: ’ i i
i &
+ L
!
L
Y
g
¥

Robert M. Corless
Nicolas Fillion

A Graduate
Introduction to
Numerical Methods

From the Viewpoint
of Backward Error Analysis

@ Springer

A Graduate Introduction to Numerical Methods

Robert M. Corless ® Nicolas Fillion

A Graduate Introduction
to Numerical Methods

From the Viewpoint of Backward Error
Analysis

@ Springer

Robert M. Corless Nicolas Fillion

Applied Mathematics Applied Mathematics
University of Western Ontario University of Western Ontario
London, ON, Canada London, ON, Canada

ISBN 978-1-4614-8452-3 ISBN 978-1-4614-8453-0 (eBook)

DOI 10.1007/978-1-4614-8453-0
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013955042

© Springer Science+Business Media New York 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

“At its highest level, numerical analysis is a
mixture of science, art, and bar-room brawl.”

T. W. Korner
The Pleasures of Counting, CUP, 1996, p. 505.

Dedicated to
our mentors

Foreword

It is a great privilege to be able to write these few words of introduction to this
fine book. Computational mathematics is now recognised as a central tool in all
aspects of applied mathematics. Scientific modelling falls well short of the mark
if it attempts to describe problems and predict outcomes, without numerical com-
putations. Thus, an understanding and appreciation of numerical methods are vital
components in the training of scientists and engineers.

What are numerical methods? Clearly, they are methods for obtaining numerical
results. But what numerical results are we looking for? This depends on whom you
ask, but a general point of view is to look for common ideas and systematic struc-
tures. Thus, linear algebra is central to much of numerical analysis because many
scientific problems we need to solve are nothing more than linear equation solu-
tions and eigenvalue calculations. But more than this, many other problem types are
capable of being expressed in linear algebra terms, and other calculations require
efficient linear algebra computations within their core. Many years ago I was told
that it had been estimated that if a random computer was stopped at a random time,
there would be more than even chances that it would be caught in the middle of an
LU factorization. Even if this were true once, it might no longer be true, but it is
no more than an exaggeration of the undoubtedly true statement that computational
linear algebra is very important and fundamental to science.

Numerical linear algebra occupies Part II of this four-part book and covers famil-
iar topics as well as many topics that deserve to be familiar. If all the reader wants
are the algorithms, then these are there, but the authors are scholars and the reader
is not let off so easily. You are dragged gently but firmly to a higher world in which
the algorithms are presented in the context of a deductive science. You learn judg-
ment and understanding, and you benefit from the authors’ combined experience
and knowledge.

But if this is Part II, what of Part I? Even more fundamental issues are needed
before linear algebra can be properly presented, such as the fundamental ideas of
computer arithmetic, and the limitations of practical computation in a finite-word
computer. Questions about the roots of equations, about the evaluation of series

vii

viii Foreword

and about partial fractions are presented in the entertaining, but at the same time
informative, style that characterizes the work as a whole.

If the key ideas in Parts I and II are algebraic, the last two parts are calculus-
based. In terms of complexity, the first half of the book deals mainly with problems
whose solutions in principle are exact, but the second half is about problems for
which there is an intrinsic approximation in what is being evaluated. Central to
Part II1 is interpolation, where f(x) is estimated from values of f(x;) based on a set
{x1,x2,...,%,}, with an error usually expressed in terms of the behavior of f’ (") The
four chapters that comprise this part represent areas in which the authors have made
many of their own original contributions. These chapters represent a high point of
this very high book.

Part IV deals with differential equations and related problems. There are detailed
studies of both initial value and boundary value ordinary differential equation prob-
lems. Finally, there is a chapter each on delay differential equations and on various
types of partial differential equations.

The book is rounded out with three useful appendix chapters, presented at the
end of this book.

I love this book.

Auckland, New Zealand John Butcher

Preface

About This Book

This book is designed to be used by mathematicians, engineers, and computer scien-
tists as a graduate-level introduction to numerical analysis and its methods. Readers
are expected to have had courses or experience in calculus, linear algebra, complex
variables, differential equations, and programming. Of course, many students will
be missing some of that material, and we encourage generalized review, especially
of linear algebra.

The book is intended to be suitable both for one-semester and for two-semester
courses. It gathers important and recent material from floating-point arithmetic, nu-
merical linear algebra, polynomials, interpolation, numerical differentiation and in-
tegration, and numerical solutions of differential equations. Our guiding principle
for the selection of material and the choice of perspective is that numerical methods
should be discussed as a part of a more general practice of mathematical modeling
as is found in applied mathematics and engineering. Once mostly absent from texts
on numerical methods, this desideratum has become an integral part of much of
the active research in various fields of numerical analysis (see, e.g., Enright 2006a).
However, because the intended audience is so broad that we cannot really presume a
common background in application material, while we focus on applicable compu-
tational mathematics, we will not present many actual applications. We believe that
the best-compromise approach is to use a perspective on the quality of numerical
solution known as backward error analysis, together with the theory of condition-
ing or sensitivity of a problem, already known to Turing and widely practiced and
written on by J. H. Wilkinson, W. Kahan, and others.! These ideas, very important
although not a panacea, will be introduced progressively. The basic underpinning of
the backward error idea, that a numerical method’s errors should be analyzable in

! The first explicit use of backward error analysis is credited by Wilkinson (1971) to Wallace
Givens, and indeed, it is already present in Von Neumann and Goldstine (1947) (see also Grcar
2011), but it is broadly agreed that it was Wilkinson himself who began the systematic exploitation
of the idea in a broad collection of contexts.

ix

X Preface

the same terms as whatever physical (or chemical or biological or social or what-
have-you) modeling errors, is readily understandable across all fields of application.
As Wilkinson (1971 p. 554) pointed out, backward error analysis

has the advantage that rounding errors are put on the same footing as errors in the original
data and the effect of these has usually to be considered in any case.

The notion of the sensitivity of the problem to changes in its data is also one that is
easy to get across to application-oriented students. As Chap. 1 explains, this means
that we favor a residual-based a posteriori type of backward error analysis that pro-
vides numerical solutions that are readily interpretable in the broader context of
mathematical modeling.

The pedagogical problem that (we hope!) justifies the existence of this book is
that even though many excellent numerical analysis books exist, no single one of
them that we know of is suitable for such a broad introductory graduate course—at
least, not one that provides a unifying perspective based on the concept of backward
error analysis, which we think is the most valuable aspect of this present book. Some
older books do hold this perspective, most notably Henrici (1982), but that book is
dated in other respects nowadays.

Other differences between this book and the general numerical analysis liter-
ature is that it uses the Lagrange and Hermite interpolational bases heavily, with
a complex-variable focus, both because of the recent recognition of the superior-
ity of this approach, and in order to introduce topics in an example-based format.
Our objective is to provide the reader with a perspective on scientific computing that
provides a systematic method for thinking about numerical solutions and about their
interpretation and assessment.

The closest existing texts to our book in this outlook might be Quarteroni et al.
(2007), or perhaps the pair of books Deuflhard and Bornemann (2002) and Deufl-
hard and Hohmann (2003), but our book differs from those in several other respects.
We believe, for one, that our relatively informal treatment is less demanding on the
mathematical and analytical prerequisites of the students; our students in particu-
lar have a very wide range of backgrounds. The topics we cover are also slightly
different from those in the aforementioned books—for example, we cover delay
differential equations and they do not, whereas their coverage of the numerical so-
lution of PDEs is more complete than ours. But for us, the most important thing
about a graduate-level introduction is to show the essential unity of the subject, and
we feel that aim of this present work is worth pursuing.

Thus, our objective is to present a unified view of numerical computation, inso-
far as that is possible. The book cannot, therefore, be self-contained, or anything
like complete; it can only hit some of the highlights and point to more extensive
discussions of specific points. This is, unfortunately, a necessary tradeoff for such a
book, and in partial compensation the list of references is substantial. Consequently,
the book is not a “standard” numerical analysis text, in several respects. The topic
selection is intended to introduce the reader to important components of a gradu-
ate students’ toolbox, but more on the analysis side than the methods side. It is not
intended to be a book of recipes.

Preface xi

This brings up the “elephant in the room,” the massively popular and useful
book (Press et al. 1986), which has been cited more than 33,000 times according
to Google Scholar, as we write this. That book is intended for “quick use,” we be-
lieve. If you have a numerical problem to solve, and only a weekend to do something
about it, that book should probably be your first choice of reference. One thing we
certainly do not criticize that book for is its attempt at comprehensive coverage.
However, it is not a textbook and does not serve the purpose of a course in numer-
ical analysis, which we believe includes a unified theoretical view of all numerical
methods. Hence, this present book attempts a complementary view to that of Press
et al. (1986).

Finally, even though a unified view is attempted here, many important topics in
numerical analysis had to be left out altogether. This includes optimization, integral
equations, parallel and high-performance computing, among others. We regret that,’
but we make no promises to remedy this deficit any time soon. Instead, it is our
hope that the reader of this book will have acquired a framework for assessing and
understanding numerical methods generally.

Another difference in perspective of this book is the following. As the reader
might know (or will know very soon!), there tends to be a tension between compu-
tation time, on the one hand, and accuracy and reliability, on the other hand. There
are two points of view in scientific computing nowadays, which are paraphrased
below:

1. I don’t care how correct your answer is if it takes 100 years to get it.
2. Idon’t care how quickly you give me the wrong answer.

Of these two blunders, we tend to think the first is worse: Hence, this book concen-
trates on reliability. Therefore, we will not focus on cost very much, nor will we
discuss vectorization of algorithms and related issues.

There are more schemes for computation than just IEEE standard fixed-precision
floating-point arithmetic, which is the main tool used in this book (and, without
much doubt, the main tool used in scientific and engineering computing). There is
also arbitrary-precision floating-point arithmetic, which is used in computer alge-
bra systems such as MAPLE. This is comparatively slow but occasionally of great
interest; some examples will be given in this book. There is also interval arith-
metic, which is discussed concisely, with references, on the Wikipedia page of the
same name: The principle of interval arithmetic is to compute not just answers, but
also bounds for the errors in the answers. Again, this is slower than standard fixed-
precision floating-point arithmetic, but not solely for the reason that more compu-
tation is done with the bounds, but also for the somewhat surprising reason that for
many algorithms of practical interest as implemented in floating-point, the rounding
errors usually cancel, leaving an accurate answer but with overly wide error bounds
in interval arithmetic. As a consequence, other algorithms (usually iterative) have to
be developed specifically for use with intervals, and while this has been done, partic-
ularly for many problems in optimization, and is valuable especially in cases where

2 In particular, we regret not covering the finite-element method; or multigrid; or ...; you get the
idea.

xii Preface

the consequences of rounding errors are disastrously expensive, interval arithmetic
is not as widely used as floating-point arithmetic is.

A prominent computer algebra researcher asks, “Why not compute the answer
exactly?” This researcher knows full well that in the vast majority of cases, ex-
act computation is either impossible outright or impossibly expensive. However,
for some problems, particularly some linear algebra problems, the data are indeed
known exactly and the algorithms for computing the exact rational answer have now
been developed to a high degree of efficiency, making it possible nowadays to re-
ally get the exact answer (what we will call the reference answer in this book). We
do not discuss such algorithms here, in part because they are specialized, but really
because this course is about numerical methods with approximate arithmetic.

There are yet other arithmetics that have been proposed: significance arithmetic
(which is similar to interval arithmetic but less rigorous), and “rounded rational”
arithmetic, and others. Some of these are discussed in Knuth (1981). A recent dis-
cussion of computational arithmetic can be found in Brent and Zimmermann (2011).

Finally, we underline the fact that the background theoretical ideas from analysis
and algebra used in this book are explained in a rather informal way, focusing more
on helping visualization and intuition than precise theoretical understanding. This
is justified by the fact that if the reader knows the material already, then it serves
as a good refresher and also introduces the perspective on it that is relevant to the
matter at hand. If the reader does not know the necessary material, or does not know
it well, then it should provide just enough guidance to have a feel of what is going
on, while at the same time give precise indications as to what and where to look to
acquire the required concepts. Just pointing at a book wouldn’t do if we can’t say
what to look for. In this way, we expect to be able to reach the vastly different kinds
of reader who need the course this book was designed to support.

On Programming

Computations in the book are carried out almost exclusively in MATLAB (but we
also use MAPLE on some occasions). Readers not familiar with MATLAB are en-
couraged to acquire the wonderful book Higham and Higham (2005) to help them to
learn MATLAB. We have no commercial commitment to MATLAB, and if the reader
wishes to use SCILAB or OCTAVE instead, then other than some of the advanced
techniques available in MATLAB but not in those two for the numerical solution of
sparse matrices or ordinary differential equations, the substitution might be all right
(but we have not tried). Similarly, the reader may wish to use SAGE or some other
freely available computer algebra package to help get through the more formulaic
aspects of this book.

This book is not a book that teaches programming skills, even by example (our
programs are all short and intended to illustrate one or two numerical techniques
only). The programs in this book are not even intended as good examples of pro-
gramming style, although we hope they meet minimal goals in that respect, with

w

Preface xiii

an emphasis on readability over efficiency. The elegant little book Johnson (2010)
is a useful guide to a consistent MATLAB style. The style of the programs in this
present book differs slightly from that advocated there, in part because our aesthetic
tastes differ slightly and in part because the purpose of numerical computing, being
more limited than computing that includes, for example, data management, can bear
a simpler style without loss of readability or maintainability. However, we emphat-
ically agree with Johnson that a consistent style is a great help, both to the readers
of the code (which might include the writer, three months later) and to the users of
the code. We also agree that attention to stylistic issues while writing code is a great
help in minimizing the number and severity of bugs.

In this book, MATLAB commands will be typeset in the 1st1isting style and
are intended to be typed as shown (with the exception of the line numbers to the left,
when any, which are added for pedagogical purposes). For example, the commands
x = linspace(-1, 1, 21);

y = sin(pixx);
plot(x, vy, 'k--')

produce a black dashed-line plot of sin(7x) on the interval —1 < x < 1. One differ-
ence to the style advocated in Johnson (2010) is that spaces are introduced after each
opening parenthesis and before each closing parenthesis; similarly, spaces are used
after commas. These spaces have no significance to MATLAB but they significantly
improve readability for humans (especially in the small font in which this book is
typeset). The programs written for this book are all intended to be made available
over the web, so longer bits of code need not be typed. The code repository can
be accessed at http://www.nfillion.com/coderepository. Similarly,
MAPLE commands will also be typeset in the 1st1isting style; since the syn-
taxes for the two languages are similar but not identical, this has a risk of causing
confusion, for which we apologize in advance. However, there are not that many
pieces of MAPLE code in the book, and each of them is marked in the text surround-
ing it, so any confusion will not last long. For example, a similar plot to that created
above can be done in MAPLE by the single command

plot(sin(Pi*x), x=-1..1, linestyle=3, color=BLACK) ;

Moreover, we request the reader to minimize the use of sym in MATLAB. If you
are going to do symbolic computation, fire up a computer algebra system (MAPLE,
Sage, MuPAD, whatever you like) and use it and its features separately. Yes, the
Symbolic Toolbox (which uses MuPAD or MAPLE), if you have it, can be helpful
and professionals often do use it for small symbolic computations. In a numerical
course, however, sym can be very confusing and requires more care in handling
than we want to discuss here. This book will not use it at all, and the problems and
exercises have been designed so that you need not use it. If you do choose to use it,
do so on your own recognizance.

Scientific programming is, in our view, seriously underrated as a discipline and
given nowhere near the attention in the curriculum that it deserves or needs. Many
people view the course that this book is intended to support, namely, an introductory
course in numerical analysis for graduate students, as “the” course that a graduate

http://www.nfillion.com/coderepository

Xiv Preface

student takes in order to learn how to program. This is a serious mistake. If this
is the only course that you take that has programming in it, you are in trouble. It
takes more than a few weekends to learn how to program (and given the amount of
material here, you won’t have many weekends available, even).

However, you can make a start on programming at the same time as you read
this book if you are willing to really put in some effort. Both MATLAB and MAPLE
are easier to learn than many scientific programming languages, at least for people
with a high level of mathematical maturity and background knowledge. You will
need substantial guidance, though, in addition to this book. The aforementioned
book Higham and Higham (2005) is highly recommended. The older book Cor-
less (2002), while dated in some respects, was intended to teach MAPLE to nu-
merical analysts, and since the programming language for MAPLE has not changed
much since then (although the GUI has), it remains potentially useful. Our col-
league Dhavide Aruliah also recommends the Software Carpentry project by Greg
Wilson http://software-carpentry.org/, which we were delighted to
learn about—there seems to be a wealth of useful material there, including a section
on MATLAB. See also Aruliah et al. (2012).

Large scientific programs require a serious level of discipline and mathematical
thought; this is the discipline nowadays called software engineering. This book does
not teach software engineering at all. For those wishing to have a glimpse, we highly
recommend the (ancient, in computer terms) books by Leo J. Brodie, which use the
curiously lovely computer language Forth.? In some sense, Forth is natural to teach
those concepts: It is possible to write arbitrarily unreadable code in Forth entirely by
accident, and you need to learn some discipline to write it well; it’s harder to write
unreadable code in MAPLE (although for sure it can be done!).

Writing software that is robust, readable, maintainable, usable, and efficient, and
overall does what it was intended to do is a humbling activity. The first thing that
one learns is—a true scientific lesson—that one’s thought processes are not as reli-
able as one had believed. Numerical analysis and scientific computing (along with
computer programming generally) have overturned many things that were thought
mathematically to be true, and computer programs have had a profound influence on
how we view the world and how we think about it. Indeed, one of us has coined the
term “computer-mediated thinking” to cover some aspects of that profound change
(see Corless 2004, for a discussion of this in a pedagogical context). Put simply,
there is no other way to think about some complex systems than to combine the
power of the mind with the power of the computer. We will see an example due to
Turing, shortly.

3 The book Starting Forth is now available free online at http://www.forth.com/
starting-forth/, and although Forth has very little in common with MATLAB or MAPLE,
the programming concepts and discipline begun in that book will transfer easily. The second book,
Thinking Forth, is also available online at http://thinking-forth.sourceforge.
net/ and is one of the most useful introductions to software engineering, even though it, like
its predecessor, is focused on Forth.

http://thinking-forth.sourceforge.net/
http://thinking-forth.sourceforge.net/
http://www.forth.com/starting-forth/
http://www.forth.com/starting-forth/
http://software-carpentry.org/

Preface XV

How to Use This Book

We believe, with Trefethen (2008b p. 606), that

the main business of numerical analysis is designing algorithms that converge quickly;
rounding-error analysis, while often a part of the discussion, is rarely the central issue.

Why, then, are the first chapter and the first appendix of this book so heavy on
floating-point arithmetic? The answer is that the material is logically first, not that
it is of the first importance didactically. In fact, when RMC teaches this course, he
begins with Chap. 4 and looks back on the logically prior material when needed: His
approach is “leap ahead, back fill.” But the students’ needs may vary considerably,
and there are those who decidedly prefer an abstract presentation first, filled in with
examples later: For them, they may begin with Chap. 1 and proceed in the order
of Fig. la.

The instructor should find that the book can be used in many ways. Follow-
ing the linear order is an option, provided you have enough time (a one-semester
course certainly isn’t enough time). With the time constraint in mind, Fig. 1a fol-
lows the same theoretical order, but it shows what should be considered optional.
As stated before, at Western we start with Chap. 4. That way the course starts with
the material on the QR and SVD factoring, culminating in a definition of condition
number. This approach brings the student to immediately engage a problem that
stimulated the development of numerical analysis in the first place. Then we come

a

[1]

The theoretical path A pragmatic path

Fig. 1 Suggested teaching paths for this book, where dashed lines denote options. (a) The theoret-
ical path. (b) A pragmatic path

XVi Preface

back to Chap. 1 (and Appendix A) for a necessary examination of theoretical issues
in finite-precision computation and approximation. We then return to Part II to dis-
cuss eigenvalue problems, sparse systems, and structured systems. We then proceed
to polynomials, function evaluation, and then rootfinding. The course closes with
material covering numerical integration and numerical solution of differential equa-
tions, followed by delay differential equations or partial differential equations, as
the tastes of the students indicate and as time permits. A curriculum closely related
to this pragmatic orientation is in Fig. 1b.

Experience has shown that the material in Chap. 8 is used heavily in almost all
later chapters. Experience has also shown that the later chapters always get short-
changed in a one-semester course: Probably at most one of Chaps. 14, 15, or 16 can
be covered, and Chap. 9, though short and important, is in some danger of being
omitted too. In any case, perhaps that is because RMC is personally focused more
on Chap. 12 and its sequels, not because of the students’ needs. In any case, the
linear algebra topics can (and should!) always be covered.

Some of the chapters may be used for reading only. Good candidates are Chap. 1,
Chap. 3 on the evaluation of functions, and Chap. 7 on iterative methods. Chapter 14,
on delay DE, seems quite popular and goes quickly after the work on IVP and on
interpolation.

Exercises

This book contains many exercises. They are identified as belonging to one of these
categories:

1. Theory and Practice;
2. Investigations and Projects.

The first type of problem will include simple tasks that amount to “getting the go
of it” or to make sure that one understands the basic notions that are assumed in
the various manipulations. This includes practice with basic MATLAB and MAPLE
tricks. It may also involve proofs—either from scratch, sometimes with hints, or
completing proof sketches, including some error analyses (although not too many).
The final type of problem—namely, investigations and projects—typically involves
more time and effort from the students. Typically, these problems will involve ex-
ploring various numerical methods in depth, that is, doing analytic work and then
implementing it, usually in MATLAB. That is, this type of problem is to some extent
a programming assignment although the course we teach is not intended to teach
programming skill.

The instructor may find it convenient to combine problems of different categories
as well as different degrees of difficulty following this scheme. Students thus have
the chance to feel the pleasant breeze of review, get their hands dirty with the tedious
but very important practical work, and feel the ecstatic frustration of working on a
problem of some envergure. For the more challenging projects, the student should
refrain from being frustrated, remembering the words of J. S. Mill (1873 p. 45):

Preface Xvii

A pupil from whom nothing is ever demanded which [s]he cannot do, never does all [s]he
can.

One of the authors (NF), upon whom the teaching method used in this book was
tested, has to agree that some of the difficult problems in this book are among those
from which he learned most. We hope the reader will feel the same.

London, ON Robert M. Corless
Nicolas Fillion

Acknowledgments

This project was supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC). Many of the research papers that helped
form the point of view of this book were also supported by NSERC and also by
MITACS. Some of the writing was done while RMC was on sabbatical at Australian
National University working with Trevor Lamb and with Markus Hegland, at the
University of Newcastle Australia working with Jon Borwein, and finally at the
University of Otago working with Gerrard Liddell. Many thanks to those people
and institutions for their support.

Many more people have helped with this project. Perhaps most important are the
students from the course Applied Math 9561, who encountered (“suffered” in the
old sense is maybe the right word) the early versions of these chapters as lectures.
As a whole, the Department of Applied Mathematics at the University of Western
Ontario has been very supportive of this effort. The Ontario Research Centre for
Computer Algebra and the Rotman Institute of Philosophy at UWO have, in par-
ticular, been very stimulating environments in which to work and think. The staff,
including Audrey Kager, Pat Malone, and Karen Foullong at Applied Math, Elisa
Kilbourne at Philosophy, and Rob Read at the Rotman Institute, have all been very
helpful. The Rotman Institute itself deserves thanks for many kinds of support to
both authors.

Acknowledgments from RMC:

My thanks also go to my best friend, David J. Jeffrey (who incidentally taught
AMOI561 before I did, and then assigned it to me when he became chair). Some of
my UWO colleagues have now passed on, so they won’t read these words, but I
remember them and the lessons they taught me: M.A.H. (Paddy) Nerenberg, Peter
Fraser, Vic Elias, Henning Rasmussen, and Karin Gatermann. My Ph.D. advisor,
Geoffrey V. Parkinson of UBC, has also passed on, but again I remember. There’s
some of each of them in this book. I hope they would have liked it.

I have used several libraries in the course of working on this book. First and fore-
most is that at the University of Western Ontario, and I would like to say a special
thank-you to my friend David J. Fiander, who has acted as an informal interface to
many of the library’s features; although he is indeed a librarian at UWO, the main

Xix

XX Acknowledgments

reason I talked to him instead of to the official Applied Math resource person as I
was supposed to is that he’s my friend. He has patiently endured my pestering and
been very helpful. Thanks, David.

More generally, the other UWO library staff have themselves been helpful and
the online version of the library has been available to me wherever I was in the
world. This has been essential. While on sabbatical, I was granted full access to
the libraries at Australian National University, the University of Newcastle, and the
University of Otago, and these were also very helpful, but time and again I found
what I wanted online through the off-campus access to the UWO library, which is
as good as any I have seen. Thanks to all those library staff who made that possible.

Jim Varah and Uri Ascher first taught me numerical analysis at the University
of British Columbia; R. Bruce Simpson and Keith Geddes continued the lessons at
Waterloo. My mentors since then have included Christina Christara, Wayne Enright,
Gaston Gonnet, Ken Jackson, Cleve Moler, Sanzheng Qiao, Bob Russell, Larry
Shampine, Gustav Soderlind, Jim Verner, and to a certain extent William (Velvel)
Kahan, who always had time to chat at conferences, and Donald E. Knuth. It’s fair
to say that I learned a lot from each of them. George F. Corliss, John C. Butcher
(about whom more shortly), and David Stoutemyer were especially good friends for
a young numerical analyst to make.

Peter Borwein gets a special thank-you, not least for his accidental invention of
the “end-of-proof” symbol () used in this book, pronounced “naturally.”

My colleagues at the Ontario Research Center for Computer Algebra, includ-
ing Dhavide Aruliah, Keith Geddes, Mark Giesbrecht, David Jeffrey, Hiroshi Kai,
George Labahn, Marc Moreno Maza, Greg Reid, Eric Schost, Arne Storjohann, Li-
hong Zhi, and especially Ilias Kotsireas, have consistently provided a stimulating
environment for research in scientific and symbolic computing.

I thank John C. Butcher, whose ANODE conferences remain among my fondest
memories. Some of John’s ideas have had a huge influence on this present book:
All of the (many!) contour integrals used in this book are because of him. Larry
Shampine took quite a thorough look at an early draft of this book, and his thought-
ful critiques were very helpful indeed. While I am acknowledging Larry’s help with
this specific project, I would also like to point out that he is responsible in a very big
way for much of the technology that makes the ideas discussed in this book possible
and practical. It is all too easy to overlook such a contribution, because the codes he
(and his students and co-workers) produced do their job so quietly and efficiently.
Nobody notices when there aren’t any problems and often fail to realize just how
hard the problem was that is being solved with such apparent ease! Not only that,
Larry was a pioneer in the use of backward error for the solution of differential
equations and was an active contributor to much of its development. Both Nic and I
are very grateful that he took the time to do all this.

Paul Sullivan, here at Western, taught me a very important lesson about backward
error analysis, maybe the most important one: It’s about data error, not rounding
error. Of course, others had taught me that, too, but it was Paul’s words—just a
single sentence as I recall—that made the lesson sink in.

Acknowledgments XXi

I have had many stimulating conversations with Nick Trefethen over the years,
most recently at the MFUN13 conference in Manchester organized by Nick Higham
and Frangoise Tisseur; needless to say, I have learned an enormous amount from
each of them, as well as from their beautiful books and papers.

There are other colleagues and friends not listed here who have also been helpful
and more than helpful. Thank you all.

My past and present graduate students, including Anne-Marie E. Allison, Amir
Anmiraslani, Silvana Ilie, Piers W. Lawrence, Robert H. C. Moir, Xianping Liu, Azar
Shakoori, Nargol Rezvani, Yiming Zhang, and Jichao Zhao, have together had a
strong influence on this book.

Many thanks also go to Steven Thornton, who helped with the figures and repro-
ducibility.

My final thanks go to my highly energetic co-author. Thank you, Nic—without
you this book might not have begun, and certainly would not have been finished.

Acknowledgments from NF':

In addition to those already thanked by Rob, I would like to thank a number of
exceptional people without whom I would never have had the opportunity to work
on this book. To begin with, I want to thank my family, especially my parents, for
their incessant support of my academic endeavors, however incomprehensible or
silly they might have appeared. Merci du fond du cceur! Secondly, I must thank my
first academic mentor, Frangois Tournier, who turned me into a decent academic
by instilling in me the virtues of hard but effective work, interdisciplinarity, and
intellectual discipline and rigor, and preached all of this by exceptional example.

I would also like to thank Bob Batterman, who encouraged me to pursue work in
applied mathematics. Without your support, this whole adventure would certainly
not have been possible, and if counterfactually possible, then not successful. It is
after Bob’s recommendation that I went on to take my first course in applied math-
ematics, and it is what ultimately led to this book. I also want to thank Rob Moir
for the countless hours that we spent thinking about backward error analysis and its
ramifications and implications, and also Piers Lawrence and Walid Mnif for many
helpful suggestions and ideas.

