for us

to form the companion matrix pencil as above [which now is (2k+1 + 1)× (2k+1 +
1)]. For k = 10, the eigenvalues are plotted in Fig. 8.4. This was constructed in
MATLAB by starting with small k and working up; the eigenvalues were computed
by a dense LAPACK eigenvalue routine called by MATLAB, and then polished by a
single Newton iteration before constructing the matrix for the polynomial at stage
k+ 1. In MAPLE it is possible to go farther, by using a little bit of extra precision;
we got up to k = 11 or k = 12 before having to look for a better way. �
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Fig. 8.4 Roots of the Mandelbrot polynomial of degree 210 −1 = 1023, computed with eigenvalue
techniques. This is the logo for the software MPsolve available at http://www.dm.unipi.
it/cluster-pages/mpsolve/

Remark 8.2. The monomial basis form for p3(x) was simpler, to human eyes, than
the Hermite interpolational basis form. What about p12(x)? Computing the mono-
mial expression explicitly in MAPLE is possible, but we get the message “[Length
of output exceeds limit of 1,000,000]” when we try to display it. The coefficients are
in some cases 722 digits long, and there are 4096 of them (to be sure, the leading co-
efficient is just 1). Of course, there are 4096 nontrivial (even complex!) coefficients
in the Hermite interpolational basis, too, but they are each only 15 decimal digits
long (actually, the “coefficients” are 1 or 0; it is the generalized barycentric weights
that are 15 digits long—often times 2 as there are real and complex parts for each).
Even so, the Hermite interpolational representation is quite a bit more compact, and
although it is not exact, it is perfectly adequate to compute the zeros accurately,
for example. In contrast, the monomial basis expression is so ill-conditioned that
approximation of each coefficient to 15 digits, which brings a comparable compres-
sion, destroys almost all accuracy outside |x|< 1. �

Example 8.9. The Hermite interpolational basis is not quite as well-conditioned as
the Lagrange basis. In order to use the Lagrange basis for the Mandelbrot polynomi-
als, the following trick (due to Piers Lawrence) is quite interesting. The 2×2 matrix
polynomial below has detPk+1 = zp2

k(z)+ 1 = pk+1(z):

Pk+1 =

[
zpk(z) −1

1 pk(z)

]
.

Therefore, looking for z such that Pk+1 is singular will find the zeros of pk+1(z). We
may easily interpolate this matrix polynomial on a Lagrange basis at the 2k−1 − 1
zeros of pk(z). Since the degree of this matrix polynomial is that of zpk(z) or 2k−1,
we need two more interpolation points to specify it: We choose z = 0, where pk(z) =
1, and z = −2, where pk(z) = −1 if k ≥ 1. The companion matrix pencil now has

http://www.dm.unipi.it/cluster-pages/mpsolve/
http://www.dm.unipi.it/cluster-pages/mpsolve/


8.2 Interpolating from Values of a Function and Its Derivatives (Hermite Interpolation) 345

2×2 matrix entries where the ρ j =Pk(τ j) and the βkI2 go and similarly has diagonal
2 × 2 blocks τ jI2. Using this, we can get a little farther than we could with the
Hermite basis.

Explicitly, the companion matrix pencil for P3 is given by the following data: The
nodes τττ = [0,ω1,ω2,ω3,−2], where the ωi are the roots of p2(z) = z(z+1)2 +1 we
have already seen, and the matrix values of the matrix polynomial are[[

0 −1
1 1

]
,

[
0 −1
1 0

]
,

[
0 −1
1 0

]
,

[
0 −1
1 0

]
,

[
2 −1
1 −1

]]
.

The companion matrix pencil (A,B) consists of a pair of 12× 12 matrices; B is the
identity matrix except the top two diagonal entries are zero, and the matrix A is an
arrowhead matrix with nonzero entries in the first two columns and the first two
rows, but is zero in the 2×2 point of the arrow. The generalized eigenvalues of this
pencil have five spurious infinite eigenvalues (which don’t bother the computation)
and seven good approximations to the roots of p3(z). As k increases, there are always
five spurious eigenvalues and 2k −1 good roots (up until about k = 15), so the extra
cost of spurious eigenvalues is not significant. �

8.2.2 Derivation of the Barycentric Forms of the Hermite
Interpolation Polynomial

This section is a conceptually simple but algebra-intensive derivation of Eq. (8.9).
Except possibly for Remarks 8.3–8.4, this section can be omitted by those willing to
take the algebra on faith. We also derive the first barycentric form of the Hermite in-
terpolation polynomial. The derivations use an approach based on contour integrals
and partial fractions.

To begin with, let

w(z) =
n

∏
i=0

(z− τi)
si ,

which is a generalization of what we had in the Lagrange case to the confluent case,
and compute the partial fraction decomposition of 1/w(z):

1
w(z)

=
n

∑
i=0

si−1

∑
j=0

βi, j

(z− τi) j+1 . (8.11)

Now, consider the contour integral

1
2π i

ffi
C

p(z)
(t − z)w(z)

dz, (8.12)
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where t is not equal to any τi. This integral is zero if the contour C includes t and all
τi and if deg p ≤ d =−1+∑n

i=0 si, since the degree of the denominator is d+2. We
now compute the residues at z = t and at all z = τi. At z = t, we have

rest
p(z)

(t − z)w(z)
=− p(t)

w(t)
.

Now, let us choose an arbitrary node, say τ�, and try to find the residues at z = τ�.
This is achieved by finding series for each term in the product and multiplying them
using Cauchy convolution (see Chap. 2). We then use the known partial fraction
decomposition of 1/w(z) to obtain

p(z)
(t − z)w(z)

=
p(z)
t − z

n

∑
i=0

si−1

∑
j=0

βi, j

(z− τi) j+1

=
p(z)
t − z

(
s�−1

∑
j=0

βi�

(z− τ�) j+1 +O(1)

)
, (8.13)

where, for completeness although we don’t need it, the O(1) term as z → τ� is

n

∑
i=0
i�=�

si−1

∑
j=0

βi, j

(z− τi) j+1 ∼
n

∑
i=0
i�=�

si−1

∑
j=0

βi, j

(τ�− τi) j+1 +O(z− τ�)

(we have used the fact that the τi are distinct here). Now, by Taylor expansion, we
have

p(z) = ∑
m≥0

ρ�,m(z− τ�)m , (8.14)

since, being a polynomial, p(z) is analytic; indeed, this is a finite sum. Also, we
have

1
t − z

=
1

t − τ�− (z− τ�) =
1

t − τ� ·
1

1− z− τ�
t − τ�

, (8.15)

and because the second term is the sum of a geometric series,4 we find that

1
t − z

=
1

t − τ� ∑m≥0

(
z− τ�
t − τ�

)m

= ∑
m≥0

(z− τ�)m

(t − τ�)m+1 . (8.16)

Then, by Cauchy convolution,

4 This series needs to be convergent for these manipulations to be valid. It is, for z close enough to
τ�—in fact, for all z closer to τ� than t is. Since t is different from each node by hypothesis, this is
possible.
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p(z)
t − z

= ∑
m≥0

cm(z− τ�)m, (8.17)

where

cm =
m

∑
j=0

ρ�, j
1

(t − τ�)m− j+1 =
m

∑
j=0

ρ�,m− j
1

(t − τ�) j+1 .

Now, let [zk]( f ) be the coefficient of zk in the series of f about z = 0 (as in Graham
et al. (1994)). Then,

resτ�
p(z)

(t − z)w(z)
=

[
(z− τ�)−1

](
p(z)

(t − z)w(z)

)
=

[
(z− τ�)−1

]((
∑

m≥0

cm(z− τ�)m

)(
s�−1

∑
j=0

β�, j
(z− τ�) j+1

))

=

[
(z− τ�)−1

]⎛⎜⎜⎜⎜⎝
(
∑

m≥0

cm(z− τ�)m

)⎛⎜⎜⎜⎜⎝
s�−1

∑
j=0

β�, j(z− τ�)s�− j−1

(z− τ�)s�

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

=

[
(z− τ�)s�−1

]((
∑

m≥0
cm(z− τ�)m

)(
s�−1

∑
j=0
β�, j(z− τ�)s�−1− j

))
.

Now, we let k = s� − 1− j to change the order of summation in order to apply
Cauchy convolution:

=

[
(z− τ�)s�−1

]((
∑

m≥0

cm(z− τ�)m

)(
s�−1

∑
k=0

β�,s�−1−k(z− τ�)k

))

=

[
(z− τ�)s�−1

](
∑

m≥0

(
m

∑
k=0

cm−kβ�,s�−1−k

)
(z− τ�)m

)

=
s�−1

∑
k=0

cs�−1−kβ�,s�−1−k. (8.18)

If we let q = s�− 1− k, we obtain

resτ�
p(z)

(t − z)w(z)
=

s�−1

∑
q=0

cqβ�,q =
s�−1

∑
q=0

β�,q
q

∑
j=0

ρ�, j(t − τ�) j−q−1 ,

and, after relabeling the indices �→ i, q → j, j → k, we obtain

resτi

p(z)
(t − z)w(z)

=
si−1

∑
j=0

βi, j

j

∑
k=0

ρi,k(t − τi)
k− j−1 . (8.19)
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We can then conclude that the sum of residues is zero, that is,

0 =− p(t)
w(t)

+
n

∑
i=0

resτi

p(z)
(t − z)w(z)

=− p(t)
w(t)

+
n

∑
i=0

si−1

∑
j=0

j

∑
k=0

βi, jρi,k(t − τi)
k− j−1 , (8.20)

as desired. Rearranging terms, we obtain

Definition 8.4. The expression of p(t) as

p(t) = w(t)
n

∑
i=0

si−1

∑
j=0

j

∑
k=0

βi, jρi,k(t − τi)
k− j−1 (8.21)

is the first barycentric form of the Hermite interpolation polynomial. �

Remark 8.3. As a result, if we can compute the partial fraction decomposition of
1/w(z), then we have the generalized barycentric weights, and so we can solve the
Hermite interpolation problem. �

Remark 8.4. It is occasionally useful to rearrange that barycentric form to arrive at
an explicit expression for the entries of the Hermite interpolational basis, as follows:

Hi, j(z) =
si−1

∑
�= j

βi,�w(z)(z− τi)
j−�−1 (8.22)

=
si−1− j

∑
k=0

βi, j+kw(z)(z− τi)
−k−1 . (8.23)

To derive these, simply interchange the order of summation of the inner two sums
in (8.21). Note that the apparent division by powers of (z− τi) is exact cancellation,
because w(z) contains si factors of (z− τi). One can thus write down

Hi, j(z) =

(
si−1− j

∑
k=0

βi, j+k(z− τi)
si−k−1

)
n

∏
�=0
� �=i

(z− τ�)s� (8.24)

= (z− τi)
j

(
si−1− j

∑
m=0

βi,si−1−m(z− τi)
m

)
wi(z) (8.25)

as an explicit polynomial form for Hi, j(z) if desired. �

Example 8.10. In Chap. 2, we computed the partial fraction decomposition of
1/θ 2(θ −1)2, namely,

1
θ 2(θ − 1)2 =

1
θ 2 +

2
θ
− 2
θ − 1

+
1

(θ − 1)2 . (8.26)
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This can be used to find the unique cubic polynomial passing through the Her-
mite data f (τi) = ρi,0, f ′(τi) = ρ0,1 for i = 0, 1. Let θ = (t − τ0)/(τ1 − τ0) = (t− τ0)/h,
and p(θ ) = f (t) so that dp/dθ = h f ′(t). In θ form, the interpolating polynomial
p(θ ) is

θ 2 (θ − 1)2

(
2
ρ0,0

θ
+
ρ0,0 + hρ0,1θ

θ 2 − 2
ρ1,0

θ − 1
+
ρ1,0 + hρ1,1 (θ − 1)

(θ − 1)2

)
(8.27)

in first barycentric form; putting θ = (t − τ0)/h and simplifying, we get

f (t) = (t − τ0)
2 (t − τ1)

2

(
2

ρ0,0

(τ1 − τ0)
3 (t − τ0)

+
ρ0,0 +ρ0,1 (t − τ0)

(τ0 − τ1)
2 (t − τ0)

2

−2
ρ1,0

(τ1 − τ0)
3 (t − τ1)

+
ρ1,0 +ρ1,1 (t − τ1)

(τ0 − τ1)
2 (t − τ1)

2

)
.

After collecting the coefficients ρi, j, so as to get explicit expressions for the cubic
Hermite interpolational basis, we get

f (t) =− (2 t − 3τ0 + τ1) (t − τ1)
2ρ0,0

(τ0 − τ1)
3 +

(t − τ0) (t − τ1)
2 ρ0,1

(τ0 − τ1)
2

+
(2 t − 3τ1 + τ0) (t − τ0)

2ρ1,0

(τ0 − τ1)
3 +

(t − τ0)
2 (t − τ1)ρ1,1

(τ0 − τ1)
2 .

The reader should work through the details of the transformation from Eqs. (8.26)
to (8.27). These formulæ will prove useful. In Exercise 8.40, the reader will be
asked to do a similar computation for quintic Hermite interpolation, which matches
all derivatives up to the second derivative at either end. �

We obtain the second barycentric form simply by interpolating p(t) = 1 and then
using the result as denominator, as we have done in the Lagrange case. Since

1 = w(t)
n

∑
i=0

si−1

∑
j=0

j

∑
k=0

βi, jδ k
0 (t − τi)

k− j−1

= w(t)
n

∑
i=0

si−1

∑
j=0
βi, j(t − τi)

− j−1 , (8.28)

dividing (8.21) by (8.28) gives Eq. (8.9). Once we have discussed rational interpo-
lation, we will take up the accuracy of this form.

The MATLAB programhermiteval implements an extension of Algorithm 8.1
to the Hermite interpolational case. It is available in the code repository for this
book. Given the data ρ , a set of values t, the nodes τ and their confluences s, the
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barycentric weights β , and possibly a differentiation matrix D (the theory of which
is discussed later in Chap. 11), this program evaluates the Hermite interpolant at the
given values t and its derivative if required.

8.2.3 Computing the Generalized Barycentric Weights

The MATLAB program genbarywts implements the method of computing partial
fractions discussed in Sect. 2.7.

1 function [w,D] = genbarywts( tau, s_in )
2 %
3 % [w,D] = genbarywts( tau, s, <optional Taylor=true> )
4 % Generalized Barycentric weights
5 % (c) Robert M. Corless, 2007, revised 2010
6 % and (optionally) Differentiation matrix
7 % in Taylor form, so
8 % D[rho; rho'; rho''/2] ==> [rho'; rho''; rho'''/2]
9 %

10 % on distinct nodes tau with integer confluencies s
11 % size(w) = [n,smax]
12 % [n,1] = size(tau(:))
13 % smax = max(s)

It may be useful to inspect this code, which can be found in its entirety in the code
repository for this book. The second half of the code, which computes the differen-
tiation matrix associated with the given set of interpolation nodes, is explained later
in Chap. 11.

Example 8.11. Let us use Hermite interpolation on the exponential function w =
exp(z). In the first instance, let us use Chebyshev nodes of the 2nd kind ηk =
cos(πk/n) for 0 ≤ k ≤ n to approximate exp(z) on the line −1 ≤ z ≤ 1. Take n = 4
and consider increasing confluencies s = 1, 2, 3, . . .. Since the derivative of exp(z) is
just exp(z), once we have some accurate values of exp(z) on these nodes, we ought
to be able to build more and more accurate interpolants merely by increasing the
degree.

Indeed, this works quite well. For confluency s = 1, we already have about 5 dig-
its of accuracy on the interval −1≤ z ≤ 1, while for confluency s = 2, we have about
10-digit accuracy. For confluencies 3 and 4, the interpolant is essentially accurate to
machine precision. The degrees of the interpolants are 4 for s = 1, 9 for s = 2, 14
for s = 3, and 19 for s = 4. The code is shown below:

1 %% Hermite interpolation of the exponential on -1 <= z <= 1
2 %
3 % We use $\eta_k = \cos( \pi k /n )$ with $n=4$ and increasing
4 % confluencies in an experimental fashion.
5 %
6 n = 15;
7 tau = [cos( pi*(n:-1:0)/n ) ];
8 z = linspace(-1,1,2012);
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9 yref = exp(z);
10 vals = exp( tau );
11 niters = 4;
12 yint = zeros( niters, length(z) );
13 ypint= zeros( niters, length(z) );
14 errs = zeros( size(yint) );
15 errps= zeros( size(errs) );
16 for s=1:niters,
17 fac = ones(s,1);
18 for j=3:s,
19 fac(j) = fac(j-1)/(j-1);
20 end
21 rho = fac*vals; % Local Taylor coeffs have factorials!
22 [w,D] = genbarywts( tau, s );
23 [y,yp] = hermiteval( rho, z, tau, s, w, D );
24 yint(s,:) = y;
25 ypint(s,:) = yp;
26 errs(s,:) = yint(s,:)./yref - 1;
27 errps(s,:) = ypint(s,:)./yref - 1;
28 end
29 figure(1), semilogy( z, abs(errs), 'k' ), set(gca,'fontsize',16)
30 xlabel('z'), ylabel('y/exp(z) - 1')
31 figure(2), semilogy( z, abs(errps), 'k' ), set(gca,'fontsize',16)
32 xlabel('z'), ylabel('y''/exp(z)-1')
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Fig. 8.5 Error in interpolating y = exp(x) at five nodes with varying confluencies; as the conflu-
ency (and degree of the interpolant) increases, so does the accuracy

The results are in Figs. 8.5 and 8.6. In contrast, a degree-15 Taylor approximation
at z = 0 to the exponential function has relative error about 1.3× 10−13 at z = −1,
which is a bit worse but not that much worse.

If we instead use complex nodes, τk = exp(2π ik/(n+1)) for 0 ≤ k ≤ 4, then the
code is virtually identical. We evaluate the error on the rim of the unit circle and
by the maximum principle we will have bounded the error everywhere on the
unit disk. �
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Fig. 8.6 Forward error in the derivative of the interpolant for varying confluencies. Higher con-
fluency and thus higher degree again give better accuracy, but we see in comparison with Fig. 8.5
that the derivative of the interpolant is not as accurate as the interpolant of the function itself

8.3 Conditioning of the Generalized Barycentric Weights

One may wonder how the barycentric weights βi, j change as the τk are varied. Com-
puting ∂βi, j/∂τk can be done simply by another partial fraction decomposition, as
follows. First, let w(z) =∏n

i=0(z− τi)
si as usual. Then we find that

∂
∂τk

1
w(z)

=
sk

(z− τk)w(z)

=−
sk−1

∑
j=0

( j+ 1)βk, j

(z− τk) j+2 +
n

∑
i=0

si−1

∑
j=0

∂βi, j/∂τk

(z− τi) j+1 . (8.29)

The derivatives can then be read off from the partial fraction decomposition of the
term on the left. This allows us to see how well-conditioned (or ill-conditioned) the
barycentric weights themselves are.

Example 8.12. Consider again the cubic Hermite interpolation partial fraction de-
composition. But this time, fix one of the nodes at τ0 = 0 and put the other at τ1 = h,
and consider what happens as h varies:

1
z2(z− h)2 =

1/h2

z2 +
2/h3

z
− 2/h3

z− h
+

1/h2

(z− h)2 .

Now, β0,0 is the coefficient of 1/z in the above, namely, 2/h3. Clearly, ∂β0,0/∂τ1 = −6/h4.
If we had computed the partial fraction expansion of
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∂
∂h

(
1

z2(z− h)2

)
=

2
z2(z− h)3

=− 6
h4z

− 4

h3 (z− h)2 +
2

h2 (z− h)3 − 2
h3z2 +

6
h4 (z− h)

,

then the same information can be read directly off from the coefficient of 1/z, again
−6/h4. The advantage of this procedure instead of symbolic differentiation is that the
same MATLAB program that is used to generate the βi, j can be used to generate the
derivatives.

Note here that the condition number of the barycentric weight β0,0 is (via C =
z f ′/f , which is the formula for the condition number of evaluation of a function f (z)
as explained previously) τ1β

′
0,0/β0,0; that is, h(−6/h4)/(2/h3) =−3. Therefore, in spite

of the singularity of the coefficients as h → 0, this barycentric weight is actually
well-conditioned—similarly for the other three. This fact might be surprising (it was
to us, at first), but it is quite reassuring: Cubic Hermite interpolation in barycentric
form is well-conditioned for all distinct node pairs. In Exercise 8.6, you are asked
to look at some more complicated cases, where ill-conditioning may be present. �

8.4 Condition Number of the First Barycentric Form
of the Lagrange Interpolating Polynomial

We quoted in Sect. 2.2.6.1 the backward stability result for the numerical evaluation
of a polynomial given in the first barycentric form: For each x at which we evaluate
the polynomial, the first form gives the exact value of a polynomial whose coeffi-
cients (that is, values at the nodes) are changed by at most a small multiple of the
unit roundoff. What, then, is the sensitivity of the polynomial to such changes?

We begin by repeating here the analysis of the conditioning of the Lagrange
polynomial. Suppose we change ρk to ρk(1+ δk), with |δk| ≤ ε . Then,

(p+Δ p)(t)− p(t) = w(t)
n

∑
k=0

βkρkδk

t − τk
(8.30)

and

|Δ p(t)| ≤ |w(t)|
(

n

∑
k=0

|βkρk|
|t − τk|

)
ε. (8.31)

But this is just our old friend

B(t) =
n

∑
k=0

|ck||φk(t)|

from Chap. 2, where ck = ρk and φk = Lk.
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As shown by Farouki and Goodman (1996), the Bernstein–Bézier polynomial
basis on a given interval is optimally conditioned, in the following sense. As dis-
cussed in Remark 2.8, no other nonnegative basis yields systematically smaller con-
dition numbers for evaluation or rootfinding. This result follows from a beautiful
partial ordering induced on nonnegative polynomial bases by nonnegative change-
of-basis matrices: If a nonnegative basis φ can be constructed from a nonnegativeψ
by a nonnegative change-of-basis matrix, in which case we say φ � ψ , then ψ will
have no worse conditioning than φ (and possibly quite a bit better). The nonnegativ-
ity of the bases is also useful numerically. This is a strong result: Bernstein–Bézier
bases really are the best, in this useful sense.

Now, let us explore the Lagrange and Hermite interpolational bases in this con-
text. We will relax the nonnegativity condition and show that by doing so we can
achieve (on a subset) an even better condition number than can be obtained by the
Bernstein–Bézier basis. For the moment, we consider only polynomials defined on
the interval [0,1].

Lemma 8.1. Both the Bernstein–Bézier and the power basis functions can be
expressed as a nonnegative combination of any Lagrange basis with nodes taken on
[0,1]. By nonnegative combination, we mean that each coefficient in the combination
is nonnegative. Of course, there must be some positive coefficients.

Proof. Elements xk of the power basis may be written as

xk =
n

∑
i=0

xk
i Li(x)

and the coefficients xk
i are obviously nonnegative. Similarly, elements bn

k(x) of the
Bernstein–Bézier basis may be written as

bn
k(x) =

(
n
k

)
(1− x)n−k xk =

n

∑
i=0

(
n
k

)
(1− xi)

n−k xk
i Li(x)

and, again, the coefficients are obviously nonnegative since 0 ≤ xi ≤ 1. �

Remark 8.5. The power basis functions can be expressed as a nonnegative combina-
tion of any Hermite interpolational basis with nodes taken on [0,1], since the slopes
of all xk are positive on this interval; however, some slopes of Bernstein–Bézier
bases are negative, so Bernstein–Bézier bases cannot be so expressed as a nonnega-
tive combination of Hermite interpolation bases if any sk > 1. �

Lemma 8.2. The Lagrange polynomials Li(x) are nonnegative on the interpolation
points.

Proof. This is obvious: They take on only the values 0 or 1 on the interpolation
points. �

Remark 8.6. We would like nonnegativity in an open set around the interpolation
points, which we do not have. However, sometimes we get something nearly as
good, as we will see. �
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Theorem 8.1. Fix a set of interpolation points [x0,x1, . . . ,xn]. If any basis φ(z) can
be expressed as a nonnegative combination of the Lagrange basis on this set of
points (this ensures φ itself is nonnegative there), then there exists a set T , depend-
ing on f and containing the interpolation points and hence not empty, in which
Bφ ( f ,T )� BLagrange( f ,T ); that is, the Lagrange basis expression is at least as well
conditioned as φ is for all z ∈ T . This includes the case where φ is the Bernstein–
Bézier basis. If, further, the inequality is strict on an interpolation point, that is then
the set T has a nonempty interior.

Proof. The proof is an elegant consequence of the triangle inequality, as follows. Let
A be the (nonnegative) matrix of change of basis from the Lagrange basis to φ , so
that [φ0(z), . . . ,φn(z)] = [L0(z), . . . ,Ln(z)]A. Then since A, φ , and Li are nonnegative
on the interpolation points, we have for every xk

n

∑
j=0

|c jφ j(x)|=
n

∑
j=0

|c j|φ j(x) =
n

∑
i=0

(
n

∑
j=0

|c j|ai j

)
Li(x)≥

n

∑
i=0

∣∣∣∣∣ n

∑
j=0

c jai j

∣∣∣∣∣Li(x) .

Therefore, T is not empty, containing at least all xk.
If, for some interpolation point, say xk, the inequality is strict, then we observe

that points near xk also belong to T , because all the terms in the inequality are
continuous. This establishes that the set T has nonempty interior if the inequality is
strict at any interpolation point. �

Remark 8.7. The relative size of T compared to the region of interpolation is
interesting. In Fig. 8.7, we plot the sign of the difference BBernstein(W1, t) −

–1

–0.5

0
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1

0.2 0.4 0.6 0.8 1

Fig. 8.7 The sign of the difference between the condition number in the Bernstein–Bézier basis
and in a Lagrange basis for the first Wilkinson polynomial. The set T , where the Lagrange basis is
better than the Bernstein basis, is precisely the set of x-values where the sign is positive
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BLagrange(W1, t) for a Lagrange basis on nodes chosen “at random” from a uni-
form distribution on the interval. The set T is exactly the set where this graph is
nonnegative. Note that the set contains a large region around the interior interpo-
lation points, but only a small region around the two points near the edge of the
interval. �

Remark 8.8. Since the monomial basis has nonnegative values and nonnegative
derivatives on [0,1], it can be expressed as a nonnegative combination of any Her-
mite interpolational basis using points in that interval. The theorem above thus
shows that any such Hermite interpolational basis will not be worse-conditioned
(near the nodes) than the monomial basis is. To our knowledge, this fact has not
been noted in the literature. �

To compare a Hermite interpolational basis with the Bernstein–Bézier basis is, how-
ever, more difficult. There exist examples for which a Hermite interpolational basis
is uniformly better; there exist other examples where the Bernstein–Bézier basis is
uniformly better. Indeed, there does not exist a nonnegative change-of-basis matrix
either way, in general, so the theorem does not apply.

Example 8.13. For instance, take W (z) = (z− 1/4)2(z− 1/2)2(z− 3/4)2. If we express
it in the monomial basis it is

z6 − 3z5 +
29
8

z4 − 9
4

z3 +
193
256

z2 − 33
256

z+
9

1024
,

while in the Bernstein–Bézier basis it is

p(z) =
n

∑
k=0

ak

(
n
k

)
(1− z)n−k zk

with the vector of coefficients

a =

[
9

1024
,− 13

1024
,

247
15360

,− 89
5120

,
247

15360
,− 13

1024
,

9
1024

]
.

We have already seen the expression in the Hermite interpolational basis on the
nodes [0, 1/4, 3/4,1] with confluency 2 in Example 8.6. We compare the relative con-
dition number for evaluation of each of these bases B(z)/|p(z)| in Fig. 8.8. The
Hermite basis is best for this example, followed by the Bernstein–Bézier basis, and
the monomial basis is worst (as it often is). �

We end this section with one more important fact:

Theorem 8.2. If we choose n of our n+ 1 interpolation points to be the roots, then
BLagrange( f ,r) = 0 at the zeros. That is, if we are lucky enough to interpolate at all
the roots, the conditioning of the zeros is perfect.

Proof. This is a simple computation. The coefficients of the expansion in the
Lagrange basis are, except for one coefficient (say y0), all zero: yk = 0 for 1 ≤
k ≤ n. Therefore, the expression for the condition of any x becomes |y0L0(x− r1)
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(x− r2) · · · (x− rn)|, and this is obviously zero at each root rk. More, the relative
condition number B(z)/| f (z)| is just 1, everywhere—expressed in this basis, the
polynomial is perfectly conditioned to evaluate, perfectly conditioned, that is, with
respect to small relative changes in its coefficients. �

Theorem 8.1 is in some sense the entire reason for which Lagrange (and Hermite)
interpolation is interesting at all. What it says is that it is often true that polynomi-
als expressed in the Lagrange basis are very well-conditioned. It cannot always be
true, of course, by the theorem of Farouki and Goodman: Bernstein–Bézier bases
are genuinely optimal, overall and without regard to the particular polynomial be-
ing considered. However, for a particular polynomial, and for a particular set of
nodes and confluencies defining a Lagrange or Hermite basis, the conditioning may
be better even than in the Bernstein–Bézier basis! That this happens sometimes is
perhaps not too surprising—that it happens so often is remarkable.

Fig. 8.8 The monomial basis condition number for W (z) = (z− 1/4)2(z− 1/2)2(z− 3/4)2 versus the
condition number for a Hermite interpolational basis with confluency 2 on each of [0,1/4,3/4,1].
The Hermite interpolational basis (dashed line) is significantly better even away from the two zeros
where it is exact, and better even near the zero where it is inexact. At the right endpoint, away from
all zeros, the monomial basis is many orders of magnitude worse. The Bernstein–Bézier basis
(dotted line) is intermediate in quality: not so good here as the Hermite interpolational basis, but
much better than the monomial basis. For other examples, the Bernstein–Bézier basis can be better
than the Hermite interpolational basis

8.5 Error in Polynomial Interpolation

Up to this point, we have discussed formulae to fit a polynomial to data (values or
consecutive derivatives):
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p(z) = w(z)
n

∑
i=0

si−1

∑
j=0

j

∑
k=0

βi, jρik(z− τi)
k− j−1 ,

where

w(z) =
n

∏
i=0

(z− τi)
si ,

the degree bound d = −1+∑n
i=0 si is the maximum possible degree of the polyno-

mial p(z), and the generalized barycentric weights βi, j are just the coefficients in the
partial fraction expansion of 1/w(z), that is,

1
w(z)

=
n

∑
i=0

si−1

∑
j=0

βi, j

(z− τi) j+1 ,

which can be stably computed in O(d2) flops. Now, what if our data aren’t really
from a polynomial? How much error do we make in using the polynomial p(z)
instead of the “true” underlying function [call it, say, f (z)]? We have supposed our
data to be exact at the nodes τi. Hence, we also expect

f (z)− p(z) = w(z)K(z) , (8.32)

for some function K(z) that ought to be “reasonably” behaved [note w(z) and all the
correct derivatives are zero at z = τi]. What can we say about K(z)?

Let us consider the real case, first. Fix z (real, and also assume that all nodes τi

are real) for the moment and consider

E(t) = f (t)− p(t)−w(t)K(z), (8.33)

where we will assume that everything there has enough derivatives for the following
argument. Note K(z) contains the constant z, not the variable t. We differentiate d+1
times with respect to t, to get [because p(t) is polynomial of degree at most d, and
the (d+ 1)st derivative of w(t) is (d+ 1)!]

E(d+1)(t) = f (d+1)(t)− (d+ 1)!K(z) . (8.34)

Now E(t) vanishes at least d+ 2 times—at t = z and at t = τi with confluency si—
and we can therefore use the extended Rolle theorem to claim that there exists a t̂
such that the (d + 1)st derivative of E vanishes there. This allows us to identify the
constant K(z):

K(z) =
1

(d + 1)!
f (d+1)(t̂) . (8.35)

Thus, the interpolation error is

f (t)− p(t) = w(t)
1

(d + 1)!
f (d+1)(t̂) , (8.36)



8.5 Error in Polynomial Interpolation 359

for some (unknown) t̂ (that depends on t) in an interval containing the nodes τi. Like
the mean value theorem, this allows us to say something about the interpolation error
if we can bound the size of the (d + 1)st derivative of the “true” function f (t). In
general terms, the interpolation error will be small whenever the (d + 1)st Taylor
coefficients of f (t) are not too large, while simultaneously w(t) is small. Notice that
this splits consideration into two parts: w(t) depends only on the nodes, and K(z)
depends on the function (and weakly on the nodes, so it isn’t a perfect split).

Remark 8.9. Observe that since

| f l(p(z))− f (z)| = | f l(p(z))− p(z)+ p(z)− f (z)|
≤ | f l(p(z))− p(z)|+ | f (z)− p(z)| , (8.37)

the conditioning of the representation of p also plays a role in the first term. �

Example 8.14. Consider the case of just two nodes, τττ = [a,a+h], with confluency 2.
This example foreshadows Sect. 8.9. This formulation gives us a cubic polynomial
with Hermite interpolation of function values ρk,0 and derivative values ρk,1 at each
end: τ0 = a and τ1 = a+ h for k = 0 and k = 1. Here w(z) = (z− a)2(z− a− h)2.
If we put z = a+ θh so 0 ≤ θ ≤ 1 in the interior of our interval, we have that
w(z) = θ 2(θ − 1)2h4. Notice that 0 ≤ θ 2(θ − 1)2 ≤ 1/16 on this interval. Suppose
that the fourth derivative of f (z) is bounded by 4!T4, that is, | f (4)(t̂)|/4! ≤ T4. Then
the error in interpolating f (z) over a ≤ z ≤ a+ h is at most h4T4/16. The important
part is that it is O(h4).

By assuming that t̂(z) is a differentiable function of z and taking derivatives, we
see that

f ′(z)− p ′(z) = w′(z)K(t̂(z))+w(z)K′(t̂)t̂ ′(z) ,

and a short computation shows that w′(z) = 2θ (2θ − 1)(θ − 1) h3 = O(h3) in this
interval, so that the error in the derivative is O(h3)+O(h4) = O(h3). That is, taking
derivatives reduces the order of accuracy, but still allows for some accuracy. �

Remark 8.10. What about outside the interval? This is known as extrapolation, and
the error formula predicts that the error may (and probably will) grow very rapidly.
The function w(z) is small only on the interval defined by the τks. Outside that
interval, it grows as a power of zd+1, and indeed, the amount of error in practice
can be startling. Extrapolation by polynomials is of limited use, unless something
special is known about the function f (z). �

In the complex case, we do things a little differently. Assume now that f (z) is
analytic in a domain containing the interpolation nodes. Notice that p(z), the inter-
polating polynomial, has degree d, where 1+ d = ∑n

i=0 si. Therefore,

1
2π i

ffi
C

p(ζ )
w(ζ )(ζ − t)

dζ = 0 (8.38)

for any contour C large enough to enclose t and all the nodes τi. Also, since f agrees
with p to order si − 1 at τi, ( f (ζ )− p(ζ ))/w(ζ ) is analytic at ζ = τi and hence
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f (z)− p(z)
w(z)

=
1

2π i

ffi
C

f (ζ )− p(ζ )
w(ζ )(ζ − z)

dζ (8.39)

by the residue theorem. Therefore,

f (z)− p(z) =
w(z)
2π i

ffi
C

f (ζ )
w(ζ )(ζ − z)

dζ , (8.40)

which gives a contour integral representation for what we were calling K(z) earlier.
We can in fact write this as a divided difference (we here introduce a standard nota-
tion although we don’t use this in this book; the definition of the notation is left to
the reader to work out in Problem 8.13):

1
2π i

ffi
C

f (ζ )
w(ζ )(ζ − z)

dζ = f
[
τs0

0 ,τs1
1 , . . . ,τsn

n ; t
]
. (8.41)

This can be interpreted as something like a (d + 1)st Taylor coefficient, when that
makes sense. The divided-difference formula is just an identity, and so it is valid for
quite general f (z), not necessarily analytic f , even when the contour integral is not
valid.

Remark 8.11. The above theorem can be used to show that the derivative of the
interpolant also matches the derivative of the function (although not quite so well).
Loosely speaking, if the function is approximated to error O(hp), then the derivative
will be approximated to O(hp−1). This fact will be used repeatedly in the chapters
on numerical solution of differential equations. The reduction comes because w(z)
is replaced by w′(z), and if, as is usual, w(z) is a product of factors of the form z−τi

where each z− τi = O(h) and there are p factors, then the derivative involves only
products of p− 1 factors of this size. �

Remark 8.12. The Chebyshev polynomials Tk(z) have a remarkable minimal norm
property: Over all monic polynomials, Tk(z)/2k−1 has the smallest possible infinity
norm on −1 ≤ z ≤ 1. This gains an extra factor of smallness in the error expression

above if we choose our interpolation nodes equal to the zeros ξ (p)
k = cos(π(k− 1/2)/p)

for k = 1, 2, . . ., p of the pth-order Chebyshev polynomial. A similar smallness
property holds for the Chebyshev–Lobatto points ηk = cos(πk/p) for k = 0, 1, . . ., p,
which are locations of extrema of Tp(z). �

Example 8.15. We have already seen an example of Hermite interpolation of f (z) =
exp(z) on the interval −1 ≤ z ≤ 1 and on the unit disk in Example 8.11. Let us
here, for example, interpolate the function f (z) = 1/Γ (z) on 1 ≤ z ≤ 2. Choosing the
shifted Chebyshev–Lobatto points 3/2+ηk/2= 3/2+ cos(πk/n)/2 for 0≤ k≤ n, and taking
n = 5, we have an interpolation error |p(t)− 1/Γ (t)| ≤ 1× 10−5 approximately and
an error in the derivative |p ′(t)+ ψ(t)/Γ (t)| about O(10−4). See Fig. 8.9. This figure
(and another which is not shown here) was generated with the genbarywts and
hermiteval programs (available in the code repository) and the commands

tau = 1.5+cos( pi*(0:5)/5 )/2;
rho = 1.0./gamma(tau);
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t = linspace( 1, 2, 2001);
yref = 1.0./gamma(t);
ypref = -yref .* psi(t);
[w,D] = genbarywts( tau, 1 );
[y,yp] = hermiteval( rho, t, tau, 1, w, D );
figure(1)
plot( tau, rho, 'ko', t, y, 'k', t, yp, 'k--' ) set(gca,'fontsize

',16)
figure(2)
plot( tau, rho-1.0./gamma(tau), 'ko', ...

t, y-yref', 'k', ...
t, yp-ypref', 'k--' )

set(gca,'fontsize',16)
xlabel('x')
ylabel('interpolation error')
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Fig. 8.9 The solid line (going through the circles) is the interpolation error p(t)− 1/Γ (t) for a
Lagrange interpolant on the nodes 3/2+ cos(πk/5) for 0 ≤ k ≤ 5. The dashed line is the error in the
derivative of the interpolant p ′(t)+ψ(t)/Γ (t). The ψ(z) function is the derivative of the logarithm of
the Γ function, known to MATLAB as psi(t)

8.6 Interpolating in Other Polynomial Bases

It is occasionally useful to interpolate directly in other polynomial bases. That is,
we may be given Lagrange or Hermite data and asked to explicitly construct the
coefficients ck in the polynomial expansion in another basis, say φk(z). This is a
change-of-basis problem and, as will be explored below, may not be a good idea
numerically. However, sometimes it is indeed what is wanted. The problem can be
phrased using a generalized Vandermonde matrix, as follows.

Suppose we start with Hermite data: nodes τi with confluencies si ≥ 1. The
Hermite interpolational basis is then Hi, j(z) for 0 ≤ i ≤ n, 0 ≤ j ≤ si − 1, and the
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degree d = −1+∑n
i=0 si as usual. Computing the generalized barycentric weights

βi, j gives us the explicit expression (8.23) for Hi, j(z). Expressing each desired basis
polynomial φk(z) in terms of Hi, j(z) is simple:

φk(z) =
n

∑
i=0

si−1

∑
j=0

φ ( j)
k (τi)

j!
Hi, j(z) . (8.42)

This gives us our explicit entries in the change-of-basis matrix (called a general-
ized Vandermonde matrix, which will be nonsingular if the nodes are distinct) from
the Hermite basis to the new basis φk(z). Finding the ck is thereby reduced to the
solution of a linear system of equations.

Example 8.16. As a definite example, suppose that we are given Hermite data on
the nodes [−1, 1/2,1] with confluency 2 at each node. Suppose also that we wish to
express our polynomial p(z) in the Chebyshev basis. Since we have six pieces of
data, we can interpolate it with a polynomial of degree at most 5. We can write each
Chebyshev polynomial Tk(z) in terms of this Hermite data as

Tk(z) = Tk(−1)H1,0(z)+T ′
k (−1)H1,1(z)+Tk(1/2)H2,0(z)

+T ′
k (1/2)H2,1(z)+Tk(1)H3,0(z)+T ′

k (1)H3,1(z) ,

numbering the nodes from 1 to 3. Writing the row vector of Hermite interpolation
basis elements as HH = [H1,0(z), H1,1(z), . . ., H3,1(z)], and similarly the row vector
of Chebyshev basis elements as TH = [T0(z), T1(z), . . ., T5(z)], we have the change-
of-basis relationship

TH = HHV .

The change-of-basis matrix is then (evaluating the first six Chebyshev polynomials
and their derivatives at each node)

V =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −1 1 −1 1 −1
0 1 −4 9 −16 25
1 1/2 −1/2 −1 −1/2 1/2

0 1 2 0 −4 −5
1 1 1 1 1 1
0 1 4 9 16 25

⎤⎥⎥⎥⎥⎥⎥⎦ .

This was generated in MAPLE with the command

V := Matrix(6, 6, shape = Vandermonde[[-1, -1, 1/2, 1/2, 1, 1],
confluent = true, basis = ChebyshevT]);

The relationship p(z) = HHρρρ expresses the polynomial p(z) in the Hermite inter-
polational basis with the vector of coefficients ρρρ . We wish to find a vector of coeffi-
cients, call it a, for which this same p(z) = THa. Using the relationship TH = HHV,
we see that Va = ρρρ and to change bases, then we must solve a linear system of
equations with this (nonsingular) generalized Vandermonde matrix. For the specific
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case ρ1,0 = ρ1,1 = 1, ρ2,0 = ρ3,0 = 1 and ρ2,1 = ρ3,0 = 0 specifying all the values
and slopes, we get

p(z) =
25
24

T0 (z)− 7
144

T1 (z)− 1
72

T2 (z)+
1

24
T3 (z)− 1

36
T4 (z)+

1
144

T5 (z) ,

namely, a polynomial expressed in Chebyshev basis. �

The general procedure is similar. Many bases are encoded in the MAPLE facility for
Vandermonde matrices.

Now, are change of bases numerically advisable? As we have seen, if

φi(z) =
n

∑
j=0
φi, jψ j(z) ,

for i = 0, 1, . . ., n, then the change-of-basis matrix (call it A) has entries φi, j. If
p(z) = ∑n

i=0 aiφi(z) and p(z) = ∑n
j=0 b jψ j(z), then

p(z) =
n

∑
i=0

aiφi(z) =
n

∑
i=0

ai

n

∑
j=0

φi, jψ j(z) =
n

∑
j=0

(
n

∑
i=0

aiφi, j

)
ψ j(z)

=
n

∑
j=0

b jψ j(z) . (8.43)

As a result, the coefficients b j are related to ai by

b j =
n

∑
i=0

aiφi, j (8.44)

or, in matrix terms, the row vector bT = aT A. Now let us examine what happens to
errors Δai. Quite clearly, these induce a vector of errors Δb j in the coefficients in
the new basis, and

Δb j =
n

∑
i=0

Δaiφi, j , (8.45)

or ΔbT = ΔaT A. Taking norms, we have

‖Δb‖= ‖ΔaT A‖ ≤ ‖A‖‖Δa‖ . (8.46)

This ought to look familiar: Now, from aT = bT A−1, we get ‖bT‖ ≥ ‖aT‖/‖A−1‖,
and so

‖Δb‖
‖b‖ ≤ ‖A‖‖A−1‖‖Δa‖

‖a‖ , (8.47)

and we see that, in the worst case, the relative errors in the new coefficients might be
as bad as the matrix condition number of A times the relative error in the coefficients
in the old basis.



364 8 Polynomial and Rational Interpolation

Remark 8.13. Remember now that the condition number for evaluation of the poly-
nomial multiplies a bound on the relative error in the coefficients: |Δ f (z)| ≤
Bbasis(z)‖δk‖∞. When we change bases, we change two things: We change the
Bbasis(z), and this may become smaller if the new basis φi(z) is better than the
old one (or get worse if we’re doing something silly, such as changing from La-
grange basis into the monomial basis). However, the bound on the ‖δk‖ will be
multiplied by κ(A), which is always greater than or equal to 1—that is, on the data
error side, changing bases always makes things worse (in the worst case). Changing
back would make it worse again! More importantly, the condition number of the
change-of-basis matrix can often be spectacularly bad. See Exercise 8.14.

In particular, the Vandermonde matrices (for changing basis from Lagrange
to monomial basis) are known to have condition numbers that grow at least ex-
ponentially with the degree. For real nodes, a known bound is κ2(Vn) ≥ (1 +√

2)n−1
√

2/(n+1). The complex case is often better, and when the nodes are roots
of unity, the condition number is just 1. �

Remark 8.14. The previous remark, while correct, is perhaps overly pessimistic. Al-
gorithms that make use of the structure of generalized Vandermonde matrices can
help considerably and in particular can avoid introducing spuriously harmful numer-
ical perturbations Δb j. The conclusion still holds when there is genuine data error
present, but in a certain sense you have to be a bit unlucky to have the “worst case”
actually happen. Sometimes you can convert to the monomial basis, if the degree
isn’t too high and the data error isn’t too bad and if you use a good algorithm, such
as those discussed in Higham (2002). �

8.7 Rational Interpolation with Known Denominator

Using the approach based on contour integrals and partial fraction decomposition,
we obtain a rational interpolation of our data in a completely analogous way. Instead
of the integral

0 =
1

2π i

ffi
C

1
w(z)(t − z)

· p(z)
1

dz

to find the polynomial interpolant p(z), we consider the integral

0 =
1

2π i

ffi
C

q(z)
w(z)(t − z)

· p(z)
q(z)

dz (8.48)

to find the rational interpolant p(z)/q(z). By using the partial fraction decomposition
[remember, q(z) is assumed to be known, and we assume degq < degw], we have

q(t)
w(t)

=
n

∑
i=0

si−1

∑
j=0

αi j

(t − τi) j+1 , (8.49)
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where degree q(t)≤ d, and where the numbers αi, j may be used in exactly the same
fashion as we used the generalized barycentric weights previously. Thus, we get
rational Hermite (or Lagrange) interpolation:

p(t)
q(t)

=

n

∑
i=0

si−1

∑
j=0

j

∑
k=0

αi jρik(t − τi)
k− j−1

n

∑
i=0

si−1

∑
j=0

αi j(t − τi)
− j−1

, (8.50)

which satisfies

1
k!

(
p(t)
q(t)

)(k)
∣∣∣∣∣
t=τi

= ρik , (8.51)

provided that αi,si−1 �= 0.

Remark 8.15. If some αi,si−1 = 0, then the rational interpolant with this denominator
has what is called an unattainable point. A little thought should convince you that
in this case q(τi) = 0, and we cannot have reasonable behavior of p(z)/q(z) at z = τi

unless also p(τi) = 0. �

To get the αi, j from Hermite data for q(z), namely,

σi, j :=
q( j)(τi)

j!
,

we may start with the (first or second) Hermite barycentric form and rearrange, as
follows:

q(z)
w(z)

=
n

∑
i=0

si−1

∑
j=0

j

∑
k=0

βi, jσi,k(z− τi)
k− j−1 =

n

∑
i=0

si−1

∑
j=0

j

∑
�=0

βi, jσi, j−�(z− τi)
−�−1

=
n

∑
i=0

si−1

∑
�=0

(
si−1

∑
j=�

βi, jσi, j−�

)
(z− τi)

−�−1 ,

whence

αi, j =
si−1

∑
�= j

βi,�σi,�− j . (8.52)

This fact is, from time to time, quite convenient.

Example 8.17. Suppose that we wish to fit a rational function of the form p(z)/(1+ z2)

to the data [1,−1,1,−1] at the nodes [0, 1/4, 3/4,1]. The first thing we do is find the
αi, j; since this is Lagrange interpolation, we may drop the second index j = 0 and
simply write αi. This requires the following partial fraction expansion:
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1+ z2

z(z− 1/4)(z− 3/4)(z− 1)
=
α1

z
+

α2

z− 1/4
+

α3

z− 3/4
+

α4

z− 1
.

A short computation gives the vector of αis as

ααα =

[
−16

3
,

34
3
,−50

3
,

32
3

]
.

The numerator of the second barycentric form is just

ρ1α1

z
+
ρ2α2

z− 1/4
+
ρ3α3

z− 3/4
+
ρ4α4

z− 1
,

and the denominator is the same except without any ρi. We compare the results with
a simple polynomial interpolant to the same data, in Fig. 8.10. �

Fig. 8.10 A rational interpolant with known denominator 1+z2 (solid line) compared with a poly-
nomial interpolant (dashed line) on the same data

Example 8.18. Consider interpolating the function

f (x) =
πx/ω

sinh(πx/ω)
(8.53)

on the interval −1 ≤ x ≤ 1. [We replace the removable singularity at x = 0 with
f (0) = 1, of course.] This function has poles at ±ikω , and if ω is small, say
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ω = 1/100, then these poles are quite close to the interval, and interfere with the
interpolation process. It seems reasonable to fit a few, say 10, of those known poles
into the interpolant explicitly and take a denominator q(x)=∏5

k=1(x
2+k2ω2). Now,

if we use the Chebyshev nodes, say the 21 extrema η(21)
k of T20(x), with this denom-

inator, we want the α j defined by the partial fraction decomposition of

q(x)
T21(x)

=
21

∑
j=1

α j

x− ξ (21)
j

,

and then use these α j in place of the barycentric weights in the second barycentric
form of the Lagrange interpolant. It turns out that this is reasonably successful and
produces an interpolant that reproduces the data, but it’s of quite poor quality in that
there are unacceptable oscillations. See Fig. 8.11.

Computation of near-optimal nodes for the interpolation is itself an interesting
problem that can be attacked by eigenvalue methods.5 By an eigenvalue technique,
we computed 21 symmetric optimal points (starting from the Chebyshev points and
using two iterations); when we use those nodes instead of Chebyshev nodes, but the
same q(x), computing

q(x)

∏21
j=1(x− τ j)

=
21

∑
j=1

α j

x− τ j
,

where now theα j are different from the ones computed previously, we see the results
in Fig. 8.12. The narrow spike is quite well represented by the rational function
now (and, of course, it would be hopeless to try to reproduce that spike with just a
polynomial). �
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Fig. 8.11 Rational interpolation of Eq. (8.53) at Chebyshev–Lobatto points with denominator
q(x) =∏5

k=1(x
2 + k2ω2). The error, as seen on the right, is quite large

5 Or by more efficient ones such as are described in van Deun et al. (2008).
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Fig. 8.12 Rational interpolation of Eq. (8.53) at near-optimal nodes, again with denominator
q(x) =∏5

k=1(x
2 + k2ω2). This time, the interpolation error, while not equioscillating, is substan-

tially better than in Fig. 8.11

8.8 Numerical Accuracy of the Second Barycentric Form

Having examined how to extend Hermite (and Lagrange) interpolation to the
rational case, we can now examine the numerical accuracy of the second barycen-
tric form. It has been observed by several authors that the second barycentric form
of polynomial interpolation exhibits great forward accuracy. That is, errors in the
computation of the generalized barycentric weights do not harm the interpolation
property much, if at all. We have now presented enough material to enable the
reader to understand this (in some sense, excellent) property. The reason this works
is that an erroneous set of β̂i, j can be interpreted as the exact barycentric weights
αi, j of some rational denominator; and in that case, the second barycentric form
is correct for rational interpolation by p(z)/q(z). The second barycentric form will
certainly fit the data well! So, in some sense, the second barycentric form is also
highly backward stable, in that it gives the exact answer to a different question: Find
a rational function that fits the data.

It will be a good approximation to a polynomial, however, only if the reverse-
engineered q(z) from the erroneous β̂i, j is, in fact, fairly close to 1 throughout the
region of interest. If q(z) has poles in the region, then the overall approximation is
likely to be unsatisfactory, even though the rational function p(z)/q(z) fits the data very
well. Using the companion matrix for the Hermite interpolational form but with er-
roneous β̂i, j will give zeros of the numerator p(z), and this may indeed approximate
the zeros of the original function rather well; but if q(z) is quite different from 1,
then it may not. It is a good idea to check (perhaps by plotting) to see if 1 is well
represented by Eq. (8.28)—for some arrangements of nodes, it won’t be, and in that
case while you will still have forward stability in the sense described above, the
locations of zeros or other features of interest may be considerably different from
what you expect.
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Remark 8.16. Suppose |q(z)− 1| ≤ κμM. Then∣∣∣∣p(z)− p(z)
q(z)

∣∣∣∣≤ ∣∣∣∣ p(z)q(z)

∣∣∣∣ |q(z)− 1| ≤
∣∣∣∣ p(z)q(z)

∣∣∣∣κμM . (8.54)

Thus the nearness of q(z) to 1 gives a measure of how good polynomial approxima-
tion by the numerator is. �

Example 8.19. Take n = 15 and each sk = 2. Consider equally spaced points τk =
−1+ 2k/n on the interval [−1,1]. Then computation of the barycentric weights in 15-
digit arithmetic in MAPLE introduces some errors, essentially because the barycen-
tric weights vary so widely in size, from about 104 to 1.48 ·1010.

What are the consequences of those errors? If we reverse-engineer the rational
function q(z) using (8.28), which is supposed to be 1 on this interval, and plot
|q(t)− 1|, we get Fig. 8.13. �

8.9 Piecewise Interpolation

We now consider what to do when we have equally spaced nodes to interpolate
from. As we have seen, equally spaced nodes give rise to widely varying general-
ized barycentric weights for a global polynomial, and very poor conditioning of the
resulting global polynomial. Yet equally spaced nodes are very natural, and occur
frequently in applications.

One solution to this problem is to give up on a global polynomial or rational
function and instead look at piecewise polynomials. This is motivated by our error
formula for cubic Hermite interpolation on an interval of small width h, where we
saw in Example 8.14 that the error was O(h4).

To be concrete, suppose that we have a fixed mesh (not necessarily equally
spaced, but that certainly is a case we want to cover). Define a piecewise function

p(t) =

{
pk(t) τk−1 < t < τk

Ω otherwise
(8.55)

for 1≤ k ≤ n, where pk(t) is a polynomial, possibly different on each mesh subinter-
val τk−1 < t < τk. We will want to specify what happens at the nodes τk (also called
“knots”) as well. Usually we will insist on continuity, in which case the “less than”
signs above can be replaced with “less than or equal to” signs. Examples that may
be familiar include piecewise linear interpolation (what most people mean when
they say just “interpolation”) or, a choice that is more smooth, what is known as
“cubic splines,” where each polynomial is cubic and we ask for not just continuity
and continuous first derivatives at the nodes but also continuous second derivatives.

Remark 8.17. We saw earlier that the error | f (z)− f l(p(z))| has two parts: theo-
retical interpolation error | f (z)− p(z)| and computational error |p(z)− f l(p(z))| ≤
B(z) · κ · μM. The first is large if the degree is large and equally-spaced nodes are
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Fig. 8.13 The difference between the reverse-engineered q(z) and 1, on 16 equally spaced data
points with all sk = 2. This shows that the second barycentric form does not quite give a polynomial
interpolant: The denominator differs from 1, even for this small n, by about 10−9 out near the ends.
The problem gets worse exponentially quickly as n grows. (The difficulty is that equally spaced
points are bad—the Hermite form is quite good for the Chebyshev points on this interval, for
example)

used, as is the second; both are small if Chebyshev-Lobatto points are used. If d is
small, then the first is small if the interval is short and B(z) is small, almost inde-
pendently of the polynomial basis used. �

Remark 8.18. The value of piecewise polynomials isn’t really for use with equally
spaced points. The real benefit is adaptivity. One can adjust the mesh to suit the
problem. This is in part because convergence isn’t just pointwise—that is, not only
do the function values converge, but also the first (and second, if a high enough
degree is used) derivatives converge as the mesh spacing goes to zero. This means
that as the mesh spacing goes to zero, the correct monotonicity and convexity of the
underlying function will show up in the interpolant. Of course, this is also true for
global polynomials on a sequence of good meshes (such as the Chebyshev–Lobatto
family), with certain restrictions, but the convergence of piecewise polynomials on
a well-adapted mesh family provides useful tools. �

8.9.1 A Cubic Spline

What follows in this section is a new derivation of the piecewise cubic Hermite
spline, using the barycentric forms for a cubic Hermite interpolant on each piece:
That is, instead of trying to fit unknown cubic polynomials in a local monomial basis
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ak + bk(t − τk)+ ck(t − τk)
2 + dk(t − τk)

3 to the data and trying to find reasonable
ways to determine the 4n unknowns (if there are n subintervals), we instead work
directly with

pk(t) =

k+1

∑
i=k

1

∑
j=0

j

∑
�=0

βi, jρi�(t − τi)
�− j−1

k+1

∑
i=k

1

∑
j=0
βi, j(t − τi)

− j−1

, (8.56)

which is the second barycentric form of the cubic Hermite interpolant (note that only
two nodes are used in this form!). The βi, j can be found as usual from the partial
fraction decomposition (repeated here for convenience):

1
(t − τk+1)2(t − τk)2 =

k+1

∑
i=k

1

∑
j=0

βi, j(t − τi)
− j−1

=

−2
(τk+1 − τk)3

t − τk
+

1
(τk+1 − τk)2

(t − τk)2 +

2
(τk+1 − τk)3

t − τk+1
+

1
(τk+1 − τk)2

(t − τk+1)2 .

There are only four βi, j for each interval, and we see them written above explicitly
in terms of the given nodes τk.

Notice that the ρi,0 (not the ρi,1, which represent derivative values) are the known
data values. We want to choose the n+1 slopes ρi,1 to make the resulting interpolant
as smooth as possible. We will see that we can make it C 2[τ1,τn]. Notice also that
we may choose the ρi,1 in such a way that we automatically have p(t) ∈ C 1[τ1,τn]:
Just take the slope at the right end of one interval to be the same slope at the left
end of the next. This is very natural because ρi,1 is then interpreted as “the” slope
at the node τi (indeed, it would be somewhat unnatural to have different slopes
on the left and right, though we could do that if we wanted). Having made our
interpolant continuously differentiable by this device, we then obtain p′k−1(τ

−
k ) =

ρk,1 = p′k(τ
+
k ). To further ensure p(t) ∈ C 2[τ1,τn], we want to make the second

derivatives equal; that is,

p′′k−1(τ
−
k ) = p′′k (τ

+
k ) k = 2,3, . . . ,n− 1 . (8.57)

Contrast this with the necessary algebra in the local monomial case. We would have

pk(t) = ρk,0 +ρk,1(t − τk)+ ck(t − τk)
2 + dk(t − τk)

3; (8.58)

even to make the function just C 1, we would have to impose the condition

p′k(τ
−
k+1) = p′k+1(τ

+
k+1) ,
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which isn’t automatic; we would have to enforce

ρk,1 + 2ck(τk+1 − τk)+ 3dk(τk+1 − τk)
2 = ρk+1,1 .

For C 2, we would have to enforce yet another condition, namely,

2ck + 6dk(τk+1 − τk) = 2ck+1 .

Of course, this can be done, and the solution is even elegant. Through an algebraic
trick, these equations are reduced to a tridiagonal system of equations for the slopes
ρk,1, and explicit formulæ for the ck and dk are known once the slopes are known.
This is shown in splinetx.m in Moler (2004).

But here, because we start with the Hermite interpolational basis, we have a
simpler (but equivalent) task: Just enforce the second derivative conditions. To do
this, we need a formula for the second derivative of the cubic Hermite interpolant at
the nodes. A short computation in MAPLE shows that

p′′k−1(τ
−
k ) =

2
τk − τk−1

(2ρk,1 +ρk−1,1)− 6
(τk − τk−1)2 (ρk,0 −ρk−1,0) (8.59)

and

p′′k (τ
+
k ) =

−2
τk+1 − τk

(2ρk,1 +ρk+1,1)+
6

(τk+1 − τk)2 (ρk+1,0 −ρk,0) . (8.60)

Equating these at interior nodes 1 ≤ k ≤ n−1 gives n−1 equations constraining the
slopes. Explicitly,

2
τk − τk−1

ρk−1,1 + 4

(
1

τk − τk−1
+

1
τk+1 − τk

)
ρk,1 +

2
τk+1 − τk

ρk+1,1

=
6

(τk+1 − τk)2 (ρk+1,0 −ρk,0)+
6

(τk − τk−1)2 (ρk,0 −ρk−1,0)

for k = 1,2,3, . . . ,n− 1. There are n− 1 equations. The structure of the resulting
matrix is tridiagonal.

This leaves the slopes at the end as free parameters. Here are some common
choices:

• If we set the second derivatives at the ends ρ0,2 = ρn,2 = 0, this gives two extra
equations to define the slopes. This is called the “natural” spline, which flattens
out toward the ends.

• One could ask instead for C 3 continuity at τ2 and τn−1. This is known as the
“not-a-knot” condition.

• Are the slopes known at the edges? Then use them! This is called a “clamped”
spline and is in some sense a piecewise Hermite interpolant.

Whatever we choose to do with them, however, we may still fit the given data.
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Remark 8.19. The nomenclature for the different classes of piecewise cubic inter-
polants is confusing. When both function values ρk,0 and derivative values ρk,1 are
specified and these determine the cubic on each interval, this is called piecewise
cubic Hermite interpolation. When just the function values ρk,0 are given and the
derivative values (apart from the end values) are computed in order to make the in-
terpolant twice continuously differentiable, this is called a spline. Finally, when the
values ρk,0 are given and the derivative values ρk,1 are chosen in a way to match the
average curvature of neighboring pieces as is done in the MATLAB routine pchip,
this is also, and confusingly, called piecewise cubic Hermite interpolation (hence
the name). The relative rarity of the first use [when true derivatives ρk,1 = f ′(τk) are
specified] makes this confusion bearable. �

Example 8.20. Suppose n = 5 and we have a uniform mesh with each subinterval of
width h. Then the tridiagonal system is Sρρρ(1) = Mρρρ (0), where ρρρ (1) represents the
vector of as-yet-unknown derivatives at the nodes τ0, τ1, . . ., τn and ρρρ(0) represents
the vector of known function values at the nodes. The matrix S is

S =

⎡⎢⎢⎣
1 4 1 0 0 0
0 1 4 1 0 0
0 0 1 4 1 0
0 0 0 1 4 1

⎤⎥⎥⎦
and the matrix M is

M =
3
h

⎡⎢⎢⎣
−1 0 1 0 0 0

0 −1 0 1 0 0
0 0 −1 0 1 0
0 0 0 −1 0 1

⎤⎥⎥⎦ .

Notice that these are rectangular matrices—there are two more columns than rows.
This shows that there are two free parameters, as stated previously. Notice also that
in the nonuniform mesh case, the matrix M will not have a zero diagonal.

For definiteness, choose here τk = −1+ 2k/n, for 0 ≤ k ≤ n. Let the given data
be [0,0,0,0,0,1] on these nodes, and add the extra (clamped) conditions that the
derivative should be zero at each end: ρ0,1 = 0 and ρn,1 = 0. This takes care of the
two free parameters. Then h = 2/n = 2/5, and the solution to Sρρρ(1) = Mρρρ (0) is

ρρρ (1) =
[− 15

418 , 30
209 , − 225

418 , 420
209

]T
.

This gives the values of the derivatives at the interior nodes. When we then use this
data to construct the n cubic Hermite interpolant pieces, we wind up with
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Fig. 8.14 A clamped cubic Hermite spline fit to the data indicated by circles. Derivatives are spec-
ified as zero at the ends. Notice the smoothness of the fit, but also the overshoot and oscillations.
To try to preserve monotonicity and convexity, pchip may be better

p(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
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(
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(
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5

)2
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,

which we plot in Fig. 8.14. �

8.9.2 The Condition Number of a Spline Interpolant

The algorithms for spline interpolation and for piecewise Hermite interpolation are
all quite stable; no problems are reported in the literature except perhaps for quite
pathological situations such as when subintervals are ridiculously short or long. That
is, we expect that our algorithms will produce the exact interpolants for slightly
perturbed data (indeed, data perturbed by only a modest factor of the unit roundoff).

As with global polynomial interpolation, however, it makes sense to ask about the
conditioning of the spline or piecewise Hermite interpolant itself: If the data change
by a small amount, will the (values of) the interpolant change by a lot, or just a
little? Is there a “condition number function” analogous to the B(z) function for
polynomials global to the whole region of interest that we introduced in Chap. 2?
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This is of interest not just for the perturbations that model the rounding errors in
our computations, but is especially of interest given errors in the data. Is there a
condition number, then?

The answer is that of course there is. The definitive presentation is in de Boor
(1978). However, since we have made a novel presentation of splines here based
on the local Hermite interpolational basis, it is worthwhile to comment on how the
condition number appears here.

Notice that each polynomial piece in the interpolant is of the form ρi,0Hi,0(z)+
ρi,1Hi,1(z) + · · · and the primary data are the ρi,0. The results of changes to the
function values, what we call ρi,0 here, are felt directly through the Hi,0(z).

They are also felt indirectly through their effect on the computed derivative val-
ues ρi,1, and here their influence is more global for splines, though local both for
pchip and for true cubic Hermite interpolation using known derivative values.
Since we solve a tridiagonal system Sρρρ i,1 = Mρρρ i,0 to identify the computed deriva-
tive values for a spline, the sensitivities (conditioning) of the derivative values to
changes in the primary data are felt through the norm of S−1. Specifically, changes
in the computed derivatives have norm bounded by ‖S−1‖‖M‖ times the norm of
the changes Δρρρ in the primary data, where M was the tridiagonal matrix appear-
ing on the right-hand side of the expression for the derivatives. Of course, we do
not compute S−1, which is full (whereas S is tridiagonal), but we can think of its
influence in this manner.

Since the process is linear, we may as well consider ρρρ to be identically zero, and
Δρρρ to be zero except in the ith component where it is ε . This leads to Δρρρ i,1 being

ε times the ith column of S−1M. Clearly, the (absolute) condition number of this
process then will be bounded by the 1-norm of the matrix in question, which is the
maximum 1-norm of any column. It turns out that if the mesh spacing is uniform, as
in Example 8.20, then this matrix has a very modest norm: slightly larger than 1 and
growing as the dimension increases but really rather good. Rather than try to prove
this in general, we do a sample computation and show that it is true for that, as an
example.

Example 8.21. We continue the uniform mesh solution of Example 8.20, but let the
dimension increase. We do the computation in MAPLE using exact rational arith-
metic, to remove the influence of rounding errors—we are studying condition, here.

When we take n fairly large, say n = 344, and choose perturbations near the
endpoints, we find that the norm of the matrix is indistinguishable from 1. When
we take a perturbation near the middle, we find a result somewhat larger than 1.
Specifically, if we plot the interpolant with ρ = 0 except for ρ173 = 1, we find that the
solution is fairly flat (nearly zero) away from τ173, but near there it looks like the plot
in Fig. 8.15. The error curve oscillates, and this can lead to unwanted oscillations
in the graph; to address that issue, the derivatives are smoothed out artificially. See
Problem 8.40. �
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Fig. 8.15 Perturbing the data near the midpoint of a piecewise cubic Hermite interpolant with
n= 344 leads us to believe the problem is well-conditioned. Of course, there are possibly unwanted
oscillations, but in magnitude the error is not amplified

8.10 Chebfun and Interpolation

The Chebfun package is founded on barycentric interpolation at Chebyshev–
Lobatto points, scaled to the interval of interest. The ideas explained in this chapter
are crucial to how that package works (of course, there are many other ideas needed
too). Several examples of Chebfun’s use have already been given in this book, in
Chaps. 2 and 3.

Here, let us look at the hard-to-interpolate function (πx/ω)/sinh(πx/ω) for which
we earlier used rational interpolation at several of the known poles. The first thing
we try is just vanilla Chebfun:

f = chebfun( '(pi*x/0.01)/sinh(pi*x/0.01)', [-1,1] );
%f =
% chebfun column (1 smooth piece)
% interval length endpoint values
%( -1, 1) 3441 2.3e-134 2.3e-134
%vertical scale = 1
figure(1),plot( f, 'k' )
t = linspace(-1,1,2012);
figure(2),semilogy( t, abs(sinh(pi*t/0.01).*f(t)*0.01./t/pi - 1 )

, 'k' ),xlabel('x'),ylabel('relative error')
figure(3),semilogy( t, abs( f(t) - pi/0.01*t./sinh(pi*t/0.01) ),

'k' );
xlabel('x','fontsize',16);
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Fig. 8.16 Absolute error in interpolation of (πx/ω)/sinh(πx/ω) at 3,441 Chebyshev–Lobatto points,
constructed by Chebfun

ylabel('absolute error','fontsize',16);
set(gca,'fontsize',16);
axis([-1,1,10E-20,10E-14]);

It succeeds, albeit with a much higher degree (3,440) than our “optimal” rational
interpolant that we discussed earlier, which had degree (20,10)—though note that
it has much better accuracy, too.

The interpolation is remarkably successful, with the absolute error as plotted in
Fig. 8.16. The error is worst near the spike, but is still only two orders of magnitude
larger than the machine epsilon. Our rational interpolant, on the other hand, had
error about 10−4 (but it used an approximant of about 1% the complexity). The
relative error of the chebfun is horrid, of course (going up to about 10120 by the
ends of the interval). The roots, however, as computed above (but not shown here),
are spurious. This is only to be expected: the true function is very small near the
ends of the intervals (about 10−134) and any rootfinder would be hard-pressed to say
that the function wasn’t really zero anywhere on the real line.

As mentioned in Chap. 3, Chebfun changes bases—from the Lagrange basis on
the Chebyshev–Lobatto points to the Chebyshev basis itself, via the FFT—in or-
der to construct a companion matrix to pass to an eigenvalue solver to find the
roots. This procedure has been very well tested and is remarkably robust, accurate,
and even efficient. But this book has earlier warned about ill-conditioning of the
change-of-basis matrix. What is the condition number of this particular change-of-
basis matrix? Its entries are Ti(η j) for 0 ≤ i, j ≤ n. When we construct the matrix
explicitly for n = 20, we find that the largest singular value is 5 and the smallest
is

√
10, giving a 2-norm condition number of about 1.58. This explains the suc-

cess of the approach, then: Changing from the Lagrange basis on these points to the
monomial basis is (by the results mentioned earlier) exponentially ill-conditioned—
but changing to the Chebyshev basis turns out to be very well-conditioned. In fact,
this is exactly analogous to the well-conditioning of the change-of-basis from the
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Lagrange basis on the roots of unity to the monomial basis: Because that change-
of-basis matrix is, in fact, unitary, the change of basis is perfectly conditioned (in
a normwise sense). Here we don’t quite have a unitary change-of-basis matrix, but
almost. We will return to this in Chap. 9, but see Exercise 8.15.

8.11 Notes and References

The influential papers Berrut and Trefethen (2004) and Higham (2004) demonstrate
the stability (and efficiency) of the barycentric form for Lagrange interpolation.
This was apparently “known” previously—in the sense that some people knew it,
and had even proved and published it—but for some reason the knowledge did not
spread into the general community, and pessimism about Lagrange interpolation
was the general rule. In particular, the facts about the barycentric form were known
to Henrici [see, e.g., Henrici (1982) for a nice discussion] and a particularly use-
ful case was derived in Salzer (1972); in Trefethen (2013) we find references to
barycentric interpolation papers in the 1940s and going further back to Jacobi’s dis-
cussion of partial fractions in 1825!

The name “barycentric” is not arbitrary. As explained by Henrici (1979a 229),
“Rutishauser would have called the formulæ [. . . ] barycentric because they are for-
mally identical with the formulæ for the center of gravity (barycenter) of a system
of masses [. . . ] attached to the points fk [= f (τk)].”

m1

m2

m3

M

The very clever “exact(Δ t = 0) = k” trick used in Algorithm 8.1 and in the
program genbarywts to detect when any member of the input vector of t values
is exactly equal to some node τk is taken from Berrut and Trefethen (2004); there
was a typo in the printed form in that paper, and a printed 1 should have been an
index i. We hope there are no typos in the algorithm as printed here, but in any case
the MATLAB code in genbarywts.m has it right (as, of course, does the code
used by Berrut and Trefethen (2004)). The fact that this code uses a test for exact
floating-point equality is—to our minds—remarkable. If the input t differs by one
bit (after rounding) from a node τk, the second barycentric form is accurate even
with all the massive cancellation in numerator and denominator!

The use of companion matrix pencils to solve polynomial equations is very old.
The Frobenius companion form used in roots in MATLAB is, of course, the old-
est. The comrade/colleague/companion matrices for orthogonal polynomials are due
to Good (1961) and Specht (1960) independently, but have been rediscovered many
times (the use of differing though cognate words, “colleague” and “comrade,” in-
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stead of something simple like “generalized companion” probably hindered notice).
A recent survey of efficiency in the use of companion matrix methods is Pan and
Zheng (2011). The Frobenius companion matrix pencil for matrix polynomials is
used to good effect for CAGD problems in Manocha and Demmel (1994). The com-
panion matrix pencil for the Lagrange basis was invented in 2001 and first presented
at a Mapstone Lecture workshop at SUNY Geneseo but not published until much
later, at the EACA meeting in Santander in 2004; the Hermite interpolational case
was worked out later still and given in Shakoori (2008). The case of the Newton
basis is discussed in Calvetti et al. (2001). An accessible presentation including the
matrix polynomial case is in Amiraslani et al. (2009). For a recent review of these
issues, see Boyd (2013).

The numerical stability of the approach was appreciated from the beginning be-
cause it worked experimentally; a proof was worked out and sketched in Lawrence
and Corless (2011). A more detailed study is in process at this time of writing. Most
recently, Piers Lawrence noticed that the companion matrix pencil worked better if
the arrow pointed up and to the left instead of down and to the right (the formula-
tions are mathematically equivalent), because the normal QZ iteration for solving
the generalized eigenvalue problem detects the two spurious infinite eigenvalues
immediately and deflates them without error in this case.

The use of contour integrals to develop interpolation formulas follows the ideas
of Butcher (1967), who himself followed in the grand tradition of Cauchy and Her-
mite.6 The arguments to show that the contour integrals are zero if the degree of the
denominator is 2 more than the degree of the numerator are standard; see, for exam-
ple, Levinson and Redheffer (1970), but there is a brief discussion in Appendix B.

There are several methods in the literature for computing the generalized
barycentric weights used in these interpolation formulæ. For instance, there is
the divided-difference method in Schneider and Werner (1991), which has the ad-
vantage of being efficient (more efficient, by about a factor of two, than the method
we recommend here). However, that method is sensitive to the ordering of the
nodes. Since it uses divided differences, it implicitly uses a Newton basis. As you
will see in Problems 8.13–4, the condition number of Newton bases depends on
the ordering chosen for the nodes. We have found that the simple method recom-
mended by Henrici (1982), namely the use of local Taylor series, can be much more
accurate. This method, which we described in some detail in Sect. 2.5 of Chap. 2,
has accuracy that is (nearly) independent of the node ordering.

The optimality of the Bernstein–Bézier basis is shown in the elegant pa-
per Farouki and Goodman (1996), and extended to the multivariate case by Lyche
and Peña (2004). By weakening the nonnegativity constraint but using the same
proof technique, the Lagrange basis was shown to be (sometimes) better in Corless
and Watt (2004).

To prove Eq. (8.36), we adapted the proof of Hamming (1973 p. 236). In de Boor
(2005), that proof is attributed to Schwarz, in the early 1880s. The proof was ex-

6 Also, as Gerhard Wanner tells us, Runge used contour integrals too in his celebrated 1901 paper
for just this purpose.
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tended and simplified by Kansy (1973) (this paper is written in German). Kansy’s
result is used in Shampine (1985).

Concerning the Hermite integral formula for the complex error in interpolation,
it is remarked in de Boor (2005) that Frobenius worked on this before Hermite did.
According to L. N. Trefethen (private communication), the formula appears first to
have been derived by Cauchy, in 1826, using partial fractions, probably based on
the thesis on partial fractions published in 1825 by Jacobi. Hermite then went on to
replace the divided-difference formula with an integral average of a derivative of f .
Starting with the observation that, even for complex nodes x and y,

f (x)− f (y)
x− y

=

ˆ 1

0
f ′((1− s)x+ sy)ds ,

and iterating integrals in the following fashion,

ˆ
[τ0,τ1,...,τn]

f :=

ˆ 1

s1=0

ˆ s1

s2=0
· · ·
ˆ sn−1

sn=0
f ((1− s1)τ0 + · · ·+(sn−1 − sn)τn−1 + τn)dsn · · ·ds1 ,

we find that the error term K(z) becomes an average value of the d + 1st derivative
of f :

1
2π i

ffi
C

f (ζ )
w(ζ )(ζ − z)

dζ =

ˆ
[τ0,τ1,...,τn]

f (d+1) . (8.61)

In the complex case, it is no longer always possible to say that this average value is
actually attained at some (possibly unknown) point z = c.

We now have almost all the tools in place to show that for analytic functions
f (z), the error in interpolation at Chebyshev or other good sets of nodes is more
than just accurate to a power O(hp), but is in fact spectrally accurate inside the
so-called Bernstein ellipses. There is also a fascinating exploration using potential
theory (!) that explains good choices of interpolation nodes in the complex plane.
Very reluctantly we refrain from giving our own exposition of this beautiful theory;
but our reluctance is completely mollified by the existence of the very clear and
concise treatment in Chaps. 8 and 12 of Trefethen (2013).

The cost of solving a Vandermonde system by ordinary dense matrix meth-
ods is O(d3), but this takes no advantage of structure. Special algorithms that are
both faster (O(d2)) and surprisingly more accurate are discussed in Higham (2002
chapter 22). See Problem 8.35 and, next chapter, Problems 9.9–9.10. The expo-
nential ill-conditioning of Vandermonde matrices on arbitrary real nodes is proved
in Beckermann (2000). Bounds for Chebyshev nodes and equally spaced nodes were
given in Gautschi (1975) and in Gautschi (1983), and the results are summarized
in Higham (2002 table 22.1).
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Rational interpolation in barycentric form is discussed in Schneider and Werner
(1991), where the good forward accuracy of the second barycentric form for poly-
nomials is noted and explained with backward error. They also note the criterion
αk,sk−1 = 0 for unattainable points. Rational barycentric interpolation is an active
topic of current research: A good entry point to the literature is Berrut et al. (2005).
The paper Brezinski and Redivo-Zaglia (2012) discusses a method to choose the
barycentric weights in such a way as to achieve the Padé property, namely, to match
the Taylor series at the origin up to a specified order; this mixes interpolation with
Padé approximation and is a kind of nonlinear generalization of Hermite interpola-
tion. Other excellent and useful works on rational interpolation include Berrut and
Mittelmann (2000) and Brezinski (1980). A motivating rationale for the use of ra-
tional functions can be found in Trefethen (2013 chapter 23). One reason to use
rational interpolation involves what are called “shape-preserving” interpolants. A
good introduction can be found in Brankin and Gladwell (1989). The idea is to use
a rational interpolant that contains a parameter that can be tuned so as to preserve
qualitative features such as convexity of the solution or monotonicity of the solu-
tion. This can easily be handled within the framework of barycentric forms, as is
demonstrated in an example in Butcher et al. (2011).

The MATLAB routine spline is rather similar to the spline discussed here, ex-
cept it uses local monomial bases. The MATLAB routine pchip is somewhat differ-
ent, giving up continuity of the second derivative in order to obtain a more pleasing
visual appearance and better preservation of monotonicity and convexity of the data
when the data are sparse. See Moler (2004) for details, and see also Problem 8.40.
A fuller discussion can be found in Shampine et al. (1997), and original sources are
referenced in de Boor (1978).

It turns out that the equations defining the derivatives ρk,1 to ensure twice-
continuous differentiability of a spline are just the same as what are called “compact
finite differences,” which are discussed later in Sect. 11.6, although there we will
also want to find expressions for the derivatives at the edges. Indeed that could be
useful here too instead of using natural splines, clamped splines, or the not-a-knot
condition, but to our knowledge nobody does splines that way; this might simply be
because it hasn’t occurred to anyone, or contrariwise there might be a problem with
this idea that we don’t know of (because we haven’t tried it on enough examples).
In any case, this connection between cubic splines and compact finite differences
does not seem to be widely known. This is possibly because the usual derivation
of cubic splines uses the local monomial bases, which obscures the meaning of the
tridiagonal system.

A very nice survey of results for barycentric rational interpolation can be found
in Pachón et al. (2012), together with a new method for solving the Cauchy problem:
Find p(z) and q(z) with degrees m and n such that m+ n = N, where nodes τk are
given for 0 ≤ k ≤ N and values fk are known, and R(τk) = p(τk)/q(τk) = fk. Notice
this is different to the problem solved in this text, where the denominator q(z) was
known; here only the degree constraint is presumed known, that is, the integers m
and n. This will be taken up again in Chap. 11, and also in Problem 8.42.
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Problems

Theory and Practice

8.1. Consider the nodes τ0 =−1 and τ1 = 1.

(i) Find the partial fraction expansion of

1
(z− τ0)(z− τ1)

.

(ii) If p(τ0) = ρ0 and p(τ1) = ρ1, express the linear polynomial fitting this data in
the 2nd barycentric form,

p(z) =

ρ0/2

z+ 1
+

ρ1/2

z− 1
−1/2

z+ 1
+

1/2

z− 1

.

Obviously, this is simpler to do in other ways; this is just practice.
(iii) By using the partial fraction decomposition of

1
(z− τ0)2(z− τ1)

,

find a quadratic polynomial with p(τ0) = ρ0,0, p ′(τ0) = ρ0,1, and p(τ1) = ρ1,0.

8.2. Use the Cauchy integral theorem and the fact that
ffi

C

f (z)
(z− t)w(z)

dz = 0

if degz f (z) ≤ d and the contour C encloses t and all τk in w(z) = ∏n
k=0(z − τk)

(assuming t and the τk are distinct) to show that

f (z) = w(t)
d

∑
k=0

βk f (τk)

t − τk
.

Fill in the details of why the integral must be zero for any polynomial f (z) of degree
at most d.

8.3. Let Lk(t) be defined by

Lk(t) =
βkw(t)
t − τk

.

Show that degLk(t) = d and Lk(τ j) = δ k
j . These are the Lagrange basis polynomials.

(Strictly speaking,
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Lk(t) :=

{
βkw(t)
t−τk

t �= τk

1 t = τk

removes the singularity to make it polynomial. We presume henceforth that all such
removable singularities are automatically removed without comment.) Then, if f (t)
has degree at most d,

f (t) =
d

∑
k=0

f (τk)Lk(t) .

(This just rewrites Problem 8.2.)

8.4. For the polynomial and nodes in Example 8.3, swap the nodes in 0 < z < 1/2 by
the transformation z �→ 1

2 − z and swap the nodes in 1/2 < z < 1 by the transforma-
tion z �→ 3

2 − z. This should make the nodes dense near z = 1/2 and sparse near the
edges. Compute the condition number for evaluation of the polynomial T16(2z− 1)
expressed in the Lagrange basis on these nodes and show that it is orders of magni-
tude worse even than the condition number for equally spaced nodes.

8.5. Suppose that we have a set of distinct nodes, {τk}, 0 ≤ k ≤ n, and have previ-
ously computed the barycentric weights βk for Lagrange interpolation. Now suppose
that we wish to add a new node τn+1. How much does it cost to update the existing
βk and to compute a new βn+1? How much does it cost to update the βk in order to
remove a node (say τn) instead of adding a node τn+1?

8.6. With the nodes τττ = [0,h,1], compute the generalized barycentric weights for
Hermite interpolation for confluencies 2—that is, compute the partial fraction de-
composition of

1
z2(z− h)2(z− 1)2 .

Compute ∂βi, j/∂h. Show that the generalized barycentric weights [specifically, the
weight β1,0 corresponding to 1/(z−h)] are ill-conditioned as h → 1/2—that is, as the
mesh width becomes equally spaced. Consider as well the symmetric problem

1
(z+ h)2z2(z− h)2 ,

which is clearly similar, but in this case you are to show that there is no difficulty
whatever. Note that in the one case, perturbations δh may be asymmetric, but not in
the other. Discuss.

8.7. Note that

w(z) =
n

∏
k=0

(z− τk)
sk = wi(z)(z− τi)

si ,
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where

wi(z) =
n

∏
k=0
k �=i

(z− τk)
sk .

Show that

Hi j(z) = wi(z)(z− τi)
j

si−1− j

∑
m=0

βi,si−1−m(t − τi)
m

is a polynomial satisfying

1
�!

H(�)
i j (τm) = δm

i δ
�
j

for 1 ≤ i,m ≤ n,0 ≤ j, � ≤ si − 1 (δ k
j is the Kroenecker delta, 0 if j �= k and 1 if

j = k). This verifies directly that we have an explicit construction of the Hermite
interpolation basis on the nodes τk with confluencies sk.

8.8. For ρ1,0 = 1,ρ1,1 =−1,ρ0,0 = 1,ρ0,1 =−1, on the nodes τ = [−1,1], consider
the condition number of a polynomial taking on values ±1 in the Hermite interpo-
lational basis with confluency 2 at each node:

B(z) =
1

∑
i=0

1

∑
j=0

|± 1| · |Hi j(z)| .

For z = x+ iy ∈ C, near the real segment −1 ≤ x ≤ 1, plot level contours of B(z),
using an appropriate scale. You should find that B(z) is smaller when z is nearer the
segment and grows rapidly for z away from the segment. This gives a quantitative
measure to the intuitive idea that f (z) is well-determined near to where its data are
specified.

8.9. Fill in the details of the proof in the text on page 364 for the Lagrange case of
rational interpolation. If degq(z)≤ d and the partial fraction expansion of q/w is

q(z)
w(z)

=
d

∑
k=0

αk

z− τk
,

where no αk is zero, show that

R(z) =

d

∑
k=0

αk f (τk)

z− τk

d

∑
k=0

αk

z− τk

is a rational function that interpolates f (z) at z = τk, that is,
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lim
z→τk

R(z) = f (τk), 0 ≤ k ≤ d ,

and moreover that R(z) = p(z)/q(z) where

p(z) = w(z)
d

∑
k=0

αk f (τk)

z− τk

is a polynomial of degree at most d. Remark: This shows that even incorrect
barycentric weights (through poorly known nodes or through computational error)
will still produce an interpolant, that is, will still fit the data, if the second barycentric
form is used.

8.10. We now examine rational Hermite interpolants with preassigned denomina-
tors. Fill in the details of the proof in the text on page 364 and show that if

q(z) = w(z)
n

∑
i=0

s1−1

∑
j=0

αi j(z− τi)
− j−1

[the partial fraction expansion of q(z)/w(z)] and no αi,si−1 is zero, then

R(z) =
∑n

i=0∑
si−1
j=0 ∑

j
k=0αi jρik(z− τi)

k− j−1

∑n
i=0∑

si−1
j=0 αi j(z− τi)− j−1

is such that

lim
z→τi

R( j)(z)
j!

= ρi j

for each 0 ≤ j ≤ si − 1. If any αi,si−1 = 0, τi is said to be an “unattainable point”
for p(z)/q(z). Give an explicit example of a rational interpolation problem with known
denominator that has an unattainable point.

8.11. We look at the numerical difficulties that come with near-confluency. Consider
Lagrange interpolation with just two nodes, and suppose τ0 and τ1 are close, but
not equal. Thus, we are interpolating some linear polynomial; for example, take
p(z) = 1+ 2z.

1. Show that β1 and β0 are large, and indeed go to infinity as τ1 → τ0.
2. Show that evaluation of either barycentric form is subject to catastrophic can-

cellation when evaluating.
3. The condition number is

B(z) =
1

∑
k=0

|ρk| · |Lk(z)|

and the sum |ρ0| · |L0(z)|+ |ρ1| · |L1(z)| goes to infinity as τ1 → τ0. What does
this mean? (The moral of this is that nodes that are “too close” cause problems.)
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8.12. Consider Hermite–Birkhoff interpolation, also referred to as the case of miss-
ing data. Suppose we are told that f (−1) = 1, f ′(r) = 0, and f (1) = 2 (r is some
number in [−1,1]). By doing a partial fraction decomposition on

1
(z+ 1)(z− r)2(z+ 1)

,

find the value of f (r) for a degree-2 polynomial f (z) that fits the data. If r = 0,
the problem is not solvable (as you will discover); in this situation, we say that
the Birkhoff interpolation problem is not poised. (See Butcher et al. (2011) for the
background to this problem after you have solved it.)

8.13. The Newton basis

a, x− τ1, (x− τ1)(x− τ2), (x− τ1)(x− τ2)(x− τ3), . . .

is well known in classical numerical methods. However, its numerical conditioning
depends on the ordering chosen for the nodes, and this can have undesirable conse-
quences. [This fact is noted in Battles and Trefethen (2004), for example, but was
certainly known previously.]

1. For the Chebyshev nodes on [−1,1], plot the condition number

B(z) =
n

∑
k=0

∣∣∣∣βk
Tn(x)
x− τk

∣∣∣∣
(take n= 10 and n= 20) (this is the Lagrange basis on these nodes). Show these
are independent of the ordering of the nodes.

2. Sort the τk into increasing order. Let

p(x) =
n

∑
k=0

(−1)kβk
Tk(x)
x− τk

,

so p(τk) = (−1)k,0 ≤ k ≤ n. Compute the coefficients ck in

p(x) =
n−1

∑
k=0

ckNk(x) ,

where N0(x) = 1,N1(x) = x−τ1,N2(x) = (x−τ1)(x−τ2), etc. [Hint: p(τ1) = c0

because Nk(τ1) = 0 for k ≥ 2. Then (p(x)− p(τ1))/(x− τ1) is also a polyno-
mial.] This approach is called divided differences. Now plot

BN(x) =
n−1

∑
k=0

|ck| · |Nk(x)|

on [−1,1]. Compare to BL.
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3. Repeat Problem 2, but this time shuffle the nodes τk into a random order, first.
It turns out that computation of a good ordering that minimizes BN(x) is fairly
simple.

4. The Leja ordering is ξ0 = τarg max(|τk|) and, for i = 1,2, . . . ,n, find τ j maximizing

i−1

∏
k=0

|τ j − ξk| .

Let ξi = τ j. Reorder the nodes into a Leja ordering and repeat Problem 2, using
this ordering.

8.14. Compute the condition numbers for the following change-of-basis matrices.
Compare with the results of Gautschi (1983).

1. From the Lagrange basis on the equally spaced points τk =−1+ 2k/n, for n = 5,
8, 13, and 21 (the simple Vandermonde matrix).

2. From the Lagrange basis on the Chebyshev nodes τk = cos(π(k+ 1/2)/(n+1)),
for n = 5, 8, 13, and 21.

3. From the Lagrange basis on the roots of unity τk = exp(2π ik/n).
4. From the Chebyshev orthogonal basis to the monomial basis, for enough n to

see the trend.
5. From the Chebyshev orthogonal basis to the Legendre orthogonal basis, for

enough n to see the trend.

8.15. Let T be the change-of-basis matrix from the Lagrange basis on the Chebyshev
–Lobatto points ηk = cos(πk/n), 0 ≤ k ≤ n, to the Chebyshev polynomial ba-
sis Tj(x) = cos( j cos−1 x). Suppose n ≥ 6. Perhaps by looking at the entries of
C = THT, which are simpler, establish that the largest singular value of T, call
it σ0 because we are indexing from 0 here, satisfies

σ0 ∼
√

n+O(1)

as n → ∞, while the smallest singular value (which occurs n− 3 times) is just σn =√
n/2. (In fact, σ2

0 = n+ 1/2+
√

n+ 1/4 if n is even, and σ2
0 = n+ 1/4+

√
n/2+ 1/16 if

n is odd.) Thus establish that the condition number of T in the 2-norm is asymptot-
ically

√
2 = 1.414 . . . as n → ∞. This shows that changing basis from the Lagrange

basis on the Chebyshev–Lobatto points to the Chebyshev polynomial basis is one of
the few instances where changing basis is well-conditioned.

8.16. By considering what happens when you multiply the vector [0, L0(x), L1(x),
. . ., Ln(x)]T by each of the matrices A and B in the companion pencil for the La-
grange basis, show that roots of the polynomial p(x) = w(x)∑n

k=0
βkρk/(x− τk) are

eigenvalues, that is, roots of det(xB−A).

8.17. Find a polynomial for which the condition number for evaluation is better
in the Bernstein–Bézier basis than in either a Lagrange interpolational basis or a
Hermite interpolational basis. Of course, this is easy if one chooses deliberately
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foolish interpolation points; try instead to find an example that is fair and for which
the Bernstein–Bézier basis wins cleanly.

8.18. Suppose a matrix A has eigenvalues λk each with multiplicity mk ≥ 1. Sup-
pose we interpolate an analytic function f (z) by choosing nodes τk = λk with con-
fluencies sk = mk; that is, we find p(z) of degree at most d = −1+∑k sk satisfying
p( j)(λk) = f ( j)(λk), for 0 ≤ j ≤ mk − 1 and 1 ≤ k ≤ ∑� m�. Then [as you may read
in Higham (2008)] it is possible to define the function f (A) of the matrix A by the
polynomial p(A). Thus, all matrix functions are polynomials in a sense, although
the polynomial will change as the matrix changes—it’s not just one polynomial for
a given function. A polynomial of a matrix makes sense in the monomial basis, so
that if say p(z) = 1+ 2z+ 3z2, then p(A) = I+ 2A+ 3A2.

1. Show that the first barycentric form of a polynomial can be made to make sense
for matrix arguments. Be careful about A−λ I. In practice, for matrix functions
one would want the explicit expression in terms of the Hermite interpolational
basis, because (A−τiI)−1 does not appear, and, of course, in this case the τi are
exactly the eigenvalues.

2. Discuss the second barycentric form for matrix arguments.
3. Compute the exponential of the gallery(3) matrix in MATLAB using the

above ideas. Note that exp(A) is not what we want (though expm(A) works,
using the monomial basis).

4. Compute the logarithm of the gallery(3) matrix in MATLAB using the
above ideas. Again, log(A) isn’t what we want, though logm(A) is the built-
in version.

5. Verify the previous two computations by computing the exponential of the log-
arithm and the logarithm of the exponential using your method (and possibly
comparing with the built-in routines).

8.19. Use the Schur determinantal formula to prove that if the nodes τk for 0≤ k ≤ n
are distinct and a polynomial p(z) of degree at most n takes on the values ρk = p(τk),
then the roots of the polynomial p(z) are eigenvalues of the Lagrange companion
pencil (A,B), where both A and B are (n+1)×(n+1), B is the same as the identity
matrix except that B1,1 = 0, the first column of A is [0, β0, β1, . . ., βn], where the
βk are the barycentric weights, the diagonal of A [starting in the (2,2) position]
are τ0, τ1, . . ., τn and the first row of A is [starting in the (2,1) position] ρ0, ρ1,
. . ., ρn. This is called an arrowhead matrix. Show also that this pencil has at least
two infinite eigenvalues. Indeed, if we use the negatives of either the ρs or the β s
instead, we get precisely that det(zB−A) = p(z) expressed in the first barycentric
form, directly.

8.20. Show that the companion pencil (A,B) for Hermite interpolation is related
to that of the Lagrange form, except that the diagonal now contains Jordan blocks
for each confluent node, of dimension equal to the confluency. What happens if the
confluency equals n? That is, all the information is given about a single node, say τ0?
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8.21. How do the generalized eigenvalues of the pair (A,B) relate to a rational in-
terpolant of (τk,ρk) if the βk in A are replaced with another vector of nonzero en-
tries αk?

8.22. Nonlinear eigenproblems ask for those λ making P(λ ) singular, where each
entry in the matrix P is a nonlinear function of λ . Here we consider only polynomial
functions, in which case we speak of a matrix polynomial. The matrix polynomial
can be expressed in any polynomial basis. This is, as mentioned in the text, a simul-
taneous generalization of polynomials and of eigenvalue problems. One can con-
vert polynomial nonlinear eigenproblems into generalized eigenproblems by a pro-
cess somewhat misleadingly termed linearization: Essentially, it replaces the matrix
polynomial (of degree n and where the matrix is s× s in size) with a matrix pencil
of size ns× ns. In the case where the basis is the Lagrange (or Hermite) interpola-
tional basis, it is of size (n+ 2)s× (n+ 2)s and there are 2s spurious eigenvalues at
infinity (which do not in general bother us). A linearization that works in this case
is to replace the ρk in the Lagrange (or Hermite) polynomial linearization with s× s
matrix entries, replace the τk with τkI, replace any 1s in any Jordan blocks with I,
and replace the βk, j with βk, jI.

1. Take the nodes τττ = [−1,0,1] and suppose that our degree-2 matrix polyno-
mial takes on the 3×3 matrix values pascal(3), gallery(’grcar’,3),
and gallery(’clement’,3) at those nodal values. Find the linearization
(A,B) (which is 12× 12 and has six spurious infinite eigenvalues) and find its
(generalized) eigenvalues.

2. For each of the finite eigenvalues found in the previous step, form (perhaps
by explicit polynomial Lagrange interpolation) the matrix P(λ ) and verify by
computing its SVD that it is numerically singular.

8.23. We remind you that the Chebyshev polynomials are Tn(x) = cos(narccos(x))
if n≥ 0 and −1≤ x≤ 1. The first three are T0(x) = 1, T1(x) = x, and T2(x) = 2x2−1.

1. Prove that Tn+1(x) = 2xTn(x)−Tn−1(x) and find T3(x).
2. Show that the zeros of Tn(x) are ξk = cos((2k−1)π/2n) for 1 ≤ k ≤ n. (Therefore,

all roots are real and lie in −1 ≤ ξ ≤ 1.)
3. Let

wn(x) =
n

∏
k=1

(x− ξk) = 21−nTn(x) .

Show that the barycentric weights corresponding to interpolation at the ξk,
equivalently, the βk that appear in the partial fraction decomposition of

1
wn(x)

=
n

∑
k=1

βk

x− ξk
,

are given by

βk =∏
j �=k

(ξk − ξ j)
−1 = (−1)k−1

2n−1
√

1− ξ 2
k

n
.
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4. Interpolate the following data using a polynomial expressed in the Lagrange
basis on the given points: at

τττ =

[
−
√

3
2

, 0,

√
3

2

]
;

we have ρρρ = [1,−1,1]. You may express your answer as using the polynomial
Lagrange basis, or in the first barycentric form, or in the second barycentric
form.

5. Sketch the condition number

B(x) =
3

∑
k=1

|βkw3(x)|
|x− ξk| .

8.24. Again we remind you that the Chebyshev polynomials Tn(z) are defined by
Tn(z) = cos(nθ ), where cosθ = z. They satisfy the recurrence relation Tn+1(z) =
2zTn(z)−Tn−1(z), and it is easy to see that T0(z) = 1 and T1(z) = z. The Chebyshev–

Lobatto points η(n)
k = cos(πk/n) for 0 ≤ k ≤ n are the places in −1 ≤ z ≤ 1 where

T (z) is maximal, that is, ±1.

1. Show that the leading coefficient of Tn(z), when expressed in the monomial
basis, is 2n−1 if n ≥ 1.

2. Show that the polynomial

w(z) =
n

∏
k=0

(z−η(n)
k ) =

1
2n (Tn+1(z)−Tn−1(z))

if n ≥ 1.
3. Show that a fast way to compute the barycentric weights

βk :=
n

∏
�=0
� �=k

(τk − τ�)−1

is to use the formula βk = 1/w′(τk). Identify the barycentric weights for the
Chebyshev–Lobatto points using the above results.

4. Explicitly compute the η(n)
k for n = 3 and by using the formula for a simple

partial fraction expansion compute the barycentric weights.
5. If ρ = [1, −1/2, −1/2, 1] on those four points, write the first barycentric form of

the Lagrange interpolant going through the points (η(3)
k ,ρk).

6. Use the companion matrix pencil from section 8.2.1 (each of A and B is 5× 5)
in MATLAB to compute the generalized eigenvalues and thus the roots of p(z).
Why are there only two finite eigenvalues?

8.25. For cubic Hermite interpolation, we have been using the barycentric forms.
The divided-difference form (which we have not recommended, because of the de-
pendence on ordering) is perfectly fine for this case because there is no possibility
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of an ordering problem for only two nodes! Solve the cubic Hermite interpolation
problem with divided differences.

8.26. Show that cubic Hermite interpolants have second derivative accuracy O(h2)
and third derivative accuracy O(h), but that the fourth derivative will be right only
if the original problem has identically zero fourth derivative.

8.27. Show that the following is a companion matrix pencil for the Newton basis
(this can be derived similarly to orthogonal bases, because Newton bases have a
very simple three-term recurrence). For simplicity, only the degree-3 case p(z) =
c0 + c1(z− τ0)+ c2(z− τ0)(z− τ1)+ c3(z− τ0)(z− τ1)(z− τ2) case is shown, but
the general form should be apparent.

A =

⎡⎣ τ0 1
τ1 1

−c0 −c1 −c2 + c3τ2

⎤⎦ and B =

⎡⎣1
1

c3

⎤⎦ . (8.62)

That is, show that det(zB−A) = p(z).

8.28. Show that if τ j < τk for j < k, then the Newton basis 1, z− τ0, (z− τ0)(z−
τ1), . . ., (z − τ0) · · · (z − τn−1) can be expressed as a nonnegative combination of
the Lagrange basis on those nodes and that therefore the condition number of a
polynomial expressed in the Newton basis with this ordering cannot be better on the
nodes than the Lagrange basis can; show by example that there are cases where this
inequality is strict in a neighborhood of the nodes.

8.29. Show that the barycentric weights for the nodes τk = ξ
(n)
k , which are the zeros

of the Chebyshev polynomial Tn(z), are given by βk = (−1)k2n−1
√

1− ξ (n)k /n and
that the factors that depend only on n, not k, can be dropped for use in the second
barycentric form or in the companion matrix pencil. Show that the maximum ratio

|β j
β�
| grows like n2.

8.30. If the nodes τk = a+ k(b−a)/n for 0 ≤ k ≤ n are used, show that the barycentric
weights are

βk = (−1)n−k
(

n
b− a

)n 1
n!

(
n
k

)
. (8.63)

Show that the maximum ratio |β j/β�| grows essentially like 2n as n → ∞.

8.31. Symmetry is sometimes important in a problem. Show how to use the barycen-
tric forms for the Lagrange basis and the Hermite interpolational basis in a way that
preserves the even symmetry f (z) = f (−z) and in another way that preserves the
odd symmetry f (z) =− f (−z). Give an even barycentric expression that fits the data
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z f(z)
1.725 73.430
1.035 −86.515
0.975 −90.475
0.405 −138.670
0.015 −154.984

and an odd expression for the derivative using your modified barycentric forms.

Investigations and Projects

8.32. The paper Hyman (1983) describes a simple monotonicity-preserving cubic
Hermite interpolant; once the slopes ρi,1 are computed as here for the spline inter-
polant, the slopes are filtered and excessive slopes are scaled back so as to preserve
monotonicity. Implement the method in MATLAB and test it on monotonic and non-
monotonic examples.

8.33. As we have seen, global polynomial interpolation of functions has error pro-
portional to a high derivative evaluated somewhere (or an average of such values).
This suggests that interpolation of functions with singularities will run into prob-
lems, and of course it does. Adaptivity and the use of piecewise polynomials come
to our rescue here. Consider, for example, the function f (z) =

√|z| on −1 ≤ z ≤ 1.
Try interpolating this on 50 Chebyshev–Lobatto points, and show that the error is
about 10−1 (and worst near the derivative singularity) and that increasing the num-
ber of Chebyshev–Lobatto points helps, but not much. Try instead to choose a mesh
that more nearly reflects the presence of the singularity—more points near the sin-
gularity, that is—and use piecewise-cubic Hermite interpolation (you could use a
spline or pchip, but derivative data are available so that you could use genuine
piecewise-cubic Hermite interpolation if you desired, and this can be expected to
be more accurate). Can you find a family of meshes that regains the theoretical
O(h4) convergence as h → 0 in some sense? (This problem foreshadows the topic
of equidistribution, which we shall meet in Chap. 10.)

Try also chebfun with “splitting on,” which produces a piecewise chebfun ap-
proximation. Plotting the relative error at a large number of points shows that it
is accurate up to roundoff levels using 14 pieces with degrees at most 126 in the
version current at this time of writing.

8.34. The text claims that the computation of zeros of p(z) known by values ρk

at distinct nodes τk for 0 ≤ k ≤ n is numerically stable, that is, that the computed
eigenvalues of the pencil (A,B) are the exact roots of a polynomial taking on values
near to the ρk. Prove this. Hint: With the 0 in the upper-left corners, the two spurious
infinite eigenvalues are found exactly and the degree of det(zB−A) is at most n, so
this need not concern you. What you need to show for this problem is that if all of
the computed eigenvalues λk are the exact eigenvalues of some (A+ΔA,B+ΔB)
with bounds of size O(μM) on the norms of the perturbations, then det(τk(B+ΔB)−
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(A+ΔA)) = ρk +CkμM +O(μ2
M) for 0 ≤ k ≤ n. A useful formula for the derivative

of a determinant, named after Jacobi, is given below. The formula is

d
dt

det(A) = trace

(
adjugate(A)

dA
dt

)
.

In this case, for z = τk, the adjugate of zB−A is particularly simple. Show also that
Ck is bounded by the maximum ratio of barycentric weights and inversely bounded
by the minimum separation |τi − τ j | for i �= j. An overview of the proof appears
in Lawrence and Corless (2011), but try it for yourself first.

8.35. Algorithms 22.2 and 22.3 in Higham (2002) for solving generalized Vander-
monde matrices work by first changing the interpolation basis from a Hermite in-
terpolational basis to a Newton basis, and then converting from that basis to the
desired basis φk(z). This often works surprisingly well, giving small component-
wise forward error. For some examples, however, if the nodes τk are taken in a bad
order, the algorithm is potentially unstable.

1. Find an example where κ(V) is very large but conversion to the Newton basis
and then to the monomial basis gives good accuracy.

2. Find an example where κ(V) is small but where the method does not give good
accuracy.

3. Discuss what happens if there is nontrivial data error Δρρρ . Does the accurate
method of solving the system help much? Does it hurt much?

8.36. In this problem, we investigate the properties of some typical change-of-basis
matrices.

1. Show that if φk(x) = ∑n
j=0φk jx j, then the k’th row of Aφ ,xk is [φk0,φk1, . . . ,φkn].

Moreover, show that if degφk = k, then Aφ ,xk is lower-triangular.
2. Write the n = 5 change-of-basis matrix for the Bernstein–Bézier polynomial
φk(x) =

(5
k

)
xk(1− x)5−k explicitly from the monomial basis.

3. For the Bernstein–Bézier and for the Chebyshev change-of-basis matrices (from
the monomial basis), compute and plot the singular values σ1 and σ−1

n for n =
3,5,6,13,21,34,55, . . . on a log scale. Does the size of Aψ,xk grow polynomial
with n, exponentially, or faster? What does this imply for the amplification of
uncertainty when changing basis? (Moral: Changing bases can be a very bad
idea.)

4. Perhaps the most famous change-of-basis matrices are those from Lagrange and
Hermite interpolational bases to the monomial basis. Because

xk =
n

∑
j=0
τk

j L j(x)

for 0 ≤ k ≤ n, where

Lj(x) = β j

n

∏
�=0
� �= j

(x− τ�) ,
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we have [
1 x x2 . . . xn

]
=
[
L0 L1 . . . Ln(x)

]
V ,

where the matrix

V =

⎡⎢⎢⎢⎣
1 τ0 τ2

0 · · · τn
0

1 τ1 τ2
1 · · · τn

1
...

...
...

. . .
...

1 τn τ2
n · · · τn

n

⎤⎥⎥⎥⎦
is the Vandermonde matrix. For the Hermite interpolation problem, the matrix
is the “confluent” Vandermonde matrix

V =

⎡⎢⎢⎢⎢⎢⎣
1 τ1 τ2

1 · · · τn
1

0 1 2τ1 · · · nτn−1
1

0 0 2 · · · n(n− 1)τn−2
1

1 τ2 τ2
2 · · ·

...
...

...

⎤⎥⎥⎥⎥⎥⎦ ,

where a node of confluency si induces si rows containing τi, and each row except
the first is formed by evaluating the derivative of the row above. The generalized
Vandermonde matrix arises from the relation

φk(x) =
n

∑
j=0
φk(τ j)Lj(x)

in the Lagrange case and

φk(x) =
n

∑
i=1

s1−1

∑
j=0

φ ( j)
k (τi)

j!
Hi j(x)

in the Hermite case.

a. Show that the coefficients of Hi j(x),1≤ i≤ n,0≤ j ≤ si−1, give the entries
the inverse of Vc. (Vc is nonsingular if τi = τ j ⇔ i = j.)

b. Show that the condition number of the Vandermonde matrix based on
equally spaced nodes grows at least exponentially with n (a computational
demonstration is sufficient; see Higham (2002) or Gautschi (1983) for gen-
eral proofs).

c. Most families of real nodes τi are very bad. Some families of complex
nodes, however, are not: Let N be fixed and put τn = exp(2π in/N) for
0 ≤ n ≤ N − 1. The condition number for this change-of-basis matrix (in-
terpolation of Nth roots of unity) is 1. Prove this. [In the infinity norm,
‖Aφ ,xm‖∞ = n.]
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8.37. The confluent Vandermonde matrix for the monomial basis φ j(z) := z j evalu-
ated on the nodes [τ0,τ0,τ1,τ1,τ1,τ2,τ2], where τi = τ j ⇔ i = j, is

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 τ0 τ0
2 τ0

3 τ0
4 τ0

5 τ0
6

0 1 2τ0 3τ0
2 4τ0

3 5τ0
4 6τ0

5

1 τ1 τ1
2 τ1

3 τ1
4 τ1

5 τ1
6

0 1 2τ1 3τ1
2 4τ1

3 5τ1
4 6τ1

5

0 0 2 6τ1 12τ1
2 20τ1

3 30τ1
4

1 τ2 τ2
2 τ2

3 τ2
4 τ2

5 τ2
6

0 1 2τ2 3τ2
2 4τ2

3 5τ2
4 6τ2

5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Each row of V corresponds to the evaluation of φ j(τi) or its derivatives. See
vander and gallery in MATLAB, with attention to the chebvand option
of the latter. Optionally, look at index/Vandermonde in MAPLE, with the
confluent=true and the basis=<orthogonal polynomial name>
options.

1. Show that finding the coefficients of the polynomial p(z) of degree at most 6 that
fits the given data p(τ0) = y0, p ′(τ0) = y′0, p(τ1) = y1, p ′(τ1) = y′1, p ′′(τ1) = y′′1,
p(τ2) = y2, and p ′(τ2) = y′2 can be done by solving a linear system Vx = y. The
determinant of this system is known to be nonzero for distinct τi, as we have
assumed.

2. (Nondimensionalization) Show that for this particular problem we may, without
loss of generality, take τ0 = 0 and τ2 = 1.

3. Solution of interpolation problems [finding p(z)] by solving the confluent Van-
dermonde matrix directly suffers from two difficulties: Such matrices tend to be
ill-conditioned, and the cost of factoring the matrix appears to be O(n3).

a. Plot, on a logarithmic scale, the condition number of V against r = τ1,
where τ0 = 0 and τ2 = 1, for 0.01≤ r ≤ 0.99. Also plot the Skeel condition
number cond(V), which is ‖|V−1| |V|‖.

b. A faster and more numerically stable algorithm to solve this (Hermite) in-
terpolation problem is to use the barycentric formulae. First, do a partial
fraction expansion of

1
w(z)

=
1

z2(z− r)3(z− 1)2

=
β00

z
+
β01

z2 +
β10

z− r
+

β11

(z− r)2 +
β12

(z− r)3 +
β20

z− 1
+

β21

(z− 1)2 ,

which can be done stably in O(n2) work by local series computations, so
that
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1
w(z)

=− 1
r3z2 +

−3− 2r
zr4 +

2r− 5

(r− 1)4 (z− 1)
+

1

(r− 1)2 r2 (z− r)3

+
−4r+ 2

(z− r)2 r3 (r− 1)3 − 1

(r− 1)3 (z− 1)2 +
10r2 − 10r+ 3

r4 (r− 1)4 (z− r)
,

and then, if the value and derivative data are ρi, j = p( j)(τi)/j! for 1≤ i≤ n= 3,
0 ≤ j ≤ si − 1, and the confluencies are s1 = 2, s2 = 3, and s3 = 2 (local
Taylor coefficient form),

p(z)
w(z)

=
n

∑
i=0

si−1

∑
j=0

j

∑
k=0

βi, jρi,k(z− τi)
k− j−1 .

Plot on a logarithmic scale the sum of the absolute values of the derivatives
∂ p/∂ρi, j as a function of r and z, on 0.1 ≤ r ≤ 0.9, 0 ≤ z ≤ 1. Compare with
your previous plot. You should notice that for r ≈ 1/2, this vector norm
is about 104 times smaller than the condition number reported previously,
for all values of z in [0,1]. You may use MAPLE to help with the tedious
algebra.

c. Now, consider this subtle question. Think carefully about your answer.
First, why can that vector norm be interpreted as a “condition number” for
the interpolation problem? Second, why is it smaller than the matrix con-
dition number of Part 3a? The fact that it is so very much smaller is quite
a surprise. We may draw the following conclusion: The algorithm “solve
the confluent Vandermonde matrix by LU factoring or QR factoring,” for
solving the Hermite interpolation problem, is numerically unstable. Does it
help to consider the Skeel condition number condV? Why not?

8.38. The text establishes the (real) interpolation error formula

f (t) = p(t)+w(t)
f (d+1)(t̂)
(d + 1)!

for some unknown t̂. If we are free to choose the nodes τi, then we might try to
choose them so as to make the error term w(t) small [there’s not much we can
do about f (d+1)(t̂)/(d +1)! because this depends mostly on f —although we do get to
choose d, as well].

1. Chebyshev polynomials have an interesting property: Over all monic polyno-
mials, Td+1(t)/2d+1 has the smallest max-norm on −1 ≤ t ≤ 1:

2−d−1 = max
−1≤t≤1

|Td+1(t)|
2d+1 ≤ max

−1≤x≤1
|P(t)| ,

where P(t) is any monic polynomial. So w(t) = Td+1(t)/2d+1 is a good choice.
Show that this makes
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τk = cos

(
π

2(d+ 1)
(2k− 1)

)
1 ≤ k ≤ d + 1 .

This means that interpolation at Chebyshev nodes turns out to be a very good
idea.

2. Equally spaced points, however, give surprisingly bad answers sometimes,
because

w(z) =
n

∏
k=1

(
z− (−1+

2k
n+ 1

)

)
has some surprisingly large wiggles near the ends.

a. Plot, for n = 21, Tn(x)/2n and

n

∏
k=0

(
x− (−1+

2k
n+ 1

)

)
on −1 ≤ x ≤ 1. Comment.

b. Interpolate R(t)= 1/(1+25t2) on−1≤ t ≤ 1 using, first, equally spaced points
(n = 21) and, second, Chebyshev points. Plot your errors; also plot

R(t)− f (t)
w(t)

in each case. Is R(n+1)(t̂)/(d +1)! similar in each case? There’s no reason the t̂’s
(which are functions of t) should be the same.

This last function R(t) is the famous Runge example. It is often used to show
that high-degree interpolation can be a bad idea. Here we see that it is the choice
of equally spaced nodes that is really to blame.

3. We saw that Chebyshev nodes are “nice.” But they are denser near the edges
of the interval, and by Problem 8.11, this ought to cause ill-conditioning. What
is true? Moreover, for n = 21, plot the condition number of the Lagrange basis
at the Chebyshev nodes for the Runge function. Do the same for the equally
spaced nodes. Discuss.

8.39. This investigation is about the problem of monicity. For the purpose of
rootfinding, p(z) and p(z)/a are (in theory) equivalent for nonzero scalars a. By
common convention, with the monomial basis one usually chooses a = an, where
p(z) = ∑n

k=0 akzk has (exact) degree n. The resulting polynomial

p̃(z) =
p(z)
an

= zn +
an−1

an
zn−1 + . . .+

a0

an
= zn +

n−1

∑
k=0

ãkzk

is called monic. This can have some undesirable effects numerically if an is not zero
but small: If we then look for a z∗ such that p̃(z∗) = 0, this means
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(z∗)n +
n−1

∑
k=0

ãk(z
∗)k = 0

and the ãk = ak/an are large—this means that there must be catastrophic cancellation
in evaluating p(z∗). But there are sometimes better choices for normalization.

1. Show that

‖a‖2 :=
n

∑
k=0

|ak|2

(the vector 2-norm of the vector of coefficients) is related to the size of p(z) on
the unit disk by

‖a‖2
2 =

1
2π

ˆ 2π

0
p(eiθ )p(e−iθ )dθ

=
1

2π i

ffi
C

p(z)p(z−1)
dz
z
,

where C is the unit circle.
2. Let An be a random n× n matrix, with entries chosen uniformly on the interval

[0,1]. For large n, say n ≈ 300, the coefficients ak of charpoly(A) [poly(A) in
MATLAB] are large. Plot them (use an example) on a log scale. Discuss.

3. Another common normalization is to take a random number a and divide by it;
this approach is more common in a vector context where one chooses a random
unit vector r and then takes a = r ·a, so that r · (a/a) = 1. Discuss.

8.40. The object of this investigation is PQHIP, that is, piecewise-quintic Hermite
interpolation. Compare pchip in MATLAB (or pchiptx in Moler (2004)). If, in-
stead of just data τi and p(τi), we also know p ′(τi) for 1≤ i≤ n, then we are tempted
to try to fit piecewise-quintic Hermite interpolants. Choose ρi2 := p ′′(τi)/2 in such a
way as to ensure that the curvatures of adjacent intervals match, in a harmonic mean
sense, as follows. Set

ηi−1 =
ρi,1 −ρi−1,1

τi − τi−1
≈ 2ρi−1,2

and
ηi =

ρi+1,1 −ρi,1

τi+1 − τi
≈ 2ρi,2

and, exactly as in PCHIP, set ρi,2 = 0 if ηi and ηi−1 are of opposite signs and other-
wise use the weighted harmonic mean

w1 +w2

2ρi,2
=

w1

ηi−1
+

w2

ηi
,
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with w1 = 2(τi+1 − τi)+ (τi − τi−1) and w2 = (τi+1 − τi)+ 2(τi − τi−1). The end-
points ρ1,2 and ρn,2 should be dealt with as d1 and d2 are in pchiptx (see
pchipend, p. 16).

1. Write a MATLAB routine pqhip.m that implements these ideas. The header
should be

1 function v = pqhip( tau, y, dy, t )

wheret represents (possibly) a vector of input points at which to evaluate the in-
terpolant, and PQHIP should return a vector v with v(k) = p(t(k)), where
p(t) is the piecewise-quintic interpolant to the data; that is, p(tau(i)) =
y(i) and p ′(τi) = dy(i), mixing mathematical and MATLAB notations, and
the second derivatives have been chosen as discussed above. Remember that on
τ�−1 ≤ t ≤ τ�,

p(t) = (t − τ�−1)
3(t − τ�)3

�

∑
i=�−1

2

∑
j=0

j

∑
k=0

βi, jρi,k(t − τi)
k− j−1 ,

and the βi, j can be found from the partial fraction expansion of 1/(z(z−1))3 by
nondimensionalization with t = τ�−1 + hz, where h = τ� − τ�−1. Alternatively,
you may use the confluent Vandermonde matrix, because the instability doesn’t
matter if you solve the linear system exactly (and this system is small enough
that you can do so).
[The text Moler (2004), available online, comes with MATLAB programs
distributed in a directory called NCM. We found it convenient to modify
pchiptx, which you may find in the NCM directory. Note that there is a
potential bug in PCHIP, the cubic version: The program assumes that the nodes
are strictly increasing, and since this is occasionally violated (e.g., for the
Chebyshev–Lobatto nodes), the nodes must first be in increasing order. This
can be fixed by inserting a “sort” command into PQHIP.]

2. Test your code on the Runge example: f (t) = 1/(1+25t2), sampled at n = 10, 20,
30, 50, and 80 equally spaced points on the interval −1≤ t ≤ 1. Plot the relative
error p(t)/f (t)− 1 for each of these five interpolants.

3. Test your code on an example of your own choice.

8.41. In Wilkinson (1959b), we find a polynomial rootfinding problem that is in-
teresting to attack using Lagrange interpolation. The discussion there begins, “As a
second example, we give a polynomial expression which arose in filter design. The
zeros were required of the function f (x) defined by”

f (z) =
7

∏
i=1

(
z2 +Aiz+Bi

)− k
6

∏
i=1

(z+Ci)
2 , (8.64)

with the data values as given below:



400 8 Polynomial and Rational Interpolation

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.008402247
1.974225110
1.872661356
1.714140938
1.583160527
1.512571776
1.485030592

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.008426206
0.9749050168
0.8791058345
0.7375810928
0.6279419845
0.5722302977
0.5513324340

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
C =

⎡⎢⎢⎢⎢⎢⎢⎣
0

0.7015884551
0.6711668301
0.5892018711
1.084755941
1.032359024

⎤⎥⎥⎥⎥⎥⎥⎦
and k = 1.380×10−8. Wilkinson claims that this polynomial is very ill-conditioned
when expanded into the monomial basis centered at 0: “The explicit polynomial
f (x) is so ill-conditioned that the double precision Bairstow programme gave only
2 correct figures in several of the factors and the use of treble precision section was
essential.” He later observes that if f (z) (we use z here not x as Wilkinson did7) is
expanded into the shifted monomial basis centred at z = −0.85, it’s not so badly
conditioned.

1. Expand the polynomial in MAPLE or another CAS, thus expressing f (z) in the
usual monomial basis. Show that the absolute condition number for evaluation
B(z) near z = −0.85 is of the order of 104 at most, while f (z) has magnitude
near 10−13 in a disk of radius nearly 0.02 surrounding that point.

2. Compute the relative condition numbers—the structured condition numbers,
that is—Ai · (∂ f/∂Ai)/ f , Bi · (∂ f/∂Bi)/ f , Ci · (∂ f/∂Ci)/ f (except for C1 = 0), and
k · (∂ f/∂k)/ f , and show that these have magnitude about 107 near z =−0.85.

3. Since k = 1.380× 10−8 is so small it seems natural to expect that the zeros of
f (z) will be near the zeros of the quadratic factors z2 +Aiz+Bi of the first term,
plus an O(k) correction. (This turns out to be true but not as accurate as one
might hope, so numerics must in the end be used to get the roots accurately.)
This idea suggests though that using the quadratic formula seven times to find
those zeros and to use those zeros plus one more point, say the point z = 0 at
which the second factor is zero, to provide a Lagrange interpolant of f (z), would
provide a fairly well-conditioned expression for evaluation and zerofinding. Do
so, then construct the Lagrange companion matrix pencil, and find the roots as
accurately as you can in MATLAB. For example, the smallest root pair is given
by Wilkinson as −7.42884803195285× 10−1 ± 1.32638868266× 10−4i, and
using the above idea, we get within 5× 10−14 of this.

4. Show that using k near 1.38627474705019677767× 10−8 instead (which is a
change of less than half a percent in k) makes two of the roots equal. Perhaps
by drawing a set of pseudozeros, argue that this polynomial is indeed ill-
conditioned.

8.42. Suppose integers m and n are given, together with N + 1 nodes and values
(τk, fk) for 0 ≤ k ≤ N, and that n+m = N. The problem is to find ρk and σk such
that p(τk) = ρk, q(τk) = σk, the degree of p is m, the degree of q is n, and the
rational function p(z)/q(z) interpolates the given data. This is similar to the rational

7 Some people might confuse this problem with the famous Wilkinson polynomial W (z) = (z−
1)(z−2) · · · (z−20). Don’t. This problem has nothing to do with that polynomial.
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interpolation problem that we have already studied, except that now the only thing
known about q(z) is its degree (and the degree of the numerator is also constrained).
A complete solution to this problem can be found in Pachón et al. (2012), but solve
it yourself before you look there, by showing that the unknown ρk and σk are the
entries in a 2(N + 1)-vector satisfying⎡⎣ I −diag(f)

VN−mdiag(βββ ) 0
0 VN−ndiag(βββ )

⎤⎦[ ρρρ
σσσ

]
= 0 , (8.65)

where V� is a suitable truncation of a Vandermonde matrix on the nodes τk. The
matrix is 2N + 1 by 2N + 2 and so has at least one vector in its null space. Try this
out on some examples, and show that you can (at least sometimes) solve the Cauchy
problem for rational interpolation (as it is known) in this fashion.



Chapter 9
The Discrete Fourier Transform

Abstract This short chapter introduces the discrete (finite) and fast Fourier trans-
form. The numerical stability and conditioning of the Fourier matrix is mentioned.
Applications using convolution and circulant matrices are considered, as is the pe-
riodogram or power spectral density. �

One of the most important tools in applied mathematics is Fourier series. Strang
1986, p. 263 begins his discussion with a question:

How do we introduce a subject as important as Fourier series? The cowardly way is tremen-
dously tempting—to choose a typical function and expand in a sum of sines and cosines.

Chapter 4 of Strang’s book then goes on to provide an excellent (even heroic!) intro-
duction to Fourier series, the continuous Fourier transform, and the discrete Fourier
transform. In Chap. 5 of that book, we also find an excellent introduction to the fast
Fourier transform, or FFT. Here, we take a somewhat cowardly approach in that we
start with polynomials. But again, we’re going to do things a little differently, based
on the interpolation tools introduced in the previous chapter.

9.1 The Fourier Transform via Interpolation

Consider interpolating the vector ρρρ of complex data on nodes τk = e2πik/(n+1) for
0 ≤ k ≤ n. These τk are the (n+ 1)st roots of unity: τn+1

k = 1. We’ll proceed as in
the previous chapter; the barycentric weights turn out to be analytically available
with the short formula βk = 1/w′(τk) = τk/(n+ 1). Writing as usual

w(z) =
n

∏
k=0

(z− τk) = zn+1 − 1 , (9.1)

we have the partial fraction decomposition
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1
w(z)

=
1

n+ 1

n

∑
k=0

τk

z− τk
. (9.2)

The polynomial interpolant is thus seen to be

f (z) = (zn+1 − 1)
n

∑
k=0

(
τk

n+ 1

)
ρk

z− τk

=
1

n+ 1
(zn+1 − 1)

n

∑
k=0

τkρk

z− τk
. (9.3)

Now we are going to do something that, for other sets of interpolation nodes, we
have explicitly deprecated: We’re going to change to the monomial basis, so that we
will have

f (z) = c0 + c1z+ c2z2 + · · ·cnzn . (9.4)

We may say immediately what c0 is, by evaluating (9.3) at z = 0:

f (0) = c0 =
1

n+ 1

n

∑
k=0

ρk . (9.5)

By looking at the leading term, we can also see almost immediately that

cn =
1

n+ 1

n

∑
k=0

τkρk . (9.6)

A little more effort gets us cn−1, which turns out to be

cn−1 =
1

n+ 1

n

∑
k=0

τ2
k ρk . (9.7)

To see this, first note that the coefficient of zn−1 is the negative sum of all the τ j

except τk, and by subtracting τk itself, we get

τk +
n

∑
j=0

e
2πi j/(n+1) = τk . (9.8)

To see that a bit more clearly and to get the rest of the terms, we distribute the
zn+1 − 1 over the sum in Eq. (9.3) to find

p(z) =
1

n+ 1

n

∑
k=0

τkρk

n

∏
j=0
j �=k

(z− τ j) =
1

n+ 1

n

∑
k=0

τkρk pk(z) . (9.9)

Having the three computed terms as clues, we suspect that
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pk(z) :=
n

∏
j=0
j �=k

(z− τ j) = τn
k + τ

n−1
k z+ · · ·+ τkzn−1 + zn , (9.10)

and, in fact, this is easy to prove:

pk(τ j) = τn
k

n

∑
�=0

(
τ j

τk

)�

, (9.11)

which, being a geometric series with ratio r = exp(2π i( j− k)/(n+1)), is just 0 if j �= k
and is n+ 1 if j = k. This proves that the n zeros of pk(z) are just the τ j with j �= k,
and since pk(z) is monic, it must be the given polynomial. An alternative proof
would be to use long division:

zn+1 − 1 = zn+1 − τn+1
k

= (z− τk)(z
n + zn−1τk + · · ·+ τn−1

k ) . (9.12)

This allows us to immediately write down all the coefficients c j of the monomial
basis form for p(z): For 0 ≤ j ≤ n,

c j =
1

n+ 1

n

∑
k=0

τn+1− j
k ρk =

1
n

n

∑
k=0

τ− j
k ρk. (9.13)

This gives us an explicit formula for the conversion of Lagrange data on roots of
unity to the monomial basis. This can be written as a matrix–vector product relating
the vector of coefficients c with the vector of Lagrange coefficients ρρρ , and we will
do so shortly. We will say that c is the inverse FFT of ρρρ .