Finally, I want to thank Rob Corless for his inspiring mentoring and for this
exciting opportunity of collaboration. This has been quite an adventure, and I want
to thank you in particular for putting up with my stubbornness and with my ill-
conditioned schedule. It has been an immense (as immense as the book!) pleasure.

Contents

Part I Preliminaries

1

Computer Arithmetic and Fundamental Concepts

of Computation 7
1.1 Mathematical Problems and Computability of Solutions 7
1.2 Representation and Computation Error........................ 10
1.3 Error Accumulation and Catastrophic Cancellation 12
1.4 Perspectives on Error Analysis: Forward, Backward,
and Residual-Based i 18
1.4.1 Backward Error Analysiso, 21
1.4.2 Condition of Problems 23
1.4.3 Residual-Based A Posteriori Error Analysis............. 26
1.5 Numerical Properties of Algorithms 29
1.6 Complexity and Cost of Algorithms 32
1.7 NotesandReferences L. 34
Problems 35
Polynomials and Series 43
2.1 Polynomials, Their Bases, and Their Roots 44
2.1.1 Change of Polynomial Bases 46
2.1.2 Operations on Polynomials........................... 47
2.2 Examples of Polynomial Bases 48
2.2.1 Shifted Monomials 48
2.2.2 The Newton Basiscooiiiiiiiiiiinnninn... 52
2.2.3 Chebyshev Polynomials 53
2.2.4 Other Orthogonal Polynomials........................ 55
2.2.5 The Clenshaw Algorithm for Evaluating Polynomials
Expressed in Orthogonal Bases 56
2.2.6 Lagrange Polynomials............................... 58
2.2.7 Bernstein—Bézier Polynomials 62
2.3 Condition Number for the Evaluation of Polynomials 63

XXiii

XXiv Contents
24 PseUdOZErosttt 70
2.5 Partial Fractions.ttt 72
2.6 Formal Power Series Algebra 75

2.6.1 Multiplication of Series and the Cauchy Convolution 76

2.6.2 Division of Series ... 79

2.6.3 Differentiation and Integration 80

2.6.4 The Algebraof Series, 81

2.6.5 The Exponential of a Series 81
2.7 A Partial Fraction Decomposition Algorithm

Using Local Taylor Seriesc.ooiiiiiiiiinaao.. 84
2.8 Asymptotic Series in Scientific Computation................... 88
2.9 Chebyshev Seriesand Chebfun 91
2.10 Notes and References ..., 94
Problems 95

3 Rootfinding and Function Evaluation............................. 105

3.1 Function Evaluation 106
3.1.1 Condition Number for Function Evaluation 107
3.1.2 Conditioning of Real and Imaginary Parts Separately 110
3.2 Rootfindingiiiii 111
3.2.1 The Condition Numberof aRoot...................... 112
322 Newton’sMethod............. ... i it 113
3.2.3 Wilkinson’s First Example Polynomial 117
3.2.4 Backward Error Analysis Again....................... 120
3.3 Transcendental Functions 121
3.3.1 Evaluation of Transcendental Functions 122
3.3.2 Roots of Transcendental Functions 131
3.4 Best Rational ApproxXimation..............couuuuiveeennnnn... 133
3.5 Other Rootfinding Methods 138
3.5.1 Halley’sMethod..........ccoo i, 138
3.5.2 TheSecantMethod 141
3.5.3 Inverse Quadratic Interpolation 143
354 TakingaStepBack i 145
3.6 The Multivariate Caseouvetiinine .. 147
3.7 Chebfun for Evaluation and Rootfinding 150
3.8 Notesand References 154
Problems 155

Part I Numerical Linear Algebra

4 Solving AX=Db 167
4.1 Why Not Solve Linear Systems Exactly? 169
4.2 Solving Unitary or Orthogonal Systems 171
4.3 Solving Triangular Systemsooviirninn ... 173
4.4 Factoring as a Step Toward Solution 176

Contents

45 The QRFactoringoouiiiniiin it
4.5.1 Classical (Unstable) Gram—Schmidt
4.5.2 Modified Gram—Schmidt Orthogonalization.............
4.5.3 Householder Reflections
4.5.4 Numerical Stability of the QR Algorithms
4.5.5 Solving Overspecified Systems with the QR Factoring
4.6 SVD and Condition Number,
4.6.1 The Effectof Data Errorinb
4.6.2 Conditioning, Equilibration, and the Determinant
4.6.3 A Naive Way to Computethe SVD
4.6.4 Using Preexisting Software to Compute the SVD
4.6.5 SolvingAx=Dbwiththe SVD
4.6.6 The SVD and Overspecified Systems
4.6.7 Other Applications of the SVD
4.7 Solving Ax=b with the LU Factoring
4.7.1 Instability of Elimination Without Pivoting
4.7.2 Numerical Stability of Gaussian Elimination
48 WhyNotUse A=12
4.9 Relative Costs of the Different Factorings
4.10 Solving Nonlinear Systemsc.c.oiiiiiiennneann.
4.11 Notesand References i,
Problems

5 SOIVING AX = AX ..ottt

5.1 Generalized Eigenvalues..................
5.2 Schur Factoring Versus Jordan Canonical Form
5.3 Algorithms for Eigenvalue Problems
5.3.1 Simple Iterative Methods
5.3.2 The QR Algorithm for AX=AX
5.4 Condition Number of a Simple Eigenvalue
5.5 Pseudospectra and Eigenvalue Conditioning
5.5.1 Spectra and Pseudospectral

5.5.2 Powers and Exponentials with Spectra
and Pseudospectrao i
5.6 Notesand References
Problems

6 Structured Linear Systemst

6.1
6.2
6.3
6.4
6.5

Taking Advantage of Structure
Real Symmetric Positive-Definite Matrices
Banded MatriCesuuuuuuuutiiiiiiiiiiaaaaaaann.
BIOCK StrucCtureuuut i
Other Structured and Sparse Matrices.c.oouveeeon...

XXVi Contents

6.6 Structured Backward Error and Conditioning
6.6.1 Structured Backward Errors and Componentwise
Bounds
6.6.2 Structured Backward Error for Matrices
with Correlated Entries
6.6.3 Structured Backward Error for Eigenvalue Problems
6.7 Cauchy MatriCescouuunitttiin i
6.8 NotesandReferences L.
Problems

7 Iterative Methods
7.1 TIterative Refinement and Structured Backward Error
7.2 What Could Go Wrong with an Iterative Method?
7.3 Some Classical Variationscciiiiiinnunnen...
7.4 Large Eigenvalue Problems
Problems

Part III Interpolation, Differentiation, and Quadrature

8 Polynomial and Rational Interpolation
8.1 Lagrange Interpolationottt
8.2 Interpolating from Values of a Function and Its Derivatives

(Hermite Interpolation) einenennenn..
8.2.1 Rootfinding for Polynomials Expressed in Hermite
Interpolational Baseso
8.2.2 Derivation of the Barycentric Forms of the Hermite
Interpolation Polynomial
8.2.3 Computing the Generalized Barycentric Weights
8.3 Conditioning of the Generalized Barycentric Weights
8.4 Condition Number of the First Barycentric Form
of the Lagrange Interpolating Polynomial
8.5 Error in Polynomial Interpolation
8.6 Interpolating in Other Polynomial Bases
8.7 Rational Interpolation with Known Denominator
8.8 Numerical Accuracy of the Second Barycentric Form
8.9 Piecewise Interpolation..............c.iiiiiii i,
8.9.1 ACubicSpline........coiiiiiiiiiiiiiii
8.9.2 The Condition Number of a Spline Interpolant
8.10 Chebfun and Interpolation,
8.11 NotesandReferenceso L.
Problems

314
315

Contents

9

10

11

The Discrete Fourier Transform
9.1 The Fourier Transform via Interpolation
9.2 Chebfunandthe FFT
9.3 NotesandReferencescoiiiiiiiiniinnann...
Problems e

Numerical Integration

10.1 Conditioning of Quadrature
10.2 Equally Spaced Partitions and Spectral Methods................
10.2.1 Simpson’sRule i
10.2.2 Practical Error Estimation............................
10.2.3 Extrapolation Methods
10.2.4 Spectral Accuracy for Smooth Periodic Functions.
10.3 Adaptive Quadraturet
10.4 Gaussian Quadraturettt
10.4.1 Gauss—Legendre Integration (CaseI)
10.4.2 Gauss—Chebyshev Integration (Case IT)
10.5 Clenshaw—Curtis Quadraturecouiuirnoon..
10.6 The Effect of Derivative Singularities and of Infinite Intervals
10.7 A Diversion with Chebfun
10.8 Oscillatory Integrands
10.9 Multidimensional Integration................ ou....
10.10 Notes and Referenceso o i ..

Problems

Numerical Differentiation and Finite Differences

I1.1 Conditioningooutinnint i
11.2 Polynomial Formul® and Differentiation Matrices
11.2.1 Structured Condition Number for Differentiation
of Polynomials i
11.2.2 Differentiation Matrices for Lagrange Bases
11.2.3 A Detailed Derivation of the Differentiation Matrix
for the Hermite Interpolation Polynomial
11.2.4 Differentiation Matrix Examples
11.3 Complex NOdesot e
11.3.1 The Differentiation Matrices on Roots of Unity..........
11.3.2 A Surprisingly SimpleRule
11.4 A Backward Error Interpretation of Simple Finite Differences
11.5 Finite Differences for Higher Derivatives
11.6 Compact Finite Differences
11.7 Automatic Differentiation..............
11.8 Smoothing ...ttt e
11.9 Multidimensional Finite Differences...................
11.10 Notes and References

Problems

XXVii

403
403
414
416
416

419
423
426
428
429
430
432
433
437
438
441
445
446
448
453
457
458
459

463
463
465

468
469

XXViii Contents

Part IV Differential Equations

12 Numerical Solution of ODEs 509
12.1 Solving Initial-Value Problems with ode45 in MATLAB. 511
122 TheResidual i 518

12.2.1 Residual, Defect, and Deviation....................... 519
12.2.2 A Closer Look at Computing the Residual 522
12.3 Conditioningof IVP 525
12.3.1 LipschitzConstantsooiiiiiineeeenn.. 526
12.3.2 Condition via the Variational Equation 527
12.3.3 Condition Analysis Based on the Grobner—Alexeev
Approach 536
12.3.4 A Crude Practical Estimate of the Condition Number 540
12.4 An Extended Example: The Restricted Three-Body Problem 541
12.5 Structured Backward Error for ODE 548
12.6 What Good are Numerical Solutions of Chaotic Problems?....... 550
12.7 Solution of Stiff Problems 555
12.8 EventLocation..............oiiiiiiinniiiiiinn .. 559
12.9 More on Mass Matrices: DAE and Singular Perturbation
Problems. 566
12.10 Which Interpolant, Which Residual? 567
12,11 Singularityt 568
12.11.1Pole-Vaulting, 570
12.11.2 Other Kinds of Singularities 570
12.12 Notes and References 573
Problems 574

13 Numerical Methods for ODEs 585
13.1 Euler’s Method and Basic Conceptscoovveune.... 586
13.2 Error Estimationand Control 588

13.2.1 TheResidual, 589
1322 Local Erroro 593
13.2.3 Convergence and Consistency of Methods 598
13.3 Stiffness and Implicitness................ o ... 600
13.4 Taylor Series Method i, 605
13.4.1 Implicit Taylor Series Methods 612
13.4.2 Final Remarks on Taylor Series Methods 613
13.5 Runge-KuttaMethods i, 615
13.5.1 Examples of Second-, Third-, and Fourth-Order
RKMethods ... 615
13.5.2 Generalization and Butcher Tableaux 619
13.5.3 How to Construct a Discrete RK Method 621
13.5.4 Investigation of Continuous Explicit
Runge-KuttaMethods............. 623

13.5.5 Order Conditions with Trees.......................... 627

Contents XXIX

14

15

16

13.5.6 Solving the Order Conditions......................... 634
13.5.7 Implicit RK Methods................ ... 637
13.6 Multistep Methods ...t 648
13.6.1 Stability of LMMo, 652
13.6.2 More Stability Issues................ ... 654
13.6.3 Variable Step-Size Multistep Methods, Derived Using
Contour Integral Methods 656
13.6.4 Adams’ Methodsciiiiiiiiiiniiinnann.. 658
13.7 The Method of Modified Equations........................... 662
13.7.1 Correlations and Structure in the Residual 662
13.7.2 Finding a Modified Equation 665
13.8 Geometric Integration ...t 671
139 Other Methodscoviii i i 675
13.10 Notes and Referencescooviiiiiiiniiinennnenn.. 676
Problems 678
Numerical Solutions of Boundary Value Problems 695
14.1 IntroducCtioncoiiuneiuie ittt i, 695
142 Conditioningttt i 697
143 A Method to Solve BVPODE oo, 702
14.3.1 Solution on a UniformMesh 707
14.3.2 Solution on an Adapted Mesh 707
14.4 How Does It Work, and Why Does It Work? 710
14.4.1 Equidistribution, the Theory 711
14.4.2 Solution of the Minimax Problem 715
14.5 SUPEICONVEIZENCEottt ettt et e e et e e e 717
14.6 Nonlinear Problems and Quasilinearization 718
147 Notesand Referencesccoviiiiiiiniiineennnenn.. 724
Problems e 725
Numerical Solutionof Delay DEs 729
15.1 TheResidual,orDefect 735
15.2 State-Dependent Delays: ddesd Versus dde23 738
153 Conditioningviiuntine i 742
154 Neutral EQUationst 747
15.5 Chebfun and Delay Differential Equations..................... 748
15.6 Notesand Referencesccoviiieiiiniiinennneenn.. 751
Problemso e 752
Numerical Solutionof PDEs 755
16.1 TheMethodof Lines............ooiiiiiniiniiinennnnn.. 756
16.1.1 The Method of Lines Using Spectrally Accurate
Spatial Mesh........ ... i 756
16.1.2 Compact Finite Differences and the Method of Lines 762

16.2 Conditioning of PDEs.o i 766

XXX

Contents
16.3 The Transverse Method of Lines, 767
16.4 Using PDEPEIN MATLAB .« ..ottt 773
16.5 Poisson’s Equationandthe FFT 778
16.6 Reaction—Diffusion Equations and Turing Patterns 780
16.7 Concluding Remarks., 787
16.8 Notesand References o, 788
Problems e 789

Part V Afterword

Part VI Appendices

A

Floating-Point Arithmetic 799
A.1 Number Representationcoiiiiiieiinnn... 800
A.2 Operationsand Roundoff 809
Problems 811
Complex Numbers it 813
B.1 Elementary Complex Arithmeticooioo.. 813
B.2 Polar Coordinates and the Two-Argument arctan Function 814
B.3 The Exponential Function 815
B.4 The Natural Logarithm 815
B.5 The Complex Sign Functions............................. ... 817
B.6 Trigonometric Functions and Hyperbolic Functions 818
B.7 TheResidue Theorem........... ..., 818
Problems 819
Vectors, Matrices,and Normsc.ccioun... 821
C.1 Notation and Structure of Matrices 821
C.2 NOIMIS . .ottt e e e e e 822
C.3 Derivation of the Normal Equations 831
C.4 The Schur Complement, 831
C.5 Eigenvaluesooiiiniiii 832
References 833

List of Figures

1.1
1.2

1.3
1.4
1.5

1.6

1.7
1.8

2.1
2.2
23
24
2.5
2.6
2.7
2.8
29
2.10

3.1
32

Suggested teaching paths for thisbook XV
Snapshots of the solution to the Schnakenberg equations 4
The Airy functionttt i 15
Error in a naive MATLAB implementation of the Taylor series

COmMPUtation Of Al.ottt e 17
Zooming in closetoadoubleroot 19
Zooming ineven closert 20

Backward error analysis: the general picture. (a) Reflecting back

the backward error: finding maps A. (b) Input and output space in a
backward error analysis 22
Stability in the mixed forward—backward sense. (a) Representation

as a commutative diagram (Higham 2002). (b) Representation as

an “approximately” commuting diagram (Robidoux 2002). We can

replace ‘~’ by the order to which the approximationholds........... 30
Asymptotichounds 33
The results of the code in Problem 1.16 39
The first nine Chebyshev polynomials 54
Bernstein—Bézier basis polynomials of degree at most 8 63
Condition number of a polynomial evaluation problem 66
Condition number in Bernstein—Bézier basis. 67
The condition number for evaluation of a polynomial 69
Zeros of a small perturbation of the Wilkinson polynomial 71
Pseudozeros of the Wilkinson polynomial 72
The relative error S - exp(—x) — I in the truncated Chebyshev series ... 92
The relative error y - exp(—x) — 1 in the chebfun for y =exp(x) 93
The output of the program in Problem2.29..................... ... 102
Contours of the condition number of the Mandelbrot polynomial 109
Fractal boundary for Newton’smap 115

XXXi

XXXii

33
34
35
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15
3.16

3.17
3.18
3.19
3.20

3.21

4.1

42
43
4.4

4.5
4.6
4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14

5.1
5.2

6.1

List of Figures

Condition of Wilkinson polynomial 118
Relative errors in the degree-k Taylor approximations (3.21) 124
Error in a Chebyshev series approximation 128
Backward error in the previous Chebyshev series approximation 129
Relative forward error Le()/ln(x) — 1 ..o 129
Zoom on the relative forward error L¢®) /in(x) — L.................... 130
The two real branches of the Lambert W function 131
Forward error of a best approximantc.ooouaoo.. 135
The contour L17(z) — 1/rx) = 10" 8exp(i@)ccoviiieiinn. .. 137
Conditioning of InI" onaninterval 138
Convergence ratios +/r*_, of the residuals for the secant method. 143
Inverse quadratic interpolation 144

The error in the chebfun representation of In(I"(x)) on3 <x <4 ... 150
The error in the best possible polynomial representation of

I (X))« oo e 151
The chebfun for the Gauss map on the subinterval [!/1000,1] 153
G(&;), where the &; are the results of roots (G - 0.5) 153
The relative forward errors [Si/y; — 1] ..o ooe i 154
The function (1 — cosx)/x? should be approximately constant

onthisinterval 156
Fractal boundary for the Kepler equation.......................... 161

Commutative diagrams for the solution of Ax = b. (a) Engineered

problem and forward error. (b) Backward error diagram 168
Loss of orthogonality in CGS o iiiii.. 182
Comparison of CGS, MGS, and Householder...................... 184
Compute times of the QR factoring for some random n x n

INALTICES . .« ottt e e 193
Time taken to compute the SVD for some random n X n matrices 194
Transformation of the unit circle by amatrix 196
Condition numbers of some random matrices, A = rand(n).

The dashed line shows a constant times 7% 198
Failure of determinant o ittt 201
Residual in SVD computed by MATLAB’s effective algorithm 203
A close-up of a tawny frogmouth L 209
The tawny frogmouth, with only 25 nonzero singular values 210
Computingtime for PA=LU....... 217
Scaled residual in IPA—LU| /|z| for some matrices................... 218
Average timings for various factorings................ 224
Initial growth of matrix powers of a 50 x SO0matrix 258
Pseudospectrum of a 2 x 2 matrix polynomial of degree 3 263

Simple visualization of the inverse of the 64 x 64 Mandelbrot
INALTIX . 22ttt e 270

List of Figures XXXiil

6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2
7.3

III.1

8.1
8.2
8.3
8.4
8.5
8.6

8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15

8.16

9.1
9.2
9.3
9.4

10.1
10.2
10.3
104

Sparse matrix bfwa398 fromthe FSMC........................... 279
Anexample of fill-in 280
A reordered matrix with less fill-in. 280
Square 5 x Sgrid Laplacian........... ... 282
20X 20C @id .« oo 282
Discrete Laplacianon 20 x20C gridt 283
The implicit curves 25xy = 12and x> +y?> =1..................... 296
Scaled residuals for the Richardson iteration of a 5 x 5 matrix 314
Scaled residuals for the Richardson iteration of a 89 x 89 matrix 315
Nine hundred ninety-nine eigenvalues of a random 1,000 x 1,000

real MAatIiX . ..o ettt e 318

The problem of interpolation. (a) Data of the problem. In some
cases, we also have some values of f¥) (7). (b) Interpolation and

extrapolation: two function evaluation problems 328
Interpolant of Eq. (8.3) for t=[3,—2,1,4] and p = [2,5,-3,1] 333
Lagrange interpolation condition depends on the nodes.............. 338
Hermite interpolation of a seventh-degree polynomial 340
Roots of the Mandelbrot polynomial of degree 2! — 1 =1023 344
Forward error in some Hermite interpolants of exp(z) 351
Forward error in the derivatives of some Hermite interpolants

OF BXP(Z) + v v ettt et e 352
Bernstein—Bézier condition versus Lagrange condition 355
Hermite interpolational basis condition versus other bases 357
Interpolation error of !/r(x) and its derivative 361
Rational interpolant and polynomial interpolant 366
Rational interpolation at Chebyshev—Lobatto points 367
Rational interpolation at near-optimalnodes 368
The difference between the reverse-engineered g(z) and 1 370
A clamped cubic Hermite spline fit to the data indicated by circles 374
Perturbing the data near the midpoint of a piecewise cubic Hermite
INEETPOLANt . . .ottt 376
Absolute error in interpolation of (7*/w)/ sinh(#*/w) constructed

by Chebfun 377
Trigonometric interpolation., 409
A solution of the van der Pol equation 410
Periodogram for the van der Pol equation 410
Periodogram for a forced van der Pol equation 411
An approximation to a definite integral by a finite Riemann sum 420
The graph of an integrand for WonO<v<m 433
The graph of 1/(1+uyon 0 <u <1ottt 434

The first 11 Legendre polynomials plottedon —1 <x <1 440

XXXiV

10.5

10.6

11.1
11.2
11.3
114
11.5
11.6
11.7

V.1

12.1
12.2

12.3
12.4
12.5
12.6
12.7
12.8

12.9

12.10
12.11
12.12

12.13
12.14

List of Figures

The graph of the not-identically-zero function computed

by BenedicCt ...t 452
A graph of @F (@) showing oscillation and decay in F(®)........... 453
Functions are flat when you zoom in close enough.................. 464
The Hermite interpolant to the data (11.52) and its derivatives 476
Derivative of a polynomial in the Hermite interpolational basis 477
Effect of rounding error on the complex formula 480
Errors in three finite-difference formule 483
Fourth-order uniform-mesh compact finite-difference derivative 488
Fourth-order variable-mesh compact finite-difference

JRREE DI 101103 IS 0) A 490
The degree 2 least-squares fit to noisy data, in the Lagrange basis 495

Solving differential equations without interpolating the numerical
SOIULIONS ..ottt 506

Numerical solution of Eq. (12.1). ... o 511
Plots of the numerical solutions of the Lorenz system. (a) Time
history of x(z),y(¢), and z(¢). (b) Phase portrait for all three

components of the solution 516
Damped harmonic oscillator 518
A vector field with a nearly tangent computed solution 520
Easily computed residual of the solution of (12.1) with ode45 521
Scaled residual components of the Lorenz system 522
The (absolute) residual of the equation in Example 12.5 525
Commutative diagram for the backward error analysis

of initial-value problems L 526

Numerical, a posteriori analysis of the numerical solution of the
initial-value problem (12.29) with ode45. (a) Absolute residual
in x;. (b) Absolute residual in x;. (¢) Relative residual in the six

components of y. (d) Condition number of the problem 537
An XKed COMIC .« . vvn 543
Solution of the Arenstorf model restricted three-body problem 544

Measured residual and sensitivity in the Arenstorf restricted

three-body problem. (a) Residual for solution by ode113 with

relative tolerance 1.0 x 107, (b) Sensitivity by solving

the variational equations (12.35) using ode113 with relative

tolerance 1.0 x 1070 545
Size of the componentwise backward error £(¢) in solving (12.38) 551
The Rossler attractor computed to tight tolerances using ode113..... 552

List of Figures XXXV

12.15

12.16
12.17
12.18
12.19
12.20
12.21
12.22
12.23
12.24

13.1
13.2
13.3
13.4

13.5
13.6
13.7
13.8
13.9

13.10
13.11

13.12

13.13

13.14

13.15
13.16

13.17
13.18

Step-size adaptation of ill-conditioned and well-conditioned
problems with respect to step number. (a) Reduction of the step
size in the solution of (12.29) as the problem becomes increasingly
ill-conditioned. (b) Reduction of the step size in the solution of

(12.44) when the problem is very well-conditioned 556
Extreme well-conditioning of a stiff problem 557
Residual for the solution of (12.44) on two intervals using ode45 558
The skeleton of a solution to a stiff problem 558
Experimental fit of empiricaldata., 561
Solution of the Hénon—Heiles equation 565
The Poincaré map for the Hénon—Heiles equation 565
Integrating past a singularity using the technique of “pole-vaulting” ... 571
Numerical solution of a problem with an essential singularity 572
What your solution to Exercise 12.25 should look like 580
A step with Euler’smethod 586
Effect of reducing the step size in Euler’s method 588
Residuals in Euler’smethod 592
The region in the z = hA plane where forward Euler has monotonic
decrease ask —> o0 ... 601
The region in the z = hA plane where backward Euler has a

monotonic decrease as k —» oo 602
Asymmetry of error in approximation of exp(x) by a polynomial 603
Analytic continuationt e 607
Residual of the Taylor polynomials of S (dotted line)and I........... 611
The region in the z = hA plane, where the second-order implicit

Taylor series method has a monotonic decrease ask —co............ 614
A graphical interpretationof RK3 618
The solution to the van der Pol equation (13.211) by the low-order
Rosenbrockmethod i 647

Scaled residual in the solution to the (very stiff) van der Pol
equation (13.211) with u = 10° by the low-order Rosenbrock
method implemented in ode23 s, using default tolerances.

The residual appears to be too large in the regions of rapid change

and may deserve further investigation 648
Step sizes used in the solution to the (very stiff) van der Pol

CQUALION .« . . ot ettt e et et e 648
The boundary of the stability region for the nonstandard
predictor—correctormethod i 656
Second-order Taylor series solution with A =5%/30.................. 670
Difference between the Taylor series solution, the modified

equation, and the reference solutioncos(f)c.oveeeie .. 670
Poincaré map for the Hénon-Heilesmodel 674

Energy error in a leapfrog integration.ccoouuaao.. 674

XXXVi

13.19

14.1
14.2

14.3
14.4

14.5

14.6
14.7
14.8
14.9

14.10
14.11

14.12
14.13
14.14
14.15

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
15.10
15.11
15.12
15.13
15.14

16.1
16.2
16.3
16.4
16.5
16.6
16.7

List of Figures

The boundaries of all the Hurwitz conditions for all three roots

Of (13.234) . 690
Solution of (14.2) using bvp4 c with default tolerances 698
Mesh widths used in the solution of (14.2) using bvp4c

with default tolerances i 698
Residuals in the solution of (14.2) using bvp4c 698
Residual of the solution of y” —9y — 10y =0, y(0) = y(10) =1,

divided by y, with N = 50 uniform subintervals 707
Relative forward error ¥ /y.gerence — 1 in the solution

of Y/ =0y — 10y =10 ... i 708
Solution on a uniform mesh together with the exact solution 708
7 (x) at the mesh points and the derivative of the exact solution 709
Residual on an adapted nonuniformmesh 709
Widths of an adaptedmesh L 710
Residual divided by Ez, on xy < x < xj (the first subinterval) 712
Residual divided by /°, on x24 < x < x5

(asubintervalinthemiddle) 712
Residual divided by ﬁz, on x49 < x < x50 (the last subinterval) 712
Solution of the odeexamples [bvp] shock problem.............. 716
The solution to Eq. (14.41) withRe =100 722
The solution using bvp5cto Eq. (14.42) oot 724
The solution of y, (1) = —éy(t — 1), withy(r) =exp(At) 730
The residual in the computed solution r(f) = y,(t) + $y(t—1) 731
The solution of y; (1) = — %y(t — 1), with square-wave history 733
The residual in the computed solution r(r) = y,(¢) + %y(t —1) ... 733
The solutions to (15.6) . ..ottt 736
The residual at 10,000 points in each of the computed solutions 737
The solutions to (15.8) with default tolerances 739
The residual in the computed solution to (15.8) on a linear scale 739
The residual in the solution to (15.12) with tight relative tolerances ... 744
The solution of (15.12) with relative tolerances 10~7................ 745
The computed eigenvalues of A (whenn=10) 746
The residual in the solution to the neutral DDE (15.17).............. 748
Solution to y,(¢t) = —(=1 /5, with jump discontinuities in histories 749
A portion of the solution to (15.12) with Chebfun 751
An approximate solutionto Eq. (16.1) 757
A computed residual of an approximate solution to (16.1) 758
Another computed residual of an approximate solution to (16.1) 759
Real part 6 (¢,x) of u(f,x) solving (16.4)o . 761
Imaginary part 7(z,x) of u(t,x) solving (16.4). 762
The difference between two approximate solutions to (16.1) 765

The solution to the one-way wave Eq. (16.8) 766

List of Figures XXX Vil

16.8
16.9
16.10

16.11
16.12
16.13
16.14
16.15

16.16

16.17
Al
A2
A3
B.1
C.1

C2

C3

The solution to Burgers’ equation (16.16) by the transverse method . .. 769

The meshes used for the transverse method of lines solution 770
The internal energy e = p/((y— 1)p) for the solution of the shock

tube gas dynamics equations with artificial viscosity 772
The final mesh used for the transverse method of lines solution 772
The emitter discharge (16.23) plotted on a logarithmic scale 775
The residual of the spectral solutionto (16.24) 777

Solution at t = 1 computed by pdepe and by the spectral method 777
The sparse block circulant structure with sparse circulant blocks of
A and B in the Mehrstellenverfahren (16.33) on a 7 x 7 grid. (a)

SPY (A) . (D) SPY (B) oottt 782
Computing times to solve the Schnakenberg equations using the
Mebhrstellenverfahren for various n. The reference line has slope n* ... 785
Maximum residuals at time # = 2 in the solution the Schnakenberg
equations using the Mehrstellenverfahren for variousn 787
Floating-pointnumberlineo iiiiiiiiinaa.. 802
Thirty-two-bit word for a floating-pointnumber.................... 802
The F(7,4,2,2) positive number “line”cooe.... 803
Complex logarithm........ 816
Unit circles with the 1-norm (dotted line), the 2-norm (solid line),

and the co-norm (dashed line) iiiiiiina... 824
The length of the sum of complex numbers is less than the sum of the
lengths unless the complex numbers are co-directed 825

Thecurve N9 = &P . 826

List of Tables

1.1 Common growth rates. vttt e

3.1 Newton iterates and residuals for the principal branch

Of WS4 20) e
3.2 Tterates for the multivariate Newton method for the equation

of Example 3. 14 ...

4.1 Comparing the loss of orthogonality for CGS, MGS,
and built-in QR

8.1 A tabulated schematic of Hermitedata
A.l1 F(7,4,2,2): represented values whenn =7, m=4, r=2, b=2

B.1 Some identities for the complex logarithm

XXXiX

Part 1
Preliminaries

2 1 Preliminaries

Computational mathematics, even without computers, is enormously powerful.
Mathematical models of physical, biological, environmental, and social phenomena
greatly increase our understanding of the world in which we live, and offer oppor-
tunities to achieve many desirable outcomes in many situations. This use of mathe-
matical thinking is old: Imhotep (the earliest architect and engineer whose name is
known to us, who worked in the time of Zhoser, about 2700 BCE) likely used math-
ematics in designing the first pyramids. Archimedes was famous for his intellectual
help in the defence of Syracuse and of course his mechanical inventions survive in
use to this day. Analog (not digital) computation is also very old—consider the An-
tikythera mechanism, which dates to about 100 BCE and had a tradition of similar
instruments, now all lost, possibly lasting a 1,000 years.*

However useful mathematics is when only hand or analog computation is
available, it seems obvious that mathematical models that are detailed enough
to explain—and allow means of control over—even moderately complicated sys-
tems need significant computer help in order to provide useful accounts of their
predictions. The main difficulty is the complexity of interactions of subsystems in
each model.

To complicate matters even further, already in the nineteenth century certain im-
possibility results were being obtained: Abel and Galois showed that it is not pos-
sible to solve general polynomial equations of degree five or more in radicals (al-
though there is a less-well-known algorithm using elliptic functions for the quintic
itself). Liouville showed that many important integrals could not be expressed in
terms of elementary functions (and provided a basic theory to decide just when this
could in fact be done). Lindemann showed that & was transcendental. More such
impossibility results arrived in the twentieth century. Yet in order to provide scien-
tific and engineering answers, when the phenomenon of interest is being modelled
by, say, a differential equation or partial differential equation, something has to be
done.

The answer that is the foundation of this book is equally old: approximation. For
example, Archimedes famously used an approximation method based on polygons
to compute lower and upper bounds on 7. In general, the basic idea of approximation
is to give up on an exact answer, and to settle for “something close enough.”

The applications of mathematics are everywhere, not just in the traditional sciences of
physics and chemistry, but in biology, medicine, agriculture and many more areas. Tra-
ditionally, mathematicians tried to give an exact solution to scientific problems or, where
this was impossible, to give exact solutions to modified or simplified problems. With the
birth of the computer age, the emphasis started to shift towards trying to build exact models
but resorting to numerical approximations. (Butcher 2008a)

In one sense, the idea of a solution being “close enough” gave birth to the whole of
mathematical analysis. In another, closer to the spirit of this book, it gave birth to
scientific and engineering computation.

4 For details of this, and more, see the lovely book by de Camp (1960). Concerning the Antikythera
mechanism, see Freeth et al. (2008) and http://www.antikythera-mechanism.gr/.
For a more modern ‘classic’ take on mathematical modeling, see Wan (1989).

http://www.antikythera-mechanism.gr/

I Preliminaries 3

We take a specific example, from the classic paper The Chemical Basis of Mor-
phogenesis by Alan Turing (1952), one of the pioneers of modern scientific comput-
ing. Turing considered various mathematical models of chemical reactions involving
an interaction between reaction of the chemical agents (or ‘morphogens’) and dif-
fusion of these agents in the tissues of a cell. These models have the following form
(in two space dimensions x and y, for time 7):

J

a—b; = f(u,v) +€Au

J

8_‘; =g(u,v) +&Av (LD

where Au = 9*u/a.> + 9*u/ay> = Uy + uyy is the Laplacian. The functions f(u,v) and
g(u,v) vary, depending on what exactly is being modelled, and the constants €; and
& model the possibly different rates of diffusion of the ‘morphogens’ u and v.

Turing pointed out that systems behaving in a way described by Eq. (I.1) could,
in theory, start from a homogeneous and boring state and then, by the introduction
of tiny imperfections in that homogeneity, more or less spontaneously evolve under
this dynamic to a pronounced pattern. These patterns could be used as models for
a great many phenomena, including in particular the patterns of spots on a leop-
ard’s coat. Turing’s paper started an entire field of investigations of the properties of
such models, which can potentially explain such diverse things as how cell networks
grow (in particular how neurons connect to one another) and animal or robotic lo-
comotion.’

Turing made great strides in detailed understanding of these model equations
for systems in limited configurations (such as a ring of cells), and fundamental un-
derstanding of what might happen in quite general configurations starting from a
homogeneous initial configuration. However, as to further progress, perhaps it is
best to give Turing’s own words:

Most of an organism, most of the time, is developing from one pattern into another, rather

than from homogeneity into a pattern. One would like to be able to follow this more gen-

eral process mathematically also. The difficulties are, however, such that one cannot hope

[emphasis added] to have any very embracing theory of such processes, beyond the state-

ment of the equations. It might be possible, however, to treat a few particular cases in detail

with the aid of a digital computer. This method has the advantage that it is not so nec-

essary to make simplifying assumptions as it is when doing a more theoretical type of
analysis. (Turing 1952, pp. 71-72)

Turing also points out that such a computational approach has a disadvantage, too,
namely that it only gets results for particular cases; he then claims that this disadvan-
tage is “probably of comparatively little importance.” We agree, and so do the large
number of people doing simulations of specific Turing systems in order to achieve
understanding (and in some cases control) of certain real systems of interest. In par-
ticular, if one is interested in dynamic Turing patterns, as Turing himself alludes to
above, there seems to be no recourse other than computation.

5 See, e.g., Arena and Fortuna (2002). Some recent work can be found at Leppinen et al. (2002),
and this is an active area.

4 1 Preliminaries

b: -
d : "
02 04 06‘ O} 0.2 ‘04 06 08 {

08 1
X
e | ‘ t 4 _
08 o.s' . . .
06 06 .
= = '
0.4 0.4 .
02 02} . .
; A ! . 4
0 02 04 06 08 1 0 02 04 06 08 1
X X

Fig. I.1 Snapshots of the solution to the Schnakenberg equations at various times. A static Turing
pattern has evolved by t = 2. (a) t = 0.01. (b) t = 0.02. (c) t = 0.03. (d) t = 0.05. (e) t = 0.06. (f)
t=2.00

I Preliminaries 5

As a definite example® (of an ultimately static pattern), consider the Schnaken-
berg equations:

u = A(0.126779 — u+ uv) + Au
v, = 1(0.792366 — u’v) + 10Av, (1.2)

where A = 1000. We will revisit these equations in Chap. 16. For now, note that
these equations, unlike the ones studied by Turing himself, are nonlinear because
of the u?v term. It is extremely unlikely that we will find an exact, closed-form
solution. Yet, using approximate computation, we can simulate the solution and
observe changes as pictured in Fig. I.1.

To understand in what sense these solutions are approximate, and to understand
how to produce controlled solutions of your own to problems like these, we recom-
mend that you continue to read. ..

To solve problems stemming from real applications, it is essential to gain an
understanding of the methods and strategies involved in numerical solutions. More-
over, even if a problem is formulated in terms of partial differential equations, the
numerical strategies used essentially depend on more basic methods that efficiently
and accurately solve problems of arithmetic, function evaluation, finding zeros, lin-
ear algebra, interpolation, differentiation and integration, etc. Step by step, chapter
by chapter, this book will introduce you to elementary and more advanced methods
that are necessary to solve those problems that arise in applications.

6 We take this example from Ruuth (1995).

Chapter 1

Computer Arithmetic and Fundamental
Concepts of Computation

Abstract This chapter introduces the main concepts of error analysis used in this
book. The chapter defines reference problems and modified problems and notation
to distinguish them. Two kinds of modified problems are shown to be particularly
important in numerical analysis, namely, engineered and reverse-engineered prob-
lems. The reader is introduced to three concepts of error: (forward error, backward
error, and residual), to the concept of conditioning, and to residual-based backward
error analysis—which is the method favored in this book. We define numerical prop-
erties of algorithms, including stability and cost. Finally, we apply those concepts
to floating-point arithmetic. N

As we have explained in the preface, there are two main paths that one can follow
with this book: a theoretical path that starts with this chapter, and a pragmatic path
that starts with Chap. 4 (see Fig. 1). If you are following the theoretical path—thus
reading this chapter first, before you read any other chapter—please be aware that it
is among the most abstract: It provides logical and conceptual grounding for the rest
of the book. We believe that the readers who prefer to consider concrete examples
before encountering the general ideas of which they are instances will be better off
on the first reading to start somewhere else, for example, with Chap. 4, and return
to this chapter only after seeing the examples there. But if you are a theory-minded
learner, then by all means this is the place to start.

1.1 Mathematical Problems and Computability of Solutions

We begin by introducing a few foundational concepts that we will use to discuss
computation in the context of numerical methods, adding a few parenthetical re-
marks meant to contrast our perspective from others. We represent a mathematical
problem by an operator ¢, which has an input (data) space .# as its domain and an
output (result, solution) space & as its codomain:

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods: 7
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0_1,
© Springer Science+Business Media New York 2013

8 1 Computer Arithmetic and Fundamental Concepts of Computation
09 -0,

and we write y = ¢(x). In many cases, the input and output spaces will be R” or C",
in which case we will use the function symbols f, g, ... and accordingly write

y:f(zlvz27"'7zl’l):f(z)'

Here, y is the (exact) solution to the problem f for the input data z.! But ¢ need
not be a function; for instance, we will study problems involving differential and
integral operators. That is, in other cases, both x and y will themselves be functions.

We can delineate two general classes of computational problems related to the
mathematical objects x,y, and ¢@:

C1. verifying whether a certain output y is actually the value of ¢ for a given input
x, that is, verifying whether y = ¢(x);

C2. finding the output y determined by applying the map ¢ to a given input x, that
is, finding the y such that y = ¢(x).

In this classification, we consider “inverse problems,” that is, trying to find an input
x such that ¢(x) is a desired (known) value y, to be instances of C2 in that this
corresponds to computation of the possibly many-valued inverse function ¢ ~!(y).

The computation required by each type of problem is normally determined by
an algorithm, that is, by a procedure performing a sequence of primitive operations
leading to the solution in a finite number of steps. Numerical analysis is a mathemat-
ical reflection on the complexity and numerical properties of algorithms in contexts
that involve data error and computational error.

In the study of numerical methods, as in many other branches of mathematical
sciences, the reflection involves a subtle concept of computation. With a precise
model of computation at hand, we can refine our views on what’s computationally
achievable, and if it turns out to be, how much effort is required.

The classical model of computation used in most textbooks on logic, computabil-
ity, and algorithm analysis stems from metamathematical problems addressed in the
1930s; specifically, while trying to solve Hilbert’s Entscheidungsproblem, Turing
developed a model of primitive mathematical operations that could be performed
by some type of machine affording finite but unlimited time and memory. This
model, which turned out to be equivalent to other models developed independently
by Gdédel, Church, and others, resulted in a notion of computation based on effective
computability. From there, we can form an idea of what is “truly feasible” by further
adding constraints on time and memory.

Nonetheless, scientific computation requires an alternative, complementary no-
tion of computation, because the methods and the objectives are quite different from
those of metamathematics. A first important difference is the following:

! We use boldface font for vectors and matrices.

2 It is normally computationally simpler to verify whether a certain value satisfies an equation than
finding a value that satisfies it.

1.1 Mathematical Problems and Computability of Solutions 9

[...] The Turing model (we call it “classical”), with its dependence on Os and s, is fun-
damentally inadequate for giving such a foundation to the modern scientific computation,
where most of the algorithms—with origins in Newton, Euler, Gauss, et al.—are real num-
ber algorithms. (Blum et al. 1998 3)

Blum et al. (1998) generalize the ideas found in the classical model to include oper-
ations on elements of arbitrary rings and fields. But the difference goes even deeper:

[R]ounding errors and instability are important, and numerical analysts will always be ex-
perts in the subjects and at pains to ensure that the unwary are not tripped up by them.
But our central mission is to compute quantities that are typically uncomputable, from an
analytic point of view, and to do it with lightning speed. (Trefethen 1992)

Even with an improved picture of effective computability, it remains that the con-
cept that matters for a large part of applied mathematics (including engineering) is
the different idea of mathematical tractability, understood in a context where there
are error in the data and error in computation, and where approximate answers can
be entirely satisfactory. Trefethen’s seemingly contradictory phrase “compute quan-
tities that are typically uncomputable” underlines the complementarity of the two
notions of computation.

This second notion of computability addresses the proper computational difficul-
ties posed by the application of mathematics to the solution of practical problems
from the outset. Certainly, both pure and applied mathematics heavily use the con-
cepts of real and complex analysis. From real analysis, we know that every real
number can be represented by a nonterminating fraction:

X = ij .d1d2d3d4d5d6d7 Tt

However, in contexts involving applications, only a finite number of digits is ever
dealt with. For instance, in order to compute \/f, one could use an iterative method
(e.g., Newton’s method, which we cover in Chap. 3) in which the number of accurate
digits in the expansion will depend upon the number of iterations. A similar situation
would hold if we used the first few terms of a series expansion for the evaluation of
a function.

However, one must also consider another source of error due to the fact that,
within each iteration (or each term), only finite-precision numbers and arithmetic
operations are being used. We will find the same situation in numerical linear alge-
bra, interpolation, numerical integration, numerical differentiation, and so forth.

Understanding the effect of limited-precision arithmetic is important in compu-
tation for problems of continuous mathematics. Since computers only store and op-
erate on finite expressions, the arithmetic operations they process necessarily incur
an error that may, in some cases, propagate and/or accumulate in alarming ways.> In

3 But let’s not panic: “These risks are very real, but the message was communicated all too success-
fully, leading to the current widespread impression that the main business of numerical analysis is
coping with rounding errors (Trefethen 2008b).

10 1 Computer Arithmetic and Fundamental Concepts of Computation

this first chapter, we focus on the kind of error that arises in the context of computer
arithmetic, namely, representation and arithmetic error. In fact, we will limit our-
selves to the case of floating-point arithmetic, which is by far the most widely used.
Thus, the two errors we will concern ourselves with are the error that results from
representing a real number by a floating-point number and the error that results from
computing using floating-point operations instead of real operations. For a brief re-
view of floating-point number systems, the reader is invited to consult Appendix A.

Remark 1.1. The objective of this chapter is not so much an in-depth study of error
in floating-point arithmetic as an occasion to introduce some of the most important
concepts of error analysis in a context that should not pose important technical dif-
ficulty to the reader. In particular, we will introduce the concepts of residual, back-
ward and forward error, and condition number, which will be the central concepts
around which this book revolves. Together, these concepts will give solid concep-
tual grounds to the main theme of this book: A good numerical method gives you
nearly the right solution to nearly the right problem. N

1.2 Representation and Computation Error

Floating-point arithmetic does not operate on real numbers, but rather on floating-
point numbers. This generates two types of roundoff errors: representation error and
arithmetic error. The first type of error we encounter, representation error, comes
from the replacement of real numbers by floating-point numbers. If we let x € R
and (O : R — F be an operator for the standard rounding procedure to the nearest
floating-point number* (see Appendix A), then the absolute representation error
Ax is

Ax=Ox—x=%—x. (1.1)

(We will usually write £ for x+ Ax.) If x # 0, the relative representation error 8x is
given by

A £
Sx=t 1% (1.2)
X X
From those two definitions, we obtain the following useful equality if x # 0:
f=x+Ax=x(1+46x). (1.3)

The IEEE standard described in Appendix A guarantees that |8x| < Ly, where Ly
is half the machine epsilon &,. In this book, when no specification of which IEEE

4 In this chapter, we will always assume that x and the other real numbers are within the range of F
for the sake of simplicity. See Appendix A for an explanation of what happens outside this domain
(i.e., overflow and underflow).

1.2 Representation and Computation Error 11

standard is given, it will by default be the IEEE-754 standard described in Ap-
pendix A. In a numerical computing environment such as MATLAB, &y = 27> ~
2.2-107', so that iy ~ 10716

The IEEE standard also guarantees that the floating-point sum of two floating-
point numbers, written £ = £@ §,’ is the floating-point number nearest the real sum
7z =X+ of the floating-point numbers; that is, it is guaranteed that

£85=0%+9). (1.4)

In other words, the floating-point sum of two floating-point numbers is the correctly
rounded real sum. As explained in Appendix A, similar guarantees are given for
6,®, and ©. Paralleling the definitions of Eqgs. (1.1) and (1.2), we define the abso-
lute and relative computation errors (for addition) by

Az=2—7=((®F9) — (£+9) (1.5)
6r= 22 - (BN _T43), (1.6)
Z X+y

As in Eq. (1.3), we obtain
2@y=2=z+Az=12(1+6z) (1.7)

with |8z| < py. Moreover, the same relations hold for multiplication, subtraction,
and division. These facts give us an automatic way to transform expressions con-
taining elementary floating-point operations into expressions containing only real
quantities and operations.

Remark 1.2. Similar but not identical relationships hold for floating-point complex
number operations. If z = x 4 iy, then a complex floating-point number is a pair of
real floating-point numbers, and the rules of arithmetic are inherited as usual. The
IEEE real floating-point guarantees discussed above translate into the following:

fllantzn)=(1x22)(1+86) |6 <um
fl(z122) = (z1z2) (1 + 8) 18] < V29 (1.8)
A /) = (21/2)(1+6) 8] <V2p,

where the ¥, notation [in which y, = /(1 —kuy)] is as defined in Eq. (1.18) below.
Division is done by a method that avoids unnecessary overflow but is slightly more
complicated than the usual method (see Example 4.15). Proofs of these are given
in Higham (2002). The bounds on the error are thus slightly larger for complex
operations but of essentially the same character. <

3 A note on notation: To make it clear that we are dealing with a floating-point counterpart of one
of the elementary arithmetical operation +, —, X, and -, we will circle them. When we will discuss
the floating-point counterparts of other operations, we will simply add ” f1,” such as fI(x-y) for an
inner product.

12 1 Computer Arithmetic and Fundamental Concepts of Computation

We can usually assume that /x also provides the correctly rounded result, but it
is not generally the case for other operations, such as ¢*, Inx, and the trigonometric
functions (see Muller et al. 2009).

To understand floating-point arithmetic better, it is important to verify whether
the standard axioms of fields are satisfied, or at least nearly satisfied. As it turns
out, many standard axioms do not hold, not even nearly, and neither do their more
direct consequences. Consider the following statements (for £, 9,2 €), which are
not always true in floating-point arithmetic:

1. Associative law of @:
o) =xey) o2 (1.9)
2. Associative law of ®:

QPR =292 (1.10)

IQy=i®Z=y=2 (1.11)
4. Distributive law:
IRP®2) =) (E®2) (1.12)
5. Multiplication cancelling division:
IQFox) =7 (1.13)

In general, the associative and distributive laws fail, but commutativity still holds,
as you will prove in Problem 1.15. As a result of these failures, mathematicians find
it very difficult to work directly in floating-point arithmetic—its algebraic structure
is weak and unfamiliar. However, thanks to the discussion above, we know how
to translate a problem involving floating-point operations into a problem involving
only real arithmetic on real quantities (x,Ax, dx,...). This approach allows us to
use the mathematical structures that we are familiar with in algebra and analysis.
So, instead of making our error analysis directly in floating-point arithmetic, we try
to work on a problem that is exactly (or nearly exactly) equivalent to the original
floating-point problem, by means of the study of perturbations of real (and even-
tually complex) quantities. This insight was first exploited systematically by J. H.
Wilkinson.

1.3 Error Accumulation and Catastrophic Cancellation

In applications, it is usually the case that a large number of operations have to
be done sequentially before results are obtained. In sequences of floating-point

1.3 Error Accumulation and Catastrophic Cancellation 13

operations, arithmetic error may accumulate. The magnitude of the accumulating
error will often be negligible for well-tested algorithms.® Nonetheless, it is im-
portant to be aware of the possibility of massive accumulating rounding error in
some cases. For instance, even if the IEEE standard guarantees that, for x,y € I,
x@y=(x+y),” it does not guarantee that equations of the form

k k
Pri=0 x, k>2 (1.14)
i=1 i=1

hold true. This can potentially cause problems for the computation of sums, for
instance, for the computation of an inner product x-y = 22‘:1 x;y;. In this case, the
direct floating-point computation would be

k

Py, (1.15)

i=1

summed from left to right following the indices. How big can the error be? Let us
use our results from the last section in the case n = 3:

Ax-y) =((x1®y1) ® (22 ®@y2)) ® (x3 @3)
Z((x1y1(l +81) +x22(1+ &) (14 83) +x3y3(1 + 54)) (1+65)

=x1y1(1+681)(1+8)(1+65) (1.16)
+x2y2(1+ 62) (1 + 83) (1 + J5)
+X3y3(l +34)(1 +55).

Note that the §;s will not, in general, be identical; however, we need not pay atten-
tion to their particular values, since we are primarily interested in the fact that for
real arithmetic |&;| < y; for all of them, and for complex arithmetic |§;| < 4 in the
0-v notation of Higham (2002) that we introduce below in order to clean up the
presentation.

Theorem 1.1. Consider a real floating-point system satisfying the IEEE standards,
so that |8;| < Uy. Moreover, let e; = 1 and suppose that njly < 1. Then
n
[T(1+8)% =146, (1.17)
i=1

where

6 In fact, as explained by Higham (2002 chap. 1), errors can in some cases cancel each other out to
give surprisingly accurate results.

7 We are often only concerned with the arithmetic error resulting from implementing a given
algorithm in floating-point arithmetic. In this case, we will drop the " symbol when it does not
result in confusion.

14 1 Computer Arithmetic and Fundamental Concepts of Computation

16| < SLUL R (1.18)

T l—npy
Notice that, for double-precision floating-point arithmetic, the supposition ntiy < 1
will almost always be satisfied. Then we can rewrite Eq. (1.16) in the real case as

fl(x-y) = x1y1(1+ 63) +x22 (1 + 63) +x3y3(1 + 6,), (1.19)

where each |6;| < y;, (and where 65 and 6} each represent three different rounding
errors) so that the computation error satisfies

3
x-y—fx-y)|<n Y il =nxy. (1.20)

i=1

This analysis obviously generalizes to the case of n-vectors, and a similar formula
can be deduced for complex vectors; as explained in the solution to (Higham 2002
Problem 3.7), all that needs to be done is to replace 7, in the above with ¥,4».
However, note that this is a worst-case analysis, which returns the maximum error
that can result from the mere satisfaction of the IEEE standard. In practice, it will
often be much better. In fact, if you use a built-in routine for inner products, the
accumulating error will be well below that (see, e.g., Problem 1.50).

Example 1.1. Another typical case in which the potential difficulty with sums poses
a problem is in the computation of the value of a function using a convergent se-
ries expansion and floating-point arithmetic. Consider the simple case of the expo-
nential function (from Forsythe 1970), f(x) = ¢*, which can be represented by the
uniformly convergent series

2 3 4

X
x— — — — “ e
¢=l+xto++ it (1.21)

If we work in a floating-point system with a five-digit precision, we obtain the sum

e 2 1.0000 — 5.5000 4 15.125 — 27.730 + 38.129 — 41.942 + 38.446
—30.208 4 20.768 — 12.692 + 6.9803 — 3.4902 4 1.5997 + - - -
= 0.0026363.

This is the sum of the first 25 terms, following which the first few digits do not
change, perhaps leading us to believe (incorrectly) that we have reached an accurate
result. But, in fact, e ~ 0.00408677, so that Ay = $ — y ~ 0.0015. This might
not seem very much, when posed in absolute terms, but it corresponds to 8y = 35%,
an enormous relative error! Note, however, that it would be within what would be
guaranteed by the IEEE standard for this number system. To decrease the magnitude
of the maximum rounding error, we would need to add precision to the number
system, thereby decreasing the magnitude of the machine epsilon. But as we will
see below, this would not save us either. We are better off to use a more accurate

1.3 Error Accumulation and Catastrophic Cancellation 15

formula for e™*, and it turns out that reciprocating the series for ¢* works well for
this example. See Problem 1.7. <

There usually are excellent built-in algorithms for the exponential function. But a
similar situation could occur with the computation of values of some transcendental
function for which no built-in algorithm is provided, such as the Airy function. The
Airy functions (see Fig. 1.1) are solutions of the differential equation X —tx = 0

0.6

0.4

0.2+

Airy(t)

—04}

-0.61

_0'8 1 1 1
-15 -10 -5 0 5

Fig. 1.1 The Airy function

with certain standard initial conditions. The first Airy function can be defined by the
integral

Ai(r) = %/Owcos (%53 +z§> d¢. (1.22)

This function occurs often in physics. For instance, if we study the undamped mo-
tion of a weight attached to a Hookean spring that becomes linearly stiffer with time,
we get the equation of motion X + x = 0, and so the motion is described by Ai(—1)
(Nagle et al. 2000). Similarly, the zeros of the Airy function play an important ge-
ometric role for the optics of the rainbow (Batterman 2002). And there are many
more physical contexts in which it arises. So, how are we to evaluate it? The Taylor
series for this function (which converges for all x) can be written as

) t3n o t3n+1

Ai(t) =377,

- —4/3 =
2oty 0 Zgmrery

(see Bender and Orszag (1978) and Chap. 3 of this book). As above, we might
consider naively adding the first few terms of the Taylor series using floating-point

22
23
24
25
26
27
28
29
30
31
32
33
34
35

16 1 Computer Arithmetic and Fundamental Concepts of Computation

operations, until apparent convergence (i.e., until adding new terms does not change
the solution anymore because they are too small).

Of course, true convergence would require that, for every € > 0, there existed
an N such that |22’IZ Nl ak| < € for any M > N, that is, that the sequence of partial
sums was a Cauchy sequence. There are many tests for convergence. Indeed, for this
Taylor series, we can easily use the Lagrange form of the remainder and an accurate
plot of the 31st derivative of the Airy function on this interval to establish that 30
terms in the series has an error less than 10~1° on the interval —12 < z < 4. Such
analysis is not always easy, though, and it is often tempting to let the machine decide
when to quit adding terms; and if the terms omitted could make no difference in
floating-point, then we may as well stop anyway. Of course, examples exist where
this approach fails, and some of them are explored in the exercises, but when the
convergence is rapid enough, as it is for this example, then this device should be
harmless though a bit inefficient.