One common alternative derivation of that previous result uses the Vandermonde
matrix as discussed in Chap. 8, and then inverts it:

Vc = ρρρ, (9.14)

where ρk = c0+c1τk+ · · ·+cnτn
k . Here we say that ρρρ is the FFT of c. Equation (9.13)

gives us an explicit equation for the inverse of V. For what follows, we will let

ω := e
2πi/(n+1) . (9.15)

Note that τ1 = ω , and indeed τk = ωk. For n = 3, the Vandermonde matrix and its
inverse are related by ⎡⎣ρ0

ρ1

ρ2

⎤⎦=

⎡⎣1 1 1
1 ω ω
1 ω ω

⎤⎦⎡⎣c0

c1

c2

⎤⎦ , (9.16)

because ω2 = ω and ω2 = ω , since (e4πi/3)2 = e8πi/3 = e6πi/3+2πi/3 = e2πi/3 = ω . Equa-
tion (9.13) gives
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V−1 =

⎡⎣1 1 1
1 ω ω
1 ω ω

⎤⎦−1

=
1
3

⎡⎣1 1 1
1 ω ω
1 ω ω

⎤⎦=
1
3

V . (9.17)

Because ω jk = ωk j, the matrix V is complex-symmetric, V = VT . Thus, its inverse
is not just its conjugate but also its conjugate transpose, VH , divided by n+ 1. For
n = 4 we find, with ω = e2πi/5 this time,

V =

⎡⎢⎢⎢⎢⎣
1 1 1 1 1
1 ω ω2 ω3 ω4

1 ω2 ω4 ω ω3

1 ω3 ω ω4 ω2

1 ω4 ω3 ω2 ω

⎤⎥⎥⎥⎥⎦ , (9.18)

and, as stated previously, that its inverse is its complex conjugate transpose, divided
by n+ 1:

V−1
n+1 =

1
n+ 1

VH
n+1 . (9.19)

As we have seen, this is perfectly general. To find the monomial basis polynomial
coefficients ck of f (z), we need only multiply the data vector [ρ0, ρ1, . . . , ρn]

T by
1/(n+1)VH

n+1. That is, the monomial basis expression of the interpolating polynomial
is as easy to find, almost as the barycentric representation.

We will use the letter F := V. This is the Fourier matrix, whose inverse we saw
first in sum form, in Eq. (9.13). In MATLAB you can compute F by fft(eye(n)),
although one will usually never need to see the matrix itself. Except for the fac-
tor n+ 1, the inverse F−1 =ifft(eye(n)) is also a Vandermonde matrix itself,
based on powers of ω instead of ω = exp(2π i/(n+1)), because ωn = ω .

What about its conditioning? For z ∈ T, that is, |z| ≤ 1, the monomial basis is
near-optimal for approximation; and the complex-symmetric matrix Fn+1 (more
properly, Fn+1/

√
n+ 1) is also unitary, so data errors in the ρk are normwise about

the same size in the vector ck.
This is nice, but where’s the Fourier series? What we have done so far is just

polynomial interpolation, and in the conventional monomial basis at that. Write z =
e2π it . If we think of real t, say 0 ≤ t ≤ 1, then the roots of unity τk correspond
to equally spaced values of t: tk = k/(n+1), 0 ≤ k ≤ n. (One might think after the
discussion of the previous chapters that since we are now using the monomial basis
and equally spaced nodes, we will be doomed numerically, but the trigonometric
nature of the interpolant will turn out to be crucial, and, in fact, everything is nearly
perfectly conditioned.) In the monomial basis in z,

f (z) =
n

∑
k=0

ckzk, (9.20)

but in terms of t, this is
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f (t) =
n

∑
k=0

cke2π ikt =
n

∑
k=0

ck(cos2πkt + isin2πkt), (9.21)

and suddenly we are in (discrete) Fourier space. The condition number for evalua-
tion of this expression is studied in Problem 9.2.

Remark 9.1. As an aside, with z = exp(2π it), the first barycentric form is, in con-
trast,

f (t) =
e2π i(n+1)t − 1

n+ 1

n

∑
k=0

e2πik/(n+1)ρk

e2π it − e2πik/(n+1)
, (9.22)

which certainly looks very strange. It is true that this can be simplified via trigono-
metric identities to get a trigonometric interpolant. Put θ =π(t−tk)= π(t−k/(n+1)),
and we obtain

1
n+ 1

zn+1 − 1
z− τk

=
1

n+ 1
e2i(n+1)θ − 1

e2iθ − 1
=

einθ

n+ 1
ei(n+1)θ − e−i(n+1)θ

eiθ − e−iθ

=
einθ

n+ 1
sin(n+ 1)θ

sinθ

=
cosnθ
n+ 1

sin(n+ 1)θ
sinθ

+ i
sinnθ
n+ 1

sin(n+ 1)θ
sinθ

= gk(t),

and these gk(t) [remember θ = π(t − tk)] have the Lagrange property: gk(t j) = δ j
k .

Of course, they are just the Lagrange polynomials evaluated with z = exp(2π it). For
more on this, see, for instance, Strang (1986 462): They’re used in spectral methods.
�

We do not pursue that seemingly oddball form here, but return to the simpler
monomial basis, now a finite Fourier series:

f (t) =
n

∑
k=0

cke2π ikt , (9.23)

which interpolates ρk at t = k/(n+1).

Remark 9.2. There is a difficulty with this form, however, that demands immediate
attention, namely, aliasing. Sampling induces its own kind of error, called aliasing:
Frequencies that differ by the “right” amount cannot be told apart once they have
been sampled. The bottom line is the Nyquist rate: We need at least two samples in
every period to detect the component. For example,

1 1 1 1
cos0 cos2π cos4π cos6π

cannot be told apart. In the complex form above,
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f (t) =
n

∑
k=0

ckei2πkt = c0 +

n/2

∑
k=1

ckei2πkt +
n

∑
k=n/2+1

ckei2πkt (9.24)

supposing n is even, and the second sum may be written

n/2

∑
�=1

cn+1−�e
i2π(n+1−�)t (9.25)

by �+k = n+1; and at the sample points, 2π(n+1)t = 2π j, so this is indistinguish-
able from

f (t) =
n/2

∑
k=−n/2

cke2π ikt (9.26)

with the definition c−k = cn+1−k. This second expression contains lower frequency
terms than the original one, and this means that this interpolant is less wiggly. An
example may make things clearer. �

Example 9.1. Suppose n = 3, and thus τττ = [0, 1/4, 1/2, 3/4]. Suppose our data are
ρρρ = [1, 1, −1, −1]. Then the FFT gives the coefficients c0 = 0, c1 = (1+ i)/2, c2 = 0,
and c3 = (1− i)/2. The degree-3 polynomial in z gives the trigonometric interpolant

f (t) = c0 + c1e2π it + c2e4π it + c3e6π it . (9.27)

Folding the frequencies as above—except that since now n is odd, we have to use
what Henrici calls the prime convention and take only half the middle-frequency
term to negative frequencies—we get

F(t) =
1
2

c2e−4π it + c3e−2π it + c0 + c1e2π it +
1
2

c2e4π it . (9.28)

This is a different interpolant: The differing exponentials are equal only at the nodes.
See Fig. 9.1. See also fftshift in MATLAB. �

Differentiation and integration in this form are easy:

d
dt

f (t) =
n/2

∑
k=−n/2

2π ikcke2π ikt , (9.29)

for example, if n is even. See Problem 9.8.
One may wish to artificially attenuate the high-frequency components (with large

k) since a noisy signal tends to have higher frequencies than other signals; this is
particularly useful when differentiating. Finally, the magnitudes of the coefficients
|ck| are themselves interesting: Plotting them on a log scale is called a periodogram.

The coefficients ck are called the discrete Fourier transform of the data ρk. It
seems that we have found a pretty fast way to find them, too: The cost is O(n2),
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Fig. 9.1 Trigonometric interpolation before and after folding the frequencies at the Nyquist fre-
quency. The lower-frequency interpolant (solid line) is less wiggly than the higher-frequency in-
terpolant (dashed line)

not O(n3). Of course, the strange barycentric form costs just O(n) because we have
an analytic expression for the barycentric weights, but that form seems too strange
to think with. However, fast as it may seem, O(n2) is not fast enough for many
applications. We will shortly sketch a method to reduce the cost dramatically, to
O(n logn), if n+1 is “highly composite,” that is, has lots of small prime factors. But
before we look at how the speed-up works, let’s look at some applications.

Example 9.2. The first application is the direct use of periodogram to detect the
frequencies present in a time series. Suppose data ρk are samples of data taken at
times tk = kΔ t in, say, seconds. Then, if we could write

y(t) =
n

∑
k=0

cke
2πikt/T , (9.30)

where T was some nominal fundamental period, then (after folding) the largest |ck|
would tell us which frequencies k/T were most active. Let us assume we sample to
tn = nΔ t, giving n+1 samples. Assume thereafter that the series repeats, and apply
the DFT. For example, if we sample the numerical solution1 of

y′′+ 0.04

(
1− y2

7

)
y′+π2y = 0 , (9.31)

y(0) = 1,y′(0)= 0, at 1024 points in 0≤ t ≤ 102.3 (part of which we see in Fig. 9.2),
spaced at intervals δ t = 0.1 s (i.e., 10 Hz), then taking the DFT of y by

1 Y=fft(y(:,1))/L

(here, L = 1024 is the length of the time series); 1024= 210 has lots of small factors,
which is good as alluded to above we plot the periodogram (also known as power
spectral density) in Fig. 9.3 by

1 We will learn in Chap. 12 how to solve this equation.
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Fig. 9.2 A portion of the solution of the van der Pol equation over a few cycles. We take samples
of this solution at equal time intervals
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Fig. 9.3 A periodogram for samples of the solution to the van der Pol equation. The discrete values
|ck| are plotted connecting the dots because there are so many that this seems reasonable, and the
plot looks better. A clear peak is present at the natural frequency (1/2) of the oscillator

fre=Fs/2*linspace(0,1,513);
semilogy(fre,abs(Y(1:513)).ˆ2,'k-')

with Fs = 10 Hz (= 1/Δ t). We only use half the coefficients Y because of folding
at the Nyquist frequency and that the data are real. Compare the first example in
MATLAB’s documentation for FFT. In the periodogram, we see a sharp peak near
frequency f = 1/2. It’s not exactly a spike, because the signal (y, the solution of
Eq. (9.31)) is not a pure sinusoid; we see in Fig. 9.2 that it oscillates regularly but
also decays. Still, there are 20 peaks in the first 40 s, giving f near 1/2 Hz, as shown
in the periodogram. Now if we add the forcing term sin(4πt) to the equation, so that
we have

y′′+ 0.04

(
1− y2

7

)
y′+π2y = sin(4πt) , (9.32)
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Fig. 9.4 The power spectral density of a forced van der Pol equation. The peak near f = 2 is easily
seen

and sample the solution of this equation, we get the periodogram shown in Fig. 9.4.
Note the clear new peak at f = 2; sin(2π f t) is easily detected.

We emphasize that these apparently smooth curves are simply plots of |ck|2 ver-
sus k, for discrete k; but we allow MATLAB to connect the dots because so many
samples are taken that this is more like a continuous transform than a series. Thus,
the (monomial basis!) coefficients ck are themselves the desired answer, to one kind
of question where we use the DFT.

To work out why we scaled by Fs/2, and took only half the resulting coefficients,
is bookkeeping, albeit important bookkeeping.2 Because of aliasing and because the
data are real, the periodogram will be symmetric on 0 ≤ k ≤ n+1 and we need only
half of it. �

The second example of the use of the FFT is convolution. We have already seen
Cauchy convolution in Taylor series generation, and we have briefly encountered
circulant matrices; convolution as seen by the DFT is more general but includes
Cauchy convolution as a special case. The convolution product of two sequences fk,
0 ≤ k ≤ n, and gk, 0 ≤ k ≤ n, is

ck = ∑
j+�=k mod n+1

f jg� , 0 ≤ �≤ n ,

that is, either j + � = k or j + � = k + n+ 1. To see that this generalizes Cauchy
convolution, embed a0,a1, . . . ,am and b0,b1,b2, . . . ,b� in larger sequences by

2 Because of the plethora or plenitude—perhaps even superfluity—of conventions and conventional
notations for Fourier series and signal processing, the bookkeeping takes on more importance than
usual. For example, what some people call the matrix F actually corresponds to what other authors
or software packages, for example, MATLAB, mean by the inverse discrete Fourier transform. And
then there is where to place the factor n, or n+ 1 if you index from zero, or

√
n+1. You get the

idea.
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appending zeros am+1 = am+2 = . . . = an = 0, b�+1 = b�+2 = . . . = bn = 0. Then,
for example,

c0 = a0b0 +

all zeros since trailing b’s 0︷ ︸︸ ︷
a1bn + a2bn−1 + · · ·+ ambn+1−m,

and we choose n large enough so that bn+1−m = 0; that is, n+ 1−m ≥ �+ 1 or
n ≥m+�. [This makes sense as we would need degree zm+� to represent the product
a(z)b(z) = c(z) accurately.] Similarly, c1 = a1b0 + a0b1+ sums of products a jb�
with j+ � = 1 or = 1+ n+ 1; if j ≥ 2, � must be ≥ n− j = m+ �− j ≥ �+ 1, and
hence b� is zero.

What does this have to do with circulant matrices? As you will without doubt
recall, a circulant matrix is determined by its first column. For n = 3,

C =

⎡⎢⎢⎣
a0 a3 a2 a1

a1 a0 a3 a2

a2 a1 a0 a3

a3 a2 a1 a0

⎤⎥⎥⎦ .
What is C[b0, b1, b2, b3]

T ?

C

⎡⎢⎢⎣
b0

b1

b2

b3

⎤⎥⎥⎦=

⎡⎢⎢⎣
a0b0 + a3b1 + a2b2 + a1b3

a1b0 + a0b1 + a3b2 + a2b3

a2b0 + a1b1 + a0b2 + a3b3

a3b0 + a2b1 + a1b2 + a0b3

⎤⎥⎥⎦ , (9.33)

our convolution product. What does this have to do with the DFT?

Theorem 9.1. Every circulant matrix3 R of dimension n + 1 is diagonalized by
Fn+1; moreover,

RFn+1 = Fn+1

⎡⎢⎢⎢⎣
a0

a1
. . .

an

⎤⎥⎥⎥⎦ , (9.34)

where the ak are the elements of the discrete Fourier transform of the first column
of C.

Proof. See Davis (1994). �

Example 9.3. In the MATLAB session below, we see that the circulant matrix is,
in fact, diagonalized both by F and by F, although the ordering of the diagonal is
affected:

3 Note that Matlab’s circulant matrix convention is the transpose convention to the above.
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%% Diagonalization of circulant matrices
R = gallery( 'circul', randn(3,1) )
F = fft( eye(3) )
norm( F*F'/3 - eye(3), inf )
D1 = F*R*F'/3
D2 = F'*R*F/3
norm( D1 - diag(diag(D1)), inf )
norm( D2 - diag(diag(D2)), inf )
norm( D1 - D2, inf )

The code creates a random circulant matrix and then diagonalizes it with a Fourier
matrix, both ways. �

To compute the convolution product a∗b, form the circulant matrix with first column
a. Then the desired product is

c = Rb . (9.35)

Hence, taking the DFT of both sides, we get

Fn+1c = Fn+1Rb = Fn+1R
1

n+ 1
Fn+1Fn+1b (9.36)

or, if C is the DFT of c and B is the DFT of b and A is the DFT of a and the diagonal
of the DFT of R, ⎡⎢⎢⎢⎣

C0

C1
...

Cn

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
A0

A1
. . .

An

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

B0

B1
...

Bn

⎤⎥⎥⎥⎦ ; (9.37)

that is,

Ck = Ak Bk . (9.38)

Then the convolved vector c can be obtained from the DFT C by

c =
1

n+ 1
Fn+1C (9.39)

(that is, the inverse discrete Fourier transform). This mathematical application is
an abstract version of a very large variety of practical applications. Examples in-
clude correlation and autocorrelation, among others. In mechanics, it’s the Duhamel
integral; in optics, one uses this in diffraction. There are many more.

The MATLAB facilities for the DFT include the routines fft, ifft,
fft2, ifft2 (a two-dimensional version), and conv and filter. See the
documentation.

Discrete? Fast? Which is it? The modern version of the FFT is quite different
than the ideas of Gauss, or the hand techniques of Danielson and Lanczos. It’s come
a long way from the Cooley–Tukey algorithm, too. There are now several ideas in
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play. The first one, the main one, Gauss’ idea, is essentially a clever factoring of
Fn+1, if n+ 1 can be factored over the integers. That is, if n+ 1 = (m+ 1)(�+ 1),
then we can factor Fn+1 into two matrices that are essentially recombinations of
Fm+1 and F�+1. The factorings depend heavily on the symmetries and redundancies
among the e2πik/(n+1). In the simplest case, if n+1 is even, one can perform two DFTs
of half the size and with only a little extra work, combine them to get what was
desired. Suppose n+1= 2� is a pure power of 2. Then if the cost to perform an FFT
of size n+ 1 is Cn, we have

Cn = 2Cn/2 + small change. (9.40)

Let’s say Cn = 2Cn/2 + μn, for some constant μ . Can we solve this recurrence rela-
tion? Phrase it in terms of � : n = 2�. Then C� = 2C�−1 + μ2�. MAPLE solves this
instantly giving C� = 2�C0 + μ�2� (which we can verify). That is,

Cn = μ(log2 n)n+O(n) . (9.41)

This analysis shows that (if the decomposition can be done recursively) we save a
huge amount. Even if we can’t, just one step saves a lot:

C2N = 2Cn + μN (9.42)

and if CN = cN2, done by the direct method, then C2N = 2cN2 +O(N), whereas the
direct method on C2N = c(2N)2 = 4cN2, costing twice as much.

Other important developments in FFT technology include a huge collection
of advances in hardware (multiprocessor, multithreads, fast memory, all kinds of
things) and is increasingly harder to keep up with. The SPIRAL project (www.
spiral.org) tries to automatically generate FFT programs (and others) that take
significant advantage of particular hardware configurations. Taken all together, their
automatically tuned algorithms are very impressive; if you have the hardware, you
ought to look at what they can do for you.

Accuracy issues are discussed in Higham (2002). We have already pointed
out that since Fn+1/

√
n+ 1 is unitary, the problem of computing Fn+1f is well-

conditioned. Are these fast algorithms stable? In short, the answer is “yes,” pro-
vided a little care is taken with the trigonometric functions.4 The FFT is a wonderful
algorithm.

9.2 Chebfun and the FFT

The Chebfun package makes consistent use of the FFT to effect its change-of-basis
from Lagrange interpolation on the Chebyshev–Lobatto points ηk = cos(πk/n), for
0 ≤ k ≤ n, and the Chebyshev polynomial basis Tj(x) = cos( j cos−1 x). Calling this

4 Of course, it is only normwise well-conditioned. If you want a relatively small Yk to be accurate,
you’ll have to work, and if there’s data error, you may be out of luck.

www.spiral.org
www.spiral.org
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change-of-basis matrix T, Exercise 8.15 in Chap. 8 asked you to show that T was
well-conditioned even for large n, with a 2-norm condition number asymptotically√

2 as n → ∞. This shows that changing bases in this way is not, a priori, a bad
thing to do numerically (unlike changing to the monomial basis from any purely
real set of interpolation points, which is exponentially ill-conditioned even from the
Chebyshev–Lobatto points).

And as we will see shortly, by using the FFT, one can do it quickly as well, at
a cost of O(n logn) flops. The key observation is that the entry Tj,k = cos(π jk/n) is
just the real part of exp(2π i jk/2n), which is the j,k entry of the Fourier matrix of
order 2n. That is, Tn is the real part of a block of F2n. Thus, it’s all over but the
bookkeeping. To do that, consider the following lines of MATLAB code (which we
will meet in Chap. 10 when we consider Clenshaw–Curtis quadrature), which we
take from Trefethen (2008a):

1 x = cos(pi*(0:n)'/n);
2 fx = feval(f,x)/(2*n);
3 g = real(fft(fx([1:n+1 n:-1:2])));
4 a = [g(1); g(2:n)+g(2*n:-1:n+2); g(n+1)];

The first line defines the ηk. The second line evaluates a function f at those points
and divides by 2n (note there are n+ 1 points). The third line creates a vector of
length n+ 1+ n− 1 = 2n by copying the vector of f values (except the first one)
backwards, takes the FFT of that vector, and takes the real part of the answer. The
final line sorts that FFT out, computing the coefficient of T0(x) as g1, the coefficient
of Tn as gn+1, and all the intermediate coefficients of Tj(x) as g j +g2n− j+1. It is left
as an exercise for the reader to verify that this procedure is correct (in MATLAB; of
course, with other programs and FFT conventions, one has to do the bookkeeping
again). One can speed this program up, and perform computations entirely over the
reals (in which case, what we are doing is called the discrete cosine transform, or
fast cosine transform); but one could hardly write a shorter program than the two
lines above that do the work.

Example 9.4. When we try this out on, say, f = exp(x) with n = 14, we get

f = @(x) exp(x);
n = 14;
x = cos(pi*(0:n)'/n); % Cheby points
%x = -chebpts( n+1 );
fx = feval(f,x)/(2*n); % evaluate f
g = real(fft(fx([1:n+1 n:-1:2]))); % FFT
a = [g(1); g(2:n)+g(2*n:-1:n+2); g(n+1)]; % Cheby coeffs
format long e
a
%a =
%
% 1.266065877752008e+000
% 1.130318207984970e+000
% 2.714953395340766e-001
% 4.433684984866384e-002
% 5.474240442093672e-003
% 5.429263119140365e-004
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% 4.497732295430186e-005
% 3.198436462376053e-006
% 1.992124805968780e-007
% 1.103677167604671e-008
% 5.505896164340052e-010
% 2.497962253711350e-011
% 1.039224262200378e-012
% 4.007905118896815e-014
% 1.443289932012704e-015

and the coefficients are very similar to those we saw in the Chebfun example in
Chap. 2. �

Indeed, we are now in a position to explain the differences between the Che-
byshev series coefficients in Eq. (2.118) and what is produced by Chebfun and
similarly by the code above: The difference is again due to aliasing. As explained
in (Trefethen 2013 Chap. 4), the polynomials Tm(z), T2n−m(z), T2n+m(z), T4n−m(z).
. . ., take exactly the same values on the (n + 1)-point Chebyshev grid. For in-
stance, if n = 7 and m = 3, then at z = τ2 = cos(π ·2/7) = 0.9009688679 . . ., all of
T3(z), T2·7−3(z) = T11(z) and T2·7+3(z) (and infinitely many others) take the value
0.22252093 . . .. Thus, sampling as done above or by Chebfun must lump contribu-
tions from higher-degree terms in the series into the same bin that certain lower-
degree terms use. Because the series converges so quickly, the aliased terms are
usually small enough that they have little effect.

9.3 Notes and References

There are a great many books on the FFT. A good general presentation is the
book by Briggs and Henson (1995). We recommend Strang (1986) in particular
for applied mathematicians. The older work Hamming (1973) contains an excellent
nitty-gritty introduction that clarifies many issues, especially about the Nyquist fre-
quency. Van Loan (1992) is also a useful resource. For a thorough and entertaining
view from the analytic side, consult Körner (1989). Circulant matrices are treated
by Davis (1994) and more on them can be found in Horn and Johnson (1990). See
Kahaner et al. (1989) for a few more details on applications of convolution, includ-
ing Duhamel integrals.

Moler (2004) (more properly, the code repository for that book) contains sev-
eral programs for interaction with the FFT. We particularly recommend fftgui
and fftmatrix. Finally, the use of the FFT in the Chebfun package is described
in Battles and Trefethen (2004).

Problems

9.1. Show that the matrix F3 of our first example can be obtained in MATLAB by
asking for 3*ifft(eye(3)).
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9.2. Show that the analysis of the condition number for evaluation of f (z) =

∑n
k=0 ckφk(z), namely, the computation of B(z) = ∑n

k=0 |ck||φk(z)|, applies directly
if the φk(z) are trigonometric polynomials sin jz or cos�z. For real z, then, deduce
that the condition number for evaluation of a trigonometric polynomial or Fourier
series is bounded by ∑n

k=0 |ck|.
9.3. In MATLAB issue the command doc fft and look at the example therein,
with identification of the intended frequencies in a noisy signal. Modify the example
first by plotting the power spectral density (periodogram) on a semilogy scale. Then
rerun the code several times, changing the amplitude of the noise, making it both
larger on some runs and smaller on others. Can the signal frequencies be reliably
identified with a much higher noise level than that in the documentation (that is,
much higher than 2)?

9.4. Using code similar to that of Problem 9.3, but this time replacing the random
noise with the logistic iteration Ln+1 = rLn(1− Ln) for the value r = 4, which is
guaranteed to produce a chaotic signal starting with L0 = some random number in
(0,1), use the FFT to identify the frequencies of the nonchaotic part of the signal. Is
the FFT able to identify the signal for higher amplitudes of logistic chaos than it is
for random noise as used in previous signal?

9.5. Write (or find on the Internet and test) a MATLAB routine to trigonometrically
interpolate equispaced data using the FFT.

9.6. Write (or find on the internet and test) a MATLAB routine to trigonometri-
cally interpolate two-dimensional data (on a tensor product grid, equispaced in both
directions) using the two-dimensional FFT (see doc fft2 in MATLAB).

9.7. Go to http://www.spiral.net/ and follow the link there to Püschel
et al. (2011), which is an overview of the SPIRAL project. This gives a description
of an interesting approach to providing high-performance, architecture-tuned code
for digital signal processing (and possibly better than doing it yourself).

9.8. Suppose you have a polynomial f (z) given by values ρk on nodes τk =
exp(2π ik/(n+1)) for 0 ≤ k ≤ n. Write a short program in MATLAB that uses the FFT
and the inverse FFT to accept as input the vector ρρρk,0 and return the vector ρρρk,1,
where ρk,1 = f ′(τk); that is, your routine should return the vector of derivatives of
the polynomial f (z) at the roots of unity. Test your routine. This in effect uses a
differentiation matrix such as we will meet in Chap. 11, although no matrix should
be formed explicitly.

9.9. The following algorithm for solving confluent Vandermonde systems suggests
itself: Interpret the Vandermonde system as a problem in conversion from a Her-
mite interpolational basis to the monomial basis. Simply compute the generalized
barycentric weights βi, j from the nodes τi as usual, which costs O(d2) operations.
Evaluate the interpolant at the d + 1 roots of unity exp(2π i j/(d +1)) for 0 ≤ j ≤ d.
This costs O(d2) operations. Interpret that as the DFT of a polynomial. Use the in-
verse FFT to compute the coefficients of that polynomial. At worst, this costs O(d2)

http://www.spiral.net/


418 9 The Discrete Fourier Transform

operations, and if d+1 is highly composite, then the cost will be O(d logd). This al-
gorithm therefore has the same asymptotic complexity as Algorithms 22.2 and 22.3
of Higham (2002), up to constant factors. Work out the details of this algorithm and
implement it and test it. Show that it can be numerically stable, but that it can of-
ten be terrible. In particular, for equally spaced nodes τi on the interval [−1,1] for
modestly large n, say n = 25 or so, the accuracy of the results can be poor. Use the
condition number of evaluation of polynomials to predict the size of the errors in
p(exp(2π ik/(d+1))), and show that the difficulty is not the fault of the Fourier trans-
form. Compare with the condition number κ(V) of the generalized Vandermonde
matrix.

9.10. Do the same as in Problem 9.9, but using Chebyshev–Lobatto points ηk.

9.11. If n is even, then the trigonometric interpolant after folding at the Nyquist
frequency is

F(z) = c0 +

n/2

∑
k=1

ckzk +

n/2

∑
�=1

c−�z
−� ,

where c−� is defined to be cn+1−� from the FFT. If n is odd, then the interpolant is

F(z) = c0 +

(n−1)/2

∑
k=1

ckzk +

(n−1)/2

∑
�=1

c−�z
−�+

1
2

c(n+1)/2z
(n+1)/2 +

1
2

c−(n+1)/2z
−(n+1)/2,

and n+ 1− (n+1)/2 = (n+1)/2 shows that the bookkeeping is ok for cn+1−� = c−�.
These are rational functions in z, with known denominators zn/2 if n is even and

z(n+1)/2 if n is odd. Compute the partial fraction decompositions of zn/2/(zn+1 − 1) if
n is even and z(n+1)/2/(zn+1 − 1) if n is odd and thereby write the second barycentric
forms for

F(z) =

n

∑
k=0

αkρk/(z− τk)

n

∑
k=0

αk/(z− τk)

.

That is, find formulæ for the αk explicitly. This gives an expression for the trigono-
metric interpolant that costs only O(n) flops to construct. Implement your formulæ
and test them. What can’t you do with these formulæ at a cost less than O(n2) that
you can do with the ck from the FFT?

9.12. Write the complex Fourier coefficients as ck = ak + ibk and thus write the
complex discrete Fourier expansion (9.26) in real form. Do the same for the case
when n is odd, and the resulting highest-frequency terms are multiplied by 1/2 in
order to maintain symmetry.



Chapter 10
Numerical Integration

Abstract We show that in an absolute sense, integration is well-conditioned but that
in a relative sense, integration can be ill-conditioned. We interpret standard algo-
rithms as finding the exact integrals of nearby functions. We discuss several meth-
ods, including adaptive methods, Gaussian quadrature, and methods for oscillatory
integrands. We pay some attention to the issue of singularity. �

Numerical integration (also known as quadrature1) consists in using numerical
methods to approximate the value of a definite integral:

I =
ˆ b

a
f (x)dx . (10.1)

The interval (a,b) is usually finite, but is sometimes infinite. We begin our discus-
sion by assuming that f (x) is at least continuous and may be smoother, perhaps
infinitely differentiable or even analytic. Discontinuities introduce difficulties, some
of which we take up in Sect. 10.6. There exist methods (of great practical interest)
to evaluate definite integrals of higher dimensions numerically, but we will focus on
the one-dimensional case. Accordingly, this chapter will present some basic quadra-
ture rules and their respective error analyses.

Here are some of the reasons for which you would want to do numerical
integration:

1. Perhaps f is known only at a limited number of points [such as in data gathering,
where we only know the function through a set of points (xi, f (xi))].

2. It might be very difficult or impossible to find a formula for an exact antideriva-
tive to f . Indeed, the majority of definite integration problems fall into this cate-
gory. For example, if f (x) = x tanx, then its antiderivative contains a dilogarithm
and is not expressible in terms of elementary functions. (This particular integral

1 From the empirical method of drawing small squares underneath the curve in question, and
counting them to estimate the area.

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods:
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0 10,
© Springer Science+Business Media New York 2013
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may not be an issue if you have access to a numerical routine for evaluating
dilogarithm functions over the complex plane, but trust us, there are plenty of
other examples.)

3. The evaluation of the given analytical expression for F(x) may be less numer-
ically stable than the quadrature of f (x). We will see an example of this later,
where the analytical expression needs thousands of digits (temporarily, because
they cancel).

4. Even if a stable analytical expression for F(x) is known, it may be expen-
sive to evaluate numerically. In this case, a numerical quadrature may be much
more cost-effective. One common situation for this is if F(x) needs to be eval-
uated at a long series of nearby points xk, a situation practically tailor-made for
quadrature.

The basic idea of numerical quadrature is to replace f (x) with a slightly different
function, call it f (x) + Δ f (x) or ( f + Δ f )(x), and integrate the second function
instead. This is our engineered problem (see Chap. 1). We will choose Δ f so that
it’s not too large, and so that f +Δ f is simple to integrate exactly. That this idea
handles all cases above will be seen in the examples that follow.

In fact, the simplest execution of this idea can be grasped from the usual first-
year explanation of definite integrals (see Fig. 10.1). From this point of view, we

Fig. 10.1 An approximation to a definite integral,
´ π/4

0 x tanxdx, by a finite Riemann sum

evaluate a definite integral by replacing the curve using a finite number of hor-
izontal lines—that is, a piecewise constant approximation. Since piecewise con-
stant functions have analytically known areas, this satisfies our requirements. One
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could instead use a piecewise linear approximation, giving trapezoids.2 The figures’
heights are evaluated by means of the integrand f (x), for example, at the middle
point of each rectangle, as in the figure, thereby providing us with the width and
height of each rectangle. We can then find the area of each rectangle, add them
up, and obtain an approximate value of the definite integral. In a first-year calculus
class, there is more interest in the process of taking the limit as the partition is re-
fined (letting the maximum rectangle width go to zero) and in making a connection
to antiderivatives, which works for the majority of the integrands encountered in the
benign environment of a calculus class. Even if the antiderivative is not elementary,
though, we obtain the definition of the “exact” integral in that limit. For example,
with an equally spaced partition xk = a+(b−a)k/n, giving widths Δx = (b−a)/n, we
have the limit

lim
n→∞

n

∑
k=1

f (xk)Δx =
ˆ b

a
f (x)dx . (10.2)

The points where the function is evaluated are called nodes (or integration points).
The widths can be thought of as the weights attributed to the value of the function,
and the sum is then an average. In general, the weights appearing in the weighted
sum can be different, depending on what quadrature rule we are using. The resulting
accuracy will be determined by the method for the selection of integration points,
which then determines the weights.

Suppose that the interval [a,b] is finite and has been partitioned as a = x0 <
x1 < x2 · · · < xn−1 < xn = b. Then we can give three simple Riemann-sum–based
methods, which we assume that the reader remembers from first-year calculus—the
left-hand Riemann sum, the right-hand Riemann sum, and the midpoint rule:

Ln =
n−1

∑
k=0

f (xk)(xk+1 − xk) (10.3)

Rn =
n−1

∑
k=0

f (xk+1)(xk+1 − xk) (10.4)

Mn =
n−1

∑
k=0

f (
1
2
(xk + xk+1))(xk+1 − xk) . (10.5)

2 For an interesting discussion in the literature on numerical quadrature, try searching the web
for information on “Tai’s model,” which should lead you to a highly cited paper in the journal
Diabetes Care. The author, seemingly unaware of standard numerical methods (although one of
the commenting articles points out the relevant one), reinvents the trapezoidal rule and applies it
to problems relevant to the interests of the readers of the journal. It might seem humorous that
someone could think reinventing a method that is at least hundreds of years old was publishable,
but it seems less funny when you realize that she was correct, and count the number of citations.
And, in the end, it’s a useful lesson for students to learn that numerical computation of definite
integrals is needed in diabetic care. It is a chastening lesson for educators to learn that numerical
methods are taught so poorly in first-year calculus that this paper was needed, as evidenced by the
number of citations of this paper.
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We also give the trapezoidal (or trapezium) rule:

Tn =
n−1

∑
k=0

1
2
( f (xk)+ f (xk+1)) (xk+1 − xk) . (10.6)

Alternatively, Tn = (Ln +Rn)/2 is the arithmetic mean of the left- and right-hand
Riemann sums.

If f is monotonically increasing, and is continuous, then we obtain the inequality

Ln <

ˆ b

a
f (x)dx < Rn. (10.7)

Moreover, if the partition is equally spaced, so that xk+1 − xk = (b−a)/n, then Rn −
Ln = ( f (b)− f (a)) · (b− a)/n → 0 and is O(1/n) as n → ∞. But the midpoint rule
is better: If f is concave down, that is f (x) lies below its tangent lines, then the ith
piece of the trapezoidal rule and the midpoint rule are related by the inequality

Ti <

ˆ xi+1

xi

f (x)< Mi , (10.8)

and if f (x) is instead convex upward, the sense of the inequality reverses; that is,

Mi <

ˆ xi+1

xi

f (x)< Ti . (10.9)

For our example f (x) = x tanx, which is convex upward, that is, f (x) lies above
its tangent lines, the midpoint rule gives a lower bound, while the trapezoidal rule
gives an upper bound. Evaluating f (x) at 11 equally spaced nodes on [0,π/4] (giving
10 panels between the nodes) gives us a midpoint rule estimate of 0.1851249174,
whereas the trapezoidal rule estimate is 0.1871047441, so we know that the true
area A satisfies 0.185 < A < 0.187. Exercise 10.2 asks you to get more accuracy.
In each case, note that the rule gives the exact (apart from roundoff) area under a
different curve f +Δ f , and that by taking enough panels in the mesh, we can make
Δ f as small as we please.

There are an infinite number of quadrature rules. Almost all of them look like

ˆ b

a
f (x)dx

.
=

n

∑
k=1

wk f (τk) , (10.10)

usually with τk ∈ (a,b) and with ∑n
k=1 wk = b− a. Alternatively, they can be inter-

preted as replacing the integral or true average by a finite-sum weighted average:

(b− a) f
.
=

n

∑
k=1

wk f (τk) . (10.11)
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Reverse-engineering an f + Δ f for a given quadrature rule is usually simple
if one knows the definition of the rule. As should be obvious, there are in-
finitely many possible such f + Δ f if we start with the value of the definite in-
tegral only.

We will analyze the error made by the Riemann sum rules in a later section,
but we note for now that each of the first three rules is exactly correct for step
functions with heights given by f (xk) as appropriate, and that the trapezoidal
rule is exact for piecewise linear functions interpolating the data (xk, f (xk)). The
midpoint rule is also exactly correct for the tangent line approximation f (x) =
f (xk+1/2)+ f ′(xk+1/2)(x−xk+1/2) because the integral of the degree-1 term is zero. In
all cases, these rules give the exact areas under functions slightly different that the
one intended, namely, f (x). This raises the question of how significant such changes
are; this is the recurring question of conditioning.

10.1 Conditioning of Quadrature

Consider the intergral I =
´ b

a f (x)dx of f and the integral

I +Δ I =
ˆ b

a
( f (x)+Δ f (x))dx . (10.12)

Then the relation

|Δ I|=
∣∣∣∣∣
ˆ b

a
Δ f (x)dx

∣∣∣∣∣ ≤
ˆ b

a
|Δ f (x)|dx = 1 · ‖Δ f (x)‖1 (10.13)

holds, where the norm in the final term is the function 1-norm on this interval. In
this norm, the absolute condition number is just 1! Therefore, in an absolute sense,
quadrature is well-conditioned.

In a relative sense, things are harder:

∣∣∣∣Δ I
I

∣∣∣∣≤
ˆ b

a
|Δ f (x)|dx∣∣∣∣∣
ˆ b

a
f (x)dx

∣∣∣∣∣
=

‖Δ f‖1

| I | =
‖ f‖1

| I | · ‖Δ f‖1

‖ f‖1
. (10.14)

Therefore, the relative condition number is

‖ f‖1

|I| =

ˆ b

a
| f (x)|dx∣∣∣∣∣

ˆ b

a
f (x)dx

∣∣∣∣∣
. (10.15)



424 10 Numerical Integration

If f is large while its integral is small (i.e., f oscillates), this number can be very
large.

Example 10.1. For instance, consider a perturbation of
´ 1
−1 cos(ωt)/(1 + t2)dt,

such as
ˆ 1

−1

cos(ωt)(1+ ε cosωt)
1+ t2 dt , (10.16)

which has a relatively small change to the integrand if ε is small. Detailed analysis
shows that if ε = 0 and ω is large, the integral is sin(ω)/ω+O(1/ω2); but if ε is not
zero, then the difference is, using the fact that cos2 θ = (1+ cos2θ)/2,

ε
ˆ 1

−1

1/2+ cos(2ωt)/2

1+ t2 dt =
π
4
ε+O(

ε
ω
) . (10.17)

As a result, it follows that

Δ I
I

.
=

ωπ/4

sinω
× ε , (10.18)

and so the condition number goes to infinity as ω → ∞, even at values of ω where
the integral isn’t exactly zero. We return to this example in Sect. 10.8. �

We can say that quadrature of highly oscillatory integrands is ill-conditioned, in
this relative sense. Small changes in the integrand will make large relative changes
in the integral. Nonetheless, oscillatory integrals are of great practical interest, and
we take them up in Sect. 10.8.

But there is a potentially worse problem than ill-conditioning. Can we do numer-
ical integration at all?

Theorem 10.1 (Kahan (1980)). Deterministic numerical integration of functions
defined by procedures (”black boxes”) is impossible, even for continuous functions,
unless the class of integrands represented by the black boxes is further constrained.

Proof. Suppose to the contrary that someone has implemented a deterministic
quadrature program that claims to integrate all continuous functions implemented
as black boxes,3 perhaps even just all polynomials. Call this program Candidate.
Take the function spy(x) which records its input and returns 0, and call Candidate
with it, asking to evaluate ˆ 1

0
spy(x)dx = 0 . (10.19)

Of course, Candidate should tell you that the integral is zero. Now examine
the list of values at which Candidate probed the ”spy” function. This list must
necessarily be finite; suppose there are M numbers xi in the list. We would expect

3 A “black box” is a procedure of which one does not know the details; all one can do is call it with
its input and receive its output. The presumption is that the black box here is deterministic: If one
sends in an input τ and gets an output y, then that same y will occur every time the input τ is given
to the box.
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0 ≤ xi ≤ 1 because it would be an unusual quadrature program4 that evaluated its
integrands outside the interval of integration, but this doesn’t matter. What does
matter is that the xi are machine numbers. Now let

malicious(x) = K
M

∏
i=1

(x− xi)
2 , (10.20)

for some constant K. Now ask Candidate to integrate “malicious,” not “spy,” over
the interval [0,1]. Since Candidate was deterministic, it will sample “malicious”
at the same xi, at which “malicious” is zero, just as “spy” was. Notice that subtrac-
tion of two machine numbers xi − xi is exactly zero. Therefore, Candidate will
come to the same conclusion with “malicious” that it did with “spy,” namely, that
the integral is zero. But this is wrong:

ˆ 1

0
malicious(x)dx = K

ˆ 1

0

M

∏
i=1

(x− xi)
2 dx. (10.21)

Since the integrand is nonnegative away from the nodes xi, it can be made into any
value one likes by an appropriate choice of constant K. �

This sounds like a contrived argument, but yet it happens. Consider the following
example.

Example 10.2. In MATLAB, create the function spyfn (there is a built-in MATLAB

function called spy that is useful for sparse matrices, so we don’t want to shadow
that) as follows:

function y = spyfn(x)
x
y=zeros(size(x));

Asking MATLAB to integrate this function by calling, say, quad gives us several
values of x:

quad( @spyfn, 0, 1 )

yields 0, 0.1358, and several more. When we try to use these numbers in our
“malicious” program, they don’t work. Of course, they are only four-decimal-place
approximations. Even when we use format long or format long e, they
still don’t work, though: because they are the results of converting the internal IEEE
doubles to decimal. We have to use format hex to see the intermediate xs for
ourselves! When we do this—or, better, if we use a persistent variable to record the
numbers—we can write our malicious program:

1 function [ y ] = malice( x )
2 %MALICE nonzero fn pretending to be zero
3 % output from spy stored in "secrets"
4 secrets = hex2num({ '0000000000000000', '3fc16191148fd9fd', ...
5 '3fd16191148fd9fd', '3fe0000000000000', ...

4 But not unprecedented; there are even methods that use complex nodes to evaluate real integrals.
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6 '3fe74f3775b81302', '3feba79bbadc0981', ...
7 '3ff0000000000000', '3fb16191148fd9fd', ...
8 '3fca12599ed7c6fc', '3fd8b0c88a47ecfe', ...
9 '3fe3a79bbadc0981', '3fe97b69984a0e42', ...

10 '3fedd3cddd6e04c0' });
11 y = zeros( size(x) );
12 n = length(y);
13 for i=1:n,
14 y(i) = 1.0e15;
15 for j=1:length(secrets),
16 y(i) = y(i)*(x(i)-secrets(j))ˆ2;
17 end
18 end
19 end

Sure enough, asking for the area under malice on the interval 0 ≤ x ≤ 1 using
quad returns, as it did for spyfn, just 0. Yet when we plot malice we see that it
is symmetric about x = 1/2, and has maximum value about y = 50. Indeed, if we ask
quad to integrate this function on 0 ≤ x ≤ 1/2, we get 1.50674 and a similar number
for 1/2 ≤ x≤ 1, so the true area is larger than 3. This demonstrates that Kahan’s proof
of impossibility is constructive—or is it destructive? Anyway, numerical integration
is technically impossible. Not that will stop us, and we largely ignore this difficulty.
Not to worry; we have others. �

The way to rescue quadrature from this theorem is to restrict ourselves to inte-
grating polynomials of not “too high” a degree. The rules that we show here will be
adequate for polynomials of degree less than, say, 2M−1. The theorem is something
to be kept in mind, however.

10.2 Equally Spaced Partitions and Spectral Methods

What is the convergence behavior for the simple Riemann-sum rules? Consider the
trapezoidal rule first. The trapezoidal rule is exact for integrating a piecewise linear
p(x), where p(x) interpolates f (x) at each xk. The linear interpolant is, on xi ≤ x ≤
xi+1,

f (x) = f (xi)+
f (xi+1)− f (xi)

xi+1 − xi
(x− xi)+

f ′′(Θi)

2
(x− xi)(x− xi+1), (10.22)

whereΘi =Θi(x) is some unknown quantity that depends on x, between xi and xi+1.
Then, because the integral of the linear interpolant is just the area of the trapezoid, Ti,
we have

ˆ xi+1

xi

f (x)dx = Ti +
1
2

ˆ xi+1

xi

f ′′(Θi)(x− xi)(x− xi+1)dx

= T1 +
1
2

f ′′(Φi)

ˆ xi+1

xi

(x− xi)(x− xi+1)dx, (10.23)
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for some possibly different Φi ∈ [xi,xi+1] by the extended mean value theorem.5

Then
ˆ xi+1

xi

f (x)dx = Ti +
1
2

f ′′(Φi)(−1
6
(xi+1 − xi)

3)

= Ti − 1
12

f ′′(Φi)(xi+1 − xi)
3 . (10.24)

Therefore,

ˆ b

a
f (x)dx =

(
n−1

∑
i=0

Ti

)
− 1

12

(
n−1

∑
i=0

f ′′(Φi)(xi+1 − xi)
3

)
, (10.25)

where the first term is now seen to be just the (composite) trapezoidal rule, while
the second is the total forward error. If we suppose for simplicity that xi+1 − xi =
h = (b−a)/n for all i, then we get

ˆ b

a
f (x)dx =

(
n−1

∑
i=0

1
2
( f (xi)+ f (xi+1))h

)
−
(

h2

12
(b− a)

1
n

n−1

∑
i=0

f ′′(Φi)

)
. (10.26)

That is, the error in the trapezoidal rule is, for equally spaced partitions, O(h2) and
proportional to an average value of the second derivative of the integrand, and to the
width of the interval. We will see that the factor −1/12 will play a role as well. In
Sect. 10.3, we return to formula (10.24) and its predecessors.

We remark that the backward error, that is, the error in piecewise linear interpola-
tion, is slightly easier: from (10.22) we have that | f (x)−Li(x)| ≤ | f ′′(Θi)|h2

i/8, with
the obvious meaning for Li(x), and so one could phrase the error analysis that way:
The trapezoidal rule gives the exact integral for a function only slightly different
to f (x).

For the midpoint rule, the analysis is still simpler. If we Taylor expand f (x) about
a typical midpoint, so that

f (x) = f (xi+1/2)+ f ′(xi+1/2)(x− xi+1/2)+
1
2

f ′′(θi)(x− xi+1/2)
2 , (10.27)

the integral of the degree 1 term vanishes, so that by the extended mean value theo-
rem as before, we get

ˆ xi+1

xi

f (x)dx = Mi +
1
2

f ′′(ψi)

ˆ xi+1

xi

(x− xi+1/2)
2

= Mi +
1
24

f ′′(ψi)(xi+1 − xi)
3 . (10.28)

5 This can be found, for example, in Clark (1972 p. 160). The theorem states that if f (x) and
g(x) are continuous, and g(x) has one sign on [a,b], then there exists a point c ∈ [a,b] such that´ b

a f (x)g(x)dx = f (c)
´ b

a g(x)dx. Here g(x) = (x− xi)(xi+1 − x) has one sign on the interval.
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When we add up all the rectangles, we obtain

ˆ b

a
f (x)dx =

(
n−1

∑
i=0

Mi

)
+

1
24

(
n−1

∑
i=0

f ′′(ψi)(xi+1 − xi)
3

)
, (10.29)

which in the simpler case of equally spaced points gives

ˆ b

a
f (x)dx = Mn +

1
24

(b− a)

(
1
n

n−1

∑
i=0

f ′′(ψi)

)
(xi+1 − xi)

2 . (10.30)

As before, we have that the error is O(h2), proportional to b− a, and proportional
to an average value of the second derivative. Again, we could interpret this as the
exact integral of the best piecewise linear approximation of f (x) at the midpoints of
each interval.

Notice that the error of the midpoint rule is twice as good as that of the trape-
zoidal rule, and of opposite sign, assuming that the two averages of f ′′ in each
formula are approximately equal. This suggests that the combination S = (2M+T )/3

ought to be even better. This turns out to be Simpson’s rule, which we derive in a
different way, below.

10.2.1 Simpson’s Rule

Consider two panels of equal width, x2k < x< x2k+1 and x2k+1 < x< x2k+2. Suppose
we wish to evaluate the integral

ˆ x2k+2

x2k

f (x)dx = F(x2k+2)−F(x2k) , (10.31)

where we know that F ′(x) = f (x) [although we may not be able to find an ele-
mentary expression for F(x)]. There is a related interpolation problem, namely,
given F(x2k), f (x2k), f (x2k+1), and f (x2k+2), find F(x2k+2). This is, properly speak-
ing, a Hermite–Birkhoff interpolation problem,6 because we are missing the datum
F(x2k+1), but let us proceed as if we knew that datum. Form the partial fraction
expansion

1

(ξ − x2k)
2 (ξ − x2k+1)

2 (ξ − x2k+2)
2 =

3/4

h5 (ξ − x2k+1 + h)
+

1/4

h4 (ξ − x2k+1 + h)2

+
1

h4 (ξ − x2k+1)
2 −

3/4

h5 (ξ − x2k+1 − h)
+

1/4

h4 (ξ − x2k+1 − h)2 ,

6 It is discussed in Problem 8.12.
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where we have used the fact that x2k = x2k+1 −h and x2k+2 = x2k+1 +h, that is, that
the two panels are of equal width. Notice that the coefficient of the 1/(ξ − x2k+1)
term is zero; that is, in the Hermite interpolation problem, the datum F(x2k+1) is not
used. This is an inherent consequence of the symmetry of the situation. Proceed-
ing as in Sect. 8.2 and taking a contour integral of F(z) times this partial fraction
expansion over a large enough contour to enclose all of x2k, x2k+1, and x2k+2, we
see that

3F(x2k)

4h
+

f (x2k)

4
+ f (x2k+1)+

f (x2k+2)

4
− 3F(x2k+2)

4h
= 0 , (10.32)

and that because the denominator was degree 6, this equation is true for all poly-
nomials F(z) of degree at most 4 [and so true for all polynomials F ′(z) = f (z) of
degree at most 3]. For such F(z), this equation can be rearranged to give

F(x2k+2) = F(x2k)+
h
3
( f (x2k)+ 4 f (x2k+1)+ f (x2k+2)) . (10.33)

This is Simpson’s rule across two panels. If we have an even number n of panels,
which are pairwise of equal width, we may combine this rule to give a composite
Simpson’s rule. In the special case where all panels have width h, the rule becomes h
times the “ends” plus twice the “evens” plus four times the “odds.” As we have seen,
it is exact for functions f (x) that are piecewise cubic. Conventionally, the error term
is reported as (b−a)h4/90 times (a bound for) an average value of the fourth derivative
of f (x). That this rule is exact for polynomials with deg f ≤ 3 can also be seen from
the presence of the fourth derivative in the error bound.

10.2.2 Practical Error Estimation

In the previous subsections, theoretical error estimates containing unknown deriva-
tives were used to get a qualitative idea of the behavior of various quadrature for-
mulæ. We were satisfied there with asymptotic error estimates: O(h), O(h2), and
O(h4) for various methods using equally spaced partitions. Generally, for a smooth
enough problem, a higher-order method is more accurate for the same amount of
work (work being the number of function evaluations). In practice, we want more:
We would like to know how accurate our answer is.

Given the earlier (absolute) conditioning analysis, this is equivalent to asking
how accurately we have approximated f (x) by our engineered problem ( f +Δ f )(x).
But quadrature is so easy (in the absolute sense) that we are often happy with a sim-
ple comparison of two different methods (perhaps the same method with different
mesh sizes).

Example 10.3. Consider f (x) = 1/(1+ x64) on 0≤ x ≤ 1. If we now apply the midpoint
rule using 100 evaluation points at xk = 1/100(k+ 1/2), 0 ≤ k ≤ 99, then our result-
ing approximation to

´ 1
0 f (x)dx is M = 0.989434062837952.The function is convex
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down, so we know that this is larger than the true integral. Using the trapezoidal rule
instead, on xk = k/100 for 0 ≤ k ≤ 1 (that is, 101 points, each of which is different
to what we had before), this gives us an approximation T = 0.989233192109316.
By our previous analysis, we know that T <

´ 1
0 f (x)dx < M. The difference

M − T ≈ 2.0 · 10−4, and this gives a narrow interval containing the true answer
(rounding errors are too small to have affected the containment). This can be writ-
ten as

´ 1
0 f (x)dx ≈ 0.9894

2. But we can say more: We know that the approximation
S = (2M+T )/3 = 0.989367105928406 is supposed to be O(h4) accurate, and indeed
it differs by about 1.1 · 10−7 from the value returned by MATLAB’s recommended
routine quadgk. �

That example shows that using two different methods can give a good idea of the
error. The idea of using the same method with different mesh sizes leads also to an
effective algorithm, which we sketch in the next section. The use of such practical
error estimates is fundamental to adaptive methods, which we take up later.

10.2.3 Extrapolation Methods

For smooth problems, extrapolation is a powerful method. We have already seen the
left- and right-hand Riemann sum methods, each O(h), combined to form the O(h2)
trapezoidal rule; and the O(h2) trapezoidal and midpoint rules averaged by S =
(2M+T )/3 to get the O(h4) Simpson’s rule. This idea can be systematically extended
by what is called Richardson extrapolation; in the particular case of quadrature, this
is called Romberg integration.

The key to Richardson extrapolation is the existence of an asymptotic series
expansion of the error, that is, asymptotic as the panel width h goes to 0. The Euler–
Maclaurin sum formula, in a form convenient for our use here, is

h
n

∑
i=0

f (ih)∼
ˆ 1

0
f (x)dx− hB1 ( f (1)+ f (0))

+
m

∑
k=1

h2kB2k

(2k)!

(
f (2k−1)(1)− f (2k−1)(0)

)
, (10.34)

where h = 1/n, B1 =−1/2, and B2k are the Bernoulli numbers.7 This is an asymptotic
series, and so it makes sense as n →∞ and thus h → 0 for any fixed number of terms
m on the right-hand side. Note that f (2k−1)(1)− f (2k−1)(0) is, by the mean value
theorem, equal to f (2k−2)(θ ) for some θ ∈ [0,1]. We don’t use that here, but note it
as a point of contact with our earlier error analysis.

7 There is quite a nice article in Wikipedia on Bernoulli numbers. As a quick definition, expanding
t/(exp(t)−1) in a Taylor series gives ∑n≥0

Bmtm/m!, generating the “first” Bernoulli numbers. For a
very beautiful discussion of the Euler–Maclaurin sum formula itself, see Hairer and Wanner (1996
p. 160).
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Also, note that (10.34) can be rearranged to get

T =−h
2

f (0)+ h
n

∑
i=0

f (ih)− h
2

f (1)

∼
ˆ 1

0
f (x)dx+

m

∑
k=1

h2kB2k

(2k)!

(
f (2k−1)(1)− f (2k−1)(0)

)
, (10.35)

which gives an asymptotic error estimate for the trapezoidal rule. Thus, for the trape-
zoidal rule, the error expansion has only even order terms: The same is true for the
midpoint rule. That is,

ˆ b

a
f (x)dx−Tn ∼

∞

∑
k=1

c2kh2k . (10.36)

We saw explicitly that the first term c2 can be interpreted to contain an average f ′′;
similarly, the higher terms contain higher derivatives. But as we said, one does not
have to know the c2k explicitly.

The key idea to Richardson extrapolation is that we can take a combination of
two separate evaluations of the trapezoidal rule, with different but related widths
h, and combine them in such a way as to eliminate the c2 term. For example, by
computing a trapezoidal sum with width h and then another one with width h/2 (the
usual choice), we would have

I = Th + c2h2 + c4h4 + · · ·
= Th/2 + c2(h/2)2 + c4(h/2)4 + · · · . (10.37)

Clearly, the combination (4Th/2 −Th)/3 would satisfy

I =
4Th/2 −Th

3
+(

1
4
− 1)

c4h4

3
+ · · · , (10.38)

which, provided the higher derivatives are well behaved, gives us an O(h)4 formula,
which ought to be more accurate. Using the trapezoidal rule with width h/4 allows
us to do it again, giving another fourth-order error estimate; we can then combine
the two fourth-order integrals to get a sixth-order accurate integral, and so on. We
do not pursue this idea further here, but note that it is quite practical.

Example 10.4. Let us continue with the same example as used previously: f (x) =
1/(1+ x64) on 0 ≤ x ≤ 1. If we use the trapezoidal rule with 100 subintervals, we
previously found that the integral was approximately T100 = 0.989233192109316.
Now if we include all the points xk = (k + 1/2)/100 for 0 ≤ k ≤ 99, then we
will be able to evaluate the trapezoidal rule with 200 subintervals (note that this
is different than the combination of the midpoint and trapezoidal rules used in
the previous example: Here we are using only the trapezoidal rule). This gives
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T200 = 0.989333627473634. By the Euler–Maclaurin formula previously, the error
in this answer should be about a quarter of the previous error. We form the new
combination (4T200 −T100)/3 = 0.989367105928406. Again, this is O(h4) accurate (and
happens to be Simpson’s rule again, which ought not to be surprising since we’re
using the same information as previously, just combining it differently). �

Remark 10.1. Of course, we are left as usual with an accurate answer whose error
we know only roughly. Using that accurate answer, we may accurately estimate
the error in less accurate answers, and there are situations where we prefer to
know how accurate the answer is, but by the same reasoning, we know that this
answer is at least as accurate as the lower-order results, and so why wouldn’t
we use it? �

10.2.4 Spectral Accuracy for Smooth Periodic Functions

Suppose we integrate a function f (x) with the trapezoidal rule. Then, as per our error
analysis done previously, we expect that the error is O(h2). Sometimes, however, our
trapezoidal estimate is vastly more accurate than this expectation!

Example 10.5. For instance, consider

f (v) =
(1− vcotv)2 + v2

z+ vcscve−vcotv (10.39)

for some z >−exp(−1) and with 0 ≤ v ≤ π . Then, using the trapezoidal rule on

W (z)
z

=
1
π

ˆ π

0
f (v)dv (10.40)

[here W (z) is the Lambert W function of z] with h = π/200, say, one expects that the
error would be K(π/200)2 .

= 10−5. And this expectation is fulfilled:

1
π

ˆ π

0
f (v)dv = T200+≈ 10−4. (10.41)

But if instead we integrate this even function over a symmetric interval with the
trapezoidal rule and 200 panels, we get the astonishing accuracy

W (z)
z

=
1

2π

ˆ π

−π
f (v)dv = T200+≈ 8 ·10−17 . (10.42)

Periodic extension (with, for example, very flat edges) that happens to be infinitely
differentiable everywhere turns out to be the key. Note that for our example, the
limit as v → π from the left of f (v) is zero, as are all its derivatives. The periodic
extension of f (v) with period 2π is infinitely flat at the odd multiples of π . This is
visible in the graph (see Fig. 10.2).
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Fig. 10.2 The graph of Eq. (10.39) on 0 ≤ v ≤ π . Notice the significant flattening at π , in con-
trast to the mere double zero at the origin. This even function, when extended periodically with
period 2π , is infinitely differentiable (but not analytic). All order derivatives are zero (although the
function is not identically zero in any neighborhood) at v equal to odd multiples of π

In effect, all the error terms arising from the Euler–Maclaurin asymptotic formula
are zero, so only exponentially small error terms remain. When the error is smaller
than all orders O(hp) as h → 0, we say the convergence is called. For example, if
the error is ∝ K · 2−1/h = O(2−n), then this is smaller than O(hp) = O(1/np) for any
fixed p. �

10.3 Adaptive Quadrature

We have not yet examined the issue of adapting the integration method to the prob-
lem. Many practical codes—probably all practical codes that are in wide use—are
adaptive in this sense. Instead of using a fixed number of panels of a mesh chosen
a priori, the codes probe the function in an effort to decide where to sample further,
and try to place more samples where more are needed.

Consider Fig. 10.3, showing our previous example f (u) = 1/(1+u64), which (we
now tell you) we borrowed from Kahan (1980). We wish to compute F(x) =´ x

0 f (u)du. As Kahan (1980 p. 25) points out, “[T]he extent to which F(x) is here
more complicated than f (u) is atypically modest out of consideration for the type-
setter.” The symbolic expression referred to in this quote is
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Fig. 10.3 The graph of 1/(1+u64) on 0 ≤ u ≤ 1. Nearly all the variation in the function takes place
in the last 10% of the interval

F(x) =
1

32

16

∑
k=1

⎛⎜⎜⎝sinθk arctan

(
2xsinθk

1− x2

)
+

1
2

cosθk ln

⎛⎜⎜⎝1+
2

x+ x−1

2cosθk
− 1

⎞⎟⎟⎠
⎞⎟⎟⎠

+
( π

64
csc
( π

64

)
signum(x) if x2 > 1

)
, (10.43)

where θk = (k−1/2)π/32. As an aside, MAPLE produces a different-looking symbolic
answer:

F(x) =− ∑
R=RootOf(2384 Z64+1)

R (6 ln(2)+ ln( R))

+ ∑
R=RootOf(2384 Z64+1)

R ln(x+ 64 R) . (10.44)

MAPLE’s answer is actually a bit worse-looking than what we present here: MAPLE

explicitly writes the 2384 as a multiplied-out integer. We prefer Kahan’s expression
for the answer.

Either way, numerical integration will generate more intelligible answers.
MAPLE can evaluate its ugly symbolic answer at x = 1 to get 0.9893669892+0.0i.
Kahan’s formula just gives 0.9893669892 without the zero imaginary part. But if all
we want is the number, then there’s no reason to go through either of the formulæ.
Kahan uses this example to argue in favor of numerical quadrature.
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For this integral, equally spaced partitions of the interval would cause us to do
too much work. Rather, the computer would be doing too much work, which might
matter.8 For efficiency, we want to partition [a,b] in a way that puts more points xk

where needed.
The MATLAB routine quad does so in a recursive fashion. If an integral over

an interval is not estimated to be accurate enough, it refines the partition and tries
again. For this example,

f = @(x) 1.0./(1+x.ˆ64);
q = quad( f, 0, 1, 1.0e-6, 1 )

yields

9 0.0000000000 2.71580000e-001 0.2715800000
11 0.2715800000 4.56840000e-001 0.4568399999
13 0.7284200000 2.71580000e-001 0.2599542310
15 0.7284200000 1.35790000e-001 0.1357887364
17 0.8642100000 1.35790000e-001 0.1254882693
19 0.8642100000 6.78950000e-002 0.0677373449
21 0.9321050000 6.78950000e-002 0.0574311353
23 0.9321050000 3.39475000e-002 0.0325601539
25 0.9660525000 3.39475000e-002 0.0248598823
27 0.9660525000 1.69737500e-002 0.0141626395
29 0.9830262500 1.69737500e-002 0.0106976902

q =

0.989366564796066

and we can see that quad has used intervals of width from 2.7158× 10−1 down
to 1.697× 10−2; it used 9 function evaluations to start. The second line records
an attempt to use a larger step, of width 0.45684, which succeeded, getting to x =
0.72842. The third line records an attempt to take a step of size 0.27158 again, but
this time it failed and reduced the step further, after which it succeeded, getting to
x = 0.86421. It had to reduce the width yet again, to get to 0.932105, and then again
to get to 0.966, and the width of the penultimate step was 0.01697 to arrive at 0.983.
In the end it used 29 function evaluations. In comparison to MAPLE we see that the
final answer is accurate to about six figures (using format long to display the
answer).

Remark 10.2. We are not commenting on how, exactly, this program is estimating
the accuracy of the resulting answer. Of course, the details really matter, but for the
present discussion we merely note that it is so doing. �

Example 10.6. Consider the more difficult problem

F(x) =
ˆ x

0

dt
1+ t1024 , (10.45)

8 It’s true that it matters less and less as computers get more powerful—compare the discussion
in Kahan (1980), where the machine takes minutes, hours, and even days to do one-dimensional
integrals; more than 30 years later, those examples are dated indeed—but these ideas will matter
greatly for the multidimensional case.
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increasing the exponent from 64. Years ago, RMC attempted to find F(1) on an HP
48S calculator; it was reported by the calculator as 1 to 12 places and no error flag
indicated that there was a difficulty; however, the reference answer differs from 1
by about ln(2)/1024, which was much more than the tolerance. The difficulty is that,
for any xi < 0.977 in 11-digit decimal arithmetic, f (xi) is computed as 1 to all
places, and therefore the routine would have had to sample between 0.977 and 1,
less than 3% of the interval; and it did not. This is exactly the impossibility proof
for numerical integration!

Let us go further. The true value of
´ 1

0 (1+ tn)−1 dt is beautifully expressible
in terms of a 2F1 hypergeometric function, F ([1, 1/n], [1+ 1/n],−1)∼ 1− log(2)/n+
O(1/n2). Quite a lot is known about this function, and this analytic answer is very
useful indeed. Thus, Kahan’s point with this example, namely, that symbolic in-
tegration is often worse than numeric integration, becomes neatly reversed if one
extends one’s symbolic alphabet.

We hasten to emphasize that Kahan is indeed correct: Numerical integration is
generally much to be preferred and works much more often than analytic methods
do; the irony is that one of the examples he chose actually supports the opposite
point, and that the numerical quadrature fell afoul of his own proof!. �

We now return to discussing quad (which succeeds on the n = 1024 case any-
way). What is the program trying to do? Rather than answer this in detail, we try
to present a heuristic that gives some of the flavor. We introduce here an idea that
will be important for the numerical solution of initial and boundary value prob-
lems for ordinary differential equations, namely, the idea of equidistribution. For
the midpoint rule, the error on each panel was approximately f ′′(xk−1/2)h2

k/24, taking
the central value as an estimate of the average value of the second derivative. If the
error is equidistributed, then the error in each panel is roughly the same:

f ′′(xk−1/2)

24
h2

k =
φ
24

h2, (10.46)

where here h = (b−a)/n is the mean panel width and φ is some constant (we will
identify this constant later as a Hölder mean of the samples of the second derivative).
To repeat: Equally distributing the error means that the local 2nd derivative times
the local step width hk squared is the same as some average second derivative times
the mean step width h squared.

Using 10 panels and the midpoint rule on this example, if we use an equally
spaced partition, we get the terrible answer 0.9963, wrong in the second decimal
place, with a relative error about 7× 10−3. If we use 10 panels, but just roughly try
to equidistribute the error according to the rule above, using the nodes[

0,
3
4
,

13
16

,
7
8
,

29
32

,
15
16

,
61
64

,
31
32

,
125
128

,
63
64

,1

]
, (10.47)

we get the much better answer 0.98951, out by only 1.5× 10−4. That is, the same
amount of work gets us better than 20 times the accuracy.
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If instead of using 10 panels, we split each of those 10 panels into two equal-
width subpanels, and use Simpson’s rule on each of those, we get an excellent an-
swer: 0.989365863, which has a relative error about 1.1×10−6. This is comparable
to the results from quad above, with a roughly comparable amount of work: It used
about a third of its function evaluations to decide how to split the interval up, and
we did a roughly comparable (nonscientific) amount of work to try to find an ap-
proximate equidistribution. By comparison, Simpson’s rule with 20 equally spaced
panels gives the terrible answer 0.9351, which is out by 0.05—not even as good as
the 10-panel midpoint rule! This is because the large high-order derivatives nullify
any advantage gained by the high power of h in the error formula, naively used. But,
with equidistribution, the high-order accuracy of the method is recaptured. Adaptiv-
ity is an extremely powerful tool.

On a final note, with an excessive amount of work we can find a set of nodes that
(nearly) exactly equidistributes the true midpoint rule error:[

0.0,0.8888,0.9173,0.9346,0.9472,0.9574,0.9662,0.9741,0.9817,0.9896,1.0
]
.

With this set of nodes, the midpoint rule gives 0.989439. The error is 7.2 · 10−6

on each interval, all the same (though notice that the widest interval has h = 0.888
and the smallest has h = 0.0076). Because the error also has the same sign on each
interval, the total error is just the sum of those, or 7.2 · 10−5, about 100 times bet-
ter than the equally spaced rule, and 5 times better than our rough equidistribu-
tion (10.47). However, the cost of finding this optimal mesh was so high that we
were long past the point of diminishing returns for this example. In general, we
don’t want to spend more on computing the optimal mesh than we save in comput-
ing a good answer! Most of the practical work in adaptive quadrature is an attempt
to achieve something close to what rough equidistribution would do, but at a modest
cost.

We will show in Chap. 12 that equidistribution is optimal, in a certain sense. Of
course, we don’t wish to have to work too hard to find the optimal equidistributing
partition either; as we did here, we will be satisfied with a rough equidistribution. We
end by repeating that quadrature methods don’t actually try to equidistribute their
error; they just keep sampling, and never throw anything away; but equidistribution
is a kind of ideal goal.

10.4 Gaussian Quadrature

Gaussian quadrature is classically thought to be most appropriate for certain classes
of integrand, for example, the following particular classes of integrals times weight
functions:

ˆ 1

−1
f (x)dx ,

ˆ 1

−1

f (t)√
1− t2

dt ,
ˆ ∞

0
e−x f (x)dx ,

ˆ ∞

−∞
e−x2

f (x)dx.
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Gauss solved all of these, and more, with an elegant and powerful method. We will
begin more naively. Consider

ˆ 1

−1

f (t)√
1− t2

dt = w1 f (τ1)+w2 f (τ2). (10.48)

There are four unknowns here: the two τks and the two wks. Can we make this exact
for polynomials of degree no more than 3, which also have four degrees of freedom?
The answer is “yes,” and the general answer involves orthogonal polynomials, in
this case, Chebyshev polynomials. We will examine the first two cases here, in two
different ways. We leave a sketch of the general case to the Notes and References
section.

10.4.1 Gauss–Legendre Integration (Case I)

We take the following discussion from Butcher et al. (2011). Consider the weight
function w(x) = 1 on the interval [−1,1]. That is, we wish to find accurate formulæ

ˆ 1

−1
f (x)dx =

n

∑
i=1

wi f (τi) . (10.49)

We use interpolational ideas, and look for an approximation

F(b)−F(a) =
n

∑
i=1
βi f (τi), F ′ = f . (10.50)

We will use a denominator that evaluates F(z) only at the endpoints, z = −1 and
z= 1, but in potentia evaluates both F(z) and F ′(z) = f (z) at all the interior nodes τi.
We will try to choose the τi so that the residues multiplying the F(τi), as in the
Simpson’s rule computation in Sect. 10.2.1, are zero. Therefore, consider

0 =
1

2π i

ffi
F(z)

(z+ 1)(z− 1)P(z)2 dz . (10.51)

Here, we have written P(z) for the polynomial that is zero at these (as yet unknown)
nodes. That is,

P(z) =
n

∏
i=1

(z− τi) . (10.52)

If we can find such a P(z), then the contour integral will be zero, and our formula
exact, for all polynomials F(z) with degF ≤ 2n. So, choose one of the nodes, call it
τ , and write

P(x) = (x− τ)Q(x) . (10.53)
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Then, we also have

P′ = Q(x)+ (x− τ)Q′(x) ⇒ P′(τ) = Q(τ)
P′′ = Q′+Q′+(x− τ)Q′′ ⇒ P′′(τ) = 2Q′(τ) . (10.54)

Now we are ready to compute the terms of the partial fraction expansion of

1
(z+ 1)(z− 1)P(z)2 =

1
(z+ 1)(z− 1)(z− τ)2Q(z)2 , (10.55)

valid near z = τ; this is equivalent to finding the Taylor series at z = τ of

1
(z+ 1)(z− 1)Q(z)2 =

1
(τ+ 1)(τ− 1)Q(τ)

− 2τQ(τ)+Q′ (τ)
(
τ2 − 1

)
(τ+ 1)2 (τ− 1)2 (Q(τ))2 (z− τ)+O(z− τ)2 . (10.56)

The coefficient of 1/(z− τ) will vanish, therefore, if

0 = 2τQ(τ)+ (τ2 − 1)Q′(τ)

= (τ2 − 1)P′′(τ)+ 2τP′(τ) (10.57)

(where we have used (10.54) to replace Q′ and Q). This is to be zero for τ =
τ1,τ2, . . . ,τn. That is, this degree-n polynomial is a multiple of P! Remember-
ing that P is monic, and noticing that the leading coefficients of x2P′′ and xP′
are both known, we can identify the constant of proportionality and thus deduce
that

(x2 − 1)P′′(x)+ 2xP′(x)− n(n+ 1)P(x) = 0 . (10.58)

The polynomial solutions of this equation are the Legendre polynomials, the first
few of which are (in nonmonic form) 1, x, (3x2 −1)/2, x(5x2 −3)/2, (35x4 −30x2 +3)/8, . . ..
See JacobiP(k,0,0,x) in MAPLE. Also, the first eleven Legendre polynomials
are plotted in Fig. 10.4.

Now, we have found the nodes, but what about the weights wi? They come
out of the remaining residues, that is, the rest of the partial fraction expansion,
but in any case the hard part was the τi; a naive attack on the problem gives rise
to equations that are nonlinear. For completeness, we note that the barycentric
weight at z = −1 is −1/(2(P′(−1))2), the weight at z = 1 is 1/(2(P′(1))2), and at all in-
terior nodes is it 1/((τ2

k −1)Q2(τk)). One can use the differential equation to identify
P′(1) = n(n+1)P(1)/2 and similarly for P′(−1). This completely gives the weights in
terms of the nodes.
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Fig. 10.4 The first 11 Legendre polynomials plotted on −1 ≤ x≤ 1. Quadrature at the nodes given
by the degree-n Legendre polynomial is exact, on this interval, for polynomials f (x) of degree at
most 2n−1. Gauss was the first to deduce this

Example 10.7. If n = 8, then the nodes (computed in MAPLE to 30 digits9) are ap-
proximately

[−0.96029,−0.79667,−0.52553,−0.18343,0.18343,0.52553,0.79667,0.96029],

and the weight corresponding to node τi is, after a short partial fraction computation
in MAPLE (which makes some algebraic simplifications10)

wi =
71

192
− 50369

235200
τi

2 +
7293
78400

τi
4 − 429

2240
τi

6 . (10.59)

Working to 30 digits in MAPLE, if we use this 8-node quadrature formula to eval-
uate
´ 1
−1

sin(x)dx/x, we get the correct answer to 19 decimal places. If we replace the
denominator with x+ 2, destroying the symmetry, the accuracy drops to 8 decimal
places—still excellent for only 8 nodes used. �

Thus, as we see, Gaussian quadrature is a powerful tool.

9 This was the hard way. We will see that roots of orthogonal polynomials are eigenvalues of a
symmetric tridiagonal matrix, so really the nodes are not hard at all.
10 Again this is the hard way: We will see an analytical formula that could have saved us this
trouble.
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10.4.2 Gauss–Chebyshev Integration (Case II)

Suppose now that we are interested in Chebyshev polynomials for quadrature. Note
first that the Chebyshev polynomials are orthogonal with respect to this weight func-
tion on this interval:

ˆ 1

−1

Tk(x)Tm(x)√
1− t2

dx = 0 (10.60)

if k �= m. Also,

ˆ 1

−1

T 2
k (x)√
1− x2

dx =

{
π/2 k �= 0
π k = 0

(10.61)

To see why this is true, let x = cosθ , with 0 ≤ θ ≤ π/2, so dx = −sinθdθ and√
1− x2 = sinθ . Also, Tn(x) = cos(narccosx) = cos(nθ ), so

ˆ 1

−1
TkTmw(x)dx =

ˆ π

0
cos(kθ )cos(mθ )dθ , (10.62)

and we have reduced the problem to trigonometric integrals for which the orthogo-
nality is well understood.

We take the following discussion from (Rivlin 1990, pp. 44–45). Suppose p(t)
is a polynomial of degree at most 2n−1. The Lagrange interpolating polynomial to
p(t) at the nodes τk, which are the n zeros of Tn(t), namely,

τ j = ξ j = cos

(
2 j− 1

n
π
2

)
1 ≤ j ≤ n, (10.63)

is

Ln−1(p,T ;t) =
n

∑
j=1

p(ξ j)
Tn(t)

T ′
n(ξ j)(t − ξ j)

(10.64)

[that is, the barycentric weight β j is just the leading coefficient of Tn(x) times
1/T ′

n(ξ j)]. Since p(t)−Ln−1(t) = 0 for t = ξ1,ξ2, . . . ,ξn, we have

p(t)−Ln−1(t) = Tn(t)r(t) (10.65)

for some polynomial r(t) with degr(t)≤ n− 1. Now, r(t) = ∑n−1
k=0 ckTk(t) for some

ck (because every polynomial may be expressed in terms of Chebyshev polynomials,
that is what it means to form a basis). Therefore, by orthogonality,

ˆ 1

−1

r(t)Tn(t)√
1− t2

dt = 0 , (10.66)
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and as a result
ˆ 1

−1
p(t)

dt√
1− t2

=

ˆ 1

−1
Ln−1(p,T ; t)

dt√
1− t2

. (10.67)

Hence, we may evaluate the right-hand side of the above by the weighted sum
ˆ 1

−1

p(t)dt√
1− t2

=
n

∑
j=1

wj p(ξ j) , (10.68)

where the ws turn out to be explicitly calculable11:

wj =
1

T ′
n(ξ j)

ˆ 1

−1

Tn(t)dt

(t − ξ j)
√

1− t2
=
π
n
. (10.69)

Thus, the quadrature formula
ˆ 1

−1

f (t)√
1− t2

dt ≈ π
n

n

∑
j=1

f (ξ j) (10.70)

is exact for all polynomials of degree ≤ 2n− 1.
Other Gaussian quadrature formulæ are not quite so simple. Here both the nodes

and the weights have simple analytical formulæ. In the general case, to find the
nodes you have to solve a symmetric tridiagonal eigenvalue problem, and then eval-
uate a polynomial formula to find the weights.

Returning to the Chebyshev case, to understand its accuracy, approximate f as
best you can by a degree-(2n− 1) polynomial p∗(t) that agrees with f at the n
Chebyshev points. This leaves some degrees of freedom. The error in this quadrature
formula is thus

ˆ 1

−1
( f (t)− p∗(t))

dt√
1− t2

, (10.71)

which is often very small.

Example 10.8. Taking n = 48, evaluating f (t) = 1
1+25t2 on 48 points, we get

ˆ 1

−1

dt

(1+ 25t2)
√

1− t2
≈ π

48

48

∑
j=1

1

1+ 25ξ 2
j

= 0.616117002990640, (10.72)

while the true answer is π/
√

26 = 0.616117009400542. We see an error that is about
6× 10−9, which is pretty good for only 48 points, on such a nasty example! �

One common situation where Gaussian quadrature is attractive is if you wish to
perform many numerical integrations of a similar type. A prototype of that situation
is the computation of orthogonal series, say Chebyshev series

11 This is a remarkably simple formula for the weights, but it turns out that there is at least an
analytical formula for all orthogonal polynomial weights; we will see this later.
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f (z) = ∑
k≥0

ckTk(z) . (10.73)

By the orthogonality of the series, the coefficients are

ck =
2
π

ˆ 1

x=−1

f (x)Tk(x)√
1− x2

dx (10.74)

unless k = 0 when the factor in front is 1/π. If we are to do this for many functions
f , and choose to use (say) 15 terms in each series, then the numerical integrations
might efficiently be done if we set up Gauss–Chebyshev quadrature for each one.

Example 10.9. When we do this for f (z) = exp(−z) using (say) n = 40 points ξ j,
we get quite decent accuracy. The Chebyshev series that we compute are accurately
evaluated by use of Algorithm 2.2. The error reported in this example is about 1.0×
10−14. This is similar to what Chebfun does, but not identical; there the Chebyshev–
Lobatto points are used and instead of Gauss–Chebyshev quadrature, Clenshaw–
Curtis quadrature, which we briefly sketch in the next section, is used.

1 function [p,c] = GaussChebyshevClenshaw( f_in, n_in, m_in )
2 % GAUSSCHEBYSHEVCLENSHAW Gauss-Chebyshev quadrature
3 % to find approximate Chebyshev series
4 % GaussChebyshevClenshaw( f, n, m )
5 % Find a degree m Chebyshev series expansion for f on -1 <= x <=

1
6 % using n-poing Gauss-Chebyshev quadrature.
7 %
8 % Evaluate the resulting series using the Clenshaw algorithm at

201 points
9 % on -1 <= x <= 1 and compare with the original function.

10

11 if nargin<2,
12 n = 40;
13 else
14 n = n_in;
15 end
16

17

18 xi = cos( pi*((1:n)-1/2)/n );
19 if nargin <1,
20 f = exp( - xi );
21 else
22 f = feval( f_in, xi );
23 end
24

25 if nargin< 3,
26 m = 15; % m+1 terms in the series we compute
27 else
28 m = m_in+1;
29 end
30

31 c = zeros(m+1,1);
32 c(1) = 1/n *sum(f);



444 10 Numerical Integration

33 for k=1:m,
34 c(k+1) = 2/n*f*cos( k*pi*((1:n)-1/2)/n ).';
35 end
36

37 t = linspace(-1,1,201);
38

39 function p = ClenshawChebyshev( t, c )
40 % Clenshaw algorithm for evaluation of the series
41 m = length(c) - 1;
42 if m<0,
43 % empty c ==> zero polynomial
44 p = zeros(size(t));
45 elseif m==0,
46 % degree 0 ==> constant polynomial
47 p = c(1)*ones(size(t));
48 else
49 % degree 1 or more, use Clenshaw algorithm
50 y2 = zeros(size(t)); % y_{m+1}
51 y1 = c(m+1)*ones(size(t)); % y_{m}
52 %
53 % p = sum( c(j)*T(j-1,t), j=1..m-1) + c(m)*T(m-1,t)
54 % + y1*T(m,t) - y2*T(m-1,t) Loop invariant

initialization
55 for k=m:-1:2,
56 % p = sum( c(j)*T(j-1,t), j=1..k-1) + c(k)*T(k-1,t) + y1*

T(k,t)
57 % - y2*T(k-1,t) Loop invariant
58 y0 = c(k) +2*t.*y1 - y2; % y_{k-1}
59 % p = sum( c(j)*T(j-1,t), j=1..k-1) + y0*T(k-1,t) +
60 % y1*(T(k,t)-2tT(k-1,t)) [= -y1*T(k-2,t) ]
61 y2 = y1;
62 y1 = y0;
63 % p = sum( c(j)*T(j-1,t), j=1..k-2) + c(k-1)*T(k-2,t) +
64 % y1*T(k-1,t) - y2*T(k-2,t) Proving correctness
65 end
66 % p = c(1)*T(0,t) + y1*T(1,t) - y2*T(0,t)
67 p = c(1)-y2 + y1.*t;
68 end
69 end
70

71 p = ClenshawChebyshev( t, c );
72 if nargin<1,
73 ft = exp(-t);
74 errs = p - ft ;
75 else
76 ft = feval(f_in,t);
77 errs = p - ft;
78 end
79 figure(1), plot( t, errs, 'k'), set(gca,'fontsize',16),xlabel('t'

),ylabel('absolute error')
80 figure(2), plot( t, p, 'k', t, ft, 'k--'), set(gca,'fontsize',16)

,xlabel('t'),ylabel('Chebyshev series')
81 end
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If m > 1, then a loop invariant for the Clenshaw algorithm is given by

p(z) =
k−1

∑
j=0

c jTj(z)+ ckTk(z)+ y1Tk+1(z)− y2Tk(z) (10.75)

for k = m− 1, m− 2, . . ., 0. Because MATLAB does not allow indexing from 0 in
arrays, that loop invariant must be translated (as it is in the comments) to index
into c starting from 1. When the loop finishes with k = 0 so the sum is empty,
p(z) = c0T0(z)− y2T0(z)+ y1T1(z), which is easy to evaluate. �

10.5 Clenshaw–Curtis Quadrature

We have presented a lot of methods so far. Which one should you use for your
problem? We can’t answer that, of course, because that depends strongly on your
context, but we now present an interesting candidate for smooth problems, namely,
Clenshaw–Curtis quadrature.

The following MATLAB function, taken from Trefethen (2008a) and modified
slightly to fit the format of this page, evaluates an integral in a nonadaptive fashion:

1 function I = clenshaw_curtis( f, n )
2 %CLENSHAW_CURTIS (n+1)-pt C-C quadrature of f
3 % original program L.N. Trefethen, 2008
4 x = cos(pi*(0:n)'/n); % Cheby points
5 fx = feval(f,x)/(2*n); % evaluate f
6 g = real(fft(fx([1:n+1 n:-1:2]))); % FFT
7 a = [g(1); g(2:n)+g(2*n:-1:n+2); g(n+1)]; % Cheby coeffs
8 w = 0*a'; w(1:2:end) = 2./(1-(0:2:n).ˆ2); % weight vector
9 I = w*a; % the integral

10 end

This nice didactic program is intended to find quadratures of
´ 1
−1 f (x)dx using the

(n+ 1)-point formula ˆ 1

−1
f (x)dx

.
=

n

∑
j=0

wj f (η j) , (10.76)

where η j are the n+ 1 Chebyshev–Lobatto points, namely, the extrema of the nth-
degree Chebyshev polynomial, η j = cos jπ/n for 0 ≤ j ≤ n, including the endpoints.
The weights are as described in the penultimate line of code above and are very
simple. In part, it is the simplicity of the method that recommends it first. It is
actually very efficient, because it takes advantage of the FFT. It’s hard to imagine
a shorter program. We note that a full implementation of Clenshaw–Curtis is used,
for example, as a workhorse in the MAPLE integrator and is especially useful at
moderately high precision.
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Example 10.10. Integrating

I =
ˆ 1

x=−1
x tanxdx = 0.856176602730352043 . . . (10.77)

using 10, 20, and 40 points with the Clenshaw–Curtis program above produces an-
swers that have I10/I40 − 1 = −7.6× 10−7 and I20/I40 − 1 = −2.8× 10−12. This leads
us to believe that the 40-point answer is accurate up to roundoff. Indeed, by compar-
ison to the exact result from MAPLE (printed above), we find that I40 is the exactly
rounded result. �

In fact, the method is nearly as accurate as Gaussian quadrature, and without all
that bothersome computation of weights. The accuracy is something of a surprise.
As the method is written, it is simply a weighted average and is exact only for
polynomials of degree n, not 2n− 1 as the Gaussian rules are; but this turns out
not to be a problem in a significant number of cases. Indeed on a large number of
examples, it performs very nearly as accurately as Gaussian integration, and at a
lower overall cost. We note that the method is not adaptive, as written here, but can
be written in an adaptive fashion.

10.6 The Effect of Derivative Singularities and of Infinite
Intervals

The quadrature of integrands whose derivatives are infinite at or near some
point in the interval is quite problematic. After all, even Riemann integrals
are defined only for continuous integrands, strictly speaking: Integrals of func-
tions with discontinuities—so-called improper integrals—are defined as limits of
proper integrals.

Because the error coefficients for quadrature rules involve average values of
derivatives of the integrand—for example, the midpoint rule error increases with
f ′′(x)—and because higher-order derivatives are more sensitive to nearby singular-
ities, higher-order methods suffer more loss of accuracy than lower-order methods
do when employed on singular integrands. There are a great many tricks to employ
in trying to deal with these. Adaptive quadrature is some help; but changes of vari-
ables to eliminate the singularity, if possible, are better. As a last resort, one can try
to subtract off an analytically evaluable integral with the same sort of singularity,
and use numerical quadrature on the difference; this technique, sometimes called
acceleration, is of great utility. It is used in the numerical quadrature routines in
MAPLE.

Example 10.11. As an example of that, consider
ˆ ∞

0
sin(x) ln(x)e−x3

dx
.
=−0.195788515848799753839057233146 , (10.78)
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which has both a weak singularity at the origin and an infinite interval, although
the function decays very rapidly as x → ∞. However, MAPLE evaluates the inte-
gral without difficulty, numerically (the antiderivative is not expressible in terms of
elementary functions). The method it uses, as stated above, is to analyze the singu-
larity structure (by use of generalized series) and integrate singular approximations
analytically. �

Example 10.12. For n < 1, consider the simple integral.

ˆ 1

0
x−n dx =

1
1− n

. (10.79)

If we ask MATLAB to compute this via quad for n = 0.662672, with tolerance
1.0 · 10−8, all is well, and it returns the correct answer (with an error 2.0 · 10−6,
which is worse than the tolerance, but it’s not bad). If we increase n to 0.662673,
quad fails with an error message, “Warning: Minimum step size reached; singular-
ity possible.” Worse, it has taken over 600 function evaluations to tell us this.12 This
can be repaired in almost any of the ways previously mentioned; change of variables
can help, which is what is done in quadgk, and done for strong singularities almost
automatically by the new code quadsas available in the MATLAB Central File Ex-
change and described in Shampine (2010), which we believe has been incorporated
into the newer MATLAB routine integral.

Below we try the technique of subtracting off an analytically known singularity.
For example, suppose that we were really trying to integrate

ˆ 1

0
cos(x)x−n dx (10.80)

for some n near 1. If we instead integrated

ˆ 1

0
cos(x)x−n dx =

1
1− n

+

ˆ 1

0
(cos(x)− 1)x−n dx , (10.81)

then we have considerably better success: The integrand on the right has a much
weaker (derivative) singularity at the origin. The command quad has no trouble
with it, as

quad( @(x) (cos(x)-1)./x.ˆ0.66273, 0, 1, 1.0e-8, 1 )

returns −0.2045. �

Example 10.13. Here is another example (from Kahan (1980)) where things do go
wrong, in a bad way:

A(x) =
1
x

ˆ x

0

√
−2logcosu2

u2 du = 1+
x4

60
+

x8

480
+ · · · . (10.82)

12 For functions with endpoint singularities, the routine quadgk is recommended instead of quad,
which is intended for low accuracies for nonsmooth functions but with only weak singularities.
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In MATLAB, we can implement this function with, for example,

A = @(x) (quad(@(u)sqrt(-2*log(cos(u.ˆ2)))./u.ˆ2,0,x,1.0e-8))./x

Just as stated in Kahan (1980), this program reports answers impossibly less than 1,
for small x, say 0.1 or smaller. For instance, A(0.001) is reported as 0.89958, without
a warning (that’s the bad bit). As Kahan says, though, “Don’t panic! The answers
are wrong, but the [computer] is right.” The problem is not with the quadrature, but
with the evaluation of the function! We leave you with his article to read, but note in
passing that his “cure” for this integral, namely, to write the function in the following
curious way, which is mathematically but not numerically equivalent, does not quite
work in MATLAB, but almost. See also problem 3.26. Define

B = @(x) (quad('velvel',0,x,1.0e-8))./x,

where “velvel” is

1 function [ f ] = velvel( u )
2 %VELVEL nasty quadrature example
3 % from "How to Tame A Wild Integral"
4 % f(u) = sqrt(-2*log(cos(uˆ2)))/uˆ2
5 y = cos(u.ˆ2);
6 if y==1,
7 f = 1;
8 else
9 f = sqrt(-2*log(y))./acos(y);

10 end
11 end

Then B(0.01) succeeds with full accuracy [whereas A(0.01) does not], but B(0.001)
yields an error message, complaining about a NaN—this does not happen on the old
HP calculator. �

Infinite intervals seem to present a similar problem, but provided the decay is
rapid enough, there is no difficulty when precision is high enough, and indeed the
double-exponential method (also called tanh-sinh quadrature) takes advantage of the
spectral accuracy of the trapezoidal rule for rapidly decaying integrals on infinite
intervals to evaluate finite interval integrals by first transforming them to the infinite
integral!

10.7 A Diversion with Chebfun

We return briefly to the simple singular integrands
´ 1

0 x−n dx and
´ 1

0 cos(x)x−n dx
and have a look at what Chebfun can do with them. The answer is (to us) quite
shocking: it does them perfectly, even for n = 1− εM, and blazingly fast. This beats
MATLAB’s built-in numerical quadrature for accuracy and robustness, and roundly
tramples MAPLE’s symbolic integration (which eventually returns a complicated
answer to the second one involving Lommel S1 functions) for speed. Execute the
following:
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1 % Quadrature of singular integrands with chebfun
2 % Testing by RMC 2011
3 x = chebfun('x',[0,1]);
4 a = 1-eps;
5 y = x.ˆ(-a);
6 relerr = (1-a)*sum( y )-1
7 y2 = cos(x).*y;
8 sum(y2)

The relative error in the first integral is 2−52, that is, one bit wrong (possibly because
of the multiplication and not the quadrature), while the answer returned from the
second (nonelementary) integral is correct to all bits: The relative error is zero, even
though the value of the integral is larger than 1015.

As of this writing, though, Chebfun is not (yet) perfect. Looking at our example
integral for W (z)/z (which was handled beautifully by the simple trapezoidal rule), we
get the following:

1 function [ W ] = RealW( z )
2 %REALW Lambert W of z by chebfun integration
3 % Testing chebfun quadrature
4 lim = pi;
5 v = chebfun( 'x', [-lim,lim] );
6 vcotv = chebfun( 'x*cot(x)', [-lim,lim], 'splitting', 'on', '

blowup', 'on' );
7 vcscv = chebfun( 'x*csc(x)', [-lim,lim], 'splitting', 'on', '

blowup', 'on' );
8 y = ((1-vcotv).ˆ2 + v.ˆ2)./( z + vcscv.*exp(-vcotv) );
9 W = z.*sum( y )/(2*pi);

10 % RealW(1) at one point yielded the error message:
11 %??? Error using ==> chebfun.exp at 9
12 %chebfun cannot handle exponential blowups
13 %
14 %Error in ==> RealW at 8
15 %y = ((1-v.*cotv).ˆ2 + v.ˆ2)./( z + v.*cscv.*exp(-v.*cotv) );
16

17 end

We expect that this particular case will be handled in a future release. Note also
that MAPLE used to have trouble with this one too. While the essential singularities
at the ends of the interval are, in fact, benign (for the integration), the fact that the
singularities are there at all gives some numerical schemes “fits of anxiety.”

Example 10.14. Chebfun does very well on Kahan’s first example:

I1 =

ˆ 1

0

( √
u

u− 1
− 1

lnu

)
du. (10.83)

Executing

y = chebfun('sqrt(x)/(x-1)-1/log(x)',[0,1],'blowup','on')
sum(y)
res = ans / 0.03648997397857652059 - 1
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returns 3.648997397857652 ·10−2 and the residual 0. The reference answer we use
is MAPLE’s evaluation to 20 digits of 2 − 2ln2− γ . Chebfun got it correct to all
places. �

Example 10.15. On Kahan’s nastier example, Eq. (10.82), Chebfun does not do so
well. The command

K2 = chebfun('sqrt(-2*log(cos(xˆ2)))/xˆ2', [0,1], 'blowup','on');

just goes away. When we try to use Kahan’s trick of rewriting the function, using
the velvel subroutine given earlier, we do somewhat better, but not perfectly.
Executing

v = chebfun(@velvel, [0,1], 'blowup', 'on' )

yields a single degree-33 approximation to the function, which cumsum, as over-
loaded in Chebfun, is happy to integrate. If we then define a Chebfun by

a = cumsum(v)./chebfun('x',[0,1])

we get a degree-29 approximation, which plots very nicely: but while a(0.01) is
larger than 1, as it should be, all values of x that we tried at or below x = 0.001 give
us numbers just below 1. For example, a(0.001) yields 0.9999999999999044 and
not 1+ 0.0014/60+ · · · , as it should. �

Several other examples are explored on the Chebfun page.13 But now, we turn
to an argument extending Kahan’s impossibility proof to Chebfun. Consider the fol-
lowing simple function:

1 function [ y ] = Aphra( x )
2 %APHRA A harmless function, that simply returns 0
3 %
4 global KingCharles;
5 global KingCharlesIndex;
6 n = length(x);
7 KingCharles(KingCharlesIndex:KingCharlesIndex+n) = x;
8 KingCharlesIndex = KingCharlesIndex + n;
9 y = zeros(size(x));

10 end

All it does is return 0, no matter what its input is. Well, like Aphra Behn herself,14

this program also reports back to King Charles; here, she’s just reporting the argu-
ments she was called with. Now, enter the following program:

1 function [ y ] = Benedict( x )
2 %BENEDICT Another harmless function
3 % But this function is not zero.
4 global KingCharles;
5 global KingCharlesIndex;
6 global Big;
7 s = ones(size(x));

13 See the page http://www2.maths.ox.ac.uk/chebfun/examples/quad/html/
BatteryTest.shtml.
14 Aphra Behn (1640–1689) was one of the first female English playwrights. She was also a spy
for Charles II, using the code name Astrea.

http://www2.maths.ox.ac.uk/chebfun/examples/quad/html/BatteryTest.shtml
http://www2.maths.ox.ac.uk/chebfun/examples/quad/html/BatteryTest.shtml
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8 for i=1:KingCharlesIndex-1,
9 s(:) = s(:).*(x-KingCharles(i)).ˆ2;

10 end
11 y = Big*s;
12 end

This program, like the Malicious program we mentioned before, uses the results
of Aphra’s spying operation to define its function value. Of course, a function could
have these zeros just by chance (admittedly a small chance), so it’s not completely
unreasonable. But Benedict’s function value is not identically zero—in fact, the
function is zero only at the points known through Aphra via King Charles, and is
positive everywhere else. So quite clearly, the function that Chebfun would approx-
imate would be zero, an erroneous value. Here is how the treachery is carried out:

1 clear all
2 close all
3 global KingCharles
4 global KingCharlesIndex
5 global Big
6 KingCharles = zeros(10000,1);
7 KingCharlesIndex = 1;
8 A = chebfun( @Aphra, [-1,1], 'minsamples', 129 )
9 %Warning: Function failed to evaluate on array inputs;

vectorizing the function may speed up its
10 %evaluation and avoid the need to loop over array elements. Use '

vectorize' flag in the chebfun
11 %constructor call to avoid this warning message.
12 %> In @chebfun\private\vectorcheck at 36
13 %% In @chebfun\private\ctor_adapt at 117
14 % In chebfun.chebfun at 204
15 % In treachery at 5
16 %A =
17 % chebfun column (1 smooth piece)
18 % interval length endpoint values
19 %( -1, 1) 1 0 0
20 %
21 KingCharlesIndex
22 %
23 %KingCharlesIndex =
24 %
25 % 133
26 %
27 Big = 1.0e77;
28 B = chebfun( @Benedict, [-1,1], 'minsamples', 129 )
29 %B =
30 % chebfun column (1 smooth piece)
31 % interval length endpoint values
32 %( -1, 1) 1 0 0
33 %vertical scale = 0
34 % Heh. Same as Aphra. She has done her job well!
35 t = linspace(-1,1,2012);
36 Bt = Benedict(t');
37 Bct = B(t');
38 plot( t', Bct, 'r--', t', Bt, 'k.' )
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Fig. 10.5 The graph of the not-identically-zero function computed by Benedict, after the
identically-zero function Aphra has reported on where Chebfun probes a zero function. The asym-
metry demonstrates that Chebfun samples in an asymmetric fashion; in fact, it uses just one extra
point

The result is plotted in Fig. 10.5. If the minsamples argument had been used,
this second function would have been a higher-degree polynomial that is zero pre-
cisely at the places that Chebfun probes a zero function. However many samples are
used, if the same argument is passed with Benedict, this will fool Chebfun into
thinking that Benedict, like Aphra before him, is a cipher. This leads Chebfun
into a serious error of approximation: The chebfun for Benedict is the identi-
cally zero chebfun, just as it is for Aphra. Curiously enough, Benedict is not
symmetric on [−1,1], which we find surprising.

In principle, it might happen in an application that Chebfun could be fooled this
way, not through malice, as here, but simply by mischance. Any function that is
passed to Chebfun might just happen to have its zeros exactly where Chebfun will
probe it. This is unlikely and not a serious worry for real computation, although
high-degree polynomial and rational functions, and exponential functions, can look
remarkably constant over intervals. This is why Chebfun allows the user to override
the default sampling behaviour, and to ask it to take more samples. The keyword
to use is minsamples, as in the “spike” example in the quadratures page.15 Of
course, here, one could call Aphra first, with the same setting of minsamples,
but that would be truly malicious.

15 See the page at http://www2.maths.ox.ac.uk/chebfun/examples/quad/pdf/
SpikeIntegral.pdf.

http://www2.maths.ox.ac.uk/chebfun/examples/quad/pdf/SpikeIntegral.pdf
http://www2.maths.ox.ac.uk/chebfun/examples/quad/pdf/SpikeIntegral.pdf
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Fig. 10.6 A graph of ωF(ω), showing clearly that F(ω) oscillates and decays like O(1/ω)

10.8 Oscillatory Integrands

Oscillatory integrals, as previously mentioned, are ill-conditioned. This means that
they are sensitive to data errors or to modeling errors; but if there are none of those,
then they are still sensitive to numerical errors, and in effect one has to resort to
semi-analytical techniques. There is an excellent survey of recent results in Iserles
et al. (2006), but we will spend a little time here on an older technique known as
Filon integration, which is the simplest one studied in Iserles et al. (2006).

Suppose we wish to evaluate

F(ω) =
ˆ 1

−1

cos(ωt)
1+ t2 dt . (10.84)

MAPLE can find an analytical expression for this, namely,

F(ω)= i
2 (Ci((1+ i)ω)−Ci((1− i)ω)+Ci(−(1+ i)ω)−Ci(−(1− i)ω))coshω

− (Si((1+ i)ω)+Si((1− i)ω))sinhω , (10.85)

which contains hyperbolic sines, cosines, and the nonelementary sine and cosine
integral functions Si and Ci. Evaluating that MAPLE expression for ω = 100 turns
out to be surprisingly difficult, requiring more than 100 digits of precision to draw
the graph in Fig. 10.6. The difficulty is that the exponentially growing cosh(ω)
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and sinh(ω) terms present in the analytical answer cancel out, in nontrivial ways.
One must use enough precision to evaluate things of size e2ω and subtract them
to get an answer of the size of 1/ω accurately. This is an example of the third and
fourth reasons we pointed out at the beginning of this chapter for doing numerical
integration: Even though we have a formula, it’s so unstable that it’s more expensive
to evaluate it than it is to do numerical quadrature!

Getting MAPLE to find an asymptotic series for that formula is also surprisingly
difficult, although eventually one can use Taylor series (and a good bit of further
work16) to find

F(ω) =
ˆ 1

−1

∞

∑
k=0

(−t2)k cos(ωt)dt ∼ sinω
ω

+O(ω−2) . (10.86)

Direct numerical integration in MAPLE for ω = 100 succeeds, with about 500 func-
tion evaluations (for 200-decimal digits of answer), and the answer is accurate. For
ω = 1000, however, the quadrature takes about 1500 evaluations. A similar story
holds in MATLAB. So this integral can be done, with standard tools, but it seems to
be harder for larger ω . Indeed, MATLAB fails already for ω .

= 2000, in the sense
that it hits its function evaluation count limit (this can be raised, but the fact that the
limit is encountered is a sign of trouble; we’re better off looking for a smarter way).

Filon17 integration of

ˆ 1

−1
f (t)cosωt dt (10.87)

tries to be a bit smarter. The method uses the analytically computable integrals

ˆ 1

−1
φi, j(t)cosωt dt = μi, j(ω)

for basis polynomials φi, j(t) in much the same way that the Taylor series method
did, but instead of using a Taylor series and the monomial basis to approximate the
nonoscillating part of the function, it uses interpolation. The original Filon scheme
used piecewise quadratic interpolation, but we (as did Iserles et al. (2006)) will use
Hermite interpolation, although we will work directly in the Hermite interpolational
basis. Thus, if f (x) has Hermite basis coefficients ρi, j, that is,

f (t) =
n

∑
i=1

si−1

∑
j=0

ρi, jφi, j(t) ,

16 At least, RMC made heavy going of it, being led through Lommel S1 functions and having to
sum an infinite series just to get the leading coefficient. One hopes there is an easier way.
17 Louis Napoleon George Filon (1875–1937) was an English applied mathematician (but yes, born
in France). See his Wikipedia entry for more details. One of us is happy to claim distant cousinship.
Of course, it’s true also for the other of us, but probably even more distantly.
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then ˆ 1

−1
f (t)cosωt dt

.
=

n

∑
i=1

si−1

∑
j=0

ρi, jμi, j . (10.88)

Precomputing the μi, j, called the moments, allows one to evaluate integrals remark-
ably well, and it turns out that the accuracy increases as ω increases. The difficulty
with cancellation is taken care of largely analytically, or even in the case of high-
precision computation of the moments, seminumerically.

What follows is an idiosyncratic approach to Filon integration, specifically aimed
at this example. The detailed technique (which is our own variation on the standard
Filon integration) will probably work only for oscillatory integrands without sta-
tionary points—the easy cases, in other words. In fact, we have only tried it for the
regular case of

´
f (t)exp(ig(t))dt, where g(t) = t. But we like the approach, be-

cause it shows off differentiation matrices (which we study in the next chapter) and
Hermite interpolation and the method of undetermined polynomials, and is quite
remarkably effective. We plan to investigate extensions of this, in the near future.
But for now, let us consider only this simplest case.

The first thing to note is that the integral of a polynomial times a cosine is a
polynomial combination of a sine and cosine:

ˆ
p(t)cosωt dt = P(t)cosωt +Q(t)sinωt . (10.89)

It is true for the integral of p(t)sinωt as well. One can see that this must be so by
integration by parts. However, we do not choose to use integration by parts here,
or indeed the monomial basis at all. Instead, we differentiate both sides and equate
trigonometric coefficients to find

0 = ωP(t)−Q′(t)
p(t) = P′(t)+ωQ(t) . (10.90)

These (basis-free!) equations are equivalent to ω p(t) = (D2 +ω2)Q(t). Notice that
the degree of P is one less than the degree of Q, by the first equation, and that there-
fore the degree of Q is the same as the degree of p. Thus, if we interpolate p with
enough information to recover it completely, then the corresponding information is
also enough to specify both Q and P. Therefore, we may use the same set of nodes
and confluencies to describe all three polynomials.

Finally, notice that if we know what P and Q are, then we can evaluate

ˆ 1

−1
p(t)cosωt dt = (P(1)−P(−1))cosω+(Q(1)+Q(−1))sinω (10.91)

by the fundamental theorem of calculus—that is, we can analytically evaluate this
kind of integral. Of course, our example has f (t) = 1/(1+ t2), which is not a poly-
nomial of any sort, and so we may not evaluate this integral analytically. But
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what happens if we interpolate f (t) at some convenient points? For example, take
τ = [−1,0,1] and confluency s = 2. We then must solve the Eq. (10.90), which we
do without converting to any other basis by use of the differentiation matrix for
these nodes and this confluency. We examine this in more detail in Chap. 11; for
now, we can use this code:

1 % A script to do Filon quadrature of int( f(t)*cos(omega*t), t
=-1..1 )

2 %
3 % Hermite interpolation of f, differentiation matrices, and the
4 % method of undetermined polynomials are used:
5 % int( p*cos(omega*t), t ) = P*cos(omega*t) + Q*sin(omega*t)
6 % where Q'-omega*P=0 and P'+omega*Q=p.
7 %
8 % RMC December 30, 2010
9 %

10 f = @(t) 1.0./(1+t.ˆ2);
11 df= @(t) -2.0*t./(1+t.ˆ2).ˆ2;
12 %f = @(t) 1 + 2*t + 3*t.ˆ2 + 4*t.ˆ3 + 5*t.ˆ4;
13 %df= @(t) 2 + 6*t + 12*t.ˆ2 + 20*t.ˆ3;
14 tau = [-1,0,1];
15 %tau = cos( pi*(0:3)/3 );
16 %tau = [-1, -1/2, 1/2, 1];
17 [gam,D] = genbarywts(tau,2);
18 rho = [f(tau); df(tau)];
19 p = rho(:);
20 w = 200.3; % omega=2003, Maple = -0.485623502941671423e-3, quad

fails
21 A = Dˆ2 + wˆ2*eye(size(D)); % Dˆ2
22 Q = A\(w*p);
23 P = D*Q/w;
24 % use the fact that tau(1)=-1 and tau(end)=1
25 Filon = (P(end-1)-P(1))*cos(w) + (Q(end-1)+Q(1))*sin(w)
26 % Now try quad, and see how it compares
27 osc = @(t) f(t).*cos(w*t);
28 qans = quad(osc,tau(1),tau(end),1.0e-9);
29 reler = Filon/qans-1

For the parameters in this code, the extremely cheap Filon integration technique
gets an answer accurate to 4 places. If ω is increased to 2013, the Filon procedure
(just exactly as cheap as before) gets six figures of accuracy—it is better for higher
oscillations!—whereas quad fails with the message “Warning: Maximum function
count exceeded; singularity likely.” MAPLE needs 2,000-decimal digit arithmetic to
evaluate its analytical answer for ω = 2003, and takes a great deal of time. If instead
we take ω = 20,000, then MAPLE needs more than 9,000-digit arithmetic (we got
it to succeed with 18,000-digit arithmetic, but didn’t look for the exact breaking
point) to do so, whereas the Filon integration program above works just fine in IEEE
double precision, getting F(ω) = −2.306441272337951×10−5, which is accurate
to about 10−11.

So what about the ill-conditioning? We proved that a small change in the inte-
grand would make a large change, a factor ω at least, in the integral! The trick is
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that small change had to be very high frequency, although it could have a tiny ampli-
tude. If we make small low-frequency changes, then those errors are also essentially
smoothed out by the integral of the oscillation. The trick is to arrange your numeri-
cal procedure to do just that. We have done so here by providing the exact integral of
a function that differs from the original but has exactly the same oscillatory behav-
ior. In some sense, then, we have only allowed changes to the integrand that did not
affect the oscillation—it was, in other words, a method that gave a good structured
backward error.18

Remark 10.3. The approach to Filon integration first discussed, namely precomput-
ing the moments, can be done numerically. However, it is analogous to computing
a full matrix inverse, and if only one or a few integrals need to be done for each ω ,
then the approach described second seems more efficient. �

10.9 Multidimensional Integration

High-dimensional quadrature is the “Mount Everest” of integration. It has various
applications, particularly in financial mathematics. In this section, we confine our-
selves to trying to show what the difficulty is. The difficulty is called “The Curse of
Dimension,” and in essence it becomes harder and harder to sample the domain of
the integral with enough smarts to find the places where the integrand contributes
something to the integral.

Suppose first that we are integrating f (x1,x2, . . . ,xd) over a d-dimensional
cube,19 0 ≤ xk ≤ 1, for each variable xk for k = 1, 2, . . ., d. If we sample our
integrand on a simple tensor-product grid that is at N1 grid-lines in x1, N2 in x2,
and so on, then obviously we must choose N = N1N2 · · ·Nd points in all to evaluate
our function. If each Nk = n, this is N = nd points. If n = 1000 and d = 2, this
is only a million points, which is not so bad, and indeed bivariate quadrature is
considered fairly easy (see quad2d in MATLAB). With d = 3, again while it is
computationally intensive, there is much that can be done (see triplequad in
MATLAB). If n = 100, and d = 4, this is 108 points, which is getting pretty bad.
This is, in fact, an exponential cost increase as d increases. If d is several hundred,
as it can be, then this is clearly hopeless. Tensor product grids must be abandoned.

This is not to give up hope. MAPLE uses ACM TOMS Algorithm 698 in its
multiple integration as described in Berntsen et al. (1991) and claims to be able to
handle dimensions up to 15. There are other alternatives, and some very promising
work on lattice rules (see Cools et al. 2006). But this is a very hard problem indeed.
We end this chapter by pointing you at the vast literature, and in particular at the

18 There’s a lot more to be said about oscillatory integrals, and we leave you with the survey
by Iserles et al. (2006).
19 The other major difficulty of higher-dimensional integration is the geometry of the region itself.
Here we mention only rectangles or cubes, but there are many other shapes of practical interest,
some of which can be mapped to a cube. Not only is the boundary then of concern, but the location
of singularities on or near the boundaries becomes much more problematic.



458 10 Numerical Integration

work of Sloan and Joe (1994), Sloan and Wozniakowski (2001), and Hickernell and
Wozniakowski (2001). Perhaps the most useful single reference is Kuo and Sloan
(2005).

10.10 Notes and References

For an elementary but thorough introduction to the various tricks for using numer-
ical methods on singular integrands, consult Kahan (1980). The advanced semi-
analytical methods of quadrature used in MAPLE are described in Geddes and
Fee (1992). Please see the beautiful and informative introductory paper Weideman
(2002), which does a detailed asymptotic analysis of the error and gives many clar-
ifying examples for spectral accuracy. More details of methods like these can be
found in Bailey et al. (2005). Waldvogel (2011) discusses the spectral accuracy of
the trapezoidal rule in depth. The notion of equidistribution of error is old in nu-
merical analysis. It can be found, for example, in de Boor (1978) in a discussion of
optimal placement of nodes for linear interpolation.

For an excellent survey of the current state of the art in adaptive quadrature,
see Gonnet (2010). There are a lot of adaptive methods implemented in MATLAB,
not just quad; there is also quadl, quadgk, and a vectorized version quadv (see
Shampine 2008b). There is also the newer code integral. There is a great in-
terest in comparing methods; see, for example, Gonnet (2010) for a discussion of
adaptive methods, and Trefethen (2008a) for a comparison of Gaussian quadrature
with Clenshaw–Curtis quadrature and a beautiful geometric explanation of its be-
havior. Wilf (1962) has (among many other useful things) a complete discussion
of Gaussian quadrature and computation of nodes by eigenvalues of the symmetric
tridiagonal so-called Jacobi matrix and the weights by either of a pair of general
formulæ: In our current notation,

wi =
cn

cn−1

[
1

φn−1(τi)φ ′n(τi)

]
=

1

∑n−1
k=0 φ

2
k (τi)

, (10.92)

where cn = [zn]φn(z) is the leading coefficient of the nth orthogonal polynomial.
The symmetric tridiagonal Jacobi matrix mentioned above and treated in Golub and
Welsch (1969) is closely related to the companion matrix pencil for the polynomial
φn(z) in the orthogonal basis {φk(z)}. If we use the three-term recurrence relation,
which we write as

zφn(z) = snφn+1(z)+ unφn(z)+ vnφn−1(z) , (10.93)

with the special case zφ0(z) = u0φ0(z)+ s0φ1(z), then it is clear that

z

⎡⎢⎢⎢⎣
φ0(z)
φ1(z)

...
φn−1(z)

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎣
u0 s0

v1 u1 s1

v2 u2 s2
. . .

. . .
. . .

vn−1 un−1 sn−2

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
φ0(z)
φ1(z)

...
φn−1(z)

⎤⎥⎥⎥⎦ (10.94)
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because zφn−1(z) = sn−1φn(z)+ un−1φn−1(z)+ vn−1φn−2(z) has only two terms in
it if z is a zero of φn(z). Thus, roots of φn(z) are eigenvalues of this matrix. With
this derivation, the Jacobi matrix is not usually symmetric, but it can always be
symmetrized by a positive diagonal similarity transformation, and we presume this
has been done. Thus, the zeros of φn(z) are the (necessarily real) eigenvalues of a
symmetric tridiagonal matrix.

For a discussion of tanh-sinh integration, see Bailey et al. (2005), the original
papers by Takahasi and Mori (1974), and the review Mori and Sugihara (2001).
That these methods do not always work in IEEE double precision is discussed
in Shampine (2010) but is of less importance in the arbitrary-precision works previ-
ously cited.

Numerical integration can be important in rootfinding for analytic functions by
using the residue theorem on

N =
1

2π i

ffi
C

f ′(z)
f (z)

dz , (10.95)

where N counts the number of zeros of f (z) inside the contour C. This is the basic
method used by MAPLE’s RootFinding[Analytic] command. This idea is
also used in localized eigenvalue computation, for example in the paper Sakurai and
Sugiura (2003).

A MAPLE implementation of Aphra and Benedict (called spy and
malicious) can be found in Corless (2002).

Problems

Theory and Practice

10.1. Show that if f (x) is convex up on an interval a ≤ x ≤ b, that is, f (x) is above
its tangent lines, then the midpoint rule gives a lower bound on the area

´ b
a f (x)dx,

and that the trapezoidal rule gives an upper bound (this reverses, for convex down).
Assume f (x) is sufficiently differentiable. Hint: Draw the tangent line to f (x) at the
midpoint, and use similar triangles to compare the area under the trapezoid—with
that tangent line as top—with the area predicted by the midpoint rule.

10.2. Use the midpoint rule, the trapezoidal rule, and Simpson’s rule to estimate
the area under f (x) = x tanx, above the x-axis, and between x = 0 and x = π/4. Use
enough panels to guarantee six-decimal-place accuracy.

10.3. Show that the error in the composite Simpson’s rule is (b−a)h4/90 times an
average fourth derivative of the function being integrated.
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10.4. Find (by brute force) real numbers τ1, τ2, w1, and w2 so that

ˆ 1

0
f (x)dx

.
= w1 f (τ1)+w2 f (τ2) (10.96)

is exact for f (x) = 1, x, x2, and x3. What is the error for f (x) = x4? This is the
beginning of the Gaussian quadrature story.

10.5. Bessel functions have integral representations, for example,

J0(x) =
1
π

ˆ π

0
cos(xsin(t)) dt . (10.97)

Use a quadrature program to evaluate J0(1), and to draw a graph of J0(x) on 0 ≤
x ≤ 10. Use fzero to identify the first positive zero of J0(x). Compare your routine
with the built-in besselj.

10.6. Suppose F(τ1) = ρ1,0, F ′(τ1) = ρ1,1, and F ′(τ2) = ρ2,1. What is F(τ2)?

10.7. Using a computer algebra system (if you like) to do the partial fraction de-
composition, find an integration formula for

ˆ τ3

τ1

F ′(τ)dτ (10.98)

that uses samples at τ1, τ2 between, and τ3. How high a degree F(τ) is your formula
exact for?

10.8. The monomial basis is, as we all know, convenient for differentiation of poly-
nomials. Chapter 11 will show how to differentiate a polynomial, using a differen-
tiation matrix. Integration of polynomials is also convenient in the monomial basis.
How about Lagrange or Hermite? Invent a formula that allows you to easily evaluate

ˆ t

τ1

p(τ)dτ

when you know Hermite data at τ1 through τn, with confluencies sk ≥ 1. Hint: Use
the contour integral approach on a small example, first. For instance, you should be
able to show that the formula

ˆ 1

−1
f (x)dx = f (1)+ f (−1)+

1
3

(
f ′(1)− f ′(−1)

)
(10.99)

is exact for polynomials of degree 3 or less. We remark that these formulæ aren’t all
that common, probably because differentiation of the integrand is more work, and
you might as well just use more function evaluations.

10.9. Use CompanionMatrix in MAPLE (or work out using the recurrence rela-
tion which you will have to look up) and symmetrization to find a symmetric tridi-

agonal eigenvalue problem whose zeros are the roots of the polynomial C
1/4

5 (z), the
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fifth Gegenbauer C polynomial with parameter 1/4. These are orthogonal on [−1,1]
with respect to the weight function (1− z2)a−1/2. These polynomials can be used for
Gaussian quadrature with this weight function.

10.10. Work out the Gaussian quadrature nodes and weights for n = 10 with the
weight function w(z) = exp(−z2) on the interval (−∞,∞).
10.11. Use Filon integration to evaluate

G(ω) =
ˆ 1

0

sinωt
1+ t2 dt (10.100)

for large values of ω , say ω = 2013.

10.12. Try Filon integration on the example given but with different nodes, specifi-
cally tau=cos(pi*(0:n)/n) for different n and large values of ω .

10.13. Find an optimal mesh for evaluating
´ 1

0

√
1− sin4(πx)dx using the midpoint

rule and 10 panels (11 nodes). Compare with the mesh found by integral.

10.14. Show that

7−4z2

(z+1)2(z+ 1/2)2(z− 1
2 )

2(z−1)2
=

4/3

(z+1)2 +
32/3

(z+ 1/2)2 +
32/3

(z− 1/2)2 +
4/3

(z−1)2 +
12

z+1
− 12

z−1

and that therefore
ˆ 1

−1
f (z)dz =

1
9

f (−1)+
8
9

f (−1/2)+
8
9

f (1/2)+
1
9

f (1)

for all polynomials f of degree at most 3.

Investigations and Projects

10.15. Try to use the integral definition (1.22) of the Airy function and a quadrature
routine to evaluate Ai(x) for several x, say x = 1.2 to start. Which routine, if any,
is best? The MATLAB routine quadgk is supposed to be able to handle infinite
intervals. Is this a hard integral to do? If so, why? See the discussion in Gil et al.
(2002) for an alternative approach.

10.16. Using Filon integration on
´ b

a f (t)cosωt+g(t)sinωt dt by the method of the
text leads to the linear system[

ωI D
D −ωI

][
Q
P

]
=

[
f
g

]
. (10.101)
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The antiderivative is denoted P(t)cosωt+Q(t)sinωt. Show that two steps of Jacobi
iteration gives the solution

Q
.
=

f
ω

+
Dg
ω2

P
.
=− g

ω
+

D f
ω2 (10.102)

and that this solution has residual O(1/ω3) as ω → ∞. This incidentally shows why
an earlier version of the code of Sect. 10.8, which had a bug in the creation of the
matrix D, got good answers anyway for large ω .

10.17. Investigate the MATLAB routines for double integration and triple
integration.

10.18. Larry Shampine pointed out after reading a draft that this chapter really
doesn’t talk much about the critical issue of estimating the error in a computed
numerical integration. We talk about equidistribution, but not of what. One possi-
ble method is to compare the result of one quadrature method with that of another
(possibly the same one with a refined mesh). Discuss.



Chapter 11
Numerical Differentiation and Finite Differences

Abstract Taking derivatives of numerical functions is one of the most often per-
formed tasks in computation. Finite differences are a standard way to approximate
the derivative of a function, and compact finite differences are especially attractive.
We study the conditioning of differentiation, including some structured condition
numbers for differentiation of polynomials. We look at differentiation matrices for
derivatives of polynomials expressed in a Lagrange or Hermite interpolational basis.
We look at regularization or smoothing before taking derivatives, and briefly touch
on automatic differentiation. �

Numerical differentiation can be described in nearly the same terms as we
described quadrature, simply by replacing three words: The basic idea of numer-
ical quadrature differentiation is to replace f (x) with a slightly different function,
call it f (x)+Δ f (x) or ( f +Δ f )(x), and integrate differentiate the second function
instead. This is our engineered problem (see Chap. 1). We will choose Δ f so that
it’s not too large, and so that f +Δ f is simple to integrate differentiate exactly.

As we did in the previous chapter for integration, here we examine the condition-
ing of differentiation, and we examine some methods to numerically differentiate
functions from the backward error point of view.

11.1 Conditioning

We begin this chapter on the numerical computation of derivatives with an answer to
what, by now, should be a familiar question: What are the effects of data or modeling
error on the computation of derivatives?

Theorem 11.1. Differentiation is infinitely ill-conditioned.

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods:
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0 11,
© Springer Science+Business Media New York 2013
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Proof. Suppose f (z) has derivative f ′(z) and that Δ f (z) = ε cosωz. Then

d
dz

( f (z)+Δ f (z)) = f ′(z)+ (Δ f ) ′(z) = f ′(z)− εω sinωz

and the absolute condition number

‖(Δ f ) ′(z)‖
‖Δ f (z)‖ = ω (11.1)

can be arbitrarily large. �

In one sense this is a trivial theorem; of course, a change in f that is small but wiggly
will change f ′ a lot.

In another sense, however, this theorem is not so trivial because every computer-
instantiated function over R is locally constant: That is, f̂ ′ = 0 almost everywhere.
So, computers (at their finest scale) do exactly this, replacing f by f +Δ f , where
‖Δ f‖ is small but where ‖Δ f ′‖ is not small. Let us put it another way. Consider

f̂ ′(z) := lim
h→0

f̂ (z+ h)− f̂ (z)
h

. (11.2)

If |h| < μM|z|, then z ⊕ h ≡ z and thus f̂ ′(z) = 0. This is quite reminiscent of
another of Zeno’s paradoxes; here we have a curve, but everywhere its deriva-
tive is zero—well, everywhere the derivative is defined (and it is only undefined
at the boundaries between rounding up or down to adjacent machine numbers).
See Fig. 11.1. Nonetheless we’re going to try, anyway, to see if we can find f ′(z)

−2 −1 0 1 2

x 10−16

0

2

4

6

8
x 10−34

dt

p(
0.

25
+

dt
)

Fig. 11.1 Functions are flat when you zoom in close enough. Here, the function of Example 8.6 is
plotted very near a double zero z = 1/4. Evaluation is by the second barycentric form. One sees that
at this fine a scale, the approximation is locally flat, so its derivative is zero wherever it is defined
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approximately, without running into f̂ ′. One thing that helps is the idea of structured
condition number, which we take up after we study differentiation matrices.

11.2 Polynomial Formulæ and Differentiation Matrices

The traditional way to begin is by differentiation of polynomials, and it’s a good
way. However, because of our emphasis in previous chapters, we begin by differen-
tiating polynomials expressed in the Lagrange basis.

We give an example first and then a general theorem. Suppose that f (z) is given
by ρρρ = [1,−1, 1,−1] on τττ = [−1,−1/3, 1/3, 1]. What is f ′(−1)? To find the answer,
form the integral

0 =
1

2π i

ffi
C

f (z)
(z+ 1)2(z+ 1/3)(z− 1/3)(z− 1)

dz

about a contour C that encloses all of the nodes τk. The integral is then zero for all
polynomials f (z) of degree 3 or less. Expanding in partial fractions and using the
residue theorem as usual, we have

0 =
1

2π i

ffi
C

−9/16

(z+ 1)2 f (z)−
99/64

z+ 1
f (z)+

81/32

z+ 1/3
f (z)−

81/64

z− 1/3
f (z)+

9/32

z− 1
f (z)dz ,

from which we obtain

− 9
16

f ′(−1)− 99
64

f (−1)+
81
32

f (−1
3
)− 81

64
f (

1
3
)+

9
32

f (1) = 0 . (11.3)

Solving for f ′(−1), we find

f ′(−1) =−11
4

f (−1)+
9
2

f (−1
3
)− 9

4
f (

1
3
)+

1
2

f (1)

=−10 . (11.4)

This type of formula—which expresses f ′ at a point in terms of function values at
other points, and is exact in exact arithmetic for polynomials of a certain degree or
less (here, 3 or less)—is called a finite difference.

Indeed, if we take the cases f (x) ≡ 1, f (z) = z, f (z) = z2, and f (z) = z3, we
obtain, respectively,

f ′(−1) =−11
4

+
9
2
− 9

4
+

1
2
= 0 , (11.5)

f ′(−1) =
11
4

+
9
2

(
−1

3

)
− 9

4

(
1
3

)
+

1
2
= 1 , (11.6)

f ′(−1) =
11
4

+
9
2

(
1
9

)
− 9

4

(
1
9

)
+

1
2
=−2 , (11.7)
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and f ′(−1) =
11
4

− 9
54

− 9
108

+
1
2
= 3 , (11.8)

as it should be. However, for f (z) = z4, we obtain −20/9, not −4; this is as expected,
because our formula was only guaranteed to be correct for polynomials of degree 3
or less. Notice that at no time have we used the monomial basis, except in our check
(and even there we evaluated our test functions at the nodes).

Quite clearly, we can use a similar trick to find f ′(− 1
3 ), f ′( 1

3 ), and f ′(1). When
we do, we get

f ′(−1
3
) =−1

2
f (−1)− 3

4
f (−1

3
)+

3
2

f (
1
3
)− 1

4
f (1)

f ′(
1
3
) =

1
4

f (−1)− 3
2

f (−1
3
)+

3
4

f (
1
3
)+

1
2

f (1)

f ′(1) =−1
2

f (−1)+
9
4

f (−1
3
)− 9

2
f ( 1

3 )+
11
4

f (1)

and we now have the values of the derivative of f (z) at all four nodes. This can be
arranged in matrix form:⎡⎢⎢⎣

f ′(−1)
f ′(−1/3)
f ′(1/3)
f ′(1)

⎤⎥⎥⎦=

⎡⎢⎢⎣
−11/4 9/2 −9/4 1/2

−1/2 −3/4 3/2 −1/4
1/4 −3/2 3/4 1/2

−1/2 9/4 −9/2 11/4

⎤⎥⎥⎦
⎡⎢⎢⎣

f (−1)
f (−1/3)
f (1/3)
f (1)

⎤⎥⎥⎦. (11.9)

At this point, we may use the computed derivative values at the nodes to compute
the value of the derivative f ′ at any point z, by using the second barycentric form of
the Lagrange interpolant:

f ′(z) =

3

∑
i=0

βi f ′(τi)

z− τi

3

∑
i=0

βi

z− τi

. (11.10)

The degree of this polynomial is necessarily one less than the degree of f (z), but
that doesn’t bother the barycentric formula: It still costs O(n) flops to evaluate,
which is a bit too expensive (we could drop one node and update the others if we
had to evaluate the derivative many times), but this is not very important. Thus,
computation of the derivatives at the nodes then allows us to evaluate the derivative
anywhere.