We implement this in MATLAB in the routine below:
function [Al] = AiTaylor(z)
$AiTaylor. Try to use (naively) the explicitly-known Taylor
series about z=0 to evaluate Ai(z). Ignore rounding errors,

overflow/underflow, NaN. The input z may be a vector of
complex numbers.

y = AiTaylor(z);

o0 op oo op oo oo

THREETWOTH 3.07(-2/3);
THREEFOURTH = 3.07(-4/3) ;

Ai = zeros(size(z));

Zsq = Z.%Z;

n = 0;

zZzpow = ones(size(z)); % zpow = z"(3n)

term = THREETWOTHxones (size (z))/gamma (2/3) ;

% recall n! = gamma (n+1)
nxtAi = Al + term;

% Convergence 1s deemed to occur when adding new terms makes no
difference numerically.

while any(nxtAi "= Ai),
Ai = nxtAi;
ZPOW = ZpOw.*Z; % zpow = z~(3n+1)
term = THREEFOURTH=*zpow/9 n/factorial (n)/gamma (n+4/3) ;
nxtAi = Al - term;
if all(nxtAi == Ai), break, end;

Al = nxtAi;
n=n+1;
ZPOW = ZpOwW.*2Zsq; $ zpow = z~ (3n)
term = THREETWOTHxzpow/9"n/factorial (n)/gamma (n+2/3) ;
nxtAi = Al + term;
end

% We are done. If the loop exits, Al = AiTaylor (z).

36

1.3 Error Accumulation and Catastrophic Cancellation 17

1076 ; ; ; ; ;

108 |

10—10 L

10—12 L

Forward Error

10—14 L

10—16 L

10-18 ,
-10 -8 -6 -4 -2 0 2

Fig. 1.2 Error in a naive MATLAB implementation of the Taylor series computation of Ai

end

Using this algorithm, can one expect to have a high accuracy, with error close to
ey ? Figure 1.2 displays the difference between the correct result (as computed with
MATLAB’s function airy) and the naive Taylor series approach. So, suppose we
want to use this algorithm to compute f(—12.82), a value near the 10th zero (count-
ing from the origin toward —eo); the absolute error is

Ay = |Ai(x) — AiTaylor(x)| = 0.002593213070374, (1.24)

resulting in a relative error 8y = 0.277. The solution is only accurate to two digits!
Even though the series converges for all x, it is of little practical use. We examine
this example in more detail in Chap. 2 when discussing the evaluation of polynomial
functions.

The underlying phenomenon in the former examples, sometimes known as “the
hump phenomenon,” could also occur in a floating-point number system with higher
precision. What happened exactly? If we consider the magnitude of some of the
terms in the sum, we find out that they are much larger than the returned value
(and the real value). We observe that this series is an alternating series in which
the terms of large magnitude mostly cancel each other out. When such a phe-
nomenon occurs—a phenomenon that Lehmer coined catastrophic cancellation—
we are more likely to encounter erratic solutions. After all, how can we expect that
numbers such as 38.129, a number with only five significant figures, could be used
to accurately obtain the sixth or seventh figure in the answer? This explains why one
must be careful in cases involving catastrophic cancellation.

18 1 Computer Arithmetic and Fundamental Concepts of Computation

Another famous example of catastrophic cancellation involves finding the roots
of a degree-2 polynomial ax? + bx + ¢ using the quadratic equation (Forsythe 1966):

. —bEVbr—dac
Xy = T

If we take an example for which b > 4ac, catastrophic cancellation can occur.
Consider this example:

a=1-10"2 bp=1-10" c=1-10"2

Such numbers could easily arise in practice. Now, a MATLAB computation returns
x* = 0, which is obviously not a root of the polynomial. In this case, the answer
returned is 100% wrong, in relative terms. Further exploration of this example will
be made in Problem 1.18.

1.4 Perspectives on Error Analysis: Forward, Backward,
and Residual-Based

The problematic cases can provoke a feeling of insecurity. When are the results pro-
vided by actual computation satisfactory? Sometimes, it is quite difficult to know
intuitively whether it is the case. And how exactly should satisfaction be understood
and measured? Here, we provide the concepts that will warrant confidence or non-
confidence in some results based on an error analysis of the computational processes
involved.

Our starting point is that problems arising in scientific computation are such that
we typically do not compute the exact value y = ¢(x), for the reference problem @,
but instead some other more convenient value §. The value ¥ is not an exact solution
of the reference problem, so that many authors regard it as an approximate solu-
tion, that is, § = @(x). However, we will regard the quantity § as the exact solution
of a modified problem, that is, § = @(x), where ¢ denotes the modified problem.
For reasons that will become clearer later, we also call some modified problems en-
gineered problems, because they arise on deliberately modifying ¢ in a way that
makes computation easier or at least possible. We thus get this general picture:

%

X ——Yy

Ay

S

<

(1.25)

1.4 Perspectives on Error Analysis: Forward, Backward, and Residual-Based 19

x 10717
4 ; ; ;
\\ /
* I
':\ /(
3r -\ P
\ /
\x 'f
L % : i
g 2 %, s
L-S ?a.b ”‘r
S %, ¥
a 1} AN .
%\ /
"
nge,
O r M‘M b
-1 . . .
-1 -0.5 0 0.5 1
dt x 1077

Fig. 1.3 Zooming in near a polynomial that we expect to have a double zero at z = !1/2, we see
the curve getting “fuzzy” as we get closer because of computational error in the evaluation of the
polynomial

Example 1.2. Let us consider a simple case. If we have a simple problem of addition
of real numbers to do, instead of computing y = f(x1,x2) = x; + x2, we might com-
pute § = f (£1,%2) = %1 ® £,. Here, we regard the computation of the floating-point
sum as an engineered problem. In this case, we have

=5 @8 =x1(146x1)®x2(1 + 6x2)
= (1 (14 8x1) +x2(14 8x2)) (1 + 8x3)

x10x1 +x20x
= l+————=) (1+46 1.26
(x1+x2) < + P) (1+8x3), ()
and so we regard j as the exact computation of the modified formula (1.26). <

Similarly, if the problem is to find the zeros of a polynomial, we can use vari-
ous methods that will give us so-called pseudozeros, which are usually not zeros.
Instead of regarding the pseudozeros as approximate solutions of the reference prob-
lem “find the zeros,” we regard those pseudozeros as the exact solution to the mod-
ified problem “find some zeros of nearby polynomials,” which is what we mean
by pseudozeros (see Chap. 2). We point out that evaluation near multiple zeros is
especially sensitive to computational error; see Figs. 1.3 and 1.4.

If the problem is to find a vector x such that Ax = b, given a matrix A and a
vector b, we can use various methods that will give us a vector that almost satisfies
the equation, but not quite. Then we can regard this vector as the solution for a
matrix with slightly modified entries (see Chap. 4). The whole book is about cases
of this sort arising from all branches of mathematics.

20 1 Computer Arithmetic and Fundamental Concepts of Computation

x 10718

25

p(0.5+dlt)

or cr cnmmams o mem e - [o— 4

-2 -1 0 1 2
dt X 10—8

Fig. 1.4 Zooming in even closer, we see the curve broken up into discrete samples because of
representation error of the computed values of the polynomial. It has also become apparent that
the double zero has split to become two nearby simple zeros, each about /iy, away from the
reference zero z = !/2. Exactly which simple zeros best represent the zeros of “the” computational
polynomial is not clear-cut

What is so fruitful about this seemingly trivial change in the way the problems
and solutions are discussed? Once this change of perspective is adopted, we do
not focus so much on the question, “How far is the computed solution from the
exact one?” (i.e., in diagram 1.25, how big is Ay?), but rather on the question,
“How closely related are the original problem and the engineered problem?” (i.e., in
diagram 1.25, how closely related are ¢ and ¢?). If the modified problem behaves
closely like the reference problem, we will say it is a nearby problem.

The quantity labeled Ay in diagram 1.25 is called the forward error, which is
defined by

Ay=y—39=0(x)—@(x). (1.27)

We can, of course, also introduce the relative forward error by dividing by y, pro-
vided y # 0. In certain contexts, the forward error is in some sense the key quantity
that we want to control when designing algorithms to solve a problem. Then, a very
important task is to carry a forward error analysis; the task of such an analysis is to
put an upper bound on ||Ay|| = ||@(x) — ¢(x)||. However, as we will see, there are
also many contexts in which the control of the forward error is not so crucial.

Even in contexts requiring a control of the forward error, direct forward error
analysis will play a very limited role in our analyses, for a very simple reason. We
engineer problems and algorithms because we don’t know or don’t have efficient
means of computing the solution of the reference problem. But directly computing
the forward error involves solving a computational problem of type C2 (as defined
on p. 8), which is often unrealistic. As a result, scientific computation presents us

1.4 Perspectives on Error Analysis: Forward, Backward, and Residual-Based 21

situations in which we usually don’t know or don’t have efficient ways of comput-
ing the forward error. Somehow, we need a more manageable concept that will also
reveal if our computed solutions are good. Fortunately, there’s another type of a
priori error analysis—that is, antecedent to actual computation—one can carry out,
namely, backward error analysis. We explain the perspective it provides in the next
subsection. Then, in Sects. 1.4.2 and 1.4.3, we show how to supplement a backward
error analysis with the notions of condition and residual in order to obtain an infor-
mative assessment of the forward error. Finally, in the next section, we will provide
definitions for the stability of algorithms in these terms.

1.4.1 Backward Error Analysis

Let us generalize our concept of error to include any type of error, whether it comes
from data error, measurement error, rounding error, truncation error, discretization
error, and so forth. In effect, the success of backward error analysis comes from
the fact that it treats all types of errors (physical, experimental, representational,
and computational) on an equal footing. Thus, £ will be some approximation of
x, and Ax will be some absolute error that may be or may not be the rounding
error. Similarly, in what follows, 6x will be the relative error, that may or may not
be the relative rounding error. The error terms will accordingly be understood as
perturbations of the initially specified data. So, in a backward error analysis, if we
consider the problem y = @(x), we will in general consider all the values of the data
£ =x(1+ 0x) satisfying a condition |6x| < &, for some € prescribed by the modeling
context,® and not only the rounding errors determined by the real number x and the
floating-point system. In effect, this change of perspective shifts our interest from
particular values of the input data to sets of input data satisfying certain inequalities.

Now, if we consider diagram 1.25 again, we could ask: Can we find a pertur-
bation of x that would have effects on ¢ comparable to the effect of changing the
reference problem ¢ by the engineered problem $? Formally, we are asking: Can we
find a Ax such that @(x+ Ax) = @(x)? The smallest such Ax is what is called the
backward error. For input spaces whose elements are numbers, vectors, matrices,
functions, and the like, we use norms as usual to determine what Ax is the back-
ward error.’ For other types of mixed inputs, we might have to use a set of norms
for each component of the input. In case the reader needs it, Appendix C reviews
basic facts about norms. The resulting general picture is illustrated in Fig. 1.5 (see,
e.g., Higham 2002), and we see that this analysis amounts to reflecting the forward
error back into the backward error. In effect, the question that is central to backward
error analysis is, when we modified the reference problem @ to get the engineered
problem Q, for what set of data have we actually solved the problem ¢ ? If solving
the problem @ (x) amounts to having solved the problem ¢ (x+ Ax) for a Ax smaller

8 Note that, since modeling contexts usually include the proper choice of scale, the value of & will
usually be given in relative rather than absolute terms.

9 The choice of norm may be a delicate issue, but we will leave it aside for the moment.

22 1 Computer Arithmetic and Fundamental Concepts of Computation
a v b input space output space
| =0
; ® N
4, backward error — AR
X S — forward error
v i N
I————0 xRAY__
¢ J=0(x+4x)

Fig. 1.5 Backward error analysis: the general picture. (a) Reflecting back the backward error:
finding maps A. (b) Input and output space in a backward error analysis

than the perturbations inherent in the modeling context, then our solution § must be
considered completely satisfactory.!”

Adopting this approach, we benefit from the possibility of using well-known
perturbation methods to talk about different problems and functions:

The effects of errors in the data are generally easier to understand than the effects of round-
ing errors committed during a computation, because data errors can be analyzed using per-
turbation theory for the problem at hand, while intermediate rounding errors require an
analysis specific to the given method. (Higham 2002 6)

[T]he process of bounding the backward error of a computed solution is called backward
error analysis, and its motivation is twofold. First, it interprets rounding errors as being
equivalent to perturbations in the data. The data frequently contain uncertainties due to pre-
vious computations or errors committed in storing numbers on the computer. If the back-
ward error is no larger than these uncertainties, then the computed solution can hardly be
criticized—it may be the solution we are seeking, for all we know. The second attraction of
backward error analysis is that it reduces the question of bounding or estimating the forward
error to perturbation theory, which for many problems is well understood (and only to be
developed once, for the given problem, and not for each method). (Higham 2002 7-8)

One can examine the effect of perturbations of the data using basic methods we
know from calculus, various orders of perturbation theory, and the general methods
used for the study of dynamical systems.

Example 1.3. Consider this (almost trivial!) example using only first-year calculus.
Take the polynomial p(x) = 17x + 11x% +2; if there is a measurement uncertainty
or a perturbation of the argument x, then how big will the effect be? One finds that

Ay = p(x+Ax) — p(x) = 51x°Ax + 51x(Ax)? + 17(Ax)* + 22xAx + 11(Ax)*.
Now, since typically |Ax| < 1, we can ignore the higher degrees of Ax, so that
Ay = 51x%Ax.

Consequently, if x = 1 0.1, we get y = 35 £ 5.1; the perturbation in the input data
has been magnified by about 50, and that would get worse if x were bigger. Also,

10 There are cases, however, where finding such a Ax will not be possible. See Higham (2002
p. 71).

1.4 Perspectives on Error Analysis: Forward, Backward, and Residual-Based 23

we can see from this analysis that if we want to know y to 5 decimal places, we will
in general need an input accurate to 7 decimal places. <

Let us consider an example showing concretely how to reflect back the forward
error into the backward error, in the context of floating-point arithmetic.

Example 1.4. Suppose we want to compute y = f(x;,x,) = x? —x% for the input
x = [12.5,0.333]. For the sake of the example, suppose we have to use a computer
working with a floating-point arithmetic with three-digit precision. So we will re-
ally compute § = ((x; ®x1) @x1) © ((x2 ®x2) @ x2). We assume that X is a pair of
floating-point numbers, so there is no representation error. The result of the com-
putation is = 1950, and the exact answer is y = 1953.014111, leaving us with a
forward error Ay = 3.014111 (or, in relative terms, 8y = 3014111 /1953014111 & 1.5%).
In a backward error analysis, we want to reflect the arithmetic (forward) error back
in the data; that is, we need to find some Ax; and Ax, such that

$=(12.5+6x1)> — (0.333 + 6x»)°

A solution is Ax = [0.0064,0] (whereby dx; = 0.05%). But as one sees, the condi-
tion determines an infinite set of real solutions S, with real and complex elements.
In such cases, where the entire set of solutions can be characterized, it is possible to
find particular solutions, such as the solution that would minimize the 2-norm of the
vector Ax. See the discussions in Chaps. 4 and 6. <

Most of the time, we will want to use Theorem 1.1 to express the results of
our backward error analyses. Consider again the case of the inner product from
Eq. (1.19). The analysis we did for the three-dimensional case can be interpreted
as showing that we have exactly evaluated the product (x—|— Ax) -y, where each
perturbation is componentwise relatively small given by some 6, (we could also
have reflected back the error in y). Specifically we have Ax; = 63x1, Ax, = 63x2,
and Ax; = 6,x3. Thus, we have

with |Ax| < ¥,|x|. Thus, the floating-point inner product exactly solves the reference
problem for slightly perturbed data (slightly more in the case of complex data). As
a result:

Theorem 1.2. The floating-point inner product of two n-vectors is backward stable.

Note that the order of summation does not matter for this result to obtain. However,
carefully choosing the order of summation will have an impact on the forward error.

1.4.2 Condition of Problems

‘We have seen how we can reflect back the forward error in the backward error. Now
the question we ask is: What is the relationship between the forward and the back-

24 1 Computer Arithmetic and Fundamental Concepts of Computation

ward error? In fact, in modeling contexts, we are not really after an expression or a
value for the forward error per se. The only reason for which we want to estimate
the forward error is to ascertain whether it is smaller than a certain user-defined
“tolerance,” prescribed by the modeling context. To do so, all you need is to find
how the perturbations of the input data (the so-called backward error we discussed)
are magnified by the reference problem. Thus, the relationship we seek lies in a
problem-specific coefficient of magnification, namely, the sensitivity of the solution
to perturbations in the data, which we call the conditioning of the problem. The
conditioning of a problem is measured by the condition number. As for the errors,
the condition number can be defined in relative and absolute terms, and it can be
measured normwise or componentwise.

The normwise relative condition number K, is the maximum of the ratio of the
relative change in the solution to the relative change in input, which is expressed by

16|l [[43] [[(01) = 00 /o |
Krel = SUP = sup =sup——+——
B T2 I A aall
for some norm || - ||. As a result, we obtain the relation

(Y]] < Kiet || Sx]| (1.28)

between the forward and the backward error. Knowing the backward error and the
conditioning thus gives us an upper bound on the forward error.

In the same way, we can define the normwise absolute condition number K, as
sup, 14v1/jx|, thus obtaining the relation

[AY[| < Kaps || Ax]]- (1.29)

If x has a moderate size, we say that the problem is well-conditioned. Otherwise,
we say that the problem is ill-conditioned."' Consequently, even for a very good
algorithm, the approximate solution to an ill-conditioned problem may have a large
forward error.!? It is important to observe that this fact is totally independent of any
method used to compute ¢. What matters is the existence of k and what its size is.

Suppose that our problem is a scalar function. It is convenient to observe imme-
diately that, for a sufficiently differentiable problem f, we can get an approximation
of x in terms of derivatives. Since

lim @: lim ﬂf: lim Jx+Ax) = f(x) x :JCf/(x)

Ax—=0 80X Ax=0AX Yy Axs0 Ax fx) flx) 7’

the approximation of the condition number

o W) 1.30)

If()

' When « is unbounded, the problem is sometimes said to be ill-posed.

12 Note the “may,” which means that backward error analysis often provides pessimistic upper
bounds on the forward error.

1.4 Perspectives on Error Analysis: Forward, Backward, and Residual-Based 25

will provide a sufficiently good measure of the conditioning of a problem for small
Ax. In the absolute case, we have K5 = | f/(x)|. This approximation will become
useful in later chapters, and it will be one of our main tools in Chap. 3. If fis a
multivariable function, the derivative f'(x) will be the Jacobian matrix

Jf(-x17-x27"'7-xn) — [f/‘;xl af/‘;/\Z af/axn] 5

and the norm used for the computation of the condition number will be the in-
duced matrix norm || J|| = max|x—; [|[Jx||. In effect, this approximation amounts to
ignoring the terms O(Ax?) in the Taylor expansion of f(x+ Ax) — f(x); using this
approximation will thus result in a linear error analysis.

Though normwise condition numbers are convenient in many cases, it is often
important to look at the internal structure of the arguments of the problem, for ex-
ample, the dependencies between the entries of a matrix or between the components
of a function vector. In such cases, it is better to use a componentwise analysis of
conditioning. The relative componentwise condition number of the problem ¢ is the
smallest number x,,; > 0 such that

A(E) — £(0)]
VAR

|5 —xi|

bl 7

m < kye; max
1

where § indicate that the inequality holds in the limit Ax — 0 (so, again, it holds
for a linear error analysis). If the condition number is in this last form, we get a
convenient theorem:

Theorem 1.3 (Deuflhard and Hohmann (2003)). The condition number is submul-

tiplicative; that is,

Krel (g o h,x) < Krel (g,h(x)) : Krel(h7x) .

In other words, the condition number of a composed problem g o h evaluated near
x is smaller than or equal to the product of the condition number of the problem h
evaluated at x by the condition number of the problem g evaluated at h(x). O

Consider three simple examples of condition number.

Example 1.5. Let us take the identity function f(x) = x near x = a (this is, of course,
a trivial example). As one would expect, we get the absolute condition number

|f(a+Aa)—f(a)] |a+Aa—a|
A = = (131)

Kabs = SUP

As a result, we get the relation |Ay| < |Ax| between the forward and the backward
error. K,p, surely has moderate size in any context, since it does not amplify the
input error. <

Example 1.6. Now, consider addition, f(a,b) = a + b. The derivative of f is

f'(a,b)=1[9/aa ffap] =1 1].

26 1 Computer Arithmetic and Fundamental Concepts of Computation

Suppose we use the 1-norm on the Jacobian matrix. Then the condition numbers are
Kabs = ||f (a b)Hl_” [1 I]Hl_zand

Ell,

lla-+ 5]

,lal+1b]
L, =2l (132

rel =

(Since the function is linear, the approximation of the definitions is an equality.)
Accordingly, if |a+ b| < |a| + |b|, we consider the problem to be ill-conditioned. <

Example 1.7. Consider the problem
ai%{x|x2—a=0};
that is, evaluate x, where x> — a = 0. Take the positive root. Now here x = /a, so

| fla+Aa)— f(a) af'(a) &
o= f(a) =)

Thus, k¥ = % is of moderate size, in a relative sense. However, note that in the ab-

solute sense, the condition number is (\/a +Aa+ \/E) _1, which can be arbitrarily
large as a — 0. <

1 0a
— == (1.33)

We will see many more examples throughout the book. Moreover, many other ex-
amples are to be found in Deuflhard and Hohmann (2003).

1.4.3 Residual-Based A Posteriori Error Analysis

The key concept we exploit in this book is the residual. For a given problem ¢, the
image y can have many forms. For example, if the reference problem ¢ consists in
finding the roots of the equation &2 +x& +2 = 0, then for each value of x, the object
y will be a set containing two numbers satisfying £ 4+ x& 4 2 = 0 that is,

y={&|&*+xE+2=0}. (1.34)

In general, we can then define a problem to be a map

x—2 & o(xE) =0}, (1.35)

where ¢ (x,) is some function of the input x and the output &. The function ¢ (x, &)
is called the defining function and the equation ¢(x,&) = 0 is called the defining
equation of the problem. On that basis, we can introduce the very important con-
cept of residual: Given the reference problem ¢—whose value at x is a y such that
the defining equation ¢(x,y) = 0 is satisfied—and an engineered problem @, the
residual 7 is defined by

1.4 Perspectives on Error Analysis: Forward, Backward, and Residual-Based 27

r=0o(x,9). (1.36)

As we see, we obtain the residual by substituting the computed value ¥ (i.e., the exact
solution of the engineered problem) for y as the second argument of the defining
function.

Let us consider some examples in which we apply our concept of residual to
various kinds of problems.

Example 1.8. The reference problem consists in finding the roots of a>x® + ajx +
ap = 0. The corresponding map is ¢(a) = {x| ¢ (a,x) = 0}, where the defining equa-
tion is ¢(a,x) = axx® + a;x + ag = 0. Our engineered problem ¢ could consist in
computing the roots to three correct places. With the resulting “pseudozeros” X, we
can then easily compute the residual r = ay% + a; %+ ag. We revisit this problem in
Chap. 3. <

Example 1.9. The reference problem consists in finding a vector x such that Ax =b,
for a nonsingular matrix A. The corresponding map is ¢(A,b)={x|¢(A,b,x)=0},
where the defining equation is ¢(A,b,x) =b — Ax = 0. In this case, the set is a
singleton since there’s only one such x. Our engineered problem could consist in
using Gaussian elimination in five-digit floating-point arithmetic. With the resulting
solution X, we can compute the residual r = b — AX. We revisit this problem in
Chap. 4. <

Example 1.10. The reference problem consists in finding a function x(¢) on the in-
terval 0 < ¢t < 1 such that

x(t) = ft,x(1)) = > +x(t) — liox“(t) (1.37)

and x(0) = 0. The corresponding map is

(p(x(0)7f(t7x>) = {x(t> | ¢(x(0>7f(tvx)7x(t)) = 0}7 (1.38)
where the defining equation is
(Z)(x(O),f(t,x),x(t)) =x— f(t,x) =0, (1.39)

together with x(0) = O (on the given interval). In this case, if the solution exists and
is unique (as happens when f is Lipschitz), the set is a singleton since there’s only
one such x(¢). Our engineered problem could consist in using, say, a continuous
Runge—Kutta method. With the resulting computed solution 2(¢), we can compute

the residual r = 2 — f(¢,2). We revisit this theme in Chaps. 12 and 13. <q

Many more examples of different kinds could be included, but this should suffi-
ciently illustrate the idea for now.

In cases similar to Example 1.10, we can rearrange the equation r = £ — f(¢,£) to

have £ = f(£,%) 4 r, so that the residual is itself a perturbation (or a backward error)

28 1 Computer Arithmetic and Fundamental Concepts of Computation

of the function defining the integral operator for our initial value problem. The new
“perturbed” problem is

Px(0), f(t,x) + r(t,x) = {x(t) [§(x(0), f(t,x) +r(t,x),x(t)) =0}, (1.40)

and we observe that our computed solution £(¢) is an exact solution of this problem.
When such a construction is possible, we say that @ is a reverse-engineered problem.

The remarkable usefulness of the residual comes from the fact that in scientific
computation we normally choose ¢ so that we can compute it efficiently. Conse-
quently, even if finding the solution of @ is a problem of type C2 (as defined on p. 8),
it is normally not too computationally difficult because we engineered the problem
specifically to guarantee it is so. All that remains to do to compute the residual is
the evaluation of ¢(x,¥), a simpler problem of type C1. Thus, the computational
difficulty of computing the residual is much less than that of the forward error. Ac-
cordingly, we can usually compute the residual efficiently, thereby getting a measure
of the quality of our solution. Consequently, it is simpler to reverse-engineer a prob-
lem by reflecting back the residual into the backward error than by reflecting back
the forward error.

Thus, the efficient computation of the residual allows us to gain important in-
formation concerning the reliability of a method on the grounds of what we have
managed to compute with this method. In this context, we do not need to know
as much about the intrinsic properties of a problem; we can use our computation
method a posteriori to replace an a priori analysis of the reliability of the method.
This allows us to use a feedback-control method to develop an adaptive procedure
that controls the quality of our solution “as we go.” This shows why a posteriori
error estimation is tremendously advantageous in practice.

The residual-based a posteriori error analysis that we emphasize in this book thus
proceeds as follows:

1. For the problem ¢, use an engineered version of the problem to compute the
value § = @(x).

2. Compute the residual r = ¢ (x,¥).

3. Use the defining equation and the computed value of the residual to obtain an
estimate of the backward error. In effect, this amounts to (sometimes only ap-
proximately) reflecting back the residual as a perturbation of the input data.

4. Draw conclusions about the satisfactoriness of the solution in one of two ways:

a. If you do not require an assessment of the forward error, but only need to
know that you have solved the problem for small enough perturbation Ax,
conclude that your solution is satisfactory if the backward error (reflected
back from the residual) is small enough.

b. If you require an assessment of the forward error, examine the condition of
the problem. If the problem is well-conditioned and the computed solution
amounts to a small backward error, then conclude that your solution is satis-
factory.

We still have to add some more concepts regarding the stability of algorithms, and
we will do so in the next section.

1.5 Numerical Properties of Algorithms 29

But before, it is important not to mislead the reader into thinking that this type of
error analysis solves all the problems of computational applied mathematics! There
are cases involving a complex interplay of quantitative and qualitative properties
that prove to be challenging. This reminds us of the following:

A useful backward error-analysis is an explanation, not an excuse, for what may turn out to

be an extremely incorrect result. The explanation seems at times merely a way to blame a
bad result upon the data regardless of whether the data deserves a good result. (Kahan 2009)

Thus, even if the perspective on backward error analysis presented here is extremely
fruitful, it does not cure all evils. Moreover, there are cases in which it will not even
be possible to use the backward analysis framework. Here is a simple example:

Example 1.11. The outer product A = xy’ multiplies a column vector by a row vec-
tor to produce a rank-1 matrix. In floating-point arithmetic, the entries of the com-
puted matrix A will be @;; = x; ® y; = x;y;(1 + &) such that |§| < uy. However, it
is not possible to find perturbations Ax and Ay such that

A= (x+Ax)(y+Ay)".

See Problem 1.19. Consequently, it certainly cannot hold for small perturbations!
But then, we cannot use backward error analysis to analyze this problem. <

1.5 Numerical Properties of Algorithms

An algorithm to solve a problem is a complete specification of how, exactly, to solve
it: each step must be unambiguously defined in terms of known operations, and there
must only be a finite number of steps. Algorithms to solve a problem ¢ correspond
to the engineered problems @. There are many variants on the definition of an algo-
rithm in the literature, and we will use the term loosely here. As opposed to the more
restrictive definitions, we will count as algorithms methods that may fail to return
the correct answer, or perhaps fail to return at all, and sometimes the method may
be designed to use random numbers, thus failing to be deterministic. The key point
for us is that the algorithms allow us to do computation with satisfactory results,
this being understood from the point of view of mathematical tractability discussed
before.

Whether ¢(x) is satisfactory can be understood in different ways. In the literature,
the algorithm-specific aspect of satisfaction is developed in terms of the numerical
properties known as numerical stability, or just stability for short. Unfortunately
“stability” is perhaps the most overused word in applied mathematics, and there is
a particularly unfortunate clash with the use of the word in the theory of dynamical
systems. In the terms introduced here, the concept of stability used in dynamical
systems—which is a property of problems, not numerical algorithms—correspond
to “well-conditioning.” For algorithms, “stability” refers to the fact that an algorithm
returns results that are about as accurate as the problem and the resources available
allow.

30 1 Computer Arithmetic and Fundamental Concepts of Computation

Remark 1.3. The takeaway message is that, following our terminology, well-condi-
tioning and ill-conditioning are properties of problems, while stability and instabil-
ity are properties of algorithms. <

The first sense of numerical stability corresponds to the forward analysis point of
view: an algorithm is forward stable if it returns a solution y = @(x) with a small
forward error Ay. Note that, if a problem is ill-conditioned, there will typically not
be any forward stable algorithm to solve it. Nonetheless, as we explained earlier, the
solution can still be satisfactory from the backward error point of view. This leads
us to define backward stability:

Definition 1.1. An algorithm ¢ engineered to compute y = @(x) is backward stable
if, for any x, there is a sufficiently small Ax such that

J=flx+4x), x| <e.

As mentioned before, what is considered “small,” that is, how big € is, is prescribed
by the modeling context and, accordingly, is context-dependent. (]

For example, the IEEE standard guarantees that x®y = x(1 + 6x) 4+ y(1 + dy), with
|6x],|0y| < upm. Hence, the TEEE standard in effect guarantees that the algorithms
for basic floating-point operations are backward stable.

Note that an algorithm returning values with large forward errors can be back-
ward stable. This happens particularly when we are dealing with ill-conditioned
problems. As Higham (2002 p. 35) puts it:

From our algorithm we cannot expect to accomplish more than from the problem itself.

Therefore we are happy when its error f(x) — f(x) lies within reasonable bounds of the
error f(£) — f(x) caused by the input error.

On that basis, we can introduce the concept of stability that we will use the most.
It guarantees that we obtain theoretically informative solutions, while at the same
time being very convenient in practice. Often, we only establish that + Ay = f(x+
Ax) for some small Ax and Ay. We do so either for convenience of proof, or because
of theoretical limitations, or because we are implementing an adaptive algorithm
as we described in Sect. 1.4.3. Nonetheless, this is often sufficient from the point
of view of error analysis. This leads us to the following definition (de Jong 1977;
Higham 2002):

a b
Xz y=0(x) X y=0(x
sn \\\\\\\ SE <n = <e
X+ Ax P=0()
\ /Ay X+ Ax =0 (x+Ax)
@ (x+Ax)

Fig. 1.6 Stability in the mixed forward-backward sense. (a) Representation as a commutative
diagram (Higham 2002). (b) Representation as an “approximately” commuting diagram (Robidoux
2002). We can replace ‘~’ by the order to which the approximation holds

1.5 Numerical Properties of Algorithms 31

Definition 1.2. An algorithm ¢ engineered to compute y = @(x) is stable in the
mixed forward-backward sense if, for any x, there are sufficiently small Ax and Ay
such that

F+Ay=flx+A4x), [yl <ellyl, [[Ax] <nlx]. (1.41)

See Fig. 1.6. If this case, Eq. (1.41) is interpreted as saying that y is almost the right
answer for almost the right data or, alternatively, that the algorithm ¢ nearly solves
the right problem for nearly the right data.]

In most cases, when we will say that an algorithm is numerically stable (or just
stable for short), we will mean it in the mixed forward—backward sense of (1.41).
The solution to a problem @(x) is often obtained by replacing ¢ by a finite se-
quence of simpler problems @y, (s, ..., @,. In effect, given that the domains and
codomains of the simpler subproblems match, this amount to saying that

P(X) = Quo@u 100 @o(x). (1.42)

As we see, this is just composition of maps. For example, if the problem ¢(A,b) is to
solve the linear equation Ax = b for x, we might use the LU factoring (i.e., A = LU
for a lower-triangular matrix L. and an upper-triangular matrix U) factorization to
obtain the two equations

Ly = Pb (1.43)

We have then decomposed x = @(A,b) into two problems; the first problem y =
o1 (L,P,b) consists in the simple task of solving a lower-triangular system and
the second problem x = ¢, (U,y) consists in the simple task of solving an upper-
triangular system (see Chap. 4).

Remark 1.4. Such decompositions are hardly unique. A good choice of @1, @, .., ¢,
may lead to a good algorithm for solving ¢ in this way: Solve ¢ (x) using its stable
algorithm to get 1, then solve ¢, (¥) using its stable algorithm to get $,, and so on.
If the subproblems ¢@; and ¢, are also well-conditioned, by Theorem 1.3, it follows
that the resulting composed numerical algorithm for ¢ is numerically stable. (The
same principle can be use as a very accurate rule of thumb for the formulations of
the condition number not covered by Theorem 1.3). <

The converse statement is also very useful: Decomposing a well-conditioned ¢ into
two ill-conditioned subproblems ¢ = @, o ¢; will usually result in an unstable al-
gorithm for ¢, even if stable algorithms are available for each of the subproblems
(unless, as seems unlikely, the errors in @ and @, cancel each other out).

To a large extent, any numerical methods book is about decomposing problems
into subproblems, and examining the correct numerical strategies to solve the sub-
problems. In fact, if you take any problem in applied mathematics, chances are that
it will involve as subproblems things such as evaluating functions, finding roots of

32 1 Computer Arithmetic and Fundamental Concepts of Computation

polynomials, solving linear systems, finding eigenvalues, interpolating function val-
ues, and so on. Thus, in each chapter, a small number of “simple” problems will be
examined, so that you can construct the composed algorithm that is appropriate for
your own composed problems.

1.6 Complexity and Cost of Algorithms

So far, we have focused on the accuracy and stability of numerical methods. In fact,
most of the content of this book will focus more on accuracy and stability than
on cost of algorithms and complexity of problems. Nonetheless, we will at times
need to address issues of complexity. To evaluate the cost of some method, we need
two elements: (1) a count of the number of elementary operations required by its
execution and (2) a measure of the amount of resources required by each type of el-
ementary operation, or group of operations. Following the traditional approach, we
will only include the first element in our discussion.'® Thus, when we will discuss
the cost of algorithms, we will really be discussing the number of floating-point op-
erations (flops'*) required for the termination of an algorithm. Moreover, following
a common convention, we will consider one flop to be one addition, one multiplica-
tion, and one comparison.

Example 1.12. If we take two vectors X,y € R”, the inner product

n
X-y = Y Xiyi =X1y1 + X224+ Xp¥n
i=1

i=

requires 7 flops. Thus, the multiplication of two arbitrary n x n matrices requires 1>

flops, since each entry is computed by an inner product.

Note that the order of operations may affect the flop count. If we also take z € R",
there will be a difference between (xy”)z and x(y” z). In the former case, the first
operation is an outer product forming an n x n matrix, which require n> flops. It
is followed by a matrix—vector multiplication; this is equivalent to n inner prod-
ucts, each requiring n flops. Thus, the cost is n”> 4+ n> = 2n>. However, if we in-
stead compute x(y” z), the first operation is a scalar product (1 flops) and the second
operation is a multiplication of a vector by a scalar (n flops), which together require
2n flops. <

Note that sometimes the vectors, matrices, or other objects on which we operate will
have a particular structure that we will be able to exploit to produce more efficient
algorithms. The computational complexity of a problem is the cost of the algorithm

13 The second element, particularly memory resources, is very relevant in practice today; in fact,
possibly more relevant than the cost of floating-point, since one can demonstrate that computation
time can sometimes be accurately be accurately estimated from memory requirements alone.

14 In computer science, the acronym “flops™ is sometimes used to denote flop/s, or floating-point

operations per second. Here, the “s” only marks the plural of “flop.”

1.6 Complexity and Cost of Algorithms 33

solving this problem with the least cost, that is, what it would require to solve the
problem using the cheapest method.

Typically, we will not be too concerned with the exact flop count. Rather, we
will only provide an order of magnitude determined by the highest-order terms of
the expressions for the flop count. Thus, if an algorithm taking an input of size n
requires #* 2+ n+ 2 flops, we will simply say that its cost is #* 2+ O(n) flops, or even
just O(n?) flops. This way of describing cost is achieved by means of asymptotic
notation. The asymptotic notation uses the symbols ©,0,€Q 0 and ® to describe
the comparative rate of growth of functions of n as n becomes large. In this book,
however, we will only use the big-O and small-o notation, which are defined as
follows:

f(n)=0(g(n)) iff Jc>03IngVn>ng suchthat 0< f(n) <c-g(n)
o(g(n)) iff Ve>03ngVn>ny suchthat 0< f(n) <c-g(n).
(1.45)

=
S

N—
[

Intuitively, a function f(n) is O(g(n)) when its rate of growth with respect to n is the
same or less than the rate of growth of g(n), as depicted in Fig. 1.7 (in other words,
limy,_,e0 f(7) /g(n) is bounded). A function f(n) is o(g(n)) in the same circumstances,
except that the rate of growth of f(n) must be strictly less than g(n)’s (in other
words, lim,_,. /() /g(n) is zero). Thus, g(n) is an asymptotic upper bound for f(n).
However, with the small-o notation, the bound is not tight.

n n

Fig. 1.7 Asymptotic notation: f(n) = O(g(n)) if, for some ¢, cg(n) asymptotically bounds f(n)
above as n — oo

In our context, if we say that the cost of a method is O(g(n)), we mean that as n
becomes large, the number of flops required will be at worst g(n) times a constant.
Some standard terminology to qualify cost growth, from smaller to larger growth
rate, in introduced in Table 1.1. We will also use this notation when writing sums.
See Sect. 2.8.

34 1 Computer Arithmetic and Fundamental Concepts of Computation

This notation is also used to discuss accuracy, and work-accuracy relationships.
We will often want to analyze the cost of an algorithm as a function of a parameter,
typically a dimension, say n, or a grid size, say &. The interesting limits are as the
dimension goes to infinity or as the grid size goes to zero. The residual or backward
error will typically go to zero as some power of & or inverse power of n (sometimes
faster, in which case we say the convergence is spectral). If we have the error be-
having as ||A|| = O(kP) as h — 0, we say the method has order p, and similarly if
||A]] = O(n~P). The asymptotic O-symbol hides a constant that may or may not be
important.

Table 1.1 Common growth rates

The cost f(n) is The growth rate if the cost is
o(1) Constant

O(logn) Logarithmic

O(n) Linear

O(nlogn) Quasilinear

o(n?) Quadratic

o), k=2,3,... Polynomial

o(c") Exponential

One useful trick for measuring the rate of convergence of a problem is to use a
Fibonacci sequence'” of dimension parameters, measure the errors for each dimen-
sion (this is typically easy if the error is a backward error), and plot the results on a
log—log graph. This is called a work-accuracy diagram because the work increases
as n increases (usually as a power of n itself) and the slope of the line of best fit then
estimates p. We do this at several places in the book.

1.7 Notes and References

For a presentation of the classical model of computation, see, for instance, Davis
(1982), Brassard and Bratley (1996), Pour-El and Richards (1989), and for a specific
discussion of what is “truly feasible,” see Immerman (1999).

Brent and Zimmermann (2011) provides a recent extensive discussion of algo-
rithms and models of computer arithmetic, including floating-point arithmetic.

For an alternative, more formal presentation of the concepts presented here
to systematically articulate backward error analysis, see Deuflhard and Hohmann
(2003 chap. 2). The “reflecting back” terminology goes back to Wilkinson (1963).
For a good historical essay on backward error analysis, see Grear (2011).

Many other examples of numerical surprises can be found in the paper “Nu-
merical Monsters,” by Essex et al. (2000). The experience of W. Kahan in con-
structing floating-point systems to minimize the impact on computation has been

15 Why use a Fibonacci sequence or something like it? Because they grow exponentially, but not as
quickly as doubling the dimension does, and this often produces a more pleasing density of results
on the graph.

1.7 Notes and References 35

presented in a systematic way in the entertaining and informative talk (Kahan and
Darcy 1998). Many of his other papers are available on his website at http://
www.cs.berkeley.edu/~wkahan.

Problems

Theory and Practice

1.1. Suppose you’re an investor who will get interest daily (for an annual rate of,
say 5%) on $1,000,000. Your interest can be calculated in one of two ways: (a) The
sum is calculated every day, and rounded to the nearest cent. This new amount will
be used to calculate your sum on the next day. (b) Your sum is calculated only once
at the end of the year with the formula M; = M;(1 + ig)?, and then rounded to the
nearest cent.

1. Which method should you choose? How big is the difference? How much
smaller is it than the worst-case scenario obtained from mere satisfaction of
the IEEE standard? Explain in terms of floating-point error.

2. If the rounding procedure used for the floating-point arithmetic was “round to-
ward zero,” would you make the same decision?

Explain the correspondence between computational error and real-world operations.

1.2. An important value to determine in the analysis of alternating current circuits
is the capacitive reactance X¢, which is given by

1
2nfC’

where f is the frequency of the signal (in Hertz) and C is the capacitance (in Farads).
It is common to encounter the values f = 60 Hz while C is the range of picofarads
(i.e., 10712F). Given this, could we expect MATLAB to accurately compute the re-
active capacitance in common situations? Also, look up common values for the
tolerance in the value of C provided by manufacturers. Would the rounding error be
smaller than the error due to the tolerance? In at most a few sentences, discuss the
significance of your last answer for assessing the quality of computed solutions.

Xc=

1.3. Suppose you want to use MATLAB to help you with some calculations involved
in special relativity. A common quantity to compute is the Lorentz factor y de-
fined by

Y= —F7—>
VZ

1— =
)

where v is the relative velocity between two inertial frames in m/s and c is the

speed of light, which is nearly equal to 299,792,458 m/s. Will MATLAB provide

http://www.cs.berkeley.edu/~wkahan
http://www.cs.berkeley.edu/~wkahan

36 1 Computer Arithmetic and Fundamental Concepts of Computation

results sufficiently precise to identify the relativistic effect of a vehicle moving at
v = 100.000 km/h? Given the significant figures of v, is MATLAB’s numerical result
satisfactory? Compare your results with what you obtain from

(1-x3) """ =14+2L+00"Y). (1.46)

1.4. Computing powers 7" for integers n and floating-point z can be done by simple
repeated multiplication, or by a more efficient method known as binary powering.
If n = 2k + 1 is odd, replace the problem with that of computing z- z%*. If n = 2k is
even, replace the problem with that of computing z* - z*. Recursively descend until
k = 1. This can be done efficiently by looking at the bit pattern of the original n.
Estimate the maximum number of multiplications are performed.

1.5. Suppose a, b are real but not machine-representable numbers. Compare the ac-
curacy of computing (@ + b)? as written and computing instead using the expanded
form a” + 2ab + b*. Are both methods backward stable? Mixed forward—backward
stable? Would the difference between the methods, if any, become more important
for (a+b)", n > 2? Give examples supporting your theoretical conclusions. You
may use Problem 1.4.

1.6. Show that, for a # 0 and b # 0,

1.25n3 +n? +n—4=0(n’);
2. any linear function f(n) = an+ b is O(n*) and o(n¥) for integers k > 2;
3. no quasilinear function anlog(bn) is o(nlog(n)).

1.7. Rework Example 1.1 using five-digit precision as before but compute instead
exp(5.5) and then take the reciprocal. This uses the same numbers printed in the
text, just all with positive signs. Is your final answer more accurate?

1.8. Euler was the first to discover'© that

2

— 1 T
Y s ==—. (1.47)
Sk 6

Write a program in MATLAB to sum the terms of this series in order (i.e., start with
k =1, then k = 2, etc.) until the double-precision sum is unaffected by adding an-
other term. Record the number of terms taken (we found nearly 10%). Compare the
answer to pi’ /6 and record the relative accuracy. Write another program to evaluate
the same sum in decreasing order of the values of k. What is the relative forward
error in this case? Is it different? Is it significantly different? That is, is the accumu-
lation of error reduced for a sum of positive numbers if we add the numbers from
smallest to largest? (Higham 2002 1.12.3). Use the “integral test” from first-year
calculus to estimate the true error in stopping the sum where you did, and estimate
the number of terms you would have to take to get 7*/s to as much accuracy as you
could in double precision simply by summing terms.

16 For a historical discussion of this, see the beautiful book Hairer and Wanner (1996), if you like,
though it is not necessary for this problem.

1.7 Notes and References 37

1.9. The value of the Riemann zeta-function at 3 is

3 =Y, klg (1.48)

k>1

Quite a lot is known about this number, but all you are asked to do here is to compute
its value by simple summation as in the AiTaylor program and as in the previous
problem, by simply adding terms until the next term is so small it has no effect
after rounding. Use the integral test to estimate the actual error of your sum, and
to estimate how many terms you would really need to sum to get double-precision
accuracy. If you summed in reverse order, would you get an accurate answer?

1.10. Testing for convergence in floating-point arithmetic is tricky due to compu-
tational error. Discuss foreseeable difficulties and workarounds. In particular, you
may wish to address the “method” used in the function AiTaylor of this chapter,
namely to assume “convergence” of a series if adding a term ¢ to a sum s pro-
duces § = s @1t that, after rounding, exactly equals s. Consider in particular what
happens if you use this method on a divergent sum such as the harmonic series
H=1+412+1/3+1/4+---. (This is the source of many Internet arguments, by the
way, but there is a clear and unambiguously correct way of looking at it.)

1.11. Show that computing the sum Y7 | x; naively term by term (a process called
recursive summation) produces the result

Pri = ix,(l—f—&-), (1.49)
i=1

i=1

where each |5;| < Y41-;ifi > 2 and |8]| < 1 ifi = 1.

There are a surprising number of different ways to sum n real numbers, as dis-
cussed in Higham (2002). Using Kahan’s algorithm for compensated summation as
described below instead returns the computed sum

ixi(1+5,~), (1.50)

i=1

where now each |6;| < 2ty + O(npy), according to Higham (2002) (you do not
have to prove this). That is, compensated summation gains a factor of n in backward
accuracy.
The algorithm in question is the following:
Require: A vector x with n components.
S =X1
c:=0
for i from 2 to n do
yi=xi—c
t:=s5s+y
¢ := (t —s) — y % the order is important, and the parentheses too!

38 1 Computer Arithmetic and Fundamental Concepts of Computation

s:=t
end for
return s, the sum of the components of x

Using some examples, compare the accuracy of naive recursive summation and
of Kahan’s sum. If you can, show that Eq. (1.50) really holds for your examples
(Goldberg 1991).

1.12. For this problem, we work with a four-digit precision floating-point system.
Note that 1 + 1 =2 gives no error since 1 € FF. In exact arithmetic, !/3+1/3 = 2/3, but
floating-point operations imply that §(1+ ;) + 3(1+ &) = 0.667, from which we
find that 8; + 6, = (3-0.6667 —2) = 0.0001. Show that max(|8; |,|8|) is minimized
if |8 =8| =5-1073.

1.13. The following expressions are theoretically equivalent:

51 =102+ 17— 104130 — 10%

52 =10 —10+130— 10"+ 17

53 =10%417-10*"- 10+ 130

54 =102 10— 10+ 130417

55 =100 —10°4+17 — 10+ 130

s¢ = 102 + 174130 — 10%° - 10.
Nonetheless, a standard computer returns the values 0,17,120, 147,137, —10 (see,
e.g.,Kulisch 2002 [8]). These errors stem from the fact that catastrophic cancellation

takes place due to very different orders of magnitude. For each expression, find some
values of dx;, 1 <i <35, such that

s =x1(148x1) +x2(1 4 8x2) + x3(1 4 8x3) + x4(1 4 8x4) + x5(1 + Sx5)

with |0x;| < . In each case, find min|| 6x||.

1.14. Show that Egs. (1.9), (1.10), (1.11), (1.12), and (1.13) do not generally hold
for floating-point numbers.

1.15. Other laws of algebra for inequalities fail in floating-point arithmetic. Let
a,b,c,d € F (Parhami 2000 325):

1. Show that if a < b, then a @ ¢ < b & ¢ holds for all c; that is, adding the same
value to both sides of a strict inequality cannot affect its direction but may
change the strict “<” relationship to “<.”

2. Show thatifa < bandc <d,thena®c < bdd.

3. Show thatif c >0anda < b,thena®c < b®c.

Assume that none of a, b, ¢, and d are NaN.

1.16. Higham (2002 1.12.2) considers what happens in floating-point computation
when one first takes square roots repeatedly, and then squares the result repeatedly.

1.7 Notes and References 39

We here look at a slight variation, which (surprisingly for such an innocuous-looking
computation) has something to do with an ancient but effective algorithm known as
Briggs’ method (Higham 2004 chapter 11). Here, write a MATLAB function that
accepts a vector x as input, takes the square root 52 times, and then squares the
result 52 times: theoretically achieving nothing. Call your function Higham. The
algorithm is indicated below.

Require: A vector x
for i from 1 to 52 do
x:=/x
end for
for i from 1 to 52 do
xi=x2
end for
return a vector x, surprisingly different to the input

Then run

x = logspace (

y = Higham(x);
plot(x, y, 'k.', x, x, '--')

0, 1, 2013);
)
Explain the graph (see Fig. 1.8). (Hint: Identify the points where y = x after all.)

10

Fig. 1.8 The results of the code in Problem 1.16

1.17. We now know that unfortunate subtractions bring loss of significant figures.
In fact, the subtraction per se does not introduce much error, but it reveals earlier
error. On that basis, compare the following two methods to find the two roots of a
second-degree polynomial:

40 1 Computer Arithmetic and Fundamental Concepts of Computation

1. Use the two cases of the quadratic formula;

2. Using the fact that x;x_ = ¢ (where X4+bx+c=0,ie,a= 1), keep the root
among the two obtained with the quadratic formula that has the largest absolute
value, and find the other one using the equation x;x_ = c.

Which method is more accurate? Explain.

Investigations and Projects

1.18. Consider the quadratic equation x> +2bx + 1 = 0.

1. Show by the quadratic formula or otherwise that x = —b 4 v/ — 1 and that the
product of the two roots is 1.

2. Plot (—b+ v/b* —1)(—b — v/b* — 1), which is supposed to be 1, on a logarith-
mic scale in MATLAB as follows:

one = (-b-sqrt "2-1)) .*(-b+sqgrt(b.”2-1));

b = logspace(6, 7.5, 1001);
(b
plot(b, one, '.')

3. Using no more than one page of handwritten text (about a paragraph of typed
text), partly explain why the plot looks the way it does.
4. If b > 1, which is more accurately evaluated in floating-point arithmetic, —b —

Vb2 —1or —b+vb>—1? Why?

1.19. Consider the outer product of two vectors x € C" and y € C": P = xy/’ ¢ C"™*"
with p;j = x;y;. Show that if mn > m + n, then rounding errors in computing this

object cannot be modeled as a backward error; in other words, show that P is not
the exact outer product of any two perturbations X+ Ax and y + Ay.

1.20. Let p = ! 2. Consider the mathematically equivalent sums

= (1.51)
PN

(k+1)P —kP
=y kjk G (1.52)
k>1 +

1

= . (1.53)
,§lkp (k+1)P((k+1)P +kP)

Which of these is the most accurate to evaluate in floating-point using naive recur-
sive summation? Why?

1.21 (Zeno’s paradox: The dichotomy). One of the classical paradoxes of Zeno
runs (more or less) as follows: A pair of dance partners are two units apart and
wish to move together, each moving one unit. But for that to happen, they must first
each move half a unit. After they have done that, then they must move half of the

1.7 Notes and References 41

distance remaining. After that, they must move half the distance yet remaining, and
so on. Since there are an infinite number of steps involved, logical difficulties seem
to arise and indeed there is puzzlement in the first-year calculus class regarding
things like this, although in modern models of analysis this paradox has long since
been resolved. Roughly speaking, the applied mathematics view is that after a finite
number of steps, the dancers are close enough for all practical purposes!

In MATLAB, we might phrase the paradox as follows. By symmetry, replace one
partner with a mirror. Then start the remaining dancer off at so = 0. The mirror
is thus at s = 1. The first move is to s; = so + (1 — s9)/2. The second move is to
s2 = 81+ (1 —s1)/2. The third move is to s3 = s, + (1 —s3)/2, and so on. This
suggests the following loop.

s =0
i=0
while s < 1,
i = 1+1;
s =s + (1-s8)/2;
end
disp(sprintf ('Dancer_reached_the _mirror_in_%d_steps', i))

Does this loop terminate? If so, how many iterations does it take?

Chapter 2
Polynomials and Series

Abstract This chapter introduces the reader to the numerical aspects of polynomi-
als. In particular, we examine different polynomial bases such as the monomial, the
Chebysheyv, and the Lagrange basis; we provide algorithms to evaluate polynomi-
als in many of those bases and examine the different condition numbers in different
bases. We give a first look at the important problem of numerically finding zeros
and pseudozeros of polynomials. We give an algorithmic overview of the numerical
computation of truncated power series including Taylor series. Finally, we give a
brief discussion of asymptotics. N

Computation with polynomials is one of the pillars on which numerical analysis
stands. This book makes extensive use of polynomials, as do all numerical analy-
sis texts, but it takes advantage of several recent theoretical and practical advances
in this foundational discipline. It is perhaps somewhat surprising that there were
advances to be made in so venerable and well-studied an area, but there were,
and almost certainly there still are. This chapter introduces our notations, reviews
the basic ideas of the theory and practice of univariate polynomial computation,
and gives several facts and algorithms. Some of these algorithms and theorems
may be surprising even to people who have some numerical analysis background,
and so we recommend that everyone at least skim this chapter, for notation if
nothing else.

The related topic of series algebra is also one of the pillars of numerical analysis;
indeed, numerical analysis has often been dubbed nothing but “a huge collection of
applications of Taylor’s theorem.” We believe that it isn’t quite true (even when the
assertion is modified to include “—and, of course, linear algebra”). More properly,
the theory of Taylor series provides an interesting and common way of generating
polynomial approximations to functions. While Taylor series are of more than just
marginal value in this book, they aren’t central; but they are useful, and so a section
on how to compute them (which will most likely differ from the way the reader was
taught to compute them, in their first-year calculus class!) is included.

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods: 43
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0_2,
© Springer Science+Business Media New York 2013

44 2 Polynomials and Series

2.1 Polynomials, Their Bases, and Their Roots

Let us begin with a definition of the main object of this chapter.

Definition 2.1 (Polynomial). A polynomial is a function f : C — C such that, for
some nonnegative integer n and for some a; € C, 0 < k < n, with a, # 0,

@)=Y ad @.1)
k=0

for all z € C. The functions 1,z,z2,...,7" are called monomials, and the a; are
called the coefficients of the monomials for f(z). By convention, the identically
zero function f(z) = 0 is also called a polynomial, and in this case alone there is
no n with a, # 0. The degree of f(z), written deg f or deg, f, is the number n of
Eq. (2.1). Moreover, by convention, the degree of the identically zero polynomial
is —oo. <

The set of all polynomials of degree at most n forms a finite-dimensional vector
space. As we can see from their definitions, polynomials are linear combinations of
1,2,22,2%,...,2", for m < n. Moreover, the following fact is obtained:

Theorem 2.1. If a polynomial p(z) is identically zero, that is, if
ay+arz+a? + - +a " =0,

then a;, = 0 for all k such that 0 <k < n.

The proof is left as Exercise 2.1. As a result, the functions 1,z,z%,7°,...,7" are
linearly independent in C. Also, the functions 1,z,z%,z%,...,2" span the vector space
of polynomials of degrees at most n. Consequently, the monomials form an (n+ 1)-
dimensional basis. This basis is known as the monomial basis.

There are many other possible bases that can be used to represent spaces of poly-
nomials and, as we will see, what basis we use has important consequences in nu-
merical contexts. The most common bases will be discussed in Sect. 2.2. We can
define bases generally as follows.

Definition 2.2 (Basis). A basis for the space of polynomials of degree at most # is
a set of polynomials {¢(z)}}_, that may be written as

$o(z) 1

¢1(2) z
. | =B]. (2.2)

On (Z> z"
for some nonsingular (n+ 1) x (n+ 1) matrix B. In this case, ¢(z) will denote the
vector [¢o(z), ..., 0, (z)]” and z* will denote the vector [1,z,...,2"]7, and we will

simply write

2.1 Polynomials, Their Bases, and Their Roots 45
0(z) = BzX. (2.3)

When the degree of each polynomial in the basis is such that deg ¢ (z) = k, we say
that the basis is degree-graded. N

Moreover, polynomial bases have the properties we expect from bases, most notably
uniqueness of representation.

Theorem 2.2. The coefficients of f(z) in the basis {¢(z)}}_, are unique. That
is, if

fl@)= i ad(z) and f(z) = i by (2) (2.4)
k=0 k=0

forall z € C, then ¢, = by for0 <k <n.

The proof is left as Exercise 2.2.

The role of polynomials in scientific computation is such that we often want to
find their roots. Because of that, we now turn to some important facts about roots of
polynomials that will be used in what follows.