Perhaps surprisingly, this technique is effective in many circumstances. The con-
tour integral approach need only be done theoretically to construct formulæ for the
entries of the differentiation matrix D = [Di j], which appears in (11.9) above, where

f ′(τi) =
n

∑
j=0

Di j f (τ j). (11.11)
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Each row of the matrix D comes from the coefficients in the corresponding
finite-difference formula.

Example 11.1. Suppose that τττ = [−1,−1/2, 1/2,1] (which is slightly different than the
introductory example) and, once again, ρρρ = [1,−1,1,−1]. Then the differentiation
matrix is

D =

⎡⎢⎢⎣
−19/6 4 −4/3 1/2

−1 1/3 1 −1/3

1/3 −1 −1/3 1
−1/2 4/3 −4 19/6

⎤⎥⎥⎦ .

This can be computed with the MATLAB routine genbarywts or the MAPLE rou-
tine bhip, both of which are available in the code repository for this book. We will
shortly see the algorithm that those codes use to generate D. Applying this matrix
to [1,−1,1,−1]T produces the vector [−9,0,0,−9]T . �

In general, a differentiation matrix is a matrix D such that

D · f = f ′ , (11.12)

where f is a vector of polynomial coefficients and f ′ is a vector of coefficients for the
derivative of that polynomial in the same basis. In the case where we are working in
the Lagrange basis, the polynomial coefficients are just the values at the nodes. In
the Hermite basis, the coefficients are the values and derivatives at the nodes. The
notion of differentiation matrix is wholly independent of the basis.

In the monomial basis, differentiation matrices are, of course, particularly simple.
If f (z) = a0 + a1z+ a2z2 + a3z3, and f ′(z) = b0 + b1z+ b2z2 + b3z3, then⎡⎢⎢⎣

b0

b1

b2

b3

⎤⎥⎥⎦=

⎡⎢⎢⎣
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

a0

a1

a2

a3

⎤⎥⎥⎦ . (11.13)

The generalization to the n × n case is immediately evident. Several features of
this matrix are important. First, it is singular, because differentiation of a constant
polynomial gives zero. Second, its singular values are just 0, 1, 2, . . ., n.

Quite clearly, we could use instead an (n− 1)× n matrix and express f ′(z) as
a degree-(n− 1) polynomial, because the monomials unlike the Lagrange basis are
a degree-graded basis. Indeed, there is no particular reason save convenience to
express the derivative in the same basis as the original function.1 Using this, and
the definitional matrix B for the basis φk(z) from Eq. (2.2) connecting φφφ to the
monomial basis, we can write a formula for the differentiation matrix in any basis:

Dφ = B−T DmonomialBT . (11.14)

1 Olver and Townsend (2013) adopt the technique of using a different basis for the derivative f ′(t)
than for the function f (t), which allows a diagonal differentiation matrix, attaining great efficiency.
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In practice, this is too cumbersome (and in the case of Lagrange and Hermite inter-
polational bases, these involve inversions of ill-conditioned Vandermonde matrices).
Special formulæ are advisable.

Coming back to the Lagrange basis, it turns out to be more numerically stable to
treat Dii (the diagonal elements) to preserve the following: When f (z) ≡ 1,

n

∑
j=0

Di j ·1 = 0 , (11.15)

and so one could isolate the diagonal entries to give

Dii =−
n

∑
j=0
j �=i

Di j . (11.16)

This formula, which comes out naturally in the derivation below, is not as simple as
some other formulæ in print; but as stated, it is more numerically stable than some
of those “simpler” formulæ, which we don’t give here.

11.2.1 Structured Condition Number for Differentiation
of Polynomials

We saw that differentiation was in general arbitrarily ill-conditioned: The difference
between ( f +Δ f )′ and f ′ can be arbitrarily large even if Δ f is itself small. But
what about the case in which f and f +Δ f are both polynomials? In this case, the
absolute condition number turns out to be bounded.

Theorem 11.2. If f and Δ f are both polynomials of degree at most d expressed in
a basis φφφ defined in terms of the monomial basis by a matrix B and the vector of
coefficients of Δ f is called Δa, then the norm of the vector of coefficients of Δ f ′
(call it Δb) is bounded by

‖Δb‖ ≤ ‖Dφ‖‖Δa‖ . (11.17)

Moreover, the norm of the vector of coefficients of Δ f ′ expressed in the monomial
basis is bounded by dκ(B).

Proof. These follow directly from the discussion above. �

Remark 11.1. The main improvement over the general case is the reduction of this
absolute condition number from infinite to something finite. In the cases where the
change-of-basis matrix B is unitary, we will have an explicit bound d. However, the
relative condition number is still infinite: f ′ can be zero (and must be if f is constant,
in any basis). Small errors in differentiating constants will therefore be particularly
detectable. This is the reason for insisting that Eq. (11.16) hold: It enforces exact
differentiation of machine-representable constant vectors. �
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11.2.2 Differentiation Matrices for Lagrange Bases

To find formulæ for the entries Di j of the differentiation matrix D for a Lagrange
basis, we apply the contour integral approach as before:

1
w(z)(z− τi)

=
1

(z− τi)

n

∑
j=0

β j

(z− τ j)
, (11.18)

where we have used the partial fraction expansion for 1/w(z) to give us the β js. Notice
that the (z− τi) term is repeated—it also occurs for one of the terms in the sum. We
may rewrite that as

1
w(z)(z− τi)

=
βi

(z− τi)2 +
n

∑
j=0
j �=i

β j

(z− τi)(z− τ j)

=
βi

(z− τi)2 +
1

(z− τi)

n

∑
j=0
j �=i

β j

(τi − τ j)
+O(1) , (11.19)

where we have done a Laurent expansion at z = τi to give that last line. Series
expansion about each z = τ j for j �= i gives the remaining terms as

1
w(z)(z− τi)

=
βi

(z− τi)2 +
1

(z− τi)

n

∑
j=0
j �=i

β j

(τi − τ j)
+

n

∑
j=0
j �=i

β j(τ j − τi)
−1

(z− τ j)
. (11.20)

Our contour integral then gives

0 = βi f ′(τi)+

⎛⎜⎝ n

∑
j=0
j �=i

β j

(τi − τ j)

⎞⎟⎠ f (τi)+
n

∑
j=0
j �=i

β j(τ j − τi)
−1 f (τ j) , (11.21)

from which f ′(τi) can be isolated. Therefore, if i �= j,

Di j =− (τ j − τi)
−1β j

βi
(11.22)

and Dii is given by (11.16). The cost of constructing this matrix is O(n2) flops.
That is, the off-diagonal elements are easily found from the barycentric weights,
and thence the entire differentiation matrix. A similar formula can be derived for
Hermite interpolation (see the next section) and is implemented in genbarywts.
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11.2.3 A Detailed Derivation of the Differentiation Matrix
for the Hermite Interpolation Polynomial

This section can be skipped if you are not overly enamored of sums. The result at
the end, however, is remarkably simple: a formula for the nontrivial entries of the
differentiation matrix for confluent (Hermite) interpolation. The journey along the
way, if you are enamored of sums, is rather nice.

The goal of this section is to find formulæ for the entries of the matrix D, which
takes the vector of coefficients ρi j of a polynomial f (t) expressed in a Hermite in-
terpolational basis to the vector of coefficients þi, j of the derivative f ′(t), expressed
in the same basis.2 That is, if

f (t) = w(t)
n

∑
i=0

si−1

∑
j=0

j

∑
k=0

βi, jρi,k(t − τi)
k− j−1 , (11.23)

in (say) the first barycentric form, then þ = Dρρρ gives us

f ′(t) = w(t)
n

∑
i=0

si−1

∑
j=0

j

∑
k=0

βi, jþi,k(t − τi)
k− j−1 , (11.24)

with exactly the same βi, j. Because the coefficients of the Hermite interpolational
basis are scaled derivatives, ρi, j = f ( j)(τi)/j!, computing these coefficients is equiva-
lent to computing further derivatives at the nodes τi.

Let us begin. If the distinct nodes τi with confluencies si ≥ 1 are given, first com-
pute the generalized barycentric weights βi j from the partial fraction decomposition

1
w(z)

=
n

∏
i=0

(z− τi)
−si =

n

∑
i=0

si−1

∑
j=0
βi j(z− τi)

− j−1 . (11.25)

As stated, if

ρρρ = [ρ00,ρ01, . . . ,ρ0,s0−1,ρ10,ρ11, . . . , . . . ,ρn,sn−1]
T (11.26)

and

p(z) = w(z)
n

∑
i=0

si−1

∑
j=0

j

∑
k=0

βi jρik(z− τi)
k− j−1 (11.27)

2 We puzzled for a while over what symbol to use for the vector of derivative values. If the function
values f (τi) are denoted by ρi, then clearly the symbol for the derivatives f ′(τi) should be related,
though different. Finally, we chose the Norse rune þ (pronounced “thorn” with a “th” as in the
word “thin”) because it looks a bit like a ρ , and linguistically the symbol is equivalent to the atin
D convenient for derivative. In some fonts it has an angular character, which fits with the loss of
smoothness when derivatives are taken. We also had to worry about conflicts with other symbols
in this book. So, “thorn” (þ) it is Elliot (1981).
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interpolates the given data ρρρ , where

ρi,si :=
p(si)(τi)

si!
, (11.28)

we want the values that we denote

þ = [ρ01,2ρ02, . . . ,siρ0,si ,ρ11,2ρ12, . . . ,snρn,sn ]
T (11.29)

and the entries of a differentiation matrix D such that

Dρρρ = þ . (11.30)

Obviously, the rows of D that simply shift ρi j up one are elementary: The first s0−1
rows of D, for example, are ⎡⎢⎢⎢⎣

0 1
0 0 2
...

...
. . .

0 0 · · · 0 s0 − 1

⎤⎥⎥⎥⎦ , (11.31)

which is an (s0 − 1)× s0 matrix. The reason that the entries are not simply 1 is that
ρi, j = f ( j)(τi)/j!, and we wish to replace that with þi, j = ( f ′)( j) (τi)/j!, and if we get this
by shifting ρi, j+1, we have to adjust the factorial.

But the s0th row is nontrivial, as are the (s0 + s1)th, (s0 + s1 + s2)th, and so on.
For these rows, we must have, for 0 ≤ i ≤ n,

d(i)
00ρ00 + d(i)

01ρ01 + · · ·+ d(i)
n,sn−1ρn,sn−1 = þi,si−1 = ρi,si . (11.32)

To find these nontrivial entries in D, consider the following contour integral:

0 =
1

2π i

ffi
C

f (z)
(z− τk)w(z)

dz , (11.33)

which is zero if, first, deg f (z) ≤ d, where 1+ d = ∑n
i=0 si and degw(z) = 1+ d, so

that the degree of the denominator (z− τk)w(z) is d+ 2, and, second, if the contour
C encloses all τk. Now expand 1/w(z) as a partial fraction:

1
z− τk

1
w(z)

=
1

z− τk

n

∑
i=0

si−1

∑
j=0

βi j(z− τi)
− j−1, (11.34)

and split the sum into the repeated term and the rest, as follows:

1
(z− τk)w(z)

=
1

z− τk

sk−1

∑
j=0

βk j

(z− τk) j+1 +
1

z− τk

n

∑
i=0
i�=k

si−1

∑
j=0

βi j

(z− τi) j+1
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=
sk−1

∑
j=0

βk j

(z− τk) j+2 +
1

z− τk

n

∑
i=0
i�=k

si−1

∑
j=0

βi j(τk − τi)
− j−1

+
n

∑
i=0
i�=k

1
z− τk

·
si−1

∑
j=0
βi j

(
1

(z− τi) j+1 − 1
(τk − τi) j+1

)
.

To complete the new partial fraction decomposition, which must look like

1
(z− τk)w(z)

=
sk−1

∑
j=0

βk j

(z− τk) j+2 +
1

z− τk

n

∑
i=0
i�=k

si−1

∑
j=0

βi j(τk − τi)
− j−1 (11.35)

+
n

∑
i=0
i�=k

si−1

∑
j=0

βi j;k(z− τi)
− j−1 , (11.36)

we need to compute the new residues βi j;k. This can be done with Cauchy convolu-
tion as follows. Near z = τi, i �= k, the important terms are

1
z− τk

si−1

∑
j=0

βi j

(z− τi) j+1 . (11.37)

Notice that

1
z− τk

=
1

z− τi + τi − τk
=

1
τi − τk

1

1− z− τi

τk − τi

(11.38)

=−∑
�≥0

(z− τi)
�

(τk − τi)�+1 (11.39)

for |z− τi|< |τk − τi|. The important terms then become

−
(
∑
�≥0

(z− τi)
�

(τk − τi)�+1

)(
si−1

∑
j=0
βi j(z− τi)

− j−1

)

= −
(
∑
�≥0

1
(τk − τi)�+1 (z− τi)

�

)(
si−1

∑
m=0

βi,si−m−1(z− τi)
−(si−m−1)−1

)

=−
(
∑
�≥0

1
(τk − τi)�+1 (z− τi)

�

)(
si−1

∑
m=0

βi,si−m−1(z− τi)
m

)
(z− τi)

−si

=−(z− τi)
−si ·∑

j≥0
c j(z− τi)

j ,
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where

c j =
j

∑
�=0

βi,si−�−1
1

(τk − τi) j−�+1 (11.40)

by Cauchy convolution. Simplifying, (11.37) then results in

∑
j≥0

(
−

j

∑
�=0

βi,si−�−1
1

(τk − τi) j−�+1

)
(z− τi)

j−si , (11.41)

and only the terms j = 0,1,2, . . . ,si − 1 contribute to the residue:

si−1

∑
j=0

(
−

j

∑
�=0

βi,si−�−1
1

(τk − τi) j−�+1

)
(z− τi)

j−si . (11.42)

Putting m = si − 1− j, this is

si−1

∑
m=0

(
−

si−1−m

∑
�=0

βi,si−�−1
1

(τk − τi)si−1−m+1−�

)
(z− τi)

−m−1 , (11.43)

which is the desired form, βi,m;k. We can simplify a bit further by writing

βi,m;k =−
si−1−m

∑
�=0

βi,si−�−1
1

(τk − τi)si−m−�
(11.44)

and letting μ = si − �− 1, so that

βi,m;k =−
si−(si−1−m)−1

∑
μ=si−1

βi,μ
1

(τk − τi)si−m−(si−μ−1)
(11.45)

=−
si−1

∑
μ=m

βi,μ(τ− τi)
m−1−μ . (11.46)

That is, we obtain the simple expression

βi, j;k =−
si−1

∑
μ= j

βi,μ(τk − τi)
j−1−μ . (11.47)
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Finally, performing the contour integration gives

sk−1

∑
j=0
βk j

f ( j+1)(τk)

( j+ 1)!
+

⎛⎜⎝ n

∑
i=0
i�=k

si−1

∑
j=0
βi j(τk − τi)

− j−1

⎞⎟⎠ f (τk)

+
n

∑
i=0
i�=k

si−1

∑
j=0

βi j;k
f ( j)(τi)

j!
= 0 , (11.48)

and the term f (sk)(τk)/sk! corresponds to j = sk − 1 in the first sum:

βk,sk−1
f (sk)(τk)

sk!
=−

sk−2

∑
j=0
βk j

f ( j+1)(τk)

( j+ 1)!

−

⎛⎜⎝ n

∑
i=0
i�=k

si−1

∑
j=0

βi j(τk − τi)
− j−1

⎞⎟⎠ f (τk)−
n

∑
i=0
i�=k

si−1

∑
j=0

βi j;k
f ( j)(τi)

j!
. (11.49)

At long last, if βk,sk−1 �= 0, the entries of the nontrivial row in D for τk can be read
off that last line, when it is divided by βk,sk−1. For example, the entry that multiplies
ρi j for i �= k is just −βi j;k/βk,sk−1 (and βi j;k is computed in (11.47)). As in the Lagrange
case, for stability reasons, it is best to compute the entry multiplying ρk,0 by insisting
that the differentiation matrix be exact for f (z)≡ 1. This implies that

Dk,0 =−
n

∑
i=0
i�=k

Di,0 , (11.50)

that is, only the elements multiplying ρi,0 will figure, because for f (z)≡ 1, all other
ρi, j = 0. Finally, we must multiply the row by sk, because, as noted for the trivial
rows, we have just computed f (sk)(τk)/sk!, and we by convention want ( f ′)(sk−1)/(sk −1)!,
in order to match the existing barycentric form: That is, using the same weights as
before, we may now evaluate f ′(t) for any t.

Note that the distinctness of the τi is used throughout. In particular, βk,sk−1 = 0
if the nodes are not distinct.

Remark 11.2. We leave to Exercises 11.9 and 11.16 the important questions of con-
ditioning of the computation of D—and of the differentiation of polynomials that it
is to effect—and the question of the numerical stability of the algorithms: Do they
compute the exact matrix D for some nearby polynomial differentiation problem?
In particular, do they have small componentwise backward error? �
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11.2.4 Differentiation Matrix Examples

Example 11.2. For τττ = [−1,−1/3, 1/3,1], (cf. equation (11.9)) the differentiation
matrix is (using the MATLAB function genbarywts.m),

D =

⎡⎢⎢⎣
−2.7500 4.500 −2.2500 0.5000
−0.5000 −0.7500 1.5000 −0.2500

0.2500 −1.5000 0.7500 0.5000
−0.5000 2.2500 −4.5000 2.7500

⎤⎥⎥⎦ .

So, if the polynomial values at τττ are ρρρ = [1,−1,1,−1]T , then

f ′ = Dρρρ = [−10,2,2,−10]T

f ′′ = Df ′ = [27,9,−9,−27]T

f ′′′ = Df ′′ = [−27,−27,−27,−27]T

f(4) = Df ′′′ = [0,0,0,0]T .

For the last one, as computed in MATLAB, the norm of the vector was ≈ 10−13, not
zero as it should have been. Rounding errors do show up. �

Example 11.3. If we take n= 4 and the n+1 nodes τ j = cos( jπ/n), j = 0, 1, 2, 3, and
4, then the barycentric weights can be scaled to be β0 = 1, β1 = −β2 = β3 = −2,
and β4 = 1. The differentiation matrix is

D =

⎡⎢⎢⎢⎢⎣
5.5000 −6.8284 2.0000 −1.1716 0.5000
1.7071 −0.7071 −1.4142 0.7071 −0.2929

−0.5000 1.4142 −0.0000 −1.4142 0.5000
0.2929 −0.7071 1.4142 0.7071 −1.7071

−0.5000 1.1716 −2.0000 6.8284 −5.5000

⎤⎥⎥⎥⎥⎦
if the confluency is just 1—that is, we are doing Lagrange interpolation. If the con-
fluency is instead 2 at each node, then the differentiation matrix is instead D =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0 0
−147.5 22 131.9 27.31 8 8 −3.882 4.686 11.5 1

0 0 0 1 0 0 0 0 0 0
24.61 −1.707 −31 −2.828 4 2.828 −1 1.414 3.393 0.292

0 0 0 0 0 1 0 0 0 0
6 −0.5 0 −2.828 −12 0 0 2.828 6 0.5
0 0 0 0 0 0 0 1 0 0

3.393 −0.2929 −1 −1.414 4 −2.828 −31 2.828 24.61 1.707
0 0 0 0 0 0 0 0 0 1

11.5 −1 −3.882 −4.686 8 −8 131.9 −27.31 −147.5 −22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11.51)
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If, say, we interpolate the values and derivatives

ρρρ =

[
0.5000 0.6667 1.0000 0.6667 0.5000

−0.5000 −0.6285 −0.0000 0.6285 0.5000

]
(11.52)

at these points, where the first row gives ρi,0 = f (τi) and the second row gives
ρi,1 = f ′(τi), then application of the differentiation matrix D to the (straightened
out) vector gives

þ =

[−0.5000 −0.6285 −0.0000 0.6285 0.5000
0.6111 0.3333 −1.9444 0.3333 0.6111

]
. (11.53)

That is to say, for example, that the second derivatives of the original function f (t)
will be approximated at the nodes by the entries in the second row of þ, because they
are the exact (up to roundoff) second derivatives of the polynomial that interpolates
the given value and derivative data. See Fig. 11.2. �

−1 −0.5 0 0.5 1

−0.5

0

0.5

1

Fig. 11.2 The degree- 7 Hermite interpolant to the data (11.52), together with its derivative, com-
puted via the differentiation matrix (11.51)

What about the ultimate flatness problem, the infinite ill-conditioning talked
about at the beginning? Well, because we have constrained our differentiation to
the space of polynomials, things work out well enough (in this case, the absolute
condition number is, as stated earlier, bounded). For the problem in Fig. 11.1, the
differentiation matrix produces a vector þ of derivative values that can then subse-
quently be used in hermiteval to plot the derivative quite acceptably; if we zoom
in on that, we find that the straight line that we expect has a representation in terms
of piecewise flat functions (as it must, too) that rise at an appropriate “slope.” See
Fig. 11.3. The derivative values are computed at the nodes as

þ =

[−0.1289 0 0 0.1289
1.5078 0.0312 0.0312 1.5078

]
. (11.54)

Evaluation of the derivative by the second barycentric form of the Hermite inter-
polant is straightforward and accurate, provided the mesh widths are not too widely
varying or too small.
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−2 −1 0 1 2

x 10−16

−0.5

0

0.5

1
x 10−17

dt

p’
(0

.2
5+

dt
)

Fig. 11.3 Derivative of a polynomial in the Hermite interpolational basis

Remark 11.3. As previously stated, if an interpolant is O(hp) accurate as h → 0,
typically its derivative will only be O(hp−1) accurate in the same limit. �

11.3 Complex Nodes

It is often necessary or advantageous to use complex nodes, and so we discuss this
case here. To begin, notice that, if C is the circular contour ζ + reiθ , the integral

f ′(ζ ) =
1

2π i

ffi
C

f (z)
(z− ζ )2 dz (11.55)

can be written explicitly as

f ′(ζ ) =
1

2π i

ˆ 2π

0

f (ζ + reiθ )rieiθ

r2e2iθ dθ =
1

2πr

ˆ 2π

0
f (ζ + reiθ )e−iθdθ (11.56)

and that the integrand is analytic and periodic in θ with period 2π and that we are
integrating over a whole period. Therefore, an equi-spaced rule like the trapezoidal
rule will be spectrally convergent. That is, let Δθ = 2π/n and approximate the integral
by

1
2πr

2π
n

(
1
2

f (ζ + r)+
n−1

∑
k=1

f (ζ + re
2πik/n)e

−2πik/n +
1
2

f (ζ + re2π i)

)

=
1

r n

n−1

∑
k=0

f (ζ + re
2πik/n)e

−2πik/n. (11.57)
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If f (z) is polynomial, the rule is exact for degrees ≤ n− 1. If f (z) is not polyno-
mial, then the error is exponentially small with n, in theory; and rounding errors are
relatively harmless.

Example 11.4. If we take n = 7 in that formula and then take its series expansion as
r → 0 (using MAPLE), we find that

1
r n

n−1

∑
k=0

f (ζ + re
2πik/n)e

−2πik/n = f ′(ζ )+
f (8)(ζ )

8!
r7 +

f 15(ζ )
15!

r14 +O(r21) .

Indeed, the error terms are all of the form r�n · f (�n+1)(ζ )/(�n+1)!, confirming the state-
ment above that the approximation is spectrally convergent if r < 1, as n → ∞. �

Remark 11.4. The alert reader who remembers the derivation in Chap. 9 of the finite
Fourier transform from the barycentric form of the interpolant will recognize this
derivative as the linear term c1 from the FFT of the values of the polynomial inter-
polant to f at the roots of unity. Indeed, this computation of the derivative can be
done by the FFT (in which case, we don’t just get one derivative; we get n deriva-
tives). See Problem 11.7. �

Example 11.5. Consider the short program

1 function [ dy ] = Lyness( f, zeta, r, n )
2 %LYNESS Differentiate f by complex evaluation around zeta
3 % Spectrally convergent formula from Lyness and Moler 1967
4 % dy = Lyness( f, zeta, r, n ) gives dy = f'(zeta) + O(rˆn)
5 tau = zeta + r* exp(2*pi*1i*(0:n-1)/n);
6 y = feval( f, tau );
7 dy = sum(y.*exp(-2*pi*1i*(0:n-1)/n))/n/r;
8 end

If we execute the commands

dy = Lyness( @(z) sin(z), 1, 0.1, 5 )
dy/cos(1) - 1

we find that the error in approximating the derivative with a five-term complex
integral is about−2×10−8. If instead we ask for 10 function evaluations, the answer
is accurate to full machine precision.

We remark that this only works with functions that MATLAB knows how to eval-
uate over C. Functions such as 1/Γ (z) cannot be differentiated in MATLAB by this
method, because the implementation in MATLAB is limited to real z. If MATLAB

were better at the complex-valued Gamma function, this would work for that func-
tion as well; in other environments, it does work. �

11.3.1 The Differentiation Matrices on Roots of Unity

If the interpolation nodes are the nth roots of unity, τk = exp(2π ik/n), for 0 ≤ k ≤
n− 1, then because w(z) = zn − 1, we have some particularly simple formulæ for
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the barycentric weights of the Lagrange basis:

βk =
τk

n
Dkk =

n/2

τk
D jk =

τk

τ j(τk − τ j)
. (11.58)

In exact arithmetic, all differentiation matrices are singular (because D1 = 0 and
indeed they are nilpotent, Dn+1 = 0), but the differentiation matrix for Lagrange
interpolation on roots of unity is particularly simple, having singular values n− 1,
n− 2, . . ., 1, and 0, just like the monomial basis.

Theorem 11.3. The singular values of the Lagrange basis differentiation matrix on
the nth roots of unity are σ j = n− j, for j = 1, 2, . . ., n.

Proof. Consider the polynomial z j−1, for j = 1, 2, . . ., n in succession, and the
vectors of its values on the nodes τk = exp(2π ik/n). Evaluating z j−1 on the vector
of nodes gives the vector with entries exp(2π i( j−1)k/n). The 2-norm of each of the
orthogonal vectors with entries v j = exp(2π i( j−1)k/n)/

√
n is 1, independent of j.

Applying the differentiation matrix to v j gives

Dv j = ( j− 1)v j−1 (11.59)

(and one can take v−1 = vn by orthogonality) because the differentiation matrix is
exact for polynomials of degree less than n. Therefore, D = UΣΣΣVH , where the jth
column of V is v j and where the jth column of U is v j−1. �

Remark 11.5. This theorem seems surprising when we come at it (as we have) via
polynomial interpolation. However, it’s really a discrete Fourier transform, to eval-
uate or interpolate on the roots of unity, and that differentiation is simple in Fourier
space is not at all a surprise (see Chap. 9). Since the differentiation matrices in dif-
ferent bases are related by the change-of-basis matrix, here the quasi-unitary Van-
dermonde matrix on the roots of unity, we find that the singular values are just the
same as the singular values of the monomial basis differentiation matrix. �

11.3.2 A Surprisingly Simple Rule

As a final use of complex finite differences to approximate the derivative of a real-
valued function, consider the following very simple formula, which is due to Squire
and Trapp (1998):

f ′(x0) =
Im( f (x0 + ih))

h
+O(h2). (11.60)

It follows for real-valued f from

f (x0 + ih) = f (x0)+ f ′(x0)ih− h2

2
f ′′(x0)+O(h3) . (11.61)
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A purely real-variable formula of the same theoretical order is the central difference
formula

f ′(x0) =
f (x0 + h/2)− f (x0 − h/2)

h
+O(h2) . (11.62)

You will derive this formula in Problem 11.4, following the method of the next
section. This suffers severely from subtractive cancellation, which reveals rounding
errors made in the computation of f (x0 + h/2) and f (x0 − h/2). A comparison of the
two formulæ employed on

f (x) =
ex

sin3 x+ cos3 x
(11.63)

can be seen in Fig. 11.4, which was generated by the following code:

10−10 10−5 100

10−15

10−10

10−5

h

er
ro

r

Fig. 11.4 An example showing that the complex formula (11.61) (circles) hardly suffers at all
from rounding error, getting results accurate to machine epsilon, whereas the classical real central
difference formula (11.62) (dots) shows the same theoretical order (and is a bit more accurate) for
h bigger than about 10−4, but suffers severely from catastrophic cancellation for h smaller than
about 10−4. For small enough h, the complex formula gets the exact answer for this problem, and
the error is not representable on a log-scale graph

f = @(x) exp(x)./(sin(x).ˆ3+cos(x).ˆ3);
c = @(h) (f(h/2)-f(-h/2))./h;
st= @(h) imag(f(1i*h))./h;
phi =(1+sqrt(5))/2;
% Fibonacci spaced h
h = 1.0./((2+2/sqrt(5))*(phi.ˆ[5:50]));
ce = c(h)-1;
se = st(h)-1;
% Squire-Trapp formula gives exact result for small enough h
se(end)
loglog( h,abs(ce),'k*', h,abs(se),'ko' )
set(gca,'fontsize',16)
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axis([1.0e-10,1,1.0e-16,1.0e-2])
xlabel('h')
ylabel('error')

Remark 11.6. In some sense, this formula cheats! If one can evaluate functions
over C, then one already knows a lot about the derivative. Consider

sin(x+ ih) = sin(x)cos(ih)+ sin(ih)cos(x)

= sin(x)cosh(h)+ isinh(h)cos(x) , (11.64)

so that the imaginary part is

Im(sin(x+ ih)) =
sinh(h)

h
cos(x) . (11.65)

The true derivative, cosx, is there in the limit, completely naturally. This also has
some links with automatic differentiation (see Sect. 11.7). �

Remark 11.7. We should also point out that this method requires the imaginary part
of f (x+ ih) = u(x,h)+ iv(x,h), that is, v(x,h), to be computed with good relative
accuracy; that is, we need

f l(v(x,h)) = v(x,h)(1+ δ1) (11.66)

for some modestly small δ1. If that is the case, then f ′(x) will be computed as

f l

(
v(x,h)

h

)
= f ′(x)(1+ δ1)(1+ δ2)+O(h2) , (11.67)

where now |δ2| ≤ μM . This is what happened in Fig. 11.4. If we instead have only
absolute accuracy,

f l (v(x,h)) = v(x,h)+Δ , (11.68)

where Δ is modestly small, then

f l

(
v(x,h)

h

)
= f ′(x)(1+ δ2)+

Δ
h
(1+ δ2)+O(h2) (11.69)

and the O(Δ/h) term will go to infinity as h → 0, exactly as errors in the real-valued
finite-difference formulæ do. This happens for the Bessel function example in MAT-
LAB if the derivatives are taken not at x = 1 as in the code here but rather at larger
values of x, say x = 22.3. This demonstrates very clearly that the MATLAB routines
do not evaluate Bessel functions with high relative accuracy in the imaginary part
for arguments near the real axis if x is at all large. �
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11.4 A Backward Error Interpretation of Simple Finite
Differences

We now rejoin the mainstream of finite differences. In order to get there, recall the
mean value theorem: If f is C (1)(a,a+ h), then (for real variables)

f (a+ h)− f (a)
h

= f ′(a+θh), (11.70)

for some θ ∈ (0,1). Remember that θ = θ (h) depends on h. Here

Δ f = f (a+ h)− f (a) (11.71)

is called the forward difference.3 Here, note that Δx = a+ h− a = h. The ratio of
Δ f to Δx is often called a forward divided difference. Sometimes the terminology
gets sloppy and the word “divided” is left out. The important point to note here is
that a forward divided difference gives you the exact value of the derivative at some
point between a and a+ h (note h may be negative).

In contrast, the central divided difference is defined as the ratio on the left, be-
low, while on the right, the mean value theorem asserts that this, too, is an exact
derivative,

f (a+ h/2)− f (a− h/2)

h
= f ′

(
a+

h
2
θ2

)
, (11.72)

for some θ2 ∈ (−1,1). To avoid confusion with forward divided differences, we will
denote this by δ ( f )/Δx.

Remark 11.8. Both of these methods for approximating derivatives, and a great
many others, may be found by contour integration as we have been using it. For
example, the integral

0 =

ffi
C

f (z)
(z− t)2(z− t − h)

dz (11.73)

gives the forward difference formula via the partial fraction expansion

1/h2

z− t − h
−

1/h2

z− t
−

1/h

(z− t)2 . (11.74)

If f is a polynomial of degree at most 1, it gives exactly the relation (11.70) (with
θ = 0) by Cauchy’s theorem. If f is not a linear polynomial, then θ will not be 0, of
course. �

3 It may become clearer why this is called a forward difference if you think of xk = a and xk+1 =
a+h with h > 0. Then Δ f and Δx both “look ahead” to compute the differences.
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Can we say more about θ (h)? How close to where we want to take the deriva-
tive does the finite (divided) difference get us? A series computation for forward
differences shows that

θ (h) =
1
2
+

h
24

f ′′′(a)
f ′′(a)

+O(h2) =
1
2
+O(h) (11.75)

if f ′′(a) �= 0. A more complicated formula holds if f ′′(a) = 0. Thus, if f ′′(a) �= 0,
then as h → 0,

Δ f
Δx

= f ′
(

a+ h(
1
2
+O(h))

)
= f ′(a)+

h
2

f ′′(a)+O(h2) . (11.76)

Therefore, both the forward error and the backward error are, in general, O(h); if
f ′′ is nearly zero, though, this requires a separate analysis.

For central differences, we find a better bound; namely, we have

θ2(h) =
h
12

f ′′′(a)
f ′′(a)

+O

(
h3

( f ′′(a))3

)
(11.77)

if f ′′(a) �= 0. Recall that

δ ( f )
Δx

=
f (a+ h/2)− f (a− h/2)

h

= f ′
(

a+θ2 · h
2

)
= f ′

(
a+

h2

24
f ′′′(a)
f ′′(a)

+O(h4)

)
= f ′(a)+

h2

24
f ′′′(a)+O(h4) , (11.78)

which shows that the formula is O(h2) accurate, both backward and forward. If
f ′′(a) is small, again we have to redo the analysis.

10−10 10−5 100

10−15

10−10

10−5

100

Fig. 11.5 Errors in three finite-difference formulæ: forward (opencircle), central (plus), and the
Squire–Trapp complex formula (dot), for the Bessel function J0(x) at x = 1. Forward differences
have O(h) error, while the other two have O(h2) error
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To compare different difference formulæ, we can execute the commands

1 [h,fe,ce,ie] = fordifferr(@(x)besselj(0,x),1, -besselj(1,1),55);
2 loglog( h, abs(fe), 'ko', h, abs(ce), 'k+', h, abs(ie), 'k.' )

to produce the graph in Fig. 11.5. These commands call the following short
program:

1 function [h,ef,ec,ei] = fordifferr( f, a, dfa, k )
2 function f = fibonacci(n)
3 f = zeros(1,n);
4 f(1) = 1;
5 f(2) = 1;
6 for i=3:n,
7 f(i) = f(i-1)+f(i-2);
8 end;
9 end

10 ns = fibonacci(k+2);
11 h = 1.0./ns(3:end); % Throw away 1's at start
12 x = a + h;
13 ef = zeros(1,k);
14 ec = zeros(1,k);
15 ya = feval( f, a );
16 ef = ( feval( f, x ) - ya )./h/dfa - 1 ;
17 ec = ( feval( f, a+h/2 ) - feval( f, a-h/2 ) )./h/dfa - 1;
18 ei = ( imag( feval( f, a+i*h ) )./h/dfa ) - 1;
19 end

Note that the program computes relative forward error, not the backward error dis-
cussed in this section, but up to a constant, namely, the value of a certain derivative,
they are equivalent.

Now, what rounding error effects can be expected from finite differences’ com-
putation? We have seen several times now that finite-difference formulæ will reveal
rounding errors made in the computation of f (z), especially for small h. When this
happens, the formula gives increasingly worse approximations to the derivative as
h continues to get smaller. This is easy to understand intuitively, and to be expected
because differentiation is ill-conditioned, but it can also be understood quantitatively
by a rounding error analysis.

Suppose that f (z+ h) is computed with relative accuracy δ , that is,

f l( f (z+ h)) = f (z+ h)(1+ δ ) , (11.79)

where δ is some small number. For example, to be as charitable as we can, suppose
that f is computed as best it can be, in the correctly rounded sense, and so |δ | <
μM . Suppose also, to continue to make the case as favorable as possible for finite
differences, that no further rounding errors are made at all and f (z) is computed
exactly and the division by h is done exactly [perhaps f (z) = 0 and h is a power of
2; thus only one single rounding error has occurred. This benign case can be hoped
for but surely not expected]. Then



11.5 Finite Differences for Higher Derivatives 485

f l

(
f (z+ h)− f (z)

h

)
=

f (z+ h)− f (z)
h

+ f (z+ h)
δ
h

(11.80)

and now we see the problem. As h → 0, the first term on the right approaches
f ′(z) +O(h) as it should, but the second term goes to infinity. Thus, the subtrac-
tive cancellation reveals the sole rounding error δ in the limit as h → 0.

11.5 Finite Differences for Higher Derivatives

The traditional higher-order formulæ are obtained by composition of the lower-order
formulæ. For example,

Δ2 f = Δ(Δ f ) = Δ( f (a+ h)− f (a))

= f (a+ 2h)− f (a+ h)− ( f (a+h)− f (a))

= f (a+ 2h)− 2 f (a+ h)+ f (a) , (11.81)

so Δ2 f/Δx2 = Δ2 f/h2 should be like f ′′. Indeed, we may use the mean value theorem
twice to capture this:

f (a+ 2h)− f (a+ h)= f ′(a+ h+θ1h)h

f (a+ h)− f (a) = f ′(a+θ2h)h (11.82)

for some θ1,θ2 ∈ (0,1). Thus,

Δ2 f = f ′(a+(1+θ1)h)h− f ′(a+θ2h)h = f ′′(a+θ3h)h2 (11.83)

for some θ3 ∈ (0,2).
Alternatively, one can use contour integral methods to define higher-order finite

differences, if we add an extra factor in the numerator in order to cancel unwanted
(that is, unknown) terms. To find a formula that gives the third derivative at x = a,
for example, given values of f (x) at (say), x = [a,a+ rh,a+ sh,a+ h], for some
values of r and s in (0,1), we might begin by contemplating the partial fraction
expansion of

1
(x− a)4(x− a− rh)(x− a− sh)(x−a−h)

, (11.84)

but we would see very quickly that all we would get was a formula relating f ′′′(a),
f ′′(a), f ′(a), and the function values f (a), f (a+ rh), f (a+ sh), and f (a+ h). We
do not know f ′(a) or f ′′(a), and so this formula seems useless. A lovely idea of
J. C. Butcher is to instead consider the partial fraction decomposition of the same
thing, but with some unknown coefficients thrown into the numerator in order to
allow us to set some unwanted residues to zero. Consider, therefore,
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b0 + b1x+ x2

(x− a)4(x− a− rh)(x− a− sh)(x− a−h)
, (11.85)

where the numbers b0 and b1 remain to be chosen. We call the function
B(z) = b0 + b1z + b2z2 (here b2 = 1) the Butcher factor. We can simplify the
algebra a decent amount if we use, instead of x, the variable θ , where x = a+ θh.
This leads us to the partial fraction decomposition

b0 + b1θ +θ 2

θ 4 (θ − r)(θ − s)(θ − 1)
=

A4

θ 4 +
A3

θ 3 +
A2

θ 2 +
A1

θ
+

Ar

θ − r
+

As

θ − s
+

Ah

θ − 1
.

Each of the Ai is a function of b0, b1, r, and s. When we set A3 = A2 = 0, we get
two linear equations in the unknowns b0 and b1. Solving these, we get

b0 =
rs

1+ s+ r
and b1 =− rs+ r+ s

1+ s+ r
.

With this condition, the partial fraction expansion becomes (1+ r + s) times the
following:

− 1
s(−s+ r)(−1+ s)(θ − s)

+
1

r (−s+ r)(−1+ r)(θ − r)

− 1
rθ s

+
1

(−1+ r)(−1+ s)(θ − 1)
− 1
θ 4 .

From this, we conclude that, after we have set our contour integral to zero and
isolated the third derivative term,

f ′′′(a)
3!

=
1
h3

(
1

s(r− s)(1− s)
f (a+ sh)

+
1

r(s− r)(1− r)
f (a+ rh)− 1

rs
f (a)+

1
(1− r)(1− s)

f (a+ h)

)
,

and that this formula is exact for all polynomials of degree at most 7− 2− 2 = 3
(taking the degree of the numerator, subtracting two as usual, then two more for the
degree of the new term b0 + b1x+ x2). Taking the Taylor series of the right-hand
side above, we get

f ′′′(a)
6

+
(1+ s+ r) f (iv)(a)

24
h+

(1+ s+ s2+ rs+ r+ r2) f (v)(a)
120

h2 +O(h3) ,

and we see that indeed the formula is exact if f (iv)(x) ≡ 0, that is, if f (x) is degree
3 or less.
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11.6 Compact Finite Differences

In this section, we change our point of view significantly. The main idea is that
instead of using a single explicit finite-difference formula to evaluate a derivative
at a point, we have a whole mesh of function values and we wish to compute the
derivatives at all the nodes. This is quite like the case where we had a global interpo-
lating polynomial and we used a differentiation matrix, and indeed we will have the
equivalent of a differentiation matrix here; but it will not be explicitly formed.
Instead, we will solve a banded linear system.

We proceed by example. The following formula is known as a classical “Padé”
scheme:

1
6

f ′(t)+
2
3

f ′(t + h)+
1
6

f ′(t + 2h) =
1
h

(
−1

2
f (t)+ 0 · f (t + h)+

1
2

f (t + 2h)

)
.

As we will see, it gives us a tridiagonal (whence “compact”) system of equations for
the unknown derivatives. That is, instead of simply applying a formula to a vector
of function values to get a vector of derivative values, we instead have to set up and
solve a linear system of equations for the unknown derivatives. We have already
seen this scheme in use for cubic splines. Having to solve equations instead of using
a formula is more complicated, but it has several advantages, mostly stability.

To understand where the system of equations for this formula comes from, make
the following simplifying assumptions. Suppose f ′(τ0) and f ′(τn) are known (just
to make it simple) and that τk+1 − τk = h is constant. Then fix attention on one
particular node, say τk. The formula above becomes, when t = τk−1, t +h = τk, and
t + 2h = τk+1,

f ′(τk−1)+ 4 f ′(τk)+ f ′(τk+1) =
3
h
( f (τk+1)− f (τk−1)) . (11.86)

Now we let k vary over all the indices of the interior nodes, 1 ≤ k ≤ n− 1. Each
interior node gives us one equation. Each equation only contains at most three of
the unknown derivatives [and the equation for k = 1 touches the known derivative
f ′(τ0), while the equation for k = n− 1 touches the known derivative f ′(τn)]. This
gives us a tridiagonal linear system of equations to solve for the unknown derivatives
f ′(τk), 1 ≤ k ≤ n−1. Call the tridiagonal matrix M. Notice also that the right-hand
side of the system involves linear combinations of the values of f (τk) at different
nodes—these are supposed to be known. Call the (also tridiagonal) matrix that forms
that combination B. Note that B has a zero diagonal. The system Mþ = Bρρρ needs to
be solved computationally to get the vector þ of desired derivatives.

In effect, this computes the differentiation matrix D as M−1B, but in practice,
one never explicitly computes M−1 because it is a full matrix. Instead, of course, to
compute Dv, one solves Mþ = Bρρρ for þ, which is formally M−1Bρρρ .

Example 11.6. Let n = 5 and τττ = [0,0.2,0.4,0.6,0.8,1.0]. Consider f (t) = cos(πt)
sampled at these 6 points, and construct the matrices M and B as above. Notice
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that the derivatives at the endpoints are both 0. The matrix M is determined by the
compact formula (11.86) being required to hold at all interior nodes. So we have

M =

⎡⎢⎢⎣
4 1
1 4 1

1 4 1
1 4

⎤⎥⎥⎦ and B = 3

⎡⎢⎢⎣
−1 1

−1 1
−1 1

−1 1

⎤⎥⎥⎦ .

Of course, B times the 6-vector of function values gives a 4-vector of interior dif-
ferences, suitable for solving our 4×4 system Mþ = Bρρρ . The solution of this linear
system gives the approximate values[−1.844906087 −2.985120747 −2.985120747 −1.844906087

]T
,

which are in error by no more than 9.1 · 10−4. This compares well with h4 = 1.6 ·
10−3. These are graphed with the exact derivative in Fig. 11.6. �

Fig. 11.6 Fourth-order uniform-mesh compact finite-difference derivative graphed with the exact
derivative (dashed line). Even with just five subintervals, visual accuracy is achieved in this exam-
ple

This formula is worth deriving from the contour integral approach. In what fol-
lows, we do so for a variable mesh. Consider

1
(z+ rh)2z2(z− sh)2 =

1

r2h4 (s+ r)2 (z+ rh)2 +
4r+ 2s

(z+ rh)r3h5 (s+ r)3
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+
1

r2h4s2z2 +
2r− 2s
zr3h5s3 +

1

h4 (s+ r)2 s2 (z− sh)2 +
−4s− 2r

(z− sh)h5 (s+ r)3 s3
,

from which we deduce the compact formula, exact for polynomials f (x) of degree
6− 2 = 4 or less:

1

r2 (s+ r)2 f ′(−rh)+
1

r2s2 f ′(0)+
1

(s+ r)2 s2
f ′(sh)

=− 4r+ 2s

r3h(s+ r)3 f (−rh)− 2r− 2s
r3hs3 f (0)− −4s− 2r

h(s+ r)3 s3
f (sh) . (11.87)

If we now have a mesh τ0 < τ1 < · · ·< τn−1 < τn, we can lay this compact formula
first on τ0, τ1, and τ2, with rh = τ1 − τ0 and sh = τ2 − τ1, which, if we have a
reference step width h, say h = (∑(τk+1 − τk))/n, gives us an equation relating the
derivative values on these three mesh points to the function values on the mesh
points. We then lay the formula over τ1, τ2, and τ3, giving us another equation—one
for each interior point, τ1, τ2, . . ., τn−1. The linear system for the unknown derivative
values is tridiagonal; but we have n−1 equations and n+1 unknowns f ′(τ0), f ′(τ1),
. . ., f ′(τn). We need two more equations. Since the error term in the (residual of)
the right-hand side above is h4 f (5)(0)/5!+ h5 f (6)(0)(s− r)/360+O(h6), we should look for
fourth-order formulae at either end, giving equations involving τ0 and its nearest
mesh neighbors, and τn and its nearest neighbors. We will want the formulæ exact
for polynomials of degree 4 or less. Since the matrix is so far tridiagonal, we try to
keep it that way and we thus look for relations of the form

a0 f ′(τ0)+ b0 f ′(τ1) = c0 f (τ0)+ c1 f (τ1)+ c2 f (τ2)+ c3 f (τ3) . (11.88)

This still qualifies as “compact,” though, because we use only two extra mesh points
at the left end, and similarly only two extra on the right, and these appear in the right-
hand side and do not change the tridiagonality of the matrix. We suppose n > 4 so
that the formulæ make sense. This ansatz suggests looking at the partial fraction
decomposition of

1

(z− τ0)
2 (z− τ1)

2 (z− τ2)(z− τ3)
, (11.89)

from which we straightforwardly find (of course by using a computer algebra sys-
tem) that

a0 =
1

(τ0 − τ1)
2 (τ0 − τ2) (τ0 − τ3)

and a1 =
1

(τ0 − τ1)
2 (τ1 − τ2) (τ1 − τ3)

and that the cks are

c0 =−2τ2τ3 − 3τ0τ2 − 3τ0τ3 + 4τ0
2 + τ1τ3 − 2τ0τ1 + τ2τ1

(τ1 − τ0)
3 (τ0 − τ2)

2 (τ0 − τ3)
2
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c1 =−−2τ2τ3 + 3τ2τ1 + 3τ1τ3 − 4τ1
2 − τ0τ3 + 2τ0τ1 − τ0τ2

(x1 − τ0)
3 (τ1 − τ2)

2 (τ1 − τ3)
2

c2 =
1

(τ2 − τ0)
2 (τ2 − τ1)

2 (τ3 − τ2)

c3 =
1

(τ2 − τ0)
2 (τ2 − τ1)

2 (τ3 − τ2)
.

It turns out that the residual error in (11.88) is, as desired, O(h4). In detail, if τk =
τ0+rkh, for k = 1, 2, 3, then the residual error is h4 f (5)(0)/120+(2r1 + r2 + r3)h5 f (6)(0)/720+
O(h6), so even the error coefficient is the same at the end as it is for the interior
nodes. A similar formula holds for the other end (indeed, simply reverse the labels,
τk ↔ τn−k). This gives us closure in our search for a compact, variable-mesh fourth-
order finite-difference formula.

So, how well does it work? If the mesh ratios are not “too large,” that is, adjacent
subintervals are not too different in width (so that the rk factors in the edge formulæ
and the r and s factors in the interior formula are not too large), then the formula
is very effective for smooth functions. Note, however, that the formulæ above are
quite susceptible to produce rounding errors, especially in the formulæ at the edges,
and should be rewritten using hi = τi+1 − τi and factored wherever possible. When
this is done, the influence of rounding errors, while still felt, is significantly reduced.
The program vcompact4 has been used to generate the data shown in Fig. 11.7:
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Fig. 11.7 Fourth-order variable-mesh compact finite-difference maximum error computing
(1/Γ)′(x) on 1 ≤ x ≤ 3. The spatial mesh was Chebyshev points x j = 2+ cos(π j/n) for 0 ≤ j ≤ n,
for various n. Theoretical fourth-order behavior is shown by the dashed line
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11.7 Automatic Differentiation

Recall the Mandelbrot polynomials, defined by p0 = 1 and pn+1 = xp2
n + 1. Sym-

bolic expressions for the pn grow exponentially (in the expanded monomial basis,
since the degree is 2n − 1), and symbolic expressions for the derivatives of these
polynomials also grow exponentially, being degree 2n −2. In fact, symbolic deriva-
tive expressions grow remarkably quickly in general, unless serious care is taken
not to reprint repeated subexpressions. Symbolic differentiation has its uses in nu-
merical analysis, most notably to compute the Jacobian matrix of a set of algebraic
equations—because such matrices are often sparse, and we typically only want one
derivative—but for other contexts, and sometimes even for Jacobian matrices, sym-
bolic differentiation is just too expensive. To add insult to injury, the resulting ex-
pressions are often not only large, but also numerically unstable.

Coming back to the Mandelbrot polynomials, a moment’s thought shows that the
derivatives p′n(x) can also be computed by a recurrence relation, because p′n+1 =

p2
n + 2xpnp′n. Consider, therefore, this algorithm:

[p,d p] = mandelbrot(x,n)
p0 = 1
d p0 = 0
for i from 1 by 1 to n do

pi = xp2
i−1 + 1

d pi = p2
i−1 + 2xpi−1d pi−1

end for
Wouldn’t it be nice if such a “differentiated” algorithm could be obtained without
human intervention? It is indeed possible, and it is indeed nice. In fact, the material
we have covered on formal power series generation of terms of Taylor series forms
one part of such automatic differentiation (AD) algorithms.4 We cannot do justice
here to the refinements necessary to get automatic differentiation programs to be ro-
bust, efficient, and able to generate efficient code. Still, it’s worth going over at least
the simplest ideas in automatic differentiation, to distinguish it from symbolic dif-
ferentiation and from approximate numerical differentiation methods such as finite
differences.

The main idea of the forward mode of AD is nothing more than the formal power
series algebra of Chap. 2. That is, when we add two truncated power series (ex-
panded at the same point), we simply add their coefficients. When we multiply two
such series, we use the Cauchy convolution. Division is handled similarly, as are
most of the elementary functions, as described in that chapter. So how does this
become automatic?

The key is operator overloading. In many modern computing languages (includ-
ing MATLAB), one can redefine the operators +, ∗, /, and so forth, so that they do
different things depending on the type of operand they encounter. If, say, they en-

4 For a large collection of resources, including reference books, tutorials, lists of papers, and (per-
haps most importantly) links to programs that can differentiate your programs in languages ranging
from C through MATLAB to Python, see www.autodiff.org.

www.autodiff.org
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counter a pair of objects of type “truncated power series,” then they use the series
algorithms. Otherwise, they perform the originally intended operations. An auto-
matic differentiation program that provided series operations for plus, minus, times,
divide, and power, together with most of the elementary functions such as sine, co-
sine, and exponential, could then take a user’s program and (without changing a
line!) execute it in series instead! At the end, the result would be a series—which
could be interpreted not only as the final result, but as all the derivatives of the final
result. This approach works quite well if there are only a few inputs, and only one
output.

As for the Mandelbrot example above, it was differentiated by hand, obviously.
To better simulate automatic differentiation, we take instead the original algorithm,
modify the constants so that they are now constant series (this can be done invisibly
to the user, but we show it in the algorithm below for clarity), and modify occur-
rences of x in the program to be [x,1] (because the derivative of x with respect to
itself is 1). The algorithm becomes

p = mandelbrot(x,n)
p0 = [1,0]
for i from 1 by 1 to n do

pi = [x,1]∗ p2
i−1+[1,0]

end for
and we execute the algorithm with the understanding that the plus in a+ b really
takes as input [a,da] on the left, [b,db] on the right, and produces [a,da]+ [b,db] =
[a+ b,da+ db] as a final result. Similarly, a ∗ b produces [ab,a ·db+ da ·b] (which
is just the first term in the Cauchy convolution).

All in all, it is a remarkably simple approach, and it is quite powerful even in the
simplistic condition presented here. In comparison with numerical differentiation,
one sees that there is no truncation error, although there is indeed rounding error.
In comparison with symbolic differentiation, we see that at no point is a formula
for the derivative generated—just a program (well, in this case, just an algorithm).
However, automatic differentiation didn’t take off in applications or the literature
until it became more powerful. The breakthrough was the reverse mode, which is
effective for a large vector of inputs, that is, computation of gradients. We do not
pursue this powerful idea here, but leave you to the references.

11.8 Smoothing

The discussion in this chapter has so far been confined to the case where we know
the function to be differentiated very precisely. This is typical of functions defined
by formulæ, or by programs that can be executed in high precision. Of course, this
is useful, but it isn’t the only place where differentiation is needed. Indeed, the
differentiation of noisy data in science is often desired. But as we have seen, differ-
entiation is infinitely ill-conditioned. What, then, can be done?
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There are several approaches used in practice. What we find simplest is the idea
of “smoothing”—that is, we make some computational effort to filter out the smooth
function to be differentiated. There are infinitely many ways to do this, however, and
it would be nice if there were some theoretical basis underpinning the method used.
One such theoretical underpinning is the idea of “regularization,” that is, transform-
ing the ill-conditioned problem into a well-conditioned one, in effect by restricting
the class of allowable perturbations.

For the purposes of this chapter, we will examine a much older, “local,” tech-
nique, due to Lanczos (1988). Lanczos’ first smoothing technique is local because
it considers only a few nearest neighbors in the sampled data and fits a smooth
low-degree polynomial to that data. To be specific, we use a least-squares fit to the
data, to fit a lower-degree and therefore smoother polynomial to the data, and differ-
entiate that smoother polynomial. Given the method we favor in this book, though,
we apply Lanczos’ technique entirely in the Lagrange basis. In the end, we get for-
mulæ very similar to Lanczos’. The formulation of the least-squares problem in the
Lagrange basis is simple enough, and we take one approach below, by example.

Example 11.7. Suppose that we are given data yk on τk = −1+ 2k/4, for k = 0, 1, 2,
3, and 4. We could fit a degree-4 Lagrange polynomial on that data easily enough,
but if the data yk contain errors, then we would be fitting the errors exactly, which
doesn’t help. So instead we try to fit a degree-2 polynomial on this data. Here we run
into a snag with the Lagrange basis: The degree is not visible in the form. We can
evaluate our degree-2 polynomial on the 5 pieces of data to get ρk, 0 ≤ k ≤ 4, and
indeed we will have to; and this will give us the barycentric forms of the interpolant,
as usual.

But how do we specify the degree? It’s contained implicitly in the ρk, to be sure,
but it’s not obvious. One way to do it is to impose the following linear constraints.
First,

β0ρ0 +β1ρ1 +β2ρ2 +β3ρ3 +β4ρ4 = 0 , (11.90)

which ensures that the degree cannot be 4, but must be 3 or less, because this number
is just the coefficient of p(x) if we expand into the monomial basis. However, we
are using only the given data and are not converting to the monomial basis; it would
be the case if we used this coefficient (and the other monomial basis coefficients) to
evaluate p(x), and we would then be in trouble. There would be rounding errors in
its computation, which would be worse than the original data errors. But we’re not
going to use the coefficient! In fact, we are constraining this coefficient to be zero,
not computing it, and this makes all the difference. We will still find ρk on all 5
nodes; but by insisting on the constraint, we get ρk from a lower-degree polynomial.

We want to make it smoother yet as well. If we also apply the similar constraints
that all of the data must be fittable by degree-2 polynomials on each of the five re-
lated sets of four points obtained by omitting one of our given τk, each in turn, then
we get five more linear constraints. Of course, these are not linearly independent,
and so we won’t need to apply all of them. For this problem, all we need, in fact,
is just one more, say that ρk on τk for 1 ≤ k ≤ 4 must not be degree 3 but rather
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degree 2. We compute the barycentric weights on τ1, τ2, τ3, and τ4 (note that τ0 has
been omitted), and call these weights βk\0 and number them from 1 to 4 correspond-
ing to our old τk. Then we get the constraint

β1\0ρ1 +β2\0ρ2 +β3\0ρ3 +β4\0ρ4 = 0 . (11.91)

More, a short computation shows that βk\0 = βk(τk−τ0), and so we needn’t do much
work in computing these related barycentric weights. (We see in Problem 11.14 a
related approach.)

By applying these two constraints, we will ensure that our polynomial fit will
have degree at most 2. Now, we wish to find the ρk that are the “best possible” fit to
the given data, yk. If we use least squares, then we wish to minimize

4

∑
k=0

(ρk − yk)
2 (11.92)

(assuming our data are real, for simplicity). But we must also satisfy the two con-
straints above: Denote them b1ρρρ = 0 and b2ρρρ = 0 for appropriate vectors b j. We
may use Lagrange multipliers on our minimization problem to enforce the con-
straints. That is, we find ρρρ (and the multipliers λ1 and λ2) by minimizing

4

∑
k=0

(ρk − yk)
2 + 2λ1b1ρρρ+ 2λ2b2ρρρ . (11.93)

Differentiating with respect to each ρk and to each λ j gives us seven equations in
the seven unknowns, with (for our τττ) the symmetric positive-definite matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2/3 0
1 −8/3 −4/3

1 4 4
1 −8/3 −4

1 2/3 4/3
2/3 −8/3 4 −8/3 2/3

0 −4/3 4 −4 4/3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11.94)

and right-hand side [y0,y1,y2,y3,y4,0,0]T . See Fig. 11.8 for a plot of a fit using this
method.

Now, how do we take the derivative of this data? The usual contour integral
method gives us that the derivative at t = 0 of the smoothed function is

f ′(0) =
1
6
(ρ0 −ρ4)+

4
3
(ρ3 −ρ1) . (11.95)

And now we note that the linear system described above can be solved symbolically
for arbitrary data yk, giving
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Fig. 11.8 The degree 2 least-squares fit to five samples of noisy data, done in the Lagrange basis.
The smoothed data are [−1.478,−1.137,−0.8812,−0.7103,−0.6245], while the original data
are [−1.467,−1.185,−0.8047,−0.7647,−0.6101], at nodes τττ = [−1,−1/2,0, 1/2,1]. The dashed
line is obtained by barycentric Lagrange interpolation. The derivative at t = 0 is, by this method,
f ′(0) = 0.4203

f ′(0) =
6

35
y0 − 17

35
y1 − 4

7
y2 − 3

35
y3 +

34
35

y4 . (11.96)

Now, finally, we transport our set of nodes τττ onto a mesh of width h: τ = −1 cor-
responds to x = −2h, τ = −1/2 to x = −h, τ = 0 to x = 0, and so on. The formula
is x/2h = τ , and therefore d/dx = 1/(2h)d/dτ, so to get a smoothing finite-difference
formula, we divide that formula by 2h. This gives

f ′(x) .
=

1
2h

(
6

35
f (x− 2h)− 17

35
f (x− h)− 4

7
f (x)− 3

35
f (x+ h)+

34
35

f (x+ 2h)

)
.

Formally, this is exact only for linear polynomials and is only an O(h) formula. It
uses 5 points, not 2, which seems wasteful, but the extra information has been used
to smooth the data. The same approach can be used to give formulæ accurate near
the edges of a mesh (the above only works if one has two mesh points on either
side). The approach can be extended to a variable mesh. �

Lanczos then goes on to point out a connection to quadrature, because this finite
difference formula looks somewhat like a quadrature rule, apart from the division
by h. The curious formula

f ′(x) =
3

2ε3

ˆ ε

−ε
t f (x+ t)dt, (11.97)

which is accurate to O(ε2), suggests that one can obtain an approximate derivative
by instead computing an approximate integral. Of course, we have already seen
this in the complex plane, but still, this entirely real integral is itself interesting.
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Other methods of smoothing include trigonometric differentiation (see Eq. (9.29) in
Chap. 9).

11.9 Multidimensional Finite Differences

Multidimensional finite differences require more bookkeeping. The short MAPLE

program findif mentioned in Zhao et al. (2007) uses multivariate Taylor series in
MAPLE to set up equations for the unknown coefficients in an ansatz for a desired
differential expression. Unfortunately, this code has not been made widely available,
but fortunately it is not hard to reimplement in a computer algebra system. Even
FORTRAN implementations are rumored to exist!

Here, we only consider an example of a multivariate finite difference.

Example 11.8. Given information about the value of f (x,y) at the five points (x,y) =
(0,0), (x,y) = (Δx,0), (x,y) = (−Δx,0), (x,y) = (0,Δy), and (x,y) = (0,−Δy), one
might wish to evaluate, say, f (rΔx,sΔy) for any r ∈ [−1,1], s ∈ [−1,1]. This is an
interpolation problem. The findif program generates the following formula:

f (rΔx,sΔy) =
(
1− r2− s2) f (0,0)+

1
2

s(s+ 1) f (0,Δy)

+
1
2

s(s− 1) f (0,−Δy)+
1
2

r (r+ 1) f (Δx,0)+
1
2

r (r− 1) f (−Δx,0) .

The principal term in the error for this formula is rsD12( f )(0,0)ΔxΔy.
If, on the other hand, one wanted a derivative, say D12( f )(rΔx,sΔy), then this is a

finite-difference problem (and there may or may not be enough information on this
“molecule” to specify it). �

11.10 Notes and References

Theorem 11.1, that differentiation is infinitely ill-conditioned, is well known. Sev-
eral early computational discussions exist, for example, Lanczos (1988) and Cullum
(1971), but it seems obvious that the phenomenon must have been known long
before those. The study of finite differences is probably even older; by the time
of Boole (1880), it was already very advanced and by Milne-Thomson (1951) must
have seemed mature indeed. The coming of the digital computer completely revo-
lutionized it, of course.

See Trefethen (2000 Ch. 6) for examples of differentiation matrices in action.
In Trefethen (2013), we find a detailed discussion of the history of differentiation
matrices, and there the first derivation of Eq. (11.22) is attributed to Bellman et al.
(1972). The special care needed to get differentiation matrices accurate for repre-
sentations of constant vectors was first noted by Don and Solomonoff (1995). Sig-



11.10 Notes and References 497

nificant improvements can be made to formula (11.22) to protect it from rounding
errors (and incidentally to improve its speed) in the case where the nodes come from
a known family, such as the Chebyshev nodes (actually, in that case the weights
are known analytically—see Problem 8.24). See Weideman and Reddy (2000) and
their MATLAB codes at http://www.mathworks.com/matlabcentral/
fileexchange/29 and the earlier work Don and Solomonoff (1995). The use of
complex nodes for differentiation was studied first in Lyness and Moler (1967).

Compact finite differences are studied in Lele (1992) using a Fourier approach,
and their exceptional accuracy for minimal effort—nearly spectral accuracy, in
fact—on uniform grids is explored in that paper. Compact schemes can be very
accurate and very efficient in practice. See Zhao et al. (2007) for an application in
option pricing, and see Rokicki and Floryan (1995) for an application in fluid me-
chanics. Compact schemes for variable meshes in fluids applications are studied, for
example, in Pettigrew and Rasmussen (1996).

For a full introduction to automatic differentiation, consult Corliss et al. (2002).5

For an introduction to AD in MATLAB, see Forth (2006).
The seminal use of regularization for smoothing in order to take derivatives is the

work of Cullum (1971), where she converted the problem of finding the derivative
F ′(x) from F(x) into finding the solution f (x) of the Volterra-type integral equation

A( f )(x) :=
ˆ 1

0
u(x− y) f (y)dy = F(x)−F(0) , (11.98)

where u(t) is the Heaviside unit step function, a problem that can be regularized by
Tikhonov’s procedure into the following minimization problem: Find f so that

‖A( f )−F‖2 +

(ˆ 1

0
f

)2

+α
(‖ f‖2 + ‖ f ′‖2) (11.99)

is minimized. [As phrased here, this requires F(0) = F(1) = 0, but this restriction
is easily overcome.] This problem is well-conditioned: Small changes in the data F
produce small changes in the answer f , because the norms control the derivatives.
One difficulty is that the problem contains an unknown regularization parameter α
which must be estimated well, in order to get good answers. However, this approach
has seeded a very large number of (dare we say it) derivative works, and overall
the approach is very practical. One interesting refinement is to consider averages
of finite differences taken at several different mesh widths, in such a way that the
mesh widths used become the regularization parameter. For a discussion of this and
alternative approaches, see Lu and Pereverzev (2006). A very interesting observa-
tion is that of Anderssen and Hegland (1999), who show that higher-dimensional
problems are in some sense easier. These regularization techniques are “global” in
the sense that they use all the data available in order to find the derivative at any one
point. See Anderssen and Hegland (2010) and the references therein for a selection
of applied problems requiring smoothing.

5 Note the spelling of George F. Corliss’ name.

http://www.mathworks.com/matlabcentral/fileexchange/29
http://www.mathworks.com/matlabcentral/fileexchange/29
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Problems

Theory and Practice

11.1. Given the values of y = f (x) at x = 0, x = h, and x = 2h, and the value of
y′ = f ′(x) at x = 0 only, find a formula for

f ′′(0) .
=

a0 f0 + a1 f1 + a2 f2

h2 +
b0 f ′0

h
(11.100)

that is as accurate as possible in the asymptotic limit as h → 0+. You may use either
Taylor series or contour integrals to derive your formula. Test your formula on

1. f (x) = cos(πx)
2. f (x) = x5/2

for h = 1/50, 1/80, 1/130, 1/210, 1/340, 1/550, 1/890, 1/1440, 1/2330, 1/3770, 1/6100. What is the
order of your formula? That is, your error should be O(hp) for some p. What is p?
Explain your results.

11.2. It can be shown that if c = 2+
√

3 and the tridiagonal matrix M1 has ones on
the subdiagonal and superdiagonal, and the diagonal elements are 4 except for the
top left corner, which is c, not 4, then M1 can be factored exactly (analytically) once
and for all, independent of its dimension (so long as it’s square) into M1 = LDLT .

1. Factor M1 as mentioned.
2. If (in MAPLE syntax), we write a matrix–vector product B1u as

c := 2.0 + sqrt(3.0);
alpha := 1.0/c;
b := Array(0..n); # same as u
b[0] := (-(25*c+3)*u[0] + (48*c-10)*u[1] + (18-36*c)*u[2]

+ (16*c-6)*u[3]
+(1-3*c)*u[4] )/12/h;

for k to n-1 do
b[k] := 3*(u[k+1]-u[k-1])/h;

end do;
b[n] := (11*u[n-4] - 58*u[n-3] + 126*u[n-2] - 182*u[n-1] +

103*u[n])/12/h;

then M1v = B1 f has v = f ′(x)+O(h4) if the vector being multiplied by B1 is,
in fact, the value of a function f evaluated at a vector x of equally spaced points
on an interval a ≤ x ≤ b. Translate that MAPLE syntax into MATLAB.

3. Use the factoring of 11.2 and the translation of 2 to write a MATLAB program
that accepts as input a vector of function values (evaluations of f at equally
spaced points) and a width h = (b−a)/n and outputs a vector of derivative values.
Your program should not form any matrices explicitly. Instead, you should have
a loop for forward elimination, perhaps a loop for solving a diagonal system,
and a loop for back substitution. Test your program on the smooth function
y = sin(πx) on the interval −1 ≤ x ≤ 1, for the same Fibonacci scale h as in



11.10 Notes and References 499

Problem 11.1, and plot the maximum error versus h on a log–log plot. Is the
error really O(h4)?

11.3. Show that the norm of the differentiation matrix D of the Lagrange basis on
equally spaced nodes on [−1,1] grows faster than exponentially as the number of
subintervals n grows, while the norm of the differentiation matrix on Chebyshev–
Lobatto nodes cos kπ/n grows only as O(n2). Compare to the norm of the differenti-
ation matrix in the monomial basis.

11.4. Using the contour integral
ffi

C

f (z)
(z+ h/2)z2(z− h/2)

dz (11.101)

or otherwise derive the central difference approximation to the derivative

f ′(0) =
f (h/2)− f (−h/2)

h
(11.102)

and show that it is exact for polynomials of degree at most 2.

11.5. Show (perhaps by example) that Eq. (11.14) is in the case of Lagrange basis
with Vandermonde matrix V as produced by MAPLE

DLagrange = VDmonomialV
−1 . (11.103)

Actually, using this formula to compute the differentiation matrix does not seem
advisable since Vandermonde matrices are notoriously ill-conditioned for real inter-
polation nodes.

11.6. Verify that Eq. (11.61) suffers accuracy loss as h → 0 for f (z) = J0(z)
(besselj(0,z) in MATLAB). By using the Cauchy–Riemann equations and
J′0(z) = −J1(z), compute the separate condition number for the imaginary part
v(x,y) of J0(x+ iy) = u(x,y)+ iv(x,y) at x = 22.3, y = h. If perturbations in x hap-
pen, is the imaginary part ill-conditioned?

11.7. Explore the accuracy of computing n derivatives of various analytic functions
by means of the FFT as in Remark 11.4. Give a formula for the order of accuracy
you can expect.

11.8. Another reason not to discard the Newton basis (divided differences) com-
pletely is their convenience for differentiation. Show how to efficiently differentiate
a polynomial expressed in a Newton basis.
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Investigations and Projects

11.9. Is the algorithm given in the text for computing the differentiation matrix D
on the Lagrange basis a numerically stable algorithm? What about the algorithm for
computing D on a Hermite interpolational basis?

11.10. Get a copy of the paper (Lele 1992) and confirm the claims therein of accu-
racy of compact finite differences on uniform grids for trigonometric functions.

11.11. Suppose one has a polynomial given by Lagrange or Hermite data, ρi, j at dis-
tinct nodes τi. One might not want to compute a large number of derivatives; perhaps
one only needs a few at some points t not equal to any τi. In that case, the construc-
tion and use of an entire differentiation matrix might be overkill (convenient if one
has the routines ready to hand, but still overkill). One could instead differentiate by
constructing an explicit derivative from the partial fraction expansion of

1
(z− t)2∏n

i=0 (z− τi)
si
, (11.104)

which gives a formula connecting f ′(t), f (t), and all the ρi, j; once one has eval-
uated f (t) which presumably one needs anyway then the derivative f ′(t) becomes
available. Construct this formula and test it.

An alternative that does not require the value of f (t), apparently, is to choose a
Butcher factor B(z) so that the residue of 1/(z− t) is zero in

B(z)
(z− t)2∏n

i=0 (z− τi)
si
. (11.105)

This connects f ′(t) directly to the ρi, j. Which approach is better?

11.12. Construct a differentiation matrix for taking derivatives of the rational inter-
polant with denominator q(z) where

q(z)
w(z)

=
n

∑
i=0

si−1

∑
j=0

αi, j

(z− τi) j+1 . (11.106)

Test your formula on some small examples. Hint: Does the derivation of the differ-
entiation matrix for the Lagrange basis or Hermite interpolational basis actually use
the fact anywhere that the barycentric weights define a polynomial interpolant, as
opposed to a rational interpolant?

11.13. Write a MATLAB function to compute the differentiation matrix D according
to Eqs. (11.22) and (11.16) for interpolation on a set of distinct nodes τi, 0 ≤ i ≤ n,
with a given set of barycentric weights βi. Your program will also be useful for
differentiation of rational interpolants simply by inputting nonpolynomial barycen-
tric weights αi. Test your program on several examples. The cost of your program
should be at most O(n2) flops to construct D. Try to write a short program, avoiding
loops as much as is reasonable.
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11.14. Piers Lawrence pointed out to us a formula that allows the constraints used
in Sect. 11.8 to be simplified. Specifically, if the leading coefficient ∑n

k=0βkρk = 0,
then the next coefficient is

[zn−1](p) =
n

∑
k=0

βkτkρk , (11.107)

and if that is zero, then the next coefficient is

[zn−2](p) =
n

∑
k=0

βkτ2
k ρk , (11.108)

and so on. That is, if all of [zn− j](p)= 0 for 0≤ j ≤m−1, then the next coefficient is

[zn−m](p) =
n

∑
k=0

βkτm
k ρk . (11.109)

Use these formulæ to write a MATLAB function that fits a degree-(n−m) polynomial
to n+ 1 pieces of data (τk,yk) in the least-squares sense. Either by updating the
barycentric weights and throwing away m pieces of data or simply by using the
original differentiation matrix on your computed ρk, include the ability to find the
derivative of your smoothed polynomial. Will this process work well if m is at all
large?

11.15. Suppose we have a differentiation matrix D available; for simplicity, take the
differentiation matrix on the Chebyshev–Lobatto nodes. If the number of nodes is
large enough to represent f but we know its derivative g on those nodes, can we
solve Df = g for f, perhaps by using the SVD?

11.16. Compute the condition numbers τk∂βi, j/∂τk/βi, j for a few explicit sets of
nodes and confluencies. Are the entries of the Lagrange differentiation matrix at all
ill-conditioned? Note that we are not talking about the condition number of D itself
(which is infinite, because the matrix is singular).

11.17. Write an MATLAB program with the header[vpp] = compact4second
( rho, tau ) that accepts as input a vector ρρρ of values of f (z) on a vector of
distinct values τττ and returns a vector of approximate second derivatives, where the
second derivatives are computed by an O(h4) compact formula, which you will
have to derive. Your program (and formula) should work on meshes that do not
necessarily have constant step size. For simplicity, you may suppose that the second
derivatives are known at τ0 and at τn. Compare your results with using the program
in the text twice. Hint: Use a contour integral but nondimensionalize first. If you
consider the nodes [τk−1,τk,τk+1], then the nondimensionalization z = τk + θh,
where h = τk −τk−1 and τk+1 = τk + rh defines the mesh width h and the mesh ratio
parameter r is very helpful. For the contour integral, consider

B(θ )
(θ + 1)3θ 3(θ − r)3 , (11.110)
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where B(θ ) = b0 + b1θ + θ 2 + b3θ 3 is the Butcher factor containing parameters
that must be chosen to force the coefficients of 1/θ 2, 1/(θ +1)2, and 1/(θ − r)3 to be zero.
Note the somewhat unusual normalization of the quadratic term—this was chosen
after some preliminary computations because it makes the algebra nicer (even in a
computer algebra system, which we recommend you use).

11.18. In Chebfun, the MATLAB command diff, which ordinarily just computes
forward differences yk+1 − yk, takes on another meaning (by operator overloading).
The command diff(y), where y is a chebfun, produces another chebfun for the
derivative of the function represented by the chebfun y. There are two natural meth-
ods it could do this: It could form the differentiation matrix D on the Chebyshev–
Lobatto nodes from the analytically known barycentric weights and use that; or it
could convert to the Chebyshev series with the FFT, use the differentiation matrix
in the Chebyshev basis, and then convert back. Which is a better method? How does
Chebfun actually do it?

11.19. During the writing of this book, an engineering PhD student came and asked
how to differentiate noisy data; in fact, a second derivative was needed. The appli-
cation was to soil engineering. The data were given on a nonuniform grid. Write
a program that uses Lanczos’ approach as in Example 11.7 to take in a vector of
nodes τττ and a vector of values ρρρ and produce a smoothed second derivative at the
interior nodes. You will need to use a higher degree and more neighboring points
than was used in that example. If the average width between nodes is h, what order
p in O(hp) is the accuracy of your method? The data are as below: The left-hand
column is position x and the right-hand column is the strain-gauge reading ρρρ . The
function is assumed to be even.

1.725 73.430
1.035 −86.515
0.975 −90.475
0.405 −138.670
0.015 −154.984

(11.111)

11.20. Consider applying the compact scheme

f ′(τk−1)+ 4 f ′(τk)+ f ′(τk+1)− 3
h
( f (τk+1)− f (τk−1)) = 0 (11.112)

to the problem f (t) = cos(ωt) on some interval, with equally spaced nodes having
τk − τk−1 = h. The exact derivative is, of course, f ′(t) = −ω sin(ωt). By substitut-
ing the exact solution into the compact scheme, we get a kind of “dual residual”
[whereas if we could interpolate the approximate solution and put that into an equa-
tion, say

´
y(t)dt −cos(ωt) = 0, we would be computing a residual as we normally

do]. Specifically,

r(t;h) = f ′(t − h)+ 4 f ′(t)+ f ′(t + h)− 3( f (t+ h)− f (t − h))/h . (11.113)
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The dual residual can be considered a kind of residual itself, by thinking of the refer-
ence solution −ω sin(ωt) as an approximate solution to the difference equations in
the compact scheme, and its nearness to zero is also measure of accuracy, albeit less
physically interpretable. The condition number of the compact difference equations
is also less understood than the condition number of the differentiation problem.
This type of analysis is actually quite common in the study of numerical methods.

Here, show that the dual residual is small compared to the reference solution as
h → 0 and in fact is O(ωh)4. Show that the dual residual for the central difference
formula is, in contrast, O(ωh)2.



Part IV
Differential Equations
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This book takes the somewhat unusual perspective that numerical methods for
the solution of differential equations produce continuous, even continuously differ-
entiable, solutions and not merely a discrete set or ‘skeleton’ of solution values. This
habit of thought, which we encourage, is possible nowadays because professional-
quality solvers already provide access to accurate interpolants together with the so-
lution values.

Codes do this for several reasons. The first reason to provide interpolants came
from a desire to improve graphical output: accurate codes can often take time-steps
so large that plotting just discrete values (the ‘skeleton’) gives too sparse a plot
for easy interpretation (and connecting the bones of the skeleton with straight lines
gives inaccurate intermediate points and an incorrect impression of poor accuracy
at the skeleton) (Fig. IV.1).
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Fig. IV.1 Solving differential equations without interpolating the numerical solutions sometimes
makes the output hard to interpret. See problem 12.1. (a) ode45. (b) ode113

The second reason came from a desire to allow codes to locate events, such as
when one component of the solution becomes zero, or when the solution becomes
singular. A time-step could be so large as to miss the event, and interpolants seem
necessary. Yet another reason comes from the desire to solve not just initial-value
problems for ordinary differential equations, but also to solve delay differential
equations; interpolants into the past history of the solution then become necessary.

Enright and others then pointed out that if codes were providing interpolants
anyway, it might be sensible to use them for error control. In a series of papers, En-
right and co-workers developed defect (residual) control strategies for Runge–Kutta
methods, and implemented them in high-quality Fortran codes. Once that was done,
the advantage of thinking continuously about the solution became evident: a good
numerical method gives you the exact solution of a nearby (a quantitatively nearby)
problem. This provides a cheap and reliable alternative to so-called “shadowing”
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techniques for chaotic problems, for instance.6 Important works about the devel-
opment of residual control methods include Hanson and Enright (1983), Higham
(1989a), Enright (1989a,b, 2000b, 2006a,b), Enright and Higham (1991), Enright
and Muir (1996), Kierzenka and Shampine (2001) and Enright and Hayes (2007).

Interesting issues with structured backward error, that is, taking into account
the kind of perturbation that the numerical method induces, are still being inves-
tigated. However, the main advantage—for a large class of initial-value problems
for ODEs—of thinking continuously is that numerical methods can be seen to de-
liver an exact solution, and in many cases precisely as good a solution as an analytic
exact solution of the original problem, when physical perturbations of the original
problem are taken into account. In other words, thinking about continuously differ-
entiable solutions allows us to use backward error analysis. This way of thinking
allows one to conceptually unify the error analysis of numerical solutions of differ-
ential equation with other areas of numerical analysis to a much higher degree than
what could have otherwise been done.

Chapter 12 looks at the MATLAB codes as exemplars of good numerical meth-
ods that provide continuous solutions. We use those to introduce in detail the ideas
discussed in the previous paragraphs, together with the crucial idea of the condi-
tioning of an IVP. This is called ‘stability’ in the differential equations literature,
but to a numerical analyst ‘stability’ means numerical stability: an algorithm is nu-
merically stable if the residual is small and hence the backward error is small; a
problem is well-conditioned if small changes in the problem lead to small changes
in the solution.

In Chap. 13, we look in some detail at methods for constructing the skeleton
of a solution, and some details of interpolation. We take a brief look at geomet-
ric integration methods, which preserve special properties. We also consider Taylor
series methods, which provide the fundamental theory for all numerical methods
for ODE. In the early days, Taylor series methods were eschewed in practice even
for smooth problems, apparently because of their relative complexity of program-
ming. Yes, it is true that it is easier to construct a discrete stepping method than
to construct a program-generating Taylor series method. However, once one adds
interpolants, variable-stepsize methods using error control, and variable-order the
level of programming complexity becomes comparable; that is, the extra program-
ming complexity needed for Taylor series methods buys free interpolants, essen-
tially free variable order, free error estimates (either local error or residual error),
and as they are one-step methods they are perfect to adapt stepsizes with. In addition,
implicit Taylor series methods have been studied since the work of Barton (1980),
and Taylor series methods are very successful for differential-algebraic equations

6 A numerical orbit is ‘shadowed’ by a reference orbit if there is an orbit of the reference problem
starting from some possibly slightly different initial condition that uniformly follows the computed
orbit. This, too, is a kind of backward error analysis, although mixed in that a small forward error
is also allowed (if it’s uniformly small for all time t > t0); note that the only kind of backward
error that is allowed is in the initial conditions. This may be more appropriate than a residual-type
analysis if one is supremely confident that all terms and parameters have been included correctly
in the model equations, which are not allowed to change. It is certainly more expensive than the
type of analysis advocated in this book.
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(e.g., the early work by Chang and Corliss (1994), and later work by Nedialkov and
Pryce (2005, 2007) and co-workers). However, codes for numerical methods for the
solution of initial-value problems for ODEs have evolved based on the design deci-
sions of their first workers, and so most professional codes nowadays are multistep
methods, extrapolation methods, or Runge–Kutta methods, with Taylor series meth-
ods confined to being used only for ultra-high-accuracy solutions for very smooth
problems. Indeed the efforts of so many smart people working on the mainstream
methods has produced a large number excellent codes that use either multistep, ex-
trapolation, or Runge–Kutta methods by preference.7

Which method is best for your problem? Well, it’s a bit like the game of rock-
paper-scissors; there are problems for which each of the known methods is best, and
others for which it is worst. The perspective taken in this book is that you will learn
how to asses the solution afterwards, to see whether or not the code did a good job.

We go on from IVP and methods for IVP to the study of numerical methods
for Boundary Value Problems for ODE (BVP, or BVPODE) in Chap. 14; here the
influence of the boundary conditions is seen to be crucial. With Delay Differential
Equations as studied in Chap. 15 we meet our first infinite-dimensional problems,
but we will find the ideas of residual and conditioning just as useful. The book ends
with Chap. 16, which uses the same techniques as are used to understand numerical
methods for ODE and DDE to understand some simple methods for partial differ-
ential equations.

7 You may find many of these high-quality codes, which are usually freely available, by consult-
ing the Guide to Available Mathematical Software (GAMS) at http://gams.nist.gov/ or
directly at http://www.netlib.org/ode/.

http://www.netlib.org/ode/
http://gams.nist.gov/


Chapter 12
Numerical Solution of ODEs

Abstract We use a continuously differentiable representation of the numerical
solution in order to define a residual, also known as a defect or deviation. This
allows the use of backward error analysis on the numerical solution of initial-value
problems (IVP) for ordinary differential equations. Of course, this means that we
should also examine the conditioning or sensitivity of an IVP. We use the MAT-
LAB ODE Suite as an example of high-quality software. We pay some attention to
chaotic problems, stiff problems, and singular problems. �

This chapter has two objectives. The first is to explain the use of some simple
but high-quality codes that are available in MATLAB for solving differential equa-
tions. We take this explanatory approach both because the codes can conveniently
be used to solve scientific and engineering problems of genuine interest and because
these problem-solving environment codes provide a relatively gentle introduction to
general-purpose codes, which are used to solve very large-scale scientific problems
efficiently and accurately.

The second objective is to introduce the concepts and the perspective by which
we determine when to trust (and when to distrust) numerical solutions of ODE, in
general. These lessons will hold true for large-scale codes as well as the MATLAB

codes. Since numerical solution is the principal tool we have for nonlinear problems,
and sometimes the only tool, this occupies an important place in the more general
practice of scientific modeling. To understand these lessons, we adopt a backward
error perspective centered on the concept of residual, as outlined in Chap. 1.

The residual of a differential equation is also called the defect and the deviation in
the literature. We will sharpen and standardize those variant terms in order to make
a useful distinction among classes of residuals. The use of residuals for ODE is old,
going back at least to Cauchy. However, the notion of residual has not been used
as much as it could have been in numerical analysis, in spite of its distinguished

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods:
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0 12,
© Springer Science+Business Media New York 2013
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history. Within the last few decades, however, this has begun to change, and we
believe that the right approach to the pedagogy and the usage of numerical methods
for the solution of ODE includes the residual.

But before we talk about the residual, we should ask why one would use numer-
ical methods at all. After all, analytical techniques are well studied and can produce
great insight into a problem. Similarly valuable, perturbation series solutions and
asymptotic series solutions of differential equations are also occasionally available.1

The results of these analytic or semianalytic methods can sometimes be better—
especially at singular points—and give more insight than numerical methods can,
sometimes with greater ease; when these analytical and semianalytical techniques
work at all, that is. In fact, perturbation and asymptotics are complementary to nu-
merical methods: They work well when numerical methods have trouble at singular
points, and they are cumbersome and inefficient at regular points.

Example 12.1. As a modest but typical example, consider the following simple-
looking initial-value problem (we use x ′ and

.
x to denote dx/dt):

.
x(t) = t2 + x(t)− x4(t)

10
, x(0) = 0, (12.1)

on, say, the interval 0 ≤ t ≤ 5. Differential equations of this kind can easily be found
in applications; although this is a made-up problem, one could imagine that it had to
do with population growth, where t is the time, and where x represents a population
with spontaneous generation and a power-law death rate. If one tries to find the exact
solution of this equation, then difficulties arise:

• The exact solution of this problem is not expressible in terms of elementary
functions or known special functions.

• High-order power series solutions (see Sect. 13.4) have numerical evaluation
difficulties for large (t − a) caused by catastrophic cancellation, similar to the
difficulties suffered by other functions we have seen before such as AiryAi(x)
or e−x, due to “the hump” phenomenon (see Chaps. 1 and 2). This can be re-
paired by the use of analytic continuation, but that is exactly the paradigmatic
numerical method, as we shall see.

• Perturbation methods applied to this problem are explored in Problem 12.3, and
they can indeed be used to predict the behavior for large times t: x ∼ (10t2)

1/4,
although the higher-order terms are awkward. But this approximation is not
good for 0 ≤ t ≤ 5, say; it is only for “large” t.

Even for the problem posed in Eq. (12.1), which is vastly simpler than problems that
occur in real models, the classical solution techniques essentially fail us. In contrast,
numerical solution on (for example) 0 ≤ t ≤ 5 is simplicity itself when we use state-
of-the-art codes such as MATLAB’s ode45 to get a reliable numerical solution. For
this generality and ease of use for many applications, numerical solution will be
considered the solution method par excellence. �

1 Incidentally, the notion of residual and backward error analysis applies equally well to series
solutions, perturbation series solutions, and asymptotic series solutions of ODE.



12.1 Solving Initial-Value Problems with ode45 in MATLAB 511

12.1 Solving Initial-Value Problems with ode45 in MATLAB

MATLAB’s ode45 is one of four IVP codes that we will use routinely in this book.
The others are ode15s, ode113, and occasionally ode23. We use them to intro-
duce the reader to the idea of using professional codes.

MATLAB’s ode45 requires three arguments:

1. a function handle corresponding to f(t,x) in
.
x = f(t,x); (t is a scalar and x is a

column vector, and the function must also return a column vector).
2. a time span, that is, a 1× 2 vector corresponding to the interval over which we

will solve the equation numerically;
3. an initial value (which is also a column vector).

Numerical initial-value problems (IVP) are in practice quite different to theoretical
ones. One important difference is the need for an interval of computation, the time
span: Theoretically, one could integrate forever, or until one hit a singularity—but
in practice, the time span can make the difference between a “stiff” (and difficult)
problem and an easy one, and the direction of integration can make the difference
between a well-conditioned problem and an ill-conditioned one. These issues will
be discussed as they arise (see, e.g., Problem 12.4).

For the problem described in Eq. (12.1), the dimension of the column vector is
just 1, and we can simply execute

f = @(t,x) tˆ2 + x - xˆ4/10;
ode45( f, [0,5], 0 );

These commands2 will dynamically generate the plot displayed in Fig. 12.1. See
Problem 12.2, which asks you to solve this same problem again using two other
MATLAB solvers, ode113 and ode15s. This shows how simple the use of these
solvers can be.

0 1 2 3 4 5
0

1

2

3

4

x

y(
x)

Fig. 12.1 Numerical solution of Eq. (12.1)

2 Note the conventional ordering: (t,x). We have seen people get incorrect answers because they
mixed the order up.
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Note that the solver has apparently produced a continuously differentiable func-
tion as a solution and plotted it (see Problem 12.24). In fact, this graph has been
generated step by step, using discrete values of time and values of the solution at
each time unit. This discrete set is called the skeleton of the solution. Between each
pair of points in the skeleton lies a separate function, each of which are collected
and pieced together to produce a piecewise continuous function on the interval of
integration.

This leads us to an important notational convention. We denote this continuous
approximate solution of our initial-value problem by z(t) or in the case of a vector
system z(t). We will call the reference solution x(t) or xref(t) for emphasis; in the
case of vector systems, x(t) or xref(t). For convenience and consistency with other
works, for particular low-dimensional problems, we occasionally use scalar vari-
ables x(t), y(t), and z(t) for individual components of either the reference solution
or of the computed solution; hopefully no confusion will arise.

For many purposes, one will instead want to execute ode45 in MATLAB with a
left-hand side, for instance,

sol = ode45( @odefun, tspan, x0 );

For the problem in Eq. (12.1), the resulting solution sol will then be a structured
object of this kind:

sol =
solver: 'ode45'
extdata: [1x1 struct]

x: [1x25 double]
y: [1x25 double]

stats: [1x1 struct]
idata: [1x1 struct]

Note that one could also write [t,z] = ode45(@odefun,tspan,x0) in order
to put the values of sol.x and sol.y directly into other variables t and z, which
is sometimes useful. The MATLAB command odeexamples can be considered a
good go-to reference for the use of basic ODE codes.

We will see that this “solution object” can be used in the same way that a formula
can be used, in that the computed solution z(t) and its derivative

.
z(t) can be eval-

uated at any desired point in the interval tspan. For now, we note that the points
contained in the array sol.x are called the “steps,” “nodes,” or “mesh” tk for (here)
1 ≤ k ≤ 25, and the points in the array sol.y are the corresponding values of z(tk)
(these were plotted with the circles in Fig. 12.1). In what follows we occasionally
refer to the nodes sol.x together with the values sol.y as the skeleton of the
solution, as stated previously.

We also note immediately that the value of z and
.
z are available at off-mesh

values of t, by use of the deval function, which automatically provides accurate
interpolants and their derivatives for all solutions provided by the built-in solvers of
MATLAB.
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In other books, especially older books, a numerical solution to an IVP is
considered to consist merely of a discrete mesh of times (i.e., sol.x), together with
the corresponding values of x at those times (i.e., sol.y). That is, the numerical so-
lution in other books is usually just what we call the skeleton of the solution, here. In
those books, while in contrast an analytic solution to an IVP is a function for which
we know the rule or formula, a numerical solution is merely a discrete graph. Nowa-
days it is different: Since there are interpolation methods widely implemented for
evaluating the numerical solution at any point, and its derivative if we choose to ask
for it, the distinction between an analytic solution and a numerical solution is not so
great. A numerical solution need not just be a skeleton, and will not be in this book.

In the above example, the use of MATLAB’s ode45 required no preparation of
the problem. However, it often happens that if one wants to use standard codes to
solve a problem numerically, one has to rearrange the problem so that it is in a form
that the code can process. The standard form of an initial-value problem is

.
x = f(t,x(t)), x(t0) = x0, (12.2)

where x : R→ Cn is the vector solution as a function of time, x0 ∈ Cn is the initial
condition, and f : R×C

n → C
n is the function describing the vector field. In terms

of dynamical systems, f is a velocity vector field and x is a curve in phase space that
is tangent to the vector field at every point. Equation (12.2) can thus be expanded as
a system of coupled initial-value problems as follows:

.
x1 = f1(t,x1(t),x2(t), . . . ,xn(t)), x1(t0) = x1,0

.
x2 = f2(t,x1(t),x2(t), . . . ,xn(t)), x2(t0) = x2,0

...
...

.
xn = fn(t,x1(t),x2(t), . . . ,xn(t)), xn(t0) = xn,0.

It is also sometimes convenient to write the system in matrix–vector notation,

.
x = f(t,x(t)) = A(t)x(t)+b(t) , (12.3)

when dealing with linear or linearized systems, since the stability properties will
then be partially explained in terms of the eigenvalues or the pseudospectra of A(t).
In this case, the entries ai j(t) of A are usually assumed to be continuous in t and, for
linear systems, do not depend on any of the xi. For nonlinear systems, the notation
is sometimes abused to let the ai js depend on the xis. The vector b(t) corresponds
to the nonhomogeneous part of the system; namely, it is a function of t only.

Example 12.2. In Shonkwiler and Herod (2009), we find an extended discussion of
the following three-compartment model of the takeup of the toxic metal lead (Pb)
into an organism’s blood, soft tissue, and bones. Although for constant transmission
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rates between compartments and constant lead input for the environment the model
can be solved explicitly by using a matrix exponential, numerical solution is still
valuable. For this system, the matrix is 3× 3:

A =

⎡⎢⎢⎢⎣
−(a01 + a21 + a31) a12 a13

a21 −(a02 + a12) 0

a31 0 −a13

⎤⎥⎥⎥⎦ (12.4)

and the inhomogeneity b = [IL,0,0]′. The values of the parameters used there are
a0,1 = 0.0211 (all parameters are in units of micrograms per day, denoted μg/d),
a12 = 0.0124, a13 = 0.000035, a21 = 0.0111, a02 = 0.0162, a31 = 0.0039, and the
environmental input is IL = 49.3. The matrix is nonsymmetric (there is no reason
that the rate of transfer of lead from soft tissue to bones should be the same as the
other way round, for example) and all eigenvalues are negative. Problem 12.11 asks
you to solve this system on 0 ≤ t ≤ 108 using ode15s. �

Finally, we observe that the system can always be modified so that it becomes
an autonomous system [where f does not depend on t, that is, where f(t,x(t)) =
f(x(t))]. In order to do so, we simply add an (n+ 1)st component to x if necessary,
so that the fi are now of the form fi(x1(t), . . . ,xn(t),xn+1(t)), and add an (n+ 1)st
equation

.
xn+1 = fn+1( x1(t), x2(t), . . . , xn(t), xn+1(t) ) = 1 xn+1(t0) = t0 . (12.5)

It is often convenient to deal with the autonomous form of systems (see, e.g.,
Sect. 13.5.5), and we will freely do so. In this notation, we will often simply write
x instead of x(t) and A instead of A(t).

Example 12.3. As a first nonlinear example, we show how to express systems of
first-order equations in this manner. Consider the Lorenz system, in which we have
a system of three first-order differential equations:

.
x = yz−βx x(0) = 27
.
y = σ(z− y) y(0) =−8
.
z = y(ρ − x)− z z(0) = 8

. (12.6)

We use Saltzman’s values of the parameters:σ = 10,ρ = 28, and β = 8/3. To express
this system in a way that MATLAB can process, we simply make the trivial relabeling
of variables x1(t) = x(t), x2(t) = y(t), and x3(t) = z(t):

.
x1 = x2x3 −βx1

.
x2 = σ(x3 − x2)

.
x3 = x2(ρ− x1)− x3.
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We can then, if we like, rewrite the system in matrix–vector notation:

.
x =

⎡⎣ .
x1.
x2.
x3

⎤⎦=

⎡⎣ x2x3 −βx1

σ(x3 − x2)
x2(ρ − x1)− x3

⎤⎦=

⎡⎣−β 0 x2

0 −σ σ
−x2 ρ −1

⎤⎦⎡⎣x1

x2

x3

⎤⎦= Ax.

Moreover, our initial conditions x(0), y(0), and z(0) now form a vector

x(0) =

⎡⎣x1(0)
x2(0)
x3(0)

⎤⎦=

⎡⎣27
−8

8

⎤⎦= x0 .

We remark that our chosen “standard” notation for the reference solution x(t) has
a clash with the first scalar variable x(t), which is x1(t) in the vector notation. The
chosen standard notation z(t) for the numerical solution has a clash with the third
scalar variable z(t). Such is life. �

For the problem of Example 12.3, we also remark that the reference solution x(t)
or xref(t) is unavailable for the Lorenz system for long times, because the solution
is chaotic. We will examine this aspect in more detail later, but for now we note that
the computed solution z(t) is quite acceptable for many purposes, as we will see. To
tackle this problem, one can use the code below:

1 function lorenzsys
2 % Three-dimensional plot of solution of Lorenz equations
3 rho = 28;
4 sigma = 10;
5 beta = 8/3;
6 tspan = linspace(0, 100, 1e4 );
7 y0 = [ 27, -8, 8 ];
8

9 [ tplot, yplot ] = ode45( @(t,y)lorenzeqs(t,y,rho,sigma,beta),
tspan, y0 );

10 % first few points of the time history
11 plot( tplot(1:200), yplot(1:200,1),'k-', tplot(1:200), yplot

(1:200,2), 'k--', tplot(1:200), yplot(1:200,3), 'k-.' )
12 set(gca,'fontsize',16);
13 figure
14 % phase diagram
15 plot3( yplot(:,1), yplot(:,2), yplot(:,3), '-k' )
16 set(gca,'fontsize',16);
17

18

19 function ydot=lorenzeqs(t,y,rho,sigma,beta)
20 ydot(1,:) = -beta*y(1,:) + y(2,:).*y(3,:);
21 ydot(2,:) = sigma*( y(3,:)-y(2,:) );
22 ydot(3,:) = -y(2,:).*y(1,:) + rho*y(2,:)-y(3,:);
23 end
24

25 end
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Note the use of a “curried” in-line function call3

@(t,y)lorenzeqs(t,y,rho,sigma,beta)

in line 9 to create a function for ode45 that does not have explicit reference to
the parameters σ , ρ , and β . The first function simply provides the parameters and
executes ode45 (lines 3–9). The second function defines f(t,x) as described in Eq.
(12.6) (lines 19–23).

We might have used the sol = ode45(...) construct instead of demon-
strating the direct computation of values of the solution at the given 104 points in
the tspan. If we had done that, sol would have been a structure containing the
3 × 1,491 array sol.y; the row sol.y(i,:) would have been the vector of
computed values of zi(tn), which then could be used to evaluate the solution at the
10,000 desired points. By doing it the way we did, we obtained instead a 10,000×3
array of values.4

However one does it, one can then easily obtain useful plots, such as time his-
tories and phase portraits, using deval if necessary. See Fig. 12.2. We will often
explicitly use deval to evaluate the numerical solution, which can then be fed into
the functions plot and plot3 to obtain graphical results. By asking for the output
[tplot,yplot], we are implicitly using deval, by the way.
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Fig. 12.2 Plots of the numerical solutions of the Lorenz system. (a) Time history of x(t),y(t), and
z(t). (b) Phase portrait for all three components of the solution

Another trivial change of variables can be used to solve systems of higher-order
differential equations in MATLAB. This time, the change of variables is used to
transform a higher-order differential equation into a system of first-order differen-

3 A curried function, named after Haskell Curry (see, e.g, Curry and Feys 1958) but first developed
by Schönfinkel (1924), is a transformation of a multivariate function to treat it as a sequence of
univariate functions.
4 The transposition is a bit of a headache, to be honest—we are always having to debug errors
caused by not remembering which way round the vectors are to go; however, it is what it is, for
backward compatibility reasons. Again, we remember Admiral Grace Hopper: “The nice thing
about standards is that there’s so many to choose from.”
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tial equations5; we can then write it in vector notation as above if we like. In this
case, a solution to the nth-order initial-value problem is a column vector x(t) whose
components are

xi(t) =
di−1

dti−1 x(t) = x(i−1)(t).

Example 12.4. Suppose we are given the differential equation

..
x+ 2ζω0

.
x+ω2

0 x = 0 (12.7)

for a damped harmonic oscillator. We first form the vector

x(t) =
[

x1(t)
x2(t)

]
=

[
x(t)
.
x(t)

]
,

so that

.
x =

[ .
x1.
x2

]
=

[ .
x(t)
..
x(t)

]
=

[
x2.
x2

]
=

[
x2

−2ζω0
.
x−ω2

0 x

]
=

[
x2

−2ζω0x2 −ω2
0 x1

]
=

[
0 1

−ω2
0 −2ζω0

][
x1

x2

]
= Ax = f(t,x).

We can then use the MATLAB routine ode45 to find a numerical solution to this
initial-value problem. Again, we create an m-file similar to the one below:

1 function dampedharmonicoscillator
2

3 tspan = [ 0, 10 ];
4 y0 = [ 0, 1 ]; %this is [x(0),x'(0)]
5 opts = odeset('Refine', 8);
6 [ tplot, yplot ] = ode45( @odefun, tspan, y0, opts );
7 figure(1), plot( tplot, yplot(:,1), '-k', ...
8 tplot, yplot(:,2), '--k' )
9 set(gca,'fontsize',16);

10 %phase portrait
11 figure(2), plot( yplot(:,1), yplot(:,2), '-k' )
12 set(gca,'fontsize',16);
13

14 function f = odefun(t,y)
15 omega = 2*pi;
16 zeta = 0.1; % parameters hard-coded
17 f = [ 0, 1; -omegaˆ2, -2*zeta*omega ]*y;
18 end
19 end

Here, sol.y(:,1) contains the computed values of x(tn) and sol.y(:,2)
contains the computed values of

.
x(tn). This is an example of using the Refine

5 Instead of this trivial change of variable, it is sometimes better to use physically relevant variables
(see Ascher et al. 1988). In this book, we usually just use the trivial new set of variables.
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option in order to produce a reasonably smooth phase portrait. If we just plotted the
sol.x and sol.y data, the points are too far apart in the phase portrait for linear
interpolation to produce a good plot (try it—see Problem 12.12). By default, ode45
produces a plot with a refinement factor of 4, and this is normally enough (it would
be enough in this example, too) to make a smooth plot. Here we use nRefine =
8, just because. Note that the variable yplot has two columns and 8n+ 1 rows,
where the length of tplot is also 8n+ 1. The length of sol.x would have been
just n+ 1. The graphical results are displayed in Fig. 12.3. �
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Fig. 12.3 Damped harmonic oscillator (12.7) with ω = 2π and ζ = 0.1 and zero initial conditions.
(a) Time history for x(t) and

.
x(t). (b) Phase portrait of x

The question we usually start with when attempting to solve a differential equa-
tion is: What do the solutions look like, for various initial conditions and parameter
values? In the numerical context, we might have various methods returning various
solutions. If the solutions differ, or even if they don’t, a question presents itself: Are
the numerical solutions faithful to the mathematical model? One possible, and in-
deed natural, answer to that question involves comparing the numerical solutions to
the reference solution, somehow. But in the usual cases of interest, the reference so-
lution is unavailable. What, then, to do? In the next section, we look at an effective
and efficient answer that uses the residual.

12.2 The Residual

We show how to assess the quality of a solution by examining its residual. The word
“defect” is a standard name (in the field of numerical methods for the solution of
differential equations) for what we have called the residual so far. Other works call
this quantity the deviation (e.g.. Birkhoff and Rota 1989). We will clarify the use of
those terms, and then show how to compute the residual.
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12.2.1 Residual, Defect, and Deviation

For a given initial-value problem
.
x(t) = f(t,x(t)), if we knew the reference solution

x(t) and its derivative, we would obviously find that
.
x(t)− f(t,x(t)) = 0. However,

numerical methods do not return the reference solution x(t) and its derivative
.
x(t),

but rather some other function z(t) and its derivative
.
z(t) (we have not yet seen an

example where deval returns the derivative of the interpolant as well as the value,
but we will). But then,

.
z(t)−f(t,z(t)) will not in general be zero; rather, we will have

Δ(t) =
.
z− f(t,z(t)) , (12.8)

where Δ(t) is what we call the absolute defect or residual, as opposed to rela-
tive defect or residual, which we define next. The relative defect δ (t) is defined
componentwise [provided each component of f(t,z(t)) �= 0] so that

δi(t) =
.
zi − fi(t,z)

fi(t,z)
=

.
zi

fi(t,z)
− 1 . (12.9)

As before, we can express the original problem in terms of a modified, or perturbed,
problem, so that our computed solution is an exact solution to this modified problem:

.
z = f(t,z)+Δ(t) . (12.10)

Similarly in the relative case
.
z(t) = f (z(t))(1+δ (t)), with a suitable modification in

meaning for a vector system. The residual vector Δ is then a nonhomogenous term
added to the function f, and Eq. (12.10) represents a reverse-engineered problem.

Definition 12.1. If the computed solution (typically a piecewise polynomial inter-
polant) is continuously differentiable, we will call the residual a defect. If the com-
puted solution is only piecewise continuously differentiable, so that the residual is
only defined piecewise and may have jump discontinuities, we will call it a devia-
tion. See Problem 12.24. �

Let us look at the residual from the point of view of dynamical systems. As
we have seen, in an ODE of the form

.
x = f(t,x(t)), the function f determines a

velocity vector and a solution x(t) is then a curve in the phase space that is tangent
to the vector field at every point (see Fig. 12.4). By computing the residual Δ(t) =.
z(t)− f(t,z(t)), we are in effect measuring how far from satisfying the differential
equation our computed trajectory z(t) is, that is, how close it is to being tangent to
the vector field.6 Alternatively, we can then say that the computed trajectory z is
tangent to a perturbed vector field f(t,x)+Δ(t).

Note that the residual is easily computed in MATLAB. The ODE solver returns a
structure sol containing the evaluation points τk as well as the values of z(tk), that

6 This really only makes sense for systems that had originally been nonautonomous, and then
embedded in an (n+ 1)-dimensional autonomous system; in that case, the residual Δ(t) can be
interpreted as Δ(xn+1) and the perturbed vector field will be the same dimension as the original.
Otherwise, the perturbed vector field is really one dimension higher.
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Fig. 12.4 A vector field with a nearly tangent computed solution

is, the skeleton. Using deval, which knows a suitable interpolant for each solver’s
output, we can then find a continuous and differentiable function z(t), as well as its
derivative

.
z(t). But this is all one needs to compute the defect, since the function f

is known from the beginning, being the definition of our initial-value problem.7

For a given selection of points tk (defined, for instance, by linspace), the
MATLAB command

[ z, dz ] = deval( sol, t )

returns the values z(t) and
.
z(t) at the point(s) t in the interval. Computation of the

defect is straightforward after that. As an example, consider again the problem in
Eq. (12.1). One can obtain the residual at a lot of points8 as follows:

f = @(t,x) t.ˆ2 + x - x.ˆ4/10;
sol = ode45( f, [0,5], 0 );
% Compute and plot the relative residual on a lot of points
t = RefineMesh( sol.x, 40 );
[ z, dotz ] = deval(sol,t);
deltat = dotz./f(t,z)-1;
figure(1),semilogy(t,abs(deltat),'k.'),set(gca,'fontsize',24)
xlabel('t'),ylabel('relative residual'),axis([0,5,1.0e-8,1.0])

In Fig. 12.5a, we show these values of the residual for this problem. Observe that
the maximum residual over the interval is quite large, namely, about 0.5.

To reduce the size of the residual, MATLAB offers the user the possibility of
specifying a tolerance. That is, it allows the user to specify both a (scalar) relative
tolerance and an absolute tolerance (which might be a vector of absolute tolerances).
The above example can be modified as follows in order to specify a tolerance:

7 This isn’t perfect. We will later encounter examples where the built-in interpolant and its deriva-
tive have some trouble. But for the problems these codes were designed for, difficulties are rare.
8 At this moment, it’s not clear how many we should take; we will explain the program
RefineMesh later.
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Fig. 12.5 Easily computed residual of the solution of (12.1) with ode45. Note the scale difference.
Note also that the size of the residual is much larger than the tolerance in each case, although
the solution with a tighter tolerance has a smaller residual. (a) With default tolerance. (b) With
tolerance 1e-11

opts = odeset( 'Reltol', 1.0e-6, 'Abstol', 1.0e-11 );
sol = ode45( f, [0,5], 0, opts );

The default absolute tolerance in MATLAB for ode45 is 1.0× 10−6. If we run our
example above instead at this tighter tolerance, we obtain the residual displayed in
Fig. 12.5b. Observe that the relative residual is not actually smaller than the toler-
ance everywhere, but it’s small anyway, and it gets smaller with tighter tolerances.
The tolerance and the relative residual are related, but still different quantities. The
important point is that one can control the size of the residual by tightening the
tolerance.

Something important has happened here. Notice that the numerical method gives
you the exact solution to a nearby problem and that you get to control just how
nearby it is (we will examine this relationship in more detail in Sect. 13.2.2). One
can look at the residual if one chooses, although it is necessary to do more computa-
tions. As we do throughout this book, from our a posteriori backward error analysis
point of view, we then interpret the residual as a backward error, and henceforth say
that our numerical solution gives us the exact solution of a nearby problem. We will
look at more sophisticated backward errors later.

In our first example, we can then claim that the tight-tolerance (10−11) compu-
tation provided an exact solution to

.
x =

(
t2 + x− x4

10

)(
1+ 10−6v(t)

)
, 0 ≤ t ≤ 5,

where v(t) is some smooth but otherwise unidentified function such that |v(t)| ≤ 1.
The value ε = 10−6 has been chosen based on the maximum computed value of the
relative residual on the interval [t0, t f ].

In the example of the Lorenz system, we solve it again at tighter tolerances but
otherwise with the same parameters and use the solution structure sol. The overall
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attractor looks no different from the loose tolerance solution presented earlier. We
zoom in on the residual over the last few points as follows (see Fig. 12.6 for a scaled
version; apart from dividing by dz, the code is identical):

tzoom = RefineMesh( sol.x(end-3:end), 80 );
[z,dz] = deval( sol, tzoom );
Delta = dz - lorenzeqs( tzoom, z, rho, sigma, beta );
figure(4), plot( tzoom, Delta, 'k' )
axis([tzoom(1),tspan(end),-7.5e-6,7.5e-6]),grid('on')
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Fig. 12.6 Scaled residual components of the Lorenz system with relative tolerance 1× 10−9 and
absolute tolerance 1× 10−12 using ode45. The maximum is only slightly larger than 1× 10−7

times the magnitude of the derivative of the interpolant

As a result, we say that our numerical solution is the exact solution of the nearby
problem

.
x = lorenzeqs(x)

(
1+ 1.2 ·10−7v(t)

)
,

where each component of v(t) = [v1(t),v2(t),v3(t)]T is less than 1; that is,
‖v(t)‖∞ ≤ 1.

12.2.2 A Closer Look at Computing the Residual

The numerical methods used to compute the values of the solution of the IVP at the
internal mesh points tk are studied in Chap. 13. For the moment, we note that as usual
the mesh is returned in the solution structure field ending in ‘.x’. For example, if
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our solution is stored in the variable sol, then the discrete mesh is contained in the
structure field sol.x. The rest of the skeleton, namely, the values of the solution at
the mesh sol.x, is contained in the structure field sol.y.

Example 12.5. Consider the simple ODE
.
x(t) = x(t)

(1+t x(t)) , with initial condition

x(0) = 0.7. We can solve this on 0 ≤ t ≤ 100 in MATLAB by executing

f = @(t,x) x./(1+t.*x);
sol = ode113( f, [0,100], 0.7 );

The size of the discrete mesh returned by the MATLAB routine ode113 is found
by executing length(sol.x), which returns 38. This isn’t a terribly fine mesh;
more importantly, it is not a uniform mesh. One way to fill in the graph is to ask to
interpolate the solution at (say) 1000 intermediate points.

4 t = linspace( 0, 100, 1000 );
5 [xt dxt ] = deval( sol, t );
6 plot( sol.x, sol.y, 'ko', t, xt, 'k-')

(That figure is not shown here—it’s pretty boring.) However, using this number of
points might be quite wasteful, and—more subtly—may in some cases miss impor-
tant regions, in spite of taking so many points (roughly 25 per subinterval, but the
difficulty is that not every subinterval actually receives 25 points). The MATLAB

codes, as all good general-purpose codes do, try to adjust the mesh so that the spac-
ings hk = tk − tk−1 are small when important things are happening; if we just then
grossly sample (even oversample) with a uniform mesh, it may well be possible
that the uniform mesh will completely miss very narrow but important regions of
interest.

This is especially problematic if we wish to measure the residual, and therefore
we do not want to use a gross uniform mesh with a large number of points (possibly
both too large a number and still yet missing out on important behavior). Instead,
what we want to do is to refine the mesh that the solver gives us. One short MATLAB

program to do this is given by

1 function [ refinedMesh ] = RefineMesh( coarseMesh, nRefine )
2 %REFINEMESH Insert more points into each subinterval of a mesh
3 % refinedMesh = RefineMesh( coarseMesh, nRefine )
4 % default nRefine = 4
5 if nargin == 1,
6 nRefine = 4;
7 end
8 n = length( coarseMesh );
9 [m1,m2] = size( coarseMesh );

10 h = diff( coarseMesh );
11 refinedMesh = repmat( coarseMesh(1:end-1).', 1, nRefine );
12 refinedMesh = (refinedMesh+(h.')*[0:nRefine-1]/nRefine).';
13 refinedMesh = [refinedMesh(:);coarseMesh(end)]; % column

vector
14 if m1<m2,
15 refinedMesh = refinedMesh.'; % row vector input ==> also

output
16 end
17 end
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That short program puts nRefine (−1) new points into each subinterval in the
supplied mesh; it preserves the overall distribution and does not miss any narrow
regions that the solver decided were important. As we saw in previous examples,
there are provisions for asking the solvers themselves to produce a refined mesh;
however, one can’t (apparently) do that and return a solution structure at the same
time—hence this little program.

As a short example, if τττ = [−1,−1/2, 1/2,1] (which is not equally spaced) and we
call RefineMesh asking for 3 subintervals in each interval, we get

t = [−1.0000,−0.8333,−0.6667,−0.5000,−0.1667,

0.1667,0.5000,0.6667,0.8333,1.0000] ,

as expected. The subintervals have widths 1/6 at the edges and 1/3 in the middle,
again as expected.

The code RefineMesh can be used as follows:

f = @(t,x) x./(1+t.*x);
opts = odeset( 'RelTol', 1.0e-3, 'AbsTol', 1.0e-6 );
sol = ode113( f, [0,100], 0.7, opts );
length( sol.x )
h = diff( sol.x );
t = RefineMesh( sol.x, 20 );
np = length( t )
[zt dzt ] = deval( sol, t );
figure(1), plot( sol.x, sol.y, 'ko', t, zt, 'k-' ),set(gca,'

fontsize',16)
xlabel('t'),ylabel('x')
figure(2), semilogy( sol.x(2:end), h, 'k.' ),set(gca,'fontsize'

,16)
xlabel('t'),ylabel('step size h')
residual = zeros(size(t));
for i=1:np,

residual(i) = dzt(i) - f(t(i),zt(i));
end
mx = max( abs( residual ) );
figure(3), plot( sol.x, zeros(size(sol.x)), 'ko', t, residual, 'k

.' ),
xlabel('t','fontsize',16),ylabel('residual','fontsize',16),set(

gca,'fontsize',16),set(gca,'YTick',-5E-4:2.5E-4:5E-4)
axis([0,10,-mx, mx] )

An examination of the figure(2) produced in that script (but not reproduced
here) shows that the mesh widths hk vary quite widely, getting to be O(10) as the
solution settles down. In the wider subintervals, a very fine mesh as used initially
would be wasteful. On the other hand, using 20 points per subinterval gives rise to a
refined mesh with 740 points—this is plenty, and more than plenty, to see what
is happening in this example. With the default relative error tolerance (explic-
itly coded in at 10−3, as a setup for Problem 12.24; similarly, the defaults for
ode113 for the absolute tolerance are also there), the code has produced the exact
solution to
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dx
dt

=
x

1+ tx
+ 5 ·10−4v(t) (12.11)

with |v(t)| ≤ 1 on 0 ≤ t ≤ 100.
In Fig. 12.7, we see the results of figure(3) from that script. This zooms in

on the interesting part of the computed residual for this example. �
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Fig. 12.7 The (absolute) residual of the equation in Example 12.5 computed on a mesh refined 20
times (and thus with less work overall than the 1000-point mesh used crudely the first time), and
displayed only on 0 ≤ t ≤ 10. On the remainder of the interval, the residual is much smaller

The MATLAB codes ode45, ode15s, ode113, and the rest each come with
their own interpolant, which the evaluation routine deval knows about. To be spe-
cific, the name of the solver is stored in the solution structure returned, and so when
the solution structure is passed to deval, it knows which interpolant to use to eval-
uate the solution and its derivative. This is a very convenient system.

Remark 12.1. The interpolant used by ode45 is sometimes not quite accurate
enough and usually overestimates the actual residual. For the purposes of this book,
this is harmless. �

12.3 Conditioning of IVP

In the previous section, we have defined the residual and we have seen how to com-
pute it without pain.9 We then use this computed value to estimate a backward error.
Now, from the general perspective developed in Chap. 1, an initial-value problem
can be seen as a functional map

9 Of course, the computer has to do some work! Each point at which we evaluate the residual
requires a new evaluation of f (t,x(t)), and thus reassurance comes at a price.
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ϕ :

(
f(t,•), t0,x0

)
→
{

x(t) :
.
x = f(t,x(t)) & x(t0) = x0

}
, (12.12)

where f is a functional R×Cn → Cn (the tangent vector field) and x0 is the initial
condition. We can then study the effects of three cases of backward errors: where we
perturb f, where we perturb x0, and where we perturb both. In the previous section,
we have given two examples of perturbation of f with εv, where the magnitude
of ε is the maximum computed residual and v is a noisy function with ‖v‖∞ ≤ 1
(v will sometimes be assumed to be a function of t only, as in Sect. 12.3.2, and will
sometimes be allowed to be a nonlinear function of t and x, as in Sect. 12.3.3). This
situation is represented in Fig. 12.8.

f(t,x),x0
)

f(t, x)+ e v,x0

y =
{
x(t): x= f(t, x),x(0)=x0

}

z(t)

input space output space

backward error (b.e.) e v — — forward error ≈ cond × b.e.̂, i.e., num. method

j

j

j .

Fig. 12.8 Commutative diagram for the backward error analysis of initial value problems. Note
that we can also perturb x0, or both x0 and f. In some cases, this diagram will be implicitly replaced
by an “almost commutative diagram,” as defined in Chap. 1

The question we ask in this section is: What effects do perturbations of f, x0, or
both have? That is what the conditioning of the initial-value problem tells us. We
begin by examining the effects of a perturbation of the initial condition only. Next,
we examine the effects of a perturbation of the functional f.

12.3.1 Lipschitz Constants

We first need to look at the classical theory of Lipschitz constants. Consider the
initial-value problem

.
x = f(t,x(t)) x(0) = x0 . (12.13)

The function f(t,x) is said to be Lipschitz continuous in x with respect to a norm
‖ · ‖ over the interval t ∈ [a,b] if there is a constant L such that for any t ∈ [a,b] and
for any two x1(t) and x2(t),

‖f(t,x1)− f(t,x2)‖ ≤ L‖x1 − x2‖. (12.14)
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L is called a Lipschitz constant. Moreover, if the function f in the initial-value prob-
lem above is continuous in t and Lipschitz continuous in x, then there exists a unique
solution x(t) to the IVP, at least in a small neighborhood of the initial condition.

Observe that when x1 = x2, (12.14) is trivially satisfied. Also, if x1 �= x2, we have

‖f(t,x1)− f(t,x2)‖
‖x1 − x2‖ ≤ L .

Thus, L provides an upper bound on the effect that changes in x can have on f(t,x).
However, we are not so much interested in the effects of a perturbation of x(t0)

on f as in its effect on x(t), the solution of the initial-value problem. It can be shown
that the forward error z(t)− x(t) satisfies the following inequality:

‖z(t)− x(t)‖ ≤ ‖Δ(t)‖eL(t−t0)− 1
L

. (12.15)

For a proof, see Hairer et al. (1993 Chap. I.10). As nice as this bound is, however,
it allows for exponential growth of the forward error even if the residual remains
bounded. Sometimes this does indeed happen, but in a great many cases of practical
interest the actual forward error does not grow exponentially, even though the bound
does. Hence, we need a sharper bound, in some important cases.

For a large class of problems, one can replace L with a so-called logarithmic
norm, which can be negative. We will not do that here. Instead, we give the tools
that allow computation of a condition number specific to the problem at hand. This
requires more work on any given problem, but the work gives more information
about the problem at hand.

12.3.2 Condition via the Variational Equation

Consider the autonomous initial-value problem

.
x = f(x(t)), x(0) = x0 (12.16)

and the corresponding nonautonomously perturbed autonomous initial-value
problem

.
z = f(z(t))+ εv(t), z(0) = z0 . (12.17)

We denote their solutions x(t) and z(t), respectively,10 and we suppose for simplic-
ity here that x0 = z0. The perturbation v(t) is assumed to be continuous, which is
enough to ensure that z(t) is continuously differentiable.

Notice that since z(t) is the solution of the perturbed problem, we can also write
z(t) = x(t;ε) as a regular perturbation series, using the notation of Sect. 2.8. In

10 The notation here echoes the use of x for the reference solution and z for the computed solu-
tion. In this section, though, it is important that both are reference solutions for their respective
equations—as indeed the numerical solution z(t) genuinely is.
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this context, ε is a small number and εv a small perturbation, and we will ac-
cordingly investigate ‖x(t)− z(t)‖ as ε → 0. One question is then: As ε → 0,
does x(t;ε) converge to x(t) as t → ∞? We will examine the Gröbner–Alexeev ap-
proach in the next section, which shows that it does. However, we take an easier
approach here: We simply assume convergence, and linearize the problem about
the reference solution. In effect, we will study the relation between x and z in
the tangent space. The information we obtain will be valid only insofar as the
tangent space trajectories represent well the original trajectories (i.e., in a small
neighborhood).

Consider the asymptotic expansion of z(t)—which, remember, is just x(t;ε)—in
powers of the perturbation ε:

z(t) = x0(t)+ εx1(t)+O(ε2) . (12.18)

By formula (2.117), since the limit of x(t;ε) as ε → 0 is just x(t), we have x0(t) =
x(t;0) = x(t) = xref(t), giving us

z(t) = x(t)+ x1(t)ε+O(ε2) . (12.19)

We want to solve for x1(t) to determine the first-order effect of the perturbation on
the solution, since z(t)− x(t) .

= εx1(t).
The derivative of Eq. (12.19) is

.
z(t) =

.
x(t)+

.
x1(t)ε+O(ε2)

= f(x(t))+
.
x1(t)ε+O(ε2) .

Since it follows from Eq. (12.19) that x(t) = z(t)−x1(t)ε−O(ε2), we can substitute
and expand f about the computed solution z(t):

.
z(t) = f

(
z(t)− x1(t)ε−O(ε2)

)
+

.
x1(t)ε+O(ε2)

= f(z(t))+ f ′(z(t))
(
(z(t)− εx1(t)−O(ε2))− z(t)

)
+ ε

.
x1(t)+O(ε2)

= f(z(t))+ f ′(z(t))(−εx1(t))+ ε
.
x1(t)+O(ε2).

Now, by Eq. (12.17) and writing f ′ as Jf, the Jacobian matrix, we obtain

.
z(t)− f(z(t)) = εv(t) = ε

.
x1(t)− εJf(z(t))x1(t) ,

where the partial derivatives in the Jacobian Jf are evaluated at the computed
solution z.

Therefore, neglecting the higher powers of ε and rearranging the terms, we finally
obtain

.
x1(t) = Jf(z(t))x1(t)+ v(t), x1(t0) = 0 . (12.20)

This is the first variational equation. The exact, analytic solution of this equation in-
volves the machinery for linear nonhomogeneous equations with (possibly) variable
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coefficients. In what follows, we only briefly sketch how to solve the equation for
x1 in the matrix–vector notation. This is an aside that does not have much to do
with numerics, but it will help to fix the notation and to explain the mathematical
objects we’re dealing with in the codes. We will see at the end of this section how
to implement all of this numerically.

Consider the homogeneous part of the variational equation (12.20),
.
x1 = Jf(z)x1

(we’ll drop the subscript “1” below since the method applies generally to linear
systems). If x1(t),x2(t), . . . ,xn(t) are solutions (not to be confused with the terms xk

in the perturbation series above—especially x1, for which we dropped the subscript)
of

.
x = Jf(z)x and the Wronskian is nonzero, that is, if

W (x1, . . . ,xn) = det
[
x1 · · · xn

] �= 0 ,

then the solutions are linearly independent, so that the general solutions of
.
x =

Jf(z)x are

xh(t) = x1(t)c1 + x2(t)c2 + . . .+ xn(t)cn = X(t)c ,

and X(t) is then called a fundamental solution matrix. As one can easily verify from
the above definition, the fundamental solution matrix satisfies the matrix differential
equation

.
X(t) = Jf(z)X(t). Moreover, we can always choose a fundamental matrix

whose initial conditions will be ξξξ (0) = I by applying a transformation X(t) = ξξξ (t)C
(C constant), so that I = X−1(0)C. Then,

.
ξξξ (t) = Jf(z)ξξξ (t), ξξξ (0) = I (12.21)

is called the associated matrix variational equation. Note that there is no perfectly
general symbolic method to identify the fundamental solutions filling up the ma-
trix X(t), when the components of Jf(z) are not constant, in terms of elementary
functions, but methods are known for some classes of problems.11

Whenever X(t) is a fundamental matrix, it is nonsingular, and as a result the
coefficients ci are uniquely identifiable for a given initial-value problem as c =
X−1(t0)x(t0). Therefore, we find that the solution of the homogeneous system is

xh(t) = X(t)X−1(t0)x(t0) .

Once we know a set of fundamental solutions for the homogeneous part of the
system, we can find a particular solution xp(t) to the nonhomogeneous system by
variation of parameters, obtaining a general solution with the superposition principle
x(t) = xh(t)+ xp(t). The solution of the inhomogeneous system,

.
x = Jf(z)x+ v, is

obtained by letting the coefficients ci be functions of t, so that xp(t) = X(t)c(t).

11 That is, there are algorithms that will find elementary expressions for the solutions when they
are findable, and prove that they are not when they are not. See, for example, Bronstein and Lafaille
(2002). These algorithms do not cover all classes of entries in A(t) and can be expensive even when
they do work. Finally, if, as is usually the case, they simply prove that no elementary expressions
are available, then we’re back to numerical methods anyway.
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Note that the derivative of xp(t) is

.
xp(t) =

.
X(t)c(t)+X(t)

.
c(t) ,

so that, by substituting in
.
x = Jf(z)x+ v, we obtain

.
X(t)c(t)+X(t)

.
c(t) = Jf(z)X(t)c(t)+ v(t).

Since, as we observed, the fundamental solution matrix satisfies
.
X(t) = Jf(z)X(t),

we find that
.
c(t) = X−1(t)v(t) (since X is invertible). By integration of

.
c = X−1v,

we finally identify the variable coefficients and the particular solution:

xp(t) = X(t)
ˆ t

t0

X−1(τ)v(τ)dτ .