Definition 2.3 (Root, or Zero). A complex number r is called a root (or zero)
of f(z) if f(r) = 0. The multiplicity of r is the least number m such that
FU(r) # 0. It is guaranteed that m < n unless f(z) = 0. A root is called simple
ifm=1. <

One of the most important properties of polynomials is revealed by this theorem,
first proved by Gauss in 1797:

Theorem 2.3 (Fundamental theorem of algebra). If f(z) is a polynomial not
equal to a nonzero constant, that is, if degf # 0 (remember that deg f = —eo if
f =0 identically), then f has a root.

As Wilkinson (1984) notices,

[t]he Fundamental Theorem of Algebra asserts that every polynomial equation over the
complex field has a root. It is almost beneath such a majestic theorem to mention that in
fact it has precisely n roots.

Remark 2.1. The problem of finding all roots of a polynomial, and in particular find-
ing multiple roots when the data are ambiguous, is quite difficult'; we shall discuss
this material later. A good place for the impatient to start some extra reading is Zeng
(2004). <

We end this subsection with two important theorems that will be used later:

! With some definitions of “finding,” it is impossible for generic polynomials p(z) of degree 5 or
more. Degree-5 polynomials can be solved using elliptic functions, though, and there are other
tricks. Here, by “finding,” we mean finding a good approximation.

46 2 Polynomials and Series

Theorem 2.4 (Factor theorem). If f(z) has ¢ distinct roots ry, 1 <k < /¥, each with
multiplicity my (son = Zizl my), then

4
f(Z) =dan H(Z - rk>mk . (2.5)
k=1

Theorem 2.5 (Continuity). (Ostrowski 1940, 1973) The roots of a polynomial are
continuous functions of the coefficients ay (in any fixed basis). Simple roots are
continuously differentiable functions of the coefficients.

2.1.1 Change of Polynomial Bases

One sometimes wants to change a representation of a polynomial p from one basis
to another. In other words, given two bases {¢x(z)}]_, and {y(z)}}_,, what is the
relation between the coefficients a; and by in the expression

p(z) = i ardi(z) = i bryi(z)?
=0 =0

In theory, the answer straightforwardly follows from the definition of a basis: If we
are given a basis {¢k(z)}}_,. then it can be expressed as the product of a nonsin-
gular matrix B and the vector of monomials z¥. The same is true of another basis
{wi(z)}1_,- Thus, if we let ¢ (z) = B;z* and y(z) = B,z¥, the relation between the
bases is given by

¢(z) =B:B;'y(z). (2.6)

If we let @ = BB, ! denote the change-of-basis matrix,” we see that change of
basis is the following simple linear transformation:

¢o(2) Goo Go1 -+ don | [W0(2)
¢1(2) 010 011 -+ O | |Vi1(2)

2.7

0] 0w 01 - 0] Ln2)

When the basis is degree-graded, the change-of-basis matrix is triangular.
Finally, observe that the relation between the coefficients of the polynomial bases
is as follows. Since

2 Note that, depending on the author and conventions being used, @ or its transpose may refer to
the change-of-basis matrix.

2.1 Polynomials, Their Bases, and Their Roots 47

N
p(z) = [bo by -+ by] %;Z =lao a1 -+ a] ¢1;Z
Wn(2) $n(2)

:(Poo do1 -+ don| [Wo(2)

O10 11 -+ G| |Vi(2)

~[av ar - a] : 2.8)

_¢1.10 (Pnl o Oun Wn'(Z>

the relation between the coefficients of p(z) in the bases {¢x(z) }7_, and {wi(2) }_,
is given by

[b() bl bn] = [cl() ayp .- an] b . (2.9)
Thus, the same matrix @ relates the bases vectors ¢ and Y and their coefficients.

Remark 2.2. Changing the expression of a polynomial from one basis to another is
a mathematically valid operation, but we remark right now that it is not always (or
even often) a good thing to do numerically. This is why Wilkinson (1959a) claims
that if

the explicit polynomial [in monomial basis] has been derived by expanding some other
expression, then we may well question the wisdom of this step.

As we will see in Sect. 8.6, changing polynomial bases can amplify numerical errors
dramatically: even in the normwise sense, error bounds can grow exponentially with
the degree of the polynomial, and componentwise the relative errors can be infinitely
larger in one basis than in another. Changing the basis must be done with caution, if
at all. <

2.1.2 Operations on Polynomials

The following operations can be performed in any polynomial basis. To begin with,
the sum of two polynomials (say f and g, of degrees n and m) is a polynomial
(just add the coefficients), the negation of a polynomial is a polynomial (just negate
the coefficients), and the product of two polynomials is again a polynomial (in this
case, the coefficients of the product are bilinear functions of the coefficients of the
multiplicands, and the particular function depends on the basis, as we will see).
Polynomial division is a bit more complicated, but not that much. If f(z) =
0(z)g(z) + R(z) and degR < degg, we say that R(z) is the remainder on division
of f(z) by g(z); if R(z) is identically zero, then we say that g(z) divides (or divides
evenly into) f(z). This cannot happen if g(z) is identically zero. If g does divide
f, then we write g | f (which is read as “g divides f”). The polynomial Q(z) in
f = Og+ R is called the quotient. It is easy to prove that, given f(z) and g(z), the

48 2 Polynomials and Series

quotient and remainder are unique.? Polynomial division is merely mentioned in this
book, but is occasionally needed in applications. Again the details of the division
process depend on the basis being used, but note that it amounts to solving a linear
system of equations for the unknown coefficients of Q(z) and R(z), once the bilinear
functions of multiplication in that basis are known.

We also occasionally need the notion of relatively prime polynomials, and for
that we need the notion of greatest common divisor, or GCD. A polynomial d(z) is
a common divisor of f and g if both d | f and d | g. If d has the maximum possible
degree of all common divisors of f and g, we say that it is a GCD of f and g.
Every constant multiple of a common divisor is a common divisor, and so GCDs are
unique only up to multiplication by a constant.

The composition f(g(z)) is also a polynomial, of degree nm. It is sometimes
worthwhile to seek to rewrite a large polynomial F(z) as a composition F(z) =
f(g(2)); finding such f and g is called polynomial decomposition. We will not pur-
sue this further in this book, but it also finds use in some applications.

2.2 Examples of Polynomial Bases

Several polynomial bases are commonly encountered in applications. We have al-
ready encountered the monomial basis, and we will soon see why it should some-
times be avoided in applications. Before that, we examine some of the most common
bases that arise, and indicate some of their advantages and disadvantages.

2.2.1 Shifted Monomials

Shifted monomials (shifted by a constant a € C) are polynomials having the form
% (2) = (z—a), (2.10)

and the set {(z— a)*}7_ forms a basis. The expansion of a polynomial f(z) in this
basis is just its Taylor series:

()

n!

f@) =fla)+f(a)(z—a)+ -+ (z—a)". 2.11)
If a = 0, this is just the standard monomial basis, also called the power basis. The
change-of-basis matrix from the monomials to the shifted monomials is simple. For
n =3, this is

3 This is more generally true than we need here: the coefficients of our polynomials are complex
numbers or real numbers and this statement is true for more general objects as well.

2.2 Examples of Polynomial Bases 49

¢1 (Z) _ l—da o —a 1 0 O z
$(2) (z— a)2 a? —2a 10| |2 (2.12)
93(2) (z—a)’ —a® 3a®> -3a 1] |2

The change-of-basis matrix that goes from the shifted monomials to the monomials
is just the inverse of this matrix (and that it exists and is nonsingular for any a means
that the shifted monomials are indeed a basis).

Remark 2.3. Multiplication of polynomials expressed in the monomial basis is a fa-
miliar operation. Multiplication of two polynomials expressed in an arbitrary (but
common to the two polynomials) shifted monomial basis may be done by embed-
ding them in Taylor series and using the methods of Sect. 2.6. This can also be done
rapidly by use of the fast Fourier transform (FFT) (see Chap. 9). <

As we have seen in Chap. 1, it is important to compute sums in a stable and
predictable way when we use computer arithmetic. For polynomials expressed in
the shifted monomial basis, we can use Horner’s method, which can be written as

1) =@+ =) (1@ + -a) (552

te—a) (---+(z—a) (f(’:g(a)>))) . (2.13)

The key difference with the use of Eq. (2.11) is that we associate terms in a way
that does not require us to compute higher powers of z — a. In addition, as in this
formula, it is generally preferable to include the factorials in the Taylor coefficients.
For a polynomial of degree n, this formula requires O(n) flops, where explicitly
forming each terms (z — a)* requires more.

Assuming that the coefficients of f in this basis are stored in a vector ¢ indexed
from 1 to n+ 1, so that c (1) = f(a), c (2) = f'(a), c (3) = fP(@/2, and so on,
one can use a simple MATLAB program to carry out the computation of f(z) based
on Horner’s method:

p = c(n+l) xones (size(z)) ;
za = z - a;
for i=n:-1:1,

p = za.*p + c(i);
end;

Note that, in this code, the coefficient of the power-n term is the last component of
the vector of coefficients, as opposed to other commands such as MATLAB’s built-in
command polyval, where the order is reversed. Because polyval can be simply
adapted to use a shifted monomial basis, we show how to use it in an example.

Example 2.1. A monomial basis polynomial is entered as a vector of coefficients
(in decreasing order of exponent, and zero coefficients must be explicitly included).

50 2 Polynomials and Series

Consider the polynomial p(z) = z* — 42> + 32> —2z+ 5 on, say, 0 < z < 2.* Thus,
we simply need to execute

p=1[01, -4, 3, -2, 51;

z = linspace(0, 2, 101);

pz = polyval(p, z);

plot(z, pz, 'k')

This code generates a graph in which we see, by eye, a zero of p(z) nearz =1.5. <

Instead of just evaluating a polynomial, one can change a polynomial from the
monomial basis to a shifted monomial basis (that is, a Taylor series) by using an ex-
tension of Horner’s method called synthetic division. This method, which is widely
discussed in the literature, is described by Algorithm 2.1. We will use this algorithm
occasionally, and so we will discuss its accuracy later, in Sect. 2.2.1.2.

Algorithm 2.1 Synthetic division of a polynomial f(z) = X/} _oc;(z— a)/ expressed
in a shifted monomial basis, evaluating f(z) and its first k derivatives at z = b, re-
turning f = /9 0)/k

Require: The expansion point a € C, a vector of monomial coefficients ¢ € C"*! (indexed from
0 to n) such that f(z) = ¥j_gcj(z— a)’, anew expansion point b and a desired number k > 0 of
Taylor coefficients of f(z) at z = b.

Jo:=cy
fax =0
for j=n—1:—1:0do
for i=min(k,n— j):—1:1 do

fi=b-a)fi+ fi
end for
fo=(b—a)fo+f;
end for

return The (k+ 1)-vector f such that f(z) = 2];:0 fi(z—b)! +0(z—b)*1. Thatis, f; = 19 ®)/.

Example 2.2. Consider Example 2.1 again, and let us expand this polynomial about
z = 1.5, where we saw our approximate zero. We used MAPLE and its series
command to effect Algorithm 2.1, and thus found that

p(z) =0.3125—-6.5(z—1.5) = 1.5(z— 1.5)2+2(z— 1.5)° + (z— 1.5)*. (2.14)

This is a new expression for the polynomial, this time expanded aboutz=1.5. <«

2.2.1.1 Newton’s Method for Polynomials

As an aside, we briefly introduce Newton’s method for finding zeros of polynomi-
als. This will be taken up in greater detail and generality in the next chapter. Newton

4 This example is drawn from Henrici (1964). In Exercise 2.5, you will be asked to consider instead
Newton’s example, p(z) =z —2z—5.

2.2 Examples of Polynomial Bases 51

suggested that we could use the first two coefficients of the shifted polynomial as
a linear approximation to the polynomial and could be used in an attempt to find
a root: In this example, setting the linear approximation 0.3125 - 6.5 (z—1.5) =0
yields z— 1.5 = 03125 /5.5 = 0.048076923, suggesting that we should shift our expan-
sion point again, this time to z = 1.5+ 0.048076923 ~ 1.548. When we do so, we
find

p(z) = —0.002730 — 6.630 (z — 1.548) — 1.198 (z — 1.548)°
+2.192 (z— 1.548)* + 1.0 (z — 1.548)"
and since now p(1.548) is smaller than before, we begin to see that the process
might work in an iterative fashion.

In general, suppose that we have expanded the polynomial about z = r, where
1y is our current approximation of the root:

p(2) = p(r) +p'(r) (z— 1) + Oz —). (2.15)

Using Newton’s idea, we solve this linear approximation (which is possible if
p'(ry) #0) to find

. v
2= — p,(N (2.16)
p'(r)
and it makes sense to name this approximation ry:
p(r
Fesl = Fp— ,() (2.17)
p'(r)

This is, of course, Newton’s method, which we will take up further in Chap. 3. For
now, note two things: First, each approximation 7y is the exact root of

p(z) —p(n) =0, (2.18)

and so if p(r;) (which we call the residual) is small, then we have found the exact
solution of a nearby polynomial, and, second, we have found that this process is apt
to fail near multiple roots because if both p(z*) and p’(z*) = 0, then since ry — z*,
both p(r;) — 0 and p’(r;) — 0, making the solving step problematic.

Continuing our example® just one more iteration, with r;, = 1.548 in Eq. (2.15),
we have rp | =1.548 — %, that is, ryy| ~ 1.5475883. Shifting to the basis

centered here using synthetic division, we have

p(z) = —0.00000024948774 — 6.6287459395492 (z — 1.5475883) — -+, (2.19)

5 If you try to reproduce these computations, your results may differ because we were somewhat
cavalier in rounding intermediate results. Keeping all figures—as one should—will make the re-
sults slightly different.

52 2 Polynomials and Series

and we notice that 1.5475883 is an exact root of the nearby polynomial p(z) +
2.494877...x 107"

2.2.1.2 Errors in Synthetic Division
We refer to Higham (2002) for a complete accuracy analysis of synthetic division,

but we state a result here connecting rounding errors and the forward error via a
condition number. Let B/)(z) be defined as

, (2.20)

BY(z):= Y K
k=j k

®) (4 .
f '()“(Z—G)k'l

where kl, read as “k to the j falling,” is defined as

; k!
K=—"—"—=klk—1)k—=2)---(k—j+1

G = Kk Dk=2) ()
(see Graham et al. 1994). Then the difference between the reference value of
the derivative f\/)(c) and the value computed by synthetic division, say 7;, is
bounded by

‘ F9 () = 7| < O(nar)BY (02) + O(udy) - 221

We will see later in this chapter many more examples of such B(z) functions, which
are called condition numbers for evaluation of polynomials. In some sense, the
above theorem, which (to first order) bounds the forward error |f () — 7j| by the
product of a condition number and a backward error (here O(niy)), is as important
to numerical analysis as F' = ma is to physics.

Changing from bases other than the monomial basis to shifted monomials is
sometimes useful (again, numerically this has to be done with caution, as we will
see). We pursue this in the exercises.

2.2.2 The Newton Basis

We have seen that the shifted monomial basis is defined in reference to a given
data point a. Similarly, the Newton basis is defined in reference to a set of points,
which we call nodes. The Newton basis on the n + 1 nodes 1y, 7y, T, ..., Ty 1S
given by

{oc(2) o = {liz— 10, (z—T0) (2= T1),-. -, (2= T0) (2= T) - (2— Tu1) } »

or, more compactly,

2.2 Examples of Polynomial Bases 53

k—1 n
{0(2) oo = {H(z— Ti)} : (2.22)

i=0 k=0

Note that, by convention, if m > n, a product [T/, is just 1. Note also and especially
that one node, namely, 7,, is omitted from any mention in this basis. We remark that
this permits choice: One speaks of “a” Newton basis, not of “the” Newton basis.
There is a further choice involved, namely, the ordering of the nodes; once one of
the n 4 1 nodes has been omitted, there is a further n! different orderings possible
if the nodes are distinct. Some of them are numerically better than others, as we
will see.

Newton bases are typically used with what are called divided differences (see
Problem 8.13). In fact, de Boor (2005) defines divided differences as the coefficients
of f(z) expressed in a Newton basis. Though divided differences and Newton bases
have a rich theory and practice, they will only rarely be used in this book because
there are better choices available. Trefethen (2013 p. 33) takes a similar stance:

Many textbooks claim that it is important to use this approach for reasons of numerical
stability, but this is not true, and we shall not discuss the Newton approach here.

They are the preferred basis in de Boor (1978), because they are convenient, inex-
pensive, and, for low degrees, accurate. However, as we will see, the barycentric
Lagrange basis that we prefer is much better conditioned for larger degrees on good
sets of nodes. After introducing the Lagrange basis, we will return to this point.

2.2.3 Chebyshev Polynomials

The Chebyshev polynomials can be defined by
i (z) = Ti(z) = cos(kcos ™' z) (2.23)

for k=0,1,2,.... It is easy to see that, for k = 0 and k = 1, these are indeed poly-
nomials:
To(z) = cosO =1 (2.24)
Ti(z) = coscos 'z =1z. (2.25)

Moreover, by applying the angle sum and angle difference formula for cosines to
cos((k+41)cos™! z) and cos((k — 1)cos™!z), it follows that, for k > 1,

Tiy1(2) = 22T (2) — Ti-1(2) - (2.26)

Hence, all ¢(z) are polynomials. Figure 2.1 displays the first nine Chebyshev poly-
nomials.

A well-known algorithm to compute the values of polynomials expressed in this
basis is provided in Rivlin (1990 156-158). It turns out that this algorithm is called

54 2 Polynomials and Series

Fig. 2.1 The first nine Chebyshev polynomials Ty(z) = 1, T1(z) = z, and T,11(z) = 22T, (z) —
T,—1(2). See Exercise 2.33

the Clenshaw algorithm, which we take up after mentioning other polynomials be-
longing to an important class to which Chebyshev polynomials belong, namely,
orthogonal polynomials. In the real case, Chebyshev polynomials can be shown to
be orthogonal with respect to the inner product

' s

,8) = 2.27
(fra)=| A== (2.27)
In the complex case, they are also orthogonal. The zeros of T,,(z) are
k—1
Q”::cos(fi——la> (2.28)
n

fork=1,2, ..., n. The proof is left as Exercise 2.4. Chebyshev polynomials are also
orthogonal with respect to the following discrete inner product:

()= 3 FEM)eE™). (2.29)
j=1

See Rivlin (1990 Exercise 1.5.26, p. 53) for a complete enumeration of all cases of
(Tx, Tp). You will be asked to prove in Exercise 2.6 that this discrete orthogonality
relation allows easy computation of the coefficients of the expansion of a degree-
(n—1) polynomial p(z) if you can evaluate it on the zeros of 7,(z):

A
M@=§%@+MH@+~+AHH4@7 (2.30)

2.2 Examples of Polynomial Bases 55

where®
2 & n
A= P T(E"), 2.31)
j=1
form=20, 1, ...,n—1, can be computed with O(nz) floating-point operations.

Another and in some sense more interesting set of discrete points is called the
Chebyshev—Lobatto points or Chebyshev extreme points, which are the places where
T,.(z) achieves its maximum and minimum values on —1 < z < 1. The endpoints
are special, and are always included, because 7,,(1) = 1 and T,(—1) = (—1)", as
you may easily prove by the definition 7;,(z) = cos(ncos™!z). The interior (rela-
tive) extrema are the zeros of 7),(z) and there can be at most n — 1 of them. Since
cos(nB) = £1 at these extrema, we can verify that

km
e =n") = cos — (2.32)
n
fork=0, 1, ..., n. This gives n+ 1 extrema on the interval, including the endpoints

with £k = 0 and k = n, and thus it must include all possible extrema. Note that both
& and 1y, run “backward” across the interval, which is sometimes inconvenient but
only trivially so.

Chebyshev polynomials have a large collection of interesting and useful prop-
erties, some of which will be discussed when they come up naturally in the book.
Chebyshev polynomials are the favorite of many numerical analysts. In particu-
lar, the Chebfun package is founded on the properties of Chebyshev polynomials
(it uses the 7, not the &). We will see several examples of its use in this book.
Chebfun uses the syntax chebpoly (n) to pick out a Chebyshev polynomial. See
Exercise 2.7.

2.2.4 Other Orthogonal Polynomials

There are a great many other examples of orthogonal polynomials. The orthog-
onal polynomials implemented in MAPLE include the Chebyshev polynomials,
where the name ChebyshevT is used, with the syntax ChebyshevT (n, z).
Other orthogonal polynomials implemented include the Gegenbauer polynomials
(GegenbauerC), the Hermite orthogonal polynomials’ (Hermi teH), and the Ja-
cobi polynomials (JacobiP (n,a,b, z)). The latter include as a special case
(JacobiP(n, 0, 0, z)), more usually called the Legendre polynomials; these will
be used in Chap. 10 for Gaussian quadrature. Maple has another package for the ma-

6 Note that we use Ap/2 in equation (2.30) so that formula (2.31) can be the same form=0,1,2,. ..

7 They will almost never be used in this book and are not to be confused with the Hermite interpo-
lational basis polynomials, which will be used.

56 2 Polynomials and Series

nipulation of orthogonal series, namely, the OrthogonalSeries package, which
is quite extensive.

A common characteristic of orthogonal polynomials is that they generally satisfy
a three-term recurrence relation for n > 2, which we write here as

0 10n(2) = (2= Bu—1)Pn—1(2) — Yo—10n—2(2) - (2.33)

As we saw above, the recurrence for the Chebyshev polynomials has ¢, 1 = ;-1 =
1/ and B,—1 = 0 for all n. However, for other classes of polynomials, there is a
dependence on n. For instance, the recurrence relation for the Jacobi polynomials
starts with Py(z) = 1, Py(z) = (@=b)/2+ (1 + (a+b))z, and thereafter

— 2n(n+a+Db)
an—l_(2n+a+b—l)(2n+a+b>
Bu1 = (b—a)(a+Db)
n—1 (2n+d+b—2)(2n+a+b>
_ 2(n+a—1)(n+b—1)
ynil_(2n+a+b—1)(2n+a+b—2)' (2.34)

In the special case a = b = 0, for the Legendre polynomials, we have Py(z) = 1,
Pi(z) =z, and

n n—
o1 Per=0 and p=o—

Oy = (2.35)
The first 10 Legendre polynomials are plotted in Fig. 10.4 of Chap. 10.

Recent uses in mathematical handwriting recognition of generalizations of or-
thogonal polynomials—namely, the Legendre—Sobolev polynomials, which include

derivatives in their inner product—can be seen in Golubitsky and Watt (2009) and
in Golubitsky and Watt (2010). See Exercise 4.28.

2.2.5 The Clenshaw Algorithm for Evaluating Polynomials
Expressed in Orthogonal Bases

The Clenshaw algorithm generalizes the idea used in Horner’s method to certain or-
thogonal polynomial bases. If the elements of the polynomial basis ¢ (z) are related
by a three-term recurrence relation

O (2) = o (2) Px—1(2) — Bedr—2(2) (2.36)

(the notation has changed from the previous section, to match the paper Smoktunow-
icz (2002), which we reference ahead) and ¢o(z) = 1 and ¢;(z) = 04(z), where,
for all the examples we are concerned with, the oy (z) are linear polynomials in
z and the f; are constants, then a polynomial p(z) expressed in this orthogonal
basis as

2.2 Examples of Polynomial Bases 57

p(2)= i brdi(2) (2.37)
k=0

can be evaluated in O(n) flops by the Clenshaw algorithm, as follows.

Algorithm 2.2 The Clenshaw algorithm

Require: A value z, a nonnegative integer n, and a sequence by, by, ..., b, of coefficients
Require: The functions o (z) and the constants f;

for k fromn—1by —1to 1 do
Vi 1= b+ 01 (2) Vi1 — Brerayis2
end for
P = (Yo — Bay2)¢0(2) +y1¢1(2)
return The value of p(z) = X}_, be¢x(z)

To see that this algorithm is correct, note that a loop invariant for the algorithm
is the sum

k-1
P(2) = —Brs1yis1O—1(2) + vk de(2) + D bioi(2) - (2.38)
Jj=0

That is, before the start of the loop i.e. when k = n, this statement is trivially true
because yi1; = 0, and the update step changes the value of what will be the next

yi and replaces yii 1 @xr1(z) With vy 1 (drr1(2) — r196(2)) o —Bry1yis19x-1(2)-
The process finishes when there are only two terms left, which sum to p(z) = (bg —

Bay2) o (z) +y101(z) by the loop invariant.
Now, let us address the numerical stability of this method for the evaluation of
polynomials:

Theorem 2.6 (Backward Stability of the Clenshaw Algorithm). Under natural
assumptions, evaluation of this algorithm is backward stable: that is, for a given z,
the algorithm gives the exact evaluation of p + Ap, where the coefficients of p +
Ap are only slightly perturbed: by + Aby, where, with a modestly growing function
L of n,

|Aby| < umL|b (2.39)

in the best scenario (this holds only for some bases and polynomials with nonin-
creasing coefficients by), and

[Ab|w < umL]|b|- (2.40)
in the usual case.

In particular, for the Chebyshev polynomials, we have L = O(n?) in Eq. (2.39),
showing that the Chebyshev basis evaluated by the Clenshaw algorithm has
excellent backward-stability properties. The proof of this theorem is given in
Smoktunowicz (2002).

58 2 Polynomials and Series

2.2.6 Lagrange Polynomials

We now look at a very important nonorthogonal basis family, the Lagrange bases.
These are different to the previously discussed examples in that they are not degree-
graded: Each element of a particular Lagrange basis has full degree, here n. Given
n+ 1 distinct nodes T, 0 < k < n, define the numbers f; by the partial fraction
expansion

= =y) (2.41)

Then, solving for the numbers f3;, we obtain

n

B = H(rk —1)7 " (2.42)
o

Definition 2.4 (Lagrange polynomials). Given a set of nodes {7;}}_, and the re-
sulting numbers f,

n
& (z) = Le(2) = Be [[z — 7)) (2.43)
Jj=0
J#k
is the kth Lagrange polynomial. <

Note that, using the Kronecker delta, we can write

Li(tj) = 8} = {(1) jii 7 (2.44)

and so for any polynomial f(z) of degree at most n,

n

f(2) =Y f(1)L;(z). (2.45)

J=0

Theorem 2.7. The set of polynomials Lj(z), for 0 < j <n, forms a basis if the nodes
T, 0 < k <n, are distinct.

Proof. The theorem is equivalent (by definition) to the statement that the change-
of-basis matrix A in [Lo(z),L1(2),.-.,La(z)] = [1,2,2%,...,2"]A is nonsingular. That
in turn is equivalent to the statement that the change-of-basis matrix in the other
direction [17z722,...,z"] = LB is nonsingular, and this is easier. By the above
formula, the entries of B are By ; = ‘L','(’ . It is an (interesting) exercise to show
that detB = [];-«(7; — %), which is nonzero when the nodes are distinct. See
Exercise 4.14. f

2.2 Examples of Polynomial Bases 59

Corollary 2.1. The only polynomial of degree at most n that satisfies f(1;) = 0 for
n+ 1 distinct nodes 71;, 0 <i < n, is the identically zero polynomial.

Proof. Since the L;(z) form a basis, we may express an arbitrary polynomial of
degree at most n as 2;?:0 a;L;(z). Evaluating this polynomial at each of 7 in turn
gives a; = 0, uniquely resulting in the identically zero polynomial. f

Remark 2.4. This corollary is part of the normal proof that interpolants are unique;
we here see, doing things in a different order, that it is a corollary of the theorem we
proved directly above. That is, this proof is done in a different order than usual but
is equivalent. <

We will see shortly another notation for Eq. (2.45): With p; := f(1;),

ZW_(Z) Bi=win) 3, 2P (2.46)

n n
flz) = ig(,)Ple (2) = ig(,)l)z T &
This is the first barycentric form of a polynomial expressed in the Lagrange basis.
We will see the second barycentric form in the exercises in this chapter and again in
Chap. 8. The coefficients in the expansion of f(z) in the Lagrange basis on 1o, ..., T,
are simply the values f(7;).

The Lagrange polynomials are wonderfully useful, and we will use them every
chance we get. An algorithm to compute polynomials in this basis is provided by
Berrut and Trefethen (2004) (see Algorithm 2.3).

Algorithm 2.3 First barycentric form for evaluation of a Lagrange interpolating
polynomial
Require: A value z, an integer n > 0, a vector of coefficients pg, a vector of nodes 7, and a
precomputed vector of barycentric weights B
if z is identical to any 7 then
return py
end if
w=1
for j=0:n do
w=w-(z—1;)
end for
p=0
for j=0:n do
p=p+Bipj/(z—7))
end for
return w-p

2.2.6.1 Numerical Stability of the Barycentric Form

The numerical stability for Algorithm 2.3 is interesting. The paper (Higham 2004)
shows that evaluation of this (first) barycentric form is nearly perfectly backward
stable: The computed p(z) satisfies

60 2 Polynomials and Series
p) =TG- L”", =w(z)), L”’, (2.47)

where each perturbed p; satisfies
pi=pi(1+3)), (2.48)

such that [§;] < ¥5(,41)- That is, provided n isn’t so large that it is O(!/u), the com-
puted sum is the exact value of a polynomial passing through only slightly different
data values.

Remark 2.5. This result is one of the most important backward-stability results pre-
sented in this book. What the paper (Higham 2004) provides is a guarantee that eval-
uating the first barycentric form will always produce the exact value of a polynomial
of the same form as the one we started with, with at most only slightly perturbed
data. This result should be compared with the similar result quoted from Smok-
tunowicz (2002) for orthogonal polynomials, and contrasted with the results of the
forward error analysis for Horner’s method presented in Sect. 2.2.1. <

2.2.6.2 Change-of-Basis from a Lagrange Basis

The change-of-basis matrices are deceptively simple from a Lagrange basis. We
say “deceptively” because the change-of-basis itself may be ill advised because of
difficulties related to the conditioning of the matrix, as we will see. However, if it
is desired (in spite of misgivings) to perform the change of basis, it is, in theory,
simple to carry out. Because any polynomial can be written using Eq. (2.45), each
element of a different basis, say ¢ (z), may be written as

D) =3 o)L (2.49)
=0

That is, the change-of-basis matrix from a Lagrange basis is just (in the four-by-four
case for simplicity)

do(2) ®0(0) do(T1) ¢0(72) do(73)] [Lo(2)
$1(z)| _ |¢1(m0) ¢1(71) ¢1(72) 91 () | |Li(2) (2.50)
t(2) $2(10) 92(71) d2(72) $2(73) | |L2(2) |’ '
$3(2) 03(10) ¢3(T1) 93(72) 3(73) | | L3(2)
or, more compactly,
0(z) = VL(2). (2.51)

In the particular case when ¢ (z) = 7K, V is called a Vandermonde matrix, and it is
nonsingular precisely when the nodes 7; are distinct. For other ¢(z), V is called
a generalized Vandermonde matrix (see, for example, Problems 8.36 and 8.37).

2.2 Examples of Polynomial Bases 61

The Vandermonde matrices occurs often enough that, for emphasis, we will display
one here:

1 1 1 1
T 71 » T3
2222 (2.52)
5% 0

T 1 & 413

That matrix can be generated by the MAPLE command

V := Matrix(4, 4,
shape = Vandermonde [[tau[0], taull], taul2], taul3]] 1);
latex(LinearAlgebra:-Transpose (V)) ;

The convention of needing the transpose to get a “Vandermonde” matrix in this
notation agrees with the use in Higham (2002); however, in Chap. 8, we often use
the alternative.

In Chap. 8, we will extend the Lagrange basis to the Hermite interpolational ba-
sis, which allows some of the nodes 7 to coalesce or “flow together,” in which case
we talk about confluency. This basis is quite distinct from the Hermite orthogonal
basis mentioned briefly earlier, and is not to be confused with it. For change of bases
to other bases, one talks about confluent Vandermonde matrices. This will be taken
up later.

Multiplication and division of polynomials expressed in a Lagrange basis are not
yet widely encountered in practice®; but multiplication is simple enough, provided
there are enough data to represent the product (one needs nm+ 1 points if the degrees
of the multiplicands are # and). The entries are simply f(7;)g(7;).”

2.2.6.3 The Degree of Difficulty

Given a polynomial expressed in a Lagrange basis, what is its degree? Clearly, if we
have enough points to capture the polynomial (say n + 1), then the degree is at most
n. But it may very well be less than that, and knowledge of the actual degree can
be quite important. We return to this problem in Sect. 11.8, but for now we note a
lemma that you are asked to prove in Exercise 2.12.

Lemma 2.1. If a polynomial f(z) of degree at most n has the values py, on the n+ 1
distinct nodes T, for 0 < k < n, then the degree of f(z) is exactly n if

> Bipe #0, (2.53)
k=0

where the By are the barycentric weights of the nodes.

8 We believe this will change, as the realization that working directly in a Lagrange basis is a good
idea gradually percolates through the communities.

9 Division with remainder, on the other hand, requires solving an overspecified linear system, in
order to enforce the degree constraints; see Amiraslani (2004).

62 2 Polynomials and Series

Proof. Left as Exercise 2.12.

What happens if this is not zero, but small relative to || p||, the norm of the vector
of values of f(z) on the nodes? Does this mean that f(z) is “nearly” of lower degree?
We do not give a complete answer to this, but rather note only that the generic case
with values p; on nodes 7; is that the degree is exactly n; if the values of a low-
degree polynomial are perturbed by arbitrarily small amounts, then almost certainly
the perturbed values are the exact values of a degree-n polynomial.

But how close are the given values, then, to the values of a lower-degree poly-
nomial? This question has been addressed (using the lemma above) in Rezvani and
Corless (2005), and using the witness vector in Holder’s inequality, we can find an
analytic solution in the case the nearby polynomial is of degree one less than n,
in a manner similar to what we use later in Theorem 2.9. For still-lower degrees,
a computational procedure is available. We take a different tack here and give an
alternative characterization of the degree of a polynomial.

In exact arithmetic, a polynomial of degree n has exactly n complex roots, count-
ing multiplicity. But numerically, the condition number B(z) grows as |z| grows, so
the location of large roots is often very sensitive to perturbations. If a polynomial
p(z) can be perturbed by a small amount in such a way that some large roots go out
to infinity, then the original polynomial is somehow close to a lower-degree polyno-
mial. More precisely, we define the e-degree of a polynomial p(z) = Y}_,ck Pk (2)
expressed in a basis ¢ with weights wy; > 0 not all zero as

deg,(p) = min {deg(p +A4p)

|[Ack| < Wké‘} . (2.54)

In a degree-graded basis, the computation is easy; for the Lagrange and Hermite
interpolational basis, it is not quite so easy. For the Bernstein—Bézier basis (to be
introduced below), quite a bit of attention has been paid to this issue in the CAGD
literature, and we refer you, for instance, to Farin (1996). The choice of norm for
nearness they use is not a coefficientwise norm as we use here, but rather a function
norm. Nonetheless, the ideas are similar.

2.2.7 Bernstein—Bézier Polynomials

The following family of polynomials is a basis for polynomials of degree n and is
positive on the interval a < z < b. Like the Lagrange and Hermite interpolational
bases, these are not degree-graded: Each element of the basis is degree n.

000) = (b—a) " (k) (c—a)(b— . 2.55)

The Bernstein—Bézier polynomials of degree 8 or less are displayed in Fig. 2.2.
These are extremely useful in computer-aided geometric design. To evaluate poly-

2.3 Condition Number for the Evaluation of Polynomials 63

The Bernstein basis polynomials of degree 8
l -—

0.8 1

0.6 1

y

0.4

0.2

0 0.2 0.4 0.6 0.8 1
X

Fig. 2.2 Bernstein—Bézier basis polynomials of degree at most 8

nomials expressed in this basis, you may use de Casteljau’s algorithm, as discussed,
for example, in Tsai and Farouki (2001). We do not pursue that algorithm further
here, except to note that it is partially implemented in MAPLE.'? This basis has a
number of interesting properties, including an optimal conditioning property, that
we discuss in Chap. 8.

2.3 Condition Number for the Evaluation of Polynomials

Now, let us look at the condition number for evaluation of polynomials. This is
studied in many works (for example, in de Boor (1978)), but we take the following
formulation from Farouki and Rajan (1987).

Theorem 2.8. If we consider a polynomial
n
f@) =Y cxde(2) (2.56)
k=0

with coefficients cy in the base { ¢y (z) }}_, = 0", and a perturbed polynomial

10 The Bernstein—Bézier basis is not yet well supported in MAPLE: For serious use, we recommend
instead the package described in Tsai and Farouki (2001).

64 2 Polynomials and Series

FHANE) =3 el +8)0u(2) 2.57)

k=0

with perturbed coefficients ci (1 + &), then

|Af(z)] < (1(26|Ck||¢k(2)|> 'og/?énwk" (2.58)
If we let B(z) = Y} _ |ck||9x(2)|, we have the simple inequality
|Af(2)] < B(z) max |5 . (2.59)

Here is a compact proof of this very important theorem, which we will use repeat-
edly in this book:

Proof. For the error term A f, we have

0o
n o
Af(Z) = Z Ck6k¢k(Z) = [C0¢0(Z)761¢1 (Z>7 cee 7Cn¢n(z)] :1 . (2.60)
k=0 .
On

In this form, we can use Holder’s inequality (Steele 2004): If | /p+ /g = 1, then
la-b| < la]|,[[bllg- (2.61)

The result follows directly if we take a = [co@o(2), - .. ,cn®n(2)]. b = [0, b1, ..,),
p=1,and g = eo. i

The number B(z) (and for fixed z, it is indeed just a number) thus serves as an
absolute condition number for evaluation of the polynomial f at the point z: If we
change the coefficients ¢, by a relative amount |8;| < €, this means that the value of
J might change by as much as €B(z). Higham (2004) uses instead 8(z)/|s(z)|, which
is a relative condition number, and indeed this may be more informative in many
situations.

Remark 2.6. This is the first derivation of an explicit general formula in this book for
a condition number, which was defined for general computation in Sect. 1.4.2 and
used earlier to express the error results for Horner’s method. This notion is usually
introduced in numerical analysis texts not with polynomial evaluation as we have
done here, but rather with the solution of linear systems of equations (which we
begin in Chap. 4). The notion is perhaps the most important in the book, and the
reader will see it in every single chapter. The reader is urged to make a note of this
usage here, and later in Chap. 3, and again in Chap. 4; after that, return and reread
Sect. 1.4.2 before going on. <

2.3 Condition Number for the Evaluation of Polynomials 65

Example 2.3. As an example, we take a single polynomial, f(¢), and plot its con-
dition number (2.59) in several different bases. Consider the polynomial f(¢) that
takes on the values p =[1, —1,1, —1Jon T=[—1, —1/3, 1 /3, 1]. Its Lagrange form is

f(t):—% (H—%) (r—%) (t—l)—%(f—#l)(f—%) (r—1)

_% (¢+1)<t+§) (t—l)—%(wl)(ﬁ%) (t—%) (2.62)

while its monomial form is

95 17
t)=—=t"+=t 2.63
fO= =36+ 31, 2.63)
and its Newton form, if the nodes are taken in the left-to-right order in which they

are given, is

f) :—2—3t—|—§ (t+1) (H—%) —g (t+1) (H—%) (t—%) . (2.64)

If instead we use the Leja ordering of the nodes (see Chap. 8, Exercise 4), namely,
[—1,1,—1/3,1/3], the form is

flt) = —t+% (t+1)(t—1)—§ (t+1) <z+%> (t—1). (2.65)

For each of these, B(t) is simply the sum of the absolute values of the terms. The
results are displayed in Fig. 2.3. <

Remark 2.7. In Fig. 2.3, we see B(t) plotted for all but that for Eq. (2.64), which is
so large (going up to 25) that it would compress the graph. This example is hardly
unique: The Newton basis is often poorly conditioned and, moreover, depends on
the ordering of the nodes. We will pursue this in great detail in the exercises, and
again in Chap. 8. This book differs from many numerical analysis texts in that it
avoids use of the Newton basis for this reason and uses the Lagrange and Hermite
interpolational bases instead, which are often better conditioned. This understand-
ing in a broad popular sense is a relatively recent development and is due to the
papers Berrut and Trefethen (2004) and Higham (2004), although in a more limited
sense, it was known previously. <

Example 2.4. Let us continue Example 2.3 with another basis, namely, the
Bernstein—Bézier basis, given by

000) = (b—a) " (k) (c—a)(b— . (2.66)

For polynomials of degree 3 on the interval —1 <z <1, wejustleta=—1,b=1,
and n = 3, so that the basis elements are easily computed. We then find that if

66 2 Polynomials and Series

-1 -0.5 0 0.5 1
t

Fig. 2.3 Condition number of evaluation of a particular degree-3 polynomial in three different
bases: Lagrange (which is best), Newton with the Leja ordering (which is next-best), and standard
monomials (which is worst in this example)

3
@)= cde(z),
k=0

co=1,c1 = ~1/3 ¢ =17/3 and ¢3 = —1. Then, the condition number

3

> ekl | o(2) |

k=0

is displayed in Fig. 2.4, where it is shown with the condition numbers from
Fig. 2.3. <

Remark 2.8. After this discussion, it is clear that the same polynomial will have dif-
ferent condition numbers in different bases. It is shown in Farouki and Goodman
(1996) that among all polynomial bases that are nonnegative on an interval, the
Bernstein—Bézier basis has optimal condition numbers in a generic sense. Taken as
a whole, one can expect a polynomial to have a smaller condition number in the
Bernstein—Bézier basis than in any other nonnegative basis. The Farouki-Goodman
theorem thus guarantees, for example, that the Bernstein—Bézier basis is better than
the monomial basis in general. For a particular polynomial, however, this need
not be true, as we have seen in the previous example. In Chap. 8, we will show,

2.3 Condition Number for the Evaluation of Polynomials 67

-1 -0.5 0 0.5 1
z

Fig. 2.4 Condition numbers from Fig. 2.3, together with the condition number of the same poly-
nomial expressed in the Bernstein—-Bézier basis. This graph shows that, for this example, the
Bernstein—Bézier basis is worse than the Lagrange basis and comparable to the Newton basis with
Leja ordering

using the same techniques as Farouki and Goodman (1996) used, that if we re-
lax the nonnegativity condition, then the Lagrange basis has the same optimal-
ity property. This in some sense explains why the Lagrange basis did so well in
Example 2.3. <

Remark 2.9. The question of “which basis is best overall?”” is somewhat vexed. The
answer is, “It really depends on the problem, and what information you want.” In
the simple example above, it is clear that the Lagrange basis has a lower condition
number than either of the Newton bases or the Bernstein—Bézier bases, over the
entire interval. The monomial basis, however, is better than the Lagrange basis, for
all z “near enough” to the origin. For this problem, the conditioning of the Lagrange
basis expression is better for “most” of the z in this restricted interval.

The picture would change if we took a different interval, or if we considered
instead the complex disk |z| < 1 (where, in fact, the monomial basis would show
itself to good advantage). It is the position of this book that the Lagrange basis
is generally to be preferred over other bases, on the principle that you probably
have sampled your polynomial where you know it best; while the Bernstein—Bézier
basis is provably the best on an interval for generic polynomials (and is widely
used in CAGD in part because of that); and that the monomial basis is likely
overused—that is, often used where it shouldn’t be—but can be the best tool for
the job.

68 2 Polynomials and Series

The relative condition number |B(2)l/ £(z)| is also of interest (perhaps of more inter-
est). Since this example polynomial has a zero at # = 0, the monomial basis condition
number shows itself to be best there—Bmonomial(0) = 0 as well, whereas all the other
absolute condition numbers are nonzero at zero, and so the relative condition of the
monomial basis is the only finite one there.

Finally, the flexibility and uniform approximation properties of discrete Cheby-
shev bases—that is, Lagrange interpolation on nodes that are the zeros of Chebyshev
polynomials—make them extremely interesting to the computational scientist. See
the Chebfun package as described in Battles and Trefethen (2004) and subsequent
papers. <

Example 2.5. As we have seen in Chap. 1, the Airy function has a Taylor series that
converges for all z; it can be written as

o 3n 0 Z3n+1

(N=3"AY % 3y
Ai(z) =3 Z;)mn!(n—l/s)! 3 ,;)9nn!(n+l/s)!' 2.67)

Consider using the degree-127 truncation of this Taylor series as a way of approxi-
mating Ai(z) for various z. In applications, for instance, the geometric optics of the
rainbow, the zeros of Ai(z) are often important, so we want to accurately assess it
there. So let us focus on values near z = —7.94, which is somewhat close to a zero
of Ai(z). A preliminary analysis shows that, in theory, the degree-127 truncation has
more than enough terms for convergence—here, we ought to be able to get about
25 significant figures of Ai(—7.94) if we want. We are using so many terms here
in part to show that the mathematical theory of convergence is not at issue for this
example. Write the degree-127 polynomial in Horner form (Exercise 2.29 contains
two programs that implement an efficient, specific variation of Horner form for this
particular polynomial).

If we use only 8 digits in our computation, because we only want 8 digits in our
answer, we get Ai(—7.94) = 0.00359469. Here is how the (general) Horner form
begins, with 8-digit coefficients:

0.35502806 + z(—0.25881940 4z (0.059171345 + - - -)). (2.68)
If we use 16 digits, we get a different answer, beginning with
Ai(—7.94) = 0.0039158060872139.

Only a single significant digit was right the first time! If we don’t use Horner’s
form, the answer is worse, by the way. In order to understand what has gone wrong
with the 8-digit computation, we need to plot the B(z) function, which is the same
Taylor series but with all positive signs and with powers of |z|, not z. This is plotted
in Fig. 2.5. We see that the B(z) function becomes very large, for large z: We say
that the (monomial basis) polynomial approximation to the Airy function that we
derived from Taylor series is ill-conditioned to evaluate for large |z|. This point
deserves emphasis: Taylor series about the origin are often impractical to use for

2.3 Condition Number for the Evaluation of Polynomials 69

large |z| because the resulting polynomial expression, although adequate in theory
to deliver accuracy, is far too ill-conditioned to use. The condition number we see at
the right is about 10'°—10 rounding errors, and we cannot count on any accuracy in
the result (and since we are adding up hundreds of terms, we will make many more
than 10 rounding errors). Near z = —7.94, the condition number is about 10°. This
phenomenon is sometimes known as “the hump” (see Exercise 2.16).

There is a bit more to say, for this example, though: If we take each separate
series in Eq. (2.67), the one multiplied by 3~7* (call it fi (z)) and the other multiplied
by 3~ (call it f>(z)), and plot their condition numbers, we see that each of them
has condition number 1 for z > 0 (because all terms are positive). So we can say
that each of them is accurately evaluated for z > 0. (This is how the programs in
Exercise 2.29 do it, by the way.) Yet the condition number for Ai(z) =37 f;(z) —
37/ f,(z) grows very large, even for positive z. This is because each of f;(z) and
f2(z) grows very large for large positive z, while Ai(z) gets very small indeed—that
is, we are computing Ai(z) as the tiny difference of two large numbers. This is a
recipe for catastrophic cancellation. Notice that this shows up automatically in the
condition number analysis: we have discovered directly that the condition number
of this polynomial is very large. We defer analysis of the condition number of Ai(z)
itself to Chap. 3 (Exercise 3.6). N

5 10

Fig. 2.5 The condition number for evaluation of the degree-127 Taylor polynomial for the Airy
function Ai(z) on —13 <z < 13. Note that it goes to infinity in very narrow spikes (the graph only
shows a portion of each spike since the singularity is so narrow) around each zero, but even away
from zeros, the condition number grows very rapidly with |z|

70 2 Polynomials and Series

2.4 Pseudozeros

We now look at the relationship between the condition number for evaluation of
polynomials and the condition number for rootfinding for polynomials. In mathe-
matical terms, given € > 0 and weights w; > 0, 0 < i < n, not all zero, define the set
of pseudozeros

Ae(f) = {z

(f+Af)(z) =0, where Af = iAciq),'(z) and each |A¢;| < sw,} .
i=0

These are the roots of the polynomials that are near f. Studying this set will help us
to understand what happens if the coefficients of our polynomials are changed some-
how (perhaps due to measurement error, or to numerical errors in computation). To
do so, we make use of the following theorem:

Theorem 2.9. Let A¢(f) be defined as above. Then

Ae(f) = {z

me%awwﬂ}, (2.69)

where B(z) = Y1 wi|9i(z)| o, equivalently for scalar polynomials,

ren={

£ < 8B(z)} . (2.70)

Proof. First, suppose z € A¢(f). Moreover, if |Ac;|<ew;, and A f(z)=X] 5 Aci¢i(2),
then

IAf@N<<§;McM¢A®|<§;awmdd|:63@%

so that A¢(f) C {Z

|f(2)] < £B(z)}. Now, suppose |f(z)| < €B(z). Take

Ac; = —signum (m) wk% .
Then it follows that
.) B@) _
|Aci| = 'WIB(z) < sw,B(z) = ew;.

Also, observe that

2.4 Pseudozeros 71

Thus, the set identity is obtained. f

10 15 20 25

(@]
-8 0

Fig. 2.6 Zeros of a small perturbation of the Wilkinson polynomial W (z) = T3>, (z — k), after first
having been expanded into the monomial basis W (z) = z2° — 210z + - --

Remark 2.10. It is no coincidence that the condition number of Theorem 2.8 appears
as the expansion factor in equations in the proof of Theorem 2.9. An ill-conditioned
polynomial, with large B, will have its roots spread widely when the coefficients are
changed.

This is a very useful and important result: It says that if | f(z)| is small, then z is
the exact root of a nearby polynomial f(z) + A f(z). Note that this works for only
one root at a time. <

111

Example 2.6. The Wilkinson polynomial’ ' can be written as

20
W) =[](z—k) =22 —210z"" + -+ 20! (2.71)
k=1

11 See, for instance, Wilkinson (1984)

72 2 Polynomials and Series

Pseudozeros of the Wilkinson polynomial

157 1.0E-2

10

15

Fig. 2.7 Pseudozeros of the Wilkinson polynomial expressed in the monomial basis: a plot of the
£ Cetiv)|

contours of Blrriy)

when expanded into the monomial basis. Compare Figs. 2.6 and 2.7. In the latter
case, we see contours bounding the sets of zeros of all perturbations of the Wilkin-
son polynomial expressed in the monomial basis—as we see, quite small perturba-
tions can have dramatic effects on the location of the zeros. In the former, we have
an explicit perturbation of one coefficient (again in the monomial basis), and the
perturbed zeros lie pretty much along one of the contours of the latter. In contrast,
if we don’t expand it, then the natural basis to recognize in which it is written is the
Lagrange basis on the nodes 1, 2, ..., 20, and (say) 0, so W(z) = 20! Ly(z) has only
one nonzero coefficient. The condition number in this basis is, remarkably, 0 at all
the roots, in an absolute sense; in a relative sense, the condition number is just 1. Of
course, this is unsurprising, and uninformative: If we know the roots, then they are
easy to find. However, there is something more useful in this observation than just
that, and we return to it later. N

2.5 Partial Fractions

Every reader of this book will have encountered the partial fraction decomposition.
However, it is all too common to encounter only the hand practice, and not the
theory or a practical algorithm. We give the theory here, and later we give a practical
algorithm for the easy case that we need for interpolation. The basic object under
study here is the class of rational functions and a simple representation for them.

2.5 Partial Fractions 73

Definition 2.5 (Rational function). A function f : C — C is called a rational func-
tion if there exist polynomials p(z) and ¢(z) such that

=29 vec, 2.72)

except possibly at the zeros of ¢(z). If the degree of p(z) is n and the degree of ¢(z) is
m, then we say that f(z) is here represented as an [n,m]-degree rational function. By
convention, the identically zero function f(z) = 0 is also called a rational function,
for example, taking g(z) = 1. N

Rational functions often arise in approximation theory. One class of these are called
Padé approximants:

Definition 2.6 (Padé approximant). A Padé approximant to a function f(z) is a
rational function whose coefficients are wholly determined by matching the Taylor
series of f(z). q

We can find a unique representative 7(2) /4(z) for a rational function f(z) by insisting
that p(z) and ¢(z) have no common factors (dividing out the GCD) and normaliz-
ing one of f(z) and ¢(z) in some way—often by making f(z) monic by dividing
the numerator and the denominator by the leading coefficient of g(z), or by making
the norm of the vector of coefficients of ¢(z) equal to 1 and insisting that one par-
ticular coefficient be positive, or simply by insisting that a-q = 1 for some given
nonzero vector a, where q means the vector of coefficients of the polynomial ¢(z)
expanded in the monomial basis. Moreover, since the polynomials are linear in their
coefficients, we may divide the numerator and denominator by a constant in order
to make this dot product 1.

We also usually insist that degp < deggq, by first doing polynomial division if
necessary: p = Qq+ R and so »/q = Q + R/4, separating out a polynomial part O(z)
and leaving a rational part R(z) /(z) with the desired “proper form.”

We now state and prove the key theorem of this section:

Theorem 2.10 (Partial fraction decomposition). Suppose we have already found
machine number representations of all the roots of the denominator,'*> and that

n

q(z) =[]z —w)* (2.73)

k=0

is the unique factorization of monic q(z) into distinct factors over C. That is, T; =
T; < i = j, and each integer s > 1. Let m = Y;_ 5. Note that the degree of q(z)
is exactly m and that q(z) is not identically zero (if the product is empty with n < 0,
then q(z) = 1 by convention). Suppose that m > 1. Suppose p(z) is a polynomial

12 Of course, this avoids the hard questions of how to do this if we start with g(z) expressed in some
other basis, and also the hard question of what are the consequences of approximating polynomial
roots by machine numbers. But for the interpolation applications that we need in this book, this
assumption suffices.

74 2 Polynomials and Series

with deg p < m having no common factor with q(z). Then there exist m numbers o;
(with0<i<nand0< j<s;—1)suchthatVz & {19,71,... T},

(2.74)

The numbers o j provide the decomposition.

Proof. We proceed by induction on the degree m > 1, which gives a perfectly satis-
factory algorithm to use in hand computation. The base of the induction, m = 1, is
trivial: 0 o = po = p(z), because deg p = 0 and there is nothing to prove. Suppose
now that the theorem is true for all polynomials with degrees m — 1 or less. Let

n

.59-1 = p(70) [[(10—) ~*
k=1

and consider

p(z) Qo1 p2) — o1 [Tio (z— @)™

q(z) (z—1)"° q(z)

We claim that the numerator and denominator on the right have a nontrivial common
divisor, z — 79. Since so > 1, it is clear that (z — 79) | ¢(z). It only remains to show
that this factor divides the numerator. It is equivalent to show that 7y is a zero of
the numerator. But this is obvious, because the polynomial at z = 7 has the value
p(70) = p(0) [Ti— (To — T) ~* ITi—y (70 — %)% = 0.

On dividing the numerator and denominator on the right by z — 7y (as many times
as necessary but certainly at least once), we are left with a proper rational function
on the right with denominator of the form (2.73) and having degree strictly less than
m. By the induction hypothesis, this can be expressed uniquely in partial fraction
form, thus completing the proof of the theorem. f

Remark 2.11. This proof provides an excellent hand algorithm: see Scott and
Peeples (1988). It is also “self-checking”: If exact division does not occur at
the second step, we know that we have made an arithmetic blunder. <

Example 2.7. Consider
! ! + Rest(z)
—— = — + Rest(z
2(z-12 2

on taking out the leading term in z as z — 0. Rearranging as in the proof of the
theorem, we get

1 L 1-(z=17? 1-2+2-1
Rest(z)—m_z_z— 2@-12 2(E-1)72

_2-9)

-9 (2.75)

_ 2-z (2.76)

2.6 Formal Power Series Algebra 75

and this is a proper rational function with a degree-3 denominator, one less than
we started with. As stated previously, the exact cancellation from Eq. (2.75) to
Eq. (2.76) is necessary, and if it doesn’t happen, then we know that we have made
an arithmetic blunder.

The process can be continued, to get

! _1 + 2 2 + ! 2.77)
2i-1)?% 22z z—1 (z—1)? :
The numerators on the right-hand side are the ¢ ; desired. <

Remark 2.12. Later we will need this particular partial fraction decomposition many
times: It is the foundation for cubic Hermite interpolation. The reader is urged to
complete the computation above and confirm Eq. (2.77). <

This algorithm can be implemented recursively, once an algorithm for division
of polynomials by linear factors z — 7; has been made available (and, of course, this
can be done in any polynomial basis). For our purposes in this book, however, there
is a more practical algorithm for partial fractions, based on local Taylor series. In
order to develop that algorithm (and indeed for many other numerical purposes), we
need to learn to manipulate formal power series, and so we turn to this in the next
section.

Remark 2.13. MAPLE has several commands to compute partial fraction decompo-
sitions. Using exact arithmetic, the command

convert (R, parfrac, z, true);

does the trick (the true flag means that the rational function R has already had its
denominator factored). However, at the time of this writing, for floating-point arith-
metic, this command is not always satisfactory, because it converts internally to a
monomial basis centered at 0, and this can induce numerical instability in the algo-
rithm because the intermediate monomial basis representations are ill-conditioned.
See Exercise 2.28. <

2.6 Formal Power Series Algebra

Numerical methods rely heavily on Taylor series. In this section we give a short
generalized reminder'? of how to operate on them. Suppose that, instead of being
given a function, we are directly given the series and that we want to do standard
operations with it, such as adding it, multiplying it, or dividing it by another series,
differentiating or integrating it, exponentiating it, and so on. We will examine how
to do so in this section. To begin with, suppose we have two series, given by

N
u=y up(x —a)* + 0(x —a)V ! (2.78)
k=0

13 This generalization includes O(n?) algorithms for computation.

76 2 Polynomials and Series

N
v=Y nlx—a)f+0ox—a)!. (2.79)
k=0

The scalar linear combination is defined to be

N
ou+fv= Z(auk—i—ﬂvk)(x—a)k—i—O(x—a)NH. (2.80)
k=0

In other words, to add, subtract, and scalar-multiply series, we simply add, subtract,
and scalar-multiply the corresponding coefficients. We examine the other operations
in the following subsections.