Therefore, the general solution of the variational equation is (we reintroduce the
subscript “1”):

x1(t) = X1(t)X1(t0)x1(t0)+
ˆ t

t0

X1(t)X−1
1 (τ)v(τ)dτ . (12.22)

But since x1(t0) = 0, the homogeneous term is just zero. This gives us the following
expression for z(t)− x(t):

z(t)− x(t) = εx1(t) = ε
ˆ t

t0

X1(t)X
−1
1 (τ)v(τ)dτ ,

where again we have ignored higher powers of ε . Now, it follows that

‖z(t)− x(t)‖= ε
∥∥∥∥X1(t)

ˆ t

t0

X−1
1 (τ)v(τ)dτ

∥∥∥∥ ≤ ε‖X1(t)‖
ˆ t

t0

‖X−1
1 (τ)‖‖v(τ)‖dτ

by the triangle inequality.
Therefore, we obtain the inequality

‖z(t)− x(t)‖ ≤ ‖X1(t)‖ max
t0≤τ≤t

‖X−1
1 (τ)‖

ˆ t

t0

ε‖v(τ)‖dτ , (12.23)

where

κ(X1) = ‖X1(t)‖ max
t0≤τ≤t

‖X−1
1 (τ)‖ (12.24)

acts as a condition number and the integral of ε‖v‖ is a norm of εv. Thus, if the
fundamental solution matrix X1 of the variational equation is well-conditioned, then
we can expect an accurate numerical solution since the term v(t) will be damped, or
at least won’t grow too much.
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As we have seen in Chap. 4, the norm of a matrix A equals the largest singular
value σ1 of A, and the norm of A−1 is the inverse of the smallest singular value of
A, denoted σ−1

n . Accordingly, we can write the condition number as

κ(X) =
σ1(t)

min
t0≤τ≤t

σn(τ)
.

It is not an accident that the singular value decomposition plays once again a role in
this context. A standard tool for the evaluation of the effect of X on ‖z(t)− x(t)‖ is
the computation of the Lyapunov exponents λi of X(t). These λi are defined as the
logarithms of the eigenvalues of ΛΛΛ , where

ΛΛΛ = lim
t→∞
(
XT X

)1/2t
. (12.25)

In other words, the Lyapunov exponents are closely related to the eigenvalues of
XT X. But as we have seen in Sect. 4.6.3, the eigenvalues of XT X are just the squares
of the singular values of X (since XT X = (UΣΣΣVH)HUΣΣΣVH = VΣΣΣ2VH ). Note that
we use a variation on the SVD, namely, the “analytic SVD,” where the singular
values can be negative and need not be ordered from largest to smallest. If we take
a small displacement in x (so far, that’s what we labeled εx1), the singular value
decomposition gives us a nice geometrical interpretation of Eq. (12.25). The SVD
factoring X = UΣΣΣVH guarantees that XV = ΣΣΣU for some unitary (in the real case,
orthogonal) set of vectors {vi} and {ui}. We can apply it to the displacement vector
εx1 to get XVεx1 = ΣΣΣUεx1; since the unitary transformations Vεx1 and Uεx1 of
εx1 preserve 2-norm, we see that the singular values show how much the matrix X(t)
stretches the displacement vector εx1 (here, since the original equation is nonlinear,
the singular values will be a function of t). Now, if we take the logarithmic average
of the singular values when t →∞ (because we are interested in average exponential
growth), we get

lim
t→∞

1
t

lnσi(t) = lim
t→∞ ln

(
σ2

i (t)
)1/2t

= lim
t→∞ lneigi(X

T X)
1/2t = lneigi(ΛΛΛ) = λi .

Thus, if any Lyapunov exponent of X is positive, the average exponential growth
of the displacement εx1 will be positive, and so our initial-value problem will be
exponentially ill-conditioned. However, remember that this is the behavior in the
tangent space, since we linearized the initial value-problem. Thus, this does not im-
ply that the displacement z(t)− x(t) is unbounded, since the nonlinear terms might
have an effect as we move away from the point about which we linearized. If one
exponent is positive but the solution remains bounded, then the solution must be-
have unpredictably, though, and this is often termed chaos. We will return to this
issue in Sect. 12.6.

Now, all of these tools somehow require us to compute X(t) in some way,
or at least a computation of X(tk) on a sufficient number of nodes tk. An alter-
native to solving for X(t) analytically consists of solving the variational equa-
tion numerically.
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However, the reader might want to ask: How do we know the numerical solution
of the variational equation is reliable? It may seem that in order to determine
whether or not it is, we would need to find its variational equation, and solve it
numerically. Does it not lead to a regress ad infinitum? No. The first observation
we need to make is that whereas the reference initial-value problem is in general
nonlinear, the variational equation is linear. As a result, the variational equation is
its own variational equation, and so there is no regress.

Moreover, our numerical solution of the variational equation can show that the
reference problem is either ill-conditioned or not. On the one hand, if the computed
solution shows that the components of X1 are large, then the variational equation
is claimed to be ill-conditioned. This must be the case: If it were well-conditioned,
then because we are using a stable method, we would find a small forward error and
thus a small X1. We may well not identify X1 very accurately, but we will see that it
is large. On the other hand, if the computed solution shows that the entries of X1 are
not large, then the variational equation is claimed to be well-conditioned. However,
obtaining a computed solution with a small X1 is actually (potentially) consistent
with an ill-conditioned solution if all the errors just happened to cancel. How likely
is it that an ill-conditioned X1 will have all its errors arranged in such a way that the
computed answer is small and thus the equation appears well-conditioned? Nothing
forbids this from happening, but it doesn’t seem likely; in our experience, it has
never happened.

Anyone unlucky enough to encounter this sort of calamity has probably already been run
over by a truck.12

Example 12.6. Consider Airy’s differential equation y′′ = ty on the interval 0 ≤ t ≤
10, with the initial conditions y(0)=Ai(0) and y′(0)=Ai′(0). Clearly, the reference
solution is y(t) = Ai(t). Is this a well-conditioned IVP or an ill-conditioned one?

Consideration of the known properties of the Airy functions Ai(t) and Bi(t)
shows that this problem is quite ill-conditioned. We can go ahead and use the anal-
ysis of the previous section to show that the condition number grows faster than the
exponential function, but because the answer is known, there is a simpler way: The
general solution of the ODE is y(t) = αAi(t)+ βBi(t), and even just a rounding
error in the initial conditions (surely a milder disturbance than a residual, even a
relative residual, of about 10−6) will mean that our computed solution is something
like Ai(t)+ εBi(t). By consulting reference books (or by use of MAPLE), we find
that the asymptotics of the Airy functions are Ai(t) ∼ c1t−1/4 exp((−2/3)t3/2) and
Bi(t) ∼ c2t−1/4 exp((+2/3)t3/2), so we see that the Bi(t) function grows faster than
exponentially, while Ai(t) decays faster than exponentially; their ratio grows very
quickly indeed and by t = 10, it is larger than 1018.

Another way to see this is from the matrix DE for the fundamental solution of
the variational equation in the first-order form (which has a slightly different, and
larger, condition number than the second order equation, by the way). If

12 This comment is from a prominent analyst quoted by W. Kahan, as reported by Higham (2002
p. 242) in a different context.
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.
ξξξ =

[
0 1
t 0

]
ξξξ , (12.26)

with ξ (0) = I, then one can solve this explicitly to get

ξξξ =

[
f (t) g(t)
f ′(t) g′(t)

]
, (12.27)

with f (t) = α1Ai(t)+β1Bi(t) and g(t) = α2Ai(t)+β2Bi(t). The four constants are
known explicitly but don’t matter much for the present purpose (you can use MAPLE

to find them if you like, but they are within reach of hand computation as well if you
have a reference on Airy functions handy). A simple lower bound for the largest
singular value of ξξξ (t) follows from noting that ξξξ (t)[α2,−α1]

T contains only Bi(t)
and its derivative, and a similar upper bound for the smallest singular value of ξξξ (t)
follows from noting that ξξξ (t)[β2,−α2]

T contains only Ai(t) and its derivative. This
shows that the condition number of the first-order system is bounded below by a
constant times

‖Bi(t),Bi′(t)‖2

‖Ai(t),Ai′(t)‖2
, (12.28)

which gets very large indeed as t → ∞.
However, the IVP that we obtain by integrating backward from y(10) = Ai(10)

and y′(10) = Ai′(10) is very well-conditioned instead! This is sometimes called a
terminal-value problem, by the way. We leave the details to Problem 12.7, but in
essence the disturbances are damped in this direction, which is the opposite the
growth of Bi(t). This shows up in the constants (which were left out) in the analyti-
cal computation sketched above.

Contrariwise, integrating backward from y(10) = Bi(10), y′(10) = Bi′(10) to try
to compute Bi(t) is ill-conditioned because now the Ai(t) term is (in the parlance)
parasitic and grows in this direction; to compute Bi(t), we are better off to integrate
forward, as we tried initially to do for Ai(t). �

Example 12.7. Let us examine another example, in detail, and use numerical
computation of the condition number this time. Consider this initial-value
problem:

.
x1 =−x3

1x2, x1(0) = 1
.

x2 =−x1x2
2, x2(0) = 1

. (12.29)

We may solve this simple nonlinear autonomous system analytically to find that

x1(t) =
1

1+W(t)
and x2(t) = e−W(t),
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where W is the principal branch of the Lambert W function. This function has a
derivative singularity at t =−1/e

.
=−0.3679. We don’t integrate here all the way to

that singularity; see Sect. 12.11 for a discussion of what might happen if we did.
Now, if we didn’t know the exact solution (and perhaps we wouldn’t if we hadn’t

started with the solution and worked out a differential equation for it), we would
solve the problem numerically. As we show, we can also use the theory presented
in this section to track the condition number of the problem numerically. Since we
can also track the residual numerically as shown before, we have all the ingredients
needed for an a posteriori error analysis of our solution.

The trick is to simultaneously solve the associated matrix equation of the varia-

tional equation (12.21),
.
ξξξ (t) = Jf(z)ξξξ (t) with ξξξ (0) = I, and the system above. So

we first compute the Jacobian by hand (or with MAPLE),

J =

⎡⎢⎣−3z2
1z2 −z3

1

− z2
2 −2z1z2

⎤⎥⎦
and then expand the matrix product Jf(z)ξξξ (t). We can then create an m-file solving
for all the components of

y =
[
x1 x2 ξ11 ξ12 ξ21 ξ22

]T
simultaneously. The function f(t,y) will then be as follows:

54 function yp=bothodes(t,y)
55 yp=zeros(size(y));
56 %yp=[x1;x2;xi11;xi12;xi21;xi22];
57 yp(1,:)=-y(1,:).ˆ3.*y(2,:);
58 yp(2,:)=-y(1,:).*y(2,:).ˆ2;
59 yp(3,:)=-3*y(1,:).ˆ2.*y(2,:).*y(3,:)-y(1,:).ˆ3.*y(5,:);
60 yp(4,:)=-3*y(1,:).ˆ2.*y(2,:).*y(4,:)-y(1,:).ˆ3.*y(6,:);
61 yp(5,:)=-y(2,:).ˆ2.*y(3,:)-2*y(1,:).*y(2,:).*y(5,:);
62 yp(6,:)=-y(2,:).ˆ2.*y(4,:)-2*y(1,:).*y(2,:).*y(6,:);
63 end

The use of colon (:) in the code above allows the DE to be evaluated at a vector of
t-values. That is, the input y will be a 6×N matrix corresponding to an N-vector of t
values (although t does not appear explicitly in the DE). The reason we “vectorize”
this function is so that, unlike previous examples, the residual Δ(t) can be computed
in a single statement instead of in a loop. This practice might confuse the reader
(and, to be honest, the writer after leaving the code alone for a while) and isn’t
really recommended. Indeed, one friendly reviewer of this book (Larry Shampine)
suggested that we not do it at all, and stick to using loops to evaluate the residual.
However, we decided to show the technique once, anyway. It is efficient if you can
make it work. This technique is used in odeexamples[brussode] if you wish
to see another example.
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With the function bothodes defined, we can then use the code below to do all
these things:

1. Solve our initial value problem for x1 and x2 (lines 2–11);
2. Solve for the components of the fundamental solution matrix ξi j (lines 2–11

again, since they are solved simultaneously);
3. Find the absolute and relative residual (lines 21–25);
4. Estimate the condition number of the problem (lines 34–44);
5. Plot the results on the appropriate scale (lines 27–32 and 45–46).

In addition, we use the routine RefineMesh discussed earlier to refine the mesh
size to obtain clearer graphical output (the reader is invited to use deval on a mesh
ignoring adaptive step-size selection to see that the result would not look right).

1 function variationaleq_ex
2 % Simple nonlinear autonomous example
3 % dotx1 = -x1ˆ3x2 and dotx2 = -x1x2ˆ2, with x1(0)=x2(0)=1.
4 % J = Jacobian matrix, so the associated matrix variational

equation is dotXI = J XI, XI(0) = eye(2).
5 tspan = [0,-exp(-1)+5.0e-3];
6 % Initial conditions for x_1, x_2, and xi = eye(2)
7 Y0 = [1,1,1,0,0,1];
8 % Integrate to reasonably tight tolerances
9 opts = odeset( 'reltol', 1.0e-8, 'abstol', 1.0e-8 );

10 % Put the solution in a structure, to compute the residual.
11 sol = ode45( @bothodes, tspan, Y0, opts );
12

13 % We refine the mesh ourselves so as to be sure that our residual
computation reflects the actual changes in the solution as
found by ode45.

14 nRefine = 9;
15 n = length( sol.x );
16 size( sol.x )
17 h = diff( sol.x );
18 tRefine = RefineMesh( sol.x, nRefine );
19 numpoints = length(tRefine);
20

21 % Now compute the residual.
22 [yhat,yphat] = deval(sol,tRefine);
23 Resid = yphat - bothodes(tRefine,yhat);
24 % The residual relative to the size of the rhs is also of

interest.
25 RResid = yphat./bothodes(tRefine,yhat) - 1;
26

27 figure(1),plot(tRefine,Resid(1,:),'k-')
28 set(gca,'fontsize',16);
29 title('Residual in x_1')
30 figure(2),plot(tRefine,Resid(2,:),'k-')
31 set(gca,'fontsize',16);
32 title('Residual in x_2')
33 figure(3), semilogy(tRefine,abs(RResid), 'k-')
34 axis([-0.4,0,10E-12,10E-6]);
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35 set(gca,'fontsize',16);
36 title('Relative Residual')
37

38 % Now look at the condition number
39 sigma1 = zeros(1,n);
40 sigma2 = zeros(1,n);
41 cond = zeros(1,n);
42 for k=1:n,
43 Xt=[sol.y(3,k),sol.y(4,k);sol.y(5,k),sol.y(6,k)];
44 sigma = svd(Xt);
45 sigma1(k) = sigma(1);
46 sigma2(k) = sigma(2);
47 cond(k) = sigma1(k)/min(sigma2(1:k));
48 end
49 figure(4), semilogy(sol.x,cond,'k')
50 set(gca,'fontsize',16);
51 title('Condition number')
52 end

The results of this numerical a posteriori analysis of the numerical solution of the
initial-value problem are presented in Fig. 12.9. As we observe in Fig. 12.9a–c, the
relative residuals of all the components on this interval of integration are smaller
than 10−6. So, we have computed the exact solution of

.
y = f(y)

(
I+ 10−6v(t)

)
, ‖v‖∞ ≤ 1.

Moreover, as we observe in Fig. 12.9, the condition number increases significantly
as we approach the singularity 1/e (reaching ≈ 103 on this scale), which is as ex-
pected from what a condition number does. Consequently, as we approach the singu-
larity, we can expect that the reference solution and the computed solution differ as

‖z− x‖ ≤ 103
ˆ t

t0

10−4v(τ)dτ = 10−1
ˆ t

t0

v(τ)dτ.

Naturally, we would get a value better than 10−1 for tighter tolerances, or if we
looked at the relative forward error. �

12.3.3 Condition Analysis Based on the Gröbner–Alexeev
Approach

In the previous section, we have assumed that ε was small enough that linearization
allowed a good approximation. Now, we consider a full nonlinear perturbation. We
also explicitly allow cases when the residual is correlated with the solution of the
initial-value problem, as indeed it is usually for numerical methods.
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Fig. 12.9 Numerical, a posteriori analysis of the numerical solution of the initial-value problem
(12.29) with ode45. (a) Absolute residual in x1. (b) Absolute residual in x2. (c) Relative residual
in the six components of y. (d) Condition number of the problem

Theorem 12.1 (Gröbner–Alexeev nonlinear variation-of-constants formula).
Let x(t) and z(t) be the solutions of

.
x(t) = f(t,x(t)), x(t0) = x0
.
z(t) = f(t,z(t))+ εv(t,z) z(t0) = x0,

respectively. If Jf exists and is continuous, then

z(t)− x(t) = ε
ˆ t

t0

G(t,τ,z(τ))v(τ,z(τ))dτ (12.30)

where the matrix G is given by

Gi j(t,τ,z(τ)) :=
∂xi

∂x0, j
(t,τ,z(τ))

and acts as a condition number, that is, as a quantity dictating how εv(t,z) will be
magnified over the interval of integration [t0, t f ].

We will not give a proof of this theorem. The reader is referred instead to the excel-
lent discussion in Hairer et al. (1993 Chap. I.14).
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If we happen to know the analytic solution of the differential equation, then it is
possible to compute ∂x/∂x0 directly (but, of course, this is an artificial situation, and
we know the answer in either case).

Example 12.8. Consider this simple (scalar) problem:

.
x(t) = x2(t) x(t0) = x0 (12.31)
.
z(t) = z2(t)− εz(t) z(t0) = x0 . (12.32)

The solution of this particular nonlinear problem is known analytically:

x(t, t0,x0) =
x0

1− x0(t − t0)
,

which clearly has a singularity at t∗ = t0 + 1/x0 if x0 �= 0. This is an example of
a movable pole, and we consider such cases further in Sect. 12.11. For now we
suppose that x0 > 0 and t0 ≤ t < t∗. Remark that we have so far written explicitly
the dependence of x on t0 and y0. This allows us to adopt a convenient notation
for ∂x/∂x0, which is to indicate differentiation with respect to a parameter. In what
follows, we will use instead the notation ∂x/∂x0 = D3x(t, t0,x0). Then, we directly
find that

D3x(t, t0,x0) =
1

(1− x0(t − t0))2 =
1

(1− z(t0)(t − t0))2 .

By Theorem 12.1, the difference between z and x can be written as

z(t)− x(t) =−ε
ˆ t

t0

z(τ)
(1− z(τ)(t − τ))2 dτ.

Here again, our life is easy since we can solve
.
z = z2(t)− εz analytically, and we

find that

z(t) =
εx0

x0 − (x0 − ε)eε(t−t0)
.

We can then compute the resulting integral:

ˆ t

t0

z(s)
(1− z(s)(t − s))2 ds =

( −x0

(ε− x0)eε (s−t0) + x0 (1− ε t + ε s)

)∣∣∣∣t
t0

=
−x0

(ε− x0)eε (t−t0) + x0
+

x0

ε− x0 + x0 (1− ε t + ε t0)
.

It turns out to be just the same as z(t)− y(t), as it should be, according to the
theorem. �

This example (and Theorem 12.1) shows that if we can differentiate the solu-
tion of our differential equation with respect to the initial conditions, then we can
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account for perturbations to the differential equation. This raises the question of how
to, in general, differentiate a solution x(t) of a differential equation with respect to
an initial condition when we cannot find a formula for x(t). As shown in Hairer
et al. (1993 Chap. I.14), with a simple substitution (x = z+ x0), this problem re-
duces to the easier question of differentiating with respect to a parameter. Suppose
x(t) = x(t, t0,x0, p) ∈ Cn is the solution to

.
x = f(t,x, p), x(t0) = x0,

where p ∈ C is a parameter, constant for the duration of the solution process. We
want to find what D4x j(t, t0,x0, p) = ∂x j/∂ p is.

Suppose y = x(t, t0,x0, p) solves the given problem, and z = x(t, t0,x0, p +
Δ p) solves the same problem with a slightly different parameter. Then, by tak-
ing the Taylor expansion about y and p + Δ p, we find that the difference

.
z − .

y
satisfies

.
z− .

y = f(t,z, p+Δ p)− f(t,y, p)

= Jf(t,y, p)(z− y)+D3(f)(t,y, p)Δ p+O(Δ p)2. (12.33)

As a result, if

φi =
∂xi(t, t0,x0, p)

∂ p
= lim
Δ p→0

xi(t, t0,x0, p+Δ p)− xi(t, t0,x0, p)
Δ p

,

then taking the limit of Eq. (12.33) divided by Δ p, as Δ p → 0, gives

.
φ(t) = Jf(t,x, p)φ(t)+ fp(t,x, p) . (12.34)

Examining the initial solutions of
.
y = f(t,x, p), for example by Euler’s method or

a higher-order method, shows that φ(0) = 0. That is, in order to take the derivative
of x(t, t0,x0, p) with respect to p, we differentiate the differential equation and then
solve that resulting linear differential equation. Of course, we may solve this differ-
ential equation numerically, along with the solution of the original equation. This is
sometimes called the variational method of computing sensitivity.

Now let us adapt this idea to the differentiation of x(t) with respect to the
initial condition, which does not appear in the differential equation (usually). A lit-
tle thought shows that, instead of Eq. (12.34), we can formulate an equation for
Φ(t), which is a matrix, each entry of which is ∂xi(t, t0,x0)/∂x0, j, the derivative with re-
spect to one component of the initial condition. It is convenient to package them all
at once:

.
Φ(t) = Jf(t,x)Φ(t), (12.35)

where now the initial condition is Φ(t0) = I, the identity matrix. This is, in fact,
exactly the first associated matrix variational equation.
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In more complicated examples, of course, one must solve for x(t) and Φ(t) si-
multaneously, by some numerical scheme. It has been our experience that MATLAB

is perfectly satisfactory for the process, once a Jacobian Jf(t,x) has been coded; of
course, computer algebra systems help with that task, as we show in the extended
example in Sect. 12.4.

12.3.4 A Crude Practical Estimate of the Condition Number

We may find a crude estimate—in fact, a lower bound, and unfortunately often not
a very good lower bound—for the condition number merely by solving the prob-
lem twice, at different tolerances. The trick is to solve the problem first at a loose
tolerance, giving a solution that we call z1(t) satisfying

.
z1 = f(t,z1) + Δ1(t) and

another solution at a tighter tolerance giving a solution that we call z2(t), satisfy-
ing

.
z2 = f(t,z2)+Δ2(t). By assumption, ‖Δ2‖ � ‖Δ1‖. Therefore, the difference

between z1 and z2 is almost entirely due to the larger perturbation Δ1, and the con-
dition number must be at least ‖z1 − z2‖/‖Δ1‖. After the condition number has been
estimated, one can use it together with the size of the computed residual in the best
solution to estimate the forward error in the best solution. We illustrate this by an
example.

Example 12.9. Consider again the differential equation
.
x(t) = x2(t)− t with initial

condition x(0)=−1/2, this time on the interval 0≤ t ≤ 5. We solve this using ode45
using tolerances 10−8, and again with tolerances 10−10, using this code:

West = @(t,x) x.ˆ2 - t ; % vectorized right-hand side of the DE
b = 5;
opts = odeset('reltol',1.0e-8,'abstol',1.0e-8);
sol1 = ode45( West, [0,b], [-1/2], opts );
opts = odeset('reltol',1.0e-10,'abstol',1.0e-10);
sol2 = ode45( West, [0,b], [-1/2], opts );
t = RefineMesh( sol2.x, 20 );
[z1,dz1] = deval( sol1, t );
[z2,dz2] = deval( sol2, t );
res1 = dz1 - West( t, z1 );
res2 = dz2 - West( t, z2 );
e = z1 - z2;
CrudeK = max(abs(e))/max(abs(res1))
figure(1),plot( t, res1, 'k.'),set(gca,'fontsize',16),xlabel('t')

,ylabel('Delta_1')
figure(2),plot( t, e, 'k.'),set(gca,'fontsize',16),xlabel('t'),

ylabel('z_1 - z_2')
figure(3),plot( t, res2, 'k.'),set(gca,'fontsize',16),xlabel('t')

,ylabel('Delta_2')
Maple_reference_x5 = -2.1827854817673358944;
forward_error = deval( sol2, 5 ) - Maple_reference_x5

This gives a solution with a residual ‖Δ1‖ about 3×10−7 and an estimated forward
error ‖z1 − z2‖ about 6× 10−9; this then gives an estimated lower bound for the
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condition number of 0.0165. Since the residual of the tighter tolerance solution is
about ‖Δ2‖= 1×10−8, using this condition number suggests that the forward error
in the tighter tolerance solution (compared to the at-this-moment-unknown refer-
ence solution) will be about 0.0165 · 10−8, that is, 1.65× 10−10. Using MAPLE,
we can in fact find the reference solution for this problem in terms of Airy func-
tions. This, of course, is very unusual, but this time we can do it and evaluate the
reference solution at, say, t = 5 to get x(5) = −2.18278548176733589 . . .. Com-
parison of the tighter solution with this reference value shows a forward error of
about 2.9× 10−11, which is satisfactorily smaller than the estimate just obtained.
Though crude, this technique can supply useful information, and it is much easier
than solving the variational equation. �

12.4 An Extended Example: The Restricted Three-Body
Problem

What follows is a discussion of a much-used example of numerical solution of
initial-value problems for ordinary differential equations. The model in question
dates back to Arenstorf (1963), where it was derived as a perturbation model in-
tended to analyze part of the three-body problem in the limit of when one of the
masses goes to zero. Further discussions of this model can be found in Hairer et al.
(1993) and in Shampine and Gordon (1975), and in MATLAB it is taken up in the
orbitode demo.

In spite of its simplistic nature (or perhaps because of it), the example is a good
traditional one, in that it shows the value of adaptive step-size strategies for effi-
ciency, and in orbitode makes a good example of event location (see Sect. 12.8)
being used to detect a periodic orbit. Since the example has been well studied, there
are a great many solutions existing in the literature to which the reader’s compu-
tation can be compared. Furthermore, it is interesting and produces surprising pic-
tures. However, it is (nowadays) a curious problem, in that there seems little point in
the idealizations that give rise to the model: One might as well integrate Newton’s
equations of motion directly, and indeed direct simulations of the solar system are of
great interest and are highly advanced.13 Nonetheless, we use the model equations
and extend the discussion a bit to show that the example is also excellent for showing
how residual (defect) computations can be interpreted in terms of the physical mod-
eling assumptions: In particular, we will see that if we have the solution of a model
with a small residual, then we have just as good a solution as the reference solution
would be. We also take the discussion a bit further and exhibit the conditioning of
the initial-value problem.

In the Arenstorf model there are three bodies moving under their mutual
gravitational influence.14 Two of the bodies have nontrivial mass and move about

13 See, for example, the JPL simulator, at http://space.jpl.nasa.gov/.
14 We do not claim to be computational astronomers. This discussion is by no means complete and
should not be considered authoritative. The discussion is intended only to motivate the model and

http://space.jpl.nasa.gov/
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their mutual center of gravity in circular orbits. If we are thinking of these bodies
as the Earth and the Moon, then already this is an idealization: The Earth–Moon
system more nearly has the Moon moving elliptically, with eccentricity about 0.05,
about the center of gravity of the Earth–Moon system. If we are thinking about the
Sun–Jupiter pair, then again Jupiter’s orbit is not circular but rather eccentric. So,
again, a circular orbit is an idealization. The third body in the model is taken to be
so small that its influence on the two larger bodies can be supposed negligible. One
thinks of an artificial satellite, with mass less than 1000 tonnes (106 kg). The mass
of the Moon is MM = 7.3477× 1022 kg, so the satellite’s mass is less than 10−16 of
that (coincidentally, not too different from the unit roundoff in MATLAB). There-
fore, supposing that this body does not affect the other two bodies is a reasonable
assumption. By making this assumption, the actual mass of the satellite drops out
of the computation.

Another assumption, common in gravitational models since Newton, is that the
bodies act as point masses. Neither the Earth, the Moon, the Sun, nor Jupiter, nor
even the satellite, is a point mass. In fact, the radius of the Earth is about 1/60

the Earth–Moon distance, and while the gravitational effects of a uniform spheri-
cal body are indeed, when outside the body, identical in theory to those of a point
mass, the Earth is neither uniform nor exactly spherical (it’s pretty close, though,
with a radius of 6,378.1 km at the equator and 6,356.8 km at the poles). Similarly
for Jupiter, which departs from sphericity by more than the Earth does (71,492 km
radius at the equator and 66,854 km radius at the poles). Most importantly, the bod-
ies are inhomogeneous (that is, lumpy inside with pieces of differing density) and
rotating. This departure from ideal point-mass gravity has a potentially significant
effect on the satellite’s orbit.

Finally, we neglect the influence of the other bodies in the Solar system. For the
Earth–Moon system, neglecting the influence of the Sun, which differs at different
points of the satellite’s orbit around the Earth–Moon pair, means that we are ne-
glecting forces about 10−11 of the base field; this seems to be a smaller influence
than the eccentricity of the orbit, and smaller than the effects of departure from the
point-mass idealization, but larger than the effects of the trivial mass of the satellite.
For the Sun–Jupiter pair, this is not a bad assumption—the most significant other
body is Saturn, and Saturn is far enough away that its effects are detectable only
cumulatively.

Once these assumptions are made, then we put M equal to the mass of the largest
body, and m equal to the mass of the smaller nontrivial body; the total mass of the
system is then M+m, and we place the origin of our coordinate system at the center
of gravity. The larger mass is treated as a point at distance

− μ =− m
M+m

(12.36)

to remind the reader of some of the idealizations made, for comparison with the numerical effects
of simulation.
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Fig. 12.10 http://xkcd.com/123/. For the alt-text, see the original comic. Reproduced un-
der the blanket permission http://xkcd.com/license.html

from the origin, in units of the diameter of the orbit, and the smaller mass is then at
μ∗ = 1− μ .

In the rotating coordinate system (see Fig. 12.10) that fixes the large body at −μ
and the small body at 1− μ , the equations of motion of the tiny satellite are given
in Arenstorf (1963) as follows:

..
x = 2

.
y+ x− μ∗ x+ μ

R3
13

− μ x− μ∗

R3
23

..
y =−2

.
x+ y− μ∗ y

R3
13

− μ y

R3
23

, (12.37)

http://xkcd.com/license.html
http://xkcd.com/123/
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where the distances R13 =
√
(x+ μ)2 + y2 and R23 =

√
(x− μ∗)2 + y2 between the

tiny satellite and the massive body and the minor body, respectively, are conse-
quences of Newton’s law (and an assumption of smallness of μ). The problem pa-
rameters used by the MATLAB demo orbitode are

% Problem parameters
mu = 1 / 82.45;
mustar = 1 - mu;
y0 = [1.2; 0; 0; -1.04935750983031990726];
tspan = [0 7];

Note that 1/82.45
.
= 0.01213. The value of μ used by Hairer et al. (1993) is, however,

μ = 0.012277471, and they use 30 decimals in their initial conditions for their pe-
riodic orbits. On the other hand, if we take the values of the Earth’s mass and the
Moon’s mass given in Wikipedia, we get μ = 0.0121508 . . ., different in the fourth
significant figure from either of these two. While these differences in parameters are
alarming, if we take the model equations at all seriously, they are not terribly sig-
nificant given that the model’s derivation has neglected things like the eccentricity
of size about 0.05. Another modification we made was to use ode113 instead of
ode45, which for this problem made for smoother plots of the residual (but was
otherwise fairly similar). Finally, Arenstorf’s derivation has at one point replaced
μ/(1−μ) with just μ , a simplification from the point of view of perturbation theory
but no simplification at all for numerical solution; this makes a further difference of
about 0.0122 = 1.4× 10−4 in the terms of the equation.
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Fig. 12.11 Solution of the Arenstorf model restricted three-body problem for the same parameters
and initial conditions as are in orbitodedemo, but using ode113 instead of ode45, intended
to be similar to a small satellite orbiting the Earth–Moon system in a coordinate system rotating
with the Earth and Moon. When distances to either massive body are small, step sizes (computed
as speed times delta t) also get small. (a) Restricted three-body problem orbit. (b) Distances and
stepsizes

Computing the solution to this problem with the parameters given above and
analyzing the results, we find Figs. 12.11, b, and 12.12a. We see that the step sizes
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Fig. 12.12 Measured residual and sensitivity in the Arenstorf restricted three-body problem. (a)
Residual for solution by ode113 with relative tolerance 1.0×10−6. (b) Sensitivity by solving the
variational equations (12.35) using ode113 with relative tolerance 1.0×10−6

are not uniform—indeed, they change over the orbit by a factor of nearly 1000. As
seems physically reasonable, the steps are small when the satellite is near one of
the massive bodies (and thus experiencing relatively large forces and accelerations).
We also see, from Fig. 12.12a, that the residual is small, never larger than 10−5,
approximately. Since we have neglected terms in the equations whose magnitude is
10−2 or so, we see that we have found a perfectly adequate model solution: This plot
tells us precisely as much as the (unobtainable) reference solution to the Arenstorf
restricted three-body problem would.

We really also need to know how sensitive these orbits are to changes in μ or to
the initial conditions are. Using the first variational equation and plotting the norm
of the fundamental solution matrix (i.e., based on results from Chap. 4, the largest
singular value) in Fig. 12.11b, we see that the orbit gains sensitivity as the satellite
plunges toward the Earth but shows a rapid decrease in sensitivity as the satellite
moves away; both of these observations agree with intuition.

In detail, here is how it works. We can use our variational equation

.
ΨΨΨ = Jf(x)ΨΨΨ + fμ ,

whereΨΨΨ(0) = 0 and the Jacobian matrix Jf(x) and the partial derivative fμ are easily
computed by a computer algebra system. Here are the MAPLE commands used to
do so for this example.

7 f[1] := y[3];
8 f[2] := y[4];
9 mustar := 1-mu;

10 r13 := ((y[1]+mu)ˆ2+y[2]ˆ2)ˆ(3/2);
11 r23 := ((y[1]-mustar)ˆ2+y[2]ˆ2)ˆ(3/2);
12 f[3] := 2*y[4]+y[1]-mustar*(y[1]+mu)/r13-mu*(y[1]-mustar)/((1-mu)

*r23);
13 f[4] := -2*y[3]+y[2]-mustar*y[2]/r13-mu*y[2]/((1-mu)*r23);
14 with(LinearAlgebra);
15 with(VectorCalculus);
16 J := Jacobian([seq(f[k], k = 1 .. 4)], [seq(y[k], k = 1 .. 4)]);
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17 CodeGeneration[Matlab](J, optimize);
18 fp := map(diff, [seq(f[k], k = 1 .. 4)], mu);
19 CodeGeneration[Matlab](Vector(fp), optimize);

The output of these commands are then bundled up into MATLAB m-files and
used in the call to ode113. We explain below how we created a modified version
of MATLAB’s orbitode. We first define the parameters of the problem:

1 function t=orbitode113jac
2

3 % Problem parameters
4 mu = 1 / 82.45; % Shampine & Gordon
5 mustar = 1 - mu;
6 y0 = [1.2; 0; 0; -1.04935750983031990726; 0; 0; 0; 0]; % Shampine

& Gordon
7 tspan = [0 7]; % Shampine & Gordon
8 options = odeset('RelTol',1e-8,'AbsTol',1e-10,'Events',@events);

As before, we solve the problem with the command

[t,y,te,ye,ie] = ode113(@f,tspan,y0,options);

The command is slightly different than in the previous examples, since we use the
“event location” feature. We then plot the results using the following list of com-
mands:

12 % Plotting circles representing earth and moon
13 rade = 6371/384403;
14 radm = 1737/384403;
15 th=linspace(-pi,pi,101);
16 esx = rade*cos(th)-mu;
17 esy = rade*sin(th);
18 msx = radm*cos(th)+1-mu;
19 msy = radm*sin(th);
20 close all
21 figure
22 % Plot timesteps scaled by speed so they are "distance-steps"
23 avevel = (y(1:end-1,3:4)+ y(2:end,3:4) )/2;
24 avespeed = sqrt( avevel(:,1).ˆ2 + avevel(:,2).ˆ2 );
25 %Plots Below: 'k--' line is the distance of the satellite to the

moon; 'k' line is the time-steps scaled by average speed; 'k
-.' line is the distance of the satellite to the earth

26 semilogy( t, sqrt( (y(:,1)-mustar).ˆ2 + y(:,2).ˆ2 ), 'k--',t(2:
end), diff(t).*avespeed, 'k', t, sqrt( (y(:,1)+mu).ˆ2 + y
(:,2).ˆ2 ), 'k-.' ),set(gca,'fontsize',16)

27 axis([t(1),t(end),1.0e-4,1.0e1]),xlabel('t','fontsize',18),ylabel
('distance/stepsize','fontsize',18)

28 figure
29 plot(y(:,1),y(:,2),'k-.',esx,esy,'k',msx,msy,'k'),set(gca,'

fontsize',18)
30 hold on
31 % Estimate of the size of filled circle was obtained by trial and

error on actual radius of earth and moon figures, later not
needed.

32 scatter( -mu, 0, 50, 'k', 'filled');
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33 scatter( 1-mu, 0, 50*(radm/rade)ˆ2, 'k', 'filled' );
34 axis([-1.5,1.5,-1.5,1.5])
35 axis('square')
36 xlabel('x','fontsize',18),ylabel('y','fontsize',18)
37

38 hold off
39 figure
40 semilogy(t(2:end),diff(t), 'k--', t,sqrt(y(:,5).ˆ2+y(:,6).ˆ2+y

(:,7).ˆ2+y(:,8).ˆ2),'k'),set(gca,'fontsize',18)
41 xlabel('t','fontsize',18),ylabel('sensitivity/stepsizes','

fontsize',18)
42 axis([t(1),t(end),1.0e-5,1.0e5])
43 figure
44

45 % Inefficiently, solve it again, so we may compute the residual (
should have done this the first time)

46 sol = ode113(@f,tspan,y0,options);
47 tt = RefineMesh( sol.x, 10 );
48 np = length(tt);
49 [yb,ypb] = deval( sol, tt );
50 res = zeros(1,np);
51 speed = zeros(size(res));
52 for i=1:np,
53 rr = ypb(:,i) - f(tt(i), yb(:,i) );
54 res(i) = norm(rr,inf); speed(i) = norm( ypb(:,i), inf );
55 end;

It remains to describe the code for the function handle @f passed to the command
ode113. The code begins as

62 function dydt = f(t,y)
63 % Derivative function -- mu and mustar shared with the outer

function.
64 r13 = ((y(1) + mu)ˆ2 + y(2)ˆ2) ˆ 1.5;
65 r23 = ((y(1) - mustar)ˆ2 + y(2)ˆ2) ˆ 1.5;
66

67 % Jacobian computed by Maple
68 cg0 = zeros(4,4);
69 cg2 = zeros(4,1);
70 t1 = 1 - mu;

and then it is followed by the MAPLE-generated MATLAB code (which we do not
display here—computers don’t tend to generate readable code). Using these, we
finally define our function dydt=f(t,y):

136 dydt = [ y(3)
137 y(4)
138 2*y(4) + y(1) - mustar*((y(1)+mu)/r13) - mu/mustar

*((y(1)-mustar)/r23)
139 -2*y(3) + y(2) - mustar*(y(2)/r13) - mu/mustar*(y(2)/

r23)
140 cg2(1)
141 cg2(2)
142 cg2(3)
143 cg2(4)];
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Thus, the use of numerical solutions in combination with computer algebra systems
is a very effective way to estimate the condition of an initial-value problem (or, in
other words, the “sensitivity” of the orbits).

Remark 12.2. Note that the residual as computed in that example was in the first-
order system, not in the second-order original equations. This is potentially mislead-
ing: For a true residual, we would have had to interpolate x(t) and y(t) by a twice
continuously differentiable interpolant and then substitute that interpolant into the
original equations. However, this seems to lose a bit of accuracy and the resulting
residual, while physically interpretable, is quite a bit larger. See Problem 13.18. �

12.5 Structured Backward Error for ODE

In this section, we apply the Oettli–Prager backward error idea to linear ordinary
differential equations. This will show how to find a structured backward error, given
a solution with a small residual. We work by an example. Suppose that we are inter-
ested in solving the linear IVP

E(t)
.
x+F(t)x = b(t) , (12.38)

subject to the initial condition x(t0) = x0 ∈C
n. Both E and F are complex matrices,

and for the moment we assume that E is nonsingular, although perhaps we don’t
wish to invert it explicitly (it may be tridiagonal, for example, and the inverse would
cause more trouble than it was worth). The matrix E is often termed a “mass matrix”
because such matrices in ODE occur in spring-mass systems, but there are other
contexts in which they occur as well. Many of the MATLAB codes have a provision
for solving systems with mass matrices. To be concrete, let

E =

⎡⎢⎢⎢⎢⎣
2 1

1 2
. . .

. . .
. . . 1
1 2

⎤⎥⎥⎥⎥⎦ (12.39)

be a familiar constant tridiagonal matrix. Let F be a similar matrix, but with −1s on
the sub- and superdiagonals instead. Take the first entry of b(t) to be sin(t) and zero
otherwise.

Now suppose that we have solved the system using, say, ode15s. We will ex-
hibit code that does so, shortly. Suppose that the solution called x(t) mathematically
is contained in the variable sol and that as usual we may evaluate it, and its deriva-
tive, anywhere using deval. The question that arises now is, can we find

min
{
ε : (E+ΔE)

.
x(t)+ (F+ΔF)x(t) = b+Δb,

|ΔE| ≤ ε|E|, |ΔF| ≤ ε|F|, |Δb| ≤ ε|b|} ? (12.40)



12.5 Structured Backward Error for ODE 549

The answer is yes we can, for each fixed t, by using the Oettli–Prager theorem.
For fixed t, this is just a matrix–vector product! The computed quantities

.
x(t) and

x(t) are available via deval, and so we may simply write down a formula for the
structured backward error:

ε = max
i

|ri(t)|
|bi|+

n

∑
j=1

(|ei, j|| .x j(t)|+ | fi, j||x j(t)|
) . (12.41)

As usual, if the numerator is zero, we may take the fraction to be zero, but if the
denominator is zero while the numerator is not, the structured backward error is
infinite.

We use the code

1 function [ sol, tresid, resid, eback ] = OPExample( n )
2 % OPExample --- solve Ey' = -Fy + b, dimension n, and
3 % return the structured backward error with
4 % the solution
5 %
6 D = sparse(1:n,1:n,2*ones(1,n),n,n);
7 S = sparse(2:n,1:n-1,ones(1,n-1),n,n);
8 E = S+D+S';
9 opts = odeset( 'Mass', E, 'MStateDependence', 'none', '

MassSingular', 'no', 'RelTol', 1.0e-7, 'AbsTol', 1.0e-7 )
;

10 function [DYP] = defun(DT,YD)
11 DYP = -2*YD + [YD(2:end);0] + [0; YD(1:end-1)] + [sin(DT)

; zeros(n-1,1)] ;
12 end
13

14 sol = ode15s(@defun, [0,5], zeros(n,1), opts );
15 [tresid, resid, yhat, yphat ] = ODEResidualMass( sol, E,

@defun, 5 ); % 5 pts per step
16 nump = length(tresid);
17 eback = zeros( size(tresid) );
18 lambda = zeros(n,1);
19 for j=1:nump,
20 if resid(j)˜=0,
21 lambda(1) = abs(resid(j))/(2*abs(yphat(1,j)) + abs(

yphat(2,j)) ...
22 + 2*abs(yhat(1,j)) + abs(yhat(2,j)) +

1);
23 for i=2:n-1,
24 lambda(i) = abs(resid(j))/(abs(yphat(i-1,j))+2*abs(

yphat(i,j)) + ...
25 abs(yphat(i+1,j)) + abs(yhat(i-1,j)

) + 2*abs(yhat(i,j)) ...
26 + abs(yhat(i+1,j)) );
27 end
28 lambda(n) = abs(resid(j))/(2*abs(yphat(n,j)) + abs(

yphat(n-1,j)) ...
29 + 2*abs(yhat(n,j)) + abs(yhat(n-1,j)) )

;
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30 end;
31 eback(j) = max( lambda ) ;
32 end
33

34 end

which relies on

1 function [ t, resid, yhat, yphat ] = ODEResidualMass( sol, M, f,
nRefine )

2 %Compute the residual of the solution sol in the de My' = f(t,y)
3 % ODEResidualMass( sol, M, f, nRefine )
4 if nargin < 4,
5 nRefine = 4;
6 end
7 t = RefineMesh( sol.x, nRefine );
8 nump = length(t);
9

10 [yhat,yphat] = deval( sol, t );
11 resid = zeros( size(yphat) );
12 yphat = M*yphat;
13 for i=1:nump,
14 resid(:,i) = yphat(:,i) - f(t(i), yhat(:,i));
15 end
16

17 end

The commands

[ sol, t, del, eback ] = OPExample( 8 );
figure(3), plot( sol.x, sol.y, 'k' )
figure(2), semilogy( t, abs(del), 'k.' )
figure(1), semilogy( t, eback, 'k' )

produce figures showing that the structured backward error, which is now a func-
tion of t, behaves (for n = 8) quite well, being smaller than the residual (Fig. 12.13).
That is, we have the exact solution of a (weakly) time-varying problem of the same
type as the original. It should be clear that this idea applies to many kinds of lin-
ear problems—and indeed to any kind of problem in which the parameters appear
linearly. A similar idea, the method of modified equations, is studied in Sect. 13.7.

12.6 What Good are Numerical Solutions of Chaotic Problems?

We begin with an example.

Example 12.10. Consider the Rössler system

.
x =−y− z
.
y = x+ ay
.
z = b+ z(x− c) (12.42)
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Fig. 12.13 Size of the componentwise backward error ε(t) in solving the case n = 8 of (12.38) on
0 ≤ t ≤ 5 by formula (12.41)

with the commonly used parameter values a = b = 0.1 and c = 14. We take an
essentially arbitrary initial condition, [x,y,z] = [0,1,1]. Using tight tolerances and
the solver ode113, we solve this on the interval 0 ≤ t ≤ 300, to get Fig. 12.14:

1 function RoesslerDefect
2 %ROESSLERDEFECT Defect in Roessler equations.
3 % Chaotic values of parameters
4

5 tspan = [0 300];
6 y0 = [0; 1; 1];
7

8 % solve the problem using ODE45
9 opts = odeset('RelTol',1.0e-10,'AbsTol',[1.0e-11,1.0e-11,1.0e

-11]);
10 Roesslersol = ode45(@f,tspan,y0,opts);
11 tref = RefineMesh( Roesslersol.x );
12 [y,dy] = deval( Roesslersol, tref );
13 residual = zeros( size(y) );
14 numt = length(tref);
15 for i=1:numt,
16 residual(:,i) = dy(:,i) - f(tref(i),y(:,i));
17 end;
18 max(max(abs(residual)))
19 figure(1), plot3( Roesslersol.y(1,:), Roesslersol.y(2,:),

Roesslersol.y(3,:), 'k' );
20 set(gca,'fontsize',16)
21 axis([-20,30,-40,20,0,40]);
22 set(gca,'XTick',-20:10:30);
23 figure(2), semilogy( tref, abs( residual ), 'k.' )
24 set(gca,'fontsize',16)
25 h = diff( Roesslersol.x );
26 figure(3), semilogy( Roesslersol.x(2:end), h, 'k.' )
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Fig. 12.14 The Rössler attractor for a = b = 0.1, c = 14, computed to tight tolerances using
ode113

27 set(gca,'fontsize',16)
28

29 % ---------------------------------------
30 function dydt = f(t,y)
31 a = 0.1;
32 b = 0.1;
33 c = 14; % Wikipedia values
34 dydt = [ -y(2)-y(3)
35 y(1)+a*y(2)
36 b + y(3)*(y(1)-c) ];

This system is one of the simplest continuous dynamical systems that gener-
ate chaos. The trajectories are exponentially sensitive (in a way that we will make
clearer later) to perturbations in the parameter values or the initial conditions, to
truncation errors, or to rounding errors. Therefore, the one thing that we know about
the computed solution presented in this figure is that it must differ in detail, by O(1),
from the reference solution.

But we have computed an exact solution: an exact solution to the equations

.
x =−y− z+ εvx(t)
.
y = x+ ay+ εvy(t)
.
z = b+ z(x− c)+ εvz(t), (12.43)

where each of vx, vy, and vz is less than 1 in magnitude and ε = 2 ·10−7. Since the
magnitudes of the solution components can be as large as 40, and the final equation
contains a product term, then we suppose that the perturbations introduced by the
numerics are indeed very small. �

The key thing, though, is whether or not these perturbations are small compared
to physical perturbations. The model was not constructed as a physical model, how-
ever, but rather as a deliberate attempt to create continuous chaos (unlike the Lorenz
system). So, in this case, one can quite legitimately question whether or not a small
residual gives us what we want. A further subtlety is that the perturbations depend
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on t, and thus our numerical solution is the exact solution of a four-dimensional
model, not a three-dimensional model.

Suppose, however, that we built a mechanism purposely to behave in a way that
is predicted by these equations (this can be done; essentially building an analog
computer). Then, if that machine is sitting in a lab on a table, it would feel external
vibrations due to earthquakes, or trucks passing by on the highway nearby, or even
just the vibrations caused by students walking down the hallway between classes.15

Would such perturbations invalidate the computations of the mechanism? We con-
tend that they would not.

Chaotic systems can be studied from many perspectives and, accordingly, chaotic
motion can be defined in many ways.16 In all cases, some intuitions drawn from
physics motivate the various approaches:

The concepts of “order” and “determinism” in the natural sciences recall the predictability
of the motion of simple physical systems obeying Newton’s laws: The rigid plane pendu-
lum, a block sliding down an inclined plane, or motion in the field of a central force are
all examples familiar from elementary physics. In contrast, the concept of “chaos” recalls
the erratic, unpredictable behavior of elements of a turbulent fluid or the “randomness” of
Brownian motion as observed through a microscope. For such chaotic motions, knowing
the state of the system at a given time does not permit one to predict it for all later times.
(Campbell and Rose 1983 vii)

The idea is that a chaotic motion x(t) satisfying a deterministic nonlinear differ-
ential equation

.
x(t) = f(t,x(t)) is bounded [i.e., x(t) does not go to ∞ as t → ∞],

aperiodic [i.e., for no T does x(t) = x(t+T)], and extremely sensitive to initial con-
ditions. Now, if two trajectories x(t) and z(t) were uniformly diverging (i.e., if the
distance between the two trajectories were continuously increasing exponentially
with t), at least one of them would be unbounded. But because of the nonlinearity
of the equation, the distance between the two curves varies in very erratic ways. It
is thus practically impossible to track how close our two trajectories are from one
another in the long run (and often even in the short run!). To establish the sensi-
tivity to initial conditions, the important thing is that, on average, for finite time,
the trajectories diverge from each other exponentially quickly. This is exactly what
positive Lyapunov exponents (as defined in Eq. (12.25), and computed by the SVD)
show. But then, it also follows that solutions of chaotic initial-value problems are
exponentially ill-conditioned.

15 One cannot imagine such a machine being built anywhere but at a place where they teach dy-
namical systems. Of course, such a place would have hordes of students.
16 Martelli et al. (1998 p. 112) claim amusingly, “[W]ith a bit of exaggeration, that there are as
many definitions of chaos as experts in this new area of knowledge.” Concerning some of the
conceptual issues involved with different definitional attempts, see Batterman (1993).
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This situation raises two related questions regarding the reliability of numerical
methods:

1. Are the computed trajectories satisfactory, and in what sense are they to be
regarded as being satisfactory?

2. Are the numerical methods introducing spurious chaos or suppressing actual
chaos?

These questions have generated a substantial amount of debate. We take only the
simplest, least computationally expensive point of view and justify the computations
by using the residual.

The first and foremost observation to make is that, because chaotic problem are
exponentially ill-conditioned (they have positive Lyapunov exponents), one cannot
hope to obtain numerical solutions with a small forward error. Accordingly, errors
in the initial conditions, discretization error, and even rounding error will be expo-
nentially magnified as time increases. As a result, one can obtain a huge forward
error, that is, an important lack of correlation between the projected motion and the
actual motion. But is this a reason to claim that our algorithm is a bad one, that is,
that it gives results that are unfaithful to the model?

No. The solutions can be satisfactory in the backward sense, since it is un-
reasonable to ask of a numerical method more than the problem allows for. For
chaotic problem, good methods such as the one implemented in ode45 verifi-
ably solve a problem near the reference problem. As we explained in Chap. 1,
for genuine (as opposed to artificial) problems, we will have to consider physical
perturbations anyway.

This means there are other aspects of chaotic systems that are required by the
backward error perspective. Even if the trajectory x(t) is sensitive to initial condi-
tions, some features of chaotic systems must not be—for instance, the dimension of
the attractor, possibly, or the measure on the attractor, or some other such quantity
of physical interest. If no quantity of physical interest were robust under physical
perturbations, then the behavior of the system would be unpredictable by simulation
or modeling at all! But if at least one physically interesting quantity is insensitive to
physical perturbations, then a numerically stable method of solution can be expected
to give us good information about that quantity.

We repeat: For the model to be useful at all in view of physical perturbations,
there must be something that is insensitive to perturbations. But in this case, the
decision of whether or not the numerical method is stable and the computed solution
is useful really depends on the modeling context of the problem. This is in some
sense outside the purview of numerics, except insofar as numerics can provide an
explicit residual that can be explicitly interpreted in the physical terms of the model.

For the Lorenz system, which is already a truncation of a much more complex
fluid model, physical perturbations are important, and the detailed trajectory is very
sensitive to perturbations. Yet the picture of the Lorenz attractor is itself stable: It is
immediately recognizable, and its dimension (for example) is extremely insensitive
to perturbations of the system. This explains why and in what sense the results of
our simulations of chaotic systems agree with experiments.
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To sum up, if we concern ourselves primarily with (for instance) probability mea-
sure on the attractor in phase space, the computed trajectories of chaotic systems can
be satisfactory in the backward sense (if computed with a backward-stable method),
because such measures are usually quite robustly stable under perturbations of the
model. However, if one is asking whether the computed trajectories are satisfactory
in the forward sense, the answer is that they are not, because of the ill-conditioning
of the problem. If you really need the reference trajectory, then you need to specify
the initial condition with exponential accuracy and do the integration with an expo-
nential amount of precision. If you do not know the initial condition well but you
insist on knowing some reference solution that corresponds to some initial condi-
tion, things are easier: You can use so-called shadowing techniques as discussed in
the preface to this part of the book. Shadowing techniques are more expensive than
residual control or residual assessment, but they do gain you the assurance of hav-
ing found an accurate representation of some reference solution. We do not discuss
them further in this book; we believe that they are usually unwarranted.

12.7 Solution of Stiff Problems

Stiffness is an important concept in scientific computation. So far, we have seen that
standard methods such as the one implemented in MATLAB’s ode45 can be relied
upon to accurately and efficiently solve many problems. Even for chaotic problems,
we have seen that such methods can be relied upon to give faithful results, in the
backward sense. With stiff problems, however, we are facing a different computa-
tional phenomenon that does not fall under the themes treated so far. As Shampine
and Gear (1979 p. 1) put it,

The problems called “stiff” are too important to ignore, and they are too expensive to over-
power. They are too important to ignore because they occur in many physically important
situations. They are too expensive to overpower because of their size and the inherent dif-
ficulty they present to classical methods, no matter how great an improvement in computer
capacity becomes available.

In the literature, authors often discuss “stiff problems” and “stiff methods”; this is,
however, somewhat misleading, since stiffness is a property that only makes sense
when applied to a problem (in its context) and a method taken in combination. Thus,
it will be important to keep in mind this accurate, semipragmatic characterization
from A. Iserles:

Stiffness is a confluence of a problem, a method, and a user’s expectations.

Even if there is no generally accepted rigorous definition of stiffness, there is a
widely shared consensus as to what stiffness involves in practice. In this section,
we explain the problem-specific aspect of stiffness, and delay the method-specific
aspects to Chap. 13, insofar as this is possible.

When a problem is moderately well-conditioned and we try to solve it with a
reasonably tight tolerance, we will usually observe that the step size automatically
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Fig. 12.15 Step-size adaptation of ill-conditioned and well-conditioned problems with respect to
step number. (a) Reduction of the step size in the solution of (12.29) as the problem becomes
increasingly ill-conditioned. (b) Reduction of the step size in the solution of (12.44) when the
problem is very well-conditioned

selected by the program decreases as t increases. This is because state-of-the-art
codes ultimately control the residual of the computed solution by reducing the step
size when necessary.

Let us reconsider the example from Eq. (12.29), but let us now turn our attention
to the step size as we approach the singular point −1/e. As we can see in Fig. 12.15a,
ode45 takes 71 steps to solve the problem. The largest step size, near the beginning,
is 2× 10−2. The smallest step size, occurring at the very end when the problem is
the most ill-conditioned, is 3× 10−4. The difference would be even larger if we
required a tighter tolerance (or got closer to the singularity). As we see, the amount
of work required increases with the condition number.

Now, what would happen if we had a very well-conditioned problem instead?
Our user expectation would be that the step size would remain large and that we
would obtain a cheap solution to the problem. Even if this will often be the case,
stiff problems are such that this is precisely what fails. A stiff problem is extremely
well-conditioned; loosely speaking, its Jacobian matrix has no eigenvalue with large
positive real part, but it has at least one eigenvalue with large negative real part.
Accordingly, it is not an accident that we examine stiff problems immediately af-
ter chaotic problems since, in a sense, they are opposite on the same spectrum.17

Chaotic problems are badly conditioned: Since they have at least one positive real
Lyapunov exponent, initially nearby trajectories diverge very quickly from the refer-
ence trajectory of the initial-value problem. The difficulty with stiff problems comes
from the fact that they are too well-conditioned.

17 But, yes, problems can be both stiff and chaotic. The attracting set containing the chaotic at-
tractor can be very well-conditioned, and only the details of the flow on the attractor might be
ill-conditioned.
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Fig. 12.16 Extreme well-conditioning of a stiff problem

Example 12.11. Consider the following:

.
x = x2 − t, x(0) =−1

2
. (12.44)

We will look in detail at two intervals: I1 = 0 ≤ t ≤ 1 and I2 = 0 ≤ t ≤ 103. The
solution of this problem is displayed in Fig. 12.16, together with many other solu-
tions using different initial values. We see that the trajectories all converge to the
same one extremely fast. Our expectation would thus be that our program would
find the numerical solution without being too strict about step size, since even rela-
tively large errors on each step would quickly be damped. In fact, for the first time
span I1, ode45 takes 11 steps only and has residual ≤ 8 · 10−7 (see Fig. 12.17a).
This agrees with our expectations: ode45 does just fine. However, as we see in
Fig. 12.15b, the step sizes required to go over I2 remain very small, the minimum
one being 3× 10−4. For this interval, ode45 takes 12,718 steps and the residual
is huge (see Fig. 12.17b, which only shows the beginning of it). This goes against
what we would expect, since as t increases, the problem becomes increasingly better
conditioned. On the other hand, on the same problem for the interval I2, ode15s
takes only 57 steps! The residual (not shown here) is everywhere less than about
10−2|x|, which is quite satisfactory for the low tolerance used. If we examine the
step sizes (see Fig. 12.18), we see that as t increases and the problem becomes bet-
ter conditioned, ode15s takes bigger and bigger steps; in fact, six of the last seven
steps have h = 100. �

This situation is not unique to this problem. In practice, a common diagnostic tool
to identify stiff problems consists of trying to solve the problem with a standard
nonstiff ODE solver, for instance, ode45. If the nonstiff solver has a hard time,
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Fig. 12.17 Residual for the solution of (12.44) on two intervals using ode45. This method finds
the problem harder as t increases. On I2 instead of I2/10, the graph of the residual looks like a solid
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Fig. 12.18 The skeleton of the ode15s solution to Eq. (12.44). Note that the step size increases
with respect to t , using ode15s. This method finds the problem easier as t increases. The residual
is everywhere less than about 10−2|x|

try solving instead with ode15s. This test brings some authors to define stiffness
pragmatically as follows:

A problem is “stiff” if, in comparison, ode15s mops the floor with ode45 on it.18

In fact, as we will see in Chap. 13, when a problem is stiff, the so-called implicit
methods (such as ode15s) will mop the floor with the so-called explicit meth-
ods (such as ode45). This is because, when the problem is very well-conditioned,

18 This is from L. F. Shampine.
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explicit methods become “unstable”19 for large step sizes. In this spirit, Higham and
Trefethen (1993) claim that

It is generally agreed that the essence of stiffness is a simple idea,

Stability is more of a constraint than accuracy.

More precisely, an initial-value problem is stiff (for a given interval of very good
condition) whenever the step size required to maintain the stability of the method
is much smaller than the step size required to maintain a small residual. However,
to explain this statement in more detail, we will need to look at the method-specific
aspects of the numerical solutions of IVPs for ODEs. See Chap. 13.

12.8 Event Location

Many applications of initial-value problems for differential equations involve the
location of events. This means that we integrate the differential equation from the
given starting conditions, not for a time interval fixed before we begin, but rather
until the solution or its derivative reaches a certain state, if it ever does. Examples
include the trajectory of a ball falling under gravity—the differential equation y′′ =
−g will hold for the duration of the fall, but will require restarting should the ball
hit the floor, say y = 0. Another application is the location of the maximum height
of a ball thrown, which occurs when y′ = 0. If there is no air resistance, then, of
course, this can be done analytically. Air resistance, however, makes the problem
more interesting.

Example 12.12. In a beautiful study (though sadly unpublished), G. V. Parkinson
started with the following equations for the trajectory of the motion of a ball in the
air, which were first used in Bearman and Harvey (1976):

..
x =−ρS

2m

( .
x

2
+

.
y

2
)
(CD cosα+CL sinα)

..
y =

ρS
2m

( .
x

2
+

.
y

2
)
(CD cosα−CL sinα)− g. (12.45)

These equations are approximate models of the flight path of a spinning golf ball or
baseball of mass m and cross-sectional area S = πd2/4 through a fluid of density ρ .
The fluid-mechanical effects are assumed to be captured in the drag and lift coeffi-
cients, CD and CL. The trajectory is assumed two-dimensional here, that is, normal
to the axis of spin, which is not really a bad assumption. Parkinson went on to make
further approximations to this model, enough to allow an analytical solution: He
took the drag coefficient CD to be constant, and the lift coefficient to be approxi-
mately

19 The stability of an IVP method is an important technical concept that is not (quite) the same as
the generic sense of the word “stability” of a numerical method as we have been using so far, and
which we have not yet discussed. It will form an important part of the discussion in Chap. 13.
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CL = p

√
ωd
2V

. (12.46)

This assumption about CL is particularly important: It means that an essential char-
acteristic of the fluid mechanics and its interaction with the rough (either dimpled
or seamed) surface of the ball, namely, the lift, can be measured empirically on a
spinning ball held otherwise steady in a wind tunnel, and summarized by the sin-

gle semiempirical coefficient p. Note that V 2 =
.
x

2
+

.
y

2
(assuming the ball is flying

through still air). Here ω is the angular velocity of the ball’s spin, which was as-
sumed to be approximately constant throughout the flight of the ball.

He also assumed that the angle of attack α , that is, tanα =
.
y/.

x, was “small,” small
enough to make the approximations cosα = 1 and sinα = tanα =

.
y/.

x, together with
.
y

2 � .
x

2
. You will be asked in Problem 12.26 to solve the differential equations

without this assumption, so that cosα =
.
x/V and sinα =

.
y/V .

Finally, he noted that the lift was much less than the drag (around a spherical
body this is certainly true) and so took |CL

.
y| � |CD

.
x|. By letting

k =
ρSCD

2m

q =
ρSp

2
√

2m

√
ωd , (12.47)

he arrived at the pair of ordinary differential equations for the velocities u =
.
x and

v =
.
y

du
dt

=−ku2

dv
dt

=−kuv+ qu
3/2 − g , (12.48)

which he then integrated by hand to get

u(t) =
u0

1+ ku0t
(12.49)

v(t) =
(v0 − gt − gku0t2/2)

1+ ku0t
+

2q
√

u0

k

{
1√

1+ ku0t
− 1

1+ ku0t

}
. (12.50)

Put x(0) = y(0) = 0. Each of these can again be integrated by hand to get

x(t) =
ln(1+ ku0t)

k

y(t) =
g

4k2u2
0

(
2

(
1+ 2

v0 ku0

g

)
ln(ktu0 + 1)− (ktu0 + 1)2 + 1

)
+ 4

q
√

u0

k2

(√
ktu0 + 1− 1

2
ln(ktu0 + 1)− 1

)
. (12.51)
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Fig. 12.19 Experimental fit of empirical data relating lift coefficient CL with angular speed ω ,
diameter d, and velocity V by CL = p

√
ωd/2V . These data give p = 0.51 approximately

This gives a complete analytical solution to the problem, under the assumption that
ω and thus q is constant.

Taking the diameter d to be 1.68 inches (for an American golf ball—the British
golf balls are slightly smaller, at 1.62 inches in diameter), with a weight of 1.62
American ounces, an initial angle of 10 degrees (corresponding to the lift angle of
the club typically used to hit a golf ball off a tee), and assuming an initial velocity
of V0 = 130 miles per hour with an angular speed of about 600rpm, and a drag
coefficient CD = 0.3, all that is needed is a numerical estimate of p. From an old-
school plot constructed again by hand by Parkinson, we read the data and fit the
parabola and display the results in in Fig. 12.19. We find that p = 0.51 fits the data
well enough.

We now come (at last) to the question of events. We are interested in the event
y = 0, although not the first one where the ball is hit and lifts off. We want to know
how far the ball travels—that is, x(T ), where T is the time it takes for y to hit
the ground. In a real simulation, one would want to know also how far the ball
bounced again, but that depends on the characteristics of the ground it hits, of course
(discounting sand and water traps, or the bogs one might find occasionally), and
because the spin would change unpredictably, the subsequent flight then depends
much less on the aerodynamics in any case: A simple ballistic trajectory might do
nicely for its simulation. After all that analytical work, this boils down to solving
the nonlinear Eq. (12.51) by a numerical method, such as Newton’s method.

We pause to let that sink in for a minute. All that analytical work, and then we
have to do some numerics anyway. Parkinson was reasonably happy with the result,
because the solution of the nonlinear equation could be done easily on a calculator.
But there is no analytical formula for the time t∗ at which the ball hits the ground
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again. Even further, if we choose to change the model by allowing (say) the rate of
spin ω to decay over time, as is surely physical (a typical flight of a golf ball takes
a few seconds, and the air resistance experienced by a spinning golf ball in flight
must slow it down at least a little), then the analytical solution of the differential
equations no longer obtains.

But a purely numerical solution would be trivial to adapt to the new circum-
stances. Further, using the idea of the residual, we see that an additional term of the
form εΔx(t) and εΔy(t) to the original pair of second-order equations would be very
easy to interpret as fluctuations in the still air that was assumed for the model. So
a numerical solution would be an exact solution of a similar model. Hence, finding
events (such as the point of maximum height, or finding the time at which the ball
strikes the ground again) numerically makes perfect sense.

In Exercise 12.26, you are asked to modify ballode of odeexamples in
MATLAB in order to simulate a single trajectory, from being struck to first impact,
of the flight of a ball modeled by these equations. �

In the history of numerical methods for the solution of initial-value problems,
techniques for the location of events are discussed early on. Indeed, the need for
locating events was one of the original motivators for the development of interpola-
tory schemes, because an event would almost always occur between time steps, and
it turns out to be important to locate the very first event. That is, we are looking for
a t∗ that makes some function

g(t,y(t),
.
y(t)) = 0 , (12.52)

and moreover looking for the first such t∗ in the interval tn < t∗ ≤ tn+1. This is a
scalar equation involving the unknown vector y(t), but of course one may be looking
for any of several events at once. The function g might itself be highly nonlinear—
this is not an easy problem.

What is done in practice is to use polynomial interpolants, typically of fairly low
degree (after all, the time step is presumed to be small if the solution is varying
rapidly), and use polynomial rootfinders. In Corless et al. (2008), barycentric Her-
mite interpolation such as discussed in this book, and rootfinding by the generalized
eigenvalue problem as discussed in this book, are advocated as a particular method
to apply polynomial interpolants and rootfinding for just this problem. However,
that is not what is done at present in MATLAB. Instead, the local monomial basis
used internally by the codes ode45 and similar are used instead.

Example 12.13. We dig into the details for a bit, to clarify that last paragraph. Sup-
pose that we are solving a differential equation, say y′(x) = cos(πxy(x)), with initial
condition y(0) = 1. Suppose also that we want to locate the very first x value for
which y′(x) = 0, where we will find a local maximum (or minimum—we’ll have to
check). This is, of course, equivalent to πxy = π/2, or y = 1/(2x). Suppose we have
solved the problem using (say) ode45, up until the current step, and have not yet
located a place where y′(x) = 0, but that we suspect that it will happen on this cur-
rent step. All codes, of course, must be “paranoid”—they have to check every step
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to see if the events happen. The code ode45 comes equipped with an interpolant
(of degree 4, although the details don’t matter), and thus what we will do is see if
the polynomial interpolant satisfies p ′(x) = 0 anywhere in the step; alternatively, we
could be looking for places where the interpolant took the value p(x) = 1/(2x). The
solution of this equation—which is a polynomial rootfinding problem—will provide
an approximate location of the event.

function [T,Y,TE,YE,IE] = wavevent

function [val, ist, dir] = crest( x, y )
val = y - 0.5/x;
ist = 1;
dir = 0;

end
f = @(x,y) cos(pi*x*y);
opts = odeset ('Events', @crest );
[T,Y,TE,YE,IE] = ode45( f, [0, 5], 1, opts );

end

Executing the above code finds an event location at x = 0.3972. �

Example 12.14. We end this section with a well-known chaotic example, the
Hénon–Heiles model. This set of model equations was originally motivated by
the motion of stars in a galaxy; however, the gravitational potential was chosen
for simplicity, not detailed realism. It is now used as an interesting example in
several texts, for example, Bender and Orszag (1978 p. 187) and Hairer et al.
(2006). We use the initial conditions given in Channell and Scovel (1990) at first:
p1(0) = p2(0) = q1(0) = q2(0) = 0.12. The equations of motion are

.
p1 =−q1 − 2q1q2
.
p2 =−q2 − q2

1 + q2
2

.
q1 = p1
.
q2 = p2, (12.53)

and we take a long(ish) time span of integration: 0 ≤ t ≤ 105. Since this system is
four-dimensional, it is awkward to present the results visually and we use a com-
mon device in the theory of dynamical systems, namely, the first return map or
Poincaré map. That is, we take a two-dimensional section in the four-dimensional
phase space; it turns out to be usual to take the section q1(t) = 0, and to plot only
q2(t) against p2(t) since the fourth quantity p1(t) can be recovered from the total
energy of the system (which is conserved, in theory) and the other three coordi-
nates. We only plot p2(t) against q2(t) at those points where q1(t) = 0 and q1(t)
is increasing; in the case of periodic orbits, this only plots a point when the orbit
passes through the section in the positive direction.

This is easy to do with the event location facility of the MATLAB ode solvers, as
shown below. The following function uses ode113 at very tight tolerances to solve
the system; for the initial conditions given in Channell and Scovel (1990), this tight



564 12 Numerical Solution of ODEs

a tolerance is not necessary, but if we take instead initial conditions twice as large
(which correspond to a higher energy level), we do need these tight tolerances to
have any confidence in the results. The routine used is this:

1 function [ t, y, te, ye, E ] = Henon( y0, tf )
2 %HENON Integration of the Henon-Heiles model locating q[1] = 0
3 % solve the model on 0 \le t \le tf, locating all places q[1]=0
4

5 function dy = Hf( t, y )
6 dy = zeros(4,1);
7 p = y(1:2);
8 q = y(3:4);
9 dy(1:2) = -[q(1) + 2*q(1)*q(2); q(2) + q(1)ˆ2-q(2)ˆ2 ];

10 dy(3:4) = [p(1); p(2)];
11 end
12

13 function [z, isterm, dir] = Poincare(t,y)
14 z = y(3);
15 isterm = 0;
16 dir = 1;
17 end
18 % Tell solver about events function, and make tolerances

TIGHT.
19 opts = odeset('Events', @Poincare, ...
20 'Reltol', 100*eps, 'Abstol', 1.0e-14 );
21

22 [ t, y, te, ye ] = ode113( @Hf, [0,tf], y0, opts );
23 E = (y(:,1).ˆ2+y(:,2).ˆ2+y(:,3).ˆ2+y(:,4).ˆ2)/2 ...
24 + y(:,3).ˆ2.*y(:,4)-y(:,4).ˆ3/3;
25

26 end

This routine was called with the following commands:

st = clock; [t,y,te,ye,E] = Henon( 2*[0.12, 0.12,0.12, 0.12], 1.0
e5 ); et = etime(clock,st);

This returns the clock time et 4.9979 · 102, i.e. about 500 seconds of computa-
tion, on the tablet PC used. We will discuss this example further in Sect. 13.8. The
Poincaré sections for the two cases are shown in Figs. 12.20 and 12.21. They have
been generated with the following commands (the first uses the results from above):

figure(3),plot( ye(:,2), ye(:,4), 'k.','Markersize', 3 ),axis('
square'),set(gca,'Fontsize',16),xlabel('p_2'),ylabel('q_2')

st = clock; [t,y,te,ye,E] = Henon( [0.12, 0.12,0.12, 0.12], 1.0e5
); et = etime(clock,st);

figure(4),plot( ye(:,2), ye(:,4), 'k.','Markersize', 3 ),axis('
square'),set(gca,'Fontsize',16),xlabel('p_2'),ylabel('q_2')

We do not plot the residuals here, but in both cases they are small and ode113 has
in each case produced the exact solution to a time-dependent but tiny perturbation of
this (Hamiltonian) system of equations. Over the long term, such a perturbation will
have a large effect; but then, so will physical perturbations and errors and omissions
in the model equations. �
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Fig. 12.20 Solving the Hénon–Heiles equation for the same initial conditions as used in Channell
and Scovel (1990), namely, p1(0) = p2(0) = q1(0) = q2(0) = 0.12 with an energy E = 0.02995,
gives an apparently smooth curve in the Poincaré section. Event location is used to identify the
times and values of p and q when q1 = 0 which are needed to draw the Poincaré section. This
smooth-looking resulting curve filled out by the return map corresponds to a quasiperiodic orbit
on a 3-torus. Note that the figure here, unlike that in Channell and Scovel (1990), plots only those
points for which p1(t) > 0. Computation took just over 6 minutes at these tight tolerances (which
were doubtless unnecessarily tight)
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Fig. 12.21 The first-return map (Poincaré map) for the Hénon–Heiles equation with energy
E = 0.1244 and initial conditions p1(0) = p2(0) = q1(0) = q2(0) = 0.24. The map shows chaotic
behavior outside calm “islands”
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12.9 More on Mass Matrices: DAE and Singular Perturbation
Problems

Differential-algebraic equations (DAE) occur frequently in practice and in some
sense can be thought of as being infinitely stiff. Mass matrices, as occurred in
Sect. 12.5, often arise in the natural formulation of DAE, although in this case the
rank of the matrix is generally not full. This requires initial conditions to be consis-
tent and also requires that certain constraints not be violated. DAE are always harder
to solve than IVP are, and some DAE are even harder than most. This is usually de-
scribed by means of an “index” (there are several flavors of index to choose from,
but higher-index problems are harder than index-1 problems).

Example 12.15. As a beginning example, consider the singular perturbation problem

.
x =−xy2

ε .
y = 1− x2− y2 . (12.54)

For very small ε , we expect the solution of this problem to look like the solution of
the DAE that is obtained when we substitute ε = 0 into the equations, which forces
x(t) and y(t) to lie on the unit circle. In this simple example, we can see directly
what happens in the DAE case: We can analytically solve the second equation for
y2 and, knowing this, the first equation reduces to the ordinary differential equation.
x = −x(1− x2). In larger DAE, finding such an explicit solution to the algebraic
constraint(s) is almost always impossible, and in essence what one wants to do is
solve the algebraic part of the equation numerically. More, one wants to have this
done automatically as part of the numerical solution of the DAE itself. It is almost
always true that the constraint needs to be satisfied to a much higher accuracy than
the differential equation part needs to; in other words, the residual in the constraint
needs to be much smaller than the residual in the differential equation part. The
reason for this is that the conditioning of DAE is usually such that the forward error
is highly sensitive to errors in the algebraic parts of the equation. We do not discuss
conditioning of DAE further in this book.

For this particular DAE, we can see (by having reduced it explicitly to an ODE)
that there are equilibria at x = 0 and at x = ±1. We can also see, by multiplying
the ODE by x to get d/dt(x2/2) = −x2y2 ≤ 0, that the magnitude of the solutions
are nonincreasing. Finally, the solutions are symmetric about the t-axis because the
equation is invariant under x → −x. Any good solution of this problem ought to
reproduce those qualitative features.

The following function uses ode15s to solve this DAE. The DAE is encoded as
a singular perturbation problem, with a possible parameter ε (called mu in the code
to avoid confusion with εM):

1 function [t, y, res] = singpertex1( mu, u0 )
2

3 %
4 % A singular perturbation problem
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5 %
6 % Leave the 'MassSingular' property at its default 'maybe' to

test the
7 % automatic detection of a DAE.
8

9 function dy = f( t, y )
10 dy = [ -y(1)*y(2)
11 1 - y(1)ˆ2 - y(2)ˆ2 ];
12 end
13

14 M = [ 1, 0
15 0, mu ];
16

17 options = odeset('Mass',M);
18

19 sol = ode15s(@f,[0 5],u0,options);
20

21 t = RefineMesh( sol.x, 5 );
22 [y, dy ] = deval( sol, t );
23 np = length( t );
24 res = zeros(size(dy));
25 for i=1:np,
26 res(:,i) = dy(:,i) - f(t(i), y(:,i));
27 end
28

29 end

Just with the default tolerances, the computed solution satisfies the constraint to
within 2.5× 10−4 (when μ = 0) and has a satisfactorily small residual. �

Remark 12.3. Many DAE can be naturally embedded into singular perturbation
problems; that is,

.
x(t) = f (t,x(t),y(t))

ε .
y(t) = g(t,x(t),y(t)) . (12.55)

One might even start with the ε = 0 case and introduce the ε .
y(t) term, out of the

blue, just so as to use a stiff IVP solver on the problem if one doesn’t have a DAE-
capable code handy. There is a duty of care here, to make sure that the constraint is
stable. In this example, the constraint is stable if ε > 0 (but small). If instead you
take ε < 0, then the constraint is unstable, and the solution of the IVP doesn’t look
at all like the solution of the DAE. See Problem 12.16. �

12.10 Which Interpolant, Which Residual?

Up until now, we have simply used the polynomial interpolants made available by
the codes. This has the benefit of convenience, but in many cases (especially outside
of MATLAB), the interpolants used may have been chosen for other reasons than
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accuracy. In that case, the computation of the residual will be “suboptimal,” in that
we could do better.20

The first way in which we might do better is to try to use what are called shape-
preserving interpolants. The idea is to use a rational interpolant that contains a pa-
rameter that can be tuned so as to preserve qualitative features such as convexity
of the solution or monotonicity of the solution. This can also be handled quite eas-
ily within the framework of barycentric interpolants, as discussed in Sect. 8.7. Other
possibilities also come to mind. One might try to find the “best possible” interpolant.
For example, one might try to find an interpolant that minimized Δ(t) in some man-
ner. A natural thing to try to do would be to minimize, over each step, the function
2-norm of Δ(t). Specifically, on a subinterval tk ≤ t ≤ tk+1, this means trying to find
an interpolant, call it z(t), satisfying z(tk) = xk and z(tk+1) = xk+1 and at the same
time minimizing

‖Δ‖2
2 =

ˆ tk+1

tk

ΔH(τ)Δ(τ)dτ , (12.56)

where Δ(τ) =
.
z(τ)− f(τ,z(τ)). This is a classical problem in the calculus of varia-

tions and leads to a two-point boundary value problem (BVP) by means of what are
called the Euler–Lagrange equations. In this case, the equations work out to be

.
z(t)− f(t,z(t)) = Δ(t)

.
Δ (t)+ JH

f (z)Δ(t) = 0 . (12.57)

We might call the solution of this BVP (if it exists) the “optimal” interpolant and
the Δ that results the “optimal” residual. You will be asked to pursue this idea in the
exercises, once you have learned how to solve boundary value problems in Chap. 14.
Of course, it will be useful theoretically before that if one can solve the resulting
BVP analytically. See Problem 13.36.

12.11 Singularity

Consider the harmless-looking problem

.
x(t) = t2 + x2 (12.58)

on the interval 0 ≤ t ≤ 1, subject to the initial condition x(0) = α for various α .
When we attempt to solve this in MATLAB as in the script below, we encounter a
surprise:

20 In fact, the interpolant used in ode45 seems to be not quite as good as we would want: The
solution at the mesh points is roughly speaking O(h5) accurate, but the interpolant seems to be
only O(h4) accurate at off-mesh points. This is good enough for many purposes, but for us it seems
to overestimate the residual.



12.11 Singularity 569

% An example with a moveable pole
f = @(t,x) t.ˆ2 + x.ˆ2;
singsol = ode45( f, [0,1], 0.5 );
%singsol = ode45( f, [0,1], 0 );
figure(1), plot( singsol.x, singsol.y, 'k.' ) % No trouble seen

singsol = ode45( f, [0,1], 1.0 ); % Initial condition important!

MATLAB complains that it can’t complete the integration!21 The difficulty is, of
course, that the solution of this problem contains a movable pole. That is, the lo-
cation of the pole depends on the initial condition. The convergence of numer-
ical methods to a solution needs regularity of the solution; having a Lipschitz
constant guarantees solvability, albeit only locally. Here f (t,x) = t2 + x2 and so
f (t,x)− f (t,y) = x2 − y2 = (x+ y)(x− y), which means that so long as the solution
is finite and bounded there will be a Lipschitz constant (and vice versa)—but obvi-
ously, any possible constant would have to grow without bound since the solution
does.22

In practice, this is reflected in the mesh size control: If the solution goes singu-
lar, the mesh width must go to zero. Indeed, the correlation is so strong that un-
til recently, when the MATLAB routines discovered the step size getting so small
that tn +Δ t rounded to tn (so no possible progress could be made), they declared
that there was a “singularity likely.” Nowadays they are more conservative and say
merely that they are “unable to continue.”

However, ode45 does a pretty good job of locating the singularity in this
example, at least! Exact solution of the problem in MAPLE gives a somewhat com-
plicated (but not too bad) rational function of Y and J (i.e., Bessel functions); we
can then isolate the denominator and (for a given α) numerically solve for the loca-
tion of the singularity.23 In contrast, with its default tolerances, ode45 located the
singularity accurately to four decimal places for α = 2.

The reason it works is that the underlying theory, that of analytic continuation,
allows one to locate a nearby singularity from the coefficients of the Taylor series of
the solution, using a method originally due to Daniel Bernoulli and formalized by
Darboux: The ratio of successive Taylor coefficients is related to the location of the
nearest singularity (this is why the ratio test of elementary calculus works as well).
All of the numerical methods discussed here are (as we will see in Chap. 13) based
on analytic continuation, and the step-size control can be related to the convergence
or lack thereof of local Taylor series.

21 Afterwards, we could pretend it wasn’t a surprise after all, by noting that solution of the related
but easily solved problems

.
x = x2 and

.
x = 1+ x2, which trap the solution of our “harmless” prob-

lem between, are themselves both singular: α/(1−αt) in the first case and tan(t + arctan(α)) in the
second. Therefore, our apparently harmless problem is of course not harmless, and everyone ought
to have known that straight away.
22 Obviously, we mean that on a fixed interval [0,T ]. Short of the singularity, there could be a
constant L, but that as T approached the singularity we would have to take L larger and larger.
23 This of course requires accurate methods to evaluate the Bessel functions, but these are available
and good to have anyway.
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The important point is this: Singularities (even singularities in higher derivatives,
which appear smooth to the human eye) cause difficulties for numerical methods.
One reason for this is that the accuracy of many underlying numerical formulae is
proportional to bounds for higher derivatives; and if a problem is singular, these can
be infinite. Even just approaching a singularity can mean that these bounds get quite
large. We examine below some strategies to handle singular problems.

12.11.1 Pole-Vaulting

If one encounters a singularity, then one often wants to somehow get past the sin-
gularity. A lovely idea is to replace the real variable of integration (here thought
of as “time” t) by a path in the complex t-plane. This is called, amusingly, “pole-
vaulting.”

For our example problem, we do the simplest possible thing: We back off slightly
from the pole, and then go in a semicircular arc in the complex t-plane. Let p =
0.4989 be our approximate location of the pole. We look at the solution generated
thus far and find that, at the 10th mesh point, singsol2.x(10) (which is about
0.4907, not so far from the pole), the value of the solution is larger than 100. We
choose a semicircular path in the t-plane: t = p+ρ exp(iθ ), with ρ = (0.4989−
0.4907) = 0.0083. An interesting subtlety is whether we should hop over the pole
by taking π ≥ θ ≥ 0, or duck under the pole and take −π ≤ θ ≤ 0. If the residue at
the pole is nonzero, the answers will be different; we will be on different branches
of the solution. This will certainly matter in some applications! Here we choose to
go over the pole.

The differential equation in the new variable is

dx
dθ

=
dt
dθ

dx
dt

= (iρeiθ )
(
(p+ρeiθ)2 + x2) , (12.59)

and this is perfectly simple to solve using ode45, because that code allows
complex-valued solutions. Integrating this from θ = π down to θ = 0, we find that
the solution is −1.2095× 102− 3.9379× 10−3i, and of course that near-zero imag-
inary part tells us roughly how accurate our solution is (this is not too inconsistent
with the default tolerances of 10−6). We then drop the imaginary part and use the
real part as the initial condition to restart the integration on the next interval, again
using ode45. A new singularity is reported further on, near 2.518. See Fig. 12.22.
In Problem 12.13, you are asked to follow this idea.

12.11.2 Other Kinds of Singularities

The other kinds of singularities that you will have to worry about, from time to
time, include singularities or nondifferentiabilities explicitly in the problem, such
as

.
x = x/(t−1) or

.
x =

√
x− 1 or

.
x = |1− x2|; one often encounters singularities of
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Fig. 12.22 Integrating past a singularity using the technique of “pole-vaulting”

an Euler type in Sturm–Liouville and other problems, where the leading derivative
is multiplied by a term that goes to zero: x2d2x/dt2 + f (t,x) = 0, for example. In
that case, even getting a numerical method started requires using something extra, a
series about the singular point (possibly containing logarithmic or algebraic powers)
for example, to find the values of the solution near, but not at, the singular point;
from there the solution will be regular and a normal method can then proceed.

There is a large class of problems where the input contains known singularities—
the Dirac delta function, or the Heaviside unit step function, for example—and these
are important in applications. Because numerical methods can have a hard time
locating such singularities, it is important to tell the method you are using about
any such singularities, so it can restart the problem there. This essentially breaks
the singular problem up into a sequence of nonsingular problems, each of which is
easier for a numerical method. You will also have to worry about infinite intervals,
which are a kind of singularity. Numerical methods can be surprisingly good in this
case if the solutions tend to equilibria. A good method can even take an infinite-
length time step!

But there are worse things to worry about as well. Moveable essential singular-
ities are true headaches (see the next example); and natural boundaries (moveable
or not) prevent analytic continuation of any kind. Since all numerical methods for
initial-value problems that we have been discussing here are based on analytic con-
tinuation, this effectively limits further application of methods such as these.

Example 12.16. Consider the differential equation

d2y
dx2 =

(
1− 3/2(ax− 1)2

)
( dy

dx )
2

y(x)
(12.60)

subject to the initial conditions y(0) = 1/e and y′(0) = −2a/e. This isn’t quite in the
category we have been discussing, because a appears both in the equation and in the
initial condition. However, the reference solution, y(x) = exp(−1/(1−ax)2), has an
essential singularity at x = 1/a; mind you, it’s infinitely differentiable along the real
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axis and all derivatives are zero there. Solving this with ode45 seems to notice the
singularity—the step size gets small as the solver approaches the singularity—but
it goes right through and produces the solution displayed in Fig. 12.23. That looks
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0

0.1

0.2
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Fig. 12.23 Numerical solution of a problem with an essential singularity, although approached in
a direction where the solution is infinitely differentiable at the singularity

perfectly fine, of course, until one realizes that the solution, which is apparently 0 af-
ter 1/a, involves a division by zero in the right-hand side of the differential equation,
so it must be not quite zero, possibly even so that y(x) is small but nonzero, but the
derivative is so small that its square underflows to zero! Also, the computed solution
is very different from the reference solution exp(−1/(1−ax)). Essential singularities
are a problem!

Now let us consider a slightly different ODE:

d2

dx2 y(x) =
(2π x− 1)(d/dxy(x))2

y(x)
(12.61)

subject to y(0) = 1/e and y′(0) =−a/e. Choose a = π this time. Now we get

Warning: Failure at t=3.394010e-001. Unable to meet integration
tolerances without reducing the step size below the smallest
value allowed (8.881784e-016) at time t.

This is in some sense acceptable, in that the reference solution y(x) = exp(−1/(1−ax))
is not finite or finitely differentiable to the right of x = 1/a. However, the point 1/π =
0.318309886 . . . was not located very well—the integration went past this point (by
about 0.02). One sees the potential difficulty: Stepping past a singularity by so much
risks missing it altogether. Indeed, for this example, had we changed the differential
equation for t > 0.32 to something that was smoother, the numerics would have
missed the singularity (at these tolerances). �
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Finally, here is what has been described as the “simplest ODE whose solution has
a movable natural boundary” in Clarkson and Olver (1996), the Chazy equation:

d3y
dx3 = 2y

d2y
dx2 − 3

(
dy
dx

)2

. (12.62)

See also Ablowitz and Clarkson (1991). When faced with a natural boundary, ana-
lytic continuation (and hence all the numerical methods we have used so far) fails.

12.12 Notes and References

The MATLAB ODE Suite is described in Shampine and Reichelt (1997). There are
similar codes available in MAPLE via dsolve with its numeric option described
in Shampine and Corless (2000), although we do not use those explicitly in this
book.

For methods to determine when certain differential equations can be solved in
terms of elementary functions, see, for instance, Geddes et al. (1992); von zur
Gathen and Gerhard (2003); Bronstein (2005).

A nice proof of the existence and uniqueness of the solution of IVP for ODE, es-
sentially due to Cauchy originally and which uses the deviation, is given in Birkhoff
and Rota (1989 Chap. 6). The Lipschitz constant is always positive, but for some
problems (as we will discuss in Chap. 13), there exists a negative bound that allows
converging trajectories. This has been studied, for example, by Söderlind (1984).
The use of the variational equation to study the condition number of an IVP is ex-
plored further in Mattheij and Molenaar (1996); that book is especially useful for its
integration of the theory of differential equations with numerical practice. The type
of reasoning used in Sect. 12.3.2 is standard in the theory of dynamical systems (see,
e.g., Nagle et al. 2000; Lakshmanan and Rajasekar 2003). An excellent presentation,
with many examples, is given by Bender and Orszag (1978). For the computation
of Lyapunov exponents, see Geist et al. (1990). A recent thorough survey is Skokos
(2010). The analytic SVD is studied by Bunse-Gerstner et al. (1991). The reference
solution to the Lorenz system is studied with interval methods in Tucker (2002).

The fidelity of numerical solutions to chaotic problems by backward error anal-
ysis is discussed in Corless (1992, 1994a,b). Wayne Enright, in a conversation with
RMC in the early 1990s, suggested that a reference problem could be called chaotic
(even if it wasn’t “really” chaotic in the theoretical sense) if generic nearby prob-
lems were chaotic (in the theoretical sense). In such a case, in view of physical per-
turbations and modeling errors, there would be no distinction possible in practice.
See also the extensive discussion of backward error for dynamical systems in Moir
(2010). Example 12.11 was taken originally from Hubbard and West (1991), al-
though they used it for different purposes, namely, to show how unreliable fixed
time-step numerical methods were.
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Taylor series methods to solve DAE have been shown to have cost polynomial
in the number of bits of residual accuracy, even for higher-index problems; but they
are still hard. See Corless and Ilie (2008) and Nedialkov and Pryce (2005, 2007).
Nonetheless, MATLAB (and the repository at GAMS) have facilities for solving
DAE, at least for index-1 problems. See odeexamples[’dae’] in MATLAB,
and see Hairer and Wanner (2002) for an extensive discussion of DAE methods. For
an interesting example of high-index problems in chemical process control, see Qin
et al. (2012). With regard to the sensitivity or conditioning of DAE, see Cao et al.
(2003), Li and Petzold (2004) and Petzold et al. (2006).

Shape-preserving interpolants are studied, for example, in Brankin and Gladwell
(1989). Barycentric versions are looked at briefly in Butcher et al. (2011).

Detection of singularities in numerical methods for ODE has a long history. See,
for example, Suhartanto and Enright (1992). For pole-vaulting, see Corliss (1980)
or Tourigny (1996), or Fornberg and Weideman (2011) for an alternative method
that uses Padé approximation to deal with singularities. The PhD thesis by Orendt
(2011) may also be of interest.

The problem of parameter estimation for nonlinear DE models is much studied
and relies on the numerical solution of such problems (although see Ramsay et al.
(2007) for an interesting variation).

Problems

Theory and Practice

12.1. Show that the damped harmonic oscillator (12.7) can be written in first-order
form as

.
x(t) =

[
0 −ω
ω −2ζ ω

]
x(t) . (12.63)

Let the initial conditions be x1(0) = 1 and x2(0) = 0. Take ω = 1 and ζ = 0.005, and
use ode45 and ode113 with default tolerances to solve the problem on 0 ≤ t ≤
200π . Plot your solutions in the phase plane [that is, x1(t) versus x2(t)]. Plot them
again without the interpolants—that is, just plot the discrete values in sol.x—and
comment on the value or lack thereof of interpolation for graphical interpretation.
Compare your results with Fig. IV.I.

12.2. Solve Eq. (12.1) on 0 ≤ t ≤ 5 with the initial condition x(0) = 0 using not
ode45 but rather ode113 and ode15s. What differences do you note?

12.3. The first example problem of this chapter,
.
x = t2 + x− x4/10, can be embedded

in a family of problems with a parameter ε that is assumed small:
.
x = t2 + x+ εx4,

and our particular case is ε = −1/10. Assume that there is a solution of this family
of the form
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x(t) = x0(t)+ εx1(t)+ ε2x2(t)+ · · · (12.64)

and use this assumption and the idea of equating like powers of ε in the expansion
to find x0(t) and x1(t) [you may wish to use a computer algebra system for x1(t)].
Put z = x0 + εx1. Show explicitly that the residual r(t) :=

.
z− f (t,z) is O(ε2). Thus,

the ideas of this chapter can be used to understand perturbation methods for solving
differential equations, as well. In this particular example, the perturbation solution
is really too ugly to be genuinely useful, but in other situations the method can give
results that are better than numerics. The asymptotics of the solution of this equation
as t →∞ can be studied by the methods of Bender and Orszag (1978), and indeed it
is useful to discover that to leading order x(t) ∼ (10t2)

1/4, which can be confirmed
by numerics.

12.4. Consider the numerical solution of the following initial-value problem, first
on the interval 0 ≤ t ≤ 1, and then on the interval −10 ≤ t ≤ 0, but still starting at
t = 0; that is, in the last case we will be integrating backward in time. To do this for
(say) ode45, just put the tspan as [0,-10]. The initial conditions are y(0) = 1 and
y′(0) =−1, and the differential equation is y′′+11y′+10y= 0 in both cases, and of
course you will have to transform it to a first-order system in order to use ode45.
The reference solution is in both cases (of course) y(t)= exp(−t). Comment on your
solutions. Note that exp(−(−10)) ≈ 22,000. What is the residual? Is your second
numerical solution a good one? If so, in what sense?

12.5. Suppose we solve a scalar autonomous nonlinear IVP numerically, and get a
computed solution with a relative defect δ (t); that is,

.
x(t) = f (x(t))(1+δ (t)) is sat-

isfied exactly by the computed solution x(t). By using separation of variables, argue
that the computed solution is the exact solution of the reference problem evaluated
at a slightly perturbed time. It would be nice if this worked for autonomous systems,
too, but it doesn’t—explain why not.

12.6. Express the initial-value problem

yiv(t)+ a3y′′′(t)+ a2y′′(t)+ a1y′(t)+ a0y(t) = 0

in standard form, and argue thereby that the eigenvalues of the Frobenius companion
matrix are the roots of the polynomial

λ 4 + a3λ 3 + a2λ 2 + a1λ + a0 = 0 .

12.7. This problem can be done numerically, or if manual computation is preferred,
then bounds can be used instead. Either way, explicitly compute the condition num-
bers (or good bounds thereof) of the following initial-value problems:

1. Airy’s differential equation y′′ = ty with initial values y(0) = Ai(0), y′(0) =
Ai′(0), on the interval 0 ≤ t ≤ 10;

2. Airy’s differential equation y′′ = ty with initial values y(0) = Bi(0), y′(0) =
Bi′(0), on the interval 0 ≤ t ≤ 10;
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3. Airy’s differential equation y′′ = ty with initial values y(10) = Ai(10), y′(10) =
Ai′(10), on the interval 0 ≤ t ≤ 10, backward;

4. Airy’s differential equation y′′ = ty with initial values y(10) = Bi(10), y′(10) =
Bi′(10), on the interval 0 ≤ t ≤ 10, backward.

12.8. Simulate a perfect ball bouncing on an infinite floor, with air resistance and
tilt. Use the “events” feature in your simulation.

12.9. Consider the initial-value problem
.
x = |1 − x2|, with x(0) = 0, apparently

originally discussed by K. Nickel. Show that the reference solution to this is
x(t) = tanh(t), which has −1 < x(t) < 1, and so the absolute value signs make no
difference to the reference solution. Solve the problem on the interval 0 ≤ t ≤ 100
using ode45 three times, each with different relative tolerances. You should find
that the numerical solution goes singular in finite time, but that the location of the
singularity depends on the tolerance. Compute the residual in each of the three cases,
and show that it is often positive. Now consider the solution of

.
x = |1− x2|+ ε and

argue that eventually this x(t)> 1. Consider also the reference solution of the equa-
tion

.
x = x2 − 1 with the initial condition x(t0) = 1+ δ > 1 and show that it goes

singular in finite time, and that the location of the singularity depends on δ . Now:
Has ode45 done a reasonable job of solving the original problem? Justify your
answer. Remark: The answers “yes” and “no” can each receive full credit if the
justifications are argued well. This isn’t an easy question.

12.10. Use ode45 or ode15s to find the roots of x5 + x− 1 = 0 by homotopy or
continuation, as follows. Let X(t) be the roots of X(t)5 + tX(t)− 1 = 0. Clearly,
X(0) is one of the roots of x5 − 1 = 0, or exp(2π ik/5) for k = 0, . . ., 4. We wish to
follow the roots of this polynomial as t ranges from t = 0 to t = 1, when the roots
of our original (“hard”) problem will be the five values of X(1). By differentiating,
we find

5X(t)4
.
X(t)+X(t)+ t

.
X(t)− 0 = 0 (12.65)

or
.
X(t) = − X(t)

5X(t)4 + t
. (12.66)

How accurate are your final answers? Of course, this is only the beginning of the
story of continuation methods. . ..

12.11. Use ode15s to solve the lead uptake model of Example 12.2 on 0≤ t ≤ 108.
Compute the residuals, and show that the problem gets progressively easier as t
increases. On such a long time interval, the problem is “stiff,” and the use of a
nonstiff solver such as ode45 is contraindicated. You may solve the problem on a
shorter time interval (say 0 ≤ t ≤ 1000; remember that the time is in units of days,
and 1000 days is not so far off 3 years) using a nonstiff solver, and perhaps this is a
more realistic picture anyway. Discuss.

12.12. Consider the damped harmonic oscillator (12.7). Take ω0 = 1 and ζ = 0, to
begin with. Solve the model with x(0) = 1,

.
x(0) = 0 on the interval 0 ≤ t ≤ 10π

using ode23. Use the Oettli–Prager theorem to estimate the “numerical damping”
the code has introduced into the solution.
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12.13. Solve the differential equation
.
x(t) = t2+x2 with the initial condition x(0) =

2 on the interval 0 ≤ t ≤ 10. Use the technique of pole-vaulting to jump over the
singularities.

12.14. Now, let us consider a simple potentially stiff differential equation, some-
times called the Prothero–Robinson DE and used as a test for stiff methods: Choose
a slowly varying function g(t) and create the IVP

.
y = λ (y− g(t))+

.
g(t), y(0) = g(0)+ 2 . (12.67)

The true solution is y(t) = g(t)+ 2eλ t. Stiffness occurs if Re(λ ) � 0 and models
the situation when the person doing the solving is interested in the behavior of the
slowly varying attractor [here the graph of g(t)], and not so interested in the transient
region 0 ≤ t ≤O(−1/λ). Thus, tolerances are set rather loosely, meaning that we can
accept a fairly large residual. Take g(t) = sin(t), y(0) = 2, λ = −1000, and solve
the problem on 0 ≤ t ≤ 10 using both ode45 and ode15s. Discuss.

12.15. Consider the problem
.
x = −signum(x), with the variant convention that

signum(0) = 1. That is,
.
x = −1 if x ≥ 0, and

.
x = 1 if x < 0. This problem is ap-

parently originally due to John Butcher. The right-hand side can be implemented in
MATLAB with the command f = @(t,x) -sign(x+realmin), near enough.
Show analytically that this problem fails to have a solution for t > |x0|, although the
machine-implemented problem does have an equilibrium at -realmin that doesn’t
matter since we’d never see it as the result of a computation unless lightning struck
the computer or something. Show also that none of ode45, ode23, or ode113
finds the singularity where the solution ceases to exist, but that their residuals go
from O(tolerance) to O(1) at that point. Show that ode15s does find the singular-
ity. Use x0 = 5 or x0 =−5.

12.16. Solve the problem in Example 12.15 for various initial conditions and vari-
ous μ .

12.17. Consider the differential equation

ε2 d2

dt2 y(t) =
(
1+ t2)2

y(t) , (12.68)

which is discussed in Bender and Orszag (1978 p. 488), with various initial condi-
tions, including y(0) = 0 and y′(0) = 1. Solve this equation with these initial con-
ditions on 0 ≤ t ≤ 1 for ε = 0.1, 0.01, and 0.001. MAPLE can apparently solve
this analytically in terms of the HeunT function, but evaluating the result requires
high precision for large t. The asymptotic formula derived in Bender and Orszag
(1978) is

y(t) =
ε√

1+ t2
sinh

(
1
ε

(
t +

t3

3

))
, (12.69)

which shows that the solution grows very rapidly.
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12.18. The linear homogeneous second-order differential equation

(1− z2)
d2y
dz2 − z

dy
dz

+ n2y = 0 (12.70)

has as one of its solutions y(z) = ATn(z), where Tn(z) is the nth Chebyshev poly-
nomial. One expects, then, that the initial-value problem with y(0) = Tn(0) and
y′(0) = T ′

n(0) would have as its unique solution on −1 ≤ z ≤ 1 just y(z) = Tn(z).
Is this true, numerically? Even for very large n? What might go wrong? What is
the condition number of this differential equation? To make the computation of the
condition number easier, if you change variables so that z = cosθ with −1 ≤ z ≤ 1
corresponding to π ≥ θ ≥ 0, then the differential equation becomes just y′′+ n2y.

12.19. Add the lines

% Linear interpolation does not look good
skeleton = ode45( @odefun, tspan, y0 );
figure(3), plot( skeleton.y(1,:), skeleton.y(2,:), 'k' )

to the code from Example 12.4 and run it. The skeleton of the solution is exactly as
accurate as before, but the plot which uses linear interpolation looks misleadingly
inaccurate. This is one reason good interpolants are wanted.

12.20. The problem
.
y1 = −2y1 + y2,

.
yk = yk−1 − 2yk + yk+1 for 2 ≤ k ≤ n− 1, and.

yn = yn−1 − 2yn, with y1(0) = 1 and all other components yk(0) = 0, is one of the
test problems in the DETEST suite. Solve this problem on 0 ≤ t ≤ 20 for n = 100
and n = 1000 using ode45, ode113, ode15s, and ode23. In the game of Rock–
Paper–Scissors, Rock breaks Scissors, Paper wraps Rock, and Scissors cuts Paper;
on this problem you should find that one of the four methods is clearly the most
efficient for a given accuracy (or equivalently the most accurate for a given amount
of work). Yet we will see other problems where each of the other three methods is
the best.

12.21. The problem
.
y = 1− y4, y(0) = 0 has an analytical solution of sorts, but an

implicit one:

t =
1
2

arctan(y)+
1
4

ln(y+ 1)− 1
4

ln(1− y) . (12.71)

Solve the differential equation numerically using for instance ode45 and see how
nearly the implicit Eq. (12.71) is satisfied. Is this a kind of forward error?

12.22. The problem

y1
′ = 2xy4y1

y2
′ = 10xy4y5

1

y1
′ = 2xy4

y1
′ =−2x(y3 − 1) (12.72)
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with initial conditions yk(0) = 1 has a known reference solution y1 = exp(sin(x2)),
y2 = exp(5sin(x2)), y3 = 1+ sin(x2), and y4 = cos(x2) (indeed the equations are
constructed in Hairer et al. (1993) from the solutions). Solve this problem on 0 ≤
x ≤ 5 using ode45 and ode113 at various tolerances and compute the residuals.
Compute also the forward error and compare with the residuals.

Investigations and Projects

12.23. Euler’s quadratic differential equation (1− x2)(y′(x))2 = 1− y(x)2 has vari-
ous singularities. Explore them numerically, and compare with the analytic solution.

12.24. We have claimed that interpolation of a numerical solution of a differential
equation gives a continuously differentiable (piecewise) solution. We investigate this
claim in more detail here. Assume that the nodes tk, 0≤ k ≤ n and the corresponding
values xk are machine-representable numbers. Suppose that the interpolation scheme
uses the polynomial bases φk, j(t) for 0 ≤ j ≤ mk. In practice, one can take all the mk

to be the same, but you will see that you need mk ≥ 1. For ode45 all mk = 5, for
instance.

1. Show that if exact arithmetic is used, then the Hermite interpolation conditions
x(tk) = xk and

.
x(tk) = f (xk) ensure that the interpolant is continuously differen-

tiable [and that the residual (defect) is zero at each tk].
2. Show that rounding errors will in general destroy the continuity, and therefore

also the differentiability, of the interpolant if we use the forward notion of error
of evaluation.

3. Show nonetheless that there exists a continuously differentiable interpolant near
the computed interpolant. That is, by using backward error, one can claim that
the defect is continuous. [Hint: Use induction on k. Consider first the node t1.
Bound how accurately the interpolant on the left (i.e., t0 ≤ t ≤ t1) reproduces x1

and f (x1), and then use backward error only on the interpolant on the right, that
is, t1 ≤ t ≤ t2. Complete the induction. It is simpler, by the way, to specialize to
local monomial bases φk, j = (t − tk) j, but not necessary.]

4. Use ode113 at much tighter tolerances to see how accurately you can solve the
given IVP in MATLAB. At what point does the code begin to fail to be able to
achieve the tolerance? Be careful to adjust the absolute tolerance as you tighten
the relative tolerance. (This is simply an exercise in running the given code with
different tolerances and reporting on what you see.)

12.25. The solutions to our favorite IVP for ODE, namely,

.
x(t) = cos(πtx(t)) , (12.73)

give nice pictures on the square 0≤ x≤ 5, 0≤ t ≤ 5, when the solutions from several
initial conditions are plotted at once. See Fig. 12.24. This problem is discussed
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Fig. 12.24 What your solution to Exercise 12.25 should look like

in Bender and Orszag (1978). For this exercise, choose 31 equally spaced initial
values x(0) = 5k/30, for 0 ≤ k ≤ 30, solve the problem using ode45, and plot all
the curves on one graph as in the figure. Indeed, if one vectorizes the MATLAB

code, all 31 initial-value problems can be solved at once. Also compute and plot the
residuals (not shown here). What tolerances do you have to use to ensure that the
absolute residuals are all less than about 2.0× 10−6? Finally, are these initial-value
problems well-conditioned? Are there initial conditions for which the problem is ill-
conditioned? If so, find some. In detail, what is the condition number of the initial-
value problem (12.73)? This is a nonautonomous problem, but just consider the
scalar version, assume the residual Δ(t) = εv(t), put the difference z− x ≈ εu1(t),
and ignore terms of order ε2. Can you explain the curious “bunching” of the graphs?

12.26. Use the parameter values given in Example 12.12 to solve Eq. (12.45) (not
the analytically solvable Eq. (12.48)). That is, do not approximate cosα =

.
x/V or

sinα =
.
y/V . Use the events feature of ode45 (or ode23) to find how far the ball

carries. Be careful to make your units consistent (you may keep them in the given
medieval units if you choose; after all, golf is an ancient sport). Compare your nu-
merical solution with GVP’s analytic solution.

Curiously enough, the dimple patterns of the smaller British golf balls give more
lift; this translates into about 15% larger p. What difference does this make to the
distance the ball travels (be careful, the ball is also smaller)? What if they were
the same size? What if the lift and drag are instead zero as would happen if one
played golf in a vacuum? What happens, for either kind of ball, if the axis of spin is
not exactly horizontal, so the lift vector is not directed upward? How accurately do
you have to integrate these equations to come to your conclusions? What physical
interpretation could you place on the residual in your computations?

12.27. The DETEST suite described in Enright and Pryce (1987) contains a collec-
tion of test problems, some stiff and some nonstiff. Choose a subset of those prob-
lems (possibly the whole set) and compare the performance of ode23, ode45,
ode113, and ode15s as appropriate. Measure the size of the residuals, not the
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“global error,” so that you don’t have to worry about the exact solutions. All of these
problems are supposed to be fairly well-conditioned; check the condition number of
at least one problem, to be sure.

12.28. One can use numerical methods for ODE to plot curves defined implicitly by
equations f (x,y) = 0. The technique used in Aruliah and Corless (2004) is to assume
the existence of a smooth parameterization x(s), y(s) such that f (x(s),y(s)) = 0.
Taking derivatives, we see that if

x′(s) = α(s,x,y) fy(x,y)

y′(s) =−α(s,x,y) fx(x,y) , (12.74)

then d f/ds = fxx′+ fyy′ = 0, no matter what choice is made for α(s,x,y). Indeed, it
can usually be chosen so that (x′)2 +(y′)2 = 1, so that s represents arc length along
the curve. Consider the curve

f (x,y) =
(
x2 + y2)2

+ 3x2y− y3 = 0 , (12.75)

which goes through the point (0,1), but has a singular point (where fx = fy = 0)
at the origin. See if you can use the differential equation method [or a DAE
method, adding the equation 0 = f (x,y) to the mix] to draw all three lobes of the
curve. This is the technique used in the MAPLE routine plot real curve in the
algcurves package, by the way; that routine also does Puiseux series expansions
at singular points in order to get the numerics started.

12.29. Consider the linear homogeneous second-order differential equation

(1− t)
d2y
dt2 +

dy
dt

+(1− t)y = 0 (12.76)

with the initial conditions y(0) = y′(0) = 1. This is solved in series in Braun (1992).
The computer algebra system MAPLE gets a symbolic expression containing Bessel
functions for the solution of this initial-value problem. Solve the problem numeri-
cally on the interval 0 ≤ t ≤ 2, with the default tolerances in ode45 and ode113.
Solve it again using tight tolerances (say 10−12). Does there appear to be any diffi-
culty? Compute and plot the residual. Now does there appear to be any difficulty?
Should we have believed the numerical solution without checking it? What happens
with the Bessel function expression given by MAPLE on this interval?

12.30. The well-known error function is defined as

erf(t) :=
2√
π

ˆ t

0
e−τ

2
dτ . (12.77)

The inverse error function is what you get when you solve the equation z = erf(y)
for y as a function of z. By implicit differentiation, 1 = erf′(y)y′ and by definition
erf′(y) = 2√

π exp(−y2), so we wind up with a differential equation
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y ′ =
√
π

2
ey2

. (12.78)

Because erf(0) = 0, we have also that y(0) = 0. Because erf(∞) = 1, we see that
the domain of this differential equation is 0 ≤ z < 1. Solve this differential equation
numerically. Compute the condition number of this differential equation by simul-
taneously solving the variational equation. Compute also the condition number of
y(z) as a function of z (by the techniques of Chap. 3). Compare the results. See also
the MATLAB function erfinv.

12.31. Computation of Lyapunov exponents isn’t quite straightforward, because of

the numerical dependence of the columns of ξξξ , where
.
ξξξ = J f (z)ξξξ and ξξξ (t0) = I.

What we mean by that is that although the matrix ξξξ is mathematically guaranteed
to be nonsingular, the exponential growth of the largest singular value means that
the corresponding singular vector grows parasitically in each of the other columns.
There are a variety of ways to compute Lyapunov exponents; we will explore just
one. Suppose the system we wish to solve is

.
z = f(z). Initial conditions may vary.

We will need to compute the n2 elements of the fundamental solution matrix ξξξ that

satisfies ξξξ (t0) = I and
.
ξξξ = JJJ f (z)ξξξ . However, because of the eventual numerical

dependence difficulty, we must renormalize occasionally. Instead of computing the
SVD of ξξξ (t) and tracking the exponential growth (or decay) of σk(t), what we do
is take a typical normalization time (say T = 1) and solve the problem

.
z = f(z),

z(tk) = zk, and
.
ξξξ = J f (z)ξξξ subject to ξξξ (tk) = Qk. That is, we integrate over the

interval tk ≤ t ≤ tk+1 = tk + T = tk + 1. At the end of the step, we perform a QR
factoring on ξξξ (tk+1) = Qk+1Rk+1. The absolute values of the diagonal elements of
Rk+1 contribute to estimates of the growth of the σ j(t), and the orthogonal matrix
Qk+1 is used as the initial condition for the next step. Figure out how the elements
of R are related to the Lyapunov exponents, and implement this method. Try the
method out on the Rössler system (12.42).

12.32. We have stated in this book that the built-in interpolant for ode45 isn’t quite
satisfactory for computing a residual, because it isn’t quite of high enough order of
accuracy: It should be O(h5) not O(h4) accurate, and usually therefore it overesti-
mates the residual. This problem asks you to explore an alternative (more expensive)
interpolant. You may do this in one of two ways. First, as discussed in Hairer et al.
(1993), one might interpolate over two intervals and use the data (tk,xk, f (tk,xk)) at
each of the three points; this gives a piecewise quintic interpolant that should have
the correct order. This has the disadvantage of extra bookkeeping, but it can be ex-
pected to be more accurate. A second alternative is to use just one interval at a time
as usual, but provide the second derivative

..
x at each end, again giving a piecewise

quintic interpolant. This has the advantage of less bookkeeping, and you may easily
modify your pqhip program to compute the interpolant and its derivatives, but of
course has the disadvantage of requiring you to provide the second derivative. We
point out that the second derivative can be computed by

..
x= J f (x)

.
x and the Jacobian

is sometimes available anyway (and always helpful when it is).
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Use either method, and take the ode45 solution of
.
x = x2 − t, x(0) = −1/2 on

0 ≤ t ≤ 5 for various tolerances and show that your higher-order interpolant does
indeed produce a smaller residual. Show also that this technique does not improve
the residual if ode113, ode23, or ode15s is used instead of ode45.



Chapter 13
Numerical Methods for ODEs

Abstract This chapter gives a very brief survey of Runge–Kutta methods, including
continuous explicit Runge–Kutta methods. We also discuss multistep methods and
the Taylor series method (i.e., analytic continuation). We talk about implicit methods
for stiff problems and backward error by the method of modified equations. We men-
tion some of the several flavors of stability of a numerical method for solving IVP
that are sometimes useful. We talk about interpolants and the residual and compare
the residual with local error per unit step. We sketch methods for adaptive step-size
control. �

In the previous chapter, we investigated what a numerical solution to an initial-
value problem is, as well as how to use high-quality codes to obtain one. We showed
how to compute a residual and interpret it as a backward error, and extended the
concept of condition number to the context of IVPs. As is true for all mathemati-
cal models, we saw that conditioning is an intrinsic property of a problem and its
formulation rather than a property of a particular numerical method to solve it.

Now, it’s time to investigate what’s under the hood, in other words, what the
codes are actually doing to construct the skeleton of the solution, and why they work
or fail for certain types of problems. We will begin our investigation with a venerable
method, namely, Euler’s method. Through the presentation of this method, we will
introduce some key concepts such as the distinction between implicit and explicit
methods, local, global, and residual error, and discuss just how to do adaptive step-
size selection, and why. We also discuss, as you might expect by now, the important
issue of interpolation, which is needed to flesh out the skeleton!

Euler’s method turns out to be a particular case of more general methods, and all
of these concepts can be demonstrated first for Euler’s method. Then, generalizing
in one way, we will obtain the Taylor series methods (also called Obreschkoff meth-
ods), which are in some sense fundamental. Another generalization, which we take
in order to avoid the effort of taking derivatives, gives us the Runge–Kutta methods.
Yet another generalization gives us multistep methods, which are also important

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods:
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0 13,
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in practice. A third class of useful methods, extrapolation methods, are not cov-
ered here, except in Exercise 13.31. As already mentioned, these methods will each
come in two flavors: explicit and implicit (the latter being used for the solution of
stiff problems).

13.1 Euler’s Method and Basic Concepts

Euler’s method is in some sense the most fundamental method for numerically solv-
ing initial-value problems. Although simple to program, it is of limited use because
it is not very accurate for a given amount of computation time; equivalently, it is
not very efficient for a given accuracy.1 Nonetheless, since it is theoretically and
pedagogically important, it is worth looking at in some detail. We will use it to in-
troduce a number of fundamental concepts that will reappear in our study of more
sophisticated methods. We will also see that such methods correspond to different
ways of generalizing Euler’s method.

The basic idea of Euler’s method is one shared by many important methods of
calculus. Consider the initial-value problem

.
x(t) = f (t,x(t)), with f having Lips-

chitz constant L on the region of interest; also, suppose x(t0) = x0, and let x(t) be
the unique reference solution. Since we are given the values t0, x0, and

.
x(t0) [since

we can compute f (t0,x(t0)], we can make the construction shown in Fig. 13.1. Now,

x(t)

tangent of x(t) at tk

(tk,xk)

xk+1

x(tk+1)

the slope of x(t) at tk is f(tk ,xk)

Fig. 13.1 A step with Euler’s method, where xk = x(tk) is assumed to be known exactly

consider a forward time step h with the tangent line approximation so that t1 = t0+h
and x1 = x0 + h f (t0,x0). In general, we won’t have the exact equality x(t1) = x1.
Nonetheless, if h is small, we will have the approximation x(t1)≈ x1. Euler’s method
precisely consists in replacing the computation of x(t1) by the computation of x1.
Since it is enough to have the point (t0,x0) and the value of f (t0,x0) to find the
equation of the tangent of x(t) at (t0,x0), we have

1 It should be noted, however, that if robustness is paramount and the code is not allowed to return
the error message “did not converge,” then until recently Euler’s method was the most efficient
method known for some classes of problems. This is no longer the case (see Christlieb et al. 2010).
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x1 = x0 + h f (t0,x0) .

In other words, we treat the problem based on the fact that the value of x changes
approximately linearly as h → 0, with f as its slope.

Then, if x1 is close to x(t1), we can pretend that this point is on the curve x(t),
and repeat the same operation, with f (t1,x1) as the slope. We will thus get a point
(t2,x2), which will hopefully satisfy x(t2)≈ x2 to a sufficient degree. Using the map

xn+1 = xn + h f (tn,xn) ,

we can then generate a sequence of values x0,x1,x2, . . . ,xN at the mesh points
t0, t1, t2, . . . , tN that approximates x(t0),x(t1),x(t2), . . . ,x(tN). This is, of course, the
skeleton of the numerical solution. This iterative process gives rise to Algorithm
13.1. Analytically, as we approach the limit h → 0, it is expected that the

Algorithm 13.1 Fixed-step-size explicit Euler method
Require: The right-hand side f (t,x(t)) of an IVP in standard form, an initial value x0, a time span

[t0, t f ], and a step size h
n = 0
while tn < t f do

xn+1 = xn +h f (tn,xn)
tn+1 = tn +h
n := n+1

end while
Obtain a continuous function z(t) by somehow interpolating on t,x, typically piecewise.
return z(t)

approximation will become arbitrarily good. An example is presented in Fig. 13.2.
Numerically, however, it is important to be careful, since for very small values of h,
rounding error may prevent us from obtaining the desired convergence.

Euler’s method is not limited to scalar problems. For an IVP posed in standard
form, we have the vector map

xn+1 = xn + hf(tn,xn) x0 = x(t0) . (13.1)

The method then produces a sequence of vectors x0,x1,x2, . . . ,xk, . . . ,xN whose ith
components xi

k approximate the value of the ith component of the solution at time
k, that is, xi

k ≈ xi(tk). We can interpolate those points to obtain a continuous approx-
imation z(t) to x(t). Algorithm 13.1 can be rewritten in vector form in an obvious
way.

Observe the notation xi
k. In this chapter, we use superscript i to denote the ith

component of a vector—typically x or f—and subscript k to denote the time step tk.
In context, there should not be confusion with exponents. We introduce this notation
as a matter of necessity since, later in this chapter, we will have to introduce tensor
notation that naturally builds on the one we introduce here.
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Fig. 13.2 Effect of reducing the step size in Euler’s method

Because z(t) is iteratively generated by a discrete-time variable in order to
approximate x(t), Euler’s method (and all the later explicit methods) is often called
a marching method. In general, such methods will produce the value of xk+1 by
means of the values of xk,xk−1, . . . ,x1,x0. (Once the skeleton of the solution has
been constructed by marching, we may interpolate to produce a continuous or even
continuously differentiable solution. Indeed, for IVP, the interpolation can proceed
simultaneously with the marching.) Thus, we can introduce the notation

xk+1 =Φ(tk;xk+1,xk,xk−1, . . . ,x0;h; f) , (13.2)

to represent an arbitrary method. If Φ does not depend on xk+1, the method is said
to be explicit. Euler’s method is an explicit method. However, if Φ depends on
xk+1, then we will have to solve for xk+1 in some way (perhaps using a variation of
Newton’s method); in this case, the method is said to be implicit.

13.2 Error Estimation and Control

From now on, we assume that the methods can have varying step sizes. So, we
will add a subscript k to h to indicate hk = tk+1 − tk. This is important since most
high-quality general-purpose methods adapt the step size, often resulting in lower-
cost solutions than otherwise. In fact, the programs implementing such methods will
automatically increase or decrease the step sizes on the basis of some assessment of
the error, not merely for efficiency but more importantly to provide some assessment
of the quality of the resulting solution.
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As we have seen for quadrature in Sect. 10.3 (and we will see more of in
Sect. 14.4), the basic technique in error control is to try to equidistribute the es-
timated error: In an ideal world, we would have erri = ε on every step. Asymptoti-
cally, we model the error on the ith step as erri = φih

p
i . If we use an estimate of the

error on the ith interval (that is, we somehow estimate erri), we may use it to com-
pute an estimate of φi. If we assume that φi+1 won’t be much different than φi (we
will say in this case that the error constants are “weakly dependent on the mesh” in
Sect. 14.4), then in order to have φi+1hp

i+1 = ε , we should then choose

hi+1 =

(
ε

erri

)1/p

hi , (13.3)

because then φi+1hp
i+1 ≈ φih

p
i (
ε/erri) = ε . This idea doesn’t quite work, and one has

to include some safety factors to be conservative; after all, the φi will change a little
from step to step; and then there is the issue of how accurate an estimate of the error
erri actually is. It has been found by experience that using certain “magic constants”
such as 0.8 or 0.9 will make the code work fairly well and fairly reliably on various
classes of test problems. For example, the relevant line in MATLAB’s ode45 is

absh = max(hmin, absh * max(0.1, 0.8*(rtol/err)ˆpow));

Not only is there a factor 0.8 there, but the new step is not allowed to be smaller
than one tenth the size of the previous one and is never allowed to go below a certain
minimum step size. However, it must be said that these magic constants are based
on experience and not strict theorems, and because the problems we are interested
in are nonlinear, there is room for numerical methods to fail.2 But no matter how
the error estimates are used to predict the next step size, we still need a good error
estimate. Accordingly, let us turn to error estimation.

13.2.1 The Residual

We have seen in Chap. 12 that the residual of a numerical solution is

Δ(t) =
.
z− f(t,z(t)) ,

where z(t) is differentiable (or at least piecewise differentiable). That the numerical
solution be differentiable is very important for the use of the concept of residual in
error control, since its evaluation requires the derivative

.
z of the numerical solution.

What is the residual of a solution produced with Euler’s method? As we have
seen, the Euler method generates a sequence of point x0,x1,x2, . . . ,xN based on the

2 One prominent ODE researcher of our acquaintance reminds us that “there is no place for Au-
thority in mathematics.” It is one thing if people report experimental claims—and indeed the effec-
tiveness of these “magic” constants has been tested by many thousands of problems solved and so
reported—but independent assessment is justified for your problem, which may never have been
solved before. That is why we take a “trust, but verify” approach using the residual in this book.
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rule xk+1 = xk + hkf(tk,xk). The numerical solution is then generated from those
points by interpolation. We then say that the numerical solution z is the interpolant
of those points on the given mesh, that is, of the skeleton of the solution. The residual
may be different depending on the choice of interpolant.

Given the rudimentary character of the Euler method, it makes sense to choose
the equally rudimentary piecewise linear interpolant, which is the one used in
Fig. 13.2. Between the point tk and tk+1, the interpolant will then be

zk(t) = xk +(t − tk)
xk+1 − xk

tk+1 − tk
= xk +(t − tk)f(tk,xk) . (13.4)

Moreover, if we let

θk =
t − tk

tk+1 − tk
=

t − tk
hk

,

we can write the pieces of the interpolant as

zk(θk) = xk +θk(xk+1 − xk) = xk + hkθkf(tk,xk) . (13.5)

Then, the argument θk ranges over the interval [0,1). As a result, for the mesh points
t0, t1, . . . , tN and the generated points x0,x1, . . . ,xN , the interpolant is then defined
piecewise as

z(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

z0(t) t0 ≤ t < t1
z1(t) t1 ≤ t < t2
...
zk(t) tk ≤ t < tk+1
...
zN−1(t) tN−1 ≤ t ≤ tn

,

or it can equivalently be written as a function of θ .

Remark 13.1. With this interpolant, the solution is only piecewise differentiable (al-
though it is continuous). Therefore, the residual that we will compute will contain
jump discontinuities; we have termed such a residual a “deviation” and reserved the
word “defect” for what results from using a continuously differentiable interpolant.
If we used cubic Hermite interpolation here, matching not just the values xk but
also the slopes f(xk), then we would have a continuous residual. However, the extra
complication is not worth it for the purpose of the present discussion. �

Theorem 13.1. The Euler method has an O(h) residual.

We will give a detailed proof that includes some typical series manipulations and
introduces notation that we will use later in the chapter.

Proof. Without loss of generality, we choose an interval tk ≤ t < tk+1. We can sub-
stitute the explicit expression of (13.4) for z in the definition of residual:



13.2 Error Estimation and Control 591

Δ(t) =
d
dt

(xk +(t − tk)f(tk,xk))− f
(
t,xk +(t − tk)f(tk,xk)

)
= f(tk,xk)− f

(
t,xk +(t − tk)f(tk,xk)

)
. (13.6)

Now, we will expand f(t,xk + (t − tk)f(tk,xk)) in a Taylor series about the point
(tk,xk):

f
(
t,xk +(t − tk)f(tk,xk)

)
=

f(tk,xk)+ (t − tk)ft(tk,xk)+ (t − tk)Jf(tx,xk)f(tk,xk)+O((t − tk)
2).

Here, ft(tk,xk) is the vector of partial derivatives of f with respect to t and fx(tk,xk) is
the Jacobian matrix with partial derivatives with respect x, both evaluated at (tk,xk).
From now on, we will not explicitly write the point of evaluation of f and its deriva-
tives when it is (tk,xk), and simply write f, ft , and Jf, for otherwise the expressions
would quickly become unreadable. Adding the fact that θkhk = t − tk, we obtain the
much neater expression

f
(
t,xk +θkhkf

)
= f+θkhk(ft + Jff)+O(h2

k) .

Putting this in Eq. (13.6), we find that

Δ(t) = f− (f+θkhk(ft + Jff)+O(h2
k)
)

=−θkhk(ft + Jff)+O(h2
k),

which is O(h) since k was arbitrarily chosen.3 �

Example 13.1. Take
.
x = cos(πtx) and x(0) = 2. We take two Euler steps with h =

0.03. The skeleton of the solution is [2.0000,2.0300,2.0595] at t = 0, t = h, and
t = 2h. Moreover, the slopes

.
x are [1.0000,0.9818,0.9256] at those times.

We interpolate by straight lines, and also by cubic Hermite interpolants, to see if
the residual is any smaller with the smoother interpolant. As it turns out, it is, but
not significantly: Both are O(h). See Fig. 13.3.

�

Note that, in this proof, we have also given an explicit expression for the first
term of the residual of the numerical solution on an arbitrary subinterval. It can be
expanded in vectors and matrices as follows:

Δ(t) .
=−θkh

⎛⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎣
∂ f1/∂ t

∂ f2/∂ t

...
∂ fn/∂ t

⎤⎥⎥⎥⎦
t=tk
x=xk

+

⎡⎢⎢⎢⎢⎢⎣
∂ f1/∂x1

∂ f1/∂x2 · · · ∂ f1/∂xn

∂ f2/∂x1
∂ f2/∂x2 · · · ∂ f2/∂xn

...
...

. . .
...

∂ fn/∂x1
∂ fn/∂x2 · · · ∂ fn/∂xn

⎤⎥⎥⎥⎥⎥⎦
t=tk
x=xk

⎡⎢⎢⎢⎣
f1

f2
...
fn

⎤⎥⎥⎥⎦
t=tk
x=xk

⎞⎟⎟⎟⎟⎟⎟⎠ .

3 In Chap. 14, we will see a justification for using h, the arithmetic mean of the step sizes, instead
of a maximum hk , but for now we may assume that the maximum hk is h and that this goes to zero.
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Fig. 13.3 Residuals in Euler’s method, with a linear interpolant (dashed line) and cubic Hermite
interpolation (solid line). As we see, cubic Hermite interpolation is smoother, so that the residual
is a defect and not just a deviation and is somewhat smaller although still O(h)

Note also that, instead of giving an explicit expression for the residual in terms
of its Taylor expansion, there are situations in which we are satisfied with only a
bound for it. Suppose that f satisfies a Lipschitz condition with Lipschitz constant
L. Moreover, without loss of generality, suppose f is autonomous. The residual of a
numerical solution generated with the Euler method is then

Δ(t) =
.
z(t)− f(z) =

d
dt
(xk +(t − tk)f(xk))− f(xk +(t − tk)f(xk))

= f(xk)− f(xk +(t − tk)f(xk)),

and so

‖Δ(t)‖ ≤ L‖xk − xk − (t − tk)f(xk)‖
≤ Lhk‖f(xk)‖ .

This is a natural inequality given the connection between the Jacobian and the Lip-
schitz constant.

We can now define the important concept of the order of a method.

Definition 13.1 (Order of a method Φ). If a fixed time-step method Φ with step
size h has residual O(hp) as h → 0, then it is said to be a pth-order method. �

In general, the higher the order of a method is, the more accurate it is for smooth
problems. In the literature on the numerical solutions of ODEs, the concept of ac-
curacy is usually formulated using the following definition:

Definition 13.2 (Global error). The global error ge(t) for the numerical solution
from t0 to t is simply
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ge(t) = z(t)− x(t) . (13.7)

As we see, the global error is simply what we have so far called forward error. �

In fact, we find it preferable to use the term “forward error” rather than “global
error,” since it makes explicit the uniformity of the methods of error analysis about
differential equations and about other things, such as matrix equations, roots of poly-
nomials, interpolation, and so on.

Note that since the global error is nothing but the forward error, we can use the
formulæ of Sect. 12.3 for it, such as the Gröbner–Alexeev formula

z(t)− x(t) =
ˆ t

t0

G(t,τ,z(τ))Δ(τ)dτ .

We can also use the approximate inequality

‖z(t)− x(t)‖ ≤ κ(X1)‖Δ(t)‖ ,

where X1 is a fundamental solution of the first variational equation; this approximate
inequality holds in the limit as ‖Δ‖→ 0 whether or not we write Δ(t) or Δ(t,x(t)),
explicitly noting the correlations between the computed solution and the residual.
Sometimes, as we wrote in Chap. 12, changing notation and writing the residual
as some function εv with ‖v‖∞ ≤ 1 makes things clearer. Now, if we know what
method has been used for the computation of the numerical solution, we can actually
find an expression for εv, if we wish to do so.

This shows that the order of the residual and the order of the global error
are the same, so the order of a method can be characterized by one or the other
interchangeably.

13.2.2 Local Error

A standard way to work with the error in the numerical solution of ODEs is based
on the concept of local error. We think this concept should be replaced by the use
of the residual, but that opinion is by no means universal, and local error is used in
many codes. To define the local error, we first need the following:

Definition 13.3 (Local reference solution). If xk(t) satisfies the reference problem.
x = f(t,x) with the local initial condition x(tk) = xk, it is called the local reference
solution. �

Remark 13.2. We will often use xk to represent a constant vector; a piece of the
skeleton of the solution, in fact. We will use xk(t) to represent the local reference
solution as above; note that xk(tk) = xk is then satisfied. However, xk(tk+1) will
not in general be xk+1; that is the point at which we will change to the next local
reference solution, so that xk+1(tk+1) = xk+1. �
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Definition 13.4 (Local truncation error). The local truncation error or, for short,
local error, of a computed solution is the error le incurred by the method Φ over a
single time step [tk, tk+1] of length hk, as compared to the local reference solution.
Accordingly, the local error is

le = z(t)− xk(t) , (13.8)

for tk ≤ t < tk+1. Note that the local error is always zero at t = t+k , but is likely to be
maximum at t = t−k+1 at least asymptotically as hk → 0. If the order of the method is
O(hp), the local error will be O(hp+1). Associated with le is the local error per unit
step, lepus, which is just lepus = le/hk. �

The concept of “local error” has traditionally been used in construction of numer-
ical methods for the solution of differential equations, but has been used nowhere
else. We strongly believe (following many other researchers) that the concept of
residual is more general, more physically intuitive, and more understandable. In
fact, we can imagine no reasonable interpretation of the local error in terms of the
modeling context in which the computation occurs.4 However, since because the
algebra with local error is reasonably simple and because the concept is commonly
used, we will explain it briefly here, and show how it relates to our approach in
terms of residual.

To begin with, let us find the local error of Euler’s method.

Theorem 13.2. The local error in Euler’s method is O(h2) as h → 0.

Proof. If we expand the local reference solution xk(t) about tk, we obtain

xk(t) =
∞

∑
�=0

x(�)(tk)
�!

(t − tk)
� = xk(tk)+

.
xk(tk)+

..
xk(tk)

2
(t − tk)

2 +O
(
(t − tk)

3) .
Because

.
xk = f(t,xk), we also have

x(t) = x(tk)+ f(tk,xk)(t − tk)+

.
f(tk,xk)

2
(t − tk)

2 +O
(
(t − tk)

3)
[note that the derivative of

.
f at (tk,xk) is just

.
f = ft + Jf

.
x = ft + Jff, by the chain

rule], and so we can rewrite our series for xk(t) in this way:

xk(t) = xk(tk)+ (t − tk)f+
(t − tk)2

2
(ft + Jff)+O

(
(t − tk)

3) .
Now, we evaluate xk(t) at t = tk+1 using this series:

xk(tk+1) = xk(tk)+ (tk+1 − tk)f+
(tk+1 − tk)2

2
(ft + Jff)+O

(
(tk+1 − tk)

3)
= xk(tk)+ hf+

h2

2
(ft + Jff)+O

(
h3) .

4 Perhaps you can. We’re admitting defeat here, not claiming that no one can find such an interpre-
tation and believe it reasonable.
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So, the local error at the end of the step (where it asymptotically is maximum) is
le = xk(tk+1)− xk+1, which is

le = xk(tk+1)− xk+1 =
h2

2
(ft + Jff)+O

(
h3)= O

(
h2) . (13.9)

Therefore, the local error is O(h2). �

In our reasoning about local truncation error, we compared the computed solution
to the local reference solution. Somehow we were pretending that the local reference
solution was something like the global reference solution x(t). But this need not
be true. We are only guaranteed that x(t0) = x0; the further points x1, x2, . . ., xn

will not, in general, be exactly on the curve x(t). Thus, for each step k > 0, we
based our calculation on approximate initial points, and we must ask how the error
accumulates as we go through the interval. This cumulative local truncation error
gives another expression for the global error:

ge = x(tk)− xk

= x(tk)− (x0 +Φ(t0;x1,x0;h; f)+ . . .+Φ(tk−1;xk,xk−1, . . . ,x0;h; f)) .

This formula, together with its many simplifications, is to a large extent why, tradi-
tionally, the error analysis of numerical solution to differential equations has focused
on the control of local error. By controlling the local error, we obtain a way to keep
a certain control on the global error, which is what we often really want to control.
This formula, however, involves a lot of bookkeeping and obfuscates the relation
between error control in numerical analysis for ODEs and other fields of numerical
analysis.5

Now, controlling the residual gives a more direct control of accuracy and, in fact,
also characterizes the order of the method.6 However, as an error-control strategy,
controlling the local error provides mostly satisfactory results because it gives an
indirect control on the residual. We make this precise below.

Theorem 13.3. Controlling the local error per unit step indirectly controls the resid-
ual. Specifically, if hk ≤ h, hkLk ≤ B, and lepus ≤ ε , then

‖Δ(t)‖ ≤
(

h+
3
2
+

62
27

B+
4

27
B2
)
ε . (13.11)

5 The concept of local error is also potentially deceitful in another way. Many users erroneously
think that setting rtol=1.0e-6 in MATLAB means that the code will attempt to guarantee that

‖z(t)−x(t)‖ ≈ 10−6‖x(t)‖. (13.10)

Instead, codes only try to make the difference small to the local reference solution xk(t). The
relationship to global error and the residual is often more remote than many users think. This
potential confusion adds to the difficulty of interpretation of the quality of the numerical solution.
6 Traditionally, the order of a method is said to be p when the local error is of order p+1. This is
slightly awkward; the definition in terms of the residual seems to us more natural.
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Proof. Without loss of generality, we assume that the Problem
.
x = f(x) is

autonomous. We also suppose that the underlying numerical solution method has
used the mesh t0 < t1 < .. . < tk < tk+1 < .. . < tN and that, as per the hypothesis,
the mesh has been chosen in such a way as to ensure that the lepus is less than or
equal to a given tolerance ε > 0 on each subinterval.

As before, let xk(t) be the local reference solution on the interval tk ≤ t < tk+1,
so that

.
xk(t) = f(x), x(tk) = xk, tk ≤ t < tk+1 .

As defined above, we also have asymptotically le= xk+1−xk(tk+1) and lepus= le/hk.
Now, consider the following theoretical interpolant satisfying the conditions

z(tk) = xk,
.
z(tk) = f(xk), z(tk+1) = xk+1, and

.
z(tk+1) = f(xk+1):

z(t) = xk(t)+
(t − tk)2

h2
k

le+
(

f(xk+1)− f(xk(tk+1))− 2
hk

le
)
(t − tk)2(t − tk+1)

h2
k

.

We take a moment to verify that the interpolant matches the conditions: z(tk) =
xk(tk) = xk as specified; z(tk+1) = xk(tk+1)+ le = xk+1 as specified;

.
z(tk) =

.
xk(tk) =

f(xk); and finally,

.
z(tk+1) = f(xk(tk+1))+ 2(tk+1 − tk)

le
h2

k

+

(
f(xk+1)− f(xk(tk+1))− 2

le
h2

k

)
(tk+1 − tk)2

h2
k

,

which simplifies to f(xk+1), as it should. This might not be the best possible inter-
polant; what we get from this choice is a guaranteed bound on the residual from the
local error bound, which is not necessarily the best possible bound on the residual
(which may well be smaller).

Note that the derivative of this interpolant is

.
z(t) = f(xk(t))+ 2(t − tk)

le
h2

k

+ 2

(
f(xk+1)− f(xk(tk+1))− 2

le
h2

k

)
(t − tk)(t − tk+1)

h2
k

+

(
f(xk+1)− f(xk(tk+1))− 2

le
h2

k

)
(t − tk)2

h2
k

. (13.12)

So, the residual Δ(t) =
.
z− f(z) is

Δ(t) =
(t − tk)(3t − 2tk+1 − tk)

h2
k

(f(xk+1)− f(xk(tk+1)))

+ f(z(t))− f(xk(t))

+ 6
(t − tk)(tk+1 − t)

h3
k

le . (13.13)
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Therefore, using the fact that (t− tk)/h = θ ≤ 1, we find that

Δ(t) = θ (3θ − 2) [f(xk+1)− f(xk(tk+1))] (13.14)

+ f(z(t))− f(xk(t)) (13.15)

+ 6θ (1−θ ) le
hk

. (13.16)

We may bound each of the terms (13.14)–(13.16) in turn, using the definition of
local error and the Lipschitz constant for ‖f(a)− f(b)‖ ≤ L‖a−b‖. Note also that
|θ (3θ − 2)| ≤ 1 on 0 ≤ θ ≤ 1 and that 0 ≤ θ (1− θ ) ≤ 1/4 on the same interval,
and so

‖Δ(t)‖ ≤ L‖xk+1 − xk(tk+1)‖
+L‖z(t)− xk(t)‖

+
3
2
‖le‖
hk

. (13.17)

By the definition of z(t), we also have

z(t)− xk(t) =
(t − tk)2

h2
k

le+
(

f(xk+1)− f(xk(tk+1))− 2
hk

le
)
(t − tk)2(t − tk+1)

h2
k

.

from which, using the Lipschitz condition and ‖le‖/hk ≤ ε and θ 2(1− θ ) ≤ 4/27, it
follows that

‖z(t)− xk(t)‖ ≤ ‖le‖+ 4hk

27

(
L‖xk+1 − xk(tk+1)‖+ 2

le
hk

)
≤ ‖le‖+ 4

27
(B+ 2)‖le‖ . (13.18)

As a result, we finally obtain

‖Δ(t)‖ ≤ Lle+L

(
le+

4
27

hk

(
Lle+ 2

le
hk

))
+ le+

3
2

le
h

≤
(

h+
3
2
+

62
27

B+
4

27
B2
)
ε,

as desired. This completes the proof. �

This bound is apt to be pessimistic in most cases; admittedly the bound hnLn ≤ B
might be inconvenient in practice as well. Nonetheless, it gives a clear rationale for
expecting that controlling the local error per unit step will also control (possibly
up to a problem-and-method-dependent constant B) the residual. In addition, note
that this analysis is independent of the method used to generate the mesh or the
solutions xk at the mesh points or the method used to guarantee that ‖lepus‖ ≤ ε .
This analysis works for one-step methods and for multistep methods (indeed for
Taylor series methods and general multistep methods too).
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Remark 13.3. If the local error is so deceitfully remote from what users want, why
is it popular? The answer seems to be that the notion is convenient analytically. To
see this, suppose, for instance, that we have an interpolant x(θ ) on tk ≤ t ≤ tk+1,
where 0 ≤ θ ≤ 1 and t = tk + hkθ . Suppose also that the interpolant has local error
function hp+1Ek(θ ); that is, x(θ ) = xk(θ )+hp+1Ek(θ ). Strictly speaking, the local
error is just the final value hp+1Ek(1). Now Exercise 13.19 asks you to show that
the residual is

Δ(t) =
1
hk

x′(θ )− f(x(θ )) = hp
k E′

k(θ )+O(hp+1
k ) , (13.19)

to leading order (the next term is also fairly simple to derive). Thus, if we have a
formula for the asymptotics of the local error, then we can quite easily find a similar
formula for the residual. It turns out that formulæ for the leading terms of the local
error, while tedious, are usually not that hard to work out, whereas working directly
with asymptotic formulæ for other quantities is less straightforward. �

Remark 13.4. As we have discussed, there is a connection between the global error
(forward error) and the residual via the Gröbner–Alexeev nonlinear variation-of-
constants formula. This relationship is easily adapted to find a similar relationship
between the local error and the residual:

ε(t) =
ˆ t

tk

G(t,τ;xk)Δ(τ)dτ . (13.20)

For the simplest possible problem,
.
x(t) = 1, we have in fact that the local error is

just

ε(t) =
ˆ t

tk

Δ(τ)dτ, (13.21)

and for this problem since ‖ε(tk+1)‖ ≤ hk‖Δ‖, we have immediately that

‖Δ‖ ≥ le
hk

. (13.22)

This shows that while the bound from the theorem can be tightened in many cases,
the residual cannot, in general, be smaller than the local error per unit step. Thus,
controlling the residual is in some sense equivalent to controlling the local error per
unit step. �

13.2.3 Convergence and Consistency of Methods

We begin our discussion of convergence with a simple-looking initial-value prob-
lem, namely, the Dahlquist test problem:

.
x = f (t,x) = λx, x(0) = x0 . (13.23)
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We integrate on a definite time interval, say 0 ≤ t ≤ 1. The analytic solution is
x(t) = x0eλ t . This apparently simple problem tells us a lot, as we will see. Certainly,
any good method must necessarily do well on this problem. Of course, because this
is a linear problem, it’s not sufficient for a method to do well on this problem to be
a “good” method, but it is necessary.

If we use Euler’s method (with fixed step size) to tackle this problem, we can
then give a general expression for the xk:

xk+1 = xk + h f (tk,xk) = xk + hλxk = (1+ hλ )xk = (1+ hλ )kx0 . (13.24)

We take n steps, giving values xk for 0 ≤ k ≤ n. There are several parameters in that
formula, and at least two “natural” limits to take: h → 0, which means that n → ∞
simultaneously because we must partition the interval [0,1] into 0 = t0 < t1 < · · ·<
tn = 1. We might also wish to worry about λ → ∞ as well, which we postpone
until the next section. We begin with the “most” natural, h → 0. This corresponds
to doing the computation over again, but with a smaller step size. As we said, if we
wish to provide a solution on a finite interval (say 0 ≤ t ≤ 1), then this also requires
the second natural limit, n → ∞, simultaneously. It does not materially affect the
discussion to suppose that h = 1/n, in fact.

We can now talk about the convergence of this process for fixed λ . We have

lim
n→∞xk = lim

n→∞(1+
λ
n
)kx0 = x0 (13.25)

for any fixed k; this is clearly unsatisfactory. However, we are not limited to fixed k:
We may look at k = [tn], where t is some fixed fraction and [a] means the greatest
integer less than or equal to a, and this limit has xk → exp(λ t)x0 as desired.

Under what circumstances does the Euler method converge to the reference so-
lution as h → 0 and n →∞? The standard formal theory uses the following concept:

Definition 13.5 (Consistency of a method). A method is said to be consistent if

lim
h→0

Δ(t) = 0 ,

that is, if the residual of the method tends to 0 as h → 0. �

Obviously, any method whose residual is the product of some positive power of h
by some factor independent of h will be consistent (this is also true for other gauge
functions in asymptotic series, of course). As we have seen in Theorem 13.1, this is
the case for Euler’s method, where ‖Δ(t)‖ ≤ Lhk on each interval.

The concept of consistency is not to be confused with the following concept:

Definition 13.6 (Convergence of a method). A method is said to be convergent if

lim
h→0

‖x(t)− z(t)‖= 0 ,

that is, if the forward error of the method tends to 0 as h → 0. �
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Note that, as we have explained in Chap. 12, the forward error is bounded by the
product of the condition number and the norm of the residual; that is,

‖x(t)− z(t)‖ ≤ κ‖Δ(t)‖ .

Therefore, if the method is consistent, then it will also be convergent, provided that
the problem has a finite condition number.

Remark 13.5. Having a finite condition number is a weaker requirement than be-
ing “well-conditioned.” This theorem says that Euler’s method converges (theoret-
ically) even for ill-conditioned problems, and so it does. In the literature, there is
the related notion of a problem being “well-posed,” meaning that the solution ex-
ists, is unique, and depends continuously on the initial data (and parameters). A
well-conditioned problem is certainly well-posed, but some well-posed problems
are not well-conditioned. To be well-conditioned, we need not only well-posedness,
but also a condition number that is not only finite but also “small” or of “moderate
size,” relative to the errors in the problem context. �

13.3 Stiffness and Implicitness

As discussed in Sect. 12.7, stiff problems are, typically, well-conditioned problems
for which explicit numerical methods surprisingly have to take small step sizes in
order to maintain something referred to as “stability,” even if the easy accuracy of a
well-conditioned problem seems as though it should allow large step sizes. Consider
again the example of Eq. (13.23) in the last section, but now think about λ → ∞:
When λ has negative real part, the reference solution exp(λ t)x0 will be monotoni-
cally decreasing for t > 0, more quickly decreasing if Re(λ ) is more negative; and
thus we would want our numerical solution (1+ hλ )kx0 also to be monotonically
decreasing as k increases, in this case. This requires |1+hλ | to be smaller than 1, at
the very least. This, in turn, requires z = hλ to be in the interior of the disk of radius
1 centered at z = −1 (see Fig. 13.4), and in particular requires that |h| < 2Re(λ )/|λ |2
(see Problem 13.20). The larger |λ | is [if Re(λ ) is negative], the smaller the step
size has to be, just to get a monotonic decrease (a qualitative feature of the correct
solution; we are not even worried about quantitative accuracy). Because this restricts
how large h can be, the method becomes extremely inefficient.

In Sect. 12.7, we also suggested that the cure to this problem is the use of implicit
methods, which use the derivative at the as-yet unknown point xk+1, which then has
to be solved for. So, let us consider a first-order implicit method, namely, Euler’s
implicit method:

xk+1 = xk + hf(tk+1,xk+1). (13.26)

Note the appearance of xk+1 on both sides of the equation. Because of that, if f is
nonlinear, then to find the unknown xk+1, we will have to solve nonlinear equations.
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Fig. 13.4 The region in the z = hλ plane (shaded) where forward Euler with fixed time step
h > 0 applied to the scalar test problem y′ = λy with y(0) = y0 gives a computed solution that
has a monotonic decrease as k → ∞. The reference solution exp(λ t)y0 has a monotonic decrease
for t > 0 if Reλ < 0, which corresponds to the entire left half-z-plane, whereas the forward Euler
method solution has monotonic decrease only for step sizes such that z = hλ lies inside the shaded
disk, or h < 2|Re(λ )|/|λ |2

To start with an easier problem, if we again consider the scalar linear example
from Eq. (13.23), we obtain

xk+1 = xk + h f (tk+1,xk+1) = xk + hλxk+1 .

Because this scalar equation is actually linear, we may solve for the unknown xk+1:

xk+1 =
1

1− hλ
xk =

(
1

1− hλ

)k

x0 .

The region of monotonic decrease for this method requires |1− hλ | > 1. This is
then the entire complex z = hλ plane minus a disk of radius 1 centered at 1 (see
Fig. 13.5).

Outside that disk, however large Reλ < 0 is, and however large h > 0 is, we
have monotonic decrease in the numerical solution. Indeed, we have a monotonic
decrease even for a lot of Reλ > 0, which is also a difficulty; we don’t usually
want unwarranted decay any more than we want unwarranted growth. Still, for
well-conditioned problems, implicit Euler (also called backward Euler) produces
the correct qualitative behavior.
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Fig. 13.5 The region in the z = hλ plane (shaded) where backward Euler with fixed time step
h > 0 applied to the scalar test problem y′ = λy with y(0) = y0 gives a computed solution that has
a monotonic decrease as k → ∞. The reference solution exp(λ t)y0 has a monotonic decrease for
t > 0 if Reλ < 0

However, we should note that the much larger region of stability does not jus-
tify using implicit methods by default on generic problems. For nonlinear problems
with vector functions f, the cost of solving the system for the implicit value will
be very high (in fact, solving the nonlinear systems for large h may be impossible
in practice). Only seriously stiff problems justify the use of implicit methods from
the point of view of efficiency. Hence, we need both explicit methods (for nonstiff
problems) and implicit methods (for stiff problems).

Note that this example gives us grounds to draw somewhat general conclusions
since, in practice, the numerical solution of a problem involves linearizing the equa-
tion, fixing the variable coefficients to some value of interest, and finally diagonal-
izing the system to obtain decoupled differential equations. But then, each of the
decoupled equations will have the form of the equation in this example. Hence we
may expect that this idea of preserving decrease will apply to more problems than
just this simple scalar test problem.

The story above, explaining the success of fixed time-step implicit methods in
terms of regions of stability is, however, not the whole story. Let us once again
assume that we have linearized our problem, that we have fixed the coefficients,
and that we have decoupled the equations. In this common context, fundamental
solutions of differential equations have the form eλ t , and the general solutions of
the homogeneous part are linear combinations of such terms (as we have seen in
Sect. 12.3.2). Now, we have seen that the explicit Euler method, in fact, corresponds
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to the two leading terms of a Taylor expansion. Moreover, as we will see later in the
chapter, higher-order methods are also constructed so that they match the leading
terms of the Taylor series. Accordingly, we will examine the accuracy of Taylor
polynomials to approximate the exponential function.

To begin with, we observe the asymmetric relative accuracy δexp of a particular
truncated Taylor series for ex:

p(x) = 1+ x+
x2

2
+

x3

6
+

x4

24
+

x5

120

δexp(x) =
p(x)− ex

ex = p(x)e−x − 1 . (13.27)

Note that δexp(−2.0)
.
= 0.508 is more than 30 times as large as δexp(2.0)

.
= 0.016.

Accuracy is quite a bit better to the right, with a relative error of less than 2%, but
more than 50% on the left. By the time we reach x = 5, the ratio is about 10,000.
See Fig. 13.6.

Fig. 13.6 Approximation of ex by a Taylor polynomial has a larger relative error for negative x
than it does for positive x. What is plotted here are the ratios of the relative errors on the right to the
relative errors on the left, for degrees 2, 3, 5, . . ., 34, and 55 Taylor approximations. The smaller
the ratio, the better the approximation is on the right and the more asymmetrical the quality of
polynomial approximation. The lower curves correspond to higher-degree approximations. As the
degree increases, the relative benefit nearly stabilizes on this range, but independent of degree, the
approximation is relatively far better for x > 0 than for x < 0. Notice that by x = 5, the high-order
polynomial approximations are four orders of magnitude better at representing growth than they
are at representing decay

This is simply a fact; a fact in the relationship between Taylor polynomials, which
we use for numerical computation, and the exponential function, which we often use
in applications. The reader is strongly urged to spend some time appreciating this
asymmetry, which is simple but has far-reaching effects.
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Figure 13.6 was generated by the MAPLE commands below:

ratiorelerr := n -> abs((convert(series(exp(x), x, n), polynom)*
exp(-x)-1)/(convert(series(exp(-x), x, n), polynom)*exp(x)-1)
) ;

Digits := 200;
plots[logplot]([seq(ratiorelerr(k), k = [2, 3, 5, 8, 13, 21, 34,

55])], x = 0 .. 5, colour = BLACK)

The more terms we keep in the series, the bigger the asymmetric factor is. Lower-
order approximations are not quite as asymmetric; if we only keep p(x) = 1+ x+
x2/2+ x3/3!, we have a factor of 24 difference. However, the asymmetry persists at
all orders, as can be seen by series expansion of δexp(x), showing that the series has
alternating signs and thus must be larger on the left, with negative x, when all the
terms have the same sign.

What does this asymmetry mean? It means that Taylor polynomials are good
at growing, but that they are not so good at flattening out. Now, ex grows to the
right (faster than polynomials can, it’s true), and flattens out very quickly to the left.
Fitting a polynomial at one point only, as we are doing with Taylor series, encounters
this asymmetry. This phenomenon can be observed no matter about what point we
expand ex, as one can easily check. The polynomial approximations are going to
have a better relative error on the growing side.

Naturally, if we examine e−x and its corresponding Taylor polynomials, the “left”
and “right” above will be interchanged. What does that mean for the example we
have been examining? Suppose we integrate forward for positive time. On the one
hand, if the problem is ill-conditioned, then λ t is going to be positive. In this case,
the Taylor polynomial will have a better relative residual on the right-hand side, as
shown in Fig. 13.6. Thus, explicit methods based on Taylor series will do better
than implicit methods. On the other hand, if the problem is well-conditioned, then
λ t will be negative. Accordingly, the situation will be reversed and the Taylor poly-
nomial will have a better relative residual on the left-hand side. In this case, implicit
methods based on Taylor series, generalizing Eq. (13.26), will do better than explicit
methods.

Taylor series methods use information at zn to predict, by polynomial approxima-
tion, zn+1; and we will see that all other numerical methods are based on the Taylor
series method. Foreshadowing a bit more, we will see that Runge–Kutta methods
choose the coefficients in the tableau so that Taylor expansion of the stepping func-
tion agrees with Taylor expansion of the solution, for example. Multistep methods
are also designed using Taylor series, as we will see. Thus, the fundamental choice
of implicit methods or explicit methods seeks to exploit the asymmetric relative er-
ror behavior of approximation of the exponential function by polynomials. If we
base our Taylor series on tn,zn, we are using polynomials to estimate exponential
decay, which we noted doesn’t work very well. If we base our Taylor expansion on
(tn+1, tn+1), then, in compensation for the difficulty in finding zn+1, we are using
Taylor polynomials to estimate decay backward, that is, growth forward—which
polynomials are better at.
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The bottom line is that implicit methods, when the solution of the generally non-
linear equations defining zn+1 converges, gain a large factor improvement in the
local error; this translates into a smaller “optimal” residual and hence to smaller
forward error.

Other schemes for getting smaller residuals without having to solve nonlinear
equations have been tried, for example, the use of rational functions as approxima-
tions, not just Taylor polynomials. However, such schemes have so far failed, owing
to their own difficulties, such as introduction of spurious movable poles.

In many applications, the program is not allowed to return the error message “did
not converge.” The program is required to give you an answer. If you have a stiff sys-
tem, and cannot use implicit methods because the nonlinear equations are too hard
to solve, then Fig. 13.6 suggests that low-order methods will suffer less and should
be considered. Indeed, if we scale by the number of function evaluations, forward
Euler becomes competitive and can be made adaptive and effectively parallelized.
See Christlieb et al. (2010) for a further improvement on that.

Remark 13.6. The previous discussion considered only fixed time-step methods.
However, stiffness really shows up in adaptive methods when the step-size control
forces the step size to be (in some sense) overly small, making a nonstiff method
inefficient. That is not the only effect of variable step size. It has been observed that
step-size control can stabilize methods, and indeed special step-size controls can be
designed with this in mind. See Stuart and Humphries (1995). �

13.4 Taylor Series Method

We now look at the details of a natural generalization of Euler’s method, namely, the
use of local Taylor series, or what is known theoretically as analytic continuation.
Let us first consider how Taylor series methods are used analytically to find solutions
in terms of series, and then we will examine how they are implemented numerically.
Consider the scalar initial-value problem

.
x(t) = x(t)2 − t, x(1) = 2 . (13.28)

Apart from the initial condition, this is the characteristic example of Hubbard and
West (1991). Now, we suppose the existence of a solution x(t) that can be written as
a Taylor series about t0 = 1:

x(t) = x(t0)+
.
x(t0)(t − t0)+

..
x(t0)

2!
(t − t0)

2 +

...
x (t0)

3!
(t − t0)

3 + · · ·

=
∞

∑
k=0

x(k)(t0)
k!

(t − t0)
k.

The Taylor series method consists of determining the coefficients x(k)(tn)/k!—we
will denote them by xn,k—in a recursive way. That is, given that we know x(t0)
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[henceforth denoted x0,0] and that we know how to differentiate the differential
equation, we can find all the coefficients xn,k automatically. Coming back to our
example, we obtain

.
x(t0) =

.
x(1) by direct substitution in (13.28):

.
x(1) = x(1)2 − 1 = 22 − 1 = 3 .

We can then differentiate the differential equation as many times as needed and then
evaluate at t0 = 1, for example,

..
x(t) = 2x(t)

.
x(t)− 1

..
x(1) = 2 ·2 ·3− 1= 11

...
x (t) = 2(x(t)

..
x(t)+

.
x(t)2)

...
x (1) = 2(2 ·11+ 32) = 62 .

Accordingly, the solution can be written as

x(t) = 2+ 3(t− 1)+
11
2
(t − 1)2 +

62
6
(t − 1)3 + · · · . (13.29)

Now, associated with the Taylor series about tn is a radius of convergence. Within
the radius of convergence, we can use a Taylor polynomial containing the first N
terms of the series to approximate x(t) with a residual that is at most O((t − tn)N),
but outside the radius of convergence, we cannot make the error arbitrarily small.
Accordingly, any time step we make must be no larger than the radius of conver-
gence to give valid approximating results. We therefore let tn+1 be inside the circle
of convergence, in order that we may find x(tn+1) to the accuracy desired.

Moreover, we can then use this computed x(tn+1) as a new initial value and ex-
pand x(t) in a Taylor series about this point using the same procedure as last time.
If this new expansion has a convergence disk overlapping with the original one
[which it must if tn+1 was actually inside the previous circle of convergence], then
the new disk can even allow us to advance outside the original convergence disk.
See Fig. 13.7.

More generally, for an initial-value problem

.
x = f (t,x(t)) , x(t0) = x0 , t0 ≤ t ≤ tN , (13.30)

let us denote by

xn(t) =
∞

∑
k=0

xn,k(t − tn)
k (13.31)

the Taylor expansion of x(t) about tn [then, notice that x0,0 = x0(t0) = x0]. For any
tn+1 in the disk of convergence of this series, we may then find (in theory)

xn(tn+1) =
∞

∑
k=0

xn,k(tn+1 − tn)
k. (13.32)

The analytic continuation idea is just to repeat this procedure: Let xn(tn+1) = xn+1,0

be the new initial value and find a new Taylor series of the problem
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Fig. 13.7 Analytic continuation, namely, successive application of the Taylor series method. Each
new circle’s center must lie within the old circle, and disks must successively overlap; but provided
there are not too many poles in the way, eventually one may break free and continue the knowledge
of the function past the original radius of convergence. The successive centers of the circles, marked
with diamond shapes, are at [0, 1/2+ 3i/8, 3/2,3]. Poles were placed at −0.8, 1+ 3i/2, and 3+ i; the
radius of convergence is the distance to the nearest pole

.
x = f (t,x(t)), x(tn+1) = xn+1,0 (13.33)

and repeat. By piecing together these series, we find a complete solution along the
path from t0 to tN .

In numerical practice, the Taylor series method uses not series but polynomials:

zn(t) =
N

∑
k=0

xn,k(t − tn)
k . (13.34)

The resulting (absolute) residual about t = tn is then

Δn(t) =
.
zn − f (zn) (13.35)

=
N

∑
k=1

kxn,k(t − tn)
k−1 − f

(
N

∑
k=0

xn,k(t − tn)
k

)
(13.36)

= rN(t − tn)
N + rN+1(t − tn)

N+1 + · · · . (13.37)

To obtain an automatic numerical procedure, we need a way to find an iterative
numerical substitute to repeatedly differentiating the differential equation. This is
done by using the algebra of power series studied in Chap. 2.

Observe that we could think about this method in a dual way, which is the one
used for computation. The presentation above assumes that the coefficients in the
series representation of the solution are Taylor series coefficients (as in Eq. (13.31)),
from which it results as a matter of fact that the first N coefficients of the residual
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are zero. Instead, we can merely assume that the solution is represented as a formal
power series, and we make no assumption as to whether they are Taylor coefficients.
Then, we can impose the constraint that the first N coefficients of the residual are
zero, and conclude that the coefficients of the formal power series for the solution
are indeed Taylor coefficients. This dual perspective suggests that the method might
be called a “minimal residual formal power series method,” where the “minimal”
term means minimal in a norm that uses power series. But in any case, the notions
are equivalent.

Algorithm 13.2 Sketch of explicit Taylor series algorithm for numerical analytic
continuation to solve IVP
Require: A procedural description for the function f in

.
x = f(x), a desired time span of integration

[t0, tF ], an integration tolerance ε , and a vector of initial conditions.
Use automatic differentiation tools to construct a procedure TaylorPoly that computes N+1
terms c j , 0 ≤ j ≤ N, of the Taylor series of x(t) about t = tk, given c0.
Choose an initial stepsize h0 and set k = 0.
Choose an initial order N.
while tk +hk > tk and tk +hk ≤ tF do do

Construct N +1 terms c j of the Taylor series about t = tk.
Put xk(t) = ∑N

j=0 c j(t − tk) j .

Estimate the residual (deviation), perhaps by evaluating Δ =
.
xk(tk +hk)− f(x(tk +hk)).

if ‖Δ‖ ≤ ε then {Accept the step}
Predict a new step size, perhaps by hk+1 = (ε/‖Δ‖)1/Nhk , possibly with safety factors

else {Reject the step}
Reduce the step size hk = (ε/‖Δ‖)1/Nhk and try again {(notice that the Taylor coefficients
need not be recomputed)}

end if
Adjust the order N. For example, if step sizes have been cycling or chattering, reduce the
order; otherwise, increase it.
Set tk+1 = tk +hk and increment k.

end while{If hk < hmin, then we may have encountered a singularity.}
return The piecewise function x(t) = xk(t) on each of tk ≤ t ≤ tk+1.

Example 13.2. Let us return to an example we discussed in Chap. 12:

.
S =−S3I, S(0) = 1 (13.38)
.
I =−SI2, I(0) = 1 .

We may solve this simple nonlinear autonomous system analytically to find that

S(t) =
1

1+W(t)
and I(t) = e−W (t) , (13.39)

where W is the principal branch of the Lambert W function. Let us pretend that we
don’t know this and use the series method. To begin with, we let
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Sn(t) =
N

∑
k=0

Sn,k(t − tn)
k and In(t) =

N

∑
k=0

In,k(t − tn)
k (13.40)

be truncated power series approximating S(t) and I(t). We define auxiliary quan-
tities to deal with SI,SI2,S2, and S3I, since we will encounter these quantities in

the evaluations of the derivatives
.
S(tn),

..
S(tn),

...
S (tn), . . ., and

.
I(tn),

..
I(tn),

...
I (tn), . . . re-

quired to find the series coefficients. So, let

C = SI
.
=

N

∑
k=0

Cn,k(t − tn)
k

D = SI2 =CI
.
=

N

∑
k=0

Dn,k(t − tn)
k

E = S2 .
=

N

∑
k=0

En,k(t − tn)
k

F = S3I =CE
.
=

N

∑
k=0

Fn,k(t − tn)
k ,

where the coefficients satisfy the conditions for series multiplication:

Cn,k =
k

∑
j=0

In, jSn,k− j

Dn,k =
k

∑
j=0

Cn, jIn,k− j

En,k =
k

∑
k=0

Sn, jSn,k− j

Fn,k =
k

∑
j=0

Cn, jEn,k− j .

Observe that these sums are just inner products, so they pose no numerical difficulty,
as we will see below. The residuals in S and I, denoted ΔS and ΔI , are defined to be

ΔS =
.
S+ S3I =

N

∑
k=0

ΔS,k(t − tn)
k +O(t − tn)

N+1 (13.41)

ΔI =
.
I+ SI2 =

N

∑
k=0

ΔI,k(t − tn)
k +O(t − tn)

N+1 , (13.42)

where the coefficients then satisfy

ΔS,k = (k+ 1)Sn,k+1+Fn,k (13.43)

ΔI,k = (k+ 1)In,k+1 +Dn,k (13.44)
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for all k, 0 ≤ k ≤ N. Note that Sn,N+1 = In,N+1 = 0 because we truncate this series.
As a result, for 0 ≤ k ≤ N − 1, we may set both ΔS,k and ΔI,k to zero as follows:
Because both Dk and Fk are known once all Sn, j and In, j with 0 ≤ j ≤ k are known,
we may simply set

Sn,k+1 =− Fn,k

k+ 1
and In,k+1 =− Dn,k

k+ 1
. (13.45)

Then the first N coefficients of ΔS and ΔI are zeros and, consequently, the Sn,k and
In,k in the truncated power series are the coefficients of the Taylor polynomials. So
we have a recursive method in terms of power series to find the coefficients of the
Taylor series without having to differentiate the differential equation directly. Note
also that, since

ΔS,k = Fn,k k ≥ N (13.46)

ΔI,k = Dn,k k ≥ N , (13.47)

our procedure for computing Taylor series also automatically computes Taylor series
for the residual. Thus, with little extra effort we will have an error estimate at hand.
Of course, we may evaluate both ΔS(t) and ΔI(t) directly, just as easily, and this is
usually best.

For our example, we can easily implement the scheme numerically in MATLAB.
First, the coefficients are computed in a straightforward way with this compact code:

1 function [I,S] = tsw(I0,S0,N,sg)
2 % Taylor series coeffs of solution of S' = -Sˆ3*I, I'= -S*Iˆ2
3 % S(tn)=S0, I(tn)=I0; sg is the direction of integration.
4 % if tn=0, I0=S0=1, then I=exp(-W(t)) and S = 1/(1+W(t)).
5 I = zeros(1,N+1);
6 S = I; C = I; D = I; E = I; F = I;
7 I(1) = I0; S(1) = S0;
8 for k=1:N,
9 C(k) = S(1:k)*I(k:-1:1).';

10 D(k) = C(1:k)*I(k:-1:1).';
11 E(k) = S(1:k)*S(k:-1:1).';
12 F(k) = C(1:k)*E(k:-1:1).';
13 S(k+1) = -sg*F(k)/k;
14 I(k+1) = -sg*D(k)/k;
15 end
16 end

Then the residual is also easily computed:

1 function [I,S,r,dt,It,St]=tswresid4text(In,Sn,N,sg)
2 [I,S]=tsw(In,Sn,N,sg); %Find the coefficients.
3 t=linspace(0,.5,256);
4 It=polyval(I(end:-1:1),t);
5 St=polyval(S(end:-1:1),t);
6 Std=polyval([N:-1:1].*S(end:-1:2),t);
7 Itd=polyval([N:-1:1].*I(end:-1:2),t);
8 r=[Itd+sg*St.*It.ˆ2;Std+sg*St.ˆ3.*It];
9 rsq = sqrt(r(1,:).ˆ2+r(2,:).ˆ2);
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10 semilogy(t,abs(r(1,:)),'k-',t,abs(r(2,:)),'k-.')
11 %Find the numerical value dt at which the residual start to be

bigger than the tolerance, here 1.0e-6, and evaluate the
Taylor polynomial at this point to have new initial values.

12 ii=find(abs(rsq)>1.0e-6);
13 if numel((ii))>0,
14 ig=ii(1)-1;
15 if ig==0,
16 error('failure',rsq(1))
17 end
18 dt = t(ig);
19 It = It(ig);
20 St = St(ig);
21 else
22 dt = 1.0;
23 It = It(end);
24 St = St(end);
25 end
26 end

Let us take two steps explicitly with this method. For no particular reason, take
N = 7 and start with n = 0 and tn = t0 = 0. Here S(0) = s0,0 = 1 and I(0) = I0,0 = 1.
The program above gives

S0(t) = 1− t+ 2t2− 4.5t3+ 10.6667t4− 26.0417t5+ 64.8t6− 163.4014t7

I0(t) = 1− t+ 1.5t2− 2.667t3+ 5.2083t4− 10.8t5+ 23.3431t6− 52.0127t7,

where, as usual, we have printed only the default MATLAB representation of the
coefficients; more decimal places are used internally than shown here.

By inspection of the graphs of (Fig. 13.8)

ΔS(t) =
.
S+ S3I and ΔI(t) =

.
I+ SI2, (13.48)
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Fig. 13.8 Residual of the Taylor polynomials of S (dotted line) and I (hard line)



612 13 Numerical Methods for ODEs

we see that
√
Δ2

S +Δ2
I ≤ 10−6 if 0 ≤ t ≤ 0.0431. We thus take t1 = 0.0431 and

evaluate the Taylor polynomials at this point, so that

S1,0 = S0(0.0431) = 0.9603 (13.49)

I1,0 = I0(0.0431) = 0.9595 (13.50)

are our initial values for the second step (these are the St and It in the program).
We can then generate new truncated Taylor series about t1:

S1(t) = 0.9603− 0.8495(t− t1)+ 1.5188(t− t0)
2 + . . .− 71.184(t− t0)

7

I1(t) = 0.9595− 0.8840(t− t1)+ 1.2085(t− t0)
2 + . . .− 24.6896(t− 0.0545)7.

Again, the program indicates that
√
Δ2

I1
+Δ2

S1
is smaller than 10−6 if 0 ≤ t −

0.0431 ≤ 0.0490.
This process can obviously be repeated. Provided that we can always take tn+1

so that hn = tn+1 − tn is bounded below by some minimum step size, say εMtn, so
that tn+1 > tn in floating-point arithmetic, we may integrate

.
x= f (x) from t0 to some

fixed tN by taking a finite number of steps of this method. At the end, we will have
a mesh t0 < t1 < t2 < .. . < tN−1 < tN and a collection of polynomials zk(t) with
residuals Δk(t) on tk ≤ t ≤ tk+1, where ‖rk‖ is at most our tolerance ε . All together,
we will have a continuous (but not continuously differentiable) piecewise function
z(t) solving

.
x = f (x)+ εv(t) and x(t0) = y0, with ‖v‖∞ ≤ 1.

The caveat, that we must be able to make progress, that is, tn+1 > tn in floating-
point arithmetic, turns out to be interesting. In the exercises, you will be asked to
solve (13.38). You should find that for tight tolerances you will not be able to get
much past t = 1/e

.
= 0.3679. This is because the solution is singular there (more

precisely, it has a derivative singularity). Location (or merely just detection) of sin-
gularities is an interesting topic, and useful in and of itself. We remark that the
Taylor series method offers a way to detect such singularities essentially for free; if
there is one, then keeping ‖Δn‖ ≤ ε ensures hn → 0. �

13.4.1 Implicit Taylor Series Methods

If we expand the solution of
.
x = f(x) about the known value xn at t = tn, we get the

explicit Taylor series method just described. If, on the other hand, we expand the
solution about the as-yet unknown xn+1 at t = tn+1, and use that series to “retrodict”
the known value xn at t = tn, we get an implicit method. We leave the development
of this idea to the exercises, but we do one example to give the idea.
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Example 13.3. Consider solving the Dahlquist test problem y′ = λy, y(0) = y0, by
using an implicit second-order Taylor series method. The series expansion

y(t) = y(tn+1)+ y′(tn+1)(t − tn+1)+
1
2 y′′(tn+1)(t − tn+1)

2/2+ · · ·

requires the computation of y′(tn+1) = λyn+1 and of y′′(tn+1) = λy′(tn+1) = λ 2yn+1

(this is very easy for this example; for nonlinear problems and for systems, auto-
matic differentiation is needed to generate the programs to evaluate all the deriva-
tives). Thus, the approximate equality

y(tn) = y(tn+1)+ y′(tn+1)(tn − tn+1)+
1
2 y′′(tn+1)

(tn − tn+1)
2

2

= yn+1 − hλyn+1+ h2λ 2yn+1

2
(13.51)

gives us an equation to solve for the unknown yn+1. Again, this is easy in this case,
because the equation is linear and scalar. We get, with z = hλ ,

yn+1 =
1

1− z+ z2/2
yn (13.52)

and it is no coincidence that this is one of the Padé approximants to the exponential
function exp(z).

We may examine the stability region of this method—that is, for which z will the
solution yn = (1− z+ z2/2)−ny0 decay monotonically as n → ∞? Quite clearly, this
will happen when |1− z+ z2/2|> 1; this region is easy to draw (see Fig. 13.9). �

13.4.2 Final Remarks on Taylor Series Methods

There are freely available and commercial Taylor series codes. They are used espe-
cially for applications that require high accuracy or high dependability (in particular,
they are used in interval methods, which provide guarantees of forward numerical
accuracy). They are also used in noninterval computation. For instance, MAPLE

offers dsolve/numeric with the taylorseries optional method, written by
Allan Wittkopf, which works very well. A code for DAE, called DAETS, by Ne-
dialkov and Pryce, is available for industrial applications. The package ATOMFT
by Corliss and Chang is freely available. There is the interval (“Taylor model”)
code COSY by Berz and Makino (see http://bt.pa.msu.edu/index_
cosy.htm). There is also a new second edition of the code TIDES available at
http://gme.unizar.es/software/tides. Nonetheless, most industrial
or other high-quality codes use other methods. We speculate that a set of historical,
evolutionary traps locking in the results of earlier decisions have likely played a
role, as follows.

http://gme.unizar.es/software/tides
http://bt.pa.msu.edu/index_cosy.htm
http://bt.pa.msu.edu/index_cosy.htm
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Fig. 13.9 The region in the z = hλ plane (shaded), where the second-order implicit Taylor series
method with fixed time step h > 0 applied to the scalar test problem y′ = λy with y(0) = y0, gives a
computed solution that has a monotonic decrease as k → ∞. The reference solution exp(λ t)y0 has
a monotonic decrease for t > 0 if Reλ < 0

In the early days of computation, there was neither computing time nor memory
available to compute or represent interpolants: Numerical methods for ODE were
expected to produce only a table of values at selected points (and that was hard
enough, given limited hardware). There was also little understanding of the code
generation needed for what is now called automatic differentiation—and symbolic
differentiation, done badly, generates exponential growth in the length of expres-
sions. A more interesting objection is that not all interesting functions have differ-
ential equations associated with them. For example, solving

.
y(t) = Γ (t)+

y(t)
1+Γ (t)

(13.53)

by Taylor series needs special treatment because the derivatives of Γ are themselves
special. However, in practice, this seems not to be an issue. Finally, and perhaps
most important, many problems are not smooth, such as

.
x = |1− x2| , x(0) = 0 , (13.54)

and so derivatives were set aside, as being too much work for too little gain.
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Nonetheless, before moving on, let us recount the advantages of the Taylor series
method:

1. It provides a free piecewise interpolant on the whole interval of integration.
2. It provides an easy estimate of the residual from the leading few terms in

.
x−

f (x) and an asymptotically accurate free estimate via
.
z(t−k+1)− f(xk+1).

3. It is a good tool for singularity detection and location.
4. It is flexible as to order of accuracy N ≥ 1 and adaptive step size hn = tn+1 − tn.
5. Finally, but perhaps most importantly, it has been implemented.

All this is by the way. The fact is that people did turn away from Taylor series
methods, not realizing their advantages, and invented several classes of beautiful al-
ternatives. Using Taylor series methods as the underlying standard, we now discuss
one such class of alternatives, the Runge–Kutta methods.

13.5 Runge–Kutta Methods

Marching methods, including Euler’s method, Taylor series methods, and Runge–
Kutta (RK) methods, share the following structure: Start at xk and move to xk+1

by making a step of length hk along a line whose slope approximates the slope of
the secant connecting xk and the desired x(tk+1). In the case of Euler’s method,
we simply used f(tk,xk) as our approximate value for the slope of the secant. The
idea of Taylor series methods was to improve the prediction by use of higher-order
derivatives. In contrast, the idea of Runge–Kutta methods is not to take a second
or higher derivative but rather to evaluate the derivative function f(t,x) more than
once, at different points, in a manner reminiscent of finite differences; and from
there to use a weighted average of the values thus obtained as an approximation of
the slope of the secant. Then, depending on how many evaluations of f the method
uses and on how well the weights of the average have been chosen, the methods
so constructed will have a higher or lower order of accuracy. Let us consider a few
examples.

13.5.1 Examples of Second-, Third-, and Fourth-Order
RK Methods

If we consider adding a second evaluation of the function f, then the natural thing to
do is to compute it at the point (tk+1,x(tk+1)), or rather at the best approximation to
that point that we have available. This is exactly what the Improved Euler method
does: Let

Y1 = xk + hf(tk,xk) (13.55)
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be the approximation we would get by a simple Euler step, and then take

xk+1 = xk + h

(
1
2

f(tk,xk)+
1
2

f
(
tk+1,Y1

))
. (13.56)

This method just takes the arithmetic mean (i.e., the weights are 1/2) of the slope at
the beginning of the interval and at the end of it. Here rather than using an implicit
method, we replace the exact point (tk+1,x(tk+1)) by the approximation (tk+1,xk +
hf(tk,xk)). An alternative is to leave it as

xk+1 = xk +
h
2
(f(tk,xk)+ f(tk+1,xk+1)) , (13.57)

which gives us an implicit system of equations to solve for the unknown xk+1;
this implicit version of the improved Euler method has some advantages. For now,
though, we consider the simple explicit version given previously.

Once we generate the skeleton of the solution, we need to find a way to interpo-
late the data generated in an appropriate manner. We not only need the interpolant
for graphical output or for events, but also to make it possible to define and com-
pute the residual. Because (as we will see) the method is second-order, simple linear
interpolation as we used for the Euler method is not accurate enough.

Theorem 13.4. The improved Euler method has second order accuracy.

We will examine later how to construct continuous Runge–Kutta methods, and we
will then be able to find the order of methods based on their residual. But since
we do not have this available yet, we will show instead that the order of the local
error of the improved Euler method is O(h3), which implies that this is an order-2
method.

Moreover, in this section, we will usually assume without loss of generality that
the functions f are autonomous, since we can always rewrite a nonautonomous sys-
tem as an autonomous system of higher dimension using the trick presented in
Chap. 12. This assumption simplifies very much the Taylor series expansion. Oc-
casionally, we will use the nonautonomous form simply for emphasis. Moreover,
we will continue to simply write f, Jf, and so forth, to denote the evaluation of those
derivatives of x at xk.

Proof. First, notice that

f(xk + hf) = f+ hJff+O(h2) ,

so that the solution computed by the improved Euler method can be expanded as

xk+1 = xk +
h
2
(f+ f(xk + hf)) = xk +

h
2

(
f+ hJff+O(h2)

)
= xk + hf+

h2

2
Jff+O(h3).
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Moreover, the local reference solution xk(tk+1) = xk(tk + h) can be expanded about
tk as

xk(tk+1) = xk(tk + h) = xk(tk)+ h
.
xk(tk)+

h2

2
..
xk(tk)+O(h3)

= xk + hf+
h2

2
Jff+O(h3).

As, a result, the local error le = xk(tk+1)− xk+1 is O(h3). Therefore, the method is
second order. �

When we examine higher-order methods, we will need more machinery to deal
with the Taylor series. Expanding vector-valued scalar functions in Taylor series
does not require much notation beyond what is found in vector and matrix analysis.
However, doing so for vector-valued vector functions requires the introduction of
tensors. Even for this simple second-order method, if one tries to find an explicit
expression for the first term of the local truncation error, we see that the matrix–
vector notation is cumbersome (although it can be used, with a lot of patience).
For higher-order terms, however, it becomes essential to use tensor notation. So, for
now, we will simply present a third- and a fourth-order method without providing
any proof.

Here’s how a standard third-order RK method works. We use ki for the various
values of f we compute:

t1 = t0 + h

k1 = f(t0,x0)

k2 = f(t0 + h,x0 + hk1)

k3 = f
(

t0 +
h
2
,x0 +

h
2

(
k1 +k2

2

))
x1 = x0 +

h
6
(k1 +k2 + 4k3) . (13.58)

An alternative notation that is sometimes better is to use Y j for the arguments to
f: namely, k j = f(Y j). In that notation, the above method can be written (for an
autonomous problem this time)

Y1 = x0 + hf(x0)

Y2 = x0 + hf(Y1)

Y3 =
1
2
(Y1 +Y2)

Y4 = x0 + hf(Y3)

x1 =
1
3

Y3 +
2
3

Y4 . (13.59)

The evaluations of f are called stages. In either the k-notation or the Y-notation, each
time step takes three stages with this method. Each stage of this method is illustrated
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in Fig. 13.10. Note that in the case in which f depends only on t, and not on x (i.e.,
the case of a simple quadrature), the problem amounts to x(t) =

´ t1
t0

f(t)dt, so that
the method in effect is the very same as Simpson’s rule.

x(t)

s1
k1= f(t0,x0)

x(t)

tangent of x(t) at s1 with slope k1
a b

c d

s1

s2

k2 = f(t1, x0 +hk1)

x(t)

s1

s2

aver. slope
s3

k3 = f(t0 + h
2 , x0 + h(k1+k2)

4 )

x(t)

s1

s2

s3

(t1, x1)

slope k1+k2+4k3
6

Fig. 13.10 A graphical interpretation of RK3, a third-order Runge–Kutta method. (a) Stage 1. We
compute k1 = f (t0,x0) at the point s1 = (t0,x0). (b) Stage 2. We move h along the tangent, whose
slope is k1, to the point s2 = (t1,x0 + hk1). Then, we compute k2 = f (t1,x0 + hk1). (c) Stage 3.
The slope at s2 is k2. We come back to s1 and move h/2 on a straight line whose slope is (k1 +k2)/2,
the average of k1 and k2 to the point s3 = (t0 + h/2,x0 +(h/2)((k1 +k2)/2)). (d) We make the step h
with the weighted average of k1,k2 and k3. The resulting point is (t1,x1)

Here is a fourth-order Runge–Kutta method:

t1 = t0 + h

k1 = f(t0,x0)

k2 = f(t0 +
h
2
,x0 +

h
2

k1)

k3 = f(t0 +
h
2
,x0 +

h
2

k2)

k4 = f(t0 + h,x0 + hk3)

x1 = x0 +
h
6
(k1 + 2k2 + 2k3 +k4) (13.60)
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In fact, this method is one of the most popular7 Runge–Kutta methods. It is often
simply referred to as RK4 or “the classical Runge–Kutta method.” See Problem 13.7
for an example of where it fails.

With these representative examples, it should be clear what strategy Runge–Kutta
methods exploit. To continue our investigation, we will now introduce a general no-
tation for the Runge–Kutta methods, and then return to the mechanics of construct-
ing the methods.

13.5.2 Generalization and Butcher Tableaux

We have seen two examples of Runge–Kutta methods above, in (13.58) and (13.60).
Other simple methods include the following:

xk+1 = xk + hf(tk,xk) = xk + hk1 Euler

xk+1 = xk + h(
1
2

k1 +
1
2

k2) Trapezoidal

with k2 = f(tk + h,xk + hk1)

xk+1 = xk + hk2 Midpoint

with k2 = f(tk +
1
2

h,xk +
1
2

hk1).

The trapezoidal method is the one we called “improved Euler” before. We observe
that each of these five methods consists of computing a number of slopes at different
points and taking a weighted average of them, where the number s of slopes ki

computed corresponds to the number of stages of the method. Thus, if we let the
weights be bi, i = 1,2, . . . ,s, the general form for these rules is

xk+1 = x0 + h(b1k1 + . . .+ bsks) = xk + h
s

∑
i=1

biki . (13.61)

Moreover, we observe that the computation of some of the ki depends on other
values k j (in the explicit cases considered here, only for j < i). For instance, in the
trapezoidal rule, k2 depends on k1 for the value of the second variable in f(t,x(t)).
The parameters indicating how much weight the previous steps j have in finding the
new point of evaluation of f to determine ki are denoted ai j. Moreover, as we have
seen in the midpoint rule, for instance, there is a constant dictating how big a time
step we take. Thus, for explicit methods, we get the general form:

7 Not because it should be used, and in fact there are good reasons not to use it; but it’s usually the
first fourth-order method people learn.
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k1 = f(tk,xk) (13.62)

k2 = f(tk + c2h,xk + a21k1) (13.63)

k3 = f(tk + c3h,xk + a31k1 + a32k2) (13.64)

...

ks = f(tk + csh,xk + as1k1 + as2k2 + . . .+ as,s−1ks−1). (13.65)

Using indices, for explicit methods, we generally have

ki = f(tk + cih,xk + h
i−1

∑
j=1

ai jk j) . (13.66)

Since we always begin with an evaluation of the slope at (tk,xk), we have c1 = 0.
Moreover, since the evaluation of ki cannot depend on previously computed val-
ues of ki in an explicit method, we have a1,i = 0, i = 1,2, . . . ,s. In the trapezoidal
rule, we have c2 = 1 and a21 = 1. In the midpoint rule, we have c2 = 1/2 and
a21 = 1/2.

As we see, the weights b, the size of time steps c, and the weights ai j of previ-
ously computed values of k j, j < i, fully determine an explicit Runge–Kutta method.
This information for explicit methods can conveniently be summarized in a tableau,
called a Butcher tableau, having the following form:

c A
bT =

0 0 0 0 · · · 0
c2 a21 0 0 · · · 0
c3 a31 a32 0 · · · 0
...

...
...

. . .
. . .

...
c2 as1 as2 . . . as,s−1 0

b1 b2 b3 · · · bs

, (13.67)

where A is a lower-triangular matrix with zeros as diagonal entries. We typically
leave the 0s out, leaving the cells containing zero blank.

As one might expect, an implicit Runge–Kutta method (called an IRK method)
of the form

k1 = f(tk + c1h,xk + a11k1 + a12k2 + . . .+ a1,s−1ks−1 + a1,sks) (13.68)

k2 = f(tk + c2h,xk + a21k1 + a22k2 + . . .+ a2,s−1ks−1 + a2,sks) (13.69)

k3 = f(tk + c3h,xk + a31k1 + a32k2 + . . .+ a3,s−1ks−1 + a3,sks) (13.70)

...

ks = f(tk + csh,xk + as1k1 + as2k2 + . . .+ as,s−1ks−1 + assks) (13.71)

xk+1 = xk + h
s

∑
i=1

biki (13.72)
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would have a full Butcher tableau:

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass

b1 b2 · · · bs

. (13.73)

Let us illustrate this notation by giving the Butcher tableau of some methods we
have encountered. The explicit midpoint rule has the tableau

0
1/2 1/2

0 1
. (13.74)

The implicit midpoint rule xk+1/2 = xk + hf(xk+1/2)/2, or equivalently, k1 = f(xk + hk1/2),
on the other hand, needs only a one-by-one matrix A:

1/2 1/2

1
. (13.75)

The explicit trapezoidal rule has the tableau

0
1 1

1/2 1/2

. (13.76)

Finally, the classical Runge–Kutta method RK4 has the following Butcher tableau:

0
1/2 1/2
1/2 0 1/2

1 0 0 1
1/6 1/3 1/3 1/6.

(13.77)

13.5.3 How to Construct a Discrete RK Method

This brings us at last to the beautiful theory of order conditions for Runge–Kutta
methods. What follows, here, is only a gentle introduction to the primary references
and is not intended to summarize or replace any of that material. Our goal is simply
motivation and introduction. In this section, we consider, without loss of generality
because of Eq. (12.5), only autonomous problems

.
x = f(x) because it makes the

algebra simpler.
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We now introduce the traditional strategy to construct a discrete Runge–Kutta
method, that is, a method that returns a discrete set of points x0,x, . . . ,xN and the
corresponding mesh points (what we have called the “skeleton” of the solution).
However, this is just a transition stage we make in order to introduce the strategy for
the construction of a continuous Runge–Kutta method in a didactically acceptable
way.

The traditional strategy goes as follows. We begin by specifying the order p of
the method we want to build, as well as the number s of stages we allow (there is,
however, a minimum number of stages required to build a method of given order).
Next, Taylor expanding the local reference solution xk(t) about tk and putting h =
tk+1 − tk, we get

xk(tk+1) = xk + hf+
h2

2
(ft + Jff)+O(h3) (13.78)

up to (one more than) the desired order. Then, we Taylor expand the proposed
Runge–Kutta method; this requires Taylor expansion of each of the stages k j as
follows:

k j = f

(
tk + c jh,xk + h

s

∑
�=0

a j,�k�

)
= f(t,xk)+ h · ()+ · · · . (13.79)

These Taylor coefficients involve the c j and the ai, j. We also Taylor expand the
Runge–Kutta step itself. These coefficients involve the bi, linearly.

We then equate the Taylor series: If our RK solution is to have local error of the
desired order, the local Taylor series of the RK solution must be the same as the
Taylor series of the local reference solution. This constraint gives us a sequence of
equations containing the unknown as, bs, and cs. Then we solve for the bi, ci, and
ai, j. For higher-order methods, this procedure is very much more easily said than
done.

Let us give the simplest nontrivial example: p = 2 and s = 2, that is, a second-
order method with two stages. For s = 2, the general explicit Runge–Kutta method
is given by

xk+1 = xk + h
s

∑
i=1

biki = xk + h(b1k1 + b2k2) , (13.80)

where the stages are k1 = f(tk,xk) = f and

k2 = f(tk + c2h,xk + ha2,1k1) . (13.81)

The first step in the construction is to expand the ki (here, we have only one non-
trivial one) in Taylor series about tk:

k2 = f+ hc2ft + ha21Jfk1 +O(h2) = f+ hc2ft + ha21Jff+O(h2) . (13.82)
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We then substitute in Eq. (13.80):

xk+1 = xk + h
(
b1f+ b2

(
f+ hc2ft + ha21Jff+O(h2)

))
= xk + hf(b1 + b2)+ h2(b2c2ft + b2a21Jff)+O(h3) . (13.83)

Finally, we match the coefficients of the local reference solution (13.78) and of the
numerical solution (13.83) [remembering that xk(tk) = xk], to get a set of constraints
for the bi, ci, and ai j. In this case, we find that

1 = b1 + b2 (13.84)

1
2
= b2c2 (13.85)

1
2
= b2a21. (13.86)

These equations are called order conditions. Now, since we have only three equa-
tions for four unknowns, there is a free degree of freedom; that is, there is an infi-
nite family of two-stage order-2 Runge–Kutta methods.8 The popular second-order
methods we have examined before fall in this category. Letting b2 be our free pa-
rameter, we find that c2 = a2,1 = 1/2b2 and b1 = 1− b2.

Setting b2 = 1/2 gives the trapezoidal method. Setting b2 = 1 gives the midpoint
method. Setting b2 = 1/2ε and letting ε → 0+ (a silly thing to do numerically) gives
the method

xk+1 = xk + hk1 + h
k2 −k1

2ε
, (13.87)

which looks strange until you realize that in the limit as ε → 0+, because k1 =
f(xk + εhk1), the second term approaches h2 ..

x/2, which is the second-order Taylor
series method.

13.5.4 Investigation of Continuous Explicit
Runge–Kutta Methods

We now switch gears. The idea of a continuous explicit Runge–Kutta method,
CERK for short, is quite natural. We already have the idea of generating a discrete
set of points x0,x1, . . . ,xn on a mesh t0, t, . . . , tN with a Runge–Kutta method. More-
over, we have already seen the importance of somehow interpolating our discrete set

8 We won’t discuss it much in this book, but as the desired order grows, the required number of
order conditions grows faster. This means that we have to add more stages, that is, more unknowns,
just to keep up. There is some complicated redundancy, however, so predicting the exact number
of stages needed to get a Runge–Kutta method of a desired order is not an easy problem; for high
orders, only bounds are known—see Butcher (2008b).
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of points in order to be able to evaluate and interpret the results. The idea of CERKs
is then: Instead of doing this in two separate operations, why not combine the ideas
and do it in one?

How are we to do this? Following Hairer et al. (1993), we simply do as we did
in the last subsection, namely, expand in Taylor series and match coefficients to
find order conditions restricting the parameters of the method, except that we let the
weights bi be variable (in fact, polynomial) and range over a subinterval [tk, tk+1].
We have already used the notation θ = (t − tk)/hk before, in order to describe Euler’s
method interpolated piecewise linearly in Eq. (13.5). Adapting this equation to our
current Runge–Kutta notation, we find

zk(t) = xk + hkθkf(tk,xk)
CERKing−−−−−→ z(θ ) = xk + hb1(θ )k1 ,

where b1(θ ) = θ = (t − tk)/hk. In general, for the construction of a CERK, as opposed
to a discrete Runge–Kutta method, the rule generating the points xi will have the
form

z(θ ) = xk + h
s

∑
i=1

bi(θ )ki . (13.88)

Note also that where we used the notation zk(t), a function of t indexed for subin-
tervals, we now use the variable θ and drop the index, since it is already built in
θ = (t− tk)/hk. Also, note that in addition to the order conditions found by the pro-
cess described in the last section, we also impose other helpful constraints on the
constants ai j, such as

ci =
i−1

∑
j=1

ai j , (13.89)

where, remember, c1 = 0. If this is true, the differential equation
.
x = 1 will be inte-

grated exactly, and we assume it is true henceforth.
When constructing a continuous Runge–Kutta method, we will again choose an

order p for the method and a number of stages s. In this context, the residual is

Δ(t) =
d
dt

z(θ )− f(z(θ )) . (13.90)

Since θ = (t− tn)/h, this gives

Δ(θ ) =
1
h

z′(θ )− f(z(θ )) , (13.91)

where the prime now denotes differentiation with respect to θ . By definition of
order, the choice of order imposes a constraint on the residual of the method defined
in (13.88), namely, is required that Δ(t) = O(hp).
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As an example, consider again the case of a second-order two-stage method:

k1 = f(xk)

k2 = f(tk + c2h,xk + ha21k1)

z(θ ) = xk + h(b1(θ )k1 + b2(θ )k2) . (13.92)

To begin with, note that the Taylor series of the local reference solution is

xk(tk +θh) = xk + hθk1 +
h2θ 2

2
(ft + Jff)+O(h3) . (13.93)

In order to match the coefficients of z(θ ) with the local reference solution, we first
expand k2:

k2 = f+ c2hft + ha21Jfk1 +O(h2). (13.94)

As a result, the computed continuous solution has the form

xk+1 = xk + hk1(b1(θ )+ b2(θ ))+ h2(b2(θ )c2ft + b2(θ )a21Jfk1)+O(h3).

We can now match the coefficients, thus finding the order conditions:

b1(θ )+ b2(θ ) = θ
θ 2

2
= b2(θ )c2

θ 2

2
= b2(θ )a21. (13.95)

Consequently, we can use c2 = a21 = α as a free parameter, so that

b2(θ ) =
θ 2

2α

b1(θ ) = θ − b2(θ ) = θ − θ 2

2α
. (13.96)

We have accordingly generated a family of two-stage second-order continuous ex-
plicit Runge–Kutta methods

z = xk + hθk1 − hθ 2

2α
k1 +

hθ 2

2α
k2 (13.97)

whose Butcher tableaux are

0
α α

b1(θ ) b2(θ )
=

0
α α
θ − θ 2/2α θ 2/2α

. (13.98)
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This shows how we can solve for the order condition to construct continuous
Runge–Kutta methods. If we let α = 1, then we have a continuous trapezoidal
method. If we let α = 1/2, then we have a continuous midpoint method.

The theoretical foundation for what we just did, and are about to do in general—
that is, replace a direct analysis of the residual by instead matching Taylor series
coefficients—is helped in practice by the following theorem.

Theorem 13.5. Suppose the local reference solution to y′ = f(y), y(tk) = yk is de-
noted by yk(t). Suppose that the degree-(p+ 1) local Taylor approximation to yk(t)
is denoted by yT (t), so yT (t)− yk(t) = O((t − tk)p+2). Let the interpolant to the
numerical solution be denoted by z(t). Suppose also that θ = (t− tk)/hk as usual,
and that we may flip back and forth between z(t) and z(θ ) for convenience. Then if
z(θ )−yT (θ ) = (θh)p+1Ep+1(θ )+O((θh)p+2) for some polynomial Ep+1(θ ) then,
as θh → 0,

1
h

z′(θ )− f(z) = (θh)pDp(θ )+O(hp+1) , (13.99)

for some function Dp(θ ), which is polynomial in θ .

Proof. We start by looking at the residual in the local Taylor expansion and use
the fact that the local reference solution has zero residual (also, note that d/dt =
(1/h)d/dθ):

1
h

y′T − f(yT ) =
1
h

(
y′T − y′k

)− (f(yT )− f(yk))

=
1
h

(
y′T − y′k

)−O((θh)p+2)

= O((θh)p+1) . (13.100)

The second equation follows from the Lipschitz continuity of f, that is,

‖(f(yT )− f(yk))‖ ≤ L‖yT − yk‖ ,

and the final equation follows from direct computation; say, in fact,

= Tp+1(θ )θ p+1hp+1 +O(θh)p+2), (13.101)

where Tp+1(θ ) is polynomial in θ . Now

z(θ )− yT (θ ) = hp+1θ p+1Ep+1(θ )+O((θh)p+2) (13.102)

by hypothesis. So

1
h

z′(θ )− 1
h

yT (θ ) = hpθ p(p+ 1)Ep+1(θ )+ hpθ p+1E′
p+1(θ )+ · · ·

= hpθ p ((p+ 1)Ep+1 +θE′
p+1

)
+O(hp+1θ p+1), (13.103)
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whereas, as can also be seen by the Lipschitz continuity of f,

f(z)− f(yT ) = f(yT +O(hp+1θ p+1))− f(yT ) = O(hp+1θ p+1) , (13.104)

which is one order higher. Therefore,

Δ(z) = O(hpθ p), (13.105)

as desired. �

This can simplify our computations. Instead of forcing Δ(θ ) to be small directly (in
the sense of having a high-order factor θ php in front), we may more easily insist that
our Runge–Kutta method agree in series with the Taylor series method. Again, we
emphasize that the reason this works is that the method produces a small residual,
in the end.

13.5.5 Order Conditions with Trees

We begin again with Taylor series, but this time we pay closer attention to efficiency
in notation since, as we hinted before, it becomes crucial. Let us being with a three-
dimensional autonomous system; we write

dy
dt

=
.
y = f(y), y(t0) = y0 . (13.106)

Since subscripts are taken for time steps, we use superscripts to indicate compo-
nents:

.
y

1
(t) = f 1(y1,y2,y3) (13.107)

.
y

2
(t) = f 2(y1,y2,y3) (13.108)

.
y

3
(t) = f 3(y1,y2,y3), (13.109)

where

y =

⎡⎣y1

y2

y3

⎤⎦ and f =

⎡⎣ f 1

f 2

f 3

⎤⎦ . (13.110)

Now consider the second derivative
..
y. Direct computation using the chain rule gives

..
y

1
= f 1

1
.
y

1
+ f 1

2
.
y

2
+ f 1

3
.
y

3
(13.111)

..
y

2
= f 2

1
.
y

1
+ f 2

2
.
y

2
+ f 2

3
.
y

3
(13.112)

..
y

3
= f 3

1
.
y

1
+ f 3

2
.
y

2
+ f 3

3
.
y

3
(13.113)
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or, expressed in matrix–vector notation as we did before,

..
y = Jf(y)

.
y = Jf(y)f , (13.114)

where the Jacobian matrix is

f ′ = f(1) = Jf =

⎡⎣ f 1
1 f 1

2 f 1
3

f 2
1 f 2

2 f 2
3

f 3
1 f 3

2 f 3
3

⎤⎦ . (13.115)

In tensor notation, this takes an extremely compact form:

..
y

i
=

3

∑
j=1

f i
j f j. (13.116)

Even better, if we use Einstein’s summation convention, according to which re-
peated indices are summed over automatically, we can drop the ∑ altogether and
simply write

..
y

i
= f i

j f j . (13.117)

Just as we wrote f i
j for ∂ f i/∂y j in the Jacobian matrix, we will now use the notation

f i
jk for ∂ 2yi/∂y j∂yk, f i

jk� for ∂ 3yi/∂y j∂yk∂y�, and so on. Using this notation, we can then

write compact expressions for higher derivatives of y. Let us consider
...
y . By direct

computation, we find

...
y

1
= ( f 1

1,1
.
y

1
+ f 1

1,2
.
y

2
+ f 1

1,3
.
y

3
)
.
y

1
+( f 1

2,1
.
y

1
+ f 1

2,2
.
y

2
+ f 1

2,3
.
y

3
)
.
y

2
(13.118)

+( f 1
3,1

.
y

1
+ f 1

3,2
.
y

2
+ f 1

3,3
.
y

3
)
.
y

3
+ f 1

1
..
y

1
+ f 1

2
..
y

2
+ f 1

3
..
y

3
(13.119)

by the product rule and the chain rule. This long expression is just the first compo-
nent! But let us again move to tensor notation with the summation convention, and
it becomes a compact expression fitting on one line:

...
y

1
= f 1

jk
.
y

j .
y

k
+ f 1

j f j
k f k. (13.120)

The other components have the same form, as well, so that we can simply write

...
y

i
= f i

jk f j f k + f i
j f j

k f k , (13.121)

which is a significant economy of notation. Just remember these are each double
sums:

...
y

i
=

3

∑
j=1

3

∑
k=1

f i
jk f j f k +

3

∑
j=1

3

∑
k=1

f i
j f j

k f k, (13.122)
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and, of course, 1 ≤ i ≤ 3 also. Now, consider d4/dt4yi:

d4

dt4 yi = f i
jk� f j f k f �+ f i

jk( f i
� f �) f k + f i

jk f j( f k
� f �) (13.123)

= ( f i
j� f �) f j

k f k + f i
j( f j

k� f �) f k + f i
j f j

k ( f k
� f �). (13.124)

Notice now that the second, third, and fourth terms are somehow the same:

f i
jk f j

� f � f k = f i
jk f k

� f j f � = f i
j� f j

k f � f k (13.125)

when summed (these are all triple sums, of course). Now comes the beautiful bit.
Associate f i with the rooted, labelled tree

i ,

f i
j f j with the tree

i

j

,

and f i
jk f j f k with the tree

i

jk

(or equivalently

i

kj

which is isomorphic). The root of the tree is labeled with the index of the component
we’re working on, i. If the f i term has subscripts, say, j, k, and �, put an arc out from
•i for each subscript; so f i

jk� starts with

i .

But we typically have terms that contain more than just f i
jk�, as above, where we

had f i
jk� f j f k f �. For terms like that, for each f j , put a dot at the end:

i

j�
k

,

and expand the terms whose form is not simply f j along the other arcs, in a recursive
way. We then find that the term f i

jk( f k
� f �) f j gives
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i

jk

�

or i

kj

�

(these are again isomorphic). But there’s something different between the pair of
terms and trees

f i
jk f j f k

� f �

i

jk

�

and

f i
j� f � f j

k f k

i

j�

k

in that in order to map them onto each other, they must be relabeled (whereas
the two equivalent trees for f i

jk f k
� f � f j can simply be reflected to make them look

identical).
We can then count the number of ways of labeling a tree. Following Butcher

(2001 p. 92), we say that “the number of ways of labeling a tree t with a given
totally ordered set V (here, V = {i, j,k, �} with i < j < k < �) with |V | = r(t) (the
number of nodes in the tree t) in such a way that if (m,n) is an arc, then m < n is
called α(t).”9 If

τ =

then α(τ) = 3, as can be seen by inspection. We now continue with the other ex-
pressions. The term f i

j f j
k� f k f � corresponds to

f i
j f j

k� f k f �

i

j
� k

and α(τ) = 1 for this tree. Below, f i
j f j

k f k
� f � is an example of what is called a tall

tree:

9 We note that here we run into an unfortunate conflict of notation: Butcher (2008b), Hairer et al.
(1993), and Hairer et al. (2006) all use t to denote a tree, but we use t as the independent variable.
We will use τ instead to denote a particular tree (but note that Butcher (2008b) uses τ for another
purpose).
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f i
j f j

k f k
� f �

i

j
k

�

Using this notation, derivatives for Taylor series are easy:

y(n) = ∑
r(τ)=n

α(τ)F(τ)(y), (13.126)

where F(τ)(y) is the elementary differential corresponding to the tree τ , and the
sum is taken over all rooted, labeled trees with r(τ) = n, that is, with n vertices. An
elementary differential is a vector with the components

f i
jk�··· f j··· , (13.127)

that is, the associated expression of the tree.
These expressions, which are given informally here, can be formally defined in a

recursive manner, as follows (definition 301a in Butcher (2008b)):

Definition 13.7. For a function f :Cn →Cn, the elementary differential F(τ) : Cn →
Cn corresponding to the rooted tree τ is recursively defined by the base case

Base :

{
F( /0)(y) = y
F([·])(y) = f(y)

(13.128)

and the following recursion condition: If τ =
[
τ1 τ2 · · · τs

]
, s ≥ 1 (that is, the tree τ

can be cut into the trees τ1,τ2, . . . ,τ2 by removing the root of τ and all arcs leading
from it), then

F(τ)(y) = f(s)(F(τ1)(y),F(τ2)(y), . . . ,F(τs)(y)). (13.129)

The notation for terms such as f(3)(f, f′(f)) appearing in the recursive definition
above would also be associated with the tree

i

jk

�

or i

kj

�

,

and to the previous notation f i
jk f j f k

� f �. �

While we are about it, let us give the recurrence relations for r(τ) and α(τ). We
also need a measure of density γ(τ) and symmetry σ(τ). First, we have

σ([·]) = α([·]) = γ([·]) = r([·]) = 1 . (13.130)
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Moreover, if

τ =
[
τ1 τ2 · · · τs

]
=
[
τ̂n1

1 τ̂n2
2 · · · τ̂n�

�

]
(13.131)

where the τ̂i are all distinct subtrees, we have

r(τ) = 1+
s

∑
i=1

r(τi) (13.132)

γ(τ) = r(τ)
s

∏
i=1
γ(τi) (13.133)

σ(τ) = n1!n2! · · ·n�!
�

∏
i=1
σ(τi)

ni (13.134)

and

α(τ) =
r(τ)!

γ(τ)σ(τ)
. (13.135)

For proofs, see Butcher (2008b). This seems a lot of work for Taylor series (which
we would generate by recursive relations anyway). We have, now,

y(t) = ∑
k≥0

y(k)(tn)
k!

(t − tn)
k

= ∑
k≥0

(
∑

r(τ)=k

α(τ)
k!

F(τ)(yn)

)
(t − tn)

k, (13.136)

but (and this is the point) it turns out we can use these graphs and elementary differ-
entials for Runge–Kutta methods too.

Consider the Runge–Kutta method specified by

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
. . .

...
cs as1 as2 · · · ass

b1 b2 · · · bs

. (13.137)

This corresponds to the method

k1 = f

(
yn + h

s

∑
j=1

a1, jk j

)
(13.138)

k2 = f

(
yn + h

s

∑
j=1

a2, jk j

)
(13.139)
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...

ks = f

(
yn + h

s

∑
j=1

as, jk j

)
, (13.140)

which is sometimes more conveniently expressed in the following notation:

YJ
i = yJ

n + h
s

∑
j=1

ai jfJ(Y1
j ,Y

2
j , . . . ,Y

n
j) (13.141)

for 1 ≤ i ≤ s,and 1 ≤ J ≤ n, and n is the number of components of f. Then, the value
of the solution at the next step is

YJ
n+1 = yJ

n + h
s

∑
j=1

b jfJ(Y1
j , · · · ,Yn

j) . (13.142)

In the k-notation, the unknowns were like derivatives; here the unknown Y are like
function values. Replacing h by θh and allowing bi = bi(θ ) give the continuous
Runge–Kutta (CRK) case.

We now define the elementary weights of this method recursively by

Φ([·]) = ci (13.143)

for the empty tree, and if τ = [τ1 τ2 · · · τm], then

Φi(τ) =
s

∑
j=1

ai j

m

∏
k=1

Φ j(τk) . (13.144)

Finally, we have

(YJ
n+1)

(�)(tn) = ∑
r(τ)=�

α(τ)γ(τ)
s

∑
j=1

b jΦ j(τ)FJ(τ)(yn) (13.145)

and for the Taylor series of the numerical method to agree with that of the Taylor
series method to order p, we must have

s

∑
j=1

b jΦ j(τ) =
θ r(τ)

γ(τ)
(13.146)

for all trees τ with r(τ) ≤ p. To prove this, compare the two series and equate
coefficients. Since the elementary differentials are independent, for the difference

yn+1 − yTSM(tn +θh) = O((θh)p+1) (13.147)

to hold, each pair of coefficients must be separately identical. These are the order
conditions.
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The first few order conditions for continuous Runge–Kutta methods are given
below.

r τ γ α Φ j = θ r(τ)/γ(τ)

0 /0 1 1

1 i 1 1 ∑bi = θ

2 i

j

2 1 ∑bici = θ 2/2

3 i

jk

3 1 ∑bic2
i = θ 3/3

i

j
k

6 1 ∑biai jc j = θ 2/6.

(13.148)

These are taken from tables such as table 307 from Butcher (2008a) or Table 2.7
from Hairer et al. (1993).

The number of trees and therefore the order conditions rise very quickly: For
order 10, there are 1205 order conditions to satisfy (just in the θ = 1 case), al-
though, because of redundancy, we do not need 1205 unknowns. Solving these mul-
tivariate polynomials, on the other hand, remains a significant challenge for high
orders.

13.5.6 Solving the Order Conditions

In solving the order conditions, we search for the parameters in a Butcher tableau
such as

c2 a21

c3 a31 a32

c4 a41 a42 a43

b1(θ ) b2(θ ) b3(θ ) b4(θ )

(13.149)

so that

z(θ ) = yk + h(b1(θ )k1 + b2(θ )k2 + b3(θ )k3 + b4(θ )k4) (13.150)

has a residual [with θ = (t − tk)/h]:

Δ(θ ) =
1
h

dy
dθ

− f(y(θ )) = O(h3) . (13.151)
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The order conditions are

[•] b1(θ )+ b2(θ )+ b3(θ )+ b4(θ ) = θ

c2b2(θ )+ c3b3(θ )+ c4b4(θ ) = 1
2θ

2

c2
2b2(θ )+ c2

3b3(θ )+ c2
4b4(θ ) = 1

3θ
3

a32c2b3(θ )+ (a42c2 + a43c3)b4(θ ) = 1
6θ

3

(13.152)

and, of course, c2 = a21, c3 = a31 + a32, and c4 = a41 + a42 + a43. Thus, as a linear
system, we have ⎡⎢⎢⎢⎣

1 1 1 1

0 c2 c3 c4

0 c2
2 c2

3 c2
4

0 0 a32c2 a42c2 + a43c3

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

b1

b2

b3

b4

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
θ
θ 2/2

θ 3/3

θ 3/6

⎤⎥⎥⎥⎦ . (13.153)

Lemma 13.1. If the matrix A above is singular, then no solution exists for any val-
ues of a21,a31,a32,a41,a42, or a43.

Proof. Assume to the contrary that b1(θ ),b2(θ ),b3(θ ), and b4(θ ) exist, with A
singular, so that

Ab =

⎡⎢⎢⎣
θ
θ 2/2

θ 3/3

θ 3/6

⎤⎥⎥⎦ . (13.154)

Now, since A is singular, then there exists a nonzero vector

L =
[
L1 L2 L3 L4

]
(13.155)

such that LA =
[
0 0 0 0

]
. Thus, we have

LA

⎡⎢⎣b1
...

b4

⎤⎥⎦= L1θ +
L2

2
θ 2 +(

L3

3
+

L4

6
)θ 3 ≡ 0 . (13.156)

Because θ ,θ 2, and θ 3 are independent, L1 = L2 = 0 and L3 = −L4/2. Now, observe
that [

0 0 − L4
2 L4

]
A =

[
0 − c2

2
2 − c2

3
2 + a32c2 − c2

4
2 + a32c2 + a43c3

]
=
[
0 0 0 0

]
.
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Hence, c2 = 0,c3 = 0, and c4 = 0. However, it is obvious that in this case

A

⎡⎢⎢⎣
b1

b2

b3

b4

⎤⎥⎥⎦=

⎡⎢⎢⎣
b1 + b2 + b3 + b4

0
0
0

⎤⎥⎥⎦ (13.157)

cannot be
[
θ θ 2/2 θ 3/3 θ 3/6

]T
. The contradiction invalidates the hypothesis that b

exists. �

Thus, we may restrict our search for third-order CERK methods to the case
det(A) �=0. A short computation (using MAPLE) gives

detA = c2(c2c4(c2 − c4)a32 +(c3 − c2)c3(a42c2 + a43c3)) . (13.158)

Inspection shows that c2 = a21 �= 0 is necessary. There are three cases to consider:
the generic case c3 �= 0, c2 �= c3; the second case c2 = c3 with c2 �= c4, c4 �= 0, and
a32 �= 0; and the third case c3 = 0 with c2 �= c4, c4 �= 0, and a32 �= 0. These are the
only conditions under which A is nonsingular.

It turns out that to get a CERK of order 3, we need not just three stages but also
one more, as we have been using here. For a proof that four stages are really needed,
see Owren and Zennaro (1991), where they extend the pioneering work of Butcher.
This is serious: An extra stage means an extra function evaluation every step, and f
may have a million components. We’d really like to make an economization here. It
turns out that there is one possible economization, known as “stage reuse,” or FSAL
for “first same as last”: If the last stage you use on this step, k4, turns out to give
you the k1 you need next time, then on all but the very last step the fourth stage
is essentially free. This gives us a condition to desire, for efficiency. We impose
our efficiency condition here as follows: b1(1) = a41, b2(1) = a42, b3(1) = a43, and
b4(1)= 0. This ensures that computation of yk+1 does not require f(yk+1), that is, k4.

All this gives four polynomial equations in the six unknowns a21,a31,a32,a41,a42,
and a43. We examine the real solution of these equations under each of our three
scenarios [generic, second (c2 = c3), and third (c3 = 0)]. In the generic case, MAPLE

gives a solution with two free parameters, a31 and a32, except that a32 cannot be
zero. Given these two parameters, compute α so that

3a32α2 − (3a32+ 1)α+(a32 + a31)
2 = 0 . (13.159)

Then the other parameters are determined by

a21 = α (13.160)

a41 =
1
6

(
6a32α2 − (3a32 + 1)α+(a31 + a32)

a32α2

)
(13.161)

a42 =
1
6

3a32α− (a32 + a31)

a32α2 (13.162)
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a43 =
1

6a32α
. (13.163)

Finally, we solve the linear system of Eq. (13.154) for the bi(θ ). This is a two-
parameter family of solutions.

Example 13.4. The MAPLE solution above is for the generic case with c2 �= c3. That
two-parameter family does not exhaust the possible solutions. Consider the follow-
ing Butcher tableau:

2/3 2/3
2/3 2/3

1 1/4 3/8 3/8

b1(θ ) b2(θ ) b3(θ ) b4(θ ),

with

b1 =−5
4
θ 2 +

1
2
θ 3 +θ (13.164)

b2 =
9
8
θ 2 − 3

4
θ 3 (13.165)

b3 =
9
8
θ 2 − 3

4
θ 3 (13.166)

b4 =−θ 2 +θ 3 . (13.167)

You will be asked to investigate this method in Problem 13.28 and prove that it is a
FSAL third-order continuous explicit Runge–Kutta method. �

To solve the order conditions for higher-order methods, one cannot use brute
force as we have here, even assisted by computer algebra. As previously stated,
there are too many symmetries in the solution; as a result, the naive use of Gröbner
bases runs into combinatorial growth in the number of possible roots. One must use a
more nimble approach, possibly with simplifying assumptions. See Butcher (2008b)
for an introduction to how it is done by humans; for a promising new approach that
may lead to automatic solution methods, see Khashin (2009) and Khashin (2012).

13.5.7 Implicit RK Methods

John Butcher began the systematic study of implicit methods in 1964; prior to that,
some isolated methods were known, and known to be effective for certain prob-
lems, but fundamental difficulties (the existence of high-order methods, for exam-
ple) had not really been addressed. Following Butcher (1964), the Butcher tableau
of an s-stage implicit method is



638 13 Numerical Methods for ODEs

c1 a11 a12 a13 · · · a1s

c2 a21 a22 a23 · · · a2s
...

...
...

. . .
...

cs as1 as2 as3 · · · ass

b1 b2 b3 · · · bs,

(13.168)

and the stage values Yi satisfy

Yi = yn + h
s

∑
j=1

ai jf(Y j) (13.169)

or, equivalently with ki = f (Yi),

ki = f(yn + h
n

∑
j=1

ai jk j) . (13.170)

If f is a linear function, then these are linear equations for the NS unknowns; more-
over, the linear system is quite highly structured. Let us consider two examples, first
with N = 1 (a scalar autonomous problem) and then a vector problem.

Let us first consider the function f (y) = cy+ d, and suppose we have the three
stages

Y1 = yn + h
3

∑
j=1

ai j(cY j + d) (13.171)

Y2 = yn + h
3

∑
j=1

a2 j(cY j + d) (13.172)

Y3 = yn + h
3

∑
j=1

a3 j(cY j + d) , (13.173)

which can be written as

[
I− hcA

]⎡⎣Y1

Y2

Y3

⎤⎦=

⎡⎣yn
yn
yn

⎤⎦+ hA

⎡⎣d
d
d

⎤⎦ . (13.174)

We see that we may solve this linear system provided |hc| is smaller than the re-
ciprocal of the largest eigenvalue of A. Even for linear scalar problems, implicit
methods thus seem to have a step-size restriction, but for “small enough” step sizes,
the matrix approaches I and solution becomes possible. Of course, vector problems
and nonlinear problems inherit this behavior.

Let us now consider the vector problem

f(y) = Cy+D (13.175)
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with C ∈C
4×4 and D ∈C

4. Again, we use three stages, so that s = 3. Then our stage
values are

Yi = yn + h
s

∑
j=1

ai jf(Y j) , (13.176)

and for this particular problem they are such that

Yi = yn + h
s

∑
j=1

ai j[CY j +D] = yn + h
s

∑
j=1

ai jCY j + h
s

∑
j=1

ai jD . (13.177)

This can be written in the form

(IN − haiiC)Yi − h
s

∑
j=1
j �=i

ai jCY j = yn + h
s

∑
j=1

ai jD , (13.178)

or, using the tensor product,

(I− h(A⊗C))

⎡⎢⎢⎢⎣
Y1

Y2
...

Ys

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
yn
yn
...

yn

⎤⎥⎥⎥⎦+ h(A⊗D) . (13.179)

Again, this matrix is nonsingular for “small enough” h.
This generalizes to nonlinear problems via the implicit function theorem and

gives some reassurance that IRK methods can be used in practice (which is good,
because indeed they are). But the theorem alluded to above masks an interesting
problem: Implicit methods are of interest precisely when eigenvalues of C are large
(with negative real part), and if the step-size restriction of the theorem always con-
strained the methods, IRK would be useless. We do not pursue further this technical
but important matter. Instead, we consider some low-dimensional examples, in order
to give insight.

Example 13.5. Consider the scalar nonlinear problem

.
x = x2 x(0) = 1 (13.180)

and solve this with the implicit midpoint rule:

k1 = f (xn +
h
2

k1) = (xn +
h
2

k1)
2. (13.181)

Quite obviously this has two solutions for any h �= 0, though only one if h = 0. The
solutions of

h2

4
k2

1 +(xnh− 1)k1+ x2
n = 0 (13.182)
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by the quadratic formula are

k1 =
1− hxn±

√
(1− hxn)2 − h2x2

n
h2/2

; (13.183)

that is,

k+1 =
2
h2 (1− hxn+

√
1− 2hxn) and k−1 =

2x2
n

1− hxn+
√

1− 2hxn
.

Notice that k−1 → x2
n = f (xn) as h → 0, but that k+1 → ∞. Even for this simple prob-

lem, the solution of the IRK equations is not unique, although the one we want does
behave well as h→ 0. Notice also that if h> 1/2xn, then both solutions are complex—
that is, for large enough h, there are no real solutions. If xn is large, this step-size
restriction begins to bite hard. And since xn does get large, this matters: As we saw
in Chap. 12, the reference solution has a singularity, and forcing h to zero is a crude
detection mechanism for singularities. �

Example 13.6. Consider instead

.
x = 1− x2 (13.184)

with (again) the implicit midpoint rule:

k1 = (1− (xn+
h
2

k1)
2) (13.185)

xn+1 = xn + hk1. (13.186)

Solving

h2

4
k2

1 +(hxn + 1)k1 + x2
n − 1 = 0 (13.187)

for k1, we find

k1 =
−(1+ hxn)±

√
(1+ hxn)2 + h2(1− x2

n)
h2/2

. (13.188)

Thus, we find the expression

k+1 =
−2(1− x2

n)

−(1+ hxn)−
√

1+ 2hxn+ h2
(13.189)

for the root of interest. Now, we have 1+ 2hxn+ h2 ≥ 0 if

xn ≥−1+ h2

2h
, (13.190)
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and since we can separately prove that xn → 1 as n → ∞ for any x0 ≥ 0, we see that
in this case there is no problem. There always is a solution to the IRK equations. �

As a final remark, once the existence of a solution to the IRK has been estab-
lished, one could compute the solution as a Taylor series in h—but up to order
O(hp+1), for a pth-order method, the coefficients would be the same (by definition)
as those of the Taylor series method; to see what distinguishes the IRK solution
from the Taylor series solution, one must think differently.

13.5.7.1 L-Stable RK Methods

We have already briefly examined the stability regions for forward (explicit) Euler
and backward (implicit) Euler; in the exercises, you have been asked to draw the
stability regions for a few Taylor series methods (both explicit and implicit). We
have also just discussed the difficulties with implicit methods in general, which
also affect implicit Runge–Kutta methods: The solution of the nonlinear equa-
tions may be difficult or expensive, and indeed the iterations may not converge
at all.

So why use implicit methods if they are so awkward? Well, it turns out that for a
large class of practical (but stiff) problems, these difficulties can be overcome, and
the advantage of a stiffly stable method is that the time step h is not restricted (as
much) by those difficulties as the time step would be by the lack of stiff stability for
an explicit method.

Normally, as we have seen previously, the advantages of implicit methods are
presented by examining how they work on the Dahlquist test problem y′ = λy, for
Re(λ )� 0. There is value in the standard approach, and our presentation of implicit
Runge–Kutta methods would be incomplete without drawing a few stability regions
(that is, regions in the z = hλ plane for which the skeleton of the numerical solution
yn exhibits monotonic decay, just as the reference solution does for Reλ < 0). We
should also mention the notion of A-stability,10 where the method preserves decay
when Reλ < 0—note that forward Euler is not A-stable, but backward Euler is A-
stable: In the first case, sometimes the numerical solution grows when it should
decay, and in the second case, while sometimes the numerical solution decays when
it should grow, at least it always decays when it should decay. Some methods are
“exactly” A-stable, having decay if and only if Reλ < 0 although this is less useful
than it might appear, as we now show.

For the next example of the stability region for an implicit RK method, consider
the implicit midpoint rule:

k1 = f(xn +
h
2

k1) (13.191)

10 This powerful notion is due to Dahlquist (1963), who in that paper establishes an important
negative result: No explicit linear multistep method can be A-stable if its order is higher than 2.
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with xn+1 = xn + hk1. Applying this to y′ = λy gives

k1 =
λxn

1− z/2
, (13.192)

and therefore we have

xn+1 = xn + h
λxn

1− z/2
=

(
1+

z
1− z/2

)
xn

=

(
1+ z/2

1− z/2

)
xn . (13.193)

The relevant qualitative behaviour is then described by the stability region |(1+
z/2)/(1− z/2)|< 1. We may describe this region parametrically by solving the equa-
tion for the boundary of this region, namely,

1+ z/2

1− z/2
= eiθ , (13.194)

to get

z = 2
exp(iθ )− 1
exp(iθ )+ 1

=
2sin(θ )

1+ cos(θ )
i . (13.195)

That is, the boundary is exactly the imaginary z-axis. Indeed, this can be deduced
more elegantly from certain theorems in complex analysis, as is done, for example,
in Hairer and Wanner (2002).

This numerical method gives a solution to y′ = λy that decays when Reλ < 0, and
grows when Reλ > 0, just as the reference solution exp(λ t) does. This is exact A-
stability. The implicit midpoint rule is a nice method for other reasons, too. First, it
is second-order accurate. Also, it preserves fixed points of autonomous systems; that
is, an equilibrium of the system

.
x = f (x) is exactly an equilibrium of the discrete

dynamical system (13.191). Moreover, it preserves the stability of the equilibria
(which not all methods do) and it preserves both period-doubling bifurcation points
and flip bifurcation points.

But it isn’t perfect. Perhaps its biggest flaw is that as z → ∞, the stability func-
tion tends to −1. This induces a potentially spurious numerical oscillation into the
solution—we still have decay, but it’s very slow decay—that can be cured only by
taking small time steps, which again might be excessively small for efficiency’s
sake.

Other exactly A-stable methods exist: For example, all the IRK methods based on
Gauss quadrature points (which have order 2s if they have s stages) share this prop-
erty. But sometimes the more useful property is “L-stability,” which asks whether
the stability function goes to zero as z →−∞; this reflects the qualitative feature that
decay should be faster if Reλ is more negative.

There are also B-stability (Dahlquist 1976) and, equivalently for RK methods,
“algebraic stability” for contractive nonlinear problems

.
x= f (t,x), where f satisfies

a one-sided Lipschitz condition
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〈 f (t,x)− f (t,y),x− y〉 ≤ ν‖x− y‖2, (13.196)

where, crucially, the number ν can be negative. This condition ensures that the dis-
tance between two reference solutions contracts as t increases. Of course, we would
like for numerical solutions to share that feature. Not all RK methods do, but the
ones that do are called B-stable. For a discussion of this, and the equivalent alge-
braic stability conditions, see Hairer and Wanner (2000).

Example 13.7. Consider again the problem
.
x = x2 − t from Hubbard and West

(1991). Since

〈x2 − t − (y2 − t),x− y〉= 〈(x+ y)(x− y),x− y〉
= (x+ y)(x− y)2 , (13.197)

this problem is contractive if x(t) and y(t) are both negative. If the initial conditions
for x and y are negative enough, we can see that indeed x(t) < 0 for all time, and
similarly for y(t). Thus, we would like to see if, say, the implicit midpoint rule was
contractive. By looking at the conditions for algebraic stability (given, for example,
in Hairer and Wanner (2002) but not here), we can see that the method is predicted to
be B-stable. To see this directly, we carry out one step of the method, symbolically.
If we start at (tn,xn), then

xn+1/2 = xn +
h
2
(x2

n+1/2
− (tn +

h
2
)) , (13.198)

k1 = x2
n+1/2

− (tn + h/2), and

xn+1 = xn + hk1 = xn + 2(xn+1/2 − xn) = 2xn+1/2 − xn . (13.199)

Thus, if we consider starting at two nearby points (tn,xn) and (tn,yn) with both
xn < 0 and yn < 0, we want to show that the distance between xn+1 and yn+1 has di-
minished (as it would for the solutions of the reference equation). This is equivalent
to showing that

|xn+1 − yn+1|= |2(xn+1/2 − yn+1/2)− (xn − yn)|
≤ |xn − yn| . (13.200)

The detailed symbolic algebra is a bit convoluted, but we can convince ourselves
that this works at least for small h by writing the desired solution of the quadratic
equation for xn+1/2 as

xn+1/2 =
xn − h/2(tn + h/2)

1− (h/2)xn+1/2

, (13.201)

and noticing that if xn < 0, then for small h, so will be xn+1/2, and then the denomina-
tor in the above will be larger than 1; hence, the magnitude of xn+1/2 will be smaller
than the magnitude of xn. Similarly for yn, and this means that the average used
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for the difference between xn+1 and yn+1 above will also be smaller than the dif-
ference between xn and yn. Thus, the implicit trapezoidal rule does seem to exhibit
contractivity, as it should for this problem. See Problem 13.5. �

13.5.7.2 DIRKs and SDIRKs

The acronym “DIRK” refers to a diagonally implicit Runge–Kutta method. An
SDIRK is a singly diagonally implicit Runge–Kutta method. The DIRK and SDIRK
methods are important special cases of implicit RK methods that, in general, have
easier linearizations to solve. The key is what is meant by “diagonally implicit,”
which we will demonstrate.

The difficulty that these methods address is that the Jacobian for a nonlinear
system

.
x = f(x) gets blended into the nonlinear system for the stage values k j in the

RK method as follows, which gives rise to a system of ns equations in ns unknowns;
the DIRK approach reduces the complexity of the system for the stage values to a
sequence of s systems each of size n× n. This is a considerable reduction, making
the cost of solving the linearized systems not O(s3n3) per step but rather O(sn3) per
step, or perhaps even O(n3), as we will see.

The observation on which this technique rests is simple. If we have an implicit
RK method with, say, s = 3 stages, then the general scheme is

k1 = f(xm + h(a1,1k1 + a1,2k2 + a1,3k3)

k2 = f(xm + h(a2,1k1 + a2,2k2 + a2,3k3)

k3 = f(xm + h(a3,1k1 + a3,2k2 + a3,3k3) . (13.202)

Each of those three equations is a vector equation with n equations, making 3n in
total. Each of the 3n equations depends on the 3n unknowns ki

j for 1 ≤ i ≤ n and
1 ≤ j ≤ s. In this example, s = 3 of course. Once linearized, the Jacobian will be
3n×3n and the cost is, as stated, O((3n)3) to factor the Jacobian each time (unless,
of course, it has a special structure, but that depends on the nonlinear function f).

In contrast, a diagonally implicit Runge–Kutta (DIRK) method has its first non-
linear system only depending on k1:

k1 = f(xm + ha1,1k1). (13.203)

Its second equation depends only on k2 and on the (now known in principle from
the first set of n equations) k1:

k2 = f(xm + h(a2,1k1 + a2,2k2)). (13.204)

Finally, the third equation depends on k3 and all the previously solved-for compo-
nents of k1 and k2:

k3 = f(xm + h(a3,1k1 + a3,2k2 + a3,3k3)). (13.205)
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This reduces the problem to a sequence of 3 problems each only of size n× n. If
there are more than two stages, this is already a significant reduction in the amount
of work done in solving the nonlinear equations on each step (and remember, there
may be a lot of steps to take in the solution of the differential equation).

A further refinement happens if each of the diagonal elements a1,1, a2,2, a3,3 is
equal to the same thing [call it γ , in accordance with the traditional notation used,
for example, in Hairer and Wanner (2002)]. If that is true, then the Jacobians of
each system have the same structure, I−hγJ, and there is some hope of reusing the
factoring itself; of course, the evaluation of the Jacobian would happen at different
places if an exact Newton method was being used, but even so the factoring at one
place can be used as a preconditioner for the solution at another. Moving to a DIRK
will save a factor of s2 in the linear algebra, and moving to an SDIRK might save a
further factor of s, and amortize a factor of n across several steps.

Chapter IV.6 of Hairer and Wanner (2002) discusses in detail the construction
of SDIRK methods and, in particular, gives a lovely method using the trees that
you have now seen used for explicit methods (plus an elegant trick) to construct
SDIRKs. They give an example of a five-stage fourth-order method and show how
to solve the order conditions to get a three-parameter family of such methods. They
give a specific good choice of a method that is A- and L-stable and has a small local
error coefficient; they give more details of another choice, which is also A- and L-
stable but has “nicer” coefficients rather than a small local error coefficient. They
also make an implementation in Fortran freely available under the name SDIRK4.
For that method, they also give a continuous extension; however, this extension is
only third-order accurate (which isn’t totally clear from the text). To be concrete,
the SDIRK that they describe has the Butcher tableau

1/4 1/4
3/4 1/2 1/4

11/20 17/50 −1/25 1/4
1/2 371/1360 −137/2720 15/544 1/4

1 25/24 −49/48 125/16 −85/12 1/4

b1(θ ) b2(θ ) b3(θ ) b4(θ ) b5(θ )

, (13.206)

where the bi are constructed to be identical to the final stage values. More, they
give degree-4 polynomials bi(θ ) such that the continuous extension x(θ ) = xm +
h∑5

j=1 b j(θ )kk is third-order accurate in the interval 0 < θ < 1 but interpolates the
fourth-order-accurate xm+1. We do not give that interpolant here, in part because
there seems to be an error in four of the coefficients printed in the 1991 edition of
that book, but mostly because for our purposes even when the misprints are cor-
rected, the resulting residual is not continuous. Naively, cubic Hermite interpolation
instead seems attractive. It turns out, however, that there can be bad behavior for stiff
problems in that the slopes at either endpoint encourage spurious oscillation in the
interpolant (this is discussed in Shampine and Reichelt (1997), for example); an al-
ternative using a shape-preserving rational interpolant using the second barycentric
form may also be satisfactory.
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13.5.7.3 Rosenbrock Methods

We now come to Rosenbrock methods, which in some sense are even simpler than
SDIRK methods. The MATLAB ODE Suite has a Rosenbrock method implemented
in the routine ode23s.

A useful way to look at a Rosenbrock method is to think of it as a DIRK method
where we take exactly one Newton step in order to approximately solve the nonlin-
ear equations for the stage values. That is, we write

ki = hf

(
xn +

i−1

∑
j=1

ai, jk j + ai,iki

)
(13.207)

for 1 ≤ i ≤ s. Linearizing, this gives

ki = hf(gi)+ hai,iJf(gi)ki , (13.208)

where the vector gi is the explicit stage value

gi = xn +
i−1

∑
j=1

ai, jk j . (13.209)

Solving this linear system of equations for the vector ki is (as stated) equivalent to
one step of Newton’s method applied to the original DIRK.

Once we start looking at this method, though, several opportunities for efficiency
present themselves. The main point of attack is the Jacobian; we wish to evaluate
that as few times as necessary, and certainly to factor the matrix I − haJ as few
times as necessary. A Rosenbrock method is therefore defined as a method in the
following class.

Definition 13.8. An s-stage Rosenbrock method is an explicit method of the form

ki = hf(gi)+ hJf(xn)
i

∑
j=1

γi, jk j , (13.210)

for 1 ≤ i ≤ s, and the step is advanced with xn+1 = xn +∑s
j=1 b jk j. �

The standard notation uses γi, j differently than what we have heretofore been
using—these are not bounds for rounding errors—but this hopefully will not add
to the confusion caused by the use, different again, of γ(τ) as the parameter in the
order condition for the tree τ .

Trees and elementary differentials can be used to write down order conditions
for Rosenbrock methods, including higher-order methods. Solution of the resulting
equations can give parametric families of solutions. Embedded methods can be cho-
sen and used for error control. There are several tricks for efficient implementation
discussed in Hairer and Wanner (2002). The method implemented in ode23s is
low-order and has a free interpolant.
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This is somehow a natural way to come at the Rosenbrock methods, but once you
have thought of them this way, you realize that they are a kind of explicit method,
except that they take into account the Jacobian matrix and so they are a kind of
explicit RK method that has been tailored to the specific problem (and more than
that, to the specific point from which the solution is proceeding). As such, they could
benefit from study in their own right.

They turn out to be relatively easy to implement and quite remarkably effective
for stiff problems even when numerical approximations to the Jacobian matrices are
used (for example, by finite differences, as the Rosenbrock code ode23s uses by
default). We look at a simple example.

Example 13.8. Consider solving the van der Pol equation

y′′ − μ(1− y2)y′+ y = 0 (13.211)

with a parameter value μ = 106 and initial conditions y(0) = 2 and y′(0) =−0.66.
These are the parameter values used in Hairer and Wanner (2002) for demonstrating
some curious step-control difficulties with a higher-order Rosenbrock method than
is implemented in ode23s. When we solve this problem using ode23s on 0 ≤ t ≤
3× 106, we get the results in Fig. 13.11.

Instead of using the built-in interpolant, we compute the second derivatives at
each mesh point from the returned solution values and use PQHIP from Chap. 8;
this allows us to compute the second derivative of the piecewise quintic Hermite
interpolant and substitute it in to get a residual in the second-order equation itself,
not the mathematically equivalent first-order form. This gives Δ(t) in

z′′ − μ(1− z2)z′+ z = Δ(t) . (13.212)

0 0.5 1 1.5 2 2.5 3

x 106
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1
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y

Fig. 13.11 The solution to the (very stiff) van der Pol equation (13.211) with μ = 106 by the
low-order Rosenbrock method implemented in ode23s, using default tolerances

This is graphed in Fig. 13.12, scaled by the maximum of 1, |z|, |z′′|, and μ |1−
z2||z′|. We see that the residual seems quite large in the regions of rapid change, and
that perhaps this merits further investigation (Fig. 13.13). �
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Fig. 13.12 Scaled residual in the solution to the (very stiff) van der Pol equation (13.211) with μ =
106 by the low-order Rosenbrock method implemented in ode23s, using default tolerances. The
residual appears to be too large in the regions of rapid change and may deserve further investigation
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Fig. 13.13 Step sizes used in the solution to the (very stiff) van der Pol equation (13.211) with
μ = 106 by the low-order Rosenbrock method implemented in ode23s, using default tolerances.
The step-size control appears to be doing a reasonable job. Step sizes change by 10 orders of
magnitude over the course of integration

13.6 Multistep Methods

Multistep methods (and their relatives) are among the most commonly used in
high-quality implementations. The MATLAB code ode113, for instance, is effi-
cient and accurate. The stiff code ode15s, which we have frequently used, uses
a modification of the BDF methods discussed below. Both of these codes deserve
some comment, and this section is meant to provide grounds for that, from the point
of view developed so far. Thus, once again, the presentation in this section is not
quite standard. To preserve harmony with the rest of this book, it uses Hermite
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interpolation in barycentric form in order to develop the formulas and to convey the
main ideas.

The barycentric formulæ method used here, while not standard in textbooks, has
its advantages. The method seems to have first been used in Butcher (1967). We
like it because it allows great flexibility in generating formulæ: It is not restricted to
constant step size, it provides an interpolating polynomial in barycentric form, and it
is easily programmed in a computer algebra system—all that is needed is the ability
to compute partial fractions. As we will see below, there may be some theoretical
advantages, too, but these have not yet been explored (and may only be marginally
helpful there anyway, if at all).

One-step methods such as Runge–Kutta methods (or Taylor series methods,
when it comes to that) seem inefficient when one realizes that previously computed
values and derivatives of the solution are not being used. It seems a waste. For many
problems, much greater efficiency can be obtained if that information is retained
and reused. Indeed, the oldest methods of this very popular type predate Runge and
Kutta, apparently going as far back as Bashforth’s work in 1835.11 The MATLAB ex-
emplar of this method is ode113, which is used in much the same way as the other
MATLAB codes we have discussed so far. More details can be found in Shampine
and Reichelt (1997).

The basic idea of multistep methods is simple: Fit a polynomial to some of the
data available, perhaps the values and/or derivatives at the last k steps,

y(tn−1),y(tn−2), . . . ,y(tn−k),y
′(tn−1),y

′(tn−2), . . . ,y
′(tn−k) ,

and use the fitted polynomial to predict the value of y(tn). A useful (indeed, essen-
tial) variation on this idea is to include the unknown y(tn) and y′(tn) = f (tn,y(tn))
in the polynomial fit—this gives an implicit equation to solve for y(tn), as happens
also with one-step implicit methods.

Once the polynomial has been found, it is a simple matter to compute the residual
and verify that a good reverse-engineered problem has been solved.

Example 13.9. For example, suppose we start by looking for a polynomial that fits
yn,yn−1,yn−2 and fn. To find our formula, consider the partial fraction expansion

1
(z− tn)2(z− tn−1)(z− tn−2)

=
1

w(z)
(13.213)

or, equivalently, consider the contour integral

0 =
1

2π i

ffi
C

y(z)
w(z)

dz = β00yn +β1yn−1 +β2yn−2 +β01 fn , (13.214)

where

β00 =
τn−2 − 2τn + τn−1

(τn − τn−1)2(τn − τn−2)2

11 See Hairer and Wanner (2002) for historical details.
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β01 =
1

(τn − τn−1)(τn − τn−2)

β1 =
1

(τn − τn−1)2(τn−1 − τn−2)
,

and

β2 =
1

(τn − τn−2)(τn−2 − τn−1)
.

Solving for yn, we find, with hn = τn − τn−1 and similarly for hn−1,

yn =
(hn + hn−1)hn

2hn + hn−1
fn +

(hn + hn−1)
2

hn−1(2hn + hn−1)
yn−1 − h2

n

hn−1(2hn + hn−1)
yn−2 .

If it so happens that hn−1 = hn = h, this simplifies to

yn =
2
3

h fn +
4
3

yn−1 − 1
3

yn−2 . (13.215)

This is the well-known formula called the backward differentiation formula (BDF)
of order 2. This is an implicit formula because fn involves the unknown yn. The
standard way of deriving this formula (which is different than the method used here)
uses backward difference formulæ (hence the name) and gives a nice recurrence
relation and a collection of results on these lovely formulae.

The reader may notice some familiarity in this argument, and be reminded of
the construction of the differentiation matrices for polynomials expressed in the
Lagrange basis. There is indeed a connection, which we will touch on later. �

We continue with our Lagrange/Hermite interpolation program as usual. Given
yn, fn,yn−1,yn−2 (and possibly even fn−1 and fn−2), we have the interpolant

z(t) =

2

∑
i=0

1

∑
j=0

j

∑
k=0

βn−i, jρn−i,k(t − tn−i)
k− j−1

2

∑
i=0

1

∑
j=0
βn−i, j(t − tn−i)

− j−1

, (13.216)

and, if we use the differentiation matrix, its derivative vector = Dρρρ gives

.
z(t) =

2

∑
i=0

1

∑
j=0

j

∑
k=0

βn−i, jn−i,k(t − tn−i)
k− j−1

2

∑
i=0

1

∑
j=0

βn−i, j(t − tn−i)
− j−1

. (13.217)

These can be analytically simplified, if desired, to get
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z(t) =− (θ − 1)2 θ yn−2

(1+ r)2 r
+

(θ − 1)2 (θ + r)yn−1

r

− (2θ − 3+ rθ− 2r)(θ + r)θ yn

(1+ r)2 +
h(θ − 1)θ (θ + r) fn

1+ r
, (13.218)

where t = τn−1 + θh, h = τn − τn−1, and rh = τn−1 − τn−2. This way, −r ≤ θ ≤ 1
covers both subintervals. The differentiation matrix from which we get the vector
of derivative values is

D =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 0

−2 3 r+3+r2

h2(1+r)2
2 2+r

h(1+r) 2 1+r
rh2 −2 1

h2(1+r)2r
2 r2+3 r
(1+r)2h

− r
1+r −−1+2 r

rh − 1
(1+r)2rh

− r(r+3)
h(1+r) r (1+r)2

rh − 3 r+1
hr(1+r)

⎤⎥⎥⎥⎥⎥⎦ , (13.219)

and this allows direct use of the barycentric form. Alternatively, an analytically sim-
plified derivative can be used:

.
z(t) =− (θ − 1)(3θ − 1)yn−2

(1+ r)2 rh
+

(θ − 1)(3θ + 2r− 1)yn−1

rh

− (θ − 1)
(
3rθ + 6θ + 2r2 + 3r

)
yn

(1+ r)2 h
+

(
3θ 2 + 2rθ − 2θ − r

)
fn

1+ r
. (13.220)

Using either form, the residual Δ(t) = .
z(t)− f (z(t)) may be computed at any

point. Doing this for this formula in series using MAPLE, we find

Δ(t) =
2

2+ r
(1−θ )θ (θ+ r)(fz,z(f, f)+ Jf ·Jf · f))h2 +O(h3) , (13.221)

denoting the Jacobian matrix by Jf and the second bilinear form by fz,z. This series
result is only obtainable if the starting value

yn−2 = yn−1 − rh f (yn−1)+
(rh)2

2
Jf · f (13.222)

is used; this is asymptotically the local reference solution, predicted backward from
yn−1, correct to O(h2). If a different value is used, the residual is not O(h2) small.

This highlights an important point: To get a linear multistep method (LMM) such
as this one to be second-order, the starting values y0,y1, . . . ,yk−2 must be accurate
enough that a polynomial (or other interpolant) may be fit to the data while main-
taining the correct order residual. That is, the polynomial fit of the starting values
alone must already nearly satisfy the differential equation. If the starting data are
only O(h)-accurate, then (unless the problem is so well-conditioned that errors are
damped out as the integration proceeds) the overall method will also be just O(h).
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We remark that modern codes accept this limitation, but they try to ensure that the
constant hidden by the O-symbol is small enough that it doesn’t matter.

Definition 13.9. A linear multistep method of the form

0 = α0yn +α1yn−1 +α2yn−2 + . . .+αkyn−k

+ h(β0 f (yn)+β1 f (yn−1)+ . . .+βk f (yn−k)) (13.223)

is called a linear k-step method if |αk|+ |βk| �= 0 and is called implicit if β0 �= 0
(because then to find yn, one must solve (13.223), which is nonlinear in general).
The method is of order p if, when there is an interpolant s(t) to the starting values
(tn− j,yn− j), 1≤ j ≤ k, with residualΔs(t)= s′(t)− f (s(t)) of size ‖Δs(t)‖≤Khp for
some constant K, then there exists a solution yn of (13.223) such that an interpolant
z(t) can be found for (tn− j,yn− j),0≤ j ≤ k (note the wider interval now, going down
to j = 0) with

‖Δz(t)‖ ≤ K̂hp (13.224)

for some K̂ only at most modestly larger than K. Here h is taken to be a representa-
tive mesh width, and the relevant limit is as h → 0. �

This presentation and definition differ from Butcher (2008b), Hairer and Wanner
(2002), and Hairer et al. (1993). With these definitions, we could say here that an
LMM was convergent in residual for an ODE with Lipschitz continuous f on an
interval a ≤ t ≤ b if, for every ε > 0, there existed a mesh a = t0 < t1 < · · · < tn =
b with ‖Δ(t)‖ ≤ K̂hp ≤ ε for every consecutive k + 1 mesh points (because n is
finite, we may take K to be the largest that appears in the definition). Proving LMM
convergent (even with the standard definitions) is somewhat technical. See chapters
V.7 and V.8 of Hairer and Wanner (2002) for an impressive collection of results
(including for some nonlinear problems). See also Shampine (2002).

Here we do not do this. Instead, we give the reader tools to verify that the particu-
lar solution just computed (by any LMM) to the reader’s special problem of interest
has been solved to the reader’s satisfaction: Namely, just compute the residual, and
the condition number. It would be nice if LMM were always convergent in residual;
it would be nice if we could prove it. But beyond translating some of the standard re-
sults into the notions used here, we have not done so. Moreover, there are problems
(e.g., chaotic problems) that do not satisfy the hypotheses of the standard theorems,
which nonetheless appear to be convergent in residual. So it appears that there is
some work to do here.

13.6.1 Stability of LMM

We now look at the crucial notion of instability in LMM. We do not need a
complicated example to show this. Let us look at the equal h formula relating
yn,yn−1,yn−1,yn−3, and y′n−1 but not y′n (so the formula is explicit). This means that
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the natural rational function to consider is

1
(z− τn)(z− τn−1)2(z− τn−2)(z− τn−3)

, (13.225)

where τk = τ0+kh. After the usual partial fraction expansion and simplification, we
get

yn = 3hy′n−1 −
3
2

yn−1 + 3yn−2− 1
2

yn−3, (13.226)

which we expect to be exact for polynomials of degree 2 or less. Indeed, when we
try it out in exact arithmetic on the problems y′ = 0, y′ = 1, y′ = t, and y′ = t2, we
do indeed get the exact solutions, but we do not for y′ = t3. Hence, this method is
second-order accurate.

Now, let’s consider the exact solution of y′ = 0 again, but this time taking into
account rounding errors. For this equation, we can solve the recurrence relation
exactly, as we had claimed above. The recurrence equation is

yn =−3
2

yn−1 + 3yn−2− 1
2

yn−3 . (13.227)

As usual for linear recurrence relations, we look at solutions that are powers. Putting
yn = ξ n and dividing the result by ξ n−2 give

ξ 3 =−3
2
ξ 2 + 3ξ − 1

2
. (13.228)

This cubic equation has roots 1 and −5/4±√
33/4. It turns out to be a crucial fact that

one of the ‘extra’ roots, namely, −5/4−√
33/4, is larger than 1 in magnitude.

The general solution of the recurrence relation is a linear combination of powers
of all three roots:

yn
.
= c11n + c2(−5/4+

√
33/4)n + c3(−5/4−√

33/4)n . (13.229)

If exact starting conditions and exact arithmetic are used, then the correct solution
yn = c1 comes out; this is the exact solution of y′ = 0. If, however, a tiny error is
made in starting the integration, we don’t get c2 = 0 and c3 = 0. For instance, we
might start with y0 = c1,y1 = c1+ε,y2 = c1; then neither of the coefficients c2 or c3

will be zero. Because c3ξ n grows exponentially, eventually this so-called parasitic
root dominates, swamping the true solution. This method, although accurate to as
high an order as possible, is unstable.

A linear multistep method that can solve y′ = 0 without introducing parasitic
roots larger than 1, or multiple roots with magnitude 1, so that rounding or other
errors are not amplified as the iteration proceeds, is called 0-stable, or alternatively
D-stable (in honor of Germund Dahlquist). Methods that introduce parasitic roots
that amplify errors are called unstable.
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Let us now look at an implicit method, fitting yn,yn−1,yn−2,yn−3, and y′n (but not
y′n−1 this time). We get

yn =
6

11
hy′n +

18
11

yn−1 − 9
11

yn−2 +
2
11

yn−3 . (13.230)

This turns out to be a well-known method in another guise; this is the third-order
BDF method. This time, when we solve y′ = 0, we get

yn = c11n + c2

(
7+ i

√
39

22

)n

+ c3

(
7− i

√
39

22

)n

. (13.231)

These parasitic roots are smaller than 1 in magnitude (=
√

22/11
.
= 0.42640). Hence,

the influence of small errors will be damped. As a result, the implicit formula is to
be preferred if we can find an acceptable way to solve the (in general nonlinear)
equation (13.230) when y′n = f (tn,yn) is used.

A standard and effective method is to use both methods together! That is, we use
an explicit method to get an initial guess for the solution of the implicit method. In
the vernacular, we predict yn using the unstable method, evaluate f (tn, ŷn) using the
predicted value, and then correct using the implicit formula:

ŷn = 3h f (tn−1,yn−1)− 3
2

yn−1 + 3yn−2− 1
2

yn−3 (13.232)

yn =
6
11

h f (tn, ŷn)+
18
11

yn−1 − 9
11

yn−2 +
2

11
yn−3 . (13.233)

Naturally enough, this is called a predictor–corrector method. This automatically
fixes the zero-stability problem [even with just one PEC cycle—that is, predict,
evaluate, correct—or we could correct again, if we wished (P(EC)2 mode)—and,
of course, we will need f (tn,yn) on the next step anyway, so P(EC)nE mode is
the usual way to proceed]. Any predictor–corrector method is an explicit method,
however, even though it is influenced by a fully implicit method; hence, it may suffer
some difficulty with stiff problems.

13.6.2 More Stability Issues

Let us use a corrector to improve the (very bad) method (13.226), and try it out
on one step of the Dahlquist test problem y′ = λy. This, of course, includes the
previous problem, when λ = 0, so this is a generalization: Methods that are stable
for this problem will be 0-stable too. Here μ = hλ , and we will think about stiff
stability (no longer about 0-stability) in the complex μ-plane. We have
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ŷn = 3μyn−1 − 3
2

yn−1 + 3yn−2− 1
2

yn−3

yn =
6

11
μ(3μyn−1 − 3

2
yn−1 + 3yn−2− 1

2
yn−3)+

18
11

yn−1 − 9
11

yn−2 +
2
11

yn−3 .

Supposing yn = rn, we get

r3 =
18
11
μ2r2 − 9

11
μr2 +

18
11
μr− 3

11
μ+

18
11

r2 − 9
11

r+
2
11

(13.234)

by dividing by rn−3. Unlike with RK methods, where we use z = hλ , the convention
for multistep methods is to use another letter, μ = hλ , so z is available should we
desire to use the z-transform. Of course, there is also the notational conflict with the
interpolant z(t), but that is less confusing.

The analysis of this stability polynomial is possible by considering a kind of bi-
furcation study. Suppose that all three roots of the polynomial (as a polynomial in
r) are less than 1 in magnitude, for some special value of μ . Then consider altering
μ , moving it away from that special value. The magnitudes of the roots will (in gen-
eral) change; it’s possible that one or more of the roots will increase in magnitude
until the magnitude is |r|= 1. Now, the curve parameterized by r = eiθ is a descrip-
tion of the locus of roots of critical magnitude, and we are thus interested in just
when (if ever) any of the three root paths cross this locus. On substituting r = eiθ

into (13.234), we find that the equation

0 =
18
11

e2iθ μ2 +

(
− 9

11
e2iθ +

18
11

eiθ − 3
11

)
μ

+

(
−e3iθ +

18
11

e2iθ − 9
11

eiθ +
2

11

)
defines the boundary of the region inside which rn → 0. See Fig. 13.14 and
Problem 13.33.

This example method is, in fact, pathetic—its stability region is not even as large
as the stability region for the explicit fourth-order Adams method, which we will see
later. The problem is that the predictor is not 0-stable. Certainly, the implicit method,
if used by itself, is very good (this is BDF3, as we said). Its stability polynomial is

μ =
11
6
− 3r−1 +

3
2

r−2 − 2r−3 . (13.235)

If we let r = cos(θ )+ isin(θ ), we find the locus in the μ-plane at which one of the
parasitic roots has magnitude 1. When you do this (see Exercise 13.15), you find that
the implicit method is stable outside a bulgy apple-shaped region mostly in the right
half-plane (this method is not A-stable, but nearly). If you plot the region together
with the region for the predictor–corrector method, you find that the stability region
has been greatly reduced, indeed.
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Fig. 13.14 The boundary of the stability region for the nonstandard (and really bad) predictor–
corrector method in the complex μ-plane (μ = x+ iy). Since this boundary crosses itself, a separate
investigation of each of the loops (and the exterior) is needed. A simple way is to take a sample
μ value from each region, and compute the zeros of Eq. (13.234). When this is done, we find that
only the small quasitriangular piece touching (x,y) = (−1/3,0) and bordered by a curve that is
nearly straight up and down—but not quite, see Problem 13.33—contains any μ values for which
all three of the roots of (13.234) are less than 1 in magnitude

13.6.3 Variable Step-Size Multistep Methods, Derived Using
Contour Integral Methods

One standard derivation of the Adams methods, which is characterized by

yn = α1yn−1 + h
k

∑
i=0

βi f (yn−i) , (13.236)

and several variations thereof, uses quadrature rules on the integral form

y(t) = yn−1 +

ˆ t

tn−1

f (y(τ))dτ (13.237)

of y′ = f (y) on polynomial interpolants through (τn−i, f (τn−i)), for 0 ≤ i ≤ k. Sim-
ilarly, a standard derivation of the BDF methods (backward difference formulæ) in-
stead uses polynomial interpolation of yn−i and insists that the differential equation
be satisfied at one point.
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It is instructive to consider an alternative derivation using contour integrals (since
we have the machinery readily at hand in this book). BDF methods turn out to be
easier, and so we start with them. We have already done this for the second-order
BDF method, in Example 13.9. It is very simple to use a CAS to derive BDF for
higher orders just by doing a partial fraction expansion of

1

(z− tn)
2

k

∏
j=1

(z− tn− j)

, (13.238)

but it’s not even hard by hand. In fact, we’ve done it already when we computed the
elements of the differentiation matrix for polynomials expressed in the Lagrange ba-
sis (see Eq. 11.22). For didactic purposes, we do the computation again in a manner
specialized to the application at hand. We continue by writing the right-hand side:

=
βn,0

z− tn
+

βn,1

(z− tn)2 +
k

∑
j=1

βn− j

z− tn− j
, (13.239)

where

βn− j = (tn− j − tn)
−2

k

∏
�=1
� �= j

(tn− j − tn−�)
−1 , (13.240)

for 1 ≤ j ≤ k, and

βn,1 =
k

∏
j=1

(tn − tn− j)
−1 . (13.241)

The only “difficult” one, βn,0, succumbs to a simple derivative computation:

u =
k

∏
j=1

(z− tn− j)
−1

lnu =−
k

∑
j=1

ln(z− tn− j)

u′

u
=−

k

∑
j=1

1
z− tn− j

.

Then, because

u(z)
(z− tn)2 =

u(tn)
(z− tn)2 +

u′(tn)
(z− tn)

+O(1) ,

we have
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u′(tn) = βn,0 =−βn,1

k

∑
j=1

1
tn − tn− j

. (13.242)

It follows that

0 =
1

2π i

ffi
C

p(z)

(z− tn)
2

k

∏
j=1

(z− tn− j)

dz (13.243)

for all polynomials with deg p ≤ k, and so we have

0 = βn,1 p ′(tn)+βn,0p(tn)+
k

∑
j=1
βn− j p(tn− j), (13.244)

or, rewriting this expression,(
k

∑
j=1

1
tn − tn− j

)
yn = fn +

k

∑
j=1

βn− j

βn,1
yn− j . (13.245)

These formulæ are equivalent, but seem to us to be rather simpler than those derived
using divided differences. For example, one sees immediately that none of the αn− j

is zero.
The connection with the differentiation matrix is that the formulæ are exactly the

same: however, we solve for yn and divide by its coefficient, instead of solving for fn

as we did to derive the entries in the differentiation matrix. The lesson is the same:
If you can compute partial fractions, you can develop variable-step BDF methods.

These methods have nontrivial regions of stability for 1 ≤ k ≤ 6, but do become
unstable for k > 6 in the equally spaced case; see Hairer and Wanner (2002) for a
proof.

13.6.4 Adams’ Methods

Now, let us go on to the more interesting problem of using contour methods to
derive Adams’ methods. Using this technique, one may derive a great many related
formulæ. We use John Butcher’s idea of choosing B(z) to make certain residues
zero. Put

w(z) =
k

∏
i=0

(z− tn−i)
2 (13.246)
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and

B(z)
w(z)

=
k

∑
i=0

(
αi,0

z− tn−i
+

αi,1

(z− tn−1)2

)
. (13.247)

By scaling, we may insist, say, that B(tn−1) = 1. Since the Adams formulæ do not
contain yn−2,yn−3, . . . ,yn−k, we must have αi,0 = 0 for 2 ≤ i ≤ k. These k− 1 con-
straints, plus the constraint B(tn−1) = 1, mean that we can take B(z) to be of degree
k − 1 (it may happen that degB < k − 1, but we discount this possibility). If the
barycentric weights for

1
w(z)

=
k

∑
i=0

(
βi,0

z− tn−i
+

βi,1

(z− tn−i)2

)
(13.248)

are first computed, then by resummation, we have

αi,0 = βi,0B(tn−i)+βi,1B′(tn−i) . (13.249)

Thus, for 2 ≤ i ≤ k, we must have

B′(tn−i) =

⎛⎜⎝2
k

∑
�=0
� �=i

1
tn−i − tn−�

⎞⎟⎠B(tn−i) . (13.250)

This is a curious kind of interpolation condition and, who knows, it might even
be analytically soluble. But the following computational procedure suffices to find
B(tn−i) for 2 ≤ i ≤ k and thus to specify B uniquely. After that,

αi,1 = βi,1B(tn−i) (13.251)

gives us the coefficients for 1 ≤ i ≤ k, while a separate Lagrange evaluation gives us
B(tn) and a separate use of the differentiation matrix D on tn−1, tn−2, . . . , tn−k gives
us B′(tn), completing the method.

But first we need the B(tn−i). Let D be the differentiation matrix mentioned
above. Then, we remind you that

Di j =− (tn− j − tn−i)
−1β j

βi
(13.252)

if i �= j, while

Dii =−∑
i�= j

Di j . (13.253)

Here, the single-indexed βis are the Lagrange barycentric weights on the nodes
tn−1, tn−2, . . . , tn−k:
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βi =
k

∏
j=1
j �=i

(tn−i − tn− j)
−1 . (13.254)

The Adams methods can then be found from

0 =
1

2π i

ffi
B(z)
w(z)

p(z)dz

= αn,0 p(tn)+αn,1 p ′(tn)+αn−1,0 p(tn−1)+αn−1,1p ′(tn−1)+
k

∑
j=2
αn− j,1 p ′(tn− j)

(here we have switched notation to αn−i,0 instead of αi,0). However, to find the
αn− j,�, we must find B(tn− j), 2 ≤ j ≤ k, then B′(tn−1), then B(tn), and B′(tn).

After forming the differentiation matrix D, note that

D

⎡⎢⎢⎢⎢⎢⎣
1

B(tn−2)
B(tn−3)

...
B(tn−k)

⎤⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
B′(tn−1)
B′(tn−2)

...
B′(tn−k)

⎤⎥⎥⎥⎦ (13.255)

and that the last k− 1 entries of the vector on the right are known, since

B′(tn−i) =−βi,0

βi,1
B(tn−i) =

⎛⎜⎝2
k

∑
�=0
� �=i

1
tn−i − tn−�

⎞⎟⎠B(tn−i) . (13.256)

Form the (k− 1)× (k− 1) matrix

A = D(2 : k,2 : k)+ diag(
βi,0

βi,1
, i = 2..k) . (13.257)

Then,

A

⎡⎢⎢⎢⎣
B(tn−2)
B(tn−3)

...
B(tn−k)

⎤⎥⎥⎥⎦=
[
D(2 : k,1)

]
(13.258)

defines the B(tn−k) uniquely if A is nonsingular. Curiously, the matrix A sometimes
is singular, for certain arrangements of steps tn−1, tn−2, . . . , tn−k, even when the in-
terpolation can be done after all; this is a problem with the process, not the problem.
This means that this technique may also suffer from ill-conditioning on occasion.

Take, for example, k = 2. In this case, only one residue must be set to zero, and
we find that we can do this only if
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tn + 2tn−1 − 3tn−2 �= 0. (13.259)

If the tk are monotonic, this is no problem because this quantity is always positive:
But if the tk are not monotonic, for instance, tn − tn−1 = h and tn−1 − tn−2 = rh and
r = −1/3 (a strange thing to do—this means tn > tn−2 > tn−1), then we are appar-
ently in trouble. However, if tn > tn−1 > tn−2 as usual, this determinant is positive.
Following the procedure outlined above, we get

yn = yn−1 + h

(
2+ 3r

6(1+ r)
fn +

1+ 3r
6r

fn−1 − 1
6(1+ r)r

fn−2

)
, (13.260)

which reduces to

yn = yn−1 + h

(
5
12

fn +
2
3

fn−1 − 1
12

fn−2

)
(13.261)

in the equally spaced case.
For k = 3, tn − tn−1 = h, tn−1 − tn−2 = rh and tn−2 − tn−3 = sh, we find by this

method (solving a 2× 2 symbolic system)

yn = yn−1 + h(β0 fn +β1 fn−1 +β2 fn−2 +β3 fn−3) (13.262)

with

β0 =
1

12
3+ 6rs+ 8r+ 4s+ 6r2

(1+ r)(1+ r+ s)
(13.263)

β1 =
1

12
1+ 6rs+ 4r+ 2s+ 6r2

r(r+ s)
(13.264)

β2 =− 1
12

1+ 2r+ 2s
(1+ r)rs

(13.265)

β3 =
1

12
1+ 2r

(1+ r+ s)(r+ s)s
. (13.266)

It reduces to 3/8, 19/24,−5/24, 1/24 when r = s = 1. The process fails if

1+ 6rs+ 4r+ 2s+ 6r2 = 0 (13.267)

(which it never is if r > 0,s > 0, but still). One can recover a solution afterward
by taking limits; but did we divide by zero, or what? What actually happens in this
strange case? Take k = 2 and r =−1/3; let us do a direct fit. We wish to have

yn = yn−1 + h(β0 fn +β1 fn−1 +β2 fn−2) , (13.268)

where now tn−1 = tn−2 − h
3 and tn = tn−1 + h. This is to be accurate for polynomial

y of degree at most 3. Letting y = y0 + y1 + y2t2 + y3t3, we find
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yn = yn−1 + h

(
1
4

fn + 0 fn−1 +
3
4

fn−2

)
, (13.269)

which seems quite strange until you remember that tn−2 is closer to tn than is tn−1,
and so it makes sense that it should be weighted more accurately. But we also see
that the restriction r �= −1/3 of the previous method was artificial—it’s not a real
restriction. This is seen in Butcher et al. (2011) also—the constraint of the form of
the partial fraction, which is used as a method of solution, plays a role. Here the
“problem” is that the coefficient of fn−1 needs to be zero, and this cannot happen
in the partial fraction expansion: The coefficient of 1/(z− tn−1)

2 cannot be zero, for
any choice of B(tn−1) �= 0. Thus, the method fails in this case, even when there is a
solution.

We leave this section having established a method for deriving multistep meth-
ods. Using the methods of Chap. 8, it is easy to construct an interpolant to the
discrete solution thus generated. Once that is done, it is straightforward to compute
and examine the residual.

13.7 The Method of Modified Equations

13.7.1 Correlations and Structure in the Residual

Now that we have defined various numerical methods, we can return to the point
made in the previous chapter about the residual being correlated with the solution.
We have written the reverse-engineered equation as

.
x(t) = f (t,x)+Δ(t) (13.270)

and indeed any particular numerical method generates a reverse-engineered equa-
tion of this kind. But the numerical value of Δ(t) actually depends on the computed
solution x(t) and its derivative, and it might be important or interesting to under-
stand the correlation. The so-called method of modified equations lets us construct
at least the first terms in an asymptotic series for Δ(t) in terms of x(t); asymptotic,
that is, as h → 0, where h is a representative step size. The analysis is possible for
variable-step-size methods, but we confine ourselves here to the case of fixed-time-
step methods. The analysis relies on two things: one, some algebraic manipulation
that we will detail below, and two, some physical understanding of the differential
equation form itself, and what certain modifications to it might mean physically. We
will pursue this point with an example, shortly.

Constructing a modified equation for such a method is not hard, technically, but
it is a bit slippery conceptually in that at some points in the process we think of
the numerical solution as being discrete, and then we replace that with a continuous
version. We thereby get a functional equation, which we solve in series by differen-
tiation; during that process, we think of h as being allowed to vary. At the end, we
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get a modified equation with h terms in it, which we then think of as fixed. Griffiths
and Sanz-Serna (1986) take some care to show how to make this process rigorous,
by later verification that an answer has been found. In this section we provide an
alternative method of verification, by using the residual. We will show that the nu-
merical solution can be interpolated in such a way that the residual in the modified
equation is asymptotically smaller than the residual in the original equation. That is,
this process will allow us to explain part of the residual as arising from correlations
with the solution. It is a surprisingly powerful idea, but is clearest by example.

We begin by simply writing down a modified equation for the fixed-time-step
forward Euler method (indeed this is the same approach Griffiths and Sanz-Serna
(1986) take at first, and it is pedagogically effective). If we are trying to solve

.
x(t) =

f(x(t)) by the fixed-time-step forward Euler method, producing iterates yn by means
of the rule yn+1 = yn+hf(yn), then we will now show that the iterates yn more nearly
solve the modified problem

.
z(t) =

(
I− h

2
J f (z(t))

)
f(z(t)) . (13.271)

Notice that the h that is used in the method appears in the equation. Suppose that we
are solving the simple harmonic oscillator; that is, suppose that

f(z) =
[

0 1
−1 0

]
z . (13.272)

A short computation shows that the modified problem above is

.
z(t) =

[
h/2 1
−1 h/2

]
z . (13.273)

Call the matrix occurring here A(h), which is A(h) = A(0)− h
2 A2(0). We now con-

struct an interpolant tailored to this problem. (We know that if we interpolate the nu-
merical solution however we like, the best possible residual we can obtain from the
original problem will be O(h) in size—that’s because forward Euler is a first-order
method.) We use piecewise Hermite interpolation, matching the numerical solution
values yn and yn+1, but we choose the derivatives at either endpoint to match the
modified problem. Our conditions are, then,

ρ0,0 = yn =

[
s
c

]
(13.274)

ρ1,0 = yn+1 = yn + hA(0)yn =

[
s+ hc
c− hs

]
(13.275)

ρ0,1 = A(h)yn (13.276)

ρ1,1 = A(h)yn+1 , (13.277)
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and we use our standard piecewise Hermite interpolant. We have chosen a symbolic
representation for a typical vector yn above: The first component s, the second c
(for sine and cosine). Remember that, asymptotically, the residual will have maxi-
mum size at tn + h/2; because it is zero at either end, we can show that the residual
in (13.271) is O(h2) everywhere by sampling it at that one point (if we do the arith-
metic in a computer algebra system, it’s easy enough to do it for all t in the interval,
but for hand computation, it’s tedious enough to do it just at that one point—luckily,
as argued, this suffices to show what we want). A short computation shows that at
the midpoint, the residual is

Δ(tn +
h
2
) =

h2

4

[
c
−s

]
+O(h3) . (13.278)

If we phrase this another way, what we have shown is that the forward Euler solution
to

.
x = Ax can be interpolated in such a way that the residual in

.
z = Az+

h
2

Iz+ h2v(t) (13.279)

has ‖v(t)‖ = O(1). That is, the forward Euler solution to
.
x = Ax is actually a bet-

ter solution to a problem with altered dynamical behavior, in fact one with terms
like exp(ht/2)cos(t) and exp(ht/2)sin(t) in its solution—that is, solutions that grow
exponentially on the timescale O(1/h). This is indeed what we see: Plotting a phase
diagram shows that the forward Euler solution to this problem spirals outward. This
allows us to interpret the numerical error of forward Euler on the simple harmonic
oscillator, at least partially, as introducing some negative damping.

At this point, we stress that we are not trying to improve the numerical method
(here, forward Euler), but rather to understand what it does. This requires us to be
able to look at a modified (here, linear) system

.
y(t) = A(h)y(t) and realize that the

real parts of the eigenvalues (here h/2) determine the asymptotic growth or decay
of the solution. People who are familiar with simple harmonic oscillators (people
such as mechanical engineers, for whom the vibration of structures is a serious mat-
ter) are well skilled in interpreting the pure imaginary parts of the eigenvalues as
frequencies, and the real parts as damping (positive, meaning the vibrations decay
away over time, or negative, meaning that they grow—as happens, for example,
when energy is fed to the structure by flow of a surrounding fluid, such as wind on a
bridge deck). For such people, the modified equation tells an immediate story about
what forward Euler is doing to the original problem. Similarly, for an applied math-
ematical modeler, who is investigating a particular model, terms in the equation can
usually be interpreted in terms of what is really happening. This technique, finding
a modified equation, is of much potential value to the modeler who is investigating
the fidelity of the numerical method used.

It is a simple matter to do a similar analysis for backward Euler on this problem,
and one finds that the residual to the problem with A(−h) is now O(h2); that is,
backward Euler introduces some positive damping, with terms like exp(−ht/2 cos(t)
and exp(−ht/2)sin(t). See Exercise 13.17.
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There is an interesting and subtle point hiding here, to do with the use of the
(apparently trivial) change of a second-order scalar problem, y′′+ y = 0, to a first-
order system by the usual embedding of variables y1 = y, y2 = y′. The residual above
is a vector residual. If we worked directly with the second-order scalar problem, we
would want a scalar residual. That is, we absolutely would not want any defect in the
equation y′1 = y2, in the (artificial) embedding of the scalar second-order problem
into the first-order system. In the above analysis, that artificial equation is indeed
perturbed, and we found that the modified equation was y′1 = y2 +(h/2)y1 +O(h2).
What does this mean? For this linear problem, there is no great consequence: We
can make a near-identity change of variables, u = By, with (for example)

B =

[
1− h2/8 h/2

−h3/16 1+ h2/8

]
(13.280)

and the modified equation becomes, in the new variables,

u′ =
[

0 1
−1− h2/4 h

]
u+O(h2) . (13.281)

Because the first row is [0,1], this equation can be interpreted as an embedding of the
scalar equation w′′ − hw′+(1+ h2/4)w = O(h2) into a two-dimensional first-order
system. This scalar equation has negative damping (again h/2), leading to terms like
exp(ht/2) times sines and cosines. For nonlinear problems, this is more of an issue,
or can be, and may be analyzed by a procedure akin to the construction of so-called
normal forms. We leave you with the thought that the size of the residual really
does depend on the problem formulation. If one is interested in the scalar residual,
one should be careful to construct a method that is easily interpreted as a scalar
higher-order method.

13.7.2 Finding a Modified Equation

The procedure for finding a modified equation is, when carried out, fairly simple.
One need not be rigorous, as was pointed out in Griffiths and Sanz-Serna (1986),
provided one is careful to verify afterward that the numerical solution does indeed
follow the solution of the modified equation more closely. Since rigor is not needed
in the derivation of modified equations, the task is simplified. A little thought and
experimentation show that modified equations are by no means unique.

For forward Euler, begin with the definition

xn+1 = xn + hf(xn) , (13.282)

and now interpret this as a functional equation by replacing xn by v(t), and xn+1 by
v(t + h). We get
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v(t + h) = v(t)+ hf(v(t)) , (13.283)

which can now be expanded in a Taylor series:

v(t)+ h
.
v(t)+

h2

2
..
v(t)+O(h3) = v(t)+ hf(v(t)). (13.284)

On removing the v(t) from each side and dividing both sides by h, we obtain

.
v(t) = f(v(t))− h

2
..
v(t)+O(h2) . (13.285)

This is a singular perturbation of the original equation, and not very satisfactory, so
we try to remove the second derivative term, by differentiating this equation once to
get

..
v(t) = J f (v(t))f(v(t))+O(h), (13.286)

which, when substituted into (13.285), gives

.
v(t) = f(v(t))− h

2
J f (v(t))f(v(t))+O(h2), (13.287)

as previously claimed. We see that indeed the process is quite simple; it’s only when
one tries to think about the answer, or tries to apply the process to a nonstandard
method, that difficulties seem to arise. Once a candidate modified equation is found,
it is quite important to verify, either by the method of the residual, or by the local
error bound method of Griffiths and Sanz-Serna (1986), that the modified equation
really does explain some features of the numerical solution.

Example 13.10. Suppose we wish to solve
..
x+ x = 0 using an “exotic” method, the

second-order Taylor series method, without first transforming this equation to a first-
order system. By this we mean that our method is a second-order Taylor series
method for

.
x(t), with x(t) = xn +

´ t
τ=tn

.
x(τ)dτ following naturally exactly. That is,

we denote our computed values approximating
.
x(tn) as

.
xn, and use the method

.
xn+1 =

.
xn − hxn − h2

2
.
xn , (13.288)

where we have used the original differential equation to replace
..
x(tn) with −x(tn),

that is, xn, and taken one derivative of the equation to get x(3)(t) = − .
x(t) so that

the next term contains − .
xn. Then exact integration of the second-order Taylor inter-

polant gives

xn+1 = xn + h
.
xn − h2

2
xn − h3

3!
.
xn . (13.289)

A little thought should convince you that this formula really just “follows along”
the second-order formula above that generates successive approximations to

.
x(tn).
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Finding a modified equation for this method is quite simple. We follow the same
general method sketched above. The first step is to replace the discrete equation with
a functional equation:

.
v(t + h) =

.
v(t)− hv(t)− h2

2
.
v(t) . (13.290)

We now wish to approximate that functional equation12 with a differential equation.
To do this, we expand

.
v(t + h) in a Taylor series. Working to O(h5), we get

.
v(t)+ h

..
v(t)+

h2

2
v(3)(t)+

h3

3!
v(4)(t)+

h4

4!
v(5)(t)+O(h5) =

.
v(t)− hv(t)− h2

2
.
v(t) .

The two leading
.
v(t) on either side cancel, and then we may divide both sides by h.

Isolating
..
v(t) in what remains, we find

..
v(t) =−v− h

2

( .
v+ v(3)

)
− h2

3!
v(4)− h3

4!
v(5) +O(h4) . (13.291)

Differentiating (13.291) with respect to time and keeping only terms to O(h3), we
get

v(3) =− .
v− h

2

(..
v+ v(4)

)
− h2

3!
v(5) +O(h3) . (13.292)

Differentiating again gives

v(4) =−..
v− h

2

(
v(3) + v(5)

)
+O(h2) . (13.293)

Next, we have

v(5) =−v(3) +O(h) . (13.294)

Using (13.294) in (13.293), we see that

v(4) =−..
v+O(h2), (13.295)

and, using these in (13.292), we find (after using the equation to simplify itself as
well)

v(3) =− .
v− h2

3!
.
v+O(h3) . (13.296)

12 This functional equation is actually a neutral delay differential equation, a kind of equation that
we will study in Chap. 15. Solving such equations by expanding in a series in the delay is known
to be a potentially misleading technique; however, for this specialized application, all is well and
we wind up with a modified equation that explains the numerics nicely.
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Finally, we may now use all these to simplify (13.291). If we have done our algebra
correctly, then what we get is

..
v =−v+

h3

12
.
v− h2

3!
(−..

v)− h3

4!
.
v+O(h4) (13.297)

or

..
v =−v+

(
h3

12
− h3

24

)
.
v− h2

3!
(v)+O(h4) (13.298)

or, at last,

..
v− h3

24
.
v+

(
1+

h2

3!

)
v = O(h4) . (13.299)

We compare this to the well-known schema for damped harmonic oscillation,

..
x+ 2ζω .

x+ω2x = 0, (13.300)

which has analytic solution

x(t) =

⎛⎝α cosω
√

1− ζ 2 t +

⎛⎝ β +αζω

ω
√

1− ζ 2

⎞⎠sinω
√

1− ζ 2 t

⎞⎠e−ζωt , (13.301)

satisfying x(0) = α ,
.
x(0) = β . We thus identify the frequency as

ω = 1+
h2

12
+O(h4) (13.302)

and the damping as

ζ =− h3

48
+O(h5) (13.303)

[a higher-order computation is needed, in fact, to show that ζ is accurate to O(h5)].
Therefore, we would expect that using this numerical method would give us an
O(h2) error in the frequency, and introduce negative damping of O(h3), with negli-
gible detuning

√
1− ζ 2 = 1+O(h6). Other numerical effects would also be smaller

than O(h3).
Now, carry out the numerical solution with the following code:

1 % Method of modified equations exotic example
2 % x'' + x = 0
3 %
4 % 2nd order Taylor series method (for x')
5 % exact integration of x' to get x
6 %
7 a = 0;
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8 b = 5*pi;
9 n = 30;

10 h = (b-a)/n;
11 x = zeros(1,n+1);
12 x(1) = 1;
13 dx = zeros(1,n+1);
14 dx(1) = 0;
15

16 % Integration steps
17 for i=2:n+1,
18 dx(i) = dx(i-1) - h*x(i-1) - hˆ2*dx(i-1)/2;
19 x(i) = x(i-1) + h*dx(i-1) - hˆ2*x(i-1)/2 - hˆ3*dx(i-1)/6;
20 end
21 % Integration complete.
22

23 tc = linspace(a,b,n+1);
24 tf = linspace(a,b,5*n+1);
25 xref = cos( tf );
26 xrefc = cos( tc );
27

28 % Analytical solution of modified equation
29 w = 1 + hˆ2/12;
30 zet = -hˆ3/48;
31 alf = x(1);
32 bet = (dx(1) + zet*w*alf)/w/sqrt(1-zetˆ2) ;
33

34 % fine and coarse
35 modxref = exp(-zet*w*tf).*(alf*cos(w*sqrt(1-zetˆ2)*tf) ...
36 + bet*sin(w*sqrt(1-zetˆ2)*tf) );
37 modxrefc = exp(-zet*w*tc).*(alf*cos(w*sqrt(1-zetˆ2)*tc) ...
38 + bet*sin(w*sqrt(1-zetˆ2)*tc) );
39 % Second plot shows the errors clearly; first plot is nicer.
40 figure(1),plot( tc, x, 'k+', tf, xref, 'k--', tf, modxref, 'k-.'

);
41 set(gca,'fontsize',16);
42 axis([0,16,-1.5,1.5]);
43 set(gca,'XTick',0:2:16);
44 gure(2),semilogy( tc, abs(x-xrefc), 'k--', tc, abs(x-modxrefc), '

k-.')
45 set(gca,'fontsize',16);
46 axis([0,16,1E-4,1]);
47 set(gca,'XTick',0:2:16);

When we actually carry out the numerical solution with this code, we obtain
Figs. 13.15 and 13.16. We find that the modified equation does indeed explain
the numerics quite well: We see that the phase is shifted by O(h2), as predicted, and
that there is negative damping (exponential growth) of about the correct order as
well.

Carrying out the analysis to two higher orders gives instead

..
v− (h3/24+ 7h5/480)

.
v+(1+ h2/6+ 19h4/720)v = O(h6) , (13.304)
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Fig. 13.15 Crosses represent second-order Taylor series solution with h = 5π/30. The dashed line
is cos(t), the reference solution. The dash-dot line is the exact solution to the modified equation,
and one sees that this solution explains the numerics quite well: The phase shift and the negative
damping both appear the same on this graph
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Fig. 13.16 The dashed line is the difference between the Taylor series solution and cos(t), the
reference solution. The dash-dot line is the difference between the exact solution and the modified
equation. This figure shows more clearly than the previous figure that the solution of the modified
equation is closer to the results of the numerics

and the solution of this equation is noticeably different for the (not asymptotically
small) values of h that we have used, and this raises another point: The resemblance
of the solution of the modified equation to the numerical solution computed previ-
ously is to be expected only for a compact interval of time, and agreement will be
better as h → 0. Nonetheless, we see here that the modified equation has explained
the numerics, in at least a qualitative sense. �

We end this section by pointing out that the most important benefit from this
approach, namely, the explanation of the largest contribution to the residual from
correlations with the solution, can be received by computing the first term in the
asymptotic series. Higher-order terms return diminishing value for rather more ef-
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fort for each term. In certain cases (see, e.g., Corless 1994a), one can find an infinite-
order expansion (which often happens to be divergent, but no matter) and learn a
surprising amount of information; but this situation is rather rare. For the simple
case of

.
y(t) = λy(t), one can even find an exactly correct differential equation, not

just an infinite-order series expansion, whose solution interpolates the numerical
solution of the original equation (see Exercise 13.21).

13.8 Geometric Integration

We have largely considered methods for solving quite general initial-value problems
for ODEs. For special classes of problems with special properties, we may be able
to do better. Certain applications such as molecular dynamics, computational as-
tronomy, mechanical and electrical systems, and others use models that have useful
invariants, such as conservation of energy or momentum. A large and useful class
of such models is exemplified by Hamiltonian mechanics problems, where the dy-
namics are governed by a Hamiltonian H. In canonical coordinates, the equations
of motion are

dp
dt

=−Hq(p,q)

dq
dt

= Hp(p,q) , (13.305)

where the vector p typically represents momentum variables and the vector q rep-
resents position. Often the Hamiltonians are of special form, H = T (p) +U(q),
where T represents kinetic energy and U the potential. This is called a separable
Hamiltonian.

In keeping with the backward error point of view, we would say that a numerical
method for solving (13.305) was a good one if it gave you (nearly) the reference
solution to a nearby Hamiltonian problem. The so-called symplectic methods do
just this.

One of the simplest such methods goes by the name of the “leapfrog”
method,which is also called the Störmer method (if you do computational geo-
physics or climate modeling) and also called the Verlet method (if you do molecular
dynamics). Following Preto and Tremaine (1999) and also Hairer et al. (2006), we
mean the “drift–kick–drift” version of leapfrog:

q(1) = qn +
h
2

Hp(pn,qn) , p(1) = pn

q(2) = q(1) , p(2) = p(1)− hHq(p(1),q(1))

qn+1 = q(2) +
h
2

Hp(p(2),q(2)) , pn+1 = p(2) . (13.306)
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That is, we first drift with constant momentum for half a step, then we kick the
system with the potential, and then we drift another half a step.

For second-order problems where the Hamiltonian is separable and furthermore
T (p) = (p2

1 + p2
2 + · · · p2

N )/2, the equations have
.
qi = pi and so are equivalent to a system

of second-order ODEs for the qi. Then this method is equivalent to

pn+1 = pn − hUq(Qn)

Qn+1 = Qn + hpn+1 , (13.307)

as you can see by putting Qn = qn + hpn/2. In either formulation, the method only
requires one evaluation of the force term Uq per step, just as Euler’s method does.
For this class of problems, however, the method is second-order and symplectic in
that it gives samples at equal step sizes tk = t0 +kh of vector functions p̃(t) and q̃(t)
that (nearly) satisfy the equations of motion from a perturbed Hamiltonian system

H̃ = H(p,q)+ h2H2(p,q)+ h4H4(p,q)+ · · · . (13.308)

That is, we can (spectrally nearly) interpolate the fixed-step-size skeleton by using
the solution of a nearby Hamiltonian problem. The smaller h is, the more work
we have to do, but the nearer the perturbed Hamiltonian is to the one we wanted.
See Calvo et al. (1994) as well as the previously mentioned references for how
to compute these perturbed Hamiltonians in general, but note that the method of
modified equations as discussed in Sect. 13.7 will work for particular examples and
methods.

For a variety of reasons, this is a more satisfactory backward error analysis than
our usual interpretation of the defect by a polynomial interpolant. First, the per-
turbation of the problem is autonomous (if the original problem is autonomous—
symplectic methods work for some time-dependent Hamiltonian problems as well).
This means that the perturbed differential equation has the same dimension as the
original. Second, many physical perturbations of, for example, computational as-
tronomy problems, are themselves Hamiltonian—think of neglecting the influence
of other planets, for example. Some, of course, are not, such as tidal friction or mi-
nor collisions, but these may be smaller than the Hamiltonian perturbations. Third,
the preservation of symplecity13 may better preserve certain statistical measures.
Given the chaotic nature of many Hamiltonian systems, of course, there is no hope
of ensuring small global forward error in trajectories, and so accurate statistics are
all that can be computed.

Example 13.11. When we solved the Hénon–Heiles problem in Example 12.14, we
mentioned only in passing that the problem was Hamiltonian. The Hamiltonian is

H =
1
2

(
p2

1 + p2
2 + q2

1 + q2
2

)
+ q2

1q2 − 1
3

q3
2 . (13.309)

13 The standard term is “symplecticity,” which seems awkward to our ears. The alternative in the
text is our own coining, which we warn you has not caught on. There is also “symplecticness” as
an equally awkward standard word. However, the comparative simplicity of “symplecity” has not
made any inroads to the usage of either term. One can hope, though.
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We mentioned the computing times for the solutions, which were moderately long
because we used very tight tolerances. Indeed, the easy case took nearly two million
time steps, and the hard case at the higher energy took about two and a half million
time steps (the average time step was h = 0.0406, and we went out to t = 105).
By using so much work, we ensured that the energy was conserved over the whole
range of integration to better than one part in 1011, in both cases.

Can a low-order symplectic method such as the leapfrog method produce re-
sults that are “just as good” with less effort? Here is a fragment of the code
HenonLeapfrog.m:

31 for i=2:N+1,
32 q(1) = y(3,i-1) + h*y(1,i-1)/2;
33 q(2) = y(4,i-1) + h*y(2,i-1)/2;
34 y(1,i) = y(1,i-1) - h*(q(1) + 2*q(1)*q(2));
35 y(2,i) = y(2,i-1) - h*(q(2) + q(1)ˆ2-q(2)ˆ2);
36 y(3,i) = q(1) + h*y(1,i)/2;
37 y(4,i) = q(2) + h*y(2,i)/2;
38 if y(3,i)*y(3,i-1) <= 0 && y(1,i) > 0,
39 % Look for events q1(t) = 0, p1(t) >= 0

The results are ambiguous, but encouraging. If we take h = 1/25, so we use 2.5×106

time steps, just as ode113 did for the hard problem, we find that because this
method is only second-order, the accuracy is not as good: We get an energy error
better than one part in 105, whereas the higher-order ode113 got one part in 1011.
But the solution is faster with this simpler method, taking about 22 seconds instead
of 8 minutes. To be fairer to ode113, we loosen the tolerances to 10−6 and run it
again; we find that it’s still quite a bit slower, taking 90 seconds, which is more than
four times as long.

Part of the problem is that we have not yet mentioned how we solved the event lo-
cation problem for the Poincaré map when we use the leapfrog method. Because it’s
such a simple event, we just look at sign changes in q1, and if there is one between
ti−1 and ti, then we fit a cubic Hermite polynomial to q1(ti−1), p1(ti−1), q1(ti), and
q1(ti),p1(ti) and use the companion matrix pencil to find the root accurately in that
interval. Of course, we have to write and debug this code ourselves (an alternative is
simply to use the barycentric formula to evaluate this cubic and use fzero to find
its roots). In contrast, once “events” are turned on, ode113 must check every inter-
val for events, and this takes more time since that routine must be prepared for more
complicated events than we are looking at here. Still, it’s easier to use the built-in
event-location features of the built-in ode solvers than to write our own. If we are
going to write our own, we would hope for clear advantages for our special method.

Here the results are ambiguous at first. At looser tolerances, ode113 still does
quite a decent job of computing a good first-return map. The result is virtually in-
distinguishable from the tighter tolerance version in Example 12.14. The energy
error, however, is now about 1.5 · 10−4, which is worse than the leapfrog result,
where the energy is nearly constant to about ±2× 10−6. The leapfrog result for the
Poincaré map, though, seems not to be as good even though the energy is better. See
Fig. 13.17, where quite a bit of phase drift can be seen.
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Fig. 13.17 First-return map (Poincaré map) for the Hénon–Heiles model solved by the leapfrog
method with h = 1/25 on 0 ≤ t ≤ 105. The energy error is less than one part in 105. The sections
were computed by first checking for sign changes in q1 and then fitting a cubic Hermite polynomial
in barycentric form to the known values of q1 at either end and using the known slopes p1. The
roots of the cubic were located using the eigenvalue method of Sect. 8.2.1 and confirmed by an
alternative run using fzero. The leapfrog solution shows phase drift compared to the four times
as costly non-symplectic method, but keeps much better energy error
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Fig. 13.18 The energy error in a leapfrog integration. So long as rounding errors play no role,
the leapfrog method nearly conserves energy; more, its departures from the conserved energy are
bounded, because the numerical solution is nearly the reference solution to a nearby Hamiltonian
problem

The real benefit of this symplectic scheme is seen on much longer time intervals
of integration. The energy error of the scheme is not just lower than the loose-
tolerance run of ode113, the energy is nearly constant and does not grow on long
time scales; there is no “secular growth,” in other words. We graph a typical interval
of energy error for the leapfrog method on this problem in Fig. 13.18. �
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The energy oscillates around the original energy level, with tiny O(h2) amplitude,
but does not grow as long as rounding errors play no role. In contrast, the energy
error for the non-symplectic method grows at a secular rate: By experiment, E −
Ereference = O(tε), where ε is the tolerance for integration. Over very long intervals,
this advantage of symplectic integration methods acquires considerable value.

Explicitly, the modified equation that the leapfrog method more nearly solves is,
to O(h4), as we see from these equations:

dq1

dt
= p1 +

(
− 1

12
p1 − 1

6
q1 p2 − 1

6
p1q2

)
h2 +O(h4)

dq2

dt
= p2 +

(
−1

6
q1 p1 − 1

12
p2 +

1
6

q2 p2

)
h2 +O(h4)

d p1

dt
=−q1 (1+ 2q2)+

(
1
6

p1 p2 − 1
6

q1 − q1q2 − 1
3

q1q2
2 −

1
3

q3
1

)
h2 +O(h4)

d p1

dt
=−q2 + q2

2 − q2
1

+
1
12

(
p2

1 − p2
2 + 6q2

2 − 6q2
1− 4q2

1q2 − 2q2− 4q3
2

)
h2 +O(h4) . (13.310)

These are Hamilton’s equations of motion for a perturbed Hamiltonian H = H0 +
h2H2 +O(h4), as can be seen by taking all the requisite cross-derivatives and seeing
that they match. Specifically, the value of H2 is

− 1
6

p1 p2q1 +
1
12

q2
1 +

1
2

q2
1q2 +

1
6

q2
1q2

2 +
1

12
q4

1 +
1

12
q2

2−
1

12
p2

1q2 +
1
12

p2
2q2 − 1

6
q3

2 +
1

12
q4

2 −
1

24
p2

1 −
1
24

p2
2 . (13.311)

Notice that the perturbed Hamiltonian is not separable. However,, since the vari-
ables remain bounded, we see that the perturbation in the energy remains bounded,
although energy is not strictly speaking conserved.

13.9 Other Methods

Probably the most important general class of practical methods not covered in this
book is extrapolation methods. These are discussed in detail in Hairer et al. (1993)
and strongly advocated in Press et al. (1986). But there are many other methods.
The so-called Enright methods, which use evaluations of Jacobians of f to advance
the step, are something like a mixture of second-order Taylor series methods and
multistep methods, but use derivatives, as do Rosenbrock methods, such as that
implemented in ode23s. In MAPLE the method=stiff option for dsolve (in
numerical mode) also uses a Rosenbrock method. The grand unified theory of these
methods is the study of general linear methods, for which you may consult Butcher
(2008b).
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The Lanczos τ-method (which we briefly looked at in Chap. 3 already) uses
Chebyshev polynomials (see Lanczos 1988) and a residual-based approach. In fact,
now that we have looked at methods for solving IVP, it may be worthwhile for the
reader to go back to that chapter and reread the relevant sections, and to look again at
Problem 3.17. The Hermite–Obreschkoff methods generalize Taylor series methods
(Nedialkov and Jackson 1999). Picard iteration (explored in Problem 13.37) is a
well-known theoretical technique that can sometimes be used for computation.

We gave a very brief introduction to symplectic integration, mentioning the
low-order leapfrog method. There are higher-order methods, indeed methods of
arbitrarily high order. Explicit symplectic methods are possible only for separa-
ble Hamiltonians, however, so implicit methods must be used if the Hamiltonian is
not separable. Geometric integration methods, in general, include symplectic meth-
ods, energy-conserving methods, time-reversible methods, and others. Integration
on manifolds—that is, making sure that the computed solutions of your ODE con-
tinue to satisfy the geometric constraints of your model automatically—is of great
importance in practice: A good numerical method there will solve a nearby problem
whose solutions also satisfy the constraints. Using a variable step size for efficiency
with these methods is harder than it is if you don’t need to stay symplectic or pre-
serve constraints. See Hairer et al. (2006).

Which method is the best method? Unfortunately, there is no satisfactory answer.
It’s kind of like the game of Rock–Paper–Scissors; each of the methods described
or mentioned above is “best” for at least one problem, maybe for yours. Most of the
methods can be made to work satisfactorily on many problems, though, and now
you know how to verify a posteriori that your chosen method has done so.

However, the goal of these two chapters was not to get you ready to write your
own specialized code for solving initial-value problems for ordinary differential
equations. The main goals were to teach you how to recognize a good solution given
by a standard implementation when you saw it (using the theory of backward error
and of conditioning), and to have a basic understanding of how the main methods
worked, which is essentially by a numerical variant of analytic continuation. There
were several secondary goals, one of which was to show how to develop formulæ
and another of which was to show some aspects of the standard theory of stability
for stiff systems; this, although based entirely on fixed-time-step methods, gives a
rough guide as to what to expect when solving a stiff problem.

13.10 Notes and References

Theorem 13.3 is based on one in Stetter (1973). The relationship of local error to
residual has therefore been known a long time; controlling LEPUS gives an indirect
unfortunately problem-dependent control on the residual. Even so, in our opinion,
this is the only reason that numerical methods based on local error control give
high-quality solutions.
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Taylor series methods and analytic continuation are very old. Some early modern
work includes Gibbons (1960), which implements the series algorithms discussed in
Chap. 8 for a “Ferranti Mercury computer with a floating-point unit and a high-speed
store of 2,048 twenty-bit words.” The program would solve up to six simultaneous
differential equations of order up to 15, and used up to 30-term Taylor series. Neither
interpolants nor the residual were mentioned, however. Implicit Taylor series are
studied in Barton et al. (1971). We have high accuracy if the solution is smooth and
N is large, at a reasonable cost. Indeed, it has been shown that the Taylor series
method has cost polynomial in the number of bits of accuracy requested (Ilie et al.
2008; Corless et al. 2006).

The modern theory of order conditions for Runge–Kutta methods was initiated in
Butcher (1963). Streamlined explications can be found in Butcher (2008b), Hairer
et al. (1993), and Hairer et al. (2006). Chapter 6 of that last is extremely streamlined
but still yet complete. In this book, we have barely started an introduction to the
use of trees for order conditions. The theory of trees and the corresponding B-series
is now quite advanced: See Chartier et al. (2010), which presents and unifies many
numerical results; in particular, a method is given for computing B-series of the
residual of a Runge–Kutta method.

The multivariate polynomial equations that arise in the order conditions are them-
selves quite interesting. Their solutions can exhibit a great deal of symmetry, and
there are often multiparameter families of solutions, as well as solutions that do
not fall into those families. Sometimes there are no solutions. Currently, the best
solvers of these systems are certain humans: Automatic solution by Gröbner basis
computation, for example, has until now not been as successful (in part because the
combinatorial symmetries mean that the degrees of the Gröbner bases grow faster
than exponentially). Still, there are many families of solutions now known, and in-
deed there are formulæ known of arbitrarily high order. One very interesting de-
velopment along these lines is presented in Khashin (2009) and in Khashin (2012).
At the ANODE 2013 meeting, Jim Verner reported using these methods to give a
new exact family of solutions, which he called the Runge–Kutta–Khashin methods,
that needed fewer stages for high order than any previously known methods; this
represented the first reduction in required stages in 38 years of research.

For a description of the Rosenbrock method used in ode23s, see Shampine and
Reichelt (1997). For a discussion of Rosenbrock methods in general, see Hairer and
Wanner (2002 chapter IV.7). The method used here to introduce them was modeled
heavily on that work.

See Griffiths and Sanz-Serna (1986) for an extensive discussion and bibliography
of the method of modified equations. This method was originally used for PDE
in Warming and Hyett (1974).

For a technical description of the usefulness of variable stepsize for dynamical
systems, see Higham and Stuart (1998). For an interesting view of stiffness and sys-
tems, see Higham and Trefethen (1993). Adaptive step-size control using control-
theoretic ideas is explored in Söderlind (2003).
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Problems

Theory and Practice

13.1. Prove that if the right-hand side of the differential equation
.
x = f (t,x) satisfies

the one-sided Lipschitz condition (13.196), then for any two solutions x(t) and y(t),
we have

‖x(t)− y(t)‖ ≤ ‖x(t0)− y(t0)‖eν(t−t0) . (13.312)

13.2. Show that p(θ ) = (1−θ 2)ρ0,0 +θ (1−θ )ρ0,1 +θ 2ρ1,0 satisfies p(0) = ρ0,0,
p ′(0) = ρ0,1, and p(1) = ρ1,0. This is the piecewise quadratic interpolant needed for
the improved Euler method (explicit trapezium, or trapezoidal rule). Show that this
interpolant has a residual of O(h2), and thereby give another proof that the improved
Euler method is a second-order method.

13.3. Consider applying the backward (also called implicit) Euler method to the
problem in Example 13.5,

.
x = x2. That is, let

xn+1 = xn + hx2
n+1 . (13.313)

Analytically isolate the solution xn+1 of this iteration; show that the solution is not
unique, and that time steps h cannot be arbitrarily large.

13.4. Repeat Problem 13.3, but this time for the ODE
.
x = x2 − t that we used in

the previous chapter to demonstrate stiffness. Discuss the probability of encounter-
ing difficulties with the solution of nonlinear systems for larger problems, and the
potential restrictions on the time step.

13.5. Implement and use the fixed-step-size implicit midpoint rule to solve
.
x = x2 −

t, x(0) = −1/2 on 0≤ t ≤ 10. Vary the initial conditions, and verify that the numerical
solution by this B-stable method is contractive.

13.6. Draw the region bounded by the curve defined by Eq. (13.235).

13.7. The “classical” fourth-order Runge–Kutta method used with fixed time step h
in Eq. (13.60) is sometimes called “RK dumb.” Sometimes it is indeed a dumb idea
to use it, at least without assessing its solutions independently. Solve the problem.
y = y2 − t on 0 ≤ t ≤ 20.5 with the initial condition y(0) = −1/2. Use a time step
h = 20.5/55, so you take 55 steps. The solution should look perfectly reasonable, but
it will be quite wrong at t = 20.5.

13.8. Consider using explicit Taylor series methods with fixed time step h > 0 on
the Dahlquist test problem y′(t) = λy(t), y(0) = y0. Show that an explicit Nth-order
Taylor series method applied to this problem gives the iterative formula

yk+1 =

(
1+ z+

z2

2
+ · · ·+ zN

N!

)
yk , (13.314)
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where as usual z = hλ . For N = 1, 2, 3, . . ., 6, draw the regions in the z-plane
where the numerical solution has monotonic decay and as such captures the correct
qualitative information if Reλ < 0. Plot them on the same graph. Note that for higher
N, the regions are not connected.

13.9. Repeat the previous problem, but for implicit Taylor series methods (see
Example 13.3 for the second-order case).

13.10. Consider now using an explicit Nth-order Taylor series method on the
m-dimensional linear system

.
y = Ay, y(0) = y0. If m is large, then the cost of eval-

uating the Taylor series is about the same as doing N matrix–vector multiplications;
thus, one step of the Taylor series method costs about the same as N steps of Euler’s
method. If the problem is stiff, that is, if there are many eigenvalues of A that have
large negative real part, show that the high-order Taylor series method is really no
cheaper (or more expensive) than simple forward Euler.

13.11. Show that the stability function for a general Runge–Kutta method is

R(z) = 1+ zbT (I− zA)−1 e, (13.315)

where the vector b and the matrix A are from the Butcher tableau, z = hλ is the
product of the step size and the eigenvalue in the Dahlquist test problem y′ = λy,
and the vector e is all 1s.

13.12. The 2-stage IRK based on Gauss points, with Butcher tableau

1/2−√
3/6 1/4 1/4−√

3/6
1/2+

√
3/6 1/4+

√
3/6 1/4

1/2 1/2

, (13.316)

is of fourth order and exactly A-stable. Verify both these facts.

13.13. As discussed in the text, Taylor series methods can also be implicit. This
amounts to doing the Taylor series expansion about the new point t = tk+1, guess-
ing (or solving via Newton’s method) the required yk+1 so that Taylor series about
that point allows matching back to the known value yk at t = tk. Use the implicit
Taylor series method with fixed step size h = 1/20 and N = 8 to solve Airy’s dif-
ferential equation on 0 ≤ t ≤ 2; that is, y′′ = ty, with y(0) = 3−2/3/(Γ (2/3)) and
y′(0) = −31/6Γ (2/3)/(2π). Since this is a linear equation, you will be able to write
an explicit iteration. Decide on a reasonable interpolant for your numerical solu-
tion and compute the residual of your solution. Recall that this problem is very ill-
conditioned on longer time intervals, although both this method and ode45 work
well enough on this short interval.

13.14. Consider solving the first-order system

d p
dt

=−q
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dq
dt

= p (13.317)

by the following mixture of forward Euler and backward Euler, sometimes known
as the leapfrog method:

pn+1 = pn − hqn

qn+1 = qn + hpn+1. (13.318)

Find a modified equation showing that this method is second-order accurate. In
order to do this, you will have to put qn ≈ q(tn + h/2), not q(tn). This example is
perhaps the simplest problem solved by a symplectic method.

13.15. Draw the stability region in the μ = hλ -plane for the implicit LMM (13.230).
Compare this with the stability region for the predictor–corrector method (13.233).

13.16. Show that the stability polynomial for a general fixed-time-step LMM
(13.223) is rk = p(r,q), with

p(r,q) = ρ(r)− qσ(q) , (13.319)

where

ρ(r) =
k

∑
j=1
αk− j+1r j and σ(r) =

k

∑
j=0
βk− jr

j . (13.320)

Show also that the stability polynomial of a predictor–corrector method in P(EC)nE
mode is

pc(r,μ)+
qn(1− q)

1− qn pp(r,μ), (13.321)

where pc is the stability polynomial of the corrector and pp is the stability polyno-
mial of the predictor. For the predictor–corrector pair in (13.233), but now with two
iterations of the corrector, that is, n = 2, find and draw the stability region.

13.17. Embed the simple harmonic oscillator y′′+ y = 0 in a two-dimensional first-
order system

.
y = Ay as usual. Consider the backward Euler method applied to this

system, yn+1 = yn + hAyn+1. Suppose that yn = [s + hc,c − sh]T and show that
yn+1 = [s,c]T . Find a modified equation

.
z = A(−h)z such that the residual for this

equation is O(h2). Show that the eigenvalues of A(−h) have real part −h/2 and
thereby explain why backward Euler introduces positive numerical damping into
this system. Carry out the integration over a suitable time interval, and verify that
the backward Euler solution of

.
y=Ay is actually a better fit to the reference solution

of
.
z = A(−h)z.

13.18. One irritating problem with embedding higher-order differential equations
into first-order systems of equations is the resulting meaning of the residual as
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computed by the code. To be specific, consider a scalar second-order equation..
x = f (t,x,

.
x) with initial conditions x(t0) = x0 and

.
x(t0) =

.
x0. Suppose we inte-

grate this with a Runge–Kutta method, say ode45, after converting to the first-order
system y1 = x, y2 =

.
x, so our equations are

.
y1 = y2,

.
y2 = f (t,y1,y2). When we use

deval to evaluate the interpolant and its derivative, we get a polynomial interpolant
z1(t) for y1(t) satisfying certain constraints: namely, that z1(t) takes on the values
sol.y(1,:) at the points sol.x(:). We can also evaluate its derivative exactly,
up to roundoff, because the interpolant is a polynomial. We also get an interpolant
z2(t), which takes on the values sol.y(2,:) at the mesh points.

We engineered the problem so that z2(t)
.
=

.
z1(t), but unfortunately it’s not exactly

equal; instead,
.
z1(t) = z2(t)+Δ1(t), which contains the first component of the resid-

ual. So if we want the second derivative of z1(t) to put into the original second-order
equation, it seems we must in effect differentiate Δ1(t). Of course, this is possible,
but it apparently loses an order of accuracy: If z1(t) is O(hp+1) accurate, then

.
z1(t)

will only be O(hp) accurate, and
..
z1(t) will only be O(hp−1) accurate, and so the

residual in our second-order equation will be O(hp−1), not O(hp).
Another approach is to start with the polynomial

.
z2(t), which is the exact deriva-

tive of the polynomial z2(t) and is returned by using deval. We can then at-
tempt to construct a polynomial, call it z(t), which is the exact integral of z2(t),
and which satisfies z(tk) = z1(tk) for some fixed tk. This will give an O(hp) resid-
ual in the second-order equation. Unfortunately, it won’t quite be the case that
z(tk+1) = z1(tk+1). Why not?

13.19. Suppose we are solving the differential equation
.
x = f (x). If the local error

function is ε(t), so that the computed solution is z(t) = xk(t)+ε(t), then the residual
Δ(t) can be shown to be

Δ(t) =
.
ε(t)+ f (z− ε)− f (z) (13.322)

and hence that ‖Δ(t)‖ ≤ ‖ .
ε‖+ L‖ε‖, where L is a Lipschitz constant for f . Fill

in the details, and show that using t = tk + hθ to write the leading term in ε(t) as
hp+1E(θ )+O(hp+2) gives Δ(t) = E ′(θ )hp +O(hp+1).

13.20. Show that z = hλ is inside the disk |z + 1| < 1 with h > 0 if and only if
h <−2Re(λ )/|λ |2 and Re(λ )< 0.

13.21. Consider solving
.
y = λy by the forward Euler method, so that yn+1 = yn +

hλyn. Show that yn = (1+ hλ )ny0. Rewrite this as

(1+ hλ )n = enh( ln(1+hλ )/h) (13.323)

and interpret this as the samples at tn = nh of the reference solution of
.
y(t) =Λy(t)

for

Λ =
ln(1+ hλ )

h
= λ

(
1− 1

2
λ h+

1
3
λ 2h2 − 1

4
λ 3h3 +O

(
h4)) . (13.324)
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This is one of the few examples where an infinite-order modified equation can be
found for a numerical method, valid for all step sizes h. Repeat the exercise, using
the backward Euler method.

13.22. Consider the second-order problem
..
x(t) = f (t,x(t),

.
x(t)) with initial values

x(t0) = x0,
.
x(t0) =

.
x0. Apply Euler’s method to the usual transformed first-order

system with y1 = x and y2 =
.
x. We know that the residual will be O(h). Now con-

sider applying a modification of Euler’s method directly to the second-order system:
Advance the derivative of the solution by

.
xk+1 =

.
xk + h f (tk,xk,

.
xk), that is, Euler’s

method, but advance the solution itself by the integral of the linear interpolant, that
is, xk+1 = xk + h

.
xk + h2 f (tk ,xk ,

.
xk)/2. Note that this is no more expensive than Euler’s

method [counting only evaluations of f (t,x,
.
x), as is usual]. Interpolate the solution

by replacing h with (t − tk). Show that the residual in the second-order equation is
still O(h). Does this variation make much difference? Discuss.

(We have taken to calling this method the OCD Euler method, where OCD stands
for Obsessive-Compulsive Disorder. After all, it’s still a first-order method and it’s
not immediately evident that the extra work (trivial as it is) gets you anything. How-
ever, it has some advantages, as you will doubtless discover.)

13.23. Use the OCD Euler method (see Problem 13.22) to solve the IVP
..
x(t) +

sin x(t) = 0, x(0) = 2, and
.
x(0) = 0, on the interval 0≤ t ≤ 8π . Compute the residual

and plot it. Use a fixed time step, but take h = 8π/n small enough that the residual
is everywhere smaller than 1.5× 10−3. Compare the OCD Euler method with the
ordinary Euler method on this example.

13.24. Find a modified equation whose solution more nearly tracks the RK2 solution
of

.
x = x2 − t, x(0) = −1/2. RK2 is the method defined by

k1 = f (tn,xn)

k2 = f (tn + h/2,xn + hk1/2)

xn+1 = xn + hk2 .

Find an O(h4) accurate modified equation. See the discussion in Corless (1994a).

13.25. If you have access to MAPLE or another CAS, use it to construct an explicit
Taylor series method that is O(h5) accurate for solving

.
x = x2 − t, x(0) = −1/2 on

0 ≤ t ≤ T . Use the natural interpolant and monitor the residual. Does the stiffness
of the problem bother the method for large T? Is a lower-order method happier
with the stiffness? Implement the method in an implicit manner as well: that is, to
compute xk+1, use Taylor expansion about t = tk+1 and choose xk+1 so that Taylor

series gives xk at t = tk (you may use a simple initial guess such as x(0)k+1 = xk to start
your Newton iteration). Does the implicit method work better for large T ?
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Investigations and Projects

13.26. In Problem 13.7, we have encountered a difficulty with the fixed-step-size
RK4 method. We hasten to add that the difficulty isn’t with the Runge–Kutta part,
it’s with the fixed-time-step part: If a mechanism to estimate errors and adjust step
size is added, then RK4 can get a good answer for this problem on this interval.
Over longer intervals, as we have seen, the problem is stiff and RK4 needs unrea-
sonably small step sizes to solve it, though. Make some numerical experiments with
simple step-size adaptation rules and show your results. (Of course, when you add
an error-estimation mechanism and adaptive step size, and modify the coefficients
for efficiency, you get something like ode45.)

13.27. Write a MATLAB program to solve first-order initial-value problems for ODE.
y(t) = f (t,y(t)) on an interval a ≤ t ≤ b with given initial conditions y(a) = ya to a
given tolerance by a defect-controlled Euler method. Specifically, put

k0 = f (tn,yn) and yn+1 = yn + hnk0

and accept this step only if the following estimate of the defect (residual) is smaller
than the user’s input tolerance ε:

‖Δ(t)‖∞ ≈ 3
4
|k1 −k0| ≤ ε ,

where
k1 = f (tn + hn,yn+1)

will be needed for the next step anyway, if the step is successful. Use the size of
your estimated defect to predict the step size hn+1 to take on the next step. Your
code should have the header ode1d, and have the same interface that ode23tx
does. (Don’t work too hard on the interface.) For adapting the step size, you should
either modify the heuristics of ode23tx appropriately, or use the more advanced
method of Söderlind (2003). Your code will therefore give the exact solution to.
y(t) = f (t,y(t))+Δ(t), with ‖Δ(t)‖ ≤ ε .

In addition, to complete the investigation, do the following:

1. Show that interpolating your solution by the piecewise cubic function [with the
variable θ = (t− tn)/h]

y(t) = yn + h
(
1−θ −θ 2)θk0 +θ 2h(θ − 1)k1 (13.325)

gives a defect Δ(t) = .
y(t)− f (t,y(t)) that has its approximate maximum (for

small h) at θ = 1/2, and that maximum is approximately 3
4 |k1 − k0| as used

above. Note that this is O(h) as h → 0.
2. Test your program on

.
y(t) =−y(t), y(0) = 1 on 0 ≤ t ≤ 1. Use ε = 5 ·10−2.

3. Test your program on
.
y(t) =

[
0 −1
1 0

]
y(t) (13.326)
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with initial conditions y(0) = [1,0]T . Integrate over 0≤ t ≤ 4π . Use ε = 5 ·10−2

again, and plot y2
1 + y2

2 − 1 on [0,4π ]. Repeat with ε = 10−2.
4. How accurately does your code locate the singularity in the solution of

.
x(t) =

x(t)2 + t2, x(0) = 1, on 0 ≤ t < singularity?
5. Compare your code ode1d to fixed-Δ t Euler’s method on the problems above.
6. The “flame problem” describes combustion of a match, in simplistic terms. The

differential equation is

.
x = x2 − x3, (13.327)

and the initial condition is x(0) = ε , a small positive number. We wish to inte-
grate this on the interval 0 ≤ t ≤ 2/ε. This problem is described in Moler (2004
section 7.9), and also in Corless et al. (1996), where it is solved exactly in terms
of the Lambert W function: x(t) = 1/(1+W(uexp(u− t))), where u=−1+ 1/ε.
Use your code to solve this problem. Compare the solution with that of ode45
and of ode15s, and with the reference solution.

7. Solve
.
x = cos(πtx), for a vector of initial conditions x0 = 0 : 0.2 : 2.8, on the

interval 0 ≤ t ≤ 5. Plot all your solutions on the same graph.
8. Solve the Lorenz system with your code for some chaotic values of the parame-

ters. In view of “sensitive dependence on initial conditions,” what good is your
numerical solution?

13.28. Defect-controlled RK(2)3 pair investigation. In the text, the defect-controlled
method

2⁄3 2⁄3
2⁄3 2⁄3
1 1⁄4 3⁄8 3⁄8

b1(θ ) b2(θ ) b3(θ ) b4(θ )

was mooted; here the bi(θ ) are

b1(θ ) =−5
4
θ 2 +

1
2
θ 3 +θ (13.328)

b2(θ ) =
9
8
θ 2 − 3

4
θ 3 (13.329)

b3(θ ) =
9
8
θ 2 − 3

4
θ 3 (13.330)

b4(θ ) =−θ 2 +θ 3, (13.331)

and the stage k4 can be reused as the first k-value on the next step. This method has
another advantage built-in: There are two embedded second-order methods, namely,

ŷ2(θ ) = yn + h((θ − 3
4
θ 2)k1 +

3
4
θ 2k2) (13.332)
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and

ŷ3(θ ) = yn + h((θ − 3
4
θ 2)k1 +

3
4
θ 2k3) . (13.333)

The residuals of ŷ2 and ŷ3 are each O((θh)2), and this will allow us to monitor the
error and adapt the step size. Notice that the residual of

y(θ ) = yn + h
4

∑
k=1

bk(θ )kk (13.334)

is O(h3) and therefore ought to be smaller, but might not be.
In the following questions, we investigate this method.

1. Show that this interpolant is mathematically the same as cubic Hermite interpo-
lation on tn ≤ t ≤ tn+1 = tn + h. Recall θ = (t− tn)/h.

2. Show that the defect estimate in y3 is asymptotically accurate to O(h3) as h→ 0;
that is,

Δ(θ ) = θ (1−3θ
2
)k1−9

4
θ (1−θ )k2 +

3θ
4
(3θ − 1)k3 +θ (2− 3θ )k4 +O(h3).

3. Show (by using a CAS or otherwise) that this Δ(θ ) is, to leading order in h, the
same as Δ3(θ ) = ŷ′3/h− f (ŷ3), where

ŷ3(θ ) = yn + h((θ − 3
4
θ 2)k1 +

3
4
θ 2k3) , (13.335)

namely,

Δ3(θ ) =−h2

6
θ ((3θ − 2) f (2)( f1 f )+ (3θ − 4) f (1)( f (1)( f ))+O(h3) .

4. Argue that, except in the unlucky case when f (2)( f1 f )
.
= − f (1)( f (1)( f )),

putting θ = 1 in (13.335) gives a decent asymptotic estimate of the max-
imum defect. What happens if you’re unlucky? Do the same analysis for
Δ2(θ ) = ŷ′2/h− f (y2) and show that you can’t be unlucky for both Δ2 and Δ3

at the same time, for θ = 1, unless both f (2)( f1 f ) and f (1)( f (1)( f )) are very
small (i.e., O(h)), and even then this just usually means that both Δ2 and Δ3 are
small at this point in the integration.

5. Copy to a directory of your own the MATLAB m-files ode23.m, ntrp23.m,
deval.m, private/odearguments.m, and odefinalize.m. Modify
these files so that the method used is the 2/3 pair discussed here. Test your code
on a variety of examples and compare its performance to that of ode23. (We
get comparable performance for similar residual accuracy, but with deode23
giving predictably better residuals for a given tolerance—but when the toler-
ance for ode23 is tightened further, similar amounts of work produce similar
residuals.)
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13.29. This is a supplement to Problem 13.28, in which we ask: Where did those ci,
ai j, and bi(θ ) come from in the method RK(2)3? It’s all very well to simply point
to a tableau, such as

u u

v v(−3u+3u2+v)
u(−2+3u)

v(v−u)
u(2−3u)

1 6uv−3u+2−3v
6uv

3v−2
6u(v−u)

2−3u
6v(v−u)

b1 b2 b3 b4

, (13.336)

where

b1(θ ) =−1
3
(−3u+ 2+ 3uv−3v)θ 3

3uv
+

(−3u− 3v+ 2uv+2)θ 2

2uv
+θ (13.337)

b2(θ ) =
(3v− 2)θ 3

3u(−v+ u)
− (3v− 2)θ 2

2u(−v+ u)
(13.338)

b3(θ ) =− (−2+ 3u)θ 3

3v(−v+ u)
+

(−2+ 3u)θ 2

2v(−v+ u)
(13.339)

b4(θ ) = θ 3 −θ 2 , (13.340)

which, we are told, is a third-order CERK independent of the choice of parameters
u and v so long as u �= 0,v �= 0,u �= v and u �= 2/3. This family was taken from Owren
and Zennaro (1991). But how do we obtain this?

Show that for a scalar f (the vector case is more notationally involved), the resid-
ual Δ = y′/h− f (y) has a series expansion

Δ = h3θ (1−θ )
(

A(u,v) f (3)( f , f , f )+B(u,v) f (2)( f (2)( f ), f )+

1
6
(θ − 2) f (1)( f (1)( f (1)( f )))

)
+O(h4) , (13.341)

where

A =−1
2

uv+
1
6
θ − 1

3
+

1
3

u+
1
3

v (13.342)

B =−4
3
+

1
2

u+
2
3
θ + v . (13.343)

No choice of u or v can eliminate all the error, but θ (1−θ ) is maximum at θ = 1/2,
which may be useful because one does not want to underestimate the error.

13.30. This problem explores adaptive step-size selection for the simple second-
order linear multistep method discussed in 13.9. This book has not discussed how
existing codes actually adapt step sizes. What this investigative problem does is ask
you to explore some nonstandard but suggestive ideas. There’s no guarantee that
these ideas will work as well as the standard ideas do; we’re not advocating them
as being practical. What we do hope that you get out of this problem is a sense of
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what kinds of thoughts were going through the heads of the people who originally
came up with the methods for adapting time steps for linear multistep methods.
There is also some contact with other branches of mathematics, especially time
series analysis and control theory.

What we ask you to do is to model the residual error on each time step tk−1 ≤
t ≤ tk as |Δk| = φkhp

k , where hk = tk − tk−1, and for the third-order method we are
considering, p = 3. You might measure the residual error on the current step by
comparing the difference between the derivatives of the interpolant at t = tk−1 and
at t = tk−2 and the (remembered) computed values of f (t,x(t)) at those points. These
are “free” estimates of the size of the residual (although of possibly unknown qual-
ity). The interpolant, of course, matches the values xk−2, xk−1, xk, and f (tk,xk) at
the three nodes tk−2, tk−1, and tk, so it is degree 3. Working out those values of the
derivatives gives rise essentially to two finite-difference formulas. These measure-
ments allow you to estimate the residual over the step tk−1 ≤ t ≤ tk, which you can
then compare to the tolerance; if the step is accepted, then you can use your esti-
mated error to estimate φk. By using more function evaluations than you need to
advance the solution, you can improve the estimate of the residual, of course.

For reference, here are the finite-difference estimates of the derivatives at t = tk−1

and t = tk−2, in which we assume that t = tk −θh and hk = rh and hk−1 = sh:

1
h

f ′(tk−1) =
s(3r+ 2s)ρ0,0

r (r+ s)2 − ρ0,1s
r+ s

+
(r− 2s)ρ1,0

rs
− r2ρ2,0

s(r+ s)2

1
h

f ′(tk−2) =−ρ0,0s(3r+ s)
(r+ s) r2 +

ρ0,1s
r

+
(r+ s)2ρ1,0

r2s
− ρ2,0 (r+ 3s)

s(r+ s)
. (13.344)

You can remove one parameter r or s by, for example, taking r+s = 2, so that h then
becomes the average step length over the last two steps; alternatively, you could take
r = 1 and h = hk. The fitting values are ρ0,0 = xk, ρ0,1 = h f (tk,xk), ρ1,0 = xk−1, and
ρ2,0 = xk−2.

Now, in order to take a step, you must predict the value of φk+1. One way to do
this is to use a linear prediction of the form

logφk+1 = α logφk +β
(

logφk − logφk−1

hk + hk−1

)
, (13.345)

where the constants α and β are chosen in order to fit recent integration history in
some fashion (for instance, by least-squares fit to the last three, four, or five steps).
Once φk+1 has been predicted, then to take the next step you have to solve

φk+1hp
k+1 = ε (13.346)

for the unknown step size hk+1; but this is easy, and loghk+1 = (logε− logφk+1)/p or,
equivalently,

hk+1 =

(
ε
φk+1

)1/p

. (13.347)
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This equation can doubtless be rearranged for greater efficiency.
Your assignment is to try this method out. Use some convenient one-step method

(e.g., ode23) to start the integration. This will get your solution on track quickly,
and ought to give good starting values for the step sizes. Try your method out on
some simple problems to start with, and then give it a workout on the orbitode
problem. Discuss the performance—robustness, accuracy, and efficiency—of the
method.

13.31. Extrapolation methods use Richardson’s idea: Construct a skeleton of a
rough solution on a coarse mesh, and then do it again on a finer mesh. Next, use the
two solutions together to construct a more accurate solution. This is best demon-
strated by example, which you can do yourself by following the outline below.

Solve the problem
.
x = x2 − t with x(0) = −1/2 on the interval 0 ≤ t ≤ 2 using

the explicit trapezoidal rule with fixed time step h, first by using h = 1/8 (call the
solution ek for 0 ≤ k ≤ 16) and then again using h = 1/16 (half the size). Call that
solution sk for 0 ≤ k ≤ 32. Because the residual is O(h2), so is the forward error
in the solution: So ek = x(tk) + ckh2 + · · · and s� = x(t�) +C�h2/4+ · · · . Matching
up the times in the two solutions (when we take steps of half the size, every other
step aligns the refined solution with the coarse solution) also turns out to match
up the error coefficients, and so Sk := (4s2k − ek)/3 = x(tk)+ (4ck/4− ck)h2/3+O(h4).
Thus, the error terms cancel, and the averaged quantity Sk = (4sk − ek)/3 is a better
approximation to the desired solution.

1. Use your trapezoidal rule solutions with h = 1/8 and h = 1/16 to estimate x(2) to
fourth-order accuracy.

2. Do this again with h = 1/16 and h = 1/32.
3. Do this again with h = 1/32 and h = 1/64. Of course, you can reuse your earlier

work. Now you should have two columns containing estimates of x(2), which
can be arranged like so:

h ek Sk

1/8 x.xxxx −−−
1/16 x.xxxx x.xxxx
1/32 x.xxxx x.xxxx
1/64 x.xxxx x.xxxx

(13.348)

and the bottom-right entry should be the most accurate (so far).
4. Of course, this idea can be repeated. The entries Sk can be shown to have an

error expansion of the form Sk = x(tk)+ a4(tk)h4 + a6(tk)h6 + · · · . Show that
the averages Tk := (8S2k −Sk)/7 have error O(h6), and add a third column to your
table.

5. Repeating again, the desired average is Uk = (16T2k −Tk)/15. Add a fourth column.
Compare your best answer with a value of x(2) computed using (say) ode113
at tight tolerances. Examine also the error estimate obtained by comparing the
diagonal entries in the (now-triangular) table.
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Notice that the work doubles as you add another row, but that completion of the
triangle is rather trivial. This is the power of extrapolation. A full description of
extrapolation methods can be found in, for example, Hairer et al. (1993).

13.32. The leapfrog method applied to the Hénon–Heiles Hamiltonian H0 gave a
better solution to a perturbed Hamiltonian H0 + h2H2 +O(h4). A formula for H2

was given in Eq. (13.311). What happens if you apply the leapfrog method to the
perturbed Hamiltonian H0 − h2H2? Note the minus sign. Do some computations to
verify or disprove your contention.

Since the computation of H2 required partial derivatives of H0 (there is a formula
in Preto and Tremaine (1999) using Poisson brackets), this in effect uses a second-
derivative method on the original problem. This leads to the theory of Lie series
methods; see Channell and Scovel (1990) and Chartier et al. (2007).

13.33. The predictor–corrector method of Eq. (13.233) has a cubic stability poly-
nomial (13.234). Instead of making a bifurcation argument as in the text, and con-
sidering just the boundary where the magnitude of one single root must be 1, one
could use a more mechanical (and automatable) argument based on so-called semi-
algebraic sets, and use the Hurwitz criterion (see Levinson and Redheffer 1970) that
is implemented in the MAPLE package PolynomialTools [Hurwitz]. That
routine returns a sequence of polynomials that must be strictly positive for all the
roots of the original polynomial to lie in the left half-plane. Of course, here we
want the unit circle, but that presents no difficulty: If and only if r is inside the
unit circle, then z = (r+1)/(r−1) will lie in the left half-plane. Transform the poly-
nomial into a rational function in z using this change of variables, throw away the
denominator, and find the Hurwitz conditions (don’t write them down, they’re rather
messy; but MAPLE handles them quite well). Plot them—you should get something
like Fig. 13.19. Put μ = σ + iτ . Show that near σ = 0, that is the imaginary axis,
σ = − τ4/4+ 125τ6/24+ · · · , showing that the right-hand boundary of the quasitriangu-
lar region is not actually straight up and down. Thus, there are small regions where a
large, nearly imaginary eigenvalue λ would have spurious numerical growth in the
solution.

13.34. Start with a CERK of order 3 for first-order systems. By specializing to em-
bedded second-order systems,

.
x1 = x2,

.
x2 = f(t,x1,x2), show that you can construct

a CERK that is order 3 for the x2 components and order 4 for the x1 components by
simply integrating the CERK step for the x2 components exactly, and that therefore
the residual in the second-order system

..
x = f(t,x,

.
x) is explicitly O(h3). Try your

method out on a scalar problem, say
..
x+2ζ .

x+sin(x) = 0, where ζ = 10−2, x(0) = 0,.
x(0) = 1. Then try your method on the Arenstorf problem (as in orbitode in the
odeexamples demo). Is the apparent extra accuracy in the residual worth the
effort?

13.35. Implicit methods applied to
.
y = λy produce rational Padé approximants to

exp(λh). It is tempting to try an explicit Taylor series method with an extra step of
converting from a polynomial to a rational Padé approximant. That is, use the Taylor
series method to start to solve

.
x = f (t,x) in one step, but instead of defining xk+1
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Fig. 13.19 The boundaries of all the Hurwitz conditions ensuring that all three roots of (13.234)
are less than one in magnitude. The polynomial has all its roots inside the unit circle if and only
if all Hurwitz conditions are satisfied, which in this case means that μ must lie outside the two
ovals from the first condition, to the left of the curious “bent-wire” shape opening up to the left that
comes from the second, and inside the loops of the third. This boils down to just that of Fig. 13.14

as the value of the Taylor polynomial at z(tk + h), one first finds an equivalent Padé
approximant, a function

1
a0 + a1h+ · · ·anhn , (13.349)

which has the same Taylor series. This is easily done and is implemented in
convert(s,ratpoly) in MAPLE, for example. This works well for scalar equa-
tions and in particular works well for

.
y = λy and seems to cure stiffness; one is

tempted to say that we have an explicit method for stiff systems. This would be a
major advantage, because solving nonlinear systems is the hard part for an implicit
method.

Show that this is a pipe dream, by showing that the method introduces moveable
poles into the solution even for linear systems of equations

.
x = f(t,x). A general

proof is not necessary; all you have to do is find an example. Excluding the moveable
poles requires a limitation on step size h that is comparable to the limitation needed
by explicit methods.

13.36. Consider the best possible interpolant of the solution to y′ = λ (y− g(t))+
g′(t) on a step from yn at t = tn to yn+1 at t = tn+1. We say that it is the “best possible”
in that the interpolant minimizes the 2-norm of the residual
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min
z

ˆ tn+1

tn
Δ∗(τ)Δ(τ)dτ , (13.350)

where Δ(τ) = .
z(τ)− f (z(τ)), taking the autonomous form (one dimension higher,

if necessary) for convenience. The Euler–Lagrange equations for this (nonconvex if
f is nonlinear) functional are

.
z− f (z) = Δ (13.351)

.
Δ + JH

f (z)Δ = 0 , (13.352)

where JH
f (z) is the conjugate transpose of the Jacobian matrix of f . These 2(n+ 1)

equations, called the adjoint equations, are subject to the boundary conditions

z(tn) =

[
yn

tn

]
and z(tn+1) =

[
yn+1

tn+1

]
. (13.353)

This will lead to an interpolant in C 2(tn, tn+1), which is continuous but not differ-
entiable at tn and tn+1. This lack of differentiability is of little consequence: Our
residual is called a “deviation” in this case. When we set up and solve this BVP for
our one-dimensional system, taking g(t) = 0 to simplify the algebra, we get

.
z−λ z = Δ (13.354)

.
Δ +λΔ = 0 (13.355)

or Δ = c1e−λ (t−tn), and provided λ /∈ iR (in which case we would have to introduce
a secular term in z),

z = c2eλ (t−tn)− c1

λ +λ
e−λ (t−tn) . (13.356)

Using z(tn) = zn and z(tn+1) = zn+1 to identify c1 and c2, we have

c2 =
zn+1 − e−λhzn

eλh − e−λh
, with h = tn+1 − tn (13.357)

c1 =
λ +λ

eλh − e−λh
(zn+1 − eλhzn) . (13.358)

Since Δ = c−λ (t−tn)
1 , the size of the best possible residual is proportional to zn+1 −

eλhzn, for any method producing zn+1. The proportionality constant,

λ +λ
eλh − e−λh

e−λ (t−tn) , (13.359)
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is independent of the method, but is O(1/h) as h → 0. But zn+1 − eλhzn is the local
error of the method: If zn were exact, then zn+1 should be eλ (tn+1−tn)zn if the equation.
y = λy were solved exactly. Thus, for this simple equation, the best possible residual
is proportional to the local error per unit step. This, incidentally, supports the idea
that codes that control the size of the local error per unit step have a small residual.

Your assignment for this question is to take λ = −10 on the interval 0 ≤ t ≤ 1,
solve the problem with g(t) = 0 using ode23, and compute the local errors made on
each step. Then, using the formulæ above, compute the optimal residual on each step
and plot it. Also, plot the residual that is obtained when using the built-in interpolant,
and compare the two.

13.37. The venerable technique of Picard iteration is mostly useful as a theoreti-
cal technique for proving the existence and uniqueness of solutions to initial-value
problems, but it can be used computationally (it’s just not very efficient, when it
works at all). Here we try implementing it in chebfun. Picard iteration for solving.
x = f (t,x), x(t0) = x0, consists of first rewriting this as the integral

x(t) = x0 +

ˆ t

t0

f (τ,x(τ))dτ . (13.360)

Then, one takes an initial guess that is assumed to be valid on an interval, say (t0, t1);
we take x(0)(t) = x0 constant, here, because this satisfies the initial condition. Then,
we iterate

x(k+1)(t) = x0 +

ˆ t

t0

f (τ,x(k)(τ))dτ (13.361)

for k = 0, 1, 2, . . . until we are happy with the answer.
What goes wrong with this in exact computation is that sooner or later you run

into an integral that you can’t express in terms of elementary functions. One might
try series, or other approximations at that point. What you are asked to do is to use
chebfun right from the start, because the integration of chebfuns is easy using
cumsum: The integral of a chebfun is another chebfun.

Consider the problem
.
x = cos(πtx), x(0) = 1, on the interval 0 ≤ t ≤ 2. How

many iterations does it take to get a chebfun solution with residual smaller than
5× 10−13? (Our answer: 32 iterations, with a maximum residual less than 2.5×
10−13. Moreover, if we used Taylor series instead, then even having 100 iterations
doesn’t give us anything like this accuracy, although the solution is very accurate
on, say, 0 ≤ t ≤ 1/4.)

13.38. At several places in the book we have mentioned the Mandelbrot polynomials
defined by p0 = 1 and pk = zp2

k−1 + 1 for k ≥ 1. We have shown how to compute
zeros by eigenvalue techniques. This problem explores a potentially much faster
method.

Suppose pk(z) and its zeros are known for 0 ≤ k ≤ N − 1. Consider now the
polynomial

pN,t (z) = zp2
N−1(z)+ t2 = pN(z)− 1+ t2 .



13.10 Notes and References 693

When t = 0, the roots are known: 0 and double roots at ξN−1, j, 1 ≤ j ≤ 2N−1 − 1.
When t = 1, the roots are the desired roots of pN(z).

1. Find a series expansion of zt , where 0 = pN,t(zt) beginning zt = ξN−1,t +β1t +
β2t2 + · · · (you will find two series).

2. Show that zt satisfies the initial-value problem

d
dt

zt =− 2t
p′N(zt)

zt |t=ε>0 = ξN−1, j +β1ε+β2ε2 + · · · .

3. Either use a prewritten solver with singularity detection, together with the tech-
nique of pole-vaulting, to find all the roots of pN(z), or write your own defect-
controlled Taylor series solver to do the same. For how large an N can you solve
pN(z) = 0?



Chapter 14
Numerical Solutions of Boundary Value
Problems

Abstract Boundary value problems (BVP) for ordinary differential equations are
more than a simple extension of initial-value problems; indeed, it may be more
fairly said that initial-value problems are a degenerate case of BVP. The MATLAB

codes for solving BVPs are remarkably similar to call and assess although their
detailed behavior and algorithms are quite different. In this chapter, we look at
linear problems, quasilinearization to solve nonlinear problems, and the principle
of equidistribution on an optimal mesh. �

14.1 Introduction

Boundary value problems for ordinary differential equations (BVPODE, or simply
BVP for short) are qualitatively different than initial-value problems for ordinary
differential equations (IVPODE, or just IVP). Where a simple marching algorithm
succeeds for IVP, and the temporal mesh can be adapted essentially optimally using
only local information as one proceeds with the integration, the case is different for
BVPs. Conditions ensuring the uniqueness of the solution are typically separated:
One part of the solution is known at one place, and another part at another place.
Indeed, it is often more natural to think of the independent variable for BVP as
a spatial variable, although when the independent variable can be thought of as
“timelike,” there may be memory savings in treating the problem in a special way.
We do not pursue such methods here, beyond a passing mention below.

Instead, we consider “spacelike” problems, where there is no preferred direction
for the independent variable or order in which to generate the mesh. More impor-
tantly, the mesh on which computation proceeds is not usually known before start-
ing the solution process but somehow needs to be computed simultaneously with
the solution; indeed, the determination of an optimal mesh can itself be a significant
difficulty.

Example 14.1. Chapter 1 of Ascher et al. (1988) contains a long list of example
applications of boundary value problems. We mention one of particular interest to

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods:
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0 14,
© Springer Science+Business Media New York 2013
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our mathematical biology group, a classical and much-studied model of infection
due to measles:

Consider the following epidemiology model. Assume that a given population of size N can
be divided into four categories: susceptibles, whose number at time t is S(t); infectives I(t);
latents L(t); and immunes M(t). We have

S(t)+ I(t)+L(t)+M(t) = N

for t ∈ [0,1]. Under certain assumptions on the disease, its dynamics can be expressed as

.
y1 = μ−β (t)y1y3

.
y2 = β (t)y1y3 − y2

λ
.
y3 =

y2

λ
− y3

η
,

(14.1)

where y1 = S/N, y2 = L/N, y3 = I/N, β = β0(1+ cos2πt), and representative values of the
constants are μ = 0.02, λ = 0.0279, η = 0.01, and β0 = 1575. The solution sought is
periodic; that is, y(0) = y(1). (Ascher et al. 1988 p. 13, Example 1.10)

The authors go on to describe a trick [introduce a new vector variable and equation.
C = 0, with yi(0) = Ci(0) and yi(1) = Ci(1)] to put the boundary conditions in
standard form. You will be asked to solve this as Exercise 14.2. �

The treatment of this present chapter differs from our IVP treatment in earlier
chapters in that instead of focussing on how to use the MATLAB codes bvp4c and
bvp5c to solve BVPs, and on how to know the MATLAB solution is reliable, we
instead concentrate on constructing a method to solve a simple BVP, writing the
code ourselves, in order to highlight the ideas used in solving BVPs. One simple
reason for this change in focus is that the MATLAB codes for BVPs are so similar
to the codes for IVPs that the reader will hardly need more than the MATLAB help
files and demos to learn to use them, and to use deval to compute and examine the
residual in an a posteriori error analysis exactly as we did for IVPs.

For completeness, though, we will do one extended example using bvp4c in this
style (so the focus isn’t completely changed), but we will then immediately go on to
solve the problem ourselves using the method of collocation.

Example 14.2. The extended example we choose is a simple scalar second-order
linear equation with conditions given at each end of the interval:

..
y− 9

.
y− 10y = 0 (14.2)

subject to y(0) = y(10) = 1 on 0 ≤ x ≤ 10. In spite of using t as the independent
variable, this equation is not timelike, as you will investigate in the exercises. Solv-
ing it with bvp4c appears to be easy; you simply execute the following commands,
compute the solution, and plot it:

f = @(x,y) [y(2,:); 9*y(2,:)+10*y(1,:)];
x = 0:10;
solinit = bvpinit( x, [1,0] );
sol = bvp4c( f, @(ya,yb) [ya(1)-1; yb(1)-1], solinit );
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xi = RefineMesh( sol.x, 20 );
[y,dy] = deval( sol, xi );
res = dy - f(xi,y);
size( sol.x )
% Yields [1 49]: mesh with 48 subintervals; bvp5c is better
figure(1), plot( sol.x, sol.y(1,:), 'ko', xi, y(1,:), 'k-' )
set(gca,'fontsize',16)
xlabel( 't','fontsize',16 ), ylabel( 'y','fontsize',16 )
figure(2), semilogy( sol.x(2:end), diff(sol.x), 'ko')
set(gca,'fontsize',16)
xlabel( 't','fontsize',16 ), ylabel( 'stepsizes','fontsize',16 )
figure(3), semilogy( xi, abs(res), 'k.' )
set(gca,'fontsize',16)
xlabel( 't','fontsize',16 ), ylabel( 'residual','fontsize',16 )
axis( [ 0, 10, 1.0e-8, 1] )

Note the bvpinit command in line 3; we cover quasilinearization in Sect. 14.6.
We display the plots generated by those commands in Figs. 14.1–14.3. The last

plot is a bit worrying: The residual seems larger than we would have expected.
Redoing the computation using bvp5c instead of bvp4c results in a mesh with
33 points, and a maximum residual of about 10−2—a better-quality solution, which
apparently took less effort. Running the code with bvp5c yet again, using tighter
tolerances, shows that the first solution was perfectly satisfactory after all. �

Now that the use of MATLAB code has been illustrated, we move to one of our
recurring theme, that is, conditioning.

14.2 Conditioning

The theory of conditioning of BVPs is strongly related to that of IVPs. However,
there are some differences that are important. In this section, we will only consider
examples from the linear theory.

We will consider just two examples. First, we look at Eq. (14.2) with the given
boundary conditions, y(0) = y(10) = 1. See Problem 14.1, which shows that the ini-
tial-value problem with y(0) = 1 and y′(0) =α is exponentially sensitive to changes
in α and is thus an ill-conditioned IVP. However, we will now show that the BVP,
with y(0) = y(10) = 1, is well-conditioned. We do this directly by solving

y′′ − 9y′ − 10y = 0

subject to y(0) = a, y(L) = b on 0 ≤ x ≤ L. That is, we will allow changes in both
the left and right boundary conditions, and even allow the right boundary to move.
The reference solution is

y0(x) =
(ae10L − b)e−x

e10L − e−L +
(b− ae−L)e10x

e10L − e−L , (14.3)

as can be found in MAPLE by executing
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Fig. 14.1 Solution of (14.2) using bvp4c with default tolerances. Mesh points are plotted with
circles, and the deval interpolant is used to fill in the gaps
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Fig. 14.2 Mesh widths used in the solution of (14.2) using bvp4c with default tolerances. Mesh
widths are widest at the left end
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Fig. 14.3 Residuals in the solution of (14.2) using bvp4c with default tolerances. By plotting this,
we see that we may have cause for worry in that the residual is surprisingly large at the right end
of the interval
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dsolve( {diff(y(x),x,x)-9*diff(y(x),x)-10*y(x),
y(0)=a, y(L)=b}, y(x) ).

By inspection, we can see that at a = b = 1 and L = 10,

0 ≤
∂y/∂a

y
≤ 1

0 ≤
∂y/∂b

y
≤ 1,

and

−10 ≤
∂y/∂L

y
≤ 0 .

It follows that small changes in a near a = 1, small changes in b near b = 1, and
small changes in L near L = 10 have very little effect on the solution y(x). That is,
in contrast to the IVP with y(0) = 1,y′(0) = α , the BVP is well-conditioned.

Notice that it is the boundary conditions alone that differ—the differential equa-
tion is the same in both cases. Therefore, a comprehensive theory of conditioning of
BVP must take the boundary conditions into account.

The reader many recall, from his or her last course in linear ODE, the theory of
Green’s functions for solving inhomogeneous BVPs (see Ascher et al. 1988 for a
self-contained description of the theory, presented in a way that makes it easy to
consider numerical issues). For this example, if we wished to solve

y′′ − 9y′ − 10y = Δ(x)

subject to y(0) = a, y(L) = b (by hand if we remember the theory, because while
MAPLE will indeed solve the problem using

1 dsolve( {diff(y(x),x,x)-9*diff(y(x),x)-10*y(x)=Delta(t),
2 y(0)=a, y(L)=b }, y(x) ),

its answer is complicated and hard to read), then we find

y(x) = y0(x)+
ˆ L

0
G(x, t)Δ(t)dt , (14.4)

where G(x, t) is the Green’s function for this problem. Note that y0(x) is the homoge-
neous solution from Eq. (14.3). The exact expression for G(x, t) can be disentangled
from the MAPLE output or, more easily, derived directly by hand using the standard
theory. Either way, what concerns us about the conditioning of the BVP is the size
of G(x, t): By how much can it amplify Δ(x)? The specific details of G(x, t) are left
to Problem 14.3.

Example 14.3. For further exposition here, consider a slightly simpler problem,
Airy’s differential equation

y′′ − zy = 0 (14.5)
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but subject to the boundary conditions

y(0) = 1, y(L) = 0 . (14.6)

Since Ai(z) decays rapidly, we expect y(z)
.
= Ai(z)/Ai(0) and indeed we will see that

y(z) =
Ai(z)
Ai(0)

+O(Ai(L)) .

We could similarly consider the initial-value problem

v′′ − zv = 0 ,

with the boundary conditions

v(0) = 1, v′(0) =
Ai′(0)
Ai(0)

+ ε

(which is approximately the associated IVP to the given BVP) and similarly expect

v(z) =
Ai(z)
Ai(0)

+O(ε) ,

an expectation that would be quite true as we will see. Nonetheless, y(z)− v(z) gets
very large if L is large. This seems contradictory, but this apparent contradiction will
be resolved algebraically below and the resolution highlights the difference between
BVPs and IVPs.

Let us solve Eq. (14.5) subject to the boundary conditions (14.6). We have

y(z) = αAi(z)+βBi(z)

for some α,β . Remember that

Ai(z)∼ exp(−2z3/2/3)

2
√
π
√

z

decays very rapidly, while in contrast

Bi(z)∼ exp(+2z3/2/3)

2
√
π
√

z

grows faster than exponentially. Our boundary conditions are[
Ai(0) Bi(0)
Ai(L) Bi(L)

][
α
β

]
=

[
1
0

]
,

and since |Ai(L)| � |Bi(L)|, the last equation gives
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Ai(0)α− Ai(L)
Bi(L)

Bi(0)α = 1 ,

or, if we rearrange the terms,

α =
1

Ai(0)−Bi(0)
Ai(L)
Bi(L)

=
1

Ai(0)

(
1

1− r

)
=

1
Ai(0)

+
r

Ai(0)
+O(r2) ,

where

r =
Bi(0)Ai(L)
Ai(0)Bi(L)

∼ cexp(−4
3

L3/2)

is very small indeed. As a result, y(z) = αAi(z)+βBi(z) gives

y(z) =

(
1

Ai(0)
+

r
Ai(0)

)
Ai(z)+

Ai(L)
Bi(L)

Bi(z)
Ai(0)

+O(r2) , (14.7)

which is very close to Ai(z)/Ai(0), differing only by terms of size r, or at worst

r
Bi(z)
Bi(0)

∼ O(exp(−2
3

L
3/2)) .

Now, consider the (approximate) associated initial-value problem, with v′(0) =
Ai′(0)/Ai(0)+ ε . By straightforward MAPLE, we find that

v(z) =
Ai(z)
Ai(0)

− π
3Γ (2/3)

(
3

1/3Bi(z)− 3
5/6Ai(z)

)
ε =

Ai(z)
Ai(0)

+O(ε),

also as claimed. But there is a significant difference: For y(z), the coefficient of the
small term contains 1/Bi(L), which is very small indeed; it is so small that when x= L,
it balances out the growth of the terrible Bi(z) term, leaving only an “error” of size
Ai(L) (that this is 100% is beside the point: v(z) will be much worse).

One hundred percent error seems pretty bad, but it is exactly the error we make
in saying Ai(L) ≈ 0 in the first place. For v(z), on the other hand, the relative error
is much worse:

v(z)
Ai(z)/Ai(0)

− 1 =

π
3Γ (2/3)

(
3

1/3Bi(z)− 3
5/6Ai(z)

)
ε

Ai(z)/Ai(0)

=
π

32/3Γ (2/3)
Ai(0)

Bi(z)
Ai(z)

ε− a smaller term .

This term grows as O(exp( 4
3 z3/2)). Already for z = 4, this is 35,000ε; for z = 5, it is

2.4 ·106ε , while for z = 10, it is 1.6 ·1018ε . What does this say about ε? It says that
to get relative error merely 1 (i.e., 100%) at z = 10, we have to take ε .

= 5 · 10−19.
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In contrast, for y, when we insist y(10) = 0, we are making an error of size
Ai(10)/Ai(0)

.
= 3 · 10−10. Thus, in some sense the BVP y′′ − zy = 0 with the bound-

ary conditions y(0) = 1 and y(10) = 0 is 108 times better conditioned in 0 ≤ z ≤ 10
than the IVP y′′ − zy = 0 with initial conditions y(0) = 1 and y′(0) = Ai′(0)/Ai(0),
which we naively thought at first was almost equivalent.

What is happening in this example is that the condition at the right endpoint
is controlling the faster-than-exponential growth of the Bi(z) solution, while the
condition at the left controls the decaying Ai(z) term. When classes of solutions
of the underlying differential equation exhibit this split into growing and decaying
terms, the DE is said to have a dichotomy. �

There is a great deal more to be said about the conditioning of BVPs. One didac-
tic point that we have not seen stated elsewhere is that it is really with this numerical
problem that the ideas of numerical stability of the method compared and contrasted
with the well-conditioning of the problem start to sink in.

Finally, the full theory of conditioning, of course, needs to consider perturbations
of the equation, such as (but not limited to) those introduced by the residual:

y′′ − zy = Δ(z) .

For linear problems, this brings us directly to computation of Green’s function,
where

y(z) = y0(z)+
ˆ b

a
G(z,τ)Δ(τ)dτ ,

and a full development would take too much space. But given this, we emphasize
two important points: BVPs have condition numbers that can be computed, and the
boundary conditions really matter here. In particular, the naturally associated IVP
can have a very different conditioning (as in both these examples).

14.3 A Method to Solve BVPODE

Let us leave the MATLAB codes behind for now, and consider constructing our own
method to solve this problem and other ones like it (for didactic purposes only—
of course, in practice, one would use the high-quality codes available, rather than
rolling one’s own). The didactic purpose is, of course, to learn how these methods
work, so that we may use them better, and understand their limitations. The key ideas
that we want to exhibit are equidistribution and mesh adaptation, error estimates
from the residual, and collocation.

Before we begin, though, we talk briefly about an alternative approach, known
as “shooting,” suitable for some timelike problems. This example BVP could be
rephrased as an initial-value problem, with a slope y′(0) = α to be determined in
such a way that an IVP solver would march off from t = 0 and arrive at t = 10
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with y(10) just managing to hit the value 1: That is, we choose an angle α at which
to “shoot” the IVP solver to try to hit the “target” y(10) = 1. This IVP is called
the “associated IVP” to the BVP. One could imagine using some kind of rootfinder
(perhaps Newton’s method) to find a value of α for which this works. This approach
is called “simple shooting”; while easy to describe and implement (and it has some
theoretical advantages in discussing existence and uniqueness), it’s not so easy to
make it work, especially for problems like the one chosen here. In the exercises,
you will be asked to show that this particular IVP is ill-conditioned, and as a general
rule it is not recommended to replace a well-conditioned problem (as this BVP is)
with an ill-conditioned problem, as a step toward the solution.

Instead we demonstrate a popular direct method (one among many popular meth-
ods, actually) that is well-suited to equations of this type, namely, collocation. The
basic idea of collocation is that we approximate the solution in a finite-dimensional
space and require the differential equation to be satisfied exactly at a finite number
of points, and use those conditions to determine the coefficients of the approximate
solution in that finite-dimensional space.

We change variables to x from now on, to emphasize the spacelike nature of the
problem. We begin with a mesh

0 = x0 < x1 < x2 < .. . < xN−1 < xN = 10 (14.8)

that divides our interval into N subintervals, each of length hi = xi − xi−1 > 0,
i = 1,2, . . . ,N. Often (and for this problem) we begin with a uniform mesh, hi =
(b−a)/N = 10/N. We choose to represent our solution by a piecewise polynomial of
degree less than or equal to m; in the didactic procedure we discuss below, we use
m = 3, generically giving cubic polynomials on each subinterval:

zi(x) on xi−1 ≤ x ≤ xi . (14.9)

Thus, the finite-dimensional space in which we search for our approximate solution
is the set of piecewise polynomials of degree at most 3 on the given mesh. We want
z(x) (the union of all these pieces) to be continuous, and even continuously differen-
tiable, at x= xi, 1≤ i≤N−1. With only degree-3 polynomials, we cannot insist that
z(x) be twice continuously differentiable at the nodes. We also want z(x0) = b0 = 1
and z(xN) = b1 = 1, in order to match the given boundary conditions.

It is particularly convenient to use a Hermite interpolational representation for
zi(x), with zi(xi−1) = yi−1, z′i(xi−1) = y′i−1, zi(xi) = yi, and z′i(xi) = y′i, because this
automatically ensures that z(x) is not only continuous, but also continuously differ-
entiable. Thus, if θ = (x− xi−1)/hi, we may construct zi(x) from this data and from the
partial fraction expansion of 1/θ 2(θ −1)2, as we did in Chap. 8. This gives

z(x) =
1

h3
i

(2x− 3xi−1+ xi)(x− xi)
2yi−1 +

1

h2
i

(x− xi−1)(x− xi)
2y′i−1

+
1

h2
i

(x− xi)(x− xi−1)
2y′i +

1

h3
i

(3xi + xi−1 − 2x)(x− xi−1)
2yi . (14.10)
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It is easy to find formulæ for z′i(x) and z′′i (x) in this form:

z′i(x) = 6
(x− xi) (x− xi−1)yi−1

hi
3 +

(x− xi)(3x− 2xi−1 − xi)y′i−1

hi
2

− 6
(x− xi) (x− xi−1)yi

hi
3 +

(x− xi−1)(3x− 2xi− xi−1)y′i
hi

2 (14.11)

z′′i (x) = 6
(2x− xi−1− xi)yi−1

hi
3 + 2

(3x− 2xi− xi−1)y′i−1

hi
2

− 6
(2x− xi−1− xi)yi

hi
3 + 2

(3x− 2xi−1− xi)y′i
hi

2 . (14.12)

Since the DE we are looking at is second order, we will need both those formulæ. If
we had been trying to solve a third-order BVP, we would have needed to start with
higher-degree polynomials and take a third derivative, or else rewrite the equation
as a first-order system. We continue the present example of a scalar second-order
DE and will take up that question later.

We have one unknown, y′0, at the left end, two unknowns yi and y′i at each interior
node 1 ≤ i ≤ N − 1, and one unknown y′N at the right end. This gives 2N unknowns
in all. We are working directly in the Hermite interpolational basis: The piecewise
polynomials are known completely once yi−1, y′i−1, yi, and y′i−1 are specified, and
the total piecewise polynomial z(x) is automatically continuously differentiable, be-
cause the derivatives at the left end of the interval are the same as the derivatives of
the right end of the next-door interval if there is one. If we had been working instead
in the monomial basis, the process would have been (slightly) less simple, because
we would have had to explicitly add continuity and differentiability conditions to
our equations: Each cubic polynomial in the monomial basis has four coefficients,
leading to 4N unknowns, and we would have had to explicitly make things match up.
This is what COLSYS and other collocation codes that use the monomial basis do,
for example. Here, because we have chosen to use the Hermite interpolational basis,
we automatically have the right level of continuity. The price we pay is the slightly
more complicated formulae needed for the derivatives of the piecewise polynomials
given in the Hermite interpolational basis.

Now we come to the idea of collocation. We require that the differential equations
be satisfied exactly, at two discrete points in each subinterval. This means that we
will have 2N equations for our 2N unknowns. Because the differential equation is
linear, the equations will also be linear. Nonlinear differential equations will indeed
generate nonlinear algebraic equations for the unknowns, and we will have to deal
with this; for now, we continue with this linear example problem.

Consider the residual

ri(x) = z′′i (x)− 9z′i(x)− 10zi(x) (14.13)

(for a more complicated DE, this would be a lengthier formula, but otherwise the
same idea). We will try to make the residual small everywhere, by making it exactly
zero at two points, called collocation points, in the interval:
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x1 = xi−1 +θhi (14.14)

x2 = xi−1 +θ2hi. (14.15)

We choose θ1 = 1/2− 1/(2
√

3) and θ2 = 1/2+ 1/(2
√

3), which are Gaussian quadrature
nodes; we discuss other choices later. Thus,

r(x1) = z′′i (x1)− 9z′i(x1)− 10zi(x1) = 0 (14.16)

r(x2) = z′′i (x2)− 9z′i(x2)− 10zi(x2) = 0 (14.17)

for 1 ≤ i ≤ N. Because we make the residual zero at two places in each subinterval,
we expect (naively) that the method will be at most second-order accurate, that is,
have residual O(h2) as h → 0. We will look more closely at this naive expectation
later.

Remark 14.1. If we had instead used higher-degree polynomial pieces in order to get
higher-order convergence, say quintic Hermite interpolation, then we would have
to specify yi, y′i, and y′′i at each mesh point (which would automatically guarantee
a higher degree of continuity, too). Then we would have had 2+ 3(N − 1) + 2 =
3N +1 unknowns and would have needed 3 collocation points per subinterval. This
is enough, but it leaves us with one free parameter. With yi, y′i, y′′i , and y′′′i , we would
get 2+ 4(N − 1)+ 3 = 4N + 2 unknowns, leaving 2 free parameters. The algebra
would get a little messier with such higher degrees but is not, in principle, more
difficult.

However, we remind you that the purpose of this section of this chapter is
not to encourage you to write your own code: Very few people have to do this.
In MATLAB, there are bvp4c and bvp5c; in Fortran, there are COLNEW and
MIRKDC, and a host of other codes. This example is not about solving BVPs,
but rather about ideas. Here, 2 collocation points per subinterval give us enough
equations to identify the unknowns in our piecewise cubic polynomial approximate
solution. �

Suppose we take a very coarse mesh with N = 5 (that is, 5 subintervals). This
gives us 10 equations, which we denote schematically below:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
x

x x x
x x x

x x x x
x x x x

x x x x
x x x x

x x x x
x x x x

x x
x x

x
x

x
x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
y′0
y1

y′1
y2

y′2
y3

y′3
y4

y′4
1
y′5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0. (14.18)
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The two dashed columns multiply known solution values. This is an almost-block-
diagonal (ABD) matrix. There are N blocks (here 5), each of two equations. These
can be solved efficiently and stably, with O(N) work; a block LU factoring is
usual. Notice that careful bookkeeping is needed to use the boundary conditions in
this formulation. Alternatively, linear boundary conditions can be applied as extra
blocks: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
x
x

0
x x x
x x x

x x x x
x x x x

x x x x
x x x x

x x x x
x x x x

x x
x x

x
x
1

x
x
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
y0

y′0
...

yN

y′N

⎤⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎣
1
0
...
0
1

⎤⎥⎥⎥⎥⎥⎦ . (14.19)

Periodic boundary conditions would complicate the block structure. In practice,
we can use any solver we like; for large problems, there are specialized solvers
that are accurate and efficient. Here, using the sparse matrix facilities in MAT-
LAB is particularly convenient. In what follows, we do so. This is the key to the
solution.

We have replaced a linear boundary value problem for ordinary differential equa-
tions with a system of 2N linear algebraic equations. The solution of this system
gives us the values of yi and y′i at the mesh points. Using those values, we can then
compute the values of a piecewise cubic Hermite interpolant at any point; differen-
tiate it, and again, and evaluate the residual again at any point.

With N = 5, there are 42 nonzero entries in the matrix of the linear system,
not so different than the (2N)2 = 100 of a full matrix. However, the solution is
quite poor, with only N = 5 subintervals; we need at least 12 to get visual accu-
racy. With N = 12, the number of nonzeros in the matrix is 98, compared to 576
in a 24× 24 full matrix; using N = 33 (as used by bvp5c) gets us a very nice
and accurate solution (not with a uniform mesh as here, but with a better mesh
that we discuss later—the solution is still fairly poor with a uniform mesh, as we
will see), but when N = 33 (uniform or nonuniform), the matrix has 266 nonze-
ros, versus 4356 in a full matrix. The sparsity and structure of this matrix are quite
important.

Another important thing is the condition number of the matrix. For the uni-
form mesh we have presented so far, the condition number seems to scale as
κ(A) = O(N2); this may become an issue with this method, and COLSYS in par-
ticular pays close attention to the conditioning of the linear systems that arise,
and in part the monomial basis was chosen to keep the condition number under
control.
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14.3.1 Solution on a Uniform Mesh

Let us look more closely at the solution on a uniform mesh. In Fig. 14.4, we see

the residual samples at x1,xi+1/2,xi+1 for 0 ≤ i ≤ N − 1, and
√
Δ2

i +Δ2
i+1/2

+Δ2
i+1 is

plotted; this is for N = 50 and h = 10/N. The residual is less than 10−2 for x < 9,
approximately, but becomes larger than 1 (even larger than 10) as x → 10. This
means that we have solved a grossly different DE than the one we had intended to
solve: z′′ − 9z′ − 10z = 10v(x), where now v(x) is about 1. It would be expected
that this solution would not be acceptable for most purposes. To contrast with the
traditional view, we look at the forward error as well, which is possible in this case
because the reference equation is linear and homogeneous and is possible to solve
analytically:

yreference (x) =

(
e100 − 1

)
e−x

e100 − e−10 +

(
1− e−10

)
e10x

e100 − e.−10 (14.20)
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Fig. 14.4 Residual of the solution of y′′ − 9y′ − 10y = 0, y(0) = y(10) = 1, divided by y, with
N = 50 uniform subintervals in the mesh, cubic Hermite interpolants, and collocation at Gaussian
points in each subinterval. The residual is unacceptably large at the right end of the interval

In Fig. 14.5, the forward error z(x)− yreference(x) is plotted and is quite a bit
smaller, but it is still huge at the right end of the interval.

In Fig. 14.6, we see the computed solution at the mesh points, plotted together
with the true solution. You see that there are only two points in the layer at the right.
In Fig. 14.7, we see a graph of z′(x) at the mesh points; again, the right end layer is
not well captured. The residual is estimated to be large there.

14.3.2 Solution on an Adapted Mesh

Now let us do the same thing again, but on an adapted (nonuniform) mesh. Some-
how, we redistribute the xk so that more of them are in the boundary layer near the
right. We will shortly discuss how to find this adapted mesh. Figure 14.8 shows that,
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Fig. 14.5 Relative forward error y/yreference − 1 in the solution of y′′ − 9y′ − 10y = 0, y(0) =
y(10) = 1, with N = 50 uniform subintervals in the mesh, cubic Hermite interpolants, and col-
location at Gaussian points in each subinterval. We see that the forward error is also unacceptably
large at the right end of the interval, although much smaller than the residual because this problem
is actually very well-conditioned

Fig. 14.6 Solution computed on a uniform mesh together with the exact solution. We see visual
accuracy, but the number of points in the layer at the right seems low

after adapting the mesh to the problem, we find our residual to be nearly constant:

‖Δ‖ .
= 0.03, which suggests O(h

2
) with a moderate constant.

In Fig. 14.9, we display a graph of the lengths of the adapted subintervals: Note
that the widest subintervals have widths greater than 1, while the narrowest subinter-
vals have width about 0.005. Subintervals of width greater than 10% of the overall
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Fig. 14.7 z′(x) at the mesh points plotted with the derivative of the exact solution; again, the right
end layer is not well captured

Fig. 14.8 Residual on an adapted nonuniform mesh; note the scale on the vertical axis, which
shows that the variation in the residual is about 10%, except for one outlier where the residual is
about 50% smaller
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Fig. 14.9 Widths of an adapted mesh. Note that in the right-hand layer, which caused difficulty for
a uniform mesh, we now have many small subintervals

interval are probably excessive in practice: This heuristically adapted mesh isn’t re-
ally a very good one, although we see that it seems to have lowered the maximum
residual and placed more mesh points in the layer at the right, where there is rapid
change in the solution. The key figure is Fig. 14.8, which shows that ‖Δ(x)‖≤ 0.033
for N = 50 subintervals, whereas ‖Δ(x)‖ was at least 30 times larger for the uniform
mesh. This is a substantial improvement. In the next section, we examine how this
mesh redistribution is achieved, so that we obtain substantial improvement in the
residual.

14.4 How Does It Work, and Why Does It Work?

The key idea is equidistribution of error. Here, by error we mean residual, but other
authors use other measures of error, and indeed, it is an interesting part of a nu-
merical analyst’s purview to decide, in a specific problem context, what is the most
meaningful choice of error. The technique of equidistribution will work for any
choice, so long as the “error” can be measured reliably. Here, the residual on each
subinterval is

Δi(x) = z′′i (x)− 9z′i(x)− 10zi(x) , xi−1 ≤ x ≤ xi , (14.21)

which is (as always) computable and has a direct interpretation in that our computed
z(x) satisfies
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z′′ − 9z′ − 10z = Δ(x) =

⎧⎪⎨⎪⎩
Δ1(x) x0 ≤ x ≤ x1

Δ2(x) x1 ≤ x ≤ x2
...

...

, (14.22)

with some ambiguity at the nodes if Δ(x) is not continuous enough, which it won’t
be here (we would need to match second derivatives, in this formulation, which we
haven’t). As usual, if we use a residual as a measure of error, we must worry about
the effects of such perturbations. We return to the conditioning of BVPs later.

We now consider how to measure Δ(x). One way is just to sample it with

Δi(xi−1 +θ1hi) = 0 (14.23)

Δi(xi−1 +θ2hi) = 0 . (14.24)

It gives us two samples per subinterval. Δi(xi−1) and Δi(xi) are two more, and
Δ(xi−1/2) might also be interesting. For the purpose of this book, that is all we
will do: Sample the residual at various places (arbitrarily we choose five: at θ = 0,
θ = 1/2, θ = 1, and the two collocation points, where, by definition, Δi(x) = 0).

In Figs. 14.10–14.12, we see the residual, as sampled by the scheme given above,

in each of three subintervals of our adapted mesh, each divided by h
2
= (1/50)2, that

is, divided by the mean step size squared. All three are comparable in size. This is
not an accident, as we will see in the next subsection.

14.4.1 Equidistribution, the Theory

The topic of equidistribution is treated fairly widely in the literature.1 For theoretical
reasons, we can expect the residual on a subinterval of small width hi to be of size
roughly

‖Δi‖= φih
2
i , (14.25)

where the φi are O(1) and depend only weakly on the distribution of the mesh points.
That is, we expect this collocation method to produce a second-order accurate solu-
tion: Each ‖Δi‖= O(h2

i ), and thus ‖Δ‖= O(h2
max), and thus, finally,

‖y− z‖= O(h2
max) . (14.26)

The occurrence of h2
max, the square of the maximum hi, is troubling, and indeed

hmax > 1 on our example nearly optimal mesh! Therefore, by this estimate, we
shouldn’t expect any accuracy at all—yet we do get it, so something is not quite

right with our expectations. The plots earlier were scaled by h
2
, the square of the

mean step size, not the maximum step size.

1 We recommend Butcher (2008b) and Ascher et al. (1988) in particular. Much of the treatment
here follows Corless (2000).
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Fig. 14.10 Residual divided by h
2
, on x0 ≤ x ≤ x1 (the first subinterval)

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

theta

re
si

du
al

/h
2

Fig. 14.11 Residual divided by h
2
, on x24 ≤ x ≤ x25 (a subinterval in the middle)
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Fig. 14.12 Residual divided by h
2
, on x49 ≤ x ≤ x50 (the last subinterval)
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In order to explain why this will always be possible on an equidistributed mesh,
we need to look a bit more carefully at the idea that each ‖Δi‖ .

= φih2
i and the

meaning of the error coefficient φi. Recall that such power-law formulæ are common
in interpolation problems:

f (t)− p(t) = w(t)
f (n+1)(θ )
(n+ 1)!

.
= Khn+1 (14.27)

if the width of the interpolation interval is h. Similarly, finite differences (found by
interpolation), quadrature, and Taylor series also have such power-law error formu-
lae. Indeed, the only time this didn’t help was with the spectrally accurate trape-
zoidal rule for quadrature of a periodic C ∞ function, where all the Taylor terms
were zero. So it is to be expected that

‖Δi‖= φih
p
i (14.28)

will hold for some p, namely, the order of the method, and some vector of coeffi-
cients φi, 1 ≤ i ≤ N, which we suppose nonnegative.

The mesh adaption problem is to find subinterval widths hi such that hi > 0 and
∑N hi = b−a, that is, they cover the width of the full interval, and with the property
that

max
1≤i≤N

‖Δi‖= max
1≤i≤N

φih
p (14.29)

is as small as possible. That is, we wish to find the partition H of [a,b] that has

min max
1≤i≤N

φih
p
i . (14.30)

Theorem 14.1 below allows us to do that.
First, remember that the r-norm of a vector φ = (φ1,φ2, . . . ,φN) of positive re-

als is

‖φ‖r :=

(
N

∑
i=1

φ r
i

)1/r

.

Moreover, the Hölder r-mean of φ is

Mr(φ) :=

(
1
N

N

∑
i=1
φ r

i

)1/r

.

These being given, we first state two lemmas that will lead us to the key theorem.

Lemma 14.1. If θ > 0, then θ p‖φ‖−1/p =

(
θ
N

)p

M−1/p(φ) .
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Proof. Observe that

θ p‖φ‖−1/p =

(
θ
N

)p

N p‖φ‖−1/p

=

(
θ
N

)p

N p

(
N

∑
i=1
φ

−1/p

i

)−p

=

(
θ
N

)p
(

1
N

N

∑
i=1
φ

−1/p

i

)−p

=

(
θ
N

)p

M−1/p(φ),

as desired. �

Lemma 14.2.
∥∥ (‖(φ1,φ2, . . . ,φs)‖r, φs+1)

∥∥
r = ‖(φ1,φ2, . . . ,φs+1)‖r

Proof. Observe that∥∥∥∥∥∥
(

s

∑
j=1
φ r

j

)1/r

,φs

∥∥∥∥∥∥
r

=

⎛⎝⎡⎣( s

∑
j=1
φ r

j

)1/r
⎤⎦r

+φ r
s

⎞⎠1/r

=

(
s+1

∑
j=1
φ r

j

)1/r

=
∥∥(φ1, . . . ,φs+1)

∥∥
r

as desired. �

We can now state the theorem that will allow us to handle the minimax problem
at the core of equidistribution of error for mesh adaptation.

Theorem 14.1. If p, N ∈ N, φi > 0 for 1 ≤ i ≤ N, and θ > 0, then

max
{
φih

p
i :∑hi = θ

} ≥ θ p‖φ‖−1/p = h
p
M−1/p(φ),

where h = θ/N, with equality iff each φi hp
i = M−1/p(φ)h

p
.

Proof. Hölder’s inequality2 gives

[M1(h)]
p = M1/p(h

p)≤ M1/pα(1/φ)M1/pβ(φhp)

if α+β = 1, with equality iff (1/φi)
1/α is proportional to (φih

p
i )

1/β for all i (i.e., as vec-

tors). This equality condition can be written as φ
1/α
i hp

i = λ (the same constant, which
depends on β and hence α). We rewrite the inequality using M−r(a) = [Mr(1/a)]−1

as

M1/pβ(φhp) ≥ [M1(h)]
p [M1/pα (1/φ)

]−1

≥ h
p
M−1/pα(φ)

2 See Appendix C.
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and if we now let β → 0+, so that α → 1− and M1/pβ(φhp) → M∞(φhp) =

max
1≤i≤N

φih
p
i , we get

max
1≤i≤N

φih
p
i ≥ h

p
M−1/p(φ)

with equality iff φih
p
i = h

p
M−1/p(φ) for all i. �

Thanks to this result, we have a guide to equidistributing the error, as we explain in
the next subsection.

14.4.2 Solution of the Minimax Problem

If we are asked to solve the minimax problem

min

{
max

1≤i≤N
φi hp

i :∑hi = b− a

}
given the values φi > 0 for 1 ≤ i ≤ N, the solution is immediate from the inequality
of Theorem 14.1. Every choice of hi different from φih

p
i =M−1/p(φ)h

p
gives a larger

value for the maximum; moreover, the solution given is unique. Note that this use
of an inequality to solve a minimax problem is classical, and very much in the spirit
of the beautiful book Niven (1981).

Remark 14.2. Notice that λ = M−1/p(φ)h
p

can be interpreted as an average φ times
an arithmetic mean h to the pth power, and this itself gives the minimax error
M−1/p(φ)h

p
. This interpretation of λ is not made in Ascher et al. (1988), but we

believe it is a useful one. For example, when someone says a method is “fourth or-
der,” it is not always immediately clear what this means on a variable mesh. Some
people mean this to say that the error behaves like Kh4

max for some constant K and
hmax being the maximum mesh width. What we have shown with this interpretation

of λ is that on an optimal grid, the error behaves like Kh
4
, where h is the arithmetic

mean mesh width, and moreover we know that K = M−1/4(φ) is an average of the
monitor function. Another interesting thing is that it is also equal to K′h4

max, where
K′ is the value of φ at the place where the mesh is widest, and by equidistribution,
we have K′ < K and indeed the error is the same. One expects that for refinements
of equidistributing meshes, the average h would decrease, and thus the error would
decrease; it is not always clear that the maximum h decreases, and so to us, this
interpretation of λ justifies the terminology “fourth order.” We noticed this in the
chapter on numerical quadrature already, in Eq. (10.46). �

This theorem tells us several useful things. First, the maximum error is mini-
mized when the errors on each subinterval are the same. This “equitability” is very
satisfying, and since many IVP codes try to do this—they choose the next step size
as large as possible subject to the constraint φih

p
i = ε , the given tolerance—we see
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that insofar as step-size-selection algorithms equidistribute the error, they are op-
timal. Second, the theorem tells us that with a pth-order method, when the error
is equidistributed, the error goes to zero with the mean stepsize h

p
. This explains

some rather puzzling convergence phenomena, where we may have some hi > 1 and
still have very small error. For boundary value problems, especially for nonlinear
boundary value problems, this theorem tells us what to do, ideally.

Unfortunately, it doesn’t tell us how to do it. Finding an equidistributing mesh
can be as hard as solving the problem itself. However, several useful heuris-
tics allow us to approximately solve the problem, and even an “almost” optimal
mesh can be a great help. Here, those words of Larry Shampine are particularly
relevant:

You’ve got to remember that you’re trying to solve a differential equation, not find an opti-
mal mesh.

The code that we have written for this chapter uses a simple iteration, with some
heuristics limiting changes that are “too great,” and is not intended as a production
method. We do note that the introduction of equidistribution into a linear problem
makes it nonlinear, and that some sort of iteration will be necessary.

When we look at the shockbvp example in odeexamples(’bvp’) and
modify the demo to return the solution as well as plot it and to use a relative toler-
ance 10−9, we get Fig. 14.13a. If we also execute

−1 −0.5 0 0.5 1
−2

−1

0

1

2
Solution with mesh

−1 −0.5 0 0.5 1
10−4

10−3

10−2
Mesh widthsa b

Fig. 14.13 Solution of the odeexamples[bvp] shock problem, with tolerance 10−9. Mesh
widths plotted on a log scale on the right. (a) shockbvpa. (b) shockbvpb

semilogy( sol.x(2:end), diff(sol.x), 'k.' )

we obtain Fig. 14.13b. We see that the mesh widths are four orders of magnitude
smaller in the shock layer. The heuristics used to move the mesh have benefitted
from continuation in the problem parameter ε; the problem was solved for ε = 10−2

and the mesh and solution for that were used to solve the problem for ε = 10−3,
whose solution was then used for ε = 10−4.
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The code bvp4c uses the residual (it is one of the first widely distributed codes
to do so), but it measures ‖Δi(x)‖ by

hi

(ˆ xi

xi−1

Δ2
i (ξ )dξ

)1/2

, (14.31)

that is, in the 2-norm. Hence, the residual from bvp4c may contain small spikes, as
we saw in Fig. 14.3. Normally, this is perfectly adequate. The code bvp5c attempts
to estimate the condition number and equidistribute the global error, not the residual;
it is sometimes closer to what people expect.

14.5 Superconvergence

With the choice θ1 = 1/2−√
3/6,θ2 = 1/2+

√
3/6, and also with θ1 = 1/4,θ2 = 3/4, the

collocation method used here is fourth order accurate at the nodes xk, although the
residual of the interpolant obtained by a cubic Hermite fit to the computed data yk,
y′k is indeed only second order: ‖Δk‖ = φkh2

k . But for this problem y′′k = 9y′k + 10yk

is trivial to obtain, so we may easily use piecewise quintic Hermite interpolation on
the same data. When we do this, we find that our new Δks have

‖Δk‖= φkh4
k = M−1/4(φ)h

4
(14.32)

which seems very surprising, a lucky accident. For example, one could plot each

panel’s defect, divided by h
4
. It will be seen that this is O(1), if all is as it should be,

and that Δ(xi−1) = Δ(xi) = 0. This is because we now have not just a C ′ interpolant,
but also C 2, because yk, y′k, and y′′k are the same from left and right. This comes at
a cost—the polynomial pieces are fifth order—but the extra smoothness may be of
interest.

What about equidistribution? We found this mesh by approximately equidis-
tributing φih2

i from the φis given by the second-order interpolant.
It turns out to be true that the relative sizes of the φi are the proportionate ones

for the different powers, often, so

M−1/4(φ4)
.
= M−1/2(φ2) . (14.33)

That is, equidistributing a lower-order estimate of the error will approximately
equidistribute a more accurate error estimate, as well. There are many places where
this can be taken advantage of.
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14.6 Nonlinear Problems and Quasilinearization

Suppose now that the BVP we are trying to solve is not linear. For instance,

y′′ − 9y ′ − 10y2 = 0, (14.34)

to make only a trivial change in the example. We also have to consider the case
where the boundary conditions are nonlinear relations, which does happen; but for
now, let’s just change the DE. Consider what would happen if we “bulled ahead”
with the collocation approach: That is, we set up our mesh {xi}N

i=0 as before, and
chose our 2N collocation equations r(xi + θ1hi) = 0 and r(xi + θ2hi) = 0 for 0 ≤
i ≤ N − 1. These equations now are nonlinear equations for the unknowns yi and
y′i. In this example, they are apparently nonlinear of a quite simple sort: Including
the boundary conditions y0 = 1 and yN = 1, they are polynomials of degree at most
2, in the 2N + 2 unknowns. Computer algebra systems claim the ability to solve
multivariate systems of polynomial equations, so perhaps we could try one of their
algorithms.

Unfortunately, the number of solutions of such 2N-variate systems is usually ex-
ponential in the number of variables, here 2N (after y0 and yN have been eliminated).
That is, the number of solutions is on the order of c2N for some constant c> 1. Every
algorithm for exact solution must be capable of finding all solutions—which clearly
requires at least an exponential amount of work (in the worst case, doubly exponen-
tial). Here, when N = 3, there turn out to be 64 solutions to the equations, as we find
out by using MAPLE and its Gröbner basis package; when N = 4, we killed the job
when the memory usage reached 2Gb and our patience ran out. Exponential growth
means, sometimes, that even if you can solve six equations in six unknowns, you
might not be able to solve eight. Exact methods are not appropriate here; we really
only want one solution, the one that tends to y(x) as the mesh is refined.

This suggests that we use Newton’s method, if we can think of a good enough
initial guess—and this turns out to be a pretty good idea. But rather than using New-
ton’s method on the system of nonlinear algebraic equations that arises from collo-
cation on the original nonlinear equation, it pays us to use a variation on Newton’s
method that is specific to differential equations: Instead of finding the Jacobian of
the (big) system of discrete equations, we make an initial guess as to the solution of
the BVP, call it y(0)(x), and find the closest linear differential equation to the BVP
around this guess. That is, we differentiate the BVP with respect to the unknown
solution, in an operator sense.

This is not hard, and in fact we have already been doing this: we called it the
variational equation. We use this approach in order to estimate the condition number
of a DE (and it’s not a bad idea to do this for BVP either). For this example, put
y(x) = y(0)(x)+ ε(x), where we presume that ε(x) is “small.” Then, on neglecting
terms of O(ε2), the differential equation becomes

..
ε− 9

.
ε− 20y(0)(x)ε =−

(
..
y
(0)− 9

.
y
(0)− 10

(
y(0)
)2
)
, (14.35)
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which is a linear equation for ε(x) that we can solve by the method outlined previ-
ously: Collocation just gives a system of linear equations. Once we know ε(x), we
then update the solution by saying y(1)(x) := y(0)(x)+ ε(x).

In general, if our differential equation is

.
y(x) = f(y(x)) (14.36)

and our boundary conditions are

G(y(a),y(b)) = 0 , (14.37)

then the linearized equation about the kth iterate is

.
ε(x) = J f

(
y(k)(x)

)
ε(x)+ f(y(k))− .

y
(k)
(x) , (14.38)

with the linearized boundary conditions involving the Jacobian derivative of the
boundary function G. This is why you should supply Jacobians for nonlinear dif-
ferential equations and boundary conditions, together with an initial guess as to the
solution, to the routines bvp4c and similar. To solve nonlinear BVPs, these rou-
tines replace the original nonlinear equation with a sequence of linear equations,
each (hopefully) a better approximation to the original than the last.

Notice that it matters how you do the linear algebra. For most nonlinear prob-
lems, the most costly part of the solution is the setting up and factoring of the Ja-
cobian matrices. Notice that the collocation equations that arise from the linearized
differential equation will be (impressionistically) of the form I− hJ, where the J
part will change with each update y(k)(x). That means that finding the solution at
the mesh points (from which the interpolant is defined) requires factoring this ma-
trix, every time. If J is sparse or structured, then if N is at all large, it is important
that you tell the code that this is so, in order that it may take advantage of this fact.
There are facilities in bvp4c for doing so: You may (and should, if it’s true) tell
bvp4c that your Jacobian matrix is sparse, or banded, or symmetric; this can make
the difference between solving the system or not.

Also, as is usual with Newton’s method, one can have convergence failures of
various kinds; there may be multiple solutions, which you can reach by starting from
different initial guesses; one can have slow convergence. As with the solution of
nonlinear algebraic equations, the initial guess is the greatest single determinant of
success or failure. It is so important that the command bvpinit basically requires
the user to provide an initial guess (even if it is of the crudest kind), for all problems,
not just nonlinear ones. How can we find good guesses, though?

The idea of “simple continuation,” using the solution of a similar problem with
only a slightly different parameter, as the initial guess for the solution of the current
problem is a successful one. We have already seen it used in this chapter, not for
a nonlinear problem but on a linear problem, the shockbvp example from the
odeexamples demo. Continuation was needed not for the solution of a linear
problem, but rather in an attempt to find an equidistributing mesh: The mesh used
for a large value of ε was used as an initial mesh for a smaller one, and twice more



720 14 Numerical Solutions of Boundary Value Problems

until the final ε was reached. Of course, the problem of finding the optimal mesh is
a nonlinear one, and so it is natural to iterate.

To end this chapter, we illustrate the concepts introduced with some examples.

Example 14.4. The first problem is an explicitly nonlinear one. We look at the
boundary value problem generated by considering Jeffery–Hamel flow. In a form
suitable for numerical solution in MAPLE but not yet in MATLAB, the equation is

d4

dt4 F (t)+ 2

(
d
dt

F (t)

)
d2

dt2 F (t)+ 4
d2

dt2 F (t) = 0 (14.39)

and is subject to the boundary conditions{
F ′′ (0) = 0,F ′ (π/2) = 0,F (0) = 0,F (π/2) = −2Re/3

}
. (14.40)

Solving this in MAPLE using Allan Wittkopf’s sophisticated automatic continuation
code [which, to our knowledge, has no published description apart from a remark
in Corless and Assefa (2007)] to the effect that it apparently uses an interesting
geometric method to construct an initial guess and a step-doubling continuation
scheme) is very easy, even for large Reynolds numbers Re .

Let us try to solve this using bvp5c. First, we must convert it to standard first-
order form: Let y1(t) = F(t), y2(t) = F ′(t), y3(t) = F ′′(t), and y4(t) = F ′′′(t), as
usual. Then the BVP becomes

y′1(t) = y2(t)

y′2(t) = y3(t)

y′3(t) = y4(t)

y′4(t) =−2y2(t)y3(t)− 4y2(t) (14.41)

subject to y1(0) = y3(0) = 0, y2(π/2) = 0, and y1(π/2) = −2Re/3. The natural contin-
uation parameter to use is the Reynolds number Re : We begin with small Re , and
increase it as desired. The MATLAB code is as follows:

1 function jefferyhamel( Rey, nsteps )
2 %
3 % Set up and solve the Jeffery-Hamel BVP by continuation in the

Reynolds number.
4 %
5 function dy = JHFlow( t, y )
6 dy = zeros(size(y));
7 dy(1,:) = y(2,:);
8 dy(2,:) = y(3,:);
9 dy(3,:) = y(4,:);

10 dy(4,:) = -2*y(2,:).*y(3,:) - 4*y(3,:);
11 end
12

13 function zer = JHBC( ya, yb )
14 zer = [ ya(1)
15 ya(3)
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16 yb(2)
17 yb(1)+2*Reyl/3 ];
18 end
19

20 Reylocal = linspace( 1, Rey, nsteps );
21

22 coarseoptions = bvpset('Vectorized','on', 'RelTol', 1.0e-3, '
AbsTol', 1.0e-3 );

23

24 options = bvpset('Vectorized','on', 'RelTol', 1.0e-7, 'AbsTol
', 1.0e-7, 'Nmax', 50000 );

25

26 sol = bvpinit( linspace(0,pi/2,11), [1;0;0;0] );
27

28 for i=1:nsteps-1,
29 Reyl = Reylocal(i);
30 sol = bvp5c( @JHFlow, @JHBC, sol, coarseoptions );
31 end
32

33 Reyl = Rey;
34 sol = bvp5c( @JHFlow, @JHBC, sol, options ); % tight options

on last one
35

36 t = RefineMesh( sol.x, 20 );
37 [y,dy] = deval( sol, t );
38 res = dy - JHFlow( t, y );
39

40 figure(1),semilogy( t, abs( res(4,:) ), 'k-' ),set(gca,'
fontsize',16),xlabel('t','fontsize',16),ylabel('abs(
residual)','fontsize',16)

41 figure(2),plot( t, y(2,:), 'k-' ), set(gca,'fontsize',16),
xlabel('t','fontsize',16), ylabel('f(t) = F''(t)','
fontsize',16)

42

43 end

The output from asking for the solution with Re = 10 by taking 100 steps is given
in Fig. 14.14. This simple example is worth playing with, taking different Re and
different numbers of steps. If not enough steps are allowed, then the code might
get into trouble and fail to converge on the intermediate solutions; and from those
incomplete intermediate solutions, it is possible (and has happened for us, for neg-
ative Re ) that the final iteration converges well enough—but to a different solution
than if more continuation steps are used! This nonlinear problem has more than
one solution, and which solution you converge to depends on the initial guess. This
is something to be (very!) wary of when solving nonlinear problems, by whatever
method.

This problem can also be solved using Chebfun. See Exercise 14.6. �

Example 14.5. We now look briefly at a harder problem, which models a steady-
state shock wave in one-dimensional nozzle flow. This is Example 1.17 from
Ascher et al. (1988). The equation depends on a parameter ε , which is “essentially
the inverse of the Reynolds number.” The value of the parameter mentioned in the
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example is ε = 4.792 ·10−8. The equation is

εA(x)uu′′ −
(

1+
γ
2
− εA′(x)

)
uu′+

u′

u
+

A′(x)
A(x)

(
1− γ− 1

2
u2
)
= 0 (14.42)

on 0 < x < 1. The function A(x) represents the area of the nozzle at position x and is
taken to be A(x) = 1+ x2 as an example. The value of γ is 1.4 for air. The boundary
conditions are u(0) = 0.9129, apparently corresponding to supersonic flow in the
throat, and u(1) = 0.375.

Ascher et al. (1988, p.22) comment that “Given its simple appearance, the BVP
[Eq. (14.42)] turns out to be a surprisingly difficult nut to crack numerically.” The
difficulty is that a shock develops as ε → 0, of width O(

√
ε) and whose position

depends also on ε . The code below, which uses simple continuation, fails to find a
solution using bvp4c—it fails on the last step, with the message “singular Jacobian
encountered.” If we replace bvp4c with bvp5c, it nearly succeeds, although it
needs a very fine mesh in order to do so, so fine that the use of deval to compute
the residual apparently fails owing to rounding errors in the computation of the
(monomial basis) interpolant. Additionally, the code gives a warning:

Warning: Unable to meet the tolerance without using
more than 50000 mesh points. The last mesh of 14741
points and the solution are available in the output
argument. The maximum error is 2313.74, while
requested accuracy is 4.792e-009.

The code executed is this:

1 function sol = shocknozzle4c
2 %
3 % Shock wave in nozzle flow
4 % Example 1.17 in Ascher, Mattheij, and Russell
5 %
6 % Attempted solution by bvp4c---which fails.
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Fig. 14.14 The solution to Eq. (14.41) with Re = 100, obtained by asking for 10 continuation
steps from Re = 0, and its residual. (a) Computed solution. (b) Residual
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7 % Replace bvp4c with bvp5c in what follows, and it apparently
succeeds.

8 % RMC July 2011
9 %

10 function du = shocknozzle(x,u)
11 A = 1 + x.*x;
12 dA = 2*x;
13 du = zeros(size(u));
14 du(1,:) = u(2,:);
15 du(2,:) = ((1+gamma/2-epsilon*dA).*u(1,:).*u(2,:) ...
16 - u(2,:)./u(1,:) - (dA./A).*(1-(gamma-1)*u(1,:).ˆ2/2

)) ...
17 /epsilon ./A ./u(1,:);
18 end
19

20 function y = shockbc( ua, ub )
21 y = [ua(1)-0.9129
22 ub(1)-0.375];
23 end
24

25 solinit = bvpinit( linspace(0,1,10), [0.9;0] );
26

27 gamma = 1.4;
28 % simple continuation in epsilon
29 n = 40;
30 pow = linspace(1,8,n); % Chebfun with 512 died at 151, or epsilon

= 4.224e-3
31 maxres = zeros(n,1);
32 xi = linspace(0,1,1001);
33 for i=1:n,
34 epsilon = 4.792 * 10ˆ(-pow(i));
35 disp( [i,epsilon] );
36 opts = bvpset('reltol',min(1.0e-6,epsilon/5),'NMax',10000);
37 sol = bvp5c(@shocknozzle,@shockbc,solinit,opts);
38 solinit = bvpinit( sol, [0, 1] );
39 [u,du] = deval( sol, xi );
40 res = du - shocknozzle(xi,u);
41 maxres(i) = max(max(abs(res)));
42 end
43 % Polish the last solution a bit
44 opts = bvpset('reltol',min(1.0e-6,epsilon/10),'NMax',50000);
45 sol = bvp5c(@shocknozzle,@shockbc,solinit,opts);
46 [u,du] = deval( sol, xi );
47 res = du - shocknozzle(xi,u);
48 figure(1),plot(xi,u(1,:),'k');
49 xlabel('x','fontsize',16);
50 ylabel('solution','fontsize',16);
51 set(gca,'fontsize',16);
52 figure(2),semilogy( abs(res(2,:)), 'k' );
53 xlabel('x','fontsize',16);
54 ylabel('residual');
55 set(gca,'fontsize',16);
56 figure(3),semilogy( sol.x(2:end), diff(sol.x), 'k.' );
57 set(gca,'fontsize',16);
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Fig. 14.15 The solution using bvp5c to Eq. (14.42) with ε = 4.792 · 10−8, obtained by asking
for 40 continuation steps from ε = 4.792, and the final mesh needed—notice that there is a differ-
ence of six orders of magnitude in the smallest to the largest mesh width. (a) Computed solution.
(b) Mesh widths

58 xlabel('x','fontsize',16);
59 ylabel('mesh widths','fontsize',16)
60 end

In spite of that, however, the solution looks correct (as seen in Fig. 14.15); we be-
lieve that it is the somewhat conservative error measures (which were intended, in
MATLAB, for modest accuracy and not for problems like this one) that have failed.

When we tried Chebfun on this example, and MAPLE, we did not succeed in
getting a solution for ε smaller than 4 · 10−3. Of course, the scientific computing
BVP code COLSYS succeeded on this already 30 years ago; the problem is not that
hard. �

14.7 Notes and References

For a presentation of the general theory of the conditioning of linear BVPs and an
explanation of how it also applies to nonlinear problems, see Ascher et al. (1988
chap. 3). See Ascher et al. (1983) for a discussion of the influence of the polynomial
basis used on the conditioning of the ABD linear systems of equations that arise
in the solution of BVPs. That paper, which apparently arose after lively discussion
with M.R. Osborne and others at a meeting in Houston in 1978, suggests that the
Hermite basis (as we use here) also shares the good conditioning properties needed
for this application: If the mesh is not too nonuniform, then one expects only modest
growth of the condition number with the number of mesh points. A further point in
favor of the Hermite interpolational basis is that it results in matrices half the size
because continuity is automatically enforced (although, to be fair, this can be dealt
with in other bases also).

See Corless and Assefa (2007) for an extensive comparison of the numerical
solution of the Jeffery–Hamel flow equations to an analytical solution using elliptic
functions.
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Residual control (also known as defect control) is used in MIRKDC and a parallel
version called PMIRKDC, which is available from the University of Toronto. The
basic theory is laid out in Enright and Muir (1996), the parallel version is discussed
in Muir et al. (2003), and the use of efficient almost-block-diagonal solvers for the
linear algebra is described in Pancer et al. (1997).

The problem of parameter estimation in nonlinear ODE models has been briefly
mentioned in the Notes to Chap. 12, and we mention it again here because bound-
ary value problem methods are also useful for this. In part, this is because trying to
match up several data points in a measured solution is somehow more like a bound-
ary value problem than it is like an initial-value problem. This is taken up in, for
example, Li et al. (2005), and in work by M. R. Osborne (forthcoming).

Problems

Theory and Practice

14.1. Consider the ODE of Eq. (14.2) with initial condition y(0) = y′(0) =α . Argue
that there is an α (in fact, a unique α) such that y(10) = 1. Show that y(x) on
0 ≤ x ≤ 10 is exponentially sensitive to changes in α [more properly, if the problem
is posed on 0 ≤ x ≤ L, y(0) = 1, y′(0) = α with α chosen so that y(L) = 1, then
∂y/∂α is proportional to ekL for some k > 0].

14.2. Read the help files for bvp4c and bvp5c, and the tutorial http://www.
mathworks.com/bvp_tutorial.

Solve the “measles problem,” taken from (Ascher et al. 1988 p. 13, Example
1.10), which is described in Example 14.1.

14.3. The standard Green’s function construction for Ly = q, where Ly = y′ −A(x)y
subject to general linear boundary conditions at two separate points a < b, namely,

Bay(a) = βa, Bby(b) = βb,

needs a fundamental solution matrix Φ satisfying LΦ = 0 and BΦ = I. For our
example problem,

Ba =

[
1 0
0 0

]
,Bb =

[
0 0
1 0

]
,β =

[
1 0
1 0

]
,

and

y(x) =Φ(x)β +

ˆ L

0
G(x, t)q(t)dt (14.43)

http://www.mathworks.com/bvp_tutorial
http://www.mathworks.com/bvp_tutorial
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with

G(x, t) =

{
Φ(x)BaΦ−1(t) t ≤ x
Φ(x)BbΦ−1(t) t > x

Find an explicit expression for Φ(x) and show directly that Eq. (14.43) solves
Ly = q(t) and satisfies the boundary conditions. Show also that G is “not too large.”

14.4. Show that M−a(φ) =M−1
a

(
φ−1
)
, where M is the Hölder mean of the vector

φ defined on page 713. This shows that a Hölder mean with a negative power still
makes sense, because it is a reciprocal mean of reciprocals (like a harmonic mean).

14.5. Solve the problem in Example 14.2 using Chebfun. How big is the residual?

14.6. Solve the Jeffery–Hamel flow equations (14.39) with the boundary condi-
tions (14.40) for Re = 100 using Chebfun. Compare your solution with that of
bvp4c. You may find the examples in the guide at http://www2.maths.ox.
ac.uk/chebfun/guide/html/guide10.shtml helpful. From that guide:

It is not clear when these approaches can or cannot compute in speed and robustness with
BVP4C/BVP5C. But they offer something entirely new,[. . . ]

See also Birkisson and Driscoll (2012).

14.7. Solve y′′ = y2 − 1 on 0 ≤ x ≤ 1 subject to y(0) = 0,y(1) = 1.

Investigations and Projects

14.8. Write your own MATLAB collocation code to solve linear BVPs, and test your
code on the BVP in odeexamples(’bvp’). Linearize the BVP as appropriate.

14.9. Write your own equidistribution routine that attempts to find optimal mesh.
Conjoin this code with your routine from Problem 14.8 and test it on the BVP in
odeexamples(’bvp’).

14.10. Add quasilinearization to your code from Problem 14.9.

14.11. Blasius’ equation for the incompressible velocity profile for a flat plate is
2 f ′′′+ f f ′′ = 0 on 0 ≤ η ≤∞ subject to f (0) = f ′(0) = 0 and f ′(η)→ 1 as η→∞.

Solve this using bvp4c or bvp5c. Techniques for handling the infinite interval
include chopping (i.e., choosing some large L and setting f ′(L) = 1; better, a se-
quence of such Ls and examining convergence) or changing variables and thereby
transforming the equation. The last technique usually introduces a singularity into
the equation somehow.

14.12. In Sect. 12.10 and in Problem 13.36, we considered the problem of finding an
interpolant for the skeleton of the numerical solution of the IVP

.
y = f (y), y(t0) = y0

[call that skeleton (tk,yk) for 0 ≤ k ≤ N] that minimized the 2-norm of the residual
(deviation) on each step: That is, we sought z(t) such that z(tk) = yk, z(tk+1) =

http://www2.maths.ox.ac.uk/chebfun/guide/html/guide10.shtml
http://www2.maths.ox.ac.uk/chebfun/guide/html/guide10.shtml
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yk+1 with minimal
´ tk+1

tk
ΔH(τ)Δ(τ)dτ , where Δ(t) :=

.
z(t)− f (z(t)). This led to the

nonlinear BVP on tk ≤ t ≤ tk+1

.
z(t) = f (z(t))+Δ(t)
.
Δ(t) =−JH

f (z(t))Δ(t)

subject to z(tk) = yk and z(tk+1) = yk.

1. Write a MATLAB script to solve the BVP for each subinterval of the Euler
method solution to

.
y = y2 − t, y(0) = −1/2, on 0 ≤ t ≤ 5 with h = 5/N. How

much smaller is the optimal ‖Δ‖? Is it still O(h)?
2. Write an MATLAB script to find the optimal interpolant for the leapfrog solution

to the Hénon–Heiles problem and test it.
3. Write a general MATLAB m-file that finds the optimal interpolant for the skele-

ton of any numerical method. Test your code by some examples using ode45
and ode15s. You should get better residuals although one expects problems if
the step sizes are too small.

4. Discuss the benefits and drawbacks of this approach.

14.13. Use bvp4c or bvp5c to find periodic solutions to the following:

1. van der Pol’s equation y′′ − ε(1− y2)y′+ y = 0 with ε = 0.3;

2. the Rayleigh equation y′′ = ε(1− 4
3 (y

′)2)y′+ y = 0 with ε = 0.3.



Chapter 15
Numerical Solution of Delay DEs

Abstract Delay differential equations differ from ordinary differential equations
in that they may need their initial conditions specified on an interval, not just at
a finite set of points. The influence of discontinuities propagates forward in time
as the solution progresses. As is the case with ODE, however, a good numerical
solution gives the exact solution to a nearby problem. The same technique as used
in previous chapters, namely, computing the residual, works here as well to verify
that the computed solution is good in this sense. One then has to wonder, as usual,
about the conditioning of the problem. �

Delay differential equations occur very frequently in applications, especially in
mathematical biology. The numerical solution of delay differential equations (DDE)
has a great similarity to the numerical solution of initial-value problems for ordinary
differential equations, but has some important differences, as well. We demonstrate
with the following simple example:

.
y(t) =− 1

5 y(t − 1) , (15.1)

which is to hold for t ≥ 0. Quite obviously, if we are to be able to find even
.
y(0),

we must therefore know y(−1), and indeed to find
.
y(t) for any t in [0,1), we must

know y(t − 1); that is, we must have knowledge of a history function φ(t) such
that y(t) = φ(t) for −1 ≤ t ≤ 0. This history function plays the role of the initial
condition, but it’s more than an initial value: It is a quite general function defined
on an interval. Solutions of DDE are therefore infinite-dimensional objects, and a
good deal more complicated than IVP for ODE. Nonetheless, we may solve this
equation, and others more difficult yet, with a simple call to either the MATLAB

routine dde23 or, as we will see later, ddesd.
For concreteness in this example, we first choose φ(t) = exp(λ t), for the peculiar

value of λ =−0.259171101819074. Then the commands

dde = @(t,y,Z) -0.2*Z(:,1);
lambda = -0.259171101819074;

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods:
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0 15,
© Springer Science+Business Media New York 2013
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ddehist = @(t) exp(lambda*t);
opts = ddeset('AbsTol',1.0e-8) ;
tspan = [0, 4];
delay = 1;
sol = dde23( dde, delay, ddehist, tspan, opts )

solve the problem with a claimed absolute tolerance of 10−8. In this syntax, the
variable y refers to an approximation of y(t), while Z refers to an approximation of
y(t − 1). The syntax Z(:,1) picks out the first column of Z, but for this problem,
Z has, in fact, only one column. We will see more examples later. The solution,
evaluated at many points with the help of the auxiliary routine deval (the same
routine that evaluates the solution of an IVP or a BVP), is plotted in Fig. 15.1.
How accurate is the solution really? Just as with IVP and BVP, we may compute a
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Fig. 15.1 The solution of
.
y(t) = − 1

5 y(t − 1), with y(t) = exp(λ t) on −1 ≤ t ≤ 0, where λ =

−0.259171101819074. Dotted line is
.
y(t)

residual, and plot it. See Fig. 15.2. We take up how exactly to do this in MATLAB

in a later section. That is, our computed solution is the exact solution to
.
y(t) =

− 1
5 y(t − 1)+ 2.5 · 10−6v(t), with ‖v(t)‖ ≤ 1, approximately. Naturally, this makes

us wonder how significant such a perturbation is, but as usual in physical modeling,
one has to think about such things anyway. Before we take that up in detail, however,
let us consider another important difference between the numerical solution of IVP
for ODE and the numerical solution of DDE.

The history function exp(λ t), with that peculiar λ , was chosen artfully, so that
exp(λ t) was, in fact, the exact solution of the DDE. This meant, in particular, that
the transition between history and solution, at the initial point t = 0, was very smooth
(if it weren’t for rounding errors, it would be analytic there). This is highly unusual.
It is almost always the case that there is a jump in the first derivative there, because

usually
.
y(0+), defined by the DDE itself, is independent from

.
φ (0−), the left-hand

derivative of the history function. Indeed,
.
φ(0−) may not even exist: The history

may be discontinuous. However, even if it is continuous, it is usually the case that
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Fig. 15.2 The residual in the computed solution r(t) =
.
y(t) + 1

5 y(t − 1), with λ =

−0.259171101819074. The residual is at most about 10−6, whereas the tolerance asked for a solu-
tion accurate to about 10−8

the derivative of φ is not the derivative of y, at t = 0. This initial discontinuity
causes a problem for high-order numerical methods and must be treated with care.
See Feldstein et al. (2006) for a discussion of this issue.

Worse, it propagates.1 At t = 1,
.
y(t) = − 1

5 y(t − 1), and so we see that
..
y(t) has

a discontinuity at t = 1. Similarly, the third derivative has a discontinuity at t =
2, and so on. For this simple DDE, with only one (constant) delay of unit length,
it’s easy to identify where the discontinuities are. Furthermore, they weaken as t
increases, occurring in higher and higher derivatives, so the solution y(t) is getting
smoother and smoother. This is a useful feature of what’s referred to as “retarded”
delay differential equations, where the delays only occur in arguments to y, never in
arguments to

.
y, when the DDE is called a “neutral” DDE (more about which in a

moment).
In order to be robust, it turns out to be imperative that a code track discontinu-

ities, or provide some foolproof method for detecting them. The code should never
step over a strong discontinuity—that disrupts the error estimates extremely. Be-
cause dde23 deals only with constant lags, it can work out ahead of time where
all the discontinuities will occur (and how strong they will be). If there are multiple
delays, then this is an onerous bookkeeping task, which we are glad that the code
does for us.

To expand on that detail, consider what happens if our DDE is
.
y(t) = f (t,y(t),

y(t − τ1),y(t − τ2)), with two delays. The primary discontinuity at t = 0 will be
reflected at t = τ1, and again at t = τ2. Then again at t = τ1 + τ2. Also, of course, at
each of 2τ1, 3τ1, and so on, as well as 2τ2, 3τ2, and so on. In fact, at each of kτ1+�τ2.
Some of these locations may be very close to one another. If the discontinuities
weaken quickly, as they do with retarded DDE, then some of the locations can be

1 In Brunner (2004), this propagating discontinuity is called a primary discontinuity (following
notation of earlier authors).
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safely ignored. If there are more than two delays, then the bookkeeping to keep track
of them gets painful. Finally, there may be other, possibly stronger, discontinuities
in the history than just the primary discontinuity at t = 0.

Let us modify our first example to see what happens if φ(t) is itself discontinu-
ous. Choose a square-wave history, φ(t) = (−1)�−4t�, which has jump discontinu-
ities at t = −1, −3/4, −1/2, and −1/4, in addition to the derivative discontinuity at
t = 0. Now, we have this:

dde = @(t,y,Z) -0.2*Z(:,1);
ddehist = @(t) (-1).ˆfloor(-4*t);
opts = ddeset('AbsTol',1.0e-8,'Jumps',[-1,-0.75,-0.5,-0.25,0]);
tspan = [0, 4];
delay = 1;
sol = dde23( dde, delay, ddehist, tspan, opts )

It is instructive to look at the output from the call to dde23 this time; typing sol
to display the solution structure gives

solver: 'dde23'
history: @(t)(-1).ˆfloor(-4*t)
discont: [1x21 double]

x: [1x29 double]
y: [1x29 double]

stats: [1x1 struct]
yp: [1x29 double]

Notice that we helpfully informed dde23 of the locations of the discontinuities in
the history, using the Jumps option. Asking for the discontinuities, we receive this
output:

sol.discont

ans =
-1.0000 -0.7500 -0.5000 -0.2500
0 0.2500 0.5000 0.7500
1.0000 1.2500 1.5000 1.7500
2.0000 2.2500 2.5000 2.7500
3.0000 3.2500 3.5000 3.7500
4.0000

(The output was edited for alignment and concision.) As we can see, thereafter the
code has correctly predicted discontinuities at t = k/4. When we plot the solution
and its derivative, we see some interesting features appear. Look at Fig. 15.3. The
graph of y(t) is smoother than the graph of

.
y(t), as it should. If you look care-

fully, you see little sharp spikes in
.
y(t), near the jump discontinuities in 0 ≤ t ≤ 1.

These spikes are numerical artifacts: they are errors (probably due to differentiating
a polynomial interpolant to nondifferentiable data). They’re also not surprising, be-
cause it’s hard to solve discontinuous problems. We shall look again at this problem
in Sect. 15.5.

So how accurate is the solution this time? See Fig. 15.4. We see that the residual
is much larger than our tolerance, near the discontinuities. One saving grace is that
the large residuals occur in very narrow subintervals, and so their influence on the
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Fig. 15.3 The solution of
.
y(t) =− 1

5 y(t −1), with square-wave history on −1 ≤ t ≤ 0. The dotted
line is

.
y(t)
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Fig. 15.4 The residual in the computed solution r(t) = yt(t)+ 1
5 y(t −1), square-wave initial his-

tory, on a log scale. The residual is, near the discontinuities, quite large. Nonetheless, the effects of
the discontinuities are confined to small intervals

solution is constrained. Nonetheless, we see that the discontinuities are giving the
solver some trouble, as is only to be expected. What is welcome, however, is that
the code does a creditable job in containing the influence of the discontinuities.

The routines dde23 and ddesd use explicit Runge–Kutta formulae together
with natural interpolants. The low-order method dde23 uses the same (2,3) pair
that ode23 uses to integrate initial-value problems for ordinary differential equa-
tions. The higher-order code uses classic RK4 together with a natural interpolant
to provide a continuous solution, and controls the size of the residual. There are
some interesting differences to the use of these one-step formulæ for DDE as op-
posed to IVP for ODE. For example, it would be inefficient to restrict the time step
of the underlying RK formula to be smaller than the smallest delay (which indeed
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may vanish, as we will see later). But the RK formulæ may need the value of the
derivative at a point somewhere in the current step not at the natural places, which
are artfully arranged so that the errors cancel out at the end of the step. Current
high-quality codes use the interpolant from the previous step to predict these “un-
natural” values, and then (even for explicit methods) iteration is used to correct the
values to obtain a highly accurate estimate. This will be pursued further in the exer-
cises.

It is true that this DDE is so simple that it can be integrated analytically, by
what is known as the method of steps. On the interval 0 ≤ t ≤ 1, the differential
equation is just

.
y(t) =− 1

5φ(t − 1), and φ(t) is known; hence, we just integrate that
piecewise constant function to get a piecewise linear function. Explicitly, on the
interval 0 ≤ t ≤ 1, the solution is

y(t) =

⎧⎪⎪⎨⎪⎪⎩
t/5+ 1 t < 1/4

− t/5+ 11/10 t < 1/2
t
5 +

9/10 t < 3/4
−t
5 + 6/5 3/4 ≤ t

, (15.2)

and this is continuous. In the interval 1 ≤ t ≤ 2, now that we know the solution on
0 ≤ t ≤ 1, we can find the solution again by just integrating. The solution is

y(t) =

⎧⎪⎪⎨⎪⎪⎩
− 1

50 (t − 1)2 − 1
5 t + 6

5 t < 5/4
1
50 (t − 1)2 − 11

50 t + 489
400 t < 3/2

− 1
50 (t − 1)2 − 9

50 t + 469
400 t < 7/4

1
50 (t − 1)2 − 6

25 t + 251
200 0 ≤ t − 7/4

, (15.3)

which is continuously differentiable. In the next interval, the polynomials are de-
gree 3, and so on; smoothness increases as t increases. This method is useful theo-
retically, to establish existence and uniqueness, in general; but in general, the sym-
bolic integrations become extremely cumbersome. We shall return to this method in
Sect. 15.5, however.

This behavior, the weakening of propagated discontinuities, is true only for DDE
of the retarded type, that is,

.
y(t) = f (t,y(t),y(d1(t)),y(d2(t)), . . . ,y(dk(t))) , (15.4)

where each delay function d j(t) < t (or possibly actually equals t, in which case
we say that the delay vanishes, which itself is problematic, but less so than the next
case). If the DDE also contains terms that depend on the derivatives of y at previous
times, such as

.
y(t) = f (t,y(t),y(t − 1),

.
y(t − 1)) , (15.5)

then we have what is called a neutral DDE. In this case, the discontinuities do not
weaken as they propagate, and the solution is much harder. Indeed, even existence
and uniqueness can be problematic. We shall return to this later.
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15.1 The Residual, or Defect

DDE can be nonlinear, and often are in applications; see, for example, ddex2 from
the odeexamples demo in MATLAB. Nonlinearity per se doesn’t present any new
difficulties, but, of course, the old difficulties (nonuniqueness of solutions, require-
ment of solving nonlinear algebraic equations in order to advance a step), while fa-
miliar, are still potent. For example, a nonlinear equation due to Cooke et al. (1999)
that models population y(t) at time t by the equation

.
y(t) = be−ay(t−T )−d1T y(t −T )− d y(t) (15.6)

with, say, history y(t) = 3.5 for t ≤ 0 and parameters a = 1, d = 1, d1 = 0, and
b = 80 can be solved on 0 ≤ t ≤ 25 using dde23 by the following commands:

1 %
2 % Cooke, van den Driessche and Zou example (1999)
3 %
4 clear all
5 close all
6 starttime=clock;
7 % Parameter values from Fig 3(d)
8 a = 1;
9 b = 80;

10 d1 = 0;
11 d = 1;
12 T = [0.2, 1.0, 2.4];
13 opts = ddeset( 'RelTol', 1.0e-7, 'AbsTol', 1.0e-8 );
14 % Use a structure for the history, to make computing
15 % the residual easier, later. Take a wide enough interval
16 % that we cover all three delays used here.
17 hist = dde23( @(t,y,z) 0, [], 3.5, [-5,0], opts );
18 % Do three integrations for three different delays
19 for i=1:3,
20 dde = @(t,y,z) b*exp(-a*z-d1*T(i))*z - d*y;
21 sol(i) = ddesd(dde, T(i), hist, [0,25], opts );
22 end;
23 timetaken=etime(clock,starttime);
24 % Now plot the solutions
25 figure
26 plot( sol(1).x, sol(1).y, 'k-', sol(2).x,sol(2).y, 'k--', ...
27 sol(3).x, sol(3).y, 'k-.' )
28 set(gca,'fontsize',16);
29 xlabel('t','fontsize',16);
30 ylabel('y','fontsize',16);
31 % Now compute and plot the residuals
32 npts = 10001;
33 t = linspace(0,25,npts);
34 r = zeros(3,npts);
35 for i=1:3,
36 dde = @(t,y,z) b*exp(-a*z-d1*T(i)).*z - d*y;
37 [yt,dyt] = deval( sol(i), t );
38 % Evaluate the solution at the delayed value of t, too
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39 zt = deval( sol(i), t-T(i) );
40 r(i,:) = dyt - dde(t,yt,zt);
41 end
42 figure
43 r = abs(r);
44 semilogy( t, r(1,:), 'k-', t, r(2,:), 'k--', t, r(3,:), 'k-.' )
45 set(gca,'fontsize',16);
46 xlabel('t','fontsize',16);
47 ylabel('residual','fontsize',16);
48 axis([0,25,1E-20,1E5]);
49 set(gca,'YTick',[1E-20,1E-15,1E-10,1E-5,1,1E5]);
50 % The code produces the exact solution to a problem within
51 % 1.0e-5 of the stated prroblem.

Notice that the history y(t) = 3.5 is given to dde23 not as a simple constant, but
rather as the solution to the trivial DE y′(t) = 0, y(−5) = 3.5. This creates a solution
structure, and when given to dde23 as the history for the subsequent nontrivial
integration, the code automatically extends the solution to include the past history.
This is convenient for plotting, but even more convenient for computing the residual,
because then deval doesn’t complain if you ask it to evaluate y(t −T ) when t −T
is somewhere in −5 ≤ t − T ≤ 0, that is, in the history. Other software packages
may have similar tricks, but you could always do the bookkeeping yourself.

The solutions are plotted in Fig. 15.5, and the computed residual in Fig. 15.6.
Notice that the residual is smaller than 10−5, but larger than our requested toler-

−5 0 5 10 15 20 25
0

5

10

15

20

25

t

y

Fig. 15.5 The solutions to (15.6) for T = 0.2 (solid line), T = 1 (dashed line), and T = 2.4 (dash-
dot line), with history y = 3.5 for t < 0. Parameter values are a = d = 1, d1 = 0, and b = 80.
Absolute tolerance was 10−8 and relative tolerance 10−7

ance. This is because the code uses an integral measure of size—it controls not the
max norm of the residual, but rather a scaled integral norm. It controls not ‖r‖∞,
but hn‖r‖2. For well-conditioned problems, it is often true that the forward error,
the difference between the computed solution and the reference solution, will be
adequately controlled by this method. For our purposes, the factor of hn is a distrac-
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Fig. 15.6 The residual at 10,000 points in each of the computed solutions to (15.6) on a log scale.
The residuals are uniformly small, albeit larger than our tolerances, but we have computed in each
case the reference solution to a problem quite close to the original

tion, but not insuperable. One final note is that the interpolant that is used internally
might not be the “best possible” interpolant for the problem—it is conceivable that
the “best possible” residual might be smaller than this. The method of verification
advocated in this book provides a sufficient condition for backward accuracy, in
other words.

Still, by this analysis, what we have shown is that the solution from dde23 is
the exact solution to

.
y(t) = be−ay(t−T )−d1T y(t −T )− d y(t)+ 10−5v(t) , (15.7)

for some wiggly v(t) with ‖v‖∞≤ 1. Additionally, we can make the residual smaller
by tightening the tolerances used. These are useful reassurances when solving a
nonlinear equation such as this one.

But what does that residual mean for the DDE? The original DDE did not con-
tain t explicitly—it was unforced by any time-dependent term. To see what this
means, one could go back to the original equation and see that it is a single-species
population model; and already it is an oversimplification, because populations are
made up of individuals, and if the nominal population is in the millions, say, then
we are talking about fluctuations on the order of about 10 organisms—extra deaths,
extra births, coming into the population more or less randomly. This is a perfectly
acceptable modification to the equation (in this case), because we have to think
about such fluctuations anyway, in deciding whether or not the model is robust un-
der real-life perturbations. The perturbation does make the theorems in Cooke et al.
(1999) that talk about irrelevant equilibria as stated. With a time-dependent [called
persistent in the literature; see, e.g., Definition 2.2 in Baker et al. (2006)] perturba-
tion, those theorems no longer apply directly. One needs to extend the theorems to
consider what happens to equilibria under small time-dependent perturbations, and
of course there are results for this case as well. We do not take this topic up here in
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great detail, but instead direct the reader to the literature on perturbations of delay
differential equations. In a later section, we will talk a little bit about stability in
general. The end result for the use in Cooke et al. (1999), however, where they used
numerical simulation to confirm their theorems, was that the numerics produce re-
sults that are consistent with their theorems (if the effects of perturbations are small;
moreover, we seem to have some evidence that they are). In other applications, the
residual can help us decide if the numerics did a good enough job that their results
can be trusted, for other purposes.

15.2 State-Dependent Delays: ddesd Versus dde23

Nonlinearities can occur in many ways for ODE. What is new for DDE is that
the delay functions d j(t) mentioned above can be time-dependent, or even state-
dependent, and this can introduce nonlinearity in a whole new way. That is, instead
of just d j(t), we can have d j(t,y(t)); that is, the delay depends on the unknown value
of the function itself. An example is ddex3 in the odeexamples demo. Before
we tackle that rather complicated example, which has a vanishing state-dependent
delay, we consider the following simpler problem from Iserles (1994). Here the de-
lay does not depend on the state, but it’s not a simple lag either:

y′(t) =− 1
4 y(t)+ y(t/2)(1− y(t/2)) (15.8)

with the initial condition y(0) = 1/2. Here the delay function is d1(t) = t/2, and for
t = 0 this is no delay at all, but for all t > 0, we must have t/2 < t. The code dde23
cannot handle such problems: It can only deal with constant delays. We turn to the
more powerful ddesd (for DDE state-dependent):

% Iserles' 1994 example
% z'(t) = -0.25*z(t) + z(t/2)*(1-z(t/2)),
% z(0)=0.5, on 0 <= t <= 10ˆ5
tend = 10ˆ3;
sol = ddesd( @(t,y,z) -0.25*y + z.*(1-z), @(t,y) t/2, 0.5, [0,

tend] );
t = linspace(0,tend,3*tend+1);
[y,yp] = deval( sol, t );
t2 = t/2;
y2 = deval( sol, t2 );
r2 = yp - (-0.25*y + y2.*(1-y2) );
figure
plot( t, y, 'k' )
set(gca,'fontsize',16);
xlabel('t','fontsize',16);
ylabel('y','fontsize',16);
figure
plot( t, r2, 'k' )
set(gca,'fontsize',16);
xlabel('t','fontsize',16);
ylabel('residual','fontsize',16);
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Fig. 15.7 The solutions to (15.8) with default tolerances
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Fig. 15.8 The residual in the computed solution to (15.8) on a linear scale. The residuals are
uniformly small, and we have computed the exact solution to a problem quite close to the original

The solution on 0 ≤ t ≤ 103 is plotted in Fig. 15.7, and the residual (at default
tolerances) is plotted in Fig. 15.8, where we see that it is uniformly less than 10−5

again. That is, we have not solved this pantograph-like equation exactly, but have
rather solved y′(t) = f (y(t),y(t/2)) + 10−5v(t), where v(t) is uniformly bounded.
Again, to see if this is an acceptable result, one would have to consider natural
perturbations in the original system being modeled. We defer this discussion to the
section on stability, and note only that the solution by ddesd was straightforward
and took only 261 steps. We had to specify the DDE as taking t, y(t), and y(t/2)
(called “z”), and specify a lag function t/2, but otherwise the call was similar to
dde23. To do the solution on 0 < t < 105, as was claimed in Iserles (1994), takes a
bit more effort (about 20,000 steps) but is still perfectly feasible, and the residual is
again less than 10−5 in magnitude.
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Now let us take a truly state-dependent example, from the odeexamples
demo, taken there from Enright and Hayashi (1997b) (see also Enright and Hayashi
(1997a)). The equation is

.
y1(t) = y2(t)
.
y2(t) =−y2

(
e1−y2(t)

)
y2

2(t)e
1−y2(t) . (15.9)

The delay function d1(t,y) = exp(1− y2(t)) occurs in the second equation. It’s not
even clear a priori that d1 ≤ t. If ever the “delay” functions ask for knowledge of the
unknown function at future values of t, this is a real problem—solutions will often
fail to exist, and if they do exist, they can be horribly ill-conditioned, even ill-posed.
The routineddesd does not allow d j > t, by the simple device of using min(t,d j(t))
(this restricts problems to ones with t0 < t f , which is a good idea anyway). For
this example problem, from the known exact solution y1(t) = logt and y2(t) = 1/t

(remember, this is a test problem), we can plot d1(t) and learn thereby that the
numerical method should be doing well enough, because d1(t) ≤ t on 0 < t < 5,
say. However, at t = 1, equality is achieved: The delay vanishes. This is a tough test
problem.

Another difficulty is that to track propagating discontinuities, as we must, we
have to solve nonlinear equations: For each previously known location τ∗ of a dis-
continuity, we have to find all values of t in the current contemplated step that satisfy

d j(t,y(t)) = τ∗ . (15.10)

Such t will also have discontinuities in the solution (for retarded DDE, the discon-
tinuities will be weaker). In general, this equation is nonlinear and depends on the
unknown function y(t). An initial guess might be available if the continuous exten-
sion to the numerical solution can be extrapolated into the current step, but in any
case the location(s) of the discontinuities in the interval must be located by an itera-
tive solution method. The code must step no farther than the first such discontinuity.
The code ddesd, just as with other high-quality DDE solver codes, will handle this
automatically. It is a difficult problem, however.

To get our example started, we use the known exact solution on t < 0.1 and
integrate from t = 0.1 to t = 5. This is done in the odedemo file, but we include
code here that has been modified to compute the residual:

1 function ddex3mod
2 %DDEX3 Example for DDESD, modified to compute the residual.
3 %
4 % Modifications by Robert M. Corless, January 2011
5 % See the DDEX3 example in odedemos['Delay Differential

Equations']
6 % by Jacek Kierzenka and Lawrence F. Shampine
7 close all
8 t0 = 0.1;
9 tfinal = 5;

10 tspan = [t0, tfinal];
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11

12 teensy = 1.0e-5;
13

14 % Use a solution structure for the history, to make residuals
easy

15 ddex3hist = ddesd( @(t,y,z) [1/t; -1.0./t.ˆ2], [], ...
16 [log(teensy), 1.0/teensy], [teensy, 0.1] );
17 % The call is modified to use the structure history
18 sol = ddesd(@ddex3de,@ddex3delay,ddex3hist,tspan);
19

20 % Sample the residual
21 npts = 1001;
22 % Step *just* off the initial point (residual huge there)
23 t = linspace(t0+teensy,tfinal,npts);
24 [y,yp] = deval( sol, t );
25 % Compute the corresponding delays
26 tdelay = ddex3delay( t, y );
27 % Function at delayed arguments
28 z = deval( sol, tdelay );
29 resid = zeros(2,npts);
30 % ddex3de was not vectorized, step through to compute residuals
31 for i=1:npts,
32 resid(:,i) = yp(:,i) - ddex3de(t(i), y(:,i), z(:,i) );
33 end
34 figure
35 semilogy(t, abs(resid(1,:)),'k')
36 xlabel('t')
37 ylabel('residual')
38 h = diff( sol.x );
39 figure
40 semilogy( sol.x(2:end), h, 'k.')
41 ylabel('step sizes')
42 xlabel('t')
43 % The following code is identical to that of DDEX3
44

45 function d = ddex3delay(t,y)
46 % State dependent delay function for DDEX3.
47 d = exp(1 - y(2,:));
48

49 % -----------------------------------------------
50

51 function dydt = ddex3de(t,y,Z)
52 % Differential equations function for DDEX3.
53 dydt = [ y(2); -Z(2)*y(2)ˆ2*exp(1 - y(2))];

Instead of providing the exact solution history directly, we integrate y′1(t) = 1/t and
y′2(t) = −1/t2 on ε < t ≤ 0.1 for some teensy epsilon. This gives us a solution struc-
ture to hand to ddesd, so that we may compute the residual in a convenient manner.
The residual turns out to be less than 10−3, except right at the start where it is rather
large. To further examine the progress of the code, we look at the step sizes taken.
When we plot the step sizes used by the code, we see that they vary smoothly from
about 10−6 up to a little less than 1. The smoothness of the changes indicate that
the code had little difficulty. Thus, the solution plotted in ddex3 in the demo is
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the exact solution to a perturbed problem, where the perturbation is about 10−3.
Of course, the demo compares the numerical solution to the known exact solution,
which agrees at least to visual accuracy. With the residual approach, we note that we
can assess the validity of a numerical solution even when we do not know the ref-
erence solution. This is an extremely important consideration. Of course, we then
have to answer the question of whether or not the underlying problem is sensitive to
changes. But applied mathematicians and scientists have to do that anyway.

15.3 Conditioning

The conditioning of delay differential equations is quite a difficult problem. An
excellent compendium of results can be found in Baker et al. (2006) and the ref-
erences therein, where several formulæ similar to the Gröbner–Alexeev nonlinear
variation-of-constants formula are considered for various classes of DDE. Note that
the problems are quite delicate: In some cases, the solutions are not differentiable
with respect to some of the parameters (the delay itself can be such a parameter).

Let us return to our simple test problem
.
y(t) = ay(t − 1). The exact solution to

this problem, as described by Wright (1947), can be found by the use of Laplace
transforms and, if a �= −exp(−1), expressed as a Dirichlet series (or nonharmonic
Fourier series), namely,

y(t) =
∞

∑
k=−∞

ckeλkt , (15.11)

where the λk =Wk(a) are the different branches of the Lambert W function evaluated
at z = a. The values of ck are determined by certain residues of the history function
and the initial condition, as described by Wright (1947), or a truncated version can
be found by least-squares fit to the history function, as in Heffernan and Corless
(2006). For example, if a = −1/2, then the two terms in the series with the largest
real part of λk are, with history function φ(t) = cosπt on 0 ≤ t ≤ 1,

1.784282170e−0.7940236323t cos(0.7701117505 t)

− 4.960083346e−0.7940236323t sin(0.7701117505 t)

because Wk(−1/2)
.
=−0.7940236323±0.7701117505i for k = 0, −1. The constants

ck in front are determined by the history function, and they don’t really matter all
that much. Since all the other terms have Re(λk) < −0.79, we conclude that the
identically zero solution of

.
y(t) = − 1

2 y(t − 1) is asymptotically stable (in the ter-
minology of the literature). Existing perturbation results say, then, that for small
enough time-dependent perturbations of this delay differential equation, the solu-
tion will come close to zero, and stay there. The details of just how close “close” is,
and how small “small enough” must be, do not concern us at this time. At this point,
it should only be plausible that the zero solution of this delay-differential equation
is well-conditioned, in numerical analysis parlance.
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Now, consider the following matrix version of that simple DDE:

.
y(t) = Ay(t − 1) (15.12)

For example, we could choose A = D− I, where D is the differentiation matrix on
the Chebyshev nodes τ = cos( jπ/(n−1)), for 0≤ j ≤ n−1. You can create this matrix
by the general-purpose genbarywts routine used in this book (see Sect. 8.2.3), or
more accurately by the command gallery(’chebspec’,n). The eigenvalues
of D are all 0, and so the eigenvalues of A are all −1. All of the nonlinear eigen-
values Wk(−1) therefore have negative real part: the largest real part is −0.3181,
approximately. There is no doubt that the asymptotic value of the solution y(t) will
be zero, irrespective of the initial history. For convenience, we take the initial history
to be a vector of constants, say yk = sinπτk, on −1 ≤ t ≤ 1.2

When we try to solve this equation using either dde23 or ddesd, however, we
get a nasty surprise. Say we use this code:

1 %
2 % Delay DE well-conditioned according to eigenvalues,
3 % seen to be ill-conditioned by pseudospectra
4 %
5 close all
6 clear all
7 n = 10;
8 % Differentiation matrix on tau = cos(pi*(0:n-1)/(n-1))
9 D2=gallery('chebspec',n);

10 e = eig(D2)-1;
11 figure
12 % Eigenvalues exactly -1, multiple
13 plot(e,'ko')
14 hold on
15 nu=linspace(-pi/2,pi/2,407);
16 % Envelope where Re(W(k,lambda)) < 0
17 plot(-nu.*sin(nu),nu.*cos(nu),'k')
18 axis([-1.75,0.25,-1,1])
19 axis('square')
20 % sin(pi*tau) initial vector, constant history
21 hist = dde23( @(t,y,z) zeros(size(y)), [], ...
22 sin(pi*cos(pi*(0:n-1)/(n-1))), [-1,0]);
23 opts=ddeset('abstol',1.0e-12,'reltol',1.0e-12);
24 % y'(t) = (D2-I)*y(t-1)
25 chebspecdde = @(t,y,z) D2*z-z;
26 % dde23 takes 58,664 steps to get to 4...
27 % ddesd takes 4,676
28 Tf = 8;
29 sol=ddesd(chebspecdde,1,hist,[0,Tf],opts);
30 figure

2 After this example was constructed, we realized that it could be interpreted as a method-of-lines
solution to the delayed PDE ut(t,x) = ux(t − 1,x)− u(t − 1,x). Replacing u(t,x) by a vector of
values yk(t) = u(t,τk) on the grid x = τk = cos π(k−1)/(n−1) for 1 ≤ k ≤ n, then the x-derivative
could be replaced by using the Chebyshev spectral differentiation matrix. We do not pursue this
here, but simply point out that this kind of DDE isn’t all that unrealistic.
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31 semilogy(sol.x,abs(sol.y),'k.')
32 axis([0,Tf,1.0e-3,1.0e9])
33 % Residual is less than 1.0e-4 (1.0e-7*||y||)
34 h=diff(sol.x);
35 samp = [sol.x(1:end-1)+h/3;sol.x(1:end-1)+2*h/3];
36 t=samp(:);
37 k=find(t>0);
38 tt=t(k);
39 [y,yp]=deval(sol,tt);
40 z=deval(sol,tt-1);
41 r=zeros(size(z));
42 [dummy,m]=size(z);
43 nrms=zeros(size(z));
44 for i=1:m,
45 r(:,i)=yp(:,i)-chebspecdde(tt(i),y(:,i),z(:,i));
46 nrms(:,i)=norm(y(:,i),2)*ones(n,1);
47 end
48 figure
49 semilogy(tt,abs(r)./nrms,'k.')
50 set(gca,'fontsize',16);
51 xlabel('t','fontsize',16);
52 ylabel('relative residual','fontsize',16)

The important thing to understand here is that asymptotically stable is not the same
as well-conditioned. The codes have some trouble with this apparently simple prob-
lem (at tight tolerances—they do all right at tolerances about 1.0 · 10−7). They do
manage to keep the residual small, apart from some narrow intervals where the
residual spikes several orders of magnitude (see Fig. 15.9). The residuals do spike
(when the tolerances are 10−12), but the width of the intervals containing the spikes
are about 10−8. The step sizes in those intervals go down to about 10−14, about as
low as they could possibly go. But the method works. The solution is acceptable
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Fig. 15.9 The residual in the solution to (15.12) with tight relative tolerances, 10−12, and then
divided by the norm of the solution. Apart from narrow spikes (which we don’t quite believe,
as the step size is getting so small there—about 10−14—that differentiation of the interpolant is
dubious itself), the relative residual is everywhere small
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Fig. 15.10 The solution of (15.12) with relative tolerances 10−7. In spite of having all nonlinear
eigenvalues in the left half-plane, the solution grows very large first, before ultimately decaying as
it must. The size of the “chirp” is exponential in the dimension n of the matrix (here n = 10, surely
a modest-size problem)

(see Fig. 15.10). It’s true that dde23 has to work very hard in order to find the solu-
tion (the more sophisticated ddesd is more efficient at tighter tolerances). The ugly
truth, though, is that the reference solution isn’t very satisfactory! For n = 10, the
reference solution grows as large as 1.2×107 before decaying. See also Fig. 15.14,
where the DDE is solved another way. Yes, it is perfectly true that the reference
solution y(t) → 0 as t → ∞; indeed, by t = 1000, the exact solution is very small.
But for t between t = 30 and t = 40, the exact solution is oscillating between plus or
minus 12 million. In the short term, this differential equation is very ill-conditioned.

Moreover, the solution to the reverse-engineered problem

.
y(t) = Ay(t − 1)+ εv(t) , (15.13)

unlike its unperturbed cousin, need never approach zero asymptotically—the per-
sistent perturbation v(t) from the numerical method might always excite the ex-
ponential growth modes. This is also a fact of life, not just of numerics. Physical
perturbations of the original equation [or the delayed PDE we interpreted it as com-
ing from, ut(t,x) = ux(t − 1,x)− u(t − 1,x)] would also excite these exponential
growth modes.

This is worth considering in a little greater detail. By changing coordinates us-
ing the Schur factoring of A = UTUH, putting q(t) = Uy(t), we can transform to
a problem of the same type but with a triangular matrix. This reduces the problem
to a sequence of scalar delay DE, and the standard conditioning theory says that if
all the nonlinear eigenvalues Wk(t j j) have negative real part, then the zero solution
is asymptotically stable. But we have learned that even for initial-value problems
for ordinary differential equations, this is not the full story if A is nonnormal (and
this matrix A = D− I was chosen to exhibit nonnormality, of course). What mat-
ters in the nonnormal case is the pseudospectrum of A, or more properly the non-
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linear pseudospectrum of the nonlinear eigenvalues. The pseudospectral theorem
(Theorem 5.3 from Chap. 5) applies here, with basis functions 1 and exp(−t). That
is, the pseudospectrum of the nonlinear eigenvalues for (15.12) is the set

Λε =
{

z
∣∣∣‖(zI− exp(−z)A)−1 ‖ ≥ (ε(α0|z|+α1|exp(−z)|))−1

}
, (15.14)

which contains the nonlinear eigenvalues Wk(t j j), but may be substantially larger.
Typically, the weights α0 and α1 would be taken to be 1 and ‖A‖. If any part of the
pseudospectrum intrudes into Re(z) ≥ 0, for a physically realistic ε , then the prob-
lem must be considered ill-conditioned, because small perturbations of the right-
hand side of the equation will not decay to zero but rather persist (and might even be
amplified substantially). Rather than doing a full nonlinear pseudospectral analysis
for this simple problem, we can look instead at the interaction between the ordinary
pseudospectrum of A and the region of the z-plane for which Re(Wk(z))< 0, which
is the teardrop inside the curve (−vsinv,vcosv) for −π ≤ v ≤ π (see Fig. 15.11).
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Fig. 15.11 The computed eigenvalues of A (when n = 10) all lie inside the teardrop of stability
for

.
y(t) = λy(t −1). However, the reference eigenvalues of A are all identically −1—what we see

here are the effects of perturbations about the size of machine epsilon, 2.2 · 10−16. Perturbations
about the size of 10−13 or so can bring λ right outside the teardrop, which makes the delay DE
ill-conditioned

Keeping this in mind, the standard linear stability analysis, though limited, is still
of some value. One often sees “sensitivity” studies of DDE models, for example. A
lesson from numerical analysis is that, for nonnormal matrices, that’s not the whole
story.

We conclude with one particular variation-of-constants formula from Baker et al.
(2006). Consider the linear DDE system

.
y(t) = A(t)y(t)−B(t)y(t − τ)+ εv(t) , (15.15)
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for t ≥ 0, subject to y(t) = φφφ(t) for t ∈ [−τ,0]. Then there exists a function U(t,s)
(called a resolvent) such that

y(t) = U(t,0)φφφ(0)+
ˆ 0

−τ
U(t,s+ τ)B(s+ τ)φφφ(s)ds+ ε

ˆ t

0
U(t,s)v(s)ds .

(15.16)

Inspection of this formula shows that it provides a way to bound or estimate the
influence of perturbations εv(t) to the reference DDE. These perturbations can be
numerical or physical. The size of U and its integral provide a kind of condition
number for the delay DE. The pseudospectral results above tell us (a little more
clearly than that theorem does) that in some cases U will grow very large, before
decaying to zero eventually as t − s → ∞; but also tell us that if v(s) never settles
down, then the large size of U(t,s) will never lose its relevance.

15.4 Neutral Equations

There exist several numerical schemes to tackle so-called neutral DDE. These prob-
lems tend to be much less well-conditioned than even state-dependent RDDE, and
so numerical methods need to be meticulously constructed. We here examine only
one out of a wide variety: the artificial diffusion methods of Shampine (2008a). The
key idea is to replace the neutral terms

.
y(t − τ) with backward difference approxi-

mations, transforming the neutral DDE into an RDDE, admittedly with at least two
close time lags. Shampine reports some success with his code ddeNsd, and we give
a simple example of his idea here.

Consider the neutral DDE

.
y(t) = y(t)+

.
y(t − 1) , (15.17)

with initial history y(t) = 1 on −1≤ t ≤ 0. By the method of steps, this neutral DDE
has a unique solution: Use the integrating factor exp(−t) to get (exp(−t)y(t))′ =
exp(−t)

.
y(t − 1), and on 0 ≤ t ≤ 1 the right-hand side is known; integrate it to get

y(t) on that interval. Proceed from there to get y(t) on 1 ≤ t ≤ 2, and so on. This
equation is used in Shampine (2009) as a test example for the method advocated
there, namely, taking a finite-difference approximation to the neutral term

.
y(t − 1).

That is, we solve the retarded two-delay equation

.
y(t) = y(t)+

y(t − 1)− y(t− 1− δ )
δ

(15.18)

and regard this as an approximate solution to (15.17). We take δ = 10−4, and call
dde23 as follows:

dde = @(t,y,z) y + (z(:,1)-z(:,2))/0.0001;
hist = dde23( @(t,y,z) 0, [], 1, [-1,0] );
sol2 = dde23( dde, [1,1.0001], hist, [0,4] );
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Moreover, we compute the residual in the original equation as follows:

t = linspace(0,4,2001);
[y,yp] = deval( sol2, t );
[z,zp] = deval( sol2, t-1 );
res = yp - y - zp;
semilogy( t, abs(res./y), 'k' )

We have suppressed a warning message about computations at the primary discon-
tinuity, t = 0. The scaled residual turns out to be uniformly less than about 10−3, as
can be seen in Fig. 15.12. This approach, while very simple, seems pragmatically
effective, and verifiably so, for this kind of neutral DDE.
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Fig. 15.12 The residual in the solution to the neutral DDE (15.17), divided by the norm of the
solution. Apart from a single narrow spike at the primary discontinuity, the relative residual is
everywhere small

15.5 Chebfun and Delay Differential Equations

The Chebfun package3 can be used in a straightforward way to implement the
method of steps to integrate simple delay differential equations (nearly) exactly.
The method of steps, while simple, is indeed used in applications from time to time
(see, e.g., Patwa and Wahl 2008). Consider the solution shown in Fig. 15.3, which
has discontinuities in the history; dde23 had a little difficulty resolving the discon-
tinuities. We apply the method of steps using Chebfun to do the integrations for us,
as follows (in a simple naive way):

1 %
2 % Solving y'(t) = -y(t-1)/5 with
3 % y(t) = (-1)ˆfloor(-4t) on -1 <= t <= 0
4 % By the method of steps with chebfun

3 See the original paper by Battles and Trefethen (2004) and the literature and code available at
www.chebfun.org.

www.chebfun.org
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5 %
6 % RMC January 2011
7 clear all
8 close all
9 ex = chebfun( 'x', [-1,0] )

10 hist = (-1).ˆfloor( -4*ex )
11 y0 = cumsum(-hist/5) + feval(hist,0)
12 y1 = cumsum( -y0/5 ) + feval(y0,0)
13 y2 = cumsum( -y1/5 ) + feval(y1,0)
14 y3 = cumsum( -y2/5 ) + feval(y2,0)
15 y4 = cumsum( -y3/5 ) + feval(y3,0)
16 z = [hist;y0;y1;y2;y3;y4]
17 figure
18 plot( z, 'k' )
19 hold on
20 xlabel('t','fontsize',16)
21 ylabel('y and y''','fontsize',16)
22 plot( diff(z), 'k' )
23 axis([-1,5,-1.5,1.5])
24 set(gca,'fontsize',16);

The results, plotted in Fig. 15.13, are very satisfactory: The discontinuities are well
resolved, the plotting is simple, and the residual (not shown) is tiny. One disad-
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Fig. 15.13 The solution to yt(t) = −y(t −1)/5, with a history that has jump discontinuities, using
Chebfun. Compare Fig. 15.3

vantage is that there is (as far as we know) as yet no general-purpose DDE solver
using chebfuns—although Driscoll (2010) reports a method for solving integral and
integro-differential equations that might do nicely instead. We do not take up that
method here but content ourselves with exploring simple uses of Chebfun. The
Chebfun package is under active development, and we expect to see interesting im-
provements in the near future.

What if we have, not a scalar equation, but a matrix equation, such as (15.12)?
Using a cell array of chebfuns, and (as before) the cumsum function which is over-
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loaded in the Chebfun package to do quadrature exactly (apart from rounding errors)
on chebfuns, the exact solution to (15.12) is simple to compute. Consider this code:

1 %
2 % Delay DE well-conditioned according to eigenvalues,
3 % seen to be ill-conditioned by pseudospectra,
4 % Solved (almost) exactly by using the method of steps in chebfun

.
5 %
6 % RMC January 2011
7 %
8 close all
9 clear all

10 n = 10;
11 % Differentiation matrix on tau = cos(pi*(0:n-1)/(n-1))
12 D2=gallery('chebspec',n);
13 % Now solve the DDE y'(t) = (D2-I)y(t-1) by the method of steps
14 % almost by hand, using chebfun.
15 % sin(pi*tau) initial vector, constant history
16 hist = sin(pi*cos(pi*(0:n-1)/(n-1)));
17 one = chebfun( 1, [-1,0] );
18 hist0 = diag(hist)*repmat( one', n, 1 );
19 % Go out to t=m
20 m = 31 + 1;
21 % A cell array of chebfuns makes it simple
22 y = cell(m,1);
23 y{1} = hist0;
24 z = y{1};
25 for i=2:m,
26 % Since the DDE contains no y, we need only integrate each

step
27 y{i} = cumsum( D2*y{i-1} - y{i-1} ) + diag(feval(y{i-1},0))*

repmat(one',n,1);
28 z = horzcat(z,y{i});
29 end
30 figure
31 plot( z, 'k' )
32 xlabel('t','fontsize',16)
33 ylabel('y','fontsize',16)
34 axis([10,26,-1.0e7,1.0e7])
35 set(gca,'fontsize',16);
36 % We see that whilst the zero solution is ultimately stable,
37 % we go there the lazy way, and the largest value of y
38 % is exponentially large in n.
39 % Asymptotically stable is NOT THE SAME as well-conditioned.

This code produces the solution in Fig. 15.14. As we understand it, there is cur-
rent work under way to make available some automatic facilities for solving delay
differential equations in the chebop subsystem of the Chebfun package; as stated
before, in some sense, this has been done already for integral equations and integro-
differential equations in Driscoll (2010). This example shows a semimanual attempt,
which again has quite satisfactory results. Admittedly, this is a very simple type of
equation, with only one constant lag, and moreover each step is just a quadrature.
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Fig. 15.14 A portion of the solution to (15.12) with n = 10 by the method of steps in Chebfun

15.6 Notes and References

Examples of DDEs in application and a discussion of some of the many kinds of
such equations that are used can be found in, for instance, Bocharov and Rihan
(2000).

The details of the MATLAB routine dde23 and ddesd are described
in Shampine (2005) and Balachandran et al. (2009 Chapter 9); some of the ex-
amples studied here are taken from Shampine et al. (2003).

There are many books on delay differential equations, from the classic Bellman
and Cooke (1963) through the numerical work Bellen and Zennaro (2003) to the
latest (as of this writing) Balachandran et al. (2009). See, in particular, Chapter 9 of
that last, by Shampine and Thompson, who there update the chapter in Shampine
et al. (2003) on delay differential equations. We have used the MATLAB codes as
exemplars of existing high-quality DDE solvers. There are many such solvers. For
large-scale problems, you may wish to use a code designed for scientific computing,
not a problem-solving environment. Several such codes are described in Shampine
(2005) and in Baker et al. (2005). Most are available for free for academic use.

In Sect. 15.1, we discussed an example of Cooke et al. (1999). One of their
published numerical solutions was in error; this was later noticed by Shampine et al.
(2003). The technique advocated here, namely, plotting the residual, would have
detected the error.

DDE are not just of the types presented here. One extremely useful generalization
is to allow the “past history” of the solution to play a role not just at individual, dis-
crete past times, but rather as a weighted average. This leads to integro-differential
equations, and in particular to Volterra integro-differential equations. In some cases,
when the kernels can be broken up into a discrete sum of products, in which case
the kernel is termed degenerate, these can be reduced to simpler DDE such as the
ones considered here. But this trick is not by any means general, and Volterra in-
tegral equations form a useful part of the modeler’s arsenal. Consult, for example,
Brunner (2004) for a thorough discussion of methods appropriate for such problems.
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The literature on the sensitivity or “stability” of DDE is very large. See, for ex-
ample, Baker et al. (2005), Wu et al. (2010), Rihan (2003), or Rihan (2006).

Considering another topic we emphasized, see Jarlebring and Damm (2007)
and Michiels and Niculescu (2007) for a discussion of pseudospectra in the solu-
tion of delay differential equations. For more on our remark that what matters in
the nonnormal case is the nonlinear pseudospectrum of the nonlinear eigenvalues,
see Michiels and Niculescu (2007); it contains an extended discussion of this issue,
and many applications.

Problems

Theory and Practice

15.1. Solve the simple constant-delay differential equation
.
x(t) = − π

2 x(t − 1) with
initial history x(t) = φ(t) = 1 for −1 ≤ t ≤ 0. Solve it again with history φ(t) =
sin(πt). Comment.

15.2. Suppose you wish to write a Runge–Kutta based method for solving the
DDE

.
y(t) = f (t,y(t),y(t − τ), and that τ is very small. Show that the nomi-

nally second-order Runge–Kutta method given by k1 = f (tn,yn,y(tn − τ)) and
k2 = f (tn +h,y(tn)+hk1,y(tn +h− τ)) will, in general, need to evaluate y(t) some-
where in (tn, tn + h), and that predicting this value just by using an Euler step from
(tn,yn) gives an O(h) method, not an O(h2) method as would be desired. This is
why standard codes predict the value of y(tn +h− τ) and then iterate to find a good
value for this, prior to proceeding to the next step.

Investigations and Projects

15.3. The solutions to our favorite IVP for ODE, namely,

.
x(t) = cos(πtx(t)) , (15.19)

give nice pictures on the square 0 ≤ x ≤ 5, 0 ≤ t ≤ 5, when the solutions from
several initial conditions are plotted at once, as you saw in a previous problem. Now
use dde23 to solve

.
z(t) = cos(πtz(t − τ)) , (15.20)

with history provided by x(t) (i.e., the solution to (15.19) integrated backward on
the interval [−τ,0]). Use x(0) = 0 : 0.2 : 5 and a relative tolerance 10−9 throughout.
Solve the problem three times, with τ = 0.01, τ = 0.1, and τ = 0.2, and plot the



15.6 Notes and References 753

results, including the history, in three separate graphs. Compare the three plots with
the solution of (15.19) on [0,5]. Does introducing a delay cause any instability? Why
can trajectories cross each other in the delayed case, but not in the undelayed case?

15.4. Adapt the Chebfun method of steps program given above to solve the equation

.
w(t) =−νw(t)+α f (w(t − τ)) (15.21)

where α , ν , and τ are constants, f (x) = exp(x)− 1, and w(t) has, say, constant
history. You can do this entirely with cumsum if you supply an integrating factor.



Chapter 16
Numerical Solution of PDEs

Abstract We look at the method of lines using standard initial-value problem (IVP)
software for stiff problems. Both spectral methods and compact finite differences
are used for the spatial derivatives. We look briefly at the transverse method of
lines, which instead uses standard boundary value problem (BVP) software that has
automatic mesh selection. We also briefly consider Fourier transform methods for
Poisson’s equation. �

The solution of partial differential equations (PDEs) is perhaps the most heavily
studied subject in numerical analysis. There are whole books devoted to individual
aspects of just one class of problem. This present chapter is not going to do more
than paint a picture of a scratch on the surface of the subject. Still, there are some
simple things to say that are quite useful; some of the concepts and techniques we
talk about here fit very well in a numerical analyst’s toolbox. Given the amount of
time we have invested in the solution of ODEs in this book, we believe that the
most benefit from the least effort will occur if we mostly work with what are called
semidiscretizations in the literature: This will lead naturally to solving systems of
IVPs, or (in the transverse method of lines case) of BVPs, for ODEs.

Also, in keeping with the theme of this book so far, we will concentrate on meth-
ods that provide continuous solutions, for which we may compute a residual; thus,
here, as elsewhere in the book, a computed solution of an equation will be the ex-
act solution of a different, reverse-engineered, PDE. Boundary conditions will often
be solved exactly (up to roundoff). If the reverse-engineered PDE is close to the
reference PDE, then we say that the algorithm that computed our solution was nu-
merically stable. As always, we will have to worry about whether or not the PDE is
sensitive to changes or not, that is, ill-conditioned or not.

However, there is a catch, which happens to be the reason why residual-based
methods are always the second approach to a problem: cost. For the second ex-
plicit time in the book, we have the possibility of encountering a “large” computa-
tional problem, because the cost of solving PDEs is exponential in the dimension

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods:
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0 16,
© Springer Science+Business Media New York 2013
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(number of variables) of the problem.1 For a truly large problem, you won’t want to
go to the expense of constructing a continuous solution, or to the expense of com-
puting a residual to give an a posteriori analysis of the error. Or, even if you want to,
you may not have the computing resources or the time to do so. This consideration
will factor into some of our analysis, and although we are confident that computing
resources will increase in power over the lifetime of this book, we suspect that the
size of the problems being solved will keep pace, so that this cost will always be
a concern. But the ideas of backward error and of conditioning will prove helpful
nonetheless.

16.1 The Method of Lines

16.1.1 The Method of Lines Using Spectrally Accurate
Spatial Mesh

In what follows, we show how to use the method of lines by example.

Example 16.1. Let us consider a motivating example problem, namely, the
advection–diffusion equation for the unknown function u(t,x) satisfying

ut + aux = νuxx, (16.1)

for all t > 0 and −1 ≤ x ≤ 1, subject to the initial condition u(0,x) = cos2(πx/2)
and u(t,−1) = u(t,1) = 0. The real parameters a and ν we take to be 1 and 1/100,
respectively. We solve this equation first by the venerable method of lines, although
we use a spectrally accurate spatial mesh: Here we choose a grid of x-values, say
x j = cos(π j/(n+1)) for 0 ≤ j ≤ n+ 1, and note that x0 = 1 and xn+1 = −1. We then
look at y j(t) = u(t,x j) and see that the boundary conditions imply that y0(t) = 0
and yn+1(t) = 0, for all time (this PDE is an easy problem). If we replace ux with
Dy, and uxx with D2y, where D is the differentiation matrix for polynomials on the
Chebyshev points used here, then the PDE is replaced by the system of ODEs

dy
dt

=−Dy+
1

100
D2y , (16.2)

subject to y j(0) = cos2 πx j/2. We solve this IVP using, say, ode15s. As is often
the case for the method of lines, the system is stiff, making the use of a stiff solver
appropriate. We integrate on 0 ≤ t ≤ 2.5, with a code such as this:

1 function sol = advectionmol(a, nu, n)
2 %
3 % Advection-diffusion equation by the method of lines
4 % u_t = a u_x + nu u_xx
5 D = gallery('chebspec',n+2);

1 We saw this possibility for the first time with large dense linear systems. The cost there wasn’t
exponential in the dimension, but it was very large.
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6 x = cos( pi*(0:n+1)/(n+1) );
7 function dy = mol(t,y)
8 my = [0; y; 0];
9 tmp = -a*D*my + nu*D*D*my;

10 dy = tmp(2:end-1);
11 end
12 inits = cos(pi*x/2).ˆ2.*exp(-(0.0e-2).*x.ˆ2./(1-x.ˆ2));
13 % inits = exp(-100*x.ˆ2);
14 tf = 2.5;
15 opts = odeset('RelTol',1.0e-3,'AbsTol',1.0e-6);
16 sol = ode15s( @mol, [0,tf], inits(2:end-1)', opts );
17 figure(1)
18 mesh( x, sol.x, [zeros(size(sol.x));sol.y;zeros(size(sol.x))]' ),

...
19 view(160,50),colormap([0,0,0]), axis([-1,1,0,tf,0,1]);
20 end

The results are plotted in Fig. 16.1. �
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Fig. 16.1 An approximate solution to Eq. (16.1) with a = 1, ν = 1/100, u(0,x) = cos2(πx/2) on
0 ≤ t ≤ 2.5. The solution uses 40 fixed spatial mesh points (not counting the boundaries) and
default time-integration tolerances. The view is such that time increases as your eye moves out
of the page—the wave moves to your left. This view was chosen to show the steep drop as the
wave encounters the boundary condition u(t,1) = 0. Notice that initially the time steps, chosen
automatically by the solver, are very close together, but as the integration proceeds, the (stiff)
integrator ode15s finds the problem progressively easier

How can we compute a residual? Better yet, can we be assured that the residual is
small without computing it? In the PDE case, there is a lot more data to be concerned
with, and so while, in principle, we may compute the residual anywhere we like,
because we may interpolate the data accurately and differentiate the interpolants as
before, there are a lot of such places to choose from (this is the cost issue that we
brought up earlier). Let us just sample the residual at a few places, first, as follows:

1 function res = residadvectionmol(a,nu,sol,n,t0,tf,nr,scale)
2 x = cos( pi*(0:n+1)/(n+1) );
3 D = gallery('chebspec',n+2);
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4 j0 = find(sol.x >= t0 );
5 jf = find(sol.x <= tf );
6 t = RefineMesh(sol.x(j0(1):jf(end)),nr);
7 em = length(t);
8 [u,ut] = deval( sol, t );
9 ux = D*[zeros(1,size(u,2));u;zeros(1,size(u,2))];

10 xi = RefineMesh(x,nr);
11 en = length(xi);
12 res = zeros(en,em);
13 w = genbarywts( x, 1 );
14 for i=2:em,
15 [uxi, uxxi] = hermiteval( [0;u(:,i);0], xi, x, 1, w, D );
16 utxi = hermiteval( [0;ut(:,i);0], xi, x, 1, w, D);
17 [uxxi2, uxxxi] = hermiteval( ux(:,i), xi, x, 1, w, D );
18 res(:,i) = utxi + a*uxxi - nu*uxxxi;
19 end
20 figure(2)
21 colormap([0,0,0])
22 mesh( t, xi(2:end-1), res(2:end-1,:) ) , axis([t0,tf, -1, 1, -

scale,scale]), view(70,60)

The code produces the graphs in Figs. 16.2 and 16.3.
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Fig. 16.2 A computed residual of an approximate solution to (16.1) with a= 1, ν = 1/100, u(0,x) =
cos2(πx/2), sampled on 0.05 ≤ t ≤ 0.3. The solution uses 40 mesh points in space and default
time-integration tolerances. This residual is an overestimate of the true residual and is particularly
unreliable near the edges

Remark 16.1. The interpolant in ode15s isn’t quite up to the job for which we
need it here: It is not continuously differentiable, and it gives a spuriously large
residual in the very small steps that the code takes initially. In the graphs that fol-
low, we trim that initial interval out. This is justifiable because that very small time
interval allows only for a very small impulse in any event, even if the computed
residual was a sharp bound. A proper cure involves the use of better interpolants,
however. �
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With this computation of the residual, we can say that we have the exact solution
of the reverse-engineered equation

ut = aux +νuxx + 5 ·10−3v(t,x) , (16.3)
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Fig. 16.3 A computed residual of an approximate solution to (16.1) with a = 1, ν = 1/100,
u(0,x) = cos2(πx/2), sampled on 0.005 ≤ t ≤ 0.5. The solution this time uses 50 spatial mesh
points and default time-integration tolerances. Notice that the residual is substantially smaller
than the residual for n = 40 in Fig. 16.2. This residual is again an overestimate of the true
residual, but since merely adding 10 spatial mesh points increased the accuracy by more than
a factor of 10, we suspect that convergence here is spectrally fast. The command was res =
residadvectionmol(a,nu,sol,n,0.005,0.5,3,5.0e-4);

where v(t,x), while wavy, is less than 1 in magnitude. Notice that to compute the
residual in Figs. 16.2 and 16.3, we used the differentiation matrix D, but this pro-
vided exact derivatives because u(t,x) as computed is a piecewise polynomial in t
(whose t-derivative was exactly computed by deval), but a global polynomial (of
degree 41 and 51, respectively) in x, whose x-derivative is thus computed exactly
by using D. Notice also the dramatic reduction in the size of the residual by moving
from n = 40 to n = 50. This is 10 times the (residual) accuracy, for only 25% more
work—this is the kind of thing that occurs with spectral methods. We thus have
quite a bit of confidence that our solution is accurate, for this problem. In fact, the
solution is even more accurate than it seems—if we used a better interpolant, we
would be able to see that.2 But this is enough to convince us that the process con-
verges (even if it does have a bit of difficulty with the layer at the right endpoint and
with the start, on coarser grids). As Brian Wetton remarked in a talk, “Everybody
does the Burgers equation, mainly because it’s not as hard as it looks.”

We will now have a brief look at a classical nonlinear problem.

2 One way to see that the n = 40 solution is more accurate than 5 · 10−3 is to compare it with
the n = 80 solution. They differ, at the nodes, by less than about 5 · 10−5. Hence, we see that the
n = 40 mesh produces better solutions, at the nodes, than we can measure in the fashion we have
advocated here.
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Example 16.2. Consider Burgers’ equation,

ut +
1
2

(
u2)

x = 0 , (16.4)

with periodic boundary conditions, u(t,−1)= u(t,1), and initial condition u(0,x) =
exp(iπx). This is a complex-valued function. Although it seems unlikely that
ode15s would integrate complex-valued functions (even though t and x are both
real), it can (see the exercises). But in order to exhibit the solution of a two-variable
problem, we separate u(t,x) = σ(t,x)+ iτ(t,x) and rewrite the equation as[

σt

τt

]
=−

[
σ −τ
τ σ

][
σx

τx

]
, (16.5)

with initial conditions σ(0,x) = cos(x) and τ(0,x) = sin(x). Some code to solve this
by the method of lines is given next, showing how to handle a two-variable problem
by the method of lines:

1 function [ x, sol, sig, ta ] = cburgermol( n )
2 %CBURGERMOL Solve complex Burger's eqn
3 % u_t + u u_x = 0
4 % -1 <= x <= 1, u(t,-1) = u(t,1)
5 % u(0,x) = exp( i*pi*x )
6 % JAC Weideman's solution u(t,x) = W( i*pi*t*exp(i*pi*x) )/(i*

pi*t)
7 % t > 0, W = LambertW. Singular at x=1/2, t=1/pi/e.
8 %
9 % u = sigma + i*tau gives

10 %
11 % [ sigma_t ] = - [ sigma -tau ][ sigma_x ]
12 % [ tau_t ] [ tau sigma ][ tau_x ]
13 x = cos( pi*(0:n)/n );
14 D = gallery('chebspec', n+1 );
15 inif = [ cos(pi*x), sin(pi*x) ];
16 % Spectral space derivatives
17 % Enforce periodic boundary conditions by using the mean
18 % of the left and right end-values to advance the left and
19 % right end-values.
20 function yp = cb(t,y)
21 yp = zeros(size(y));
22 sigma = y(1:n+1,:);
23 tau = y(n+2:end,:);
24 sp = (sigma(1,:)+sigma(n+1,:))/2;
25 sigma(1,:)=sp;
26 sigma(n+1,:)=sp;
27 tp = (tau(1,:)+tau(n+1,:))/2;
28 tau(1,:)=tp;
29 tau(n+1,:)=tp;
30 sx = D*sigma;
31 tx = D*tau;
32 yp(1:n+1,:) = -(sigma.*sx - tau.*tx);
33 yp(n+2:end,:) = -(tau.*sx + sigma.*tx);
34 end
35
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36 opts = odeset('reltol',1.0e-6);
37 ts = 1/pi/exp(1);
38 sol = ode15s(@cb,[0,ts], inif, opts );
39

40 % Postprocess solution for visualization
41 sig = sol.y(1:n+1,:);
42 ta = sol.y(n+2:end,:);
43 figure
44 mesh(x,sol.x,sig');
45 xlabel('x','fontsize',16);
46 ylabel('t','fontsize',16);
47 zlabel('real','fontsize',16);
48 set(gca,'fontsize',16);
49 axis([-1,1,0,ts,-1,1]);
50 view(170,40);
51 figure
52 mesh(x,sol.x,ta');
53 xlabel('x','fontsize',16);
54 ylabel('t','fontsize',16);
55 zlabel('imag','fontsize',16);
56 set(gca,'fontsize',16);
57 axis([-1,1,0,ts,-1,3]);
58 end

Using n = 80, the results are plotted in Figs. 16.4, 16.5.
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Fig. 16.4 Real part σ (t,x) of u(t,x) solving (16.4) with periodic boundary conditions and initial
condition u(0,x) = exp(iπx). The wave breaks at x = 1/2 and t = 1/(eπ)

Interestingly, Weideman (2003) points out that for this initial condition, the non-
linear equation can be solved exactly in terms of the Lambert W function, as fol-
lows. Any traveling wave solution must look like u = f (x− ut), because the wave
speed is u (the height of the wave), by analogy with ut + cux = 0. But the initial
shape of the wave is u = f (x) = exp(iπx), and so u = exp(iπ(x− ut)). This can
be solved in terms of W : uexp(iπut) = exp(iπx), or iπut exp(iπut) = iπt exp(iπx),
whence u=Wk(iπt exp(iπx))/(iπt), for some branch k of W . But if u(t,x) is to tend
to exp(iπx) as t → 0, then only the k = 0 branch will work, as all the others are
singular at t = 0. Thus,
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Fig. 16.5 Imaginary part τ(t,x) of u(t,x) solving (16.4) with periodic boundary conditions and
initial condition u(0,x) = exp(iπx). The wave peaks at x = 1/2 and t = 1/(eπ)

u(t,x) =
1

iπt
W
(
iπteiπx) (16.6)

for t > 0 solves the equation. This function is singular when the argument to W
is equal to −1/e, the branch point. This happens if −exp(−1) = iπt exp(iπx), or
−1 + iπ = ln(iπt) + iπx, or x = 1/2 and t = 1/(eπ). When we solve the equation
numerically, we find indeed that the waves break (in the real case) and peak (in the
imaginary case) at this location and time. Trying to integrate past that just reveals
instability, in the form of rapid oscillations. (Of course, that must be unstable: An
infinite slope cannot be represented by a polynomial.) �

These results were obtained by finding values of u(t,xk) where the xk were the
Chebyshev points. What happens if instead we use equally spaced mesh points x =
linspace(-1,1,n+2)? Disaster! The residuals are nowhere near as small this
time and show the typical equi-spaced interpolation error behavior: That is, the er-
rors at the ends of the interval are much the largest. The problem is that interpo-
lation by a high-degree polynomial at equally spaced points, as usual, introduces
this huge error near the ends. This induces an instability into the solution, and we
cannot proceed much past t = 0.2 with n = 30; and increasing n gets us nowhere
(see the exercises). We now leave spectral methods for the moment, and investigate
an alternative that is sometimes of interest: compact finite differences.

16.1.2 Compact Finite Differences and the Method of Lines

Let us give up on global high-degree polynomial interpolation in space, in order to
work with the convenient equally spaced nodes xk =−1+2k/(n+1), for 0≤ k ≤ n+1.
Equally spaced meshes are so natural that we’d like to find a method that could work
with them. There are many approaches that are satisfactory. We will use a variation
of the Padé scheme discussed in Chap. 11, namely,
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1
6

f ′(xk−1)+
2
3

f ′(xk)+
1
6

f ′(xk+1) =
1
h

(
−1

2
f (xk−1)+

1
2

f (xk+1)

)
(16.7)

(here h = 2/(n+1)), which is to hold at each interior node xk for 1 ≤ k ≤ n. To deal
with the x-derivatives at x0 and xn+1, we need to do something special. As discussed
in Chap. 11, just after Eq. (11.88), we can create special formulæ of the same order
and similar compactness. This leaves us with a tridiagonal system of equations to
solve for the vector of derivatives, given the vector of values. This in effect computes
a differentiation matrix D = M−1

1 B, although of course we do not form M−1
1 explic-

itly. Since solving a tridiagonal system is O(n) in cost, this is actually cheaper than
multiplying by D above—not that cost is our primary concern here. Similarly, we
can construct compact formulæ for second derivatives: Again, we can ensure fourth
order of accuracy in h with a tridiagonal system. Being ambitious, we choose to use
formulæ that allow us to factor the matrices M1 and M2 analytically, which speeds
up the computation even more (see the exercises). The procedures are described in
Algorithms 16.1 and 16.2.

Algorithm 16.1 A special fourth-order compact finite-difference scheme for the first
derivative on an equally spaced grid. Implemented as first.m
Require: a vector u of length n, and a mesh width h

c := 2+
√

3
α = 1/c {Finite differences on the function values for the right-hand side}
b(1) := ((1−3c)u(5)+(16c−6)u(4)+(18−36c)u(3)+(−10+48c)u(2)−(25c+3)u(1))/h/12
for i from 2 by 1 to n−1 do

b(i) := 3(u(i+1)−u(i−1))/h
end for
b(n) := (103u(n)−182u(n−1)+126u(n−2)−58u(n−3)+11u(n−4))/12/h
{Forward elimination of the pre-factored tridiagonal system}
y(1) := b(1)
for i from 2 by 1 to n−1 do

y(i) := b(i)−αy(i−1)
end for
{Back substitution}
ux(n) := αy(n)
for i from n−1 by −1 to 1 do

ux(i) := α (y(i)−ux(i+1))
end for
return The vector ux approximating ∂u/∂x.

The code is as follows (not showing first.m or second.m, which you will
write in the exercises):

1 function sol = compactadvectionmol(a,nu,n)
2 %
3 % Advection-diffusion equation by the method of lines
4 % u_t = a u_x + nu u_xx
5 x = linspace(-1,1,n+2);
6 h = x(2)-x(1);
7 function dy = mol(t,y)
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Algorithm 16.2 A special fourth-order compact finite-difference scheme for the
second derivative on an equally spaced grid. Implemented as second.m
Require: a vector u of length n, and a mesh width h

c := 5+2
√

6
α = 1/c

{Finite differences on the function values for the right-hand side}
b(1) := ((45c + 10)u(1) − (154c + 15)u(2) + (214c − 4)u(3) − (156c − 14)u(4) + (61c −
6)u(5)− (10c−1)u(6))/(12h2 )
for i from 2 by 1 to n−1 do

b(i) := 12(u(i+1)−2u(i)+u(i−1))/h2

end for
b(n) := (−99u(n − 5) + 604u(n − 4) − 1546u(n − 3) + 2136u(n − 2) − 1555u(n − 1) +
460u(n))/(12h2)
{Forward elimination of the pre-factored tridiagonal system}
y(1) := b(1)
for i from 2 by 1 to n−1 do

y(i) := b(i)−αy(i−1)
end for
{Back substitution}
ux(n) := αy(n)
for i from n−1 by −1 to 1 do

ux(i) := α (y(i)−ux(i+1))
end for
return The vector uxx approximating ∂ 2u/∂x2.

8 ux = first( y, h );
9 uxx = second( y, h );

10 dy = [0; -a*ux(2:end-1) + nu*uxx(2:end-1); 0];
11 end
12 inits = cos(pi*x/2).ˆ2;
13 inits(1) = 0;
14 inits(end) = 0;
15 tf = 2.5;
16 sol = ode15s( @mol, [0,tf], inits' );
17 figure(4),
18 mesh( x, sol.x, sol.y' ), view(160,50),colormap([0,0,0]), axis

([-1,1,0,tf,0,1]);
19 end

This turns out to work satisfactorily; it’s not spectrally accurate, but not bad either.
The difference between the results of the two approaches, sampled at t = 1/2, for
n = 80, is plotted in Fig. 16.6.

Encouraged by this result, we may try one more example.

Example 16.3. Consider the one-way wave example treated in Trefethen (2000) and
again in Shampine et al. (2003), namely,

ut =−
(

1
5
+ sin2(x− 1)

)
ux , (16.8)
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Fig. 16.6 The difference between two approximate solutions to (16.1) with a = 1, ν = 1/100,
u(0,x) = cos2(πx/2), sampled on t = 0.5. The spectral solution was interpolated with its global
polynomial in x and the resulting polynomial evaluated at the equally spaced points used by the
compact method, and the results subtracted. As you can see, the two solutions agree quite well
outside the layer at the right edge

with initial condition u(x,0) = exp(− (x−1)2/100), on 0 ≤ x ≤ 2π . Again, we take
u(0, t) = u(2π , t) = 0 although it isn’t quite consistent at the corners. We use the
MATLAB function

1 function yp = onewaywave( t, y )
2 %
3 % Method of lines (compact spatial derivative) for the
4 % linear wave equation
5 % Ut = -(1/5+sinˆ2(x-1))Ux
6 % u(0,t) = u(2pi,t) = 0
7 % y =u, dimension (n-1),
8 % x0 = 0, x1 = 2pi/n, ..., x[n-1] = 2pi(1 - 1/n), x[n] = 2pi.
9 %

10 m = length((y));
11 x = linspace(0,2*pi,m);
12 n = m-1;
13 h = x(2)-x(1);
14 ux = first( y, h );
15 up = -(1/5+sin(x-1).ˆ2).*ux';
16 yp = [0, up(2:n), 0]';

and execute the following commands:

t=0:0.3:8;
n=256;
x=linspace(0,2*pi,n+1);
u0=exp(-100*(x-1).ˆ2);
[t,slices]=ode23(@onewaywave,t,u0);
mesh(x,t,slices),view(10,70),axis([0,2*pi,0,8,0,2]),colormap

([0,0,0])
set(gca,'fontsize',16);
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The results are plotted in Fig. 16.7. Curiously enough, ode23 does a better job than
ode15s does on this problem, at default tolerances (see the exercises). �

It should be quite clear that these methods are not restricted to linear prob-
lems. Any differential equation of the form ut = f (t,u,ux,uxx) can be solved by
the method of lines in this fashion, on a fixed spatial grid of sufficient fineness.
With more effort, one can evaluate a residual and verify that the computed solution,
say U(t,x), satisfies Ut = f (t,U,Ux,Uxx)+εv(t,x) for some v(t,x) that is uniformly
bounded, and where ε can be made as small as one likes, with sufficient computing
resources thrown at the problem.
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Fig. 16.7 The solution to the one-way wave Eq. (16.8) by compact finite differences in space,
using ode23 to do the time integration and n = 256 equally spaced points in the x-direction

16.2 Conditioning of PDEs

This raises, yet again in this book, the natural question of what happens to the so-
lution of the equation we are trying to solve if the equation is modified a little bit.
The problem of conditioning has been very well studied for PDEs, and again we
will content ourselves with a linear perturbation analysis. We remark that, as usual,
the terminology is not standardized: The theoretical developments typically use the
terms “stability” or “sensitivity” to describe the relevant property of a PDE system
that is not affected much by perturbation, where we want to reserve “stability” for
the stability of an algorithm—an algorithm is stable if it gives the exact answer to a
nearby problem, that is, generates a small residual. For consistency with the rest of
this book, we use the term “well-conditioned” for a PDE system that is not sensitive
to a small backward error.

Suppose that our PDE is, for example,

ut = f (t,u,ux,uxx) (16.9)
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and that we are concerned with the difference between u(t,x) and U(t,x), where

Ut = f (t,U,Ux,Uxx)+ εv(t,x) (16.10)

on some compact domain such as a ≤ t ≤ b, c ≤ x ≤ d. If we assume that U(t,x) =
u(t,x)+εu1(t,x)+O(ε2) (of course, the hard part is justifying such an assumption,
which we don’t do here), then a standard perturbation argument suggests that u1(t,x)
must satisfy the linear PDE

∂u1

∂ t
= fu(t,u,ux,uxx)u1 + fux(t,u,ux,uxx)

∂u1

∂x
+ fuxx(t,u,ux,uxx)

∂ 2u1

∂x2 + v(t,x)

together with boundary conditions that ensure that U(t,x) and u(t,x) satisfy the
original equations. For example, if Dirichlet conditions are given for u(t,x), then
we impose the Dirichlet conditions u1 = 0 on the boundary. Thus, all we need to do
to estimate the influence of v(t,x) on the solution of the original PDE is solve this
simpler linear PDE at the same time.

This is an example of the so-called forward method of sensitivity analysis, not
to be confused with forward error analysis. When we try this on our advection–
diffusion equation example above, we find that [pretty much no matter what smooth
function we choose for v(t,x)] u1 is not large; thus, we believe that this equation is
well-conditioned. Of course, since this is a linear equation, it is its own linearization;
and, moreover, there are a great many theoretical tools available to investigate the
conditioning of linear equations.

16.3 The Transverse Method of Lines

The method of lines as described above discretizes in space and then solves an
initial-value problem. It is very natural to wonder if this can be done in the other di-
rection, discretizing in time and then using adaptive software to solve the resulting
problems in space. The main goal is to use spatial adaptivity for efficiency. More-
over, this spatial adaptation can itself be informative. This approach, which Fran-
zone et al. (2006) calls Rothe’s method, and which is also called the transverse
method of lines, replaces the PDE with a sequence of boundary-value problems.
The pioneering work of Bornemann (1992) was perhaps the first to make the method
practical. Such problems are now fully adaptively handled by the method outlined
in Nowak (1996). See also Deuflhard and Bornemann (2002). Like the traditional
method of lines discussed above, this is a semidiscretization.

The transverse method of lines idea is quite old.3 However, the method was not
popular until about the 1990s, because the adaptive mesh technology for BVP had
needed to be developed first. Nowadays, we find that the method is very advanced
indeed: See, for example, Franzone et al. (2006), where three-space dimension plus
time dimension cardiac reaction–diffusion models are solved by this method, with
adaptivity in all dimensions.

3 See, for example, the footnote on p. 264 of Collatz (1966), which points out that the idea was
already known to Hartree and Womersley in 1937.
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Example 16.4. Let us attempt first the simple advection–diffusion example used
above, yet one more time. This time we do not discretize in space first, but rather
in time. That is, we replace u(t,x) by a sequence of functions u(tk,x), for some
temporal mesh 0 = t0 < t1 < .. . tn. If we’re smart (and ambitious), we will use the
information obtained during the solution process to help us choose the temporal
mesh, as we go.

For concreteness, let us choose to use the simple backward Euler scheme,
based on

y′(t + h) =
y(t + h)− y(t)

h
. (16.11)

Our equation is replaced by

u(tn+1,x)− u(tn,x)
tn+1 − tn

=−aux(tn+1,x)+νuxx(tn+1,x) . (16.12)

If we presume that u(tn,x) is known, then this gives us a second-order BVP as an
ordinary differential equation to solve for the as-yet-unknown u(tn+1,x). For brevity,
write un(x) or just un for u(tn,x), and h for tn+1− tn. The process is that at each stage
we solve the equation

hνun+1
′′ − haun+1

′ − un+1 =−un(x) , (16.13)

subject to the boundary conditions u(tn + h,−1) = 0, u(tn + h,1) = 0. To solve this
BVP, we could use any good-quality boundary-value problem solver, and let it adapt
the spatial mesh as it wishes. Here we will use bvp4c and bvp5c.

To assess the residual in our solution, we will use Hermite interpolation. If t =
tn +θ (tn+1 − tn), then

u(t,x) = (2θ + 1)(θ − 1)2 u(tn,x)+ (θ − 1)2 θut(tn,x)

−θ 2 (2θ − 3)u(tn+1,x)+θ 2 (θ − 1)ut(tn+1,x) ,

where the time derivatives un,t(x) and un+1,t(x) can be calculated for n ≥ 1 by

un,t(x) =
un(x)− un−1(x)

tn − tn−1
(16.14)

un+1,t(x) =
un+1(x)− un(x)

tn+1 − tn
. (16.15)

Those look like finite differences, but they are exact time derivatives essentially by
definition: We use the PDE to compute ut = −aux + νuxx, and then notice that we
have defined u(tn+h,x) in (16.12) so as to use part of that with its relation to u(tn,x).
Simplifying, we get the formula above, which happens to work for other equations
as well.
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The advection–diffusion equation solution by this means is left to the exercises;
it works well, albeit somewhat slowly (actually quite a bit more slowly than the
spectral method; but a more sophisticated time integration would even the contest a
little). �

Example 16.5. Let us try the method on Burgers’ equation with artificial viscosity:

ut + uux = νuxx , (16.16)

subject to the initial conditions u(0,x) = 1 if 0 ≤ x ≤ 0.1 and u(0,x) = 0 if x > 0.1.
We solve the equation on 0 ≤ x ≤ 4 for 0 < t ≤ 5. The side conditions are u(t,0) =
1 and u(t,4) = 0. We choose the diffusion coefficient ν = 0.02. This equation is
nonlinear and in the absence of diffusion has a propagating shock wave. With this
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Fig. 16.8 The solution to Burgers’ equation (16.16) with ν = 0.02, u(0,x) = 1 if x < 0.1 and 0
otherwise, by the transverse method of lines using backward Euler for the time-stepping. A time
step Δt = 5/80 was used. The built-in solver bvp4c was used to solve the BVP arising at each time
step

formulation, it has an exact solution in terms of complementary error functions,
which we will not need. The solution with Δ t = 5/80 is plotted in Fig. 16.8. The
meshes generated with Δ t = 5/40 are plotted in Fig. 16.9. Both were generated with
this code:

1 function [ y ] = burgerstmol( tf )
2 %BURGERSTMOL Solve Burgers' equation by TMOL
3 % Use bvp4c and Backward Euler
4 % y = burgerstmol( tf ); v = u_x
5 % u_t = -(uˆ2/2)_x + nu* v_x

The code demonstrates a simple-minded approach to solving Burgers’ equation by
the transverse method of lines. It is intended to demonstrate that the solution is
possible, not to be a general-purpose solver. If you actually download the code from
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Fig. 16.9 The meshes used for the transverse method of lines solution to Burgers’ equation (16.16)
with ν = 0.02, u(0,x) = 1 if x < 0.1 and 0 otherwise. A time step Δt = 5/40 was used. The built-
in solver bvp4c was used to solve the BVP arising at each time step. The meshes plotted here
were generated by bvp4c by continuation from the mesh generated on the previous time step.
The initial mesh was [0,0.09,0.099,0.101,0.11,1.,2,3,4]. As can be seen, the greatest density of
mesh points follows the moving layer. This spatial adaptivity is the main advantage of using the
transverse method of lines

the repository and read it, note the use of cell arrays to hold a sequence of solution
structures for later use, for instance, by plotting or by computing the residual. �

It turns out to be slightly difficult to get this crude TMOL program started. In
particular, if one takes too small a time step, then bvp4c fails to converge on the
first step, complaining about a singular Jacobian matrix. The problem is indeed
nonlinear, but bvp4c uses finite-difference Jacobians by default, and in this case
that leads to singularity if one isn’t careful. A convenient workaround, if one really
does want to start with a very tiny time step, is to use a large one first and then use
continuation, reducing h down to the desired level, and then starting the integration
from there. This is done in the next example, really just for show. A better approach
is to provide an analytical Jacobian, together with a better (smoother) initial guess,
which is perfectly possible with this simple equation.

Example 16.6. Let us now have a look at the shock tube gas dynamics equations.
This is another classic test problem. With artificial viscosity added, the equations
are

ρt +mx = λρxx

mt +

(
m2

ρ
+ p

)
x
= λmxx

Et +

(
m
ρ
(E + p)

)
x
= λExx . (16.17)
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Here ρ is the density of the gas in the tube, which is taken to be uniform on the cross
section at distance x, m= ρv is the momentum, p is the pressure, and E is the energy
per unit volume. The equation of state relating the pressure p to the three unknown
quantities ρ , m, and E is p = (γ − 1)(E − m2/2ρ). The gas constant γ is taken to be
1.4. The initial condition is taken to be ρ(0,x) = 1 if x ≤ 0, and ρ(0,x) = 0.125 if
x > 0. That is, the tube initially has gases at two different densities, separated at time
t < 0 by a membrane, which bursts instantaneously at t = 0. In addition, m(0,x) = 0,
and E(0,x) = 2.5 if x ≤ 0 but E(0,x) = 0.25 if x > 0. We take the tube to occupy
−5 ≤ x ≤ 5. The internal energy e = p/((γ− 1)ρ) is also of interest.

Using the backward Euler method on the time derivatives, we arrive at the fol-
lowing boundary value problem for ordinary differential equations for the unknown
functions ρ(tn + h,x), m(tn + h,x), and E(tn + h,x), assuming that we know the so-
lutions ρ(tn,x), m(tn,x), and E(tn,x). Denote the unknown functions by ρ (n+1)(x),
and so forth. To save space, write ρ (n+1) for ρ(tn + h,x), and so on, so that we have

ρ (n+1)
xx =

(
m(n+1)

x +(ρ (n+1)(x)−ρ (n)(x))/h
)

λ

m(n+1)
xx =

(
A(n+1)

x +(m(n+1)(x)−m(n)(x))/h
)

λ

E(n+1)
xx =

(
B(n+1)

x +(E(n+1)(x)−E(n)(x))/h
)

λ
, (16.18)

where the flux variables A = m2/ρ+ p and B = m(E + p)/ρ are used here only for con-
venience. Using λ = 10−3 and h = 0.005/64, we get the energy graph at t = 0.6 shown
in Fig. 16.10. Here we are using a first-order method in time, which means that an
enormous number of time steps are needed, and, moreover, the contact discontinuity
is unacceptably diffused here (see the exercises). We show the final mesh used by
bvp5c in Fig. 16.11, which shows a fine resolution used near the shocks and only
there. For some reason, using bvp4c to solve these BVP produced an unacceptable
mesh, with one interval of width about 10−8; we don’t know why. The code used
begins with

1 function [ y ] = shocktube5tmol( n )
2 %SHOCKTUBETMOL Solve shock tube gas equation by TMOL
3 % Use bvp4c and Backward Euler
4 % u = [ rho; rho_x; m; m_x; E; E_x ]
5 % u_t = -(uˆ2/2)_x + nu* v_x

See the code repository. The routine was called with the following, using big =
7680 or 120 ·43 time steps, as follows:

%
% Long time run of shock tube
%
big = 120*4ˆ3;
yshock5 = shocktube5tmol(big);
x = yshock5{big}.x;
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Fig. 16.10 The internal energy e = p/((γ −1)ρ) for the solution of the shock tube gas dynamics
equations with artificial viscosity, at t = 0.6, by the transverse method of lines using the backward
Euler method for temporal integration and bvp5c for the integration of the BVPODE at each time
step. For this problem, the backward Euler method is too slow to use in practice
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Fig. 16.11 The final mesh used for the transverse method of lines solution to the shock tube gas
dynamics equations with artificial viscosity (16.18) with λ = 10−3. A time step Δt = 0.005/64 was
used. The built-in solver bvp5c was used to solve the BVP arising at each time step. The mesh
plotted here was generated by bvp5c by continuation from the meshes generated on the previous
time steps. As can be seen, the greatest density of mesh points follows the shocks. Again, this
spatial adaptivity is the main advantage of using the transverse method of lines



16.4 Using PDEPE in MATLAB 773

rho = yshock5{big}.y(1,:);
m = yshock5{big}.y(3,:);
E = yshock5{big}.y(5,:);
p = 0.4*(E-(m.ˆ2./rho)/2);
e = p./(0.4*rho);
figure
plot( x, e, 'k.')

Integration took about a second per time step on a desktop machine (backward Euler
is so inefficient). By using even a second-order method, we speed things up by a
factor of 2000, and by using compiled code instead of MATLAB’s interpreted code,
we would gain another factor of 100 or so (see the exercises). �

16.4 Using PDEPE in MATLAB

Typing odeexamples[’pde’] at the MATLAB prompt gets you a menu of par-
tial differential equation examples. The solver used, PDEPE, implements a sophis-
ticated method of Skeel and Berzins (1990). The program was written by Larry
Shampine and Jacek Kierzenka. The method handles PDEs of the parabolic-elliptic
type, that can have mild singularities, in the following form:

C(x, t,u,ux)ut = x−m (xmg(x, t,u,ux))x + f (x, t,u,ux) . (16.19)

The entries of the matrix C may depend on x, t, u, ux but not ut or higher x-
derivatives. The equation may be at most second order in space. The domain consid-
ered is finite in space, a≤ x≤ b, and the matrix C must be diagonal with nonnegative
entries (Shampine and Kierzenka relax this so that some, but not all, of the entries
may be zero in their implementation). The boundary conditions are

pi(x, t,u)+ qi(x, t)gi(x, t,u,ux) = 0 (16.20)

at x = a, b, for i = 1, 2, . . ., N, where N is the number of PDEs. This class of prob-
lems covers a large number of physically interesting models. If m ≥ 0, the method
requires a ≥ 0, but allows a = 0, which includes singular behavior at x = 0 in that
case, though of a fairly restricted type. Other singularities in the PDE are also al-
lowed, but mesh points xk must be placed at the singularities so that the solution is
smooth enough over the mesh intervals to be represented by piecewise polynomials.
For an example, see pdex2, which is the second of the examples in odexamples.

Here we will look at pdex3, the third of the examples. In the comments for the
source code for pdex3, the equation is presented as a model that arises in transistor
theory:

c
∂u
∂ t

=
∂
∂x

(
d
∂u
∂x

)
− η

L
∂u
∂x

, (16.21)

where c, η , and d are physical constants (given nominal values in the example
source: d = 0.1, η = 10). The equation is to hold on 0 ≤ x ≤ L, and, moreover,
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L is taken to be 1. The boundary conditions are u(0, t) = 0 and u(L, t) = 0. The
initial condition, which contains another physical constant K, taken to be K = d, is

u(x,0) =
KL
dη

(
1− e−η(1−x/L)

)
. (16.22)

One interesting feature is that it isn’t just the solution that is desired, but also the
emitter discharge current

I(t) =
Ipd
K

ux(0, t) , (16.23)

which depends on the x-derivative of the solution at the left end. The constant Ip

is taken to be 1. Using pdepe to compute the solution, and pdeval to evaluate
that solution and its x-derivative, gives the graphs shown in the example (not shown
here).

When we implement the example using our spectral method from the first section
of this chapter (this example is really just the advection–diffusion equation in a
different guise), we get the following code, except that the commented line 18 is the
one that should define the PDE:

1 function [sol, I] = transistormol(n)
2 %
3 % transistor equation from pdex3 by the method of lines
4 %
5 close all
6 % Problem parameters, shared with nested functions.
7 L = 1;
8 d = 0.1;
9 eta = 10;

10 K = d;
11 I_p = 1;
12 % pdex3 has 0 <= x3 <= 1. Here we use -1 <= x <= 1.
13 % Change of variable means x = 2x3 - 1, hence d/dx = (1/2) d/dx3.
14 D = gallery('chebspec',n+2);
15 x = cos( pi*(0:n+1)/(n+1) );
16 function dy = mol(t,y)
17 my = [0; y; 0];
18 % tmp = -eta/L*2*D*my + d*4*D*D*my is the comment version

pde
19 tmp = -d*eta*2*D*my + d*4*D*D*my; % is the coded version

pdex3
20 dy = [tmp(2:end-1)];
21 end
22 x3 = (x+1)/2;
23 % (K*L/d)*(1 - exp(-eta*(1 - x)))/eta
24 inits = K*L/d/eta*(1-exp(-eta*(1-x3/L)));
25 tf = 1.0;
26 sol = ode15s( @mol, [0,tf], inits(2:end-1)' );
27 t = linspace(0,tf,101);
28 z = [zeros(size(sol.x)); sol.y ; zeros(size(sol.x)) ];
29 zx = 2*D*z;
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30 figure
31 I = I_p*d*zx(end,:)/K;
32 semilogy( sol.x, I, 'k.')
33 xlabel('t')
34 ylabel('Emitter discharge current I(t)')
35 figure
36 %plot( x, inits, 'k+', x , sol.y(:,end), 'ko' )
37 mesh( x3(2:end-1), sol.x, sol.y' ), view(160,50),colormap

([0,0,0]), axis([0,1,0,tf,0,0.1]);
38 end

Executing this code with line 18 uncommented and line 19 commented out gives us a
somewhat similar picture to the results of pdex3, but not on the right scale. There is
an error somewhere, therefore. It turns out that the error is either in the comments to
pdex3 or in the coding of the differential equation, which has something different
than what is in the comments, namely,

ut = duxx − dηux . (16.24)

There is a dηux instead of η/Lux. Thus, we use line 19 instead, to get pictures on the
same scale as the results of pdex3.

This is of little importance—it is only an example. Of more importance is that the
emitter discharge current, graphed on a log scale in Fig. 16.12, does not look at all
like the results of pdex3. This is puzzling. Is there another error in transcription?
Or is the method used here, a spectral method, wrong somehow? Or is the result
in pdex3, which they compare with a series solution, itself wrong somehow? (The
answer is no, to all these questions.)
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Fig. 16.12 The emitter discharge (16.23) plotted on a logarithmic scale. This should be compared
to the graph produced by running pdex3 in the odeexamples[’pde’] demo. The two figures
are quite different; here we see a change of two orders of magnitude in the initial interval
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To try to answer these questions, we turn to the computation of the residual. If the
residual in the differential equation is small for the spectral method, and not small
for the results of pdepe, then we will know which answer to trust. Likewise if it’s
the other way around. If both residuals are small, we suspect a blunder in the coding
of the emitter discharge function, or a difficulty getting an accurate x-derivative, or
perhaps a simple misunderstanding of a feature of the example (which turns out to
be the case).

Because we have already computed a residual for a spectral method, we do that
first:

1 function [res, t, xi, u, uxi ] = residualtransistormol(sol,n,tf)
2 x = cos( pi*(0:n+1)/(n+1) );
3 D = gallery('chebspec',n+2);
4 % Problem parameters, shared with nested functions.
5 L = 1;
6 d = 0.1;
7 eta = 10;
8 K = d;
9 I_p = 1;

10 % pdex3 has 0 <= x3 <= 1. Here we use -1 <= x <= 1.
11 % Change of variable means x = 2x3 - 1, hence d/dx = (1/2) d/dx3.
12 em = 2*50;
13 en = 200;
14 %t = linspace(0,tf,em);
15 t = RefineMesh( sol.x, 3 );
16 j0 = find(t>=2/em);
17 j0 = j0(1);
18 em = length(t);
19 [u,ut] = deval( sol, t );
20 ux = D*[zeros(1,size(u,2));u;zeros(1,size(u,2))];
21 %xi = linspace(-1,1,en);
22 xi = RefineMesh(x,3);
23 en = length(xi);
24 res = zeros(en,em);
25 w = genbarywts( x, 1 );
26 for i=2:em,
27 [uxi, uxxi] = hermiteval( [0;u(:,i);0], xi, x, 1, w, D );
28 utxi = hermiteval( [0;ut(:,i);0], xi, x, 1, w, D);
29 [uxxi2, uxxxi] = hermiteval( ux(:,i), xi, x, 1, w, D );
30 %res = ut + d*eta*ux -d * uxx;
31 res(:,i) = utxi + 2*d*eta*uxxi - 4*d*uxxxi;
32 end
33 figure
34 colormap([0,0,0])
35 sc = 0.5e-3;
36 mesh( t(j0:end), (xi(2:end-1)+1)/2, res(2:end-1,j0:end) ) , axis

([0,tf, 0, 1, -5*sc, 5*sc]), view(70,60), set(gca,'fontsize'
,16),xlabel('t','fontsize',16), ylabel('x','fontsize',16),
zlabel('residual','fontsize',16)

The results are plotted in Fig. 16.13. Computing a residual for the solution produced
by pdex3 is possible but requires some tedious bookkeeping. Instead, we compare
the solutions at t = 1 in Fig. 16.14. We see that the solutions agree very well. Since
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Fig. 16.14 The solution at t = 1 as computed by pdepe (+) and by the spectral method of the
text (o). Agreement is good, to visual accuracy. Since only about 40 spatial mesh points were used
in each computation, this agreement is about all that could be expected

the residual in the spectral solution is quite small, even very small away from the
sharp corner at x = 0, t = 0, it seems that both solutions must be good. So why,
then, the seemingly great difference in emitter discharge plots? It turns out to be
because the spectral method took many small time steps initially in order to resolve
the initial sharp layer, and we let the code choose where to plot the discharge! If we
plot only the values of I(t) for t > 0.0171 (ignoring the first 70 or so time steps),
we get the same figure for I(t) as pdex3 does. Allowing the code to choose its own
time steps shows the initial sharp change in the emitter discharge. We do not think
this is a bad thing.
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16.5 Poisson’s Equation and the FFT

In the works Henrici (1979b), Chen (1987), and Iserles (2009), for example, we find
discussions of how to solve Poisson’s equation,

−Δu = f (x,y) , (16.25)

in a square (or higher-dimensional domain), with either periodic boundary condi-
tions or homogeneous Dirichlet conditions, using the FFT. Earlier finite-difference
discussions are summarized in Collatz (1966) and are still worth reading. Recall
that Δu = uxx +uyy in two dimensions and Cartesian coordinates. This simple equa-
tion occurs in a vast array of applications. At least one MATLAB code for fast
Poisson solving in 2D has been written and made publicly available.4 Our code
in Poisson2D described below is available in the code repository but is intended
for didactic use only.

To implement this method, we will follow the discussion in Henrici (1979b), and
use the FFT on a very simple finite-difference method (we will use a better method
in the next section, and we could use it here but it’s nice to begin with the simple
methods) for approximating −Δu = f , namely,

−Δu
.
= 4ui, j − ui, j+1 − ui, j−1 − ui−1, j − ui+1, j = h2 fi, j (16.26)

on a uniform grid with spacing h = 1/n in both the x- and y-directions. This approx-
imation makes an error of O(h2). This gives rise to a linear system of equations for
the n2 unknowns ui, j. As Henrici does, we solve a problem with u = 0 on the bound-
ary, and we assume that f = 0 there likewise (this is without loss of generality). To
this end we extend u and f as odd periodic sequences of period 2n; this enforces
u = 0 on the boundary.

Henrici points out that the combination of function values is a (2D) convolution,
with the two-dimensional sequence d with d0,0 = 4, d1,0 = d0,1 = d−1,0 = d0,−1 =−1
and all other entries 0. Using the correspondence between convolutions in physical
space and Hadamard products in Fourier space, we get the simple relation

4n2d̂ · û = h2f̂ , (16.27)

where the hat symbol signifies the two-dimensional Fourier transform, and the op-
eration · is the Hadamard (elementwise) product. Henrici then gives one of those
traditional mathematician phrases: “It is readily verified that d̂ = {d̂k,m}, where

d̂k,m =

(
1− 1/2 cos

kπ
n

− 1/2 cos
mπ
n

)
h2 .” (16.28)

4 The code can be found at http://www.mathworks.com/matlabcentral/
fileexchange/21472-2d-fast-poisson-solver. The author claims to have
based the program on the discussion in Iserles (2009). We have not tested it.

http://www.mathworks.com/matlabcentral/fileexchange/21472-2d-fast-poisson-solver
http://www.mathworks.com/matlabcentral/fileexchange/21472-2d-fast-poisson-solver
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If indeed this is true (see the exercises), then we have Algorithm 16.3 to solve the
Poisson problem on a square with Dirichlet boundary conditions.

Algorithm 16.3 Solving Poisson’s equation −Δu = f with Dirichlet boundary con-
ditions on a square, using the FFT, after Henrici (1979b)
Require: n > 1 parameterizing the n×n grid, fi j for 2 ≤ i, j ≤ n−1 ( f = 0 on the boundary)

Define f2n−i, j =− fi, j, fi,2n− j =− fi, j, f2n−i,2n− j = fi, j (extension to an odd function)

Use fft2 or equivalent to compute f̂ = F
(2)
2n f

Define the elements of d̂ by (16.28)

Compute u = h2F
(2)
2n

(
f̂./d̂
)

Trim u to original size
return An O(h2) approximation u to the solution of −Δu = f at grid points
(i−1)/(n−1), ( j−1)/(n−1).

However, some important difficulties remain. It turns out that implementing the
algorithm in MATLAB is not completely straightforward. There are three issues that
we noticed. The first is that Henrici indexes from 0, not 1, while MATLAB indexes
from 1. Second, the discrete Fourier transform that Henrici used is

y = Fn(x) , (16.29)

where

ym =
1
n

n−1

∑
k=0

w−mk
n xk , (16.30)

which is the inverse FFT in MATLAB. The third difficulty is the explicit use of the
formula (16.28). When k = m = 0, we have d̂0,0 = 0, and we are to divide by this—
of course, this only works because f̂0,0 is also zero, and we are to take the ratio to be
zero. If we do not explicitly replace d̂0,0 with something harmless, then NaNs invade
our computation, making it useless. Still, all these difficulties can be overcome.
A crude implementation is given below:

1 function [ xi, yi, u ] = Poisson2D( n, f )
2 %POISSON2D FFT method for solving 2D Poisson equation on a square
3 % Using standard O(hˆ2) finite differences we get a linear
4 % (block circulant with circulant blocks) system of equations
5 % to solve for u: -(u_xx + u_yy) = f gives A u = f.
6 % Using the 2d FFT diagonalizes the nˆ2 by nˆ2 system.
7

8 % Use left/upper part of grid
9 x = (0:n)/n;

10 h = 1/n;
11 [xi,yi] = meshgrid( x );
12 fv = feval(f, xi, yi );
13 % zero out the outer edges
14 fv(1,:) = zeros(1,n+1);
15 fv(n+1,:) = fv(1,:);
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16 fv(:,1) = fv(1,:)';
17 fv(:,n+1) = fv(:,1);
18 % Odd extension
19 fv = [fv, -fv(:,end-1:-1:2); -fv(end-1:-1:2,:), fv(end-1:-1:2,end

-1:-1:2) ];
20 % Henrici's Fn is Matlab's ifft
21 fhat = ifft2( fv );
22 % Explicit computation of dhat by formula
23 [k, m] = meshgrid( 2*(n):-1:1 );
24 dhat = (1-cos(k*pi/n)/2 - cos(m*pi/n)/2)*hˆ2;
25 dhat(1,1) = 1; % Don't divide by zero.
26 fz = fhat./dhat; % Nans will show up otherwise, and they hurt.
27 u = hˆ2*fft2( fz )/4/nˆ2;
28 u = real(u(1:n+1,1:n+1)); % Crude code, real u only
29 % Explicitly impose BC, avoid roundoff error
30 u(1,:) = zeros(1,n+1);
31 u(n+1,:) = u(1,:);
32 u(:,1) = u(1,:)';
33 u(:,n+1) = u(1,:)';
34

35 end

We test this with a simple problem with a known answer,−Δu= 2π2 sinπxsinπy.
This happens to be zero on the boundaries and has the known analytic solution (we
built it this way) u = sinπxsinπy. Using n = 32 gives a forward error smaller than
8.04× 10−4, and with n = 1024, the error is smaller than 7.9× 10−7, indicating
O(h2) behavior, as expected. We leave the residual-based error analysis to the
exercises.

16.6 Reaction–Diffusion Equations and Turing Patterns

It will not have escaped the reader’s notice that we have confined ourselves so far
to PDE of only two dimensions: one space and one time or two space. It’s now
time to leave that restriction behind, but the book will end, before we get to very
high dimensions. Part of our decision to stop there is computing cost (at the time of
writing) in MATLAB; we can compute in three space dimensions and time (see the
exercises), but the waiting time begins to be a drag, and the person doing the waiting
will be strongly tempted at this point to move to a “proper” scientific computing
language, and thereby shift into the fast-paced world of HPC.

Before that shift happens, there are things to learn. Let’s look at a simple two-
space and one-time dimensional PDE modeling reaction–diffusion, which we take
from Ruuth (1995), namely, the Schnakenberg equations

ut = λ (0.126779− u+u2v)+Δu

vt = λ (0.792366− u2v)+ 10Δv , (16.31)

where λ = 1000. We take periodic boundary conditions on the square 0 ≤ x,y ≤
1, and t > 0. The initial condition we use is slightly different from that used in
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Ruuth (1995), but not qualitatively so—we just made it a little less symmetrical
initially. Specifically, we take u and v to be small departures from constants, initially:

u(0,x,y) = 0.919145+ 0.0016cos(2π(x+ y))+ 0.01
8

∑
j=1

cos(2π jx)

v(0,x,y) = 0.937903+ 0.0316cos(2π(2x− y))+ 0.01
8

∑
j=1

cos(2π jx) . (16.32)

We use the method of lines on an equally spaced grid in x and y, giving a grid of
n2 points xi = (i−1)/n, y j = ( j−1)/n, for 1 ≤ i, j ≤ n. By assuming that x0 = xn and
xn+1 = x1, and likewise y0 = yn and yn+1 = y1, we impose the periodic boundary
conditions.

Such a grid and periodicity suggest that we should use a spectral method again,
and indeed that works well. Instead, however, we shall use compact finite differ-
ences, specifically the classical Mehrstellenverfahren of Collatz (1966). The reason
for this is twofold: First, the method, though classical, is very powerful and flexible
and can be treated with FFT methods (we do not do this here, but refer the reader
to Henrici (1979b)). Second, it shows off an interesting feature of the MATLAB

codes, namely, that they can be used with a sparse mass matrix in a quite efficient
manner. In fact, because the system is block circulant with circulant blocks, this
could be done even more efficiently than we do here, possibly by the (again FFT-
based) methods of Chen (1987), but we simply want to show how straightforward
use of MATLAB’s sparse matrices can lead to significant utility.

The basic idea runs as follows. The Mehrstellenverfahren is a way of approximat-
ing Δu using values of u on a square grid by giving an O(h4)-accurate relationship
between Δu and u on a standard nine-point stencil (i.e., nine points arranged in three
rows of three). Computation by Taylor series5 shows that if ui, j is in the center of
the stencil,

Δui, j + 1/8
(
Δui−1, j +Δui+1, j +Δui, j−1 +Δui, j+1

)
=(

1/4
(
ui−1, j−1 + ui+1, j−1+ ui−1, j+1+ ui+1, j+1

)
+
(
ui−1, j + ui+1, j + ui, j−1 + ui, j+1

)− 5ui, j
)
/h2 +O(h4), (16.33)

and indeed the O(h4) term can be seen to be approximately ((uxxxxxx +uyyyyyy)/160 −
(uxxxxyy +uxxyyyy)/96)h4 +O(h5). This gives a linear relationship between Δu at the grid
points and u at the grid points, which must be solved to give Δu.

Because the stencil is compact, the linear system is sparse. Because we are on
a periodic square grid, the system is, in fact, block circulant with circulant blocks,
each of which is sparse, and indeed that is how the matrices are constructed for our
computations (see below). That is, we have a sparse linear system

AΔu =
1
h2 Bu (16.34)

5 Or, of course, simply reading Table VI of Collatz (1966).
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to solve, in order to approximate the Laplacian. This approach is often used to solve
Poisson’s equation, by the way; see Collatz (1966) or Henrici (1979b).
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Fig. 16.15 The sparse block circulant structure with sparse circulant blocks of A and B in the
Mehrstellenverfahren (16.33) on a 7×7 grid. (a) spy(A). (b) spy(B)

We need also to specify an ordering on the grid. This choice can have significant
impact on the structure of the resulting matrix. Here, we take the simplest possible
approach, and number the points in row order: The point at (xi,y j) is numbered j+
(i− 1)n. By periodicity, then, for A, the compact finite-difference formula (16.33)
will pick out the two nearest neighbors to the left and right (which might wrap
around to the other edge of the matrix) and the nearest neighbors above and below,
which puts them n places away to the left or the right (again, wrapping around if
necessary). Each row of A has therefore four nondiagonal elements, and only four.
As stated before, A is block circulant with circulant blocks, and at this point we note
that it is also symmetric. Because we will be solving AΔ = b, the condition number
of A is of interest. In the exercises, you will be asked to show that the condition
number of this matrix is bounded by 3, independently of the dimension.

The matrix B is similarly symmetric and block circulant with circulant blocks,
but because it has eight nondiagonal entries per row, it is slightly less sparse. This is
not significant, as we will be multiplying by B and not solving a system with B as
the matrix (Fig. 16.15).

These things being considered, we can then use this code to attack the problem:

1 function [ A, B ] = compactlaplacian( n )
2 %COMPACTLAPLACIAN Fourth-order nine-point stencil Laplacian
3 % Mehrstellen Verfahren of Collatz (1950)
4 % A Del U = B U/hˆ2 to O(hˆ4)
5 % Periodic boundary conditions on a square equally-spaced grid
6 % Row-ordering of the grid
7 % Both A and B are block circulant with circulant blocks
8 % Both A and B are symmetric
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9 % Condition number of A is bounded by 3, independent of n
10

11 E = speye(n);
12 C = sparse(2:n,1:n-1,1,n,n);
13 C(n,1)=1;
14 C = C + C'; % Sparse symmetric circulant
15 A = kron(C,E/8) + kron(E,C/8) + speye(nˆ2);
16

17 D = -5*E + C;
18 F = E + C/4;
19 B = kron( E, D ) + kron(C,F);
20

21 end

How does this help us with the method of lines? We embed u and v in a 2n2

vector as described below, then multiply the Schnakenberg equations (with now u
and v being n2-vectors) by the matrix A to get

Aut = Aλ (0.126779− u+u2v)+
Bu
h2

Avt = Aλ (0.792366− u2v)+
10Bv

h2 , (16.35)

which now no longer has spatial derivatives in it, at a cost of making an O(h4)
change in the right-hand side. Now, arranging a 2n2-vector y(t) so that each column
of u occupies a block of n entries in the first n2 entries of y, and so that each column
of v occupies a block of n entries in the second n2 entries of y, we have a system of
2n2 ordinary differential equations to solve in a format suitable for MATLAB’s ODE
routines. Because this system is likely to be stiff, we consider only a stiff method
here.

This works in MATLAB because ode15s (for example) allows ODE to be in-
put with a so-called mass matrix, in this case the constant sparse matrix diag[A,A].
The routine is careful not to invert this sparse matrix, which would produce a full
Jacobian and thus contribute to an O((n2)3) = O(n6) linear algebra cost per step.
We expect that the Jacobian now tends to be somewhat fuller because of the mixing
Au2v, but this is of less consequence than the original diffusion terms. Experimen-
tally, we see that the cost grows at least initially (for n ≤ 64) more slowly than
O(n6); a reasonable fit of a line with slope O(n4) is obtained, for the range of n used
here. Best of all, because the discretization is so high accuracy [compared to the
simpler O(h2) explicit discretization of the Laplacian], we can get very accurate so-
lutions with n as low as 24. Note that the solution in Ruuth (1995) used the standard
second-order discretization and took n = 128; but a detailed efficiency comparison
is not appropriate here as there are faster (FFT) methods than either of these. Per-
haps even better than the “best of all” just mentioned, the coding is extraordinarily
simple, as seen below:
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1 function [ x, sol ] = Schnakenberg( n )
2 %SCHNAKENBERG Solve 2D Schnakenberg equation on a square
3 % Parameters and initial conditions taken from Ruuth (1995)
4 % (initial conditions slightly modified)
5 %
6 h=1/n;
7 lambda = 1000.;
8 du = 1.0;
9 dv = sqrt(10);

10 %
11 x = (0:n-1)/n; %linspace(0,1,n);
12 y = x; % Tensor product grid
13 [A,B] = compactlaplacian(n);
14 %
15 ex = ones(n)*diag(x);
16 ey = diag(y)*ones(n);
17 cxy = cos(2*pi*(ex+ey));
18 cxy2= sin(2*pi*(2*ex-ey));
19 u0 = 0.919145*ones(n)+0.0016*cxy;
20 v0 = 0.937903*ones(n)+0.0316*cxy2;
21 for j=1:8,
22 c = cos(2*pi*j*ex);
23 u0 = u0 + 0.01*c;
24 v0 = v0 + 0.01*c';
25 end
26 u0 = u0';
27 v0 = v0';
28 inif = [u0(:);v0(:)]; % Row order
29 % Compact fourth-order space derivatives
30 % Mehrstellen verfahren (Collatz, 1950)
31

32 % Mass matrix [[A,0],[0,A]]
33 [i,j,s] = find(A);
34 M = sparse([i,i+nˆ2],[j,j+nˆ2],[s,s],2*nˆ2,2*nˆ2);
35

36 function yp = Sc(t,y)
37 u = y(1:nˆ2,:);
38 v = y(nˆ2+1:end,:);
39 yp = zeros(size(y));
40 usv = u.ˆ2.*v;
41 yp(1:nˆ2,:) = duˆ2*B*u/hˆ2+A*lambda*(0.126779 - u + usv);
42 yp(nˆ2+1:end,:)= dvˆ2*B*v/hˆ2+A*lambda*(0.792366 - usv);
43 end
44

45 opts = odeset('reltol',1.0e-7,'Mass',M,'Vectorized','on');
46 ts = 2.0;
47 sol = ode15s(@Sc,[0,ts], inif, opts );
48

49 end

So, how does it work? When we call this function with, say, the command
Schnakenberg(16), the answer comes back in a few seconds. Using n = 64
requires more time. See Fig. 16.16 for computation times. Well and good, but how
good is the answer? Plotting the results of the 16× 16 grid, which after all ought to
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Fig. 16.16 Computing times to solve the Schnakenberg equations using the Mehrstellenverfahren
for various n. The reference line has slope n4

be comparably accurate to the 128× 128 grid used in Ruuth (1995), gives an unac-
ceptably rough and blocky plot—we simply don’t have enough points for a smooth
graph. It turns out that each point is pretty accurate, but in order to get a smooth
plot, we must interpolate. Using the two-dimensional FFT interpolant you wrote in
Chap. 9 (or found on the web: We used a 2D code by Bjorn Gustavsson based on a
1D code by Robert Piche), this is easily done. An alternative that is good enough for
plotting is interp2 with the “spline” option, and indeed that was what was used
to produce the contour plots given in Fig. I.1 in the preface to this book.

How accurate is the solution? We used a temporal tolerance of 10−7, and the
mesh width is 1/16, so we believe that the spatial error will be something like a mul-
tiple of 1/164 because we are using a fourth-order method; that is, less than 1/65,536. So
can we expect perhaps four figures of accuracy at these 16× 16 points? Of course,
it’s hard to tell by looking at the answers. But we can compute on a finer grid,
say 32× 32, and since this is just a refinement of the grid (every other point in the
32×32 grid is in the 16×16 grid), we can compare the answers directly. But could
they both be wrong?

Of course, we wish to compute the residuals and see how well the solutions
satisfy the equations. For this, the FFT interpolant is much the most convenient,
because it is infinitely differentiable (differentiating the splines of interp2 is pos-
sible but tedious, and in the end the derivatives aren’t high-quality anyway). Here,

u(t,x,y) =
n/2

∑
m=−n/2

′ n/2

∑
�=−n/2

′
ûm,� e2π i(mx+�y) , (16.36)

where, as in Henrici (1979b), the prime convention means that when n is even (as
it is here), the terms corresponding to m = −n/2 and m = n/2 are each multiplied by
1/2. Similarly for v(t,x,y). These interpolants are very easy to differentiate, and so
we can compute the method in MATLAB as follows:
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1 function [ resu, resv ] = Schnakres( n, t, xin, solin )
2 %Schnakres Residuals in the Schnakenberg equation
3 %
4 if nargin < 3,
5 [x,sol] = Schnakenberg(n);
6 else
7 x = xin;
8 sol = solin;
9 end

10 [y,yt] = deval( sol, t );
11 u=zeros(n);
12 vt = zeros(n);
13 ut = zeros(n);
14 v=zeros(n);
15 u(:) = y(1:nˆ2);
16 ut(:) = yt(1:nˆ2);
17 v(:)=y(1+nˆ2:end);
18 vt(:)=yt(1+nˆ2:end);
19 u = u';
20 ut=ut';
21 v = v';
22 vt=vt';
23 m = 4*n;
24 [xi,yi] = meshgrid((0:m-1)/m);
25 um = interpftd2( u, m, m, 0, 0 );
26 utm = interpftd2( ut, m, m, 0, 0 );
27 %figure,surf(xi,yi,um)
28 vm = interpftd2( v, m, m, 0, 0 );
29 vtm = interpftd2( vt, m, m, 0, 0 );
30 uxx = interpftd2( u, m, m, 2, 0 );
31 uyy = interpftd2( u, m, m, 0, 2 );
32 delu = uxx + uyy;
33 %figure, surf(xi,yi,delu)
34 vxx = interpftd2( v, m, m, 2, 0 );
35 vyy = interpftd2( v, m, m, 0, 2 );
36 delv = vxx+vyy;
37 usv = um.ˆ2.*vm;
38 resu = utm - (delu + 1000*(0.126779 - um + usv));
39 resv = vtm - (10*delv + 1000*(0.792366 - usv));
40 figure,surf(xi,yi,resv/1000),colormap([0,0,0])
41 figure,surf(xi,yi,resu/1000),colormap([0,0,0])
42

43 end

The residuals for n = 8, 16, 24, 32, 40, and 64 have been computed, and the max-
imum magnitudes of the residuals (scaled by λ = 1000) for u and for v are plotted
on a log–log scale in Fig. 16.17. We see clear evidence of O(h4) behavior. At the
end, we have evidence that the computed u and v are the exact solutions of the
reverse-engineered equations

ut = λ (10−4δ1(t,x,y)+ 0.126779− u+u2v)+Δu

vt = λ (10−4δ2(t,x,y)+ 0.792366− u2v)+ 10Δv , (16.37)

where the functions δ1(t,x,y) and δ2(t,x,y) are O(1) in magnitude.
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Fig. 16.17 Maximum residuals at time t = 2 in the solution the Schnakenberg equations using the
Mehrstellenverfahren for various n. The reference line has slope 1/n4

16.7 Concluding Remarks

This presentation of an a posteriori analysis of the numerical solution of a nonlinear
time-dependent PDE has had, we hope, a familiar feel: This style of analysis holds
for every computational problem studied in this book. As usual, we are left with
worrying about the effects of such perturbations, but again as usual this is something
we have to worry about anyway, in view of physical perturbations. For this textbook,
we have set up the need to study the conditioning (sensitivity) of the Schnakenberg
PDE to changes. This is left as an exercise, but it is not unimportant. (You should
find that this PDE is fairly well-conditioned near the solutions computed here. The
Turing patterns generated by solving the Schnakenberg equations are correct.)

This chapter has used temporal adaptivity in the method of lines, by taking advan-
tage of high-quality codes. The results of this can be seen, for example, in Figs. 16.5
and 16.4—near the singularity at the end, the code takes many time steps, and the
fine temporal grid makes the surface look quite dark. Similarly, when using the
transverse method of lines, the built-in spatial adaptivity of bvp4c was used, and
the adaptive spatial mesh provided a useful advantage. In general, one would want to
use both at once; in higher space dimensions, the generation of a good spatial mesh
is itself a significant task. The principle of equidistribution discussed in Chap. 14
generalizes nicely; see, for example, Huang and Russell (2011) for its use in gener-
ating moving meshes. The work Franzone et al. (2006) gives an example of using
adaptive meshes on a large-scale problem of medical interest.

We would really like to avoid all that work of interpolating, differentiating
the interpolant, computing the residual, and looking how large or unusual it was.
It would be preferable to guarantee ahead of time that the residual will be small.
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Much classical numerical analysis of methods for linear PDE accomplishes just
that. Nonlinear problems, solved by complicated methods, are more difficult, al-
though progress has been made for some methods and some problems. We hope
that this textbook presentation has encouraged the reader to investigate further on
their own.

There is an impossibly large amount of material remaining to study in the field
of numerical solution of PDE. Wherever we stop, it will seem abrupt, and we will
have left out important things. We will mention in the references section that follows
some places where you should look in order to pursue your investigation.

16.8 Notes and References

One of our favorite books has now been printed in a new edition: Iserles (2009). In
that book, you will find an excellent overview of many points of both theoretical
and practical interest, including a discussion of the fast Poisson solvers using the
Mehrstellenverfahren (called more prosaically the modified nine-point method in
that book) and the FFT. The “bluffer’s guide” at the end is also useful!

The books Kreiss and Lorenz (1989) and Morton and Mayers (1994), and more
recently Ascher (2008) and Bertoluzza et al. (2009), also provide good entry points
to the study of the numerical solution of PDE. The last mentioned has a discussion
of wavelets. The book Trefethen (2000), while short, is an excellent introduction
to spectral methods and is focused on MATLAB. For state-of-the-art examples of
using numerical methods to explore complicated physical models, see Provatas and
Elder (2010). The book Deuflhard and Bornemann (2002) contains a more thor-
ough introduction to the method of lines than given here. Multigrid and multi-
level methods are among the fastest methods known (see Briggs and McCormick
(2000) to get started). Probably the most important subject neglected in this chapter
is the method of finite elements. There are a great many textbooks on finite ele-
ments, and the reader can start practically anywhere, but the books Zienkiewicz
et al. (2000) are popular and thorough. Perhaps unusually, the ancient (in computer
terms) book Strang and Fix (1973) is still worth recommending, as being readable
and apt.

We direct the reader to more advanced treatments of the theory of conditioning of
PDE, such as Li and Petzold (2004), for a more thorough picture. See Petzold et al.
(2006) and the references therein for more details on the forward method of sensitiv-
ity analysis as discussed here, including some warnings of just when this method is
impractical due to expense. For a recent application of these ideas, see Babuška and
Gatica (2010). The history of the use of, first, a residual to estimate the backward
error, and second, a conditioning estimate to improve the forward (global) error is
very long. Early work by Babuška and others (e.g., Babuška and Rheinboldt 1978)
in the theory and practice of finite elements for solving PDEs would give a good
introduction to that history. Braack and Ern (2003) discuss the use of conditioning
and residuals to estimate not only the effects of numerical errors, but also modeling
errors—where the more complicated but more realistic physical equations are used
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only where necessary. This approach seems very interesting to us, especially be-
cause so much of modern applied mathematical modeling and computation involves
the judicious choice of model and summary model in order to achieve sufficient
computational speed to get useful answers in a reasonable time. In the past dozen
years, there have been several excellent summaries of the issues; see, for exam-
ple, Becker and Rannacher (2001) and Giles and Süli (2002).

For a discussion of providing a continuous solution even when the underlying
method does not, see Enright (2000a). See Shampine et al. (2003) for a discussion
on the benefits of using high-quality IVP software to do the time integration. We
stop here: Some of those papers are about 100 pages each and have themselves been
cited and followed up many times in the past 10 years. For this “paint a picture of
a scratch on a surface” chapter, we will have to be content with having given just a
few pointers to the literature. Happy reading!

Problems

Theory and Practice

16.1. Take the solution to (16.1) computed by the method of lines on the Chebyshev
grid x j = cosπ( j−1)/(n−1) for n = 32 points; integrate for a = 1 and ν = 1/100 out to
t = 1/2. Interpolate your solution by the natural t-interpolant provided by ode15s,
and use Lagrange interpolation in the x-direction. Compute the residual along the
line t = 0.3 at, say, 1201 points on −1≤ x ≤ 1. You should find that the polynomials
wiggle too much, that the resulting residual overestimates the backward error in this
(quite smooth) solution substantially.

16.2. Without first separating u(t,x) into real and imaginary parts, solve Burgers’
equation (16.4) with the initial condition u(0,x) = exp(iπx) by the method of lines,
by using the capacity ofode15s to integrate complex-valued differential equations.
As in the text, use periodic boundary conditions. Graph the real and imaginary parts
of the solution. Compare your graphs to the ones in the text. Explain any differences
you see.

The equation has singularities if t = −exp(−1− iπx)/(iπ), as discussed in the
text. For real x, these are located on a complex t-circle of radius 1/(eπ). That is,
the solution should be singular also if t = −1/(eπ). Switch the orientation of t, that
is, integrate ut − uux = 0 subject to u(0,x) = exp(iπx), and show that again waves
break and peak.

16.3. Use equally spaced points on −1 ≤ x ≤ 1 to solve (16.1) by the method of
lines, with a single degree-(n+ 1) polynomial interpolating the n+ 2 points used.
Use genbarywts to generate the differentiation matrix. Show that this approach
fails to give a good solution, because of the interpolation error on equally spaced
points. One way to do that is to plot the residual for a suitable time, and show that it
is growing unacceptably large; show also that increasing n does not help.
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16.4. Show that the finite-difference formulæ used in Algorithms 16.1–16.2 are
fourth order. Implement them in MATLAB as first.m and second.m, respec-
tively. Test them on (say) sin(x) for various equally spaced meshes, say with Fi-
bonacci numbers of mesh points, and plot the resulting maximum error on a log–log
scale, together with a line showing O(1/n4) slope, to verify that your implementa-
tion gives fourth-order accuracy at least for mesh widths large enough that rounding
errors do not interfere.

16.5. Use ode15s and compact finite differences as in the text to solve the one-way
wave equation (16.8). Can you explain the amplified numerical errors near t = 8,
x = 0? If you have access to a copy of Trefethen (2000), compare with the spectral
solution given there.

16.6. Verify Eq. (16.28).

16.7. Perhaps using MAPLE, use multivariate Taylor series to show that the
Mehrstellenverfahren (16.33) are fourth-order accurate. Compare, if you have
access to it, the formulæ in Collatz (1966 Table VI). Note that Henrici (1979b)
suggests that if Fourier methods are to be used, there is an easier way in that the
methods correspond in Fourier space to approximating the exponential.

Investigations and Projects

16.8. Use Algorithm 16.3 (either the crude implementation in the text or your own,
better and faster one) to solve −Δu = sin2 πxsin2πy on the square [0,1]2, with
Dirichlet boundary conditions u = 0 on the boundary. This time no analytical so-
lution is provided (you might be able to find one, though), and therefore to analyze
the error in your solution, you are obliged to interpolate the computed solution, dif-
ferentiate it, and check that the residual is small. Do you get O(h2) error behavior,
as expected?

16.9. Use Chebfun to solve the one-space-dimension reaction–diffusion equa-
tion described in http://www2.maths.ox.ac.uk/chebfun/examples/
pde/pdf/ReactDiffSys.pdf. Note that solution uses the overloaded (Cheb-
fun) version of pde15s, which uses spectral spatial discretization on Chebyshev–
Lobatto points as described in this chapter. Is the equation well-conditioned?

16.10. Table VI in Collatz (1966) contains a sixth-order-accurate compact finite-
difference approximation for Δu. Replace the generation of A and B in the MATLAB

code compactlaplacian.m by appropriate matrices that use this formula with
periodic boundary conditions on the square, and solve the Schnakenberg equations
using the method of this text. Is this cheaper for the same accuracy or more accurate
for the same computing time than the O(h4) method?

16.11. Show that the Schnakenberg equations (16.31) are well-conditioned.

http://www2.maths.ox.ac.uk/chebfun/examples/pde/pdf/ReactDiffSys.pdf
http://www2.maths.ox.ac.uk/chebfun/examples/pde/pdf/ReactDiffSys.pdf
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16.12. Use MATLAB to solve the three-space-dimension and time PDE

ut = uxx + uyy+ uzz+ u− u3 (16.38)

in the cube [0,1]3, with periodic boundary conditions. Use u(0,x,y,z) = sin(2π(x+
y+ z))+ cos(2π(x− y− 2z)) as your initial condition. How small is your residual?
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The objective of this book was to present a unified view of numerical computation,
insofar as that is possible, for areas of numerical analysis as different as floating-
point arithmetic, numerical linear algebra, function evaluation, rootfinding, interpo-
lation, numerical differentiation and integration, and numerical solutions of differ-
ential equations. Given that our intended audience includes people studying to be
applied mathematicians, scientists, and engineers, our guiding principle has been
that numerical methods should be discussed as part of a more general practice of
mathematical modelling. Thus, we have presented several topics in numerical anal-
ysis, all from the point of view of backward error analysis. The motto of backward
error analysis—that is, that a numerical method’s errors should be analyzable in the
same terms as whatever physical (or chemical or biological or social or what-have-
you) modeling errors—should now be second nature to you.

The main strengths of backward error analysis should also now be obvious. First
and foremost, one sees that the computed solution is reliable and faithful to the
mathematical model if the residual is small and can be interpreted in terms of the
context of the model. We have summarized the methodology with a diagram:

x

x+Δx

y = ϕ(x)

ŷ = ϕ(x+Δx) = ϕ̂(x)

input space output space

backward error — — forward error
ϕ̂

Here, ϕ̂ is the problem exactly solved by the numerical method. Of course, one
needs to know how sensitive the model is to physically meaningful modeling or
measurement errors; this will allow judgement to be passed about the numerical,
computational errors too. At its best, backward error analysis gives an entirely sat-
isfactory validation of the computation, as good as any scientific endeavour may
require. Second, our emphasis on the notion of residual also makes it possible to
first compute a solution using some method, and only afterward use this computed
solution to assess whether it is sufficiently accurate. This a posteriori mode of error
analysis offers multiple advantages and is a natural complement to the backward
error perspective.

Nonetheless, it would be disingenuous to pretend that backward error analysis
is a panacea, and we don’t want to give that impression, even if it is the approach
we prefer overall. To begin with, we have mentioned examples such as the outer
product, where a backward error analysis can’t be performed at all: The computed
outer product of two 3-vectors cannot be the exact outer product of two perturbed
3-vectors unless, miraculously, the nine rounding errors are correlated in such a
way that they can be explained by merely six perturbations. Generically, this won’t
happen. Another objection is that the computation of the residual usually overesti-
mates the backward error, sometimes significantly.
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There are other limitations. One of which we haven’t taken much notice in this
book is cost. To do a backward error analysis, you have to compute a residual unless
you are lucky enough to be using an algorithm and an arithmetic such that the com-
puted answer comes with an a priori guarantee of small backward error. But comput-
ing the residual takes time and effort; it is often cheaper, but it sometimes requires
as much as or more work than solving the problem in the first place. We usually
discount this disadvantage because the alternative—computing a putative answer
and hoping for the best—is not professionally acceptable. However, for very large
problems, we admit that computing a residual everywhere might be prohibitively ex-
pensive; in such cases, sampling the residual might be a viable alternative. Clearly,
one does the best one can.

Taken together with the asymptotic nature of the sensitivity analysis via the the-
ory of conditioning, namely, the linear analysis that approximates

ϕ(x+ ε)∼ ϕ(x)+ϕ ′(x)ε +O(ε2)

and ignores terms of order O(ε2), this means that the style of backward error anal-
ysis presented in this book gives estimates, not bounds, for errors6; there may be
monsters hidden in the O(ε2) symbols. Still, the method is surprisingly effective.

Of course, this requires smoothness. Functions that are not differentiable at a
point can be extraordinarily sensitive to changes in the problem: One may need to
restrict changes ε to be such that structure (the so-called pejorative manifold) is
taken into account.

Another difficulty with backward error results is that one is really interested in a
backward error result for the whole problem. One is much less interested in back-
ward error results for subproblems computed along the way to the solution of the
whole problem. Here, indeed, we can run into a snag: If our outer problem is de-
composed into a sequence of subproblems, say

P = P1 ◦P2 ◦ · · · ◦Pn ,

then even if each of the subproblems can be solved with good backward error, it
does not mean that the whole problem can be solved with good backward error.
Indeed, backward error is not generally preserved under composition. But then, the
same can sometimes be said for forward error analysis.

Finally, and perhaps most importantly, the context of the problem and the nature
of allowable perturbations must be considered. It’s all very well to say that one has
the exact solution to .

y = f (y)+ εv(t) ,

where v(t) is a piecewise polynomial with ‖v‖ ≤ 1 and ε = 10−5, but what if
time-dependent perturbations make no sense in the underlying application? A better
model might be

.
y = f (y) + h4Fy(y) +O(h6), for instance. The context may truly

matter. But that should not deter applied mathematicians, scientists, and engineers,
for whom the context matters anyway. For writers of general-purpose software such

6 Except for the theory of pseudospectra and pseudozeros, which gives a full nonlinear analysis.
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as MATLAB’s command \ or ode15s, that context is not knowable in advance.
Human judgment seems to be necessary. In this case, aiming instead for small for-
ward error (if at all possible) may lead to more satisfactory code.

In conclusion, we think that backward error analysis has proved to be a valuable
tool for people doing scientific and engineering computing. Even with its limita-
tions, we know that it will continue to be useful. We hope that it has helped you
in developing scientifically and mathematically sound and general thinking habits.
About such habits, Uri Ascher once said:

“It’s what a good numerical analyst does anyway.”
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We have tried to keep appendices to a minimum, especially since elementary
material is now readily available online. However, a book on numerical analysis that
doesn’t define terms for floating-point arithmetic at all would not be as useful as it
should be—hence, Appendix A. Gathering the material on floating-point arithmetic
in an appendix allows us to present some key ideas systematically without major
discontinuity in the text.

As for Appendix B, we expect that most graduate students will have had a course
in complex variables, but a review is helpful. Moreover, there is a disconnect be-
tween a textbook presentation of branch cut issues and the de facto standardization
of branch cuts and closures on branch cuts in computer languages, so this appendix
discusses those standardizations. Some of the concepts reviewed here, especially the
residue theorem, play an important role through most of the book.

Finally, Appendix C reviews a few elementary notions of linear algebra; one
reason to include this material was to introduce our notation in a transparent way.
The short list of properties of vector and matrix norms is intended to be convenient
for the linear algebra chapters, and some of this might not have been previously
encountered by all readers. We refer to the short section on the Schur complement
on many occasions, and so the reader should make sure that this result is familiar.



Appendix A
Floating-Point Arithmetic

According to James Gosling (1998), creator of Java, “[Ninety-five percent] of the
folks out there are completely clueless about floating-point.” To make sure you’re
not one of them, this appendix gives a very brief overview of floating-point arith-
metic (FPA) and its differences from arithmetic over the real and complex num-
bers. For more details and a more thorough treatment, see Goldberg (1991), Overton
(2001), Ercegovac and Lang (2004), Muller et al. (2009), or Brent and Zimmermann
(2011).

One distinctive feature of computer-assisted mathematics is that instead of com-
puting with elements of continuous fields (e.g., the real or the complex numbers),
one operates on a discrete, finite set of digital objects. The real numbers, for in-
stance, can essentially only be represented by infinite strings of digits, and the oper-
ations on them can be seen as acting on those infinite strings. However, computation
on a digital computer cannot carry out such operations, since only finite strings of
digits can be manipulated. This does allow some real numbers to be worked with,
the so-called computable reals, but not all. Therefore, instead of trying to work with
the entire continuum, one works with only a discrete finite subset. This limitation
has important consequences.

There are many possible approaches, some of which are discussed in Knuth
(1981), including exotic but interesting arithmetics that include exact rational
arithmetic with limited size denominators and numerators. But by far, the most
widespread system is floating-point arithmetic, and specifically the floating-point
arithmetic covered by the IEEE-754 standard.

Many nice number-theoretical properties—such as associativity of operations—
are typically not satisfied in floating-point arithmetic. One finds, therefore, that FPA
is a quite different type of arithmetic; key concepts, such as roundoff error, under-
flow, and overflow, emerge when we switch to floating-point operations. As a result,
for FPA we need an independent mathematical theory that explains how we can
accurately represent and operate on real numbers with finite strings of digits.

One of the main challenges is to guarantee that floating-point operations are cor-
rectly rendering results, where “correctly” is measured on the basis of standard arith-
metic, insofar as that is possible.

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods:
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0,
© Springer Science+Business Media New York 2013
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A.1 Number Representation

A digital number system associates digital representations with numbers. To take a
simple example, we can associate the number ”four” with the decimal representation
“4,” with the binary representation “100,” or with the roman numeral “IV.” Such
digital representations are also called numerals. Thus, a digital number system is
composed of a set of numbers N, a set of numerals W , and a representation mapping
φ : N → W . If the association is one–one, we can similarly write φ−1 : W → N. In
this case, we could write, for example, φ(four) = IV and φ−1(IV) = four. As we
see, φ associates the number ‘four’—a uniquely identifiable element of a number
structure (e.g., a ring or a field)—with its digital representation in Roman numerals.

Integer and Rational Representation

A nonnegative integer x ∈ N0 is represented by a digit-vector

[dn−1, dn−2, . . . , d1, d0] ,

from which we obtain the more standard φ(x) = dn−1dn−2 . . .d1d0 by concatenating
the elements of the digit-vector. The concatenated digit-vector is what we called a
numeral. The number of digits n is called the precision. Each di belongs to a set
D, the set of digits available for the representation (e.g., {0,1} in the binary case).
If D contains m elements, it will then only be possible to form |W | = mn distinct
numerals. Since m and n are finite, |W | is also finite. This is much less than the ℵ0

integers or rationals that we want to represent! In fact, each numeral will be used to
represent many numbers.

The cases we are interested with here are the so-called weighted or positional
representations of fixed radix. If we let r be the radix, we associate a number x ∈ N
with a numeral w ∈W by a mapping φ such that

φ(x) = φ

(
n−1

∑
i=0

dir
i

)
= dn−1dn−2 . . .d1d0 = w . (A.1)

The most familiar system—the decimal system—has r = 10 and D= {0,1,2, . . . ,9}.
For instance, in the decimal representation, we have

φ(nine hundred eighty-four) = 9 ·102+ 8 ·101+ 4 ·100 = 984.

Note that, for computer implementation, r = 2 and D = {0,1} are usually favored.
From the definitions above, it follows that the range of nonnegative integers

that can be exactly represented with a precision-n and radix-r number system
is [0,rn − 1]:

0 =
n−1

∑
i=0

0 · ri ≤ x ≤
n−1

∑
i=0

(r− 1) · ri = rn − 1
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To represent both positive and negative integers—namely, to represent signed
integers—we need a way to determine the sign of the integer represented by a given
numeral. There are two main types of representations:
1. use a bit for the sign and the rest for the magnitude;
2. use all the bits for the magnitude and add a bias.

In the former case, we reserve a digit in the word to determine the sign. 0 usually
represents ‘+,’ while 1 represents ‘−.’ Then, for an n-bit word, the range is

[−rn−1 + 1, rn−1 − 1] . (A.2)

In the latter case, all the bits are determining the magnitude; the value represented is
then the value it would represent under the standard positional representation, minus
a certain bias B. A standard bias for an n-bit radix-r representation is B = rn−1−1.1

Then, for an n-bit word, the range is [−rn−1 + 1, rn − 1− (rn−1− 1)]; that is,

[−rn−1 + 1, rn−1(r− 1)] . (A.3)

In the binary case r = 2, this just results in [−rn−1 + 1, rn−1]. In comparison to the
sign-and-magnitude representation, we see that it provides us with one additional
value.

Note that rational numbers can be written in the form

dn−1dn−2 . . .d2d1d0 .d−1d−2 . . .d− f−2d− f−1d− f .

Hence, we see that it is simply a pair of words with respective precisions n and f .
The first word is the integer part, and the second is the fractional part. Provided that
the radix is the same for both words,

x =
n−1

∑
i=− f

di · ri . (A.4)

It is usually assumed that the integer part is a signed integer, whereas the fractional
part is a nonnegative integer.

Floating-Point Representation

We now introduce the notion of a floating-point number. A floating-point number
is any real number that has an exact floating-point representation. Formally, if we
let F be the set of floating-point numbers, W the set of floating-point words (to be
defined), and φ :F→W some floating-point representation mapping (to be defined),
we have

F=
{

x ∈ R
∣∣ φ(x) = w for some w ∈W

}
. (A.5)

1 We will always use this bias, unless otherwise specified.
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Since there will be, once again, only a finite number of exactly representable
numbers, F is finite. As a result, F has unique minimal and maximal elements, for
both the positive and negative numbers. Consequently, we find that the floating-point
number “line” can be represented as in Fig. A.1.

− max
x∈F−

|x| min
x∈F−

|x| 0 max
x∈F+

|x|min
x∈F+

|x|
discrete setdiscrete set

Fig. A.1 Floating-point number line. The intervals (−∞,maxx∈F− |x|) and (maxx∈F+ |x|),∞+) are
called, respectively, negative and positive overflow. Similarly, the intervals (minx∈F− |x|,0) and
(0,minx∈F+ |x|) are called negative and positive underflow

An n-bit floating-point representation has two components:

1. an m-bit word (0 < m < n) called the mantissa or significand,2 representing a
signed rational number M with sign SM (using a sign-and-magnitude represen-
tation);

2. an n−m-bit word called the exponent, representing a signed integer E (using a
biased representation).

The choice of type of representations for the signed integers M and E follows the
IEEE standard. We will assume that the mantissa and the exponent have the same
radix r. The corresponding floating-point number in a base-b system is then

M× bE . (A.6)

The IEEE standard requires that M be normalized, that is, of the form ±1.F , where
F is the fractional part. It is then not required to use a bit for the integer part (the
“1” is said to be a hidden bit), and the m bits for the mantissa are used for the
sign and the fractional part.3 In the rest of this appendix, we will deal with such
normalized numbers. In Fig. A.2, one can see the bits partition for a representation
of a floating-point number with 32 bits.

Bit type

Bit number

S

1

E

2

E E E E E E E

9

F

10

F F F F F F F F F F F F F F F F F F F F F F

32

Fig. A.2 Thirty-two-bit word for a floating-point number. The biased exponent occupies 8 bits
and the mantissa occupies 24 bits (one for the sign, 23 for the fractional part or the normalized
mantissa)

2 m is often used for the length of the unsigned mantissa. It is, of course, just a notational conven-
tion; one must simply keep track of all the +1 and −1 in the exponents to have agreeing results.
3 We should note that restricting representation to normalized M makes it impossible to repre-
sent some very small numbers. The IEEE standard also defines unnormalized representations (also
called denormals or subnormals) to deal with those numbers. However, we will ignore this refine-
ment in this appendix.
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Values Represented

As we have seen, the set of (normalized) floating-point representations W is de-
termined by three numbers n,m,r. The set of floating point numbers F is, in turn,
determined by the set of representations W and by a base b. We can then write
F(n,m,r,b). For a given number system F(n,m,r,b), one can list all the values
that can be represented in a finite table, as in Table A.1. The values computed in

Table A.1 F(7,4,2,2): represented values when n = 7, m = 4, r = 2, b = 2. The words for the
mantissa and the exponent are written in binary. For convenience, the values are in decimal. Only
the positive values of the mantissa have been listed

��������Mantissa
Exponent −11 −10 −01 ±00 01 10 11

1.000 0.125 0.25 0.5 1 2 4 8
1.001 0.140625 0.28125 0.5625 1.125 2.25 4.5 9
1.010 0.15625 0.3125 0.625 1.25 2.5 5 10
1.011 0.171875 0.34375 0.6875 1.375 2.75 5.5 11
1.100 0.1875 0.375 0.75 1.5 3 6 12
1.101 0.203125 0.40625 0.8125 1.625 3.25 6.5 13
1.110 0.21875 0.4375 0.875 1.75 3.5 7 14
1.111 0.234375 0.46875 0.9325 1.875 3.75 7.5 15

Table A.1 are represented on the “F(7,4,2,2) number line” in Fig. A.3. One sees at
a glance that the numbers are not uniformly distributed. In fact, they are much more
densely distributed close to 0. As is easy to see, the distribution depends on n,m,b
and r.

0 1 2

Fig. A.3 The F(7,4,2,2) positive number “line”

Range and Machine Epsilon

Perhaps the main advantage of floating-point numbers is their near-automatic scale
invariance. Working with a collection of numbers S is very much the same as work-
ing with 103S or with S/103, so long as overflow does not occur. Indeed, if the num-
bers are scaled by the base b, there will be no rounding effects as long as overflow
and underflow do not occur. Prior to the adoption of floating-point, fixed-point ap-
proximations were used together with manual scaling as needed when the computa-
tions demanded.

Another, related, advantage of floating-point numbers is their range, which is
much larger than the range of fixed-point numbers. As we have seen, the largest
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number that can be represented by an n-bit radix-r word is rn − 1, resulting in the
range [0,rn − 1]. However, the largest floating-point number in the set F(n,m,r,b)
is Mmax ·bEmax, where Mmax and Emax are, respectively, the largest mantissa and the
largest exponent. In the normalized case, since Mmax = 1.Fmax, we obtain

Mmax = 1.Fmax = 1+
rm−1 − 1

rm−1

Emax = rn−m−1(r− 1)

maxF=

(
1+

rm−1 − 1
rm−1

)
·brn−m−1(r−1) . (A.7)

As an example, the largest 32-bit radix-2 fixed-point word is 232 − 1 ≈ 4 · 109. If
we make it signed, so that it includes negative numbers, the largest one will be
231 − 1 ≈ 2 ·109. However, the largest base-2 floating-point number represented by
32-bit words partitioned as in Fig. A.2 will have mantissa +1 followed by 23 ‘1’s
for the fractional part and biased exponent with 8 ‘1’s, that is,(

1+
223 − 1

223

)
·227 ≈ 7 ·1038 .

We see that the range is much larger. In double precision, which is the default
in MATLAB, the range is larger still: realmax is 21024 ≈ 1.7977× 10308 and
realmin = 2−1022 ≈ 2.2251× 10−308. This range suffices for a great many ap-
plications, although both overflow and underflow do occur.

Software floats in MAPLE (the so-called arbitrary precision floating-point num-
bers) have an even larger range because the base b in MAPLE is 10 and the radix
is the size of a word; the actual maximum and minimum in the range depend on
the machine type used, and on the machine this is being typed on, MAX REAL is
1× 102,147,483,646 and MIN REAL is the reciprocal of that. The maximum number
of decimal digits is “only” 268,435,448, but, really, computation with a quarter of
a billion digit numbers takes too long on a standard machine to be useful. In prac-
tice, one sets Digits to be 15 (which makes all the computations happen in IEEE
double precision similar to MATLAB’s, except conversion to decimal happens more
often), or 30 or 100 or so when extra precision is required. One notices a great slow-
down in computation moving from Digits:=15 to Digits:=16, which marks
the boundary between hardware floats (IEEE doubles) and software floats.

An important notion for the analysis of floating-point error is the unit in the last
place, or ulp, which is the difference of two consecutive values of the mantissa.
Since the values of the mantissa are uniformly distributed, ulp is a constant. For
given values of m and r, we find that

ulp =

(
1+

rm−1 − x
rm−1

)
−
(

1+
rm−1 − (x+ 1)

rm−1

)
= r−m+1 . (A.8)
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Assuming b = r, it follows immediately that the difference between two
floating-point numbers x1 and x2 with the same exponent E will be given by

Δx = x1 − x2 = (M1 −M2)r
E = r−m+1rE = rE−m+1 . (A.9)

For normalized floating-point numbers between 1 and 2, where E = 0, we simply
obtain ulp.

The spacing of floating-point numbers when E = 0 is called the machine epsilon,
which is denoted ‘εM .’ Each number system has its value of εM , and they generally
differ.

Example A.1. In the case of F(7,4,2,2) discussed above, εM = 2−4+1 = 0.125. �

Example A.2. To demonstrate the machine epsilon in MATLAB, we look for the
smallest power of two that, when added to 1, gives a number larger than 1. This
construction makes no sense in the real numbers and represents an important differ-
ence of floating-point numbers. The statements (which return the logical values 1
for “true” and 0 for “false”)

>> 1.0 + 2ˆ(-52) > 1

ans =
1

and

>> 1.0 + 2ˆ(-53) > 1

ans =
0

show that the machine epsilon in MATLAB is εM = 2−52 ≈ 2.2× 10−16.
In MAPLE, for example, at its default setting of Digits:=10, we find that any

ε that rounds to 101−Digits will satisfy 1+ ε > 1, so we can take ε = 5× 10−Digits,
although the rounding on input runs into the table maker’s dilemma. This rule works
for higher settings of Digits, as well. �

An important related value is the maximum relative error due to the floating-point
representation, called the roundoff level or unit roundoff, which is just εM/2. We will
denote this quantity by ‘μM = εM/2’. Since roundoff is the main source of arithmetic
error, this quantity will be used throughout this book as a unit of error.

Complex Floats

A complex floating-point number is simply a pair of floating-point numbers, usually
z = (x,y), where x and y are real floats. In MATLAB, a complex number can be
formed by the constructor complex(a,b) or by the operation a + 1i*b. Note
the use of the construct 1i, which ensures that

√−1 is meant by the symbol i even
if the variable i has been used previously for another purpose (such as a loop index,
as is common: for i=1:10, etc.).
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Complex arithmetic is defined so that the usual rules hold, insofar as possible:
(0,y) · (0,y) = (−y2,0), for example, provided that overflow or underflow does not
happen. Since (x,y)⊗ (u,v) = (x ⊗ u� y ⊗ v,x ⊗ v ⊕ y ⊗ u) involves several real
floating-point operations, there are more opportunities for rounding errors in com-
plex floating-point arithmetic. The bounds for rounding error discussed here and in
Chap. 1 need to take this into account, therefore. See also Higham (2002).

The IEEE Standard 754

Some additional constraints are given by different floating-point representations.
The current standard for floating-point arithmetic has been developed by the IEEE
(Institute of Electrical and Electronics Engineers). The single-precision format rep-
resents numbers with 32 bits, while the double-precision format represents them
with 64 bits. MATLAB uses the double-precision format by default, and so we will
present this format in this section.

The number system associate with the IEEE standard 754 double-precision for-
mat is basically just F(64,53,2,2) with a few tweaks. The radix and the basis are
both 2, which is the standard practice for floating-point arithmetic (this base mini-
mizes so-called wobble). The 64 bits are partitioned as follows:

• mantissa: m = 53;
• Eeponent: n−m = 11.

As mentioned before, the mantissa is a normalized signed integer with a sign-and-
magnitude representation and the exponent is a signed integer with a biased repre-
sentation. Thanks to the hidden bit, this format has precision p = 53. The range of
the values represented by the mantissa is[

1, 1+
rm−1 − 1

rm−1

]
=

[
1, 1+

252 − 1
252

]
≈ [1,2) . (A.10)

The bias of the exponent is the standard bias:

B = rn−m−1 − 1 = 210 − 1 = 1023 (A.11)

Consequently, the range of the values represented by the exponent is

[−rn−m−1 + 1, rn − 1] = [−210 + 1, 210] = [−1023, 1024] . (A.12)

However, −1023 and 1024 are reserved to denote negative and positive infinity,
that is, -Inf and Inf in MATLAB. As a result, the range of the exponent is
[−1022, 1023].

Consequently, the range of the positive double-precision floating-point num-
bers is [

Mmin ·2Emin , Mmax ·2Emax
]
=

[
2−1022,

(
1+

252 − 1
252

)
·21023

]
≈ [2.2 ·10−308, 1.8 ·10308] . (A.13)
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MATLAB calls the limit points of this range realmin and realmax. The machine
epsilon—MATLAB calls this value eps—is

εM = r−m+1 = 2−52 ≈ 2.2 ·10−16 . (A.14)

Finally, since zero has no direct representation in this system (due to normalization),
the word with M = 1.0 and E = 0 is used to represent it.

Signed Zero

Perhaps surprisingly, zero can have a sign in the IEEE standard. See Kahan (1986),
or perhaps the Wikipedia entry on ”signed zero” for a description of the need for
this. In MATLAB, which does not quite comply with the IEEE standard—there is a
document at the Mathworks website that points out that they use several different
packages that have conflicting implementations—and although the signed zero is
present, it is not as much used as it could be. With hexadecimal format turned on,
so we can see the results, we find that

>> format hex
>> 0

ans =
0000000000000000

and

>> -0

ans =
8000000000000000

The leading four bits are 816 = 10002 (the subscript denotes the basis). However,
signed zeros cannot be used for either the real part or the imaginary part of a com-
plex number in MATLAB (except the number 0+0i, which can be either ±0), which
is a pity. This can be checked by executing

>> complex( -3, 0 )

ans =
c008000000000000

and

>> complex( -3, 1 )

ans =
c008000000000000 3ff0000000000000i

and finally,

>> complex( -3, -0 )

ans =
c008000000000000
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It is not possible to have −3− 0i for example, which would be useful in taking
logarithms or dealing with other branch cuts: ln(−3− 0i) = ln(3)− iπ , whereas
ln(−3) = ln(3)+ iπ .

In MAPLE on the other hand, there is indeed a signed complex zero, and this is
occasionally useful.

NaN and Infinity Arithmetic

The exponent pattern corresponding to 1024 in decimal after subtracting the bias is
7FF, that is, using 3 bits for 7 = 1112 and the remaining eight bits in the exponent
being 111111112 or FF in hexadecimal. Negating this turns the leading bit to a 1,
making FFF, not 7FF. Thus, infinities print as follows in format hex:

>> -inf

ans =
fff0000000000000

and

>> inf

ans =
7ff0000000000000

A little bookkeeping shows that there are as-yet-unused bit patterns left over in
the scheme. Some of these are taken up as NaNs, or “Not A Number”s, and as
denormalized numbers. NaNs arise in various arithmetic exceptions: 0

0 , for example.
Denormalized numbers are numbers smaller than realmin and thus cannot be
represented with a hidden bit as the other floats are. Implementing denormalized
numbers allows gradual underflow, which improves some algorithms. Executing the
following in MATLAB is informative:

>> 0/0

ans =
fff8000000000000

Arithmetic with infinities and with NaNs tries to be logical and consistent, but most
of all useful. One over (positive) 0 is Inf, and one over (negative) 0 is -Inf. Zero
times Inf is a NaN, and so on. The first use for NaNs that you will likely encounter
is in allowing functions executed on vector arguments to have an occasional unde-
fined value without causing an error break in the computation; one can then plot the
results without overly fussing.

Example A.3. The MATLAB commands

x = linspace( 0, 4, 101 );
y = sin(pi*x)./(pi*x);
plot( x, y, 'k' ), set(gca,'fontsize',16), xlabel('x'), ylabel( '

sin(\pi x)/(\pi x)' )

produces a nice plot, in spite of the fact that y(1) is a NaN produced by dividing
by 0. �
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Summary of Floating-Point Surprises

1. Addition is not associative or associative: 1+ε2−1 may give 0 or ε2 depending
on the ordering, while B−B+ 1 for large B may give 0 or 1 depending on the
association (B−B)+ 1, or B+(−B+ 1) when the intermediate result rounds
to −B. Moreover, adding positive numbers in one order may give a different
answer to the result of adding in the opposite order even though no cancellation
occurs.

2. There are actual infinities, or rather symbols for numbers too large to represent,
that nonetheless can be further manipulated and occasionally can give useful
answers; having 1/∞ simplify to 0 makes some continued fraction formulae sim-
pler to program, for example.

3. The set is not closed under addition, for example: Adding two numbers may
overflow, giving inf.

4. There can be gradual underflow to 0, using denormalized numbers:

>> format hex
>> realmin

ans =
0010000000000000

>> realmin/100

ans =
000028f5c28f5c29

These numbers are less precise than other floats because some of their leading
bits are zero. This allows more graceful behavior for some algorithms.

5. Underflow to zero permits zero divisors (for example, realmin·realmin re-
turns the answer 0 even though neither factor is zero). Thus, floating-point num-
bers are not a field. Because of the lack of associativity, they’re not a group or a
ring, either, of course.

6. Zero has a sign. Various computer languages have various ways of detecting or
displaying it. In MATLAB, −0 by default displays in exactly the same way as
+0; you can only see the sign in hex format.

A.2 Operations and Roundoff

The IEEE standard also defines the result of floating-point arithmetic operations
(called flops, although in counting them to estimate costs, it is usual to say that one
flop is one multiplication or division and one addition or subtraction and (possibly)
one comparison). It is easy to understand the importance of having such standards!
In the last section, the reader might have noticed that floating-point representation
works just like the scientific notation of real numbers—in which numbers are written
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in the form a · 10b—to the exception that we mostly use base 2 and that both a
and b have length restrictions. The same analogy will hold true for the four basic
operations.

The four basic operations on the real numbers are functions ∗ : R2 → R, with

∗ ∈ {+,−,×,/}

In floating-point arithmetic, we use similar operations, but using floating-point
numbers. The four basic operations on floating-point numbers are thus functions
� : F2 → F, with

� ∈ {⊕,�,⊗,
}.

These operations have many different implementations. Given our expectation that
floating-point operations return results that are very close to what the real operations
would return, the important question is: How do ⊕,�,⊗,
 relate to their counter-
parts +,−,×,/ in the real numbers? The best-case scenario would be the following:
Given a rounding procedure converting a real number into a floating-point number,
the floating-point operations always return the floating-point number that is closest
to the real value of the real operation. The good news is, if we are only interested
with the impact of floating-point arithmetic in applications, there is no need to ex-
amine the detailed implementations of the floating-point operations. The IEEE stan-
dard guarantees that, for the four basic operations ⊕,�,⊗,
, the best-case scenario
is obtained.

Let us formulate this more rigorously. A rounding operation � : R→ F is a pro-
cedure converting real numbers into floating-point numbers satisfying the following
properties:

1. �x = x for all x ∈ F;
2. x ≤ y ⇒�x ≤�y for all x,y ∈ R;
3. �(−x) =−�x for all x ∈ R.

There are many rounding operations satisfying this definition. In what follows, we
will use the rounding to the nearest floating-point number (with ties toward +∞),
denoted ‘©.’ If we let f1, f2 be two consecutive floating-point numbers and x ∈ R

such that f1 ≤ x ≤ f2, then © is defined by4

©x =

{
f1 if |x− f1|< |x− f2|
f2 if |x− f1| ≥ |x− f2| . (A.15)

Then the IEEE standard guarantees that the following equations hold:

x⊕ y =©(x+ y) (A.16)

x� y =©(x− y) (A.17)

4 To consider the cases where x does not lie within the range of the floating-point number system,
we need to specify that if |© x| > max{|y| : y ∈ F} or 0 < |© x| < min{|y| : 0 �= y ∈ F}, the
rounding procedure returns, respectively, overflow and underflow.
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x⊗ y =©(x× y) (A.18)

x
 y =©(x/y); (A.19)

that is, for ∗ : R2 →R and © : R→ F, we obtain � : R2 → F such that

R2 R

F

∗

©
�

These equations jointly mean that the result of a floating-point operation is the cor-
rectly rounded result of a real operation.

However, if things are so nice, why do we need error analysis? We need er-
ror analysis precisely because it is not always so nice for sequences of operations.
Problem 1.13 shows, for example, that

((((x1 ⊕ x2)� x3)⊕ x4)� x5) =©(x1 + x2 − x3 + x4 − x5) (A.20)

does not hold generally. So the big question is: When are compound operations
reliable? When no result of guaranteed validity exists, the error analysis must be left
to the hands of the user. This leads us to Chap. 1.

Problems

A.1. Write an algorithm to convert integers from the decimal basis to the binary
basis, and vice versa. (Hint: You can use Horner’s recursive scheme described in
Sect. 2.2.1.)

A.2. MATLAB and MAPLE have built-in routines to convert integers from one basis
to another. However, they don’t have such routines for rational numbers. Write one
(it may rely on the built-in routines for integers). Use it to give the first 15 binary
digits of π .

A.3. Consider the floating-point number system F(128,113,2,2), a quadruple-
precision arithmetic. Find the range of positive quadruple-precision floating-point
numbers (i.e., realmin and realmax), the machine epsilon εM , and the roundoff
level μM for this system. Can you think of any real-world applications that would
generate overflow?

A.4. Prove that © is a rounding procedure.

A.5. Conversion from binary or hex floats to decimal floats is a headache. Some
terminating fractions in decimal do not terminate in binary (e.g., 1/5). Conversion
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from binary to decimal and back again therefore may induce rounding errors. How
big an error might this be?

A.6. Without looking up the details, describe the representational format for IEEE
754 double-precision numbers.



Appendix B
Complex Numbers

There are many excellent textbooks on complex arithmetic, complex variables, and
complex analysis. We recommend, in particular, Henrici (1974). Alternatively, a
beautiful geometric treatment is given in Needham (1999). A more standard treat-
ment is given in Levinson and Redheffer (1970) and in Saff and Snider (1993). In
this appendix, we cover some important differences between theoretical complex
variables and complex variables on computers.

B.1 Elementary Complex Arithmetic

Complex numbers are ordered pairs of real numbers; in particular, the pair (0,1) is
called i. They come with the following rules for operations on them, both theoreti-
cally and on a computer:

(x1,y1)+ (x2,y2) = (x1 + x2,y1 + y2) (B.1)

(x1,y1) · (x2,y2) = (x1x2 − y1y2,x1y2 + y1x2) . (B.2)

With those rules, i2 = (−1,0), and in this sense i =
√−1. On a computer, complex

numbers are typically represented as pairs of machine numbers. In MATLAB, they
can be entered as complex(x,y) or as x+1i*y if x and y are floats. Matrices
can have complex entries.

In MAPLE, and in other CAS, complex numbers can have a variety of machine-
representable reals as parts, but the idea is the same: A complex number is an or-
dered pair of real numbers with special rules for operations. The syntax for complex
numbers in MAPLE (which we have never liked) uses the capital letter I for the
square root of −1, that is (0,1), instead of a small letter. This can be changed by use
of the interface(imaginaryunit=...) command.

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods:
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0,
© Springer Science+Business Media New York 2013
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B.2 Polar Coordinates and the Two-Argument arctan Function

The rule (B.2) for multiplication of complex numbers is more easily understood in
polar coordinates. Consider the complex number z = (x,y) to define the Cartesian
coordinates of a point in the plane. The polar coordinates [ρ ,θ ] of that point are
given by

ρ =
√

x2 + y2 (B.3)

and
θ = arctan(y,x) . (B.4)

Note the ordering (y,x), reversing the order in the pair z = (x,y) = x+ iy. You may
have seen the two-argument arctan before, perhaps expressed as tan−1(y/x), and have
been expected to work out for yourself which quadrant the angle was in and there-
fore get the angle correct in −π < θ ≤ π . This is because, of course, y/x = (−y)/(−x);
hence, points in quadrants I and III, II and IV are indistinguishable once this ratio has
been taken. The purpose of the two-argument arctan function (just arctan(y,x)
in MAPLE and atan2(y,x) in MATLAB) is to save you the trouble. The two-
argument arctan takes the Cartesian coordinates of a point in the plane and returns
the polar angle of the point, in the interval (−π ,π ].
Remark B.1. By convention, the angle is taken in (−π ,π ]. This defines the branch
cut and its closure (by which we mean that the angle is continuous or “closed” as
you approach the negative real axis from above, or in a counterclockwise direction
around the origin) for the angle or “argument” function. This is only a convention
and could have been chosen anywhere else (say [0,2π))—but it was not. This con-
vention, called “counterclockwise closure” or “CCC” by Kahan (1986), is by now
nearly universal in computer languages. This one little convention has a great many
logical implications and standardizes what appears very differently in different text-
books. It’s also the principal reason for writing this appendix. Your favorite textbook
may well do things differently than the way in which computers do it! In particu-
lar, the wonderful theoretical idea of Riemann surfaces gains almost no traction in
a computer world, where a function of z is expected to return one answer and not
require a construction of a new algebraic object with many possible values. �

In polar coordinates, the multiplication rule (B.2) becomes

[ρ1,θ1] · [ρ2,θ2] = [ρ1ρ2,θ1 +θ2] , (B.5)

as is easily seen by converting (x1,y1) and (x2,y2) to polar coordinates and using
the trigonometric identities

cos(θ1 +θ2) = cosθ1 cosθ2 − sinθ1 sinθ2

sin(θ1 +θ2) = cosθ1 sinθ2 + cosθ2 sinθ1 .

Here we do not care if the angle sum θ1 +θ2 is outside the range (−π ,π ], because
in translating back to Cartesian coordinates via
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x = ρ cosθ (B.6)

y = ρ sinθ , (B.7)

all that matters is θ modulo 2π . Sadly, in polar coordinates, addition is now more
complicated, so we need both systems of coordinates.

B.3 The Exponential Function

We are now ready to define the exponential function of a complex variable. We write

ez = exp(z) :=
∞

∑
k=0

zk

k!
. (B.8)

In standard textbooks, for example, the beautiful Henrici (1977), we find proofs that
this series converges for all finite z and that this is therefore well defined. From this
definition, with some work, we may deduce Euler’s formula:

ex+iy = ex(cosy+ isiny) , (B.9)

from which many properties of the exponential function can be shown, including
the relation between the Cartesian and polar coordinates:

z = x+ iy = ρ cosθ + iρ sinθ = ρeiθ . (B.10)

The property that concerns us most here is that

e2π ik = cos(2πk)+ isin(2πk) = 1 (B.11)

for any integer k: That is, the exponential function is many-to-one. Therefore, its
functional inverse is multivalued. We look at it in the next section.

B.4 The Natural Logarithm

We define the principal branch of the natural logarithm of z = x+ iy = ρeiθ to be
(from the polar coordinate form)

lnz = lnρeiθ := lnρ+ iθ = lnρ+ iarctan(y,x) . (B.12)

This therefore inherits the same branch cut as the two-argument arctan function,
namely, along the negative real axis, with closure from above. See Fig. B.1a,b. We
have indicated closure on the top of the negative real axis in the domain of the
logarithm by marking it as a solid line and putting a gap underneath to indicate
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a b

Fig. B.1 Complex logarithm. The branch cut is identified by a solid line and closed at π .
(a) Circular arcs in the complex domain of logarithm. (b) The principal complex range of
logarithm

that the domain is open there. The corresponding lines in the principal range of the
logarithm are not circular arcs but rather straight-line segments. Closure is again
indicated by a mixture of solid lines and dashed lines. For other visual descriptions
of branch cut closures, see Steele (1990). For more discussion of these closures, see
Corless et al. (2000).

Once we have defined a logarithm, we may define general powers as follows:

za := ea lnz . (B.13)

It turns out to be hard to write a more efficient general complex powering operation
than just using this definition.

Because of Eq. (B.11), we could equally well have chosen

lnk z = lnz+ 2π ik (B.14)

for any other integer k to be our canonical logarithm. We do not and no one else has
either. Following this, the de facto standard, we choose k = 0, and thus −π < θ ≤ π ,
to be the one. Every computer algebra language and numerical language follows this
standard and takes the complex logarithm to have its imaginary part (also called the
“argument” of z) in this range. With this definition, (−8)1/3 = 1+ i

√
3, and not −2.

If you wish real-valued cube roots (or other rational roots) in MAPLE, use surd.

Remark B.2. Several rules that we all learned in high school that are valid for posi-
tive reals are not necessarily valid for complex numbers. In particular, it is not true
that ln(ab) = lna+ lnb, or that lnz2 = 2lnz, or that (za)b = zab. Corrections to these
identities are presented in Table B.1. The corrections here use the unwinding num-
ber, which is defined by the first entry. �
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Table B.1 Some identities for the complex logarithm

K (z) =

⌈
Im(z)−π

2π

⌉
lnez = z−2π iK (z)

ln(z1z2) = lnz1 + lnz2 −2π iK (lnz1 + lnz2)

ln(za) = a lnz+2π iK (a lnz)

K (n lnz) = 0 ∀z iff−1 < n ≤ 1

(za)b = zabe2πibK (a lnz)√
z2 = zcsgn(z) := zeπiK (2lnz)

(zn)
1/n = zCn(z) := ze2πiK (n lnz)/n

The final identity defines what is now known as the matrix sector function when the
argument z is not a complex number but rather a matrix (Laszkiewicz and Ziȩtak
2009).

B.5 The Complex Sign Functions

The signum function for real numbers has the definition signum(x) = 1 if x > 0,
signum(x) = −1 if x < 0, and is ambiguous if x = 0; in some circumstances +1 is
wanted, and in others it doesn’t matter. Many programs including MATLAB take the
signum of 0 to be 0. In MATLAB the signum function is called sign. In MAPLE it
is called signum, and the word sign is used for a different function, which can
and does cause confusion.

For complex numbers, signum can be generalized as follows:

signum(z) = eiθ , (B.15)

where z = r exp(iθ ), or logz = logr+ iθ , so θ = arctan(y,x). Again, this is ambigu-
ous if x = y = 0, but now the ambiguity is greater than in the real case, and so it
seems more reasonable to return a NaN. However, since MATLAB replaces 0+ 0i
with the real 0, this doesn’t happen.

There is another complex signum-like function, called csgn in MAPLE. We can
define it with the unwinding number from Table B.1:

csgn(z) := eπ iK (2 lnz) . (B.16)

This function is +1 in the entire right half-plane Re(z) > 0, is −1 in the entire
left half-plane Re(z) < 0, and on the imaginary axis is positive on the upper half
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Im(z) > 0 and negative on the lower half Im(z) < 0. At 0, like the signum func-
tion, it is ambiguous, although now the choices are only ±1. This function is useful
numerically as well, though it is not implemented in MATLAB.

B.6 Trigonometric Functions and Hyperbolic Functions

Once we have the exponential function, it is possible to define the complex trigono-
metric functions sin and cos by

sinz =
eiz − e−iz

2i

cosz =
eiz + e−iz

2
,

and from thence all the other trigonometric functions: tan z := sin z/cosz, cscz := 1/sin z,
sec z := 1/cos z, and cotz := 1/tanz.

By solving y = sin z for z, we arrive at an expression for arcsiny that depends on
logarithms. We do not include many here; you can get them with MAPLE, or other
CAS. In MAPLE, the equation for arctanz, for example, in terms of logarithms is
found by issuing the command

evalc(arctan(x +I*y)),

which produces

1
2

arctan(x,1− y)− 1
2

arctan(−x,y+ 1)+
1
4

i ln

(
x2 +(y+ 1)2

x2 +(y− 1)2

)
. (B.17)

Numerical evaluation of complex elementary functions usually uses these sepa-
rations into real functions of x and y for the real and imaginary parts separately.

B.7 The Residue Theorem

This book makes heavy use of the residue theorem, proofs of which can be found in
any of the complex analysis texts cited above. In particular, the residue theorem is
used to prove that certain formulæ are true for polynomials of degrees at most n.

A residue at z = a of a function f (z) analytic in an annulus surrounding the point
z = a is simply the coefficient of 1/(z−a) in the Laurent expansion of f (z) about z= a.
The residue theorem states that the integral around a contour surrounding poles of
an otherwise analytic function f (z) is simply 2π i times the sum of the residues.
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The Cauchy integral formula, Eq. (B.18) below, represents derivatives as contour
integrals (actually, Taylor coefficients as contour integrals). If f (z) is analytic inside
a contour C, then

f ( j)(z)
j!

=
1

2π i

ffi
C

f (ζ )
(ζ − z) j+1 dζ . (B.18)

Our main application is the use of these theorems on rational functions f (z) =
p(z)/q(z), where the degree of the denominator q(z) is at least two more than the
degree of the numerator p(z), so that f (z) ∼ A/z2 for large enough z. Then since

ffi
C

1
z2 dz =

ˆ π

θ=−π
iReiθ

R2e2iθ dθ = O

(
1
R

)
as R → ∞, the integral must, in fact, be 0. Thus, the sum of all the residues of
p(z)/q(z) must be zero. Once this fact is established, this gives us the partial fraction
decomposition of p(z)/q(z), which can then be used to develop interpolation formulæ
for arbitrary smooth functions f (z). Indeed, these theorems are used repeatedly in
the text for formulæ involving barycentric Lagrange and Hermite interpolation, and
to derive polynomial formulæ generally.

Problems

B.1. Given the definitions above for i, complex number identity, sum, and product,
show
(a) that C is a field,
(b) that the complex conjugate satisfies

z1 + z2 + · · ·+ zn = z1 + z2 + · · ·+ zn (B.19)

z1z2 · · ·zn = z1 · z2 · · ·zn , (B.20)

(c) that the absolute value satisfies

|z1z2 · · · zn|= |z1| · |z2| · · · |zn| (B.21)∣∣∣∣z1

z2

∣∣∣∣= |z1|
|z2| (B.22)

|z1 + z2 + · · ·+ zn| ≤ |z1|+ |z2|+ · · ·+ |zn| , (B.23)

(d) that if z1z2 = 0, then either z1 = 0 or z2 = 0.

B.2. Show that exp(lnz) = z for all complex z (so some high school identities are
true).

B.3. Show that there exists complex (in fact, real) z such that
√

1/z �= 1/√z.
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B.4. Show that there exists complex (in fact, real) z,w such that
√

zw �=√
z ·√w.

B.5. Show that, with the Maple definitions,

arcsinz = arctan
z√

1− z2
+πK (− ln(1+ z))−πK (− ln(1− z)) . (B.24)

B.6. Fill in the details of the proof that if p(z) is of degree at most n, while the
degree of q(z) is at least n+2, then the integral of p(z)/q(z) around a sufficiently large
contour C must be zero.

B.7. Show by direct computation that

1
2π i

ffi
C

f (ζ )
(ζ − z) j+1 dζ =

f ( j)(z)
j!

, (B.25)

for f (z) = 1+ z+ z2 and j = 0, 1, 2, and 3. Use the contours ζ = z+Rexp(iθ ).



Appendix C
Vectors, Matrices, and Norms

The objective of Part II is to introduce you to the main problems of numerical lin-
ear algebra. The study of numerical linear algebra, however, relies on some central
concepts of theoretical linear algebra. This appendix will briefly review some of the
concepts that together form the ground on which we will build. In particular, you
should make sure that the material on vector and matrix norms is familiar.

C.1 Notation and Structure of Matrices

The system of equations

a11x1 + a12x2 + a13x3 = b1 (C.1)

a21x1 + a22x2 + a23x3 = b2 (C.2)

a31x1 + a32x2 + a33x3 = b3 (C.3)

can be, by convention, converted into the matrix equation⎡⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎦⎡⎣x1

x2

x3

⎤⎦=

⎡⎣b1

b2

b3

⎤⎦ . (C.4)

The convention is that

[
a11 a12 a12

]⎡⎣x1

x2

x3

⎤⎦=
[
a11x1 + a12x2 + a13x3

]
, (C.5)

which defines the standard inner product 〈a,b〉= a ·b = aT b, and that [x] = x; that
is, the [x] matrices are scalars. In this book, we will almost always use bold letters
for vectors and matrices: vectors in lowercase, matrices in uppercase. So, we would
write

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods:
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0,
© Springer Science+Business Media New York 2013
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A =

⎡⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎦ , x =

⎡⎣x1

x2

x3

⎤⎦ , and b =

⎡⎣b1

b2

b3

⎤⎦ ,

so that Eq. (C.4) would be simply written Ax = b. Components of a vector or matrix
will usually simply be written with lowercase letters with subscripts as above. On
occasion we will use the notation (A)i j for the entry (i, j) of a matrix, or even simply
A(i, j), which parallels MATLAB’s syntax. In Chap. 13, we will also use superscripts
instead of subscripts for vector components; for instance, we will write x j instead of
x j, in order to take advantage of tensor notation. The context should make it clear.

From these conventions, together with the usual laws of arithmetic over fields,
flows all of matrix algebra:

• matrix-vector product;
• matrix-matrix product.

Write B =
[
b1 b2 b3

]
, where bi is the ith column vector of B. Then

AB = A
[
b1 b2 b3

]
=
[
Ab1 Ab2 Ab3

]
. (C.6)

In cases like that, we will often use the notation of Golub and van Loan (1996);
it closely follows the MATLAB syntax. Consider a vector v with 100 components.
To denote the vector formed with v1,v2 . . . ,v20, we simply write v(1 : 20). So, in
general, if v is an n-vector and m< n, we denote the vector formed with v1,v2, . . . ,vm

as v(1 : m). The notation is similar for matrices, except that it has two sets of indices.
If M is 100× 100 and we want the 10× 10 submatrix formed from the lower-right
corner entries of A, we simply write M(91 : 100,91 : 100). If we want the first
three rows of the matrix, we can write M(1 : 3, :); the last colon, without numbers,
indicates that it ranges over all columns. Similarly, we obtain the first three columns
from M(:,1 : 3). This notation will be especially useful to characterize operations on
partitioned matrices. Note that MH(1 : 3,1 : 5) is not the same as M(1 : 3,1 : 5)H !
The first is a 3× 5 matrix, the second a 5× 3 matrix; their entries will also not
generally be the same.

C.2 Norms

Definition C.1. A norm ‖ · ‖ is a scalar-valued univariate function satisfying the
following three properties:

1. ‖x‖ ≥ 0, with ‖x‖= 0 if and only if x = 0;
2. ‖x+ y‖ ≤ ‖x‖+ ‖y‖;
3. ‖αx‖= |α| · ‖x‖ for scalars α .

We will see many instances of this concept in this book. �

In particular, the absolute-value functions |x| for x ∈ R and |z| =√
a2 + b2 for z =

a+ ib ∈ C can be shown to be norms. Moreover, except for absolute values, x is
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typically a vector or a matrix, in which case we respectively call the norms a vector
norm and a matrix norm.

Vector p-norms

Let us begin with vector norms. The most important vector norms are the so-called
p-norms:

‖x‖p =

(
n

∑
k=1

|xk|p
)1/p

= (|x1|p + |x2|p + · · ·+ |xn|p)1/p (C.7)

for 1 ≤ p < ∞. Three p-norms include almost all applications. In particular, they
include the most usual vector norm, the Euclidean length of a vector, since if we let
p = 2, we obtain the familiar

‖x‖2 =

(
n

∑
k=1

|xk|2
)1/2

=
√
|x1|2 + |x2|2 + · · ·+ |xn|2 . (C.8)

Note that it’s important to have the sum of |xk|p, and not just xp
k , to cover the case

of complex vectors. From the convention above, we also have the following useful
relation between the squared 2-norm and the inner products:

‖x‖2
2 = 〈x,x〉= xHx. (C.9)

Among the other p-norms, the two most common are the 1-norm, defined by

‖x‖1 =
n

∑
k=1

|xk|= |x1|+ |x2|+ . . .+ |xn| , (C.10)

which is also known as the Manhattan or taxicab norm, and the ∞-norm with the
limiting case p = ∞, defined by

‖x‖∞ = max
1≤i≤n

|xi| . (C.11)

It is instructive to graph the “unit circles” ‖x‖p = 1 in two dimensions for p= 1,2,∞,
as in Fig. C.1. It is also instructive to check for oneself that the p-norms indeed
satisfy Definition C.1. Finally, the following is a very important fact about norms:

Theorem C.1 (Cauchy–Schwarz inequality). The 2-norm satisfies

|xHy| ≤ ‖x‖2‖y‖2 (C.12)

for any two vectors x and y.

Pairs of p-norms that satisfy 1/p+ 1/q = 1 are said to be dual to each other, in-
cluding the limiting case (p,q) = (1,∞) or (p,q) = (∞,1). Dual norms are used in
this book when Hölder’s inequality is called for.
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1

1

Fig. C.1 Unit circles with the 1-norm (dotted line), the 2-norm (solid line), and the ∞-norm
(dashed line)

Theorem C.2 (Hölder’s inequality). Suppose x,y ∈ Cn and p,q ≥ 1, so that 1/p+
1/q = 1 (including the limiting case where one of p,q is 1 and the other is ∞, by
convention). Then

|x ·y| ≤ ‖x‖p‖y‖q, (C.13)

and equality holds only if one of x or y is the zero vector or there exist constants
λ �= 0 and θ so that |x j|1/q = λ |y j|1/p and x j and y j are zero or argx j + argy j = θ
for a ≤ j ≤ n.

In most of the references we have consulted, the proof was left as an exercise or
only the real case was proved. Since we use this theorem repeatedly, we provide the
proof here.

Proof. The case where x or y or both are the zero vector is trivial. Henceforth
we assume some components are nonzero. Put x j = ρ jeiϕ j and y j = σ jeiψ j with
ρ j,σ j ≥ 0. Then

|x ·y|=
∣∣∣∣∣ n

∑
j=1

ρ jσ je
i(ϕ j+ψ j)

∣∣∣∣∣≤ n

∑
j=1

ρ jσ j (C.14)

by the triangle inequality and using |ei(ϕ j+ψ j)|= 1. Again by the triangle inequality,
equality in the statement is attained only when the x jy j are co-directed, that is, ∃θ
such thatϕ j+ψ j = θ for 1≤ j ≤ n (Fig. C.2). We have thus reduced consideration to

ρρρ ·σσσ =
n

∑
j=1

ρ jσ j (C.15)

with ρ j,σ j ≥ 0. The theorem will be established if we prove

ρρρ ·σσσ ≤ ‖ρρρ‖p‖σσσ‖q (C.16)
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Fig. C.2 The length of the sum of complex numbers is less than the sum of the lengths unless the
complex numbers are co-directed

with equality only if ∃λ such that ρ
1/q

j = λσ
1/p

j . Assume for the moment that each
ρ j,σ j > 0 (we will relax this after proving the hard case). We use induction. Also,
assume for the moment that 1 < p ≤ q < ∞.

The case n = 1 is trivial and of no help. Therefore, we consider the case n = 2.
We wish to show

ρ1σ1 +ρ2σ2 ≤ (ρ p
1 +ρ p

2 )
1/p(σq

1 +σ
q
2 )

1/q . (C.17)

We consider two cases, 0 < ρ2 ≤ ρ1 with 0 < σ2 ≤ σ1 and 0 < ρ1 ≤ ρ2 with
0 < σ2 ≤ σ1, which by symmetry cover all cases. Suppose first 0 < ρ2 ≤ ρ1 with
0 < σ2 ≤ σ1. Put ξ = ρ2/ρ1 and η = σ2/σ1, so 0 < ξ , η ≤ 1. Then we wish to prove

ρ1σ1(1+ ξη)≤ ρ1σ1(1+ ξ p)
1/p(1+ηq)

1/q (C.18)

or

F(ξ ,η) := (1+ ξ p)
1/p(1+ηq)

1/q − (1+ ξη)≥ 0 . (C.19)

Fix ξ in 0 < ξ ≤ 1, and consider F(ξ ,η) as a function of one variable, η . Then at
a local minimum we must have Fη = 0, where

Fη = (1+ ξ p)
1/pηq−1(1+ηq)

1/q−1 − ξ . (C.20)

It is helpful at this point to recognize that 1/p+1/q= 1 can be rewritten as 1/p= 1−1/q

or (q−1)/q so p = q/(q−1). We also find

Fηη = q(q− 1)

(
ηq

1+ηq

)q−2 ηq−1

(1+ηq)2 (1+ ξ
p)

1/p > 0 (C.21)

in 0 < η < 1, so in the interior any place with Fη = 0 is indeed a minimum. Solving
Fη = 0, we have

ηq−1

(1+ηq)(q−1)q
=

ξ
(1+ ξ p)1/p

=

(
ξ p

1+ ξ p

)1/p

=

(
ξ p

1+ ξ p

)(q−1)/q

. (C.22)

Since all quantities are nonnegative,

ηq

1+ηq =
ξ p

1+ ξ p or ηq = ξ p .
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So (
ρ2

ρ1

)p

=

(
σ2

σ1

)q

or

(
ρ2

ρ1

)1/q

=

(
σ2

σ1

)1/p

or
ρ

1/q

2

σ
1/p

2

=
ρ

1/q

1

σ
1/p

1

=: λ .

Equivalently, ∃λ such that

ρ
1/q

2 = λσ
1/p

2 and ρ
1/q

1 = λσ
1/p

1 .

At all other η the function F(ξ ,η) is strictly larger than this. By inspection,
F(ξ ,η) = 0 at this minimum [one easy way to see this is to put ρ p

1 = λ pqσq
1 and

ρ p
2 = λ pqσq

2 in (ρ p
1 +ρ p

2 )
1/p to get (λ pq)

1/p(σq
1 +σq

2 )
1/p. So

(ρ p
1 +ρ p

2 )
1/p(σq

1 +σq
2 )

1/q = λ q(σq
1 +σ

q
2 )

1/p+1/q (C.23)

= λ q(σq
1 +σ

q
2 ) (C.24)

and

ρ1σ1 +ρ2σ2 = λ qσ
q/p

1 σ1 +λ qσ
q/p

2 σ2 (C.25)

= λ q(σq
1 +σ

q
2 ), (C.26)

1 ξ

1

η

Fig. C.3 The curve ηq = ξ p

showing equality is attained in this case, directly]. Examining the edge cases ξ = 0,
ξ = 1, η = 0, and η = 1 lead to the same conclusion.

The other case where 0 < ρ2 ≤ ρ1 but 0 < σ1 ≤ σ2 gives rise to a different
function, as follows, but a similar conclusion. Put ξ = ρ2/ρ1 ≤ 1 as before but now
η = σ1/σ2 ≤ 1. Then

ρ1σ1 +ρ2σ2 = ρ1σ2(η+ ξ ) (C.27)
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and

(ρ p
1 +ρ p

2 )
1/p(σq

1 +σq
2 )

1/q = ρ1σ2(1+ ξ p)
1/p(ηq + 1)

1/q , (C.28)

so the function to minimize is

G(ξ ,η) = (1+ ξ p)
1/p(1+ηq)

1/q − (ξ +η) . (C.29)

As before, Gηη > 0 on the interior 0 < ξ ,η < 1, but now

Gη = (1+ ξ p)
1/pηq−1(1+ηq)

1/q−1 − 1, (C.30)

which is zero iff (
ηq

1+ηq

)(q−1)/q

=
1

(1+ ξ p)1/p
(C.31)

or

ηq

1+ηq =
1

1+ ξ p so ξ p = η−q . (C.32)

However, unlike before, η = σ1/σ2, so this again gives

ρ
1/q

2

ρ
1/q

1

=
σ

1/p

2

σ
1/p

1

or ρ
1/q

j = λσ
1/p

j (C.33)

for j = 1,2, for some constant λ . Again, we check the edge cases ξ = 0, ξ = 1,
η = 0, and η = 1 with similar conclusions. This concludes the proof for n = 2 and
1 < p ≤ q. By symmetry, it is also true for 1 < q ≤ p.

We now make the inductive assumption that the theorem is true for n = N
and consider the vectors ρ̂ρρ = [ρ1,ρ2, . . . ,ρN ,ρN+1] and σ̂σσ = [σ1,σ2, . . . ,σN ,σN+1].
Notice that

ρ̂ρρ · σ̂σσ =
N

∑
j=1
ρ jσ j +ρN+1σN+1 ≤ ‖ρρρ‖p‖σσσ‖q +ρN+1σN+1 , (C.34)

where the N-vectors ρρρ and σσσ have the obvious meaning. Now equality is obtained

here iff ρ
1/q

j = λσ
1/p

j for some constant λ , for 1 ≤ j ≤ N, but not N + 1.
Consider now the 2-vectors [‖ρρρ‖p,ρN+1] and [‖σσσ‖q,σN+1]. Their dot prod-

uct appears on the right-hand side of Eq. (C.34). By the n = 2 case of Hölder’s
inequality, this satisfies

‖ρρρ‖p‖σσσ‖q +ρN+1σN+1 ≤
(‖ρρρ‖p

p +ρ
p
N+1

)1/p (‖σσσ‖q
q +σ

q
N+1

)1/q
. (C.35)

Notice that ‖ρρρ‖p
p = ∑N

j=1ρ
p
j and ‖σσσ‖q

q = ∑N
j=1σ

q
j . This proves ρ̂ρρ · σ̂σσ ≤ ‖ρ̂ρρ‖p‖σ̂σσ‖q,

which is the first half of what is to be proved.
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Considering the case of equality, this is attained in Eq. (C.35) iff ∃λ̂ with
‖ρρρ‖1/q

p = λ̂‖σσσ‖1/p
q and ρ

1/q

N+1 = λ̂σ
1/p

N+1, or

‖ρρρ‖p
p = λ̂

pq‖σσσ‖q
q and ρ p

N+1 = λ̂
pqσq

N+1 . (C.36)

Equality in (C.34) happens simultaneously iff ∃λ such that ρ p
j = λ pqσq

j for
1 ≤ j ≤ N, in which case

‖ρρρ‖p
p =

N

∑
j=1
ρ p

j =
N

∑
j=1
λ pqσq

j = λ
pq‖σσσ‖q

q, (C.37)

which implies λ = λ̂ and the induction is complete for the case 1 < p ≤ q, and
by symmetry for 1 < q ≤ p. All that remains are the limiting cases when p → 1
and q → ∞ and vice versa, and the case when some ρ j or σ j are zero. We consider
p → 1 first.

Notice that the conditions for equality make sense in the limit p → 1:

ρ
1/q

j = λσ
1/p

j → 1 = λσ j or all σ j tend to the same constant. Direct use of the
inequality σ j ≤ ‖σσσ‖∞ gives

n

∑
j=1
ρ jσ j ≤

n

∑
j=1
ρ j‖σσσ‖∞ =

(
n

∑
j=1
ρ j

)
‖σσσ‖∞ = ‖ρρρ‖1‖σσσ‖∞, (C.38)

and equality cannot occur if any σ j < ‖σσσ‖∞.
All that remains is the case when some ρ j or σ j is zero. But this is simple: A zero

component removes the corresponding σ j or ρ j from the dot product, allowing the
use of the Hölder inequality on a shorter (but nonempty by hypothesis) vector; this
gives ρρρ · σσσ ≤ ‖ρρρ‖p‖σσσ‖q with the short vectors. Including the σ j (or ρ j) on the
right-hand side strictly increases the right-hand side unless the σ j (or ρ j) is also

zero, which, if zero, trivially satisfies ρ 1/q = λσ
1/p

j . �

All p-norms are equivalent in the following sense: There exist constants c(p,q,n)
and C(p,q,n) such that

c‖x‖p ≤ ‖x‖q ≤C‖x‖p (C.39)

holds for any vector x. Thus, a vector that is “large” in one norm cannot be “too
small” in another, for instance.

Weighted Norms

Weighted norms are of great interest in practice. For a set of weights wk ≥ 0 that are
not all zeros, a weighted vector p-norm is defined by

‖x‖w,p =

(
n

∑
k=1

|wkxk|p
)1/p

, (C.40)
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and the ∞ case is ‖x‖w,∞ = maxk wk|xk|. In this definition, it is important that the
weights wk appear inside the pth power, for otherwise the limit as p → ∞ does not
give the right result. The dual norm is then

‖x‖w∗,q =

(
n

∑
k=1

|w∗
kxk|q

)1/q

, (C.41)

where 1/p + 1/q = 1 and w∗ = 0 if wk = 0 and xk = 0, and w∗
k = 1/wk otherwise.

However, if xk �= 0, where wk = 0, then ‖x‖w∗,q = ∞. Then

|x ·y| ≤ ‖x‖w,p‖y‖w∗,q (C.42)

is the generalized Hölder inequality. Proofs of the extended results can be found, for
example, in Rezvani Dehaghani (2005).

Matrix Norms

Two types of matrix norms will be used in the book. From the vector p-norms, we
can show that the following function is a norm:

‖A‖p = max
x�=0

‖Ax‖p

‖x‖p
. (C.43)

These norms are known as the induced p-norms. One can show that this implies the
following convenient equation:

‖A‖p = max
‖x‖p=1

‖Ax‖p. (C.44)

So, the norm of A is the length of the longest vector obtained by transforming a unit
vector with a multiplication by A. The cases p = 1 and p = ∞ have the virtue of
being easy to compute:

‖A‖1 = max
1≤ j≤n

n

∑
i=1

|ai j| (C.45)

‖A‖∞ = max
1≤ j≤n

n

∑
j=1

|ai j|. (C.46)

The former is the maximum column sum, and the latter is the maximum row sum.
The computation of ‖A‖2 is the computation of the largest singular value σ1 of A
(see Chap. 4).

Two other matrix norms will be of interest to us. First, the Frobenius norm will
be used in componentwise analysis. It is defined as follows, for an m× n matrix:

‖A‖F =

√
m

∑
i=1

n

∑
j=i

|ai j|2. (C.47)
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Second, we will occasionally use the spectral ”norm,” defined by

ρ(A) = max
λ∈ΛΛΛ(A)

|λ | , (C.48)

where ΛΛΛ(A) is the spectrum of A. This last function is not truly a norm because,
for example, it is possible to have ρ(A) = 0 when A �= 0; consider, for instance, the
matrix

A =

[
0 1
0 0

]
.

Two good references to learn more about norms are Golub and van Loan (1996) and
Steele (2004).

Function Norms

Function norms serve a similar purpose. The tradition is to define the p-norm of a
function f by

‖ f (x)‖p =

(ˆ
A
| f (x)|pdx

)1/p

, (C.49)

where f (x) is such that this makes sense, and similarly to take

‖ f (x)‖∞ = sup
x∈A

| f (A)| . (C.50)

For complex functions, the definition is analogous. Note that we can only claim that

‖ f (z)‖p ↔ f (z) = 0

almost everywhere, that is, except on a set of measure zero. But for numerical pur-
poses, we consider only smooth functions anyway—usually analytic in this book,
in fact—and so this restriction does not bother us much. Again, this satisfies Defi-
nition C.1. These norms can be extended in a straightforward fashion to vector- or
matrix-valued functions.

Weighted function norms occur especially often in the context of orthogonal
polynomials, although the main use is of the inner product

〈 f ,g〉 =
ˆ b

a
w(x) f ∗(x)g(x)dx (C.51)

itself, not the norm f = 〈 f , f 〉. Still, approximation by minimizing the weighted
norm of the error is a fruitful source of numerical methods.

The principal use of these concepts in numerical analysis is in proofs of con-
vergence. This book relies more on a posteriori analysis than on predictive proofs
of convergence; instead, one does the computation and measures the norm of the
residual afterward. Computation of the condition number (sensitivity) follows, and
thus in the particular case being considered analysis is complete, even if no general
proof of convergence has been presented (or is even known).
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C.3 Derivation of the Normal Equations

If A is m× n with m ≥ n, we may wish to find the vector x minimizing the residual
r = b−Ax. To this effect, consider

r+Δr = b−A(x+Δx) = b−Ax−AΔx . (C.52)

Then we find that

‖r+Δr‖2
2 = (r+Δr)H(r+Δr) (C.53)

= rHr+ rHΔr+ΔrHr+(Δr)HΔr (C.54)

= rHr+ 2ΔrHr+(Δr)HΔr (C.55)

because each of rHΔr and ΔrHr is a scalar and real (realH=real). If we can find x
such that ΔrHr = 0 for all Δxi, then we will have found the minimum, because in
that case

‖r+Δr‖2
2 = ‖r‖2 + ‖Δr‖2 (C.56)

≥ ‖r‖2 , (C.57)

with equality only if Δr = AΔx = 0. The equations ΔrHr = 0 or ΔxHAH(b−Ax)
must hold for all AH . If we can find a vector x such that

0 = AH(b−Ax) , (C.58)

then we will have attained our purpose. These are the so-called normal equations
for the least-squares solutions:

AHAx = AHb. (C.59)

Note that this is n× n, and AHA might be singular if A does not have full column
rank.

C.4 The Schur Complement

We will use the Schur complement on multiple occasions in this book. Zhang (2005)
edited a beautiful book providing an introduction and multiple applications of the
Schur complement. Here, we only mention the very basic idea of it. If D is invertible,
then the Schur determinantal formula for a block matrix is

det

[
A B
C D

]
= det(D)det(A−BD−1C) , (C.60)



832 C Vectors, Matrices, and Norms

where A−BD−1C is the Schur complement. One can see that this relation holds by
observing that [

A B
C D

]
=

[
A−BD−1C BD−1

0 I

][
I 0
C D

]
, (C.61)

which is a block factoring, and use the formula for the determinant of a product of
matrices.

C.5 Eigenvalues

Here are some important facts about eigenvalues and eigenvectors:

1. If A is diagonal, its eigenvalues are the diagonal entries; that is, λi = aii, with
eigenvectors ei and (left) eT

i = eH
i .

2. If A = T is triangular (say upper-triangular), then again its eigenvalues appear
on the diagonal: This time, though, the eigenvectors are not always so easy.
Take a 3× 3 example: ⎡⎣t11 t12 t13

t22 t23

t33

⎤⎦⎡⎣1
0
0

⎤⎦= t11

⎡⎣1
0
0

⎤⎦ . (C.62)

Clearly, t11 is an eigenvalue and e1 is its eigenvector. However, for t22, we obtain⎡⎣t11 t12 t13

t22 t23

t33

⎤⎦⎡⎣a
1
0

⎤⎦=

⎡⎣at11 + t12

t22

0

⎤⎦ , (C.63)

which is t22[a,1,0]T only if at11 + t12 = at22 or, if t11 �= t22, a = t12/(t22 − t11). If
t11 = t22 but t12 �= 0, there is no other eigenvector different to e1 anyway. Simi-
larly, you can identify the third eigenvector:⎡⎣t11 t12 t13

t22 t23

t33

⎤⎦⎡⎣a
b
1

⎤⎦= t23

⎡⎣a
b
1

⎤⎦ (C.64)

only if bt22 + t23 = b2t33 or b = t23/(t33 − t22) and at11 + bt12 + t13 = at33 or a =
((t12t23)/(t33 − t22))/(t33 − t11). So, we see that the diagonal elements t11, t22

and t33 are indeed eigenvalues, with computable eigenvectors if the eigenvalues
are distinct.

Lemma C.1. If T is upper-triangular and normal, then T is diagonal.

Proof. By induction. If n= 1, there is nothing to prove. Suppose all upper-triangular
normal matrices of dimension (n− 1)× (n− 1) are diagonal. Consider
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T =

[
t11 t12 · · · t1n

T1

]
=

[
t11 p
0 T1

]
, (C.65)

partitioning T. Then TTH = THT means[
t11 p

T1

][
t̄11

pH TH
1

]
=

[|t11|2 +∑n
k=2 |t1k|2 pTH

1
T1 pH T1TH

1

]
, (C.66)

where p = [t12, t13, . . . , t1n], and this must equal[
t11

pH TH
1

][
t11 p

T1

]
=

[ |t11|2 t̄11p
t11pH TH

1 T1 +pHp

]
(C.67)

|t11|2 = |t11|2 +
n

∑
k=2

|t1k|2 . (C.68)

Hence, ∑n
k=2 |t1k|2 = 0, and thus all tik = 0 for k ≥ 2 and TH

1 T1 = T1TH
1 , so T1 is it-

self upper-triangular, normal, and dimension (n−1)×(n−1). Hence, T is diagonal.
��
Theorem C.3. If AAH = AHA, that is, if A is normal, then it is unitarily similar to
a diagonal matrix, A = UTUH with T diagonal.

Proof. We have A = UTUH and AH = UTHUH . So AAH = UTUHUTHUH =
UTTHUH and AHA = UTHUHUTUH = UTHTUH . Hence, AAH = AHA implies
TTH = THT. So T is normal. By Lemma C.1, T is diagonal. ��
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Brezinski, C. (1980). The Mühlbach–Neville–Aitken algorithm and some exten-
sions. BIT Numerical Mathematics, 20(4), 443–451.

Brezinski, C., & Redivo-Zaglia, M. (2012). Padé-type rational and barycentric in-
terpolation. Technical report. arXiv:1107.4854.

Briggs, W. L., & Henson, V. E. (1995). The DFT: an owner’s manual for the discrete
Fourier transform. Philadelphia: SIAM.

Briggs, W., & McCormick, S. (2000). A multigrid tutorial. Philadelphia: SIAM.
Bronstein, M. (2005). Symbolic integration I: transcendental functions. New York:

Springer.
Bronstein, M., & Lafaille, S. (2002). Solutions of linear ordinary differential equa-

tions in terms of special functions. In: Proceedings of the 2002 International Sym-
posium on Symbolic and Algebraic Computation, pp. 23–28. New York: ACM.

Brunner, H. (2004). Collocation methods for Volterra integral and related func-
tional differential equations. Cambridge: Cambridge University Press.

Brutman, L., & Pinkus, A. (1980). On the Erdos conjecture concerning minimal
norm interpolation on the unit circle. SIAM Journal of Numerical Analysis, 17(3),
373–375.

Bunse-Gerstner, A., Byers, R., Mehrmann, V., & Nichols, N. (1991). Numerical
computation of an analytic singular value decomposition of a matrix valued func-
tion. Numerische Mathematik, 60(1), 1–39.

Butcher, J. C. (1963). Coefficients for the study of Runge–Kutta integration pro-
cesses. Journal of the Australian Mathematical Society, 3, 185–201.

Butcher, J. C. (1964). Implicit Runge–Kutta processes. Mathematics of Computa-
tion, 18(85), 50–64.

Butcher, J. C. (1967). A multistep generalization of Runge–Kutta methods with four
or five stages. Journal of ACM, 14(1), 84–99.

Butcher, J. C. (2001). Numerical methods for ordinary differential equations in the
20th century. Ordinary Differential Equations and Integral Equations, 6, 1.

Butcher, J. C. (2008a). Numerical analysis. Journal of Quality Measurement and
Analysis, 4(1), 1–9.

Butcher, J. C. (2008b). Numerical methods for ordinary differential equations.
Wiley Online Library. New York: Wiley.

Butcher, J. C., Corless, R. M., Gonzalez-Vega, L., & Shakoori, A. (2011). Polyno-
mial algebra for Birkhoff interpolants. Numerical Algorithms, 56(3), 319–347.

Calvetti, D., Reichel, L., & Sgallari, F. (2001). A modified companion matrix
method based on Newton polynomials. In: V. Olshevsky (Ed.), Structured matri-
ces in mathematics, computer science, and engineering I, vol. 280 of Contempo-
rary mathematics. Philadelphia: American Mathematical Society.

Calvo, M., Murua, A., & Sanz-Serna, J. (1994). Modified equations for ODEs.
In: Chaotic numerics: an International Workshop on the Approximation and
Computation of Complicated Dynamical Behavior, Deakin University, Geelong,
Australia, July 12–16, 1993, vol. 172 of Contemporary Mathematics, pp. 63.
Philadelphia: American Mathematical Society.



838 C Vectors, Matrices, and Norms

Campbell, D., & Rose, H. (1983). Preface. In: D. Campbell, & H. Rose (Eds.),
Order in Chaos: Proceedings of the International Conference on Order in Chaos
held at the Center for Nonlinear Studies, pp. vii–viii, Los Alamos.

Cao, Y., Li, S., Petzold, L., & Serban, R. (2003). Adjoint sensitivity analysis for
differential-algebraic equations: the adjoint DAE system and its numerical solu-
tion. SIAM Journal on Scientific Computing, 24(3), 1076.

Chang, Y., & Corliss, G. (1994). ATOMFT: solving ODEs and DAEs using Taylor
series. Computers & Mathematics with Applications, 28(10-12), 209–233.

Channell, P., & Scovel, C. (1990). Symplectic integration of Hamiltonian systems.
Nonlinearity, 3, 231.

Chartier, P., Hairer, E., & Vilmart, G. (2010). Algebraic structures of B–series.
Foundations of Computational Mathematics, 10(4), 407–427.

Chartier, P., Hairer, E., Vilmart, G., & et al. (2007). Numerical integrators based
on modified differential equations. Mathematics of Computation, 76(260),
1941–1954.

Chen, L., Eberly, W., Kaltofen, E., Saunders, D. B., Turner, W., & Villard, G. (2002).
Efficient matrix preconditioners for black box linear algebra. Linear Algebra and
Its Applications, 343, 119–146.

Chen, M. (1987). On the solution of circulant linear systems. SIAM Journal on
Numerical Analysis, 24(3), 668–683.

Chin, F. Y. (1977). The partial fraction expansion problem and its inverse. SIAM
Journal on Computing, 6(3), 554–562.

Christlieb, A., Macdonald, C. B., & Ong, B. (2010). Parallel high-order integrators.
SIAM Journal of Scientific Computing, 32(2), 818–835.

Chu, M. T. (1984). The generalized Toda flow, the QR algorithm and the center
manifold theory. Journal on Algebraic and Discrete Methods, 5, 187.

Clark, C. W. (1972). The theoretical side of calculus. Belmont, CA: Wadsworth.
Clarkson, P., & Olver, P. (1996). Symmetry and the Chazy equation. Journal of

Differential Equations, 124(1), 225–246.
Clement, P. A. (1959). A class of triple-diagonal matrices for test purposes. SIAM

Review, 11(1), 50–52.
Collatz, L. (1966). The numerical treatment of differential equations (3rd ed.). New

York: Springer.
Cooke, K., den Driessche, P. V., & Zou, X. (1999). Interaction of maturation delay

and nonlinear birth in population and epidemic models. Journal of Mathematical
Biology, 39(4), 332–352.

Cools, R., Kuo, F. Y., & Nuyens, D. (2006). Constructing embedded lattice
rules for multivariate integration. SIAM Journal on Scientific Computing, 28(6),
2162–2188.

Corless, R. M. (1992). Continued fractions and chaos. The American Mathematical
Monthly, 99(3), 203–215.

Corless, R. M. (1993). Six, lies, and calculators. The American Mathematical
Monthly, 100(4), 344–350.



References 839

Corless, R. M. (1994a). Error backward. In: P. Kloeden, & K. Palmer, (Eds.), Pro-
ceedings of Chaotic Numerics, Geelong, 1993, vol. 172 of AMS Contemporary
Mathematics, pp. 31–62.

Corless, R. M. (1994b). What good are numerical simulations of chaotic dynamical
systems? Computers & Mathematics with Applications, 28(10–12), 107–121.

Corless, R. M. (2000). An elementary solution of a minimax problem arising in
algorithms for automatic mesh selection. ACM SIGSAM Bulletin, 34(4), 7–15.

Corless, R. M. (2002). Essential Maple 7: an introduction for scientific program-
mers. New York: Springer.

Corless, R. M. (2004). Computer-mediated thinking. In: Proceedings of Technology
in Mathematics Education.

Corless, R. M., & Assefa, D. (2007). Jeffery-Hamel flow with Maple: a case study
of integration of elliptic functions in a CAS. In: Proceedings of the 2007 In-
ternational Symposium on Symbolic and Algebraic Computation, ISSAC ’07,
pp. 108–115. New York: ACM.

Corless, R., & Ilie, S. (2008). Polynomial cost for solving IVP for high-index DAE.
BIT Numerical Mathematics, 48(1), 29–49.

Corless, R. M., & Jeffrey, D. J. (1997). The Turing factorization of a rectangular
matrix. SIGSAM Communications in Computer Algebra, 31(3), 20–30.

Corless, R. M., & Jeffrey, D. J. (2002). The Wright ω function. In: J. Calmet, B.
Benhamou, O. Caprotti, L. Henocque, & V. Sorge (Eds.), Artificial intelligence,
automated reasoning, and symbolic computation, vol. 2385 of LNAI, pp. 76–89.
New York: Springer.

Corless, R. M., & Watt, S. M. (2004). Bernstein bases are optimal, but, sometimes,
Lagrange bases are better. In: Proceedings of SYNASC, Timisoara, pp. 141–153.
Timisoara: MIRTON Press.

Corless, R. M., Gianni, P. M., & Trager, B. M. (1997). A reordered Schur fac-
torization method for zero-dimensional polynomial systems with multiple roots.
In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic
Computation, ISSAC ’97, pp. 133–140. New York: ACM.

Corless, R. M., Gonnet, G., Hare, D., Jeffrey, D., & Knuth, D. E. (1996). On the
Lambert W function. Advances in Computational Mathematics, 5(1), 329–359.

Corless, R. M., Ilie, S., & Reid, G. (2006). Computational complexity of numerical
solution of polynomial systems. In: Proceedings of the Transgressive Computing,
pp. 405–408.

Corless, R. M., Jeffrey, D. J., Watt, S. M., & Davenport, J. H. (2000). According to
Abramowitz and Stegun. SIGSAM Bulletin, 34(2), 58–65.

Corless, R. M., Shakoori, A., Aruliah, D., & Gonzalez-Vega, L. (2008). Barycen-
tric Hermite interpolants for event location in initial-value problems. JNAIAM,
3(1-2), 1–18.

Corliss, G. F. (1980). Integrating ODE’s in the complex plane—pole vaulting.
Mathematics of Computation, 35(152), 1187–1189.

Corliss, G. F., Faure, C., Griewank, A., Hascoët, L., & Naumann, U. (2002). Auto-
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of a DDE, 742
of differentiation, 468, 476
of the Discrete Fourier Transform, 407
of eigenvalues, 24–255
estimation, 600
for evaluation of a polynomial, 69
of a function, 112, 374
general theory, 724
of a linear system, 301
of a partial differential equation (PDE),

766–767
of quadrature, 423–426
of the roots of a function, 112
of the roots of a polynomial, 46
Skeel’s, 287, 301, 313, 325, 395, 396

Confluency, 61, 85, 88, 96, 343, 350–352,
356–359, 362, 384, 385, 388, 394,
456, 475

Conformal partition, 277
Conjugate gradient algorithm, 311, 317
Conjugate transpose, 165, 171, 406, 691
Consistency of methods for DE, 599
Continuation, 146, 148, 510, 569, 571, 573,

576, 605–608, 676, 677
Continued fraction, 134–136, 152, 154, 160,

809
Continuity

of factorings, 247
of functions, 46

Continuously differentiable, 46, 371, 373, 506,
507, 512, 519, 527, 548, 579, 588,
590, 612, 703, 704, 734, 758

Continuous Runge-Kutta method, 27, 616,
622, 624, 626, 634

Convergence, 16, 34, 37, 68, 84, 90, 104, 113,
114, 116, 126, 132, 133, 139–141,
143, 145, 149, 150, 225, 251–253,
256, 303, 314, 315, 319–322, 370,
392, 426, 433, 528, 569, 587,
598–600, 606, 607, 705, 716, 719,
726, 759, 830

Conversion, binary-decimal, 811
Convolution, 76–79, 83, 85, 87, 157, 346
Correlation, 199, 269, 272, 278, 292, 413, 554,

569, 593, 662–665, 670
Cramer’s rule, 232, 233
Critical point, 655
Cross product, 104
Cubic, 75, 98, 116, 139, 224, 303, 320, 349,

352, 353, 359, 369–376, 381,
390–392, 399, 429, 487, 590–592,
645, 653, 673, 674, 683, 685, 689,
703–708, 717

Cubic equation, 98, 653
Curve fitting, 333

D
DAE. See Differential-algebraic equations

(DAE)
Damped Newton method, 148
Damping, 225, 576, 664, 665, 668–670, 680
Defect, 506, 509, 518–522, 551, 575, 579, 590,

592, 665, 672, 683–685, 717, 725,
735–738

Deflation of eigenvalues, 322
Degree of polynomial, 62, 330
Delay differential equation, 506, 508, 667,

729, 731, 738, 740, 742, 748–751,
752

Denormalized numbers, 802
Dense matrix, 319, 380
Derivative, 16, 24, 52, 113, 235, 281, 329, 337,

349, 352, 353, 369, 372, 373, 375,
417, 427, 431, 464, 488, 497, 500,
519, 530, 582, 682, 704, 763

Determinant, 100, 170, 199–201, 219,
230–233, 241, 293, 294, 299, 393,
395, 661, 719, 832

Deviation, 509, 518–522, 573, 590, 592, 608,
691, 726

Diagonal
dominance, 324–325
matrix, 172, 177, 194, 195, 200, 833

Diagonally implicit Runge-Kutt (DIRK),
644–646

Dichotomy, 40, 702
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Difference, x, xi, xii, 8, 9, 16, 17, 32, 35, 36,
49, 52, 53, 69, 81, 93, 94, 108, 127,
130, 141, 146, 169, 184, 192, 197,
201, 205, 269, 281, 317, 329, 355,
360, 369, 370, 379–381, 390, 391,
416, 424, 430, 446, 463–503, 511,
521, 538—-540, 544, 556, 574, 580,
595, 604, 615, 633, 644, 647, 650,
656, 658, 670, 682, 687, 697, 700,
701, 713, 719, 724, 729, 730, 733,
736, 747, 751, 762–768, 777–778,
789, 790, 799, 804, 805

Difference equations, 503
Differential-algebraic equations (DAE), 507,

566–567, 574, 581, 613
Differential equations

boundary value problems for, 695, 706, 771
delay, 729–753
homogeneous, 574, 577
independent solutions, 529
initial value problems for, 729
ordinary, xii, 436, 506–510, 512, 519, 523,

532, 541, 548–550, 557, 560, 566,
572–574, 576, 579, 581, 589, 614,
646, 652, 673, 676, 678, 683, 695,
699, 706, 725, 729, 730, 733, 738,
745, 752, 771, 783

partial, viii. xvi, 5, 124, 269, 508, 755
solution of, 15, 126, 127, 330, 360, 702

Differentiation matrix, 350, 417, 456, 466,
467, 470–476, 479, 487, 499–502,
650, 651, 657–660, 743, 750, 756,
759, 763, 789

Diffusion equation, 767
Dimension, 34, 170, 181–184, 187, 192, 193,

196, 199, 224, 230, 232, 256, 277,
279, 300, 315, 317, 322, 375, 388,
412, 457, 498, 511, 519, 549, 554,
616, 672, 691, 745, 755, 756, 765,
767, 782, 832, 833

Discrete Fourier transform, 403–418, 479, 779
Discrete Laplacian, 283
Discretization error, 21, 554
Distance, 41, 133, 195, 198, 292, 313, 542,

544, 546, 553, 580, 607, 643, 771
Distributive property, 12
Divided differences, 53, 94, 360, 379, 380,

386, 390, 391, 482, 483, 499, 658
Drift, in floating-point arithmetic, 12, 14, 23,

27, 34, 35, 37, 38, 40, 75, 136, 171,
172, 175, 178, 180, 188, 213

D-stability, 649

Dual
norm, 823, 829
residual, 502

E
Eigenpair, 240, 288
Eigenvalues

bounds for, 392
distinct, 248, 250
generalized, 239–244, 254, 259, 341, 343,

345, 379, 389, 390
perturbations and condition of, 246
sensitivity, 256, 266

Eigenvectors
generalized, 239

Elementary
functions, 2, 91, 105, 106, 121, 122, 130,

131, 136, 138, 154, 419, 447, 491,
492, 510, 529, 573, 612, 818

matrices, 212, 215
Ellipsoid, 196, 230
Engineered problem, 18–21, 26–29, 168, 420,

429, 463
Equidistributing mesh, 715, 716, 719
Equidistribution, 392, 436, 437, 458, 462, 702,

710–717, 726, 787
Equilibration, 199–201
Equivalent norms, 828
Error

absolute, 17, 21, 377
backward, 21
forward, 10, 20–24, 28, 30, 36, 52, 60, 78,

88, 104–106, 120, 129, 130, 133,
135, 136, 153, 154, 168, 173, 175,
176, 190, 198, 207, 214, 219–221,
225, 229, 241, 245, 251, 300, 301,
352, 393, 427, 483, 484, 507, 528,
532, 536, 540, 541, 554, 566, 578,
579, 593, 598–600, 605, 672, 688,
707, 708, 736, 767, 780, 795, 796

mixed forward-backward, 30, 31, 36, 106
relative, 14, 17, 21, 47, 78, 92, 93, 124,

133, 153, 179, 299, 351, 363, 364,
376, 377, 392, 399, 436, 437, 449,
524, 603, 604, 701, 805

sources of, 9, 93, 213
Error analysis, 10, 12, 18–30, 60, 133, 220,

300, 427, 430, 432, 484, 507, 517,
534, 539, 595, 696, 767, 780, 794,
795

Euclidean norm, 200
unitary invariance of, 191

Euler’s method
backward, 680, 682, 771, 772



Index 861

forward, 601, 663, 681
Events, 168, 506, 541, 546, 559–565, 576, 580,

616, 673, 758
Expansion

asymptotic, 89, 528
Chebyshev series, 443
Taylor series, 616, 679

Exponential
complex, 815
matrix, 257, 514

Extrapolation, 328, 359, 430–432, 508, 586,
675, 688, 689

F
Factorings

LU, 31, 149, 165, 167, 169, 177, 211–221,
224, 225, 228, 232, 233, 244, 267,
271–275, 277, 286, 298–301, 317,
396, 706

QR, XV, 165, 177–193, 218, 224, 228, 229,
231–233, 236, 252, 266, 271, 283,
292, 317, 396, 582

SVD, XV, 203, 235, 535
Fast Fourier transform (FFT), 49, 91, 94,

153, 305, 403, 405, 408, 410,
411, 413–418, 445, 478, 499, 502,
778–781, 783, 785, 788

Fill in, 228, 230, 267, 279, 280, 283, 382, 384,
523, 698

Finite difference matrix, 282
Finite differences, 269, 281, 282, 381,

463–503, 615, 647, 687, 713, 747,
762–766, 768, 770, 778, 779, 782,
790

Finite-dimensional spaces, 44, 330, 703
Floating-point arithmetic

numbers, 10
subnormal (denormalized), 802
testing for equality, 336, 337, 378

Flop, 32, 33, 49, 57, 88, 96, 134, 171, 174,
175, 186, 192, 202, 204, 217, 221,
222, 229, 253, 254, 266, 271, 276,
310, 311, 335, 336, 358, 415, 418,
466, 469, 500, 809

Fl operator (rounding), 11, 810
Fortran, 496, 506, 645, 705
Forward error, 10, 20–24, 28, 30, 36, 52, 60,

78, 88, 104–106, 120, 129, 130, 133,
135, 136, 153, 154, 168, 173, 175,
176, 190, 198, 207, 214, 219–221,
225, 229, 241, 245, 251, 300, 301,
352, 393, 427, 483, 484, 507, 528,
532, 536, 540, 541, 554, 566, 578,

579, 593, 598–600, 605, 672, 688,
707, 708, 736, 767, 780, 795, 796

Forward stability, 368
Forward substitution, 177
Fourier coefficients, 418
Fourier matrix, 406, 413, 415
Fourier series, 403, 406, 407, 411, 417, 742
Fourier transform, 278, 403–418, 476, 477,

778, 779
Frequency, 35, 407–410, 416–418, 457, 664,

668
Frobenius form,187, 829
Function

condition number of, 374
evaluation of, xvi, 5, 9, 105–162, 328, 429,

435, 437, 447, 448, 454, 460, 478,
605, 636, 687

Functional differential equation, 662, 665
Fundamental theorem of algebra, 45, 94

G
Gaussian elimination, 27, 165, 177, 211,

213–220, 228, 230, 233, 273, 313.
See also LU factoring

Gauss-Jordan, 211
Gauss-Newton iteration, 235, 292
Gauss quadrature, 437, 445, 642
Gauss-Seidel method, 315–317
Generalized companion matrix, 379
Generalized eigenvalue problem, 254, 379, 562
Generalized eigenvectors, 239
Generalized minimum residual (GMRES), 311
Geometric series, 309, 346, 405
GEPP, 215, 217, 233, 313
Gerschgorin, 251
Givens

functions, 387
rotations, 178, 228, 230

γn error constant, 14
Golf, 559, 561, 562, 580
Gradient, 235, 236, 311, 317, 492
Gram-Schmidt algorithm

classical, 178–182, 184
modified, 178, 182–184

Grid points, 779, 781
Growth factor, 170, 214, 217, 274, 312, 313
Growth of Gaussian elimination, 313
Guard digit, 188

H
Hadamard

inequality and bound, 170
product, 235, 778
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Halley’s method, 138–141, 145
Harmonic functions, 517
Hermite interpolational

basis, x, 55, 61, 62, 331, 341, 344, 348,
349, 354, 356, 357, 361, 362, 372,
375, 384, 387–389, 391, 393, 417,
454, 470, 477, 497, 500, 704, 724

polynomial, 55
Hermite polynomial, 389, 673, 674
Hermitian matrix, 165, 245, 274, 303
Hessenberg matrix, 266
Hidden bit, 802, 806, 808
Hilbert matrix, 183, 184, 187, 298, 299, 324
Hölder’s inequality, 62, 64, 94, 104, 112, 285,

288, 714, 823–830
Homogeneous systems of equations, 529
Homotopy, 146, 576
Horner’s method, 49, 50, 56, 60, 64, 96, 100,

321
Householder

elementary reflectors, 185
transformation, 185

I
Identity matrix, 199, 215, 230, 341, 342, 345,

388, 539
IEEE arithmetic, 341
Ill-conditioned

matrix, 199
problem, 24, 30, 493, 600, 703
system, 31, 155, 267

Image of the unit sphere, 248
Imaginary, pure, 664
Impossibility proof, 436, 450
Independent eigenvectors, 320
Independent rows, 172
Independent solutions, 678
Index of DAE, 566, 574
Induced matrix norms, 25, 231
Infinite series, 89, 454
Infinite series and matrices functions, 89, 452
Initial layer, 777
Initial value problem, 28, 506–520, 525–527,

529, 531–533, 535–537, 541, 548,
553, 556, 559, 562, 571, 575, 576,
578, 580, 581, 585, 586, 598, 605,
606, 671, 676, 683, 692, 693, 695,
697, 700–702, 725, 729, 733, 745,
767

Inner product, 11, 13, 14, 23, 32, 54, 56, 78,
171, 172, 175, 234, 247, 311, 609

Interpolation
barycentric Hermite form, 338, 345–350
barycentric Lagrange form, 353–357

conditioning of, 352–353, 356, 369, 373,
376, 377

definition of the problem, 335, 338, 348,
360

Hermite polynomial, 337–352, 389, 673,
674

Lagrange polynomial, 332–337, 354, 407
shape-preserving, 381, 574, 645
spline, 370–375
stability of, 336, 341, 378

Inverse
error function, 581
Fourier transform, 405, 406, 411, 413, 417,

779
function, 8
iteration, 252
matrix, 147, 221, 250, 272

Iterative
method, xvi, 9, 138, 145, 149, 165,

248–251, 273, 307–325
refinement, 276, 307–313, 323

J
Jacobian matrix, 25, 149, 225–227, 491, 528,

535, 545, 556, 591, 628, 647, 651,
691, 719, 770

Jacobi iteration, 315–317, 323, 324, 462
Jordan

block, 244, 266, 343, 388, 389
canonical form, 165, 244–248, 257

K
Kronecker

delta, 58, 179, 384
product, 276

Krylov method, 311, 319

L
Lagrange

basis, 53, 58–61, 67, 72, 97, 104, 117–119,
153, 161, 261, 332, 334, 336, 341,
343, 344, 354–357, 364, 377–379,
382, 383, 386, 387, 390, 391, 397,
465, 467–469, 479, 493, 495, 499,
500, 650

interpolating polynomial, 59, 137,
332–335, 337, 349, 353–357, 406,
441, 487, 649

multipliers, 231, 288, 289, 494
Lambert W function, 107, 131–133, 139, 140,

432, 534, 608, 684, 742, 761
Lanczos

algorithm, 158, 413
τ method, 124, 158, 159, 676
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LAPACK, 164, 202, 216, 343
Laplace’s equation, 232, 233, 742
Laplacian, 3, 281–283, 782, 783
Layer

boundary, 707
initial, 777
interior, 704
shock, 716

LDU factoring, 298
Leapfrog, 671, 673–676, 680, 689, 727
Least squares, 190, 191, 193, 205, 206, 222,

224, 230, 236, 238, 291, 311, 319,
330, 493–495, 501, 687, 742, 831

Lebesgue function, 261
Legendre polynomial, 55, 56, 439, 440
Legendre-Sobolev polynomials, 56
Leja ordering, 65–67, 387
LEPUS. See Local error per unit step
Linear multistep method, 641, 651–653, 686,

687
Linear system, 32, 48, 61, 64, 126, 147, 149,

165, 167, 169–173, 176, 188, 198,
200, 208, 219, 220, 225–228, 232,
237, 269–305, 307, 308, 324, 362,
395, 399, 461, 487–489, 494, 513,
529, 602, 635, 637, 638, 644, 646,
664, 678, 679, 690, 706, 724, 756,
778, 781

Lines (method of)
transverse, 755, 767–773, 787

Liouvillian, 121
Lipschitz

condition, 592, 597, 642, 678
constant, 526–527, 569, 573, 586, 592,

597, 681
continuous, 526, 527, 652

Lobatto points, 55, 94, 96, 360, 367, 370, 376,
377, 387, 390, 392, 414, 415, 418,
443, 445, 790

Local error per unit step, 594, 595, 597, 598,
692

Local truncation error, 594, 595, 617
Loop, 16, 41, 57, 142, 221, 272, 299, 444, 445,

498, 500, 534, 656, 690, 805
Lower triangular, 31, 173, 174, 177, 212, 215,

216, 229, 233, 316, 393, 620
LU factoring, 31, 149, 165, 169, 177, 211–221,

224, 225, 228, 229, 232, 233, 244,
267, 271–275, 277, 279, 280, 286,
299–301, 317, 396, 706

Lyapunov exponent, 531, 553, 554, 556, 573,
582

M
Machine epsilon, 10, 14, 140, 172, 176, 199,

207, 219, 377, 480, 746, 803–805,
811

Mandelbrot polynomial, 103, 108, 109, 261,
339, 343, 344, 491, 692

Mantissa. See Significant
Maple, xi, xii, xiii, xiv, xvi, 50, 55, 61, 63, 75,

76, 80, 84, 88, 92–94, 96, 100–102,
106, 109, 122, 127–130, 134–136,
139, 148, 151, 155, 160, 164,
170, 172, 173, 202, 207, 216, 219,
230, 231, 234, 240, 241, 244, 265,
267, 289, 295, 297, 299, 303, 333,
339–341, 343, 344, 362, 363, 369,
372, 375, 395, 396, 400, 414, 434,
435, 439, 440, 445–450, 453, 454,
456–460, 467, 478, 496, 498, 499,
532–534, 540, 541, 545, 547, 569,
573, 577, 581, 604, 613, 636, 637,
651, 675, 682, 689, 690, 697, 699,
701, 718, 720, 724, 790, 804, 805,
808, 811, 813, 814, 816–818, 820

Marching method, 588, 615
Matlab, xii, 11, 49, 105, 167, 240, 273, 337,

406, 425, 467, 509, 589, 696, 729,
765, 804, 812, 822

Matrix
diagonal, 172, 177, 194, 195, 200, 274, 833
exponential, 257, 514
functions

as infinite series, 89, 454
as polynomials, 43

multiplication, 171, 172, 176, 188, 212,
220, 277

norms
Frobenius norm, 187, 829
induced norm, 231
∞−norm, 313
1-norm, 26, 265, 375, 423, 823, 824
2-norm, 23, 168, 179, 190–192, 195,

198, 199, 201, 205, 207, 228–232,
262, 265, 288, 289, 303, 313, 324,
325, 377, 387, 398, 415, 479, 531,
568, 690, 717, 726, 823, 824

pencil, 240, 245, 293, 297, 303, 341,
343–345, 378, 379, 389–391, 400,
458, 673

polynomials, 259, 261–264, 266, 294,
295, 297, 344, 345, 379, 389

product, 534
representation, 46, 170, 188, 406
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Matrix (cont.)
triangular, 31, 175, 183, 186, 199, 212,

228, 232, 236, 246, 254, 256, 620,
745

Mean, 141, 143, 181, 342, 359, 398, 422, 427,
430, 436, 482, 485, 591, 604, 616,
711, 713, 715, 716, 726, 737, 760

Mehrstellenverfahren, 781, 782, 785, 787, 788,
790

Mesh, 91, 370, 422, 476, 512, 587, 695, 756
Method of lines

transverse, 755, 767–773, 787
Method of modified equations, 550, 662–672,

677
Midpoint rule, 226, 421–423, 427–431, 436,

437, 446, 459, 461, 619–621,
639–643, 678

Minimum norm least square solution, 206
Minimum norm solution, 288, 289
Mixed forward-backward error, 220
M-matrix, 204, 274, 277
Modes, 491, 492, 654, 675, 680, 745,

794
Modified Euler method, 663
Modified Gram-Schmidt algorithm, 178,

182–184, 186, 234
Monic polynomial, 96, 321, 360, 396
Monomial basis, 44, 47–50, 52, 66–68, 71–73,

75, 94, 96, 103, 104, 117–120,
128, 137, 158–161, 264, 286, 293,
321, 339–341, 343, 344, 356, 357,
364, 370, 377, 378, 387, 388, 390,
393, 395, 397, 400, 404–407, 411,
415, 417, 454, 455, 460, 466–468,
479, 491, 493, 499, 562, 704, 706,
722

Monotonicity, 370, 374, 381, 392, 568
Moore-Penrose generalized inverse, 206, 208
Mount Everest of integration, 457
Multiple solution, 719
Multiplication, 11, 12, 32, 36, 48, 49, 61,

76–79, 101, 115, 121, 125, 134,
170–172, 175, 176, 188, 204, 212,
215, 220, 232, 246, 277, 319, 449,
609, 679, 809, 814, 829

Multiplicity, 45, 46, 62, 255, 264, 388
Multistep method, 508, 585, 597, 604, 641,

648–662, 675, 686, 687

N
NaN (Not a Number) vs. undefined, 808

Newton’s method, 9, 50–52, 95, 104, 113–116,
119, 120, 132, 133, 138, 139, 141,
145–149, 155, 160, 225, 227, 235,
236, 561, 588, 646, 679, 703, 718,
719

Nonlinear equations, 136, 142, 151, 531, 561,
600, 605, 641, 645, 646, 718, 719,
735, 737, 740, 761

Nonnormal matrix, 314, 315
Nonsingular matrices, 27, 46, 96, 217, 267,

302
Normal equations, 164, 165, 230, 831
Norms

consistent, 599
Euclidean, 200
matrix, 25, 110, 169, 231, 798, 821,

829–830
subordinate, 231
vector, 23, 62, 73, 110, 136, 169, 222, 225,

231, 285, 287, 396, 475, 798, 821,
823

Normwise, 24, 25, 47, 77, 78, 136, 186, 187,
221, 274, 283, 284, 305, 311, 312,
320, 378, 406, 414

Nullspace, 289
Numerical analysis, definition, 8, 43
Numerical damping, 576, 680
Numerical stability, definition, 29, 30, 135, 507

O
OCD Euler, 682
ODE. See Ordinary differential equations

(ODE)
Ode45, 506, 510–518, 520–522, 525, 535, 537,

540, 544, 551, 554–558, 562, 563,
568–570, 572, 574–583, 589, 679,
681, 683, 684, 727

Ode113, 506, 511, 523–525, 544–547, 551,
552, 563, 564, 574, 577–581, 583,
648, 649, 673, 674, 688

Ode23s, 646–648, 675, 677
Oettli-Prager backward error theorem, 293,

549
One sided Lipschitz condition, 642, 678
O notation, 33
Operation counts, 32
Optimally conditioned, 354
Ordinary differential equations (ODE), viii,

xii, 276, 436, 506–510, 512, 519,
523, 532, 541, 548–550, 557, 560,
563, 566, 572–574, 579, 581, 589,
614, 646, 652, 676, 678, 683, 695,
699, 706, 725, 729, 730, 733, 738,
745, 752, 768, 771, 783
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Orthogonal
basis, 56, 61, 208, 387, 458
matrix, 236, 582
polynomials, 54–56, 60, 94, 234, 303, 378,

438, 440, 442, 458, 830
triangularization, 165
vectors, 479

Oscillatory (highly), 424
Osculatory interpolation, 330
Outer product, 29, 32, 40, 177, 267, 794
Overdetermined system. See Overspecified

system
Overflow, 10, 11, 16, 139, 140, 175, 199,

216, 220, 221, 248, 299, 335, 799,
802–804, 806, 809–811

Overrelaxation, 316
Overspecified system, 164–165, 188, 190–193,

205–206, 230

P
Parameters, 34, 136, 146, 148, 151, 225, 226,

236, 246, 269, 270, 278, 298, 301,
302, 316–373, 381, 456, 461, 497,
501, 502, 507, 514, 516–518, 521,
529, 538, 539, 544, 546, 550–552,
566, 568, 574, 580, 599, 600, 619,
623–625, 634, 636, 637, 646, 647,
684, 686, 687, 705, 716, 719–721,
725, 735, 736, 742, 756, 774, 776,
784

Partial differential equations (PDE), viii, xvi,
2, 5, 124, 269, 508, 677, 743, 745,
755–757, 766–768, 773, 774, 780,
787, 788, 791

Partial fraction, viii, 58, 72–75, 84–88, 94,
331, 339, 342, 345, 346, 348, 350,
352, 358, 364, 365, 367, 371, 378,
380, 382–386, 389, 390, 395, 399,
403, 418, 428, 429, 439, 440, 460,
465, 469–472, 482, 485, 486, 489,
500, 649, 653, 657, 658, 662, 703,
819

Partial pivoting, 214–217, 228, 232, 233, 274,
313

Particular solution, 23, 529, 530, 652
Path following, 7
PDE. See Partial differential equations (PDE)
Permutation, 177, 215, 216, 229
Perturbation, 12, 21–24, 27–29, 40, 62, 71, 72,

77, 78, 89, 108, 111, 121, 133, 135,
136, 168, 172, 173, 188, 207, 208,
219, 222, 231, 237, 246, 285–287,
289, 290, 292, 294, 295, 301, 312,
364, 375, 383, 392, 424, 493, 499,

507, 510, 526–529, 536, 539–541,
544, 552–555, 564, 566–567, 573,
575, 666, 672, 675, 702, 711, 730,
737–739, 742, 745–747, 766, 767,
787, 794, 795

Piecewise polynomial, 330, 369, 370, 392,
519, 703, 704, 759, 773, 795

Pivot, 212–217, 233, 273, 274, 277, 313
Pivoting

complete, 214, 217, 228
partial, 214–217, 228, 232, 233, 274, 313

Plethora, plenitude and superfluity, 411
Poised, 386
Poisson equation, 778–780, 782
Pole vaulting, 570, 571, 574, 577, 693
Polynomial

Bernstein-Bézier, 62–63, 65–67, 96, 118,
119, 303, 354–357, 379, 387, 388,
393

Chebyshev, 53–57, 68, 91, 94–96, 103,
124–126, 158, 234, 360, 362, 387,
389–391, 396, 414, 438, 441, 445,
578, 676

equations, 2, 45, 126, 146, 227, 295, 378,
636, 677, 718

Hermite, 55, 62, 331, 340, 343, 345, 348,
349, 359, 361, 362, 389, 470, 477,
500, 673, 674

Lagrange, 58–62, 66, 117, 119, 137, 161,
261, 331–336, 340, 341, 344, 353,
354, 390, 407, 465, 493, 500,
650

in a matrix, 259, 261–264, 266, 294, 295,
297, 344, 345, 379, 389

and matrix functions, 388
minimum, 612
multiplication and convolution, 76–79
Newton, 50–52, 66, 94, 104, 113, 117, 119,

322, 391, 499
Positive definite matrix, 242, 273–276, 494
Power method, 248, 265, 319
Powers of a matrix, 258
Precision, xi, xvi, 9, 14, 17, 23, 36–38, 79, 92,

93, 100, 102, 115, 117, 118, 122,
123, 127, 128, 133, 160, 161, 165,
182, 188, 195, 199, 207, 213, 218,
219, 231, 242, 286, 289, 311–313,
343, 350, 400, 445, 448, 453–455,
456, 459, 478, 492, 555, 577, 800,
801, 804, 806, 811, 812

Preconditioned system, 311
Predictor-corrector, 654–656, 680, 689
Primary discontinuity, 731, 732, 748
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Products, 11, 13, 14, 23, 25, 29, 32, 40, 46, 47,
52–54, 61, 73, 76–78, 81, 104, 125,
126, 158, 169, 171, 172, 175–177,
185, 188, 191, 202, 212, 213, 215,
216, 229, 230, 232, 234, 235, 247,
257, 267, 268, 276, 277, 287, 300,
310, 311, 319, 323, 343, 346, 360,
405, 411–413, 417, 457, 534, 549,
552, 559, 600, 609, 628, 639, 679,
751, 778, 784, 794, 819, 821–823,
827, 828, 830, 832

Programming, learning to, xii, xiii
Pseudoinverse, 208
Pseudospectral

abscissa, 258
radius, 259, 266, 315, 324

Pseudospectrum, 253, 255, 256, 259–261, 263,
315, 745, 746, 752

Q
QR factoring, 165, 177–193, 218, 224, 228,

229, 231–233, 236, 252, 266, 271,
283, 292, 317, 396, 582

Quadratic form, 296–297
Quadrature, 55, 415, 419–426, 429, 430,

433–446, 448, 449, 452, 454,
456–458, 460–463, 495, 589, 618,
642, 656, 705, 713, 715, 750

Quartic, 98
Quasilinearization, 697, 718–724, 726
Quintic, 2, 155, 349, 582, 647, 705, 717

R
Radix, 800–802, 804, 806
Random matrices, 181–183, 193, 194, 198,

203, 224, 230, 246, 278, 318, 413
Range

of a function, 10, 130
of a matrix, 220, 783

Rank
deficient, 206, 288, 289, 291
of a matrix, 29, 183, 185, 195, 205–209,

278, 288, 566
numerical, 165, 206–208

Rank-one matrix, 29, 185, 207, 208, 278
Rate of convergence, 34, 145
Rational interpolation, 330–401, 568, 645
Rayleigh quotient, 252, 303, 319–322
Real numbers, 9–11, 18, 21, 37, 48, 123, 165,

460, 799, 801, 805, 809, 810, 813,
817

Real-symmetric matrix, 273–275
Rectangular systems, 229
Reduced row echelon form, 177

Reference
problem, 18–21, 23, 24, 26, 27, 168, 171,

507, 532, 554, 573, 575, 593
solution, 190, 225, 314, 503, 512, 515, 518,

519, 527, 528, 532, 536, 541, 545,
552, 555, 571–573, 575, 576, 579,
586, 593–596, 599–602, 614, 617,
622, 623, 625, 626, 640–643, 651,
670, 671, 674, 680, 681, 684, 697,
736, 737, 742, 745

Reflection, 8, 135, 178, 185–186
Reflector, 185, 266
Regularization, 493, 497
Relative error

componentwise, 24, 47, 78
normwise, 24, 47

Relative precision, 92, 93
Relative residual, 521, 532, 535–537, 604,

744, 748
Relaxation parameter, 317
Representation, 10–12, 20, 21, 23, 30, 45, 46,

72, 73, 75, 150, 151, 170, 188, 328,
332, 339, 340, 344, 359, 360, 406,
460, 476, 496, 555, 607, 611, 664,
703, 800–809

Residual, x, 10, 51, 120, 168, 241, 278, 309,
450, 489, 509, 585, 696, 730, 755,
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Resolvent, 259, 324, 747
Reverse-engineered problem, 28, 519, 649,

745
Richardson extrapolation, 430, 431
Richardson iterative method, 308, 314, 315,

324
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r-norm, 713
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Roots of unity, 364, 378, 387, 394, 403, 405,

406, 417, 478–479
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Rotation, 178, 228, 230
Roundoff error, 10, 93, 198, 247, 342, 799
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388, 393–395, 467, 469, 471, 472,
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Rule of thumb, Stoutemyer’s, 117, 118
Runge-Kutta method, 27, 506, 508, 585, 604,

615–649, 677–679, 681, 752



Index 867

S
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Schur
complement, 233, 277, 293, 299, 341, 343,

798, 831–832
factoring, 165, 222, 224, 244–248, 254,

274, 745
form, 245, 246, 257
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Secular equation, 675, 691
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Sensitivity, ix, x, 24, 167, 169, 198, 219, 353,
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Sensitivity to initial conditions, 553
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566, 567, 573, 575, 577, 579, 587,
588, 608, 676, 682, 695–697, 699,
700, 702, 703, 715, 726, 729, 730,
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matrix, 195, 198, 208, 302
perturbation, 566–567, 666
point, 510, 556, 571, 581
values, 165, 169, 177, 194–196, 198–200,

202, 207–211, 219, 241, 274, 284,
289, 292, 299, 313, 377, 387, 393,
467, 479, 531, 533, 545, 582, 829
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essential, 571, 572
removable, 366, 383
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169, 176, 177, 194–211, 217–219,
222–224, 228, 229, 232, 235, 271,
274, 284, 288–292, 305, 313, 389,
501, 531, 553, 573, 582

Smoothing, 492–496, 497
Software carpentry, xiv
Software engineering, xiv
Solution

computed, 20–22, 27, 28, 35, 121, 169,
176, 188, 189, 207, 220, 229, 233,
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527, 528, 532, 536, 554, 556, 567,
572, 575, 593–595, 601, 602, 614,
616, 652, 662, 670, 676, 681, 707,
708, 722, 724, 729, 730, 731, 733,
736, 737, 739, 755, 766, 790, 794

reference, 19, 190, 225, 314, 503, 512, 515,
518, 519, 527, 528, 532, 536, 537,
541, 552, 555, 571–573, 575, 576,
579, 586, 593–596, 599–602, 614,
617, 622, 623, 625, 626, 640–643,
651, 670–672, 674, 680, 681, 684,
697, 736, 737, 742, 745

SOR method, 324
Sparse matrix, xii, 165, 269, 270, 277–283,

300, 301, 319, 321, 425, 706, 781,
783

Special, 35, 55, 56, 85, 94, 112, 121, 122, 170,
176, 187, 232, 233, 244, 299, 303,
319, 359, 380, 411, 429, 458, 468,
496, 507, 510, 605, 614, 644, 652,
655, 671, 673, 695, 763, 764, 813

Spectral
convergence, 34, 426, 477, 478, 759
radius, 258, 259, 266, 315

Spectrum, 239, 255, 259, 556, 830
Sphere, 248
Splitting, 107, 152, 213, 392, 449
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Spring-mass vibration, 548
Square matrix, 192, 232, 239, 244, 245, 248,

289
Square root of complex number, 45
Stability

numerical, 29, 30, 32, 57, 59, 60, 75, 135,
154, 186–190, 217–219, 273, 277,
294, 336, 379, 474, 507, 702

of and for stiff problems
algebraic stability, 642, 643
A-stability, 641, 642

Stable algorithm, 30, 31, 178, 254, 331, 395,
414, 500

Stable algorithm, definition, 30, 31
Standard basis, 251
Standards, 10–15, 30, 33, 48, 66, 75, 77, 94,

105, 106, 121, 129, 130, 135, 220,
222, 240, 242–244, 246, 251, 261,
360, 379, 421, 454, 455, 509, 513,
515, 516, 518, 531, 555, 557, 573,
575, 587, 593, 599, 615, 617, 641,
646, 648–650, 652, 654, 656, 664,
672, 676, 686, 696, 699, 720, 725,
745, 746, 752, 766, 767, 779, 781,
783, 798–802, 804, 806, 807, 809,
810, 813–816, 821

Step size, 447, 501, 507, 524, 535, 541, 544,
546, 547, 555–559, 569, 572, 585,
587–589, 591, 592, 599–601, 605,
608, 612, 615, 638–640, 648, 649,
656–658, 662, 672, 676–679, 682,
683, 685–688, 690, 697, 711, 715,
716, 727, 741, 744

Stiff equation, 555, 600, 647
Structured matrix, 178, 229, 270, 271, 273,

275, 278, 288, 300
Sturm-Liouville, 571
Submatrix, 214, 215, 822
Subnormal numbers, 802
Subscripts, 529, 530, 587, 588, 627, 629, 807,

822
Subtraction, exactness in floating point, 11,

121, 188
Successive overrelaxation method, 315, 316
Summation, 23, 37, 38, 40, 79, 82, 335, 347,

348, 628, 659
Superdiagonal, 234, 275, 304, 314, 498, 548
Superscripts, 587, 627, 822
SVD. See Singular value decomposition (SVD)
Symbolic computation, xiii
Symmetric matrices, 188, 242, 274, 288, 300,

320
Synthetic division, 50–52, 85, 94, 104, 322

T
Table maker’s dilemma, 121, 136, 805
Tai’s model, 421
Tawny frogmouth, 209
Taylor series, 15–17, 43, 48–50, 68, 73, 75,

80, 84–89, 91, 94, 97, 100, 103,
113, 114, 124, 132, 137, 138, 160,
338, 343, 379, 381, 411, 430, 439,
454, 486, 491, 496, 498, 507, 508,
569, 574, 585, 591, 597, 603–617,
622–627, 631–633, 641, 649,
666–668, 670, 675–679, 682, 689,
690, 692, 693, 713, 781, 790

Tensor product, 276, 457, 639, 784
Thin matrix R, 193
Thorn, 470
Three-body problem, 541–548
Time scales, 664, 674
Toeplitz matrices, 278, 300, 305, 325
Tolerance, 24, 35, 261, 436, 447, 520–522,

524, 535, 536, 540, 541, 545, 551,
552, 555–557, 563–565, 567, 569,
570, 572, 574, 576, 577, 579–581,
583, 596, 608, 611, 612, 647, 648,
673–675, 683, 685, 687, 688, 697,
698, 715, 716, 722, 730–732, 736,
737, 739, 744, 745, 752, 757–759,
766, 785

Transcendental, 2, 15, 111, 113, 116, 121–133,
140, 169

Transient behaviour, 577
Transpose matrix, 46, 61, 165, 171, 691
Transverse method of lines, 755, 767–773, 787
Trapezoidal rule, 421–423, 426–428, 430–432,

448, 449, 458, 459, 477, 619–621,
644, 678, 688, 713

Trees, 627–634, 645, 646, 677, 767
Triangularization, 165
Triangular matrices, 31, 46, 173, 175, 177,

183, 186, 192, 198, 199, 212, 216,
228, 232, 236, 246, 254, 256, 271,
620, 745

Tridiagonal matrices, 217, 272, 300, 304, 375,
440, 459, 487, 498, 548

True solution. See Reference, solution
Truncation error, 21, 84, 492, 552, 594, 595,

617
Two-point boundary value problem, 568

U
Ulp. See Unit in the last place (Ulp)
Underdetermined system. See Underspecified

system
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Underflow, 10, 16, 139, 140, 175, 199, 216,
220, 221, 248, 299, 335, 572, 799,
802–804, 806, 808–810

Unique solution, 328, 527, 578, 747
Unitary matrices, 171–173, 177, 183, 185–187,

191, 194, 230, 231, 246, 254, 265
Unit in the last place (Ulp), 105, 342, 804, 805
Unit roundoff, 78, 93, 172, 214, 247, 256, 286,

324, 353, 374, 542, 805
Unstable, 31, 77, 94, 135, 178–182, 233, 274,

334, 393, 396, 454, 491, 559, 567,
653, 654, 658, 762

Unwinding number, 140, 816, 817
Upper triangular, 31, 174, 175, 177, 183, 186,

190–192, 198, 199, 213, 216, 228,
229, 232, 236, 245, 246, 254, 256,
274, 295, 832, 833

Upwind, 373, 581, 667

V
Vandermonde system

conditioning, 380, 468
confluent, 61, 362, 394–396, 399, 417
generalized, 60, 270, 361–364, 393, 394,

417, 418
Variational equation, 527–532, 534, 535, 539,

541, 545, 573, 582, 593, 718
Vector

norms, 21, 23, 62, 73, 110, 136, 169, 208,
225, 231, 285, 287, 396, 468, 475,
479, 823, 828, 829

spaces, 21, 44, 208, 513, 519, 763, 764

W
Weight, 15, 59, 61, 62, 70, 259, 261, 262,

334–336, 339, 340, 342–344, 348,
350–353, 358, 362, 365, 367–369,
381, 383, 385, 388–391, 393, 403,
409, 417, 421, 437–442, 445, 446,
458, 461, 469, 470, 474, 475, 479,
494, 497, 500–502, 561, 615, 616,
618–620, 624, 633, 659, 746, 828,
829

Well-conditioned, 24, 28, 31, 108, 133, 135,
147, 165, 202, 213, 227, 233, 302,
336, 343, 344, 352, 353, 357, 376,
377, 387, 400, 415, 423, 493, 497,
507, 511, 530, 532, 533, 555, 556,
558, 580, 581, 600, 601, 604, 651,
697, 699, 703, 708, 736, 742–744,
747, 750, 766, 767, 787, 790

Wilkinson polynomial, 71, 72, 96, 103,
118–120, 161, 265, 355, 400

Wright ω function, 140, 157
Wronski matrix, 525

X
xkcd, 543

Z
Zooming, 19, 20
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