2.6.1 Multiplication of Series and the Cauchy Convolution

The product w = uv of two series u and v, as in Eqgs. (2.78) and (2.79), can be written
N

w=uv= 2‘wk(x—a)k—|—O(x—a)NJrl (2.81)
k=0

as any other series. The problem, then, is to express the coefficients wy in terms of
the coefficients of # and v. The relationship in question is simply

k k
Wi = Z Up—jVj = 2 UjVi—j - (282)
J=0 J=0

This is the Cauchy product formula or convolution product. It is crucial in what
follows. It can be done faster than the direct sum formula above, by using the fast
Fourier transform: See Henrici (1979b). See also Chap. 9 in this book.

Example 2.8. If we are given the series

u=142(x—a) +3(x—a)2+4(x—a)3+5(x—a)4+6(x—a)5+0((x—a)(’)
and

v= 2—3(x—a)—|—4(x—a)2—S(x—a)3—|—6(x—a)4—7(x—a)5—|—0((x—a)6))
then their product w = uv has the series starting

uw=2+(x—a) +4(x—a)2+2(x—a)3+6(x—a)4+3(x—a)5+0((x—a)(’) .

These series were computed using the series command in MAPLE, which, among
other things, implements the Cauchy convolution product. <

2.6 Formal Power Series Algebra 77

Is the computation of the Cauchy convolution numerically stable? If N = 0, so
that we are multiplying constants, then (obviously) Cauchy convolution is numeri-
cally stable: ugvo(1+ 8) can be interpreted as the exact product of uy(1+ 9/2) and
vo(1+8)(1+8/)~" ~ vy(1 +3/2) by the IEEE standard. Cauchy convolution is
normwise forward stable, as we will see, for any fixed N; but it is not component-
wise stable for N > 1, as we will also see. But it is stable for N = 1.

Theorem 2.11. Cauchy convolution is componentwise stable if N = 1.

Proof. Suppose N = 1, so that u = ug +u1z+ O(z%), and v = vy +v1z+ O(z*). Then
uv = ugvo + (ugvy +u1vo)z + O(z?) in exact arithmetic. If we are using floating-
point arithmetic instead, then as we just saw, we may choose perturbations in ug
and vg that allow us to interpret the first term as the exact product of perturbed ug
and vy. Suppose that we have done so, with 2y = ug(1 + ;) and ¥y = vo(1 + &),
where 6; and &, are such that (14 8;)(1+ &) = (14 &) with figPo = ugvo(1 + &)
and |8y| < py. As shown above, we may choose 8; and &, so that each is also
smaller than uys in magnitude. Now we wish to interpret the floating-point value
ug ® vy Buy ®vg as igv| + i1 vo with i = u1(1 + 53) and V) =v; (1 + 54), with each
of 8 and 9, small. We break the proof up into cases.

In the first case, suppose that vi = 0. Then we are multiplying u by a constant,
and obviously each term in the product is the exact product of vy with a relatively
minor change in up and u;: We have iy = up(1+ &) and can take 4, = u; (1 + 03)
directly, and leave ¥y = vy, and similarly if u; = 0.

Now suppose we are in the second case, where neither u; nor v; is zero. Then

o @ vi ®up @vo = (ugvi (1+ 85) +uvo(1+ 8))(1 + &)
dgv1 (14 80) ™" (14 85) + 9o (1 + 8)) (1 + &)

= oV + 1Yo, (2.83)

where §; = v1 (14 &)~ (1+ &5)(1 + &) is only three rounding errors different to
vy and @ = u1(1 4 3)(1 + &7) is only two rounding errors different to u;. That is,
the computed Cauchy convolution if N = 1 is the exact product of two series that
differ only minutely in a relative sense to each multiplicand series. f

However, for N = 2, this kind of analysis cannot succeed.

Theorem 2.12. For N = 2, Cauchy convolution can be componentwise unstable:
That is, the computed product of two series of order O(z) is not necessarily the
exact product of any two nearby series, where “nearby” means each coefficient is
relatively close to the original.

Proof. Using a more systematic notation to help with the bookkeeping, suppose to
the contrary that we may choose relative perturbations @y = u;(1 + &) and v, =
Vi (14 &) in order to match the rounding errors in the computation, which we will
denote by g,. We would then have

uovo (1 +85)(1+ 8y) = upvo(1 + &)

78 2 Polynomials and Series

u0v1(1 —|—5(‘)4)(1 —|—5f)—|—u1v0(1 —|—5f)(1 —|—50v) = u0v1(1 +81)(1 —|—83)
+u1V0(1 +82)(1 —|—83),

where each | j| < Uy, the unit roundoff. As we saw in the previous theorem, if we
stop here, we may choose small §’s in order to satisfy these constraints: For N = 1,
we may interpret the rounding errors as small relative backward errors. However,
we need one more equation for N = 2:

upvo(1+65) (14 8y) +uvi(1+6) (14 87) +uova (14 85)(1+65)
=upvo(l+es)(1+8)(1+€)+uvi(1+es)(1+&)(1+e)+uova(l+€7)(1+eg).

Because the u; and v, are independent variables, each monomial gives an equation
for the unknown perturbations, so that we have

(14+65)(14+85) = (1+&) (2.84)
(I+65)(14+8)=(1+¢&)(1+&) (2.85)
(1+6"(14+06))=(1+&)(1+&), (2.86)

and from the O(z?) term, we will only need
(14+6)(146]) = (1+¢s5)(1+&)(1+¢g) (2.87)

to arrive at a contradiction. Multiply Egs. (2.85) and (2.86) together and divide by
Eq. (2.84) to get

(1+¢&)(1 —|—83)2(1 +8&)

(1+8)(1+6)) = Tran

. (2.88)

For this to hold simultaneously with (2.87) requires that the rounding errors &s, &,
and &g be perfectly correlated with the earlier rounding errors €&, €1, &, and €. In
general, this does not happen. Therefore, there is no possible set of perturbations &;'
and §; that allows rounding errors in Cauchy convolution for N > 1 to be interpreted
as a small relative backward error. f

Remark 2.14. In the forward error sense, this computation also shows that the com-
ponentwise relative error may be infinite. Take an example where ugvy + ujvy +
upvo = 0 in exact arithmetic. Then the rounding errors, which will be proportional
to |ugva| + |uivi| + |uzvo|, will be infinitely large in comparison with the reference
result of 0. N

However, there is a forward accuracy result for all N in the normwise sense, as
follows. If ¢, = 2;?:0 u;jv,—j, then Eq. (3.5) in (Higham 2002 section 3.1), which
gives us a general result on the forward accuracy of inner products, tells us that

n
[6n—cal < V2011 Y, lujlva-j (2.89)
j=0

2.6 Formal Power Series Algebra 79

If all terms u; and v; are positive, this is a decent relative accuracy (and the constant
in front can be improved with minor modifications of how the sum is done and
in which order). If, however, ¢, is very small while some u; and v; are large in
magnitude, then there must be cancellation, and the error bound will then be large
to reflect this.

Remark 2.15. This difficulty may be mitigated by performing this recurrence rela-
tion in higher precision, or by using certain compensated summation techniques as
described in Higham (2002). However, the inaccuracy is often of little consequence
in computation with the resulting series, anyway, even if the recurrence relation is
performed in a naive way. The reason is simply that the errors grow at worst in ¢y
like O((k+ 1)||u||||v||tar), and thus for the low-order terms, the error is small in any
case; and the high-order terms are used only together with high powers of (z —a),
which is presumed small. Thus, the total error in the computed sum 3}_cj(z—a)!
will be small enough: The terms with larger errors will not contribute much to the
total sum. <

Finally, we leave aside the question of whether the Cauchy convolution is well-
conditioned, which we will take it up in the exercises in Chap. 3.

2.6.2 Division of Series

Let us now consider the case of division. If we consider

N
r= E = z rk(x—a)k+0(x_a)N+l 5 (2'90)
V' k=0

then we must have u = rv, so that

k k—1
Uy = z Fivi—j = rvo+ Z FiVi—j, (2.91)
Jj=0 Jj=0

and we see that for r; to be defined we must have vg # 0. Then

1 k=

1
k= — | ux— 2, TjVi—j (2.92)
Vo =0

and the base of the recurrence is (if vy # 0)

ug

. (2.93)
Vo

ro =

However, if vg = 0, then no series for r exists, unless perhaps also uy = 0 and we
may cancel a factor in #/.

80 2 Polynomials and Series

Example 2.9. With the same u and v that we used in Example 2.8, we find that

7 25 71
—|—Z(x—a)—|—§(x—a)2—|——(x—a)3—|—

u_ 185
B 32

(x—a)4—|—0((x—a)5) ,

N =

while
2 =2-T(x—a)+12(x—a)’—16(x—a)*+20(x—a)*+ 0O ((x—a)s) .

Again these series were computed in MAPLE, which knows how to do series algebra
including division, and cancels common factors in order to avoid division by zero
wherever possible. MAPLE also knows how to work with several generalizations
of Taylor series, including Laurent series, which allow negative integer powers of
(x—a), and Puiseux series, which allow fractional powers. The algebra of these is a
straightforward extension of that for Taylor series. We will occasionally have need
for these generalizations. <

2.6.3 Differentiation and Integration

Differentiation of power series is very straightforward. If we are given a series

N
=y u(x—a)* +0(x—a)M*!,
k=0

then it is easy to see that its derivative is

du

o kug(x —a)* '+ 0(x — a)V

]
I1=

T

(k4 Vg1 (x—a)* + 0(x—a)".
0

=~
Il

Moreover, its integral is also directly seen to be

* (x—a)?
/u(é)dé:uo(x—a)—km 5 +
Nou
PR

These two simple operations will be applied to many problems in this book.

2.6 Formal Power Series Algebra 81

2.6.4 The Algebra of Series

The rules we have examined already give us the series for all polynomials and ra-
tional functions. Using these rules, we see how to square a series,

= (a+(x—a)+ O(x—a)NH)2
=a’42a(x—a)+ (x—a)’+0(x—a)V!,
or to take higher powers. Moreover, we see that

1 1+0(x—a)V*!
X a+(x a)+0(x a)N+1

-3

(x—a)+0(x—a*!.

As a result, we can also find the series for In(x) by using the integration rule. Ob-

serve that
/ dt / dt dt

From this, we obtain

In(x) =1n /(i —— (x—a)f+0(x— a)NH)dx

N
=1In(a) + 2

—(k—(|— 1)) pm (x—a)* '+ 0(x—a)"*?.

Algebraically, the set of truncated power series (TPS) of order N forms an integral
domain: The sum, difference, and product of TPS are TPS, but there are zero di-
visors, and not every element has a reciprocal—indeed, each element with a zero
leading coefficient fails to have a TPS reciprocal. If we allow negative integer pow-
ers of (x —a), then we have truncated Laurent series, which are indeed useful.

2.6.5 The Exponential of a Series

To find the series for ¢*, we may introduce series reversion (see Exercise 2.24) or
look at the differential equation

dy

e Y, y(a) =€, (2.94)

82 2 Polynomials and Series

which is, of course, satisfied by ¢*. Now, let y be given by
N
y= Zyk(x—a)k—FO(x—a)NH. (2.93)
k=0

We have yg = ¢“ and, by differentiation, we also have

N N
Y kn(x—a) 4 0 —a)¥ = 3 yilr—a)f + 0(x—a)V*,
k=0 k=0

or, by rearranging the summation indices,

N-1 N
N (k4 1)y (x— a)f+0(x—a)N = N yr(x— a)f+0(x—a!. (2.96)
k=0 k=0

By the uniqueness of power series, we can identify the coefficients of corresponding
powers, thereby obtaining the relation

(k+Dyes1 =k, k=0,1,2,3,....N—1. (2.97)

Using our initial condition and this recursive relation, we find that

y1=yo=¢e"
2yy =y ="
1
3)’32}’2=§€a
1
44: :_ea7
y y3 6

and so on, so that the series for the exponential itself is

ea

k!

&=

(x—a)*+0(x—aM*!. (2.98)

M=

k=0

However, that was really too easy for such a powerful trick. How about y = €,
where

N
=y up(x —a)* + O(x — a)N*!
k=0
instead? It still works! Let y be as in Eq. (2.95). Then, because

dy dydu du
dx dudx “dx’

2.6 Formal Power Series Algebra 83

we find that
N—1

S (k+ Dyeri(x—a) + O(x—a)" =
k=0

(%yk(x—a)k—k O(x—a)NH) (% uk(x—a)k—|—0(x—a)N+1> .

k=0 k=0

Now, applying the Cauchy convolution rule to the right-hand side gives us

N-1 N
S (k+ Dy (x—a) +0x—a)¥ = Y c(x—a) + O(x—a)V™', (2.99)
k=0 k=0
where
k
Cl = Z Yjllk—j -
j=0

By the same method, we thus find the relation

(k+ 1)y = zy,uk I (2.100)

Also, it is obviously the case that the recurrence starts with yo = 0. This recurrence
relation allows us to compute the exponential of any series. We will later solve
differential equations with this technique.

Example 2.10. If u(x) has the following series,

4

4

12

4

P (=) o ((-5)).

“E (D)D) e E)

then exp(u) has the series beginning

4 4

_eﬁ/z<1+£>(_5)3_eﬁ/z<1 VS

et =e"t %eﬁ/zx/z(x— g) eV (l - ﬁ) (x— E>2

4 24 4 9 24

~__—
-
&1
N————
N
+
Q
N
~~
|
|
N—
W
~_

84 2 Polynomials and Series

Again, MAPLE was used with its series command, which implements the algorithms
discussed here. Specifically, once the series for # was defined, the command

series(exp(u), u=Pi/4)

generated the above result. <

You may notice that convergence has not entered the discussion. Since we work
only with truncated, finite power series, this is not a serious omission. Truncation
error formula, on the other hand, are very useful, even if the series don’t converge.
You may be familiar with the Lagrange form of the remainder (that is, truncation
error) for real Taylor series:

()

n!

fx) = f(a)+ f(a)(x—a)+---+ (x—a)" + Ry 1(x;a), (2.101)

where

f(n+1)(a + ex)

D) (x—a)™!. (2.102)

Rut1(xia) =

Here 0 is some number between 0 and 1, which we don’t know exactly. Knowledge
of bounds on the (n+ 1)st derivative allows us to estimate how much accuracy we
have in our real Taylor series when we truncate at n terms. This formula doesn’t
work over the complex numbers, however: Instead, we have (replacing x by z every-
where above)

—a) 1
Ryti1(za) = ¢ 2n)l. . gé(g_a;;g)(c_z) d¢. (2.103)

Here C is a contour enclosing a and z. This integral can be interpreted as an “average
value” of the (n+ 1)st derivative; in the complex plane, however, this average value
is not always attained at some point a 4 60z. We will see a generalization of this
formula to the case of interpolation error in Eq. (8.40) in Chap. 8.

We may also need to worry about whether the computed series is well-
conditioned with respect to the data. Again this is taken up in Chap. 3.

2.7 A Partial Fraction Decomposition Algorithm Using Local
Taylor Series

We return to the problem of computing the partial fraction decomposition of 7(z) /4(z),
where ¢(z) has been completely factored down to distinct linear (complex) factors
(z— 1) for 0 < k < n. We will need, first, the local Taylor series of p for each 1;:

p(2) =prot+ i (@—)+ + Prg—1 (2= W) +0z—)%, (2.104)

2.7 A Partial Fraction Decomposition Algorithm Using Local Taylor Series 85

In other words, we need to reexpress p(z) in each of the n local (i.e., shifted) mono-
mial bases 1, (z— %), (z— &)>, ..., (z—)9, except that we only need the first s;
coefficients in each case. This can be done using synthetic division, as discussed
earlier. Assume that this has been done. Then, if

n

qx) =[] z—w)™, (2.105)

k=0

then the rational function we wish to decompose into partial fractions, 7(2) /4(z), can
be written as follows. We choose Ty as being special, for the moment, and let wy(z) =
ITi_, (z— 7) ", which is analytic at 7y because all the 7, are distinct by hypothesis
(confluency is explicitly known). Thus, we can compute its local Taylor series by
the methods of the previous section. In general, that is, not just for k = 0, let

wi(t) = Inl (t— 1) %,
k=0
i

Then, we obtain the local Taylor series

wi(t) =wio+wi1(t—7)+ Zwlg
>0

Then, observe that

piz) __ pm) p,(f) _ p(z)w,-(i) | .106)
CI(Z) H 7— Tk (Z _ Ti)s,- H(Z _ Tk)sk (Z — Ti) i
k=0 k=0
k#i

Now, this is exactly the form required for a partial fraction decomposition. As a
result, the partial fraction decomposition we want may be obtained by Cauchy con-
volution with the local series for p(z).

There are many ways to do this. The following is one method, and it has been
implemented in MATLAB.'# Begin by taking logarithms of w;(z):

n

Inwi(z) = Y, —s¢In(z— 7) + complex piecewise constants.. (2.107)
(=
When we take derivatives with respect to z, all the piecewise constants (multiples of

2mi) disappear:

= : (2.108)

14 The program is discussed in Chap. 8.

86 2 Polynomials and Series

Note that

1 1
72— Tk T—T+2Z—T

and so the summands in the right-hand sum of Eq. (2.108) can be expressed as

follows:
/
—Sk Sk 1 S 2 Z— 7T
=% G-Tl-FL -5\ %1

T —Ti
Therefore,
wi(z) S Sk ¢ S Sk ?
o= (2 T) = — % -5 @109
wi(2) %Zz)(fk_méﬂ i g(,) E(,)(Tk_r)ul i
ki ki

If we define u; ¢ as follows,

n

Sk
Ug= Y ———rv, (2.110)
' kzo (% —)
ki
then Eq. (2.109) becomes
LG Ty @.111)
CI

To simplify things a bit more, let v; ,, = Wim o (SO vio = 1) and note that
n
wio = H(‘L’l’ — 1) "%,
k=0
ki
Now, it follows that

w Z):Zwi,m z —WtOZVlm l

m>0 m>0

Taking derivatives (using ’ to denote d/dz), we have

wi(z) =wio Y, mvim(z—)" =wio D, mvim(z—)"
m>0 m>1

=wio Y, (m+1)Vimp1(z— 7)™

m=>0

Putting these in (2.111) and rearranging in order to more easily compare coeffi-
cients, we get the following:

2.7 A Partial Fraction Decomposition Algorithm Using Local Taylor Series 87

> (mA+ Dimi(z—)" = X vimz—w)" | | Duiez—7)"

m>0 m>0 (>0
- Z Cm(Z— Ti)m7
m=>0
where
m
Cm = Z Vin—tUi 0
=0

is Cauchy’s convolution formula. Equating coefficients gives (remember v; o = 1)

1
Vim+1 = m_—|—lcm
1

m
S Vi ettis - 2.112
m—i-lZ()V’m (Ui ()

Recall that (2.110) defines u; ¢. The recurrence relation (2.112) is the heart of the
local Taylor series algorithm for partial fractions. Once we have the v;x, then we
have the desired f3; ;.

Algorithm 2.4 Partial fraction decomposition by local Taylor series

Require: A positive integer n, a list of positive integers s, a list of n distinct zeros 7 of the
denominator g(z) = [Tj_q(z —)%, and the n+ 1 lists of local series coefficients py j, 0 < j <
sg — 1 of p(z).
for i=0:n do

for j=i+ l:ndo
AT =T—T;

end for

vio=1

for m=0:s; — 1 do

—m—1
Uim =X AT ;"
KA

1
Vimt1 = pT ko Wi kVim—k
end for
Bi = M—o(7i —)™
k#i
for m=1:s; do
Wim = ﬁivi,si—nz
end for
for m=1:s; do
Ol = X4t o PijWim—k
end for
end for
return The coefficients oy ; in the partial fraction decomposition

L?:Z kz _ G 2.113)

88 2 Polynomials and Series

Algorithm 2.4 has been implemented in the MATLAB program genbarywts
and in the MAPLE program BHIP, for the case where the numerator is just 1. You
will be asked to show in the exercises that this algorithm costs O(d?) flops, when
proper care is taken to avoid redundancy. In the case when all s; = 1, the algorithm
reduces merely to the computation of f3; for 1 <i < n. In that case, the computation
was proved to be numerically stable by Higham (2004). If any s; > 1, then the
algorithm is not backward stable, in the case when the nodes 7; are symmetric about
zero (for example) and some of the partial fraction decomposition coefficients ¢; ;
are exactly zero. However, the algorithm is stable enough for many purposes.

Example 2.11. Suppose the nodes T, are the Chebyshev-Lobatto nodes 7= cos(7/n)
for 0<k<n. Take first the case n = 5, and execute this code:

tau = cos(pixk/n);
[w,D] = genbarywts(tau, 1)

It returns the values
w = 1.6000,—3.2000,3.2000, —3.2000, 3.2000, —1.6000 .

By comparison with MAPLE, these answers are correct up to O(ts). When n = 50,
the numbers are larger, 0(1013), but still have relative forward error only about
2x 10714,

When we make each node have confluency s = 2, the situation changes a bit, but
not much, for n = 5:

—43.520 2.5600
23.978 10.240
3.4984 10.240
—3.4984 10.240
—23.978 10.240
43.520 2.5600

and again the forward error is O(uys). For n = 50, this is again true. We detect no
instability in this example. For higher confluencies, we expect more trouble. <

2.8 Asymptotic Series in Scientific Computation

Niels Henrik Abel (1802—1829) wrote

The divergent series are the invention of the devil, and it is a shame to base on them any
demonstration whatsoever. By using them, one may draw any conclusion [s]he pleases and
that is why these series have produced so many fallacies and paradoxes [...]. (cited in
Hoffman 1998 p. 218)

Nowadays, the attitude is different, and closer to what Heaviside meant when he
said

2.8 Asymptotic Series in Scientific Computation 89

The series is divergent; therefore we may be able to do something with it. (cited in
Hardy 1949)

In fact, asymptotic series will be used a lot in this book, and we will often not care
too much whether they converge. This is because, in many contexts, the first few
terms contain all the numerical information one needs; there’s no need to ponder on
what happens in the tail end of the series.

The key to understanding asymptotic series is to realize that there are rwo limits
to choose from, with a series. Suppose we have, for example,

N (k)
:kav(a)(z_“>k + Ry(@)(z-a)"*!, (2.114)

(@)

k=0

as the usual truncated Taylor series for f(z) near z = a. We can take the first limit,
N — oo, to get the familiar mathematical object of the infinite series. This only makes
sense if the limit exists. (There is some freedom to alter the definition of limit that
we use in this case; we do not pursue this here.) If that limit exists, we say the
series is convergent. However, there is another limit to be considered here, which
often leads to very useful results. Namely, do not let N — oo, but rather keep it fixed
(perhaps even at N = 1 or N = 2). Instead, consider the limit as z — a. Even if the
series is divergent in the first sense, this second limit often gives enormously useful
information, typically because Ry(z) (as it is written above) is well behaved near
7 =a, and so the term (z —a)M*! ensures that the remainder term vanishes more
quickly than do the terms that are kept. The rest of this section explores that simple
idea.

We often want to consider the behavior of a function y(x) in the presence of
some perturbations. Then, instead of studying the original function y(x), we study
the asymptotic behavior of a two-parameter function y(x, €), where € is considered
“small.” An asymptotic expansion for the function y(x, €) has the form

y(x,€) = yo(x)do(€) +y1(x)d1 (&) + y2(x) 2 (€) + ... = iyk(x)q)k(s), (2.115)
k=0

where ¢ (€) are referred to as gauge functions; that is, they are a sequence of func-
tions {¢r(€)} such that, for all &,

. Oipi(€)
}?13(1) o () =0

The type of gauge function we will use the most often is the power of the per-
turbation &, namely, ¢ (&) = €, in which case we simply have a formal power
series:

y(x,€) = yo(x) +y1(x)e +y2(x)£2 +...= i yk(x)sk.
k=0

90 2 Polynomials and Series

We then have to solve for the yi(x), k=0, 1,...,N. To find the first coefficient yo(x),
divide Eq. (2.115) by ¢y (&), and then take the limit as € — 0:

y(x,€) —(x 1
e " G -

. Y(x,€)
) do(€)

M

Vi (x) O (€)

1

= yo(x).

All the higher-order terms vanish since ¢y(€) is a gauge function. This gives us
yo(x). Now, subtract yo(x)@o(€) from both sides in Eq. (2.115); we then divide both
sides by ¢; (€) and take the limit as € — 0:

y(xjg)gl)a(;)%(g):yl(x)+ Y

SO

y(x,€) —yo(x)do(€)

lim e =y (x). (2.116)
As we see, we will in general have
1 k=1
Yi(x) Zgi_%m <Y(x,€)—;()y4(x)¢£(8)> : (2.117)

Convergence of a series is all about the tail, which requires an infinite amount of
work. What we want instead is gauge functions that go to zero very fast; in other
words, the speed at which they go to zero is asymptotically faster from one term to
the next.

Example 2.12. Consider the (convergent) integral and the (divergent) asymptotic
series

n

/w ' = N (—1Dfkt + o).
0

1+ xt =

One can discover that series by replacing !/(1+x) with the finite sum 1 — xt 4+ x1% +
_ e\l ..
s ()" + %, giving

= e C ki [Tk 141 =kl
dt = -1 e Tdt+ (—1)"7 X" dt
/0 1+ xt ,Z‘O()x/o et (1T /0 14t

This provides a perfectly definite meaning to each of the entries in the asymptotic
series. Notice that the series diverges for any x # 0, if we take the limit as n — oo,

2.9 Chebyshev Series and Chebfun 91

Nonetheless, taking (say) n = 5 allows us to evaluate the integral perfectly accu-
rately for small enough x, say x = 0.03: summing the six terms gives 0.9716545240,
whereas the exact value (found by the methods of Chap. 10) begins 0.9716549596,
which differs by about 5- 1077, <

Remark 2.16. In the previous example, we have used a divergent series to give us
a good approximation to the correct answer. Heaviside was right, and asymptotic
series are extremely useful in numerical analysis. The reason this works is that it is
the limit as x — O that is dominating here: If we had wanted an accurate answer for
x = 10, we would have been out of luck. We will often be concerned with the asymp-
totics of the error as the average mesh width (call it h) goes to zero, for example,
and methods will be designed to be accurate in that limit. <

2.9 Chebyshev Series and Chebfun

This generalized review chapter is not the right place to begin explaining the under-
lying methods of the Chebfun package. Here we mention only that the package does
not use Taylor series, but rather interpolation at Chebyshev points (we expand on
this in Chap. 8), which is closely related to Chebyshev series: One can convert back
and forth using the FFT, in a stable and efficient fashion (see Chap. 9). What, then,
are Chebyshev series? Just as with Taylor series, one can find convergent series for
elementary functions, but where now the gauge functions are not shifted monomials
but rather Chebyshev polynomials'?; for example,

¢ :JO(i)To(x)—i—Zi FT(—i) T (x) . (2.118)
k=1

The coefficients are evaluations of the Bessel functions Ji(z) at particular arguments
(complex arguments, as it happens, although the results are real). This series is
not expressed in powers of x or of x — a, but rather in higher- and higher-degree
Chebyshev polynomials. One could do this on other intervals by the linear trans-
formation x = 2(—4)/(b—a) — 1, so a < 1 < b; the coefficients would be different,
of course. When one has evaluated Jy(i) = 1.266... and Ji(—i) for several k,
this series (and series like this) can provide a quite effective method for evaluat-
ing the function under consideration. See, for example, Boyd (2002) for applica-
tions to computing zeros of functions. For example, taking the first 15 terms here
gives us

¢ = 1.26606587775201Ty(x) + 1.13031820798497 T} (x)
+0.271495339534077 Ty (x) + 0.0443368498486638 T5(x)
+0.00547424044209373 Ty(x) +0.000542926311913944 Ts(x)
+0.0000449773229542951 T(x) + 0.00000319843646240199 T5(x)

15 See Rivlin (1990 Chapter 3).

92 2 Polynomials and Series

+0.000000199212480667280 Ty (x) + 0.0000000110367717255173 To(x)
+0.000000000550589607967375 Tio(x) 4 2.49795661698498 x 10~ ' T}, (x)
+1.03915223067857 x 1072715 (x) 4 3.99126335641440 x 10~ 14773 (x)
+1.42375801082566 x 1015 Ty4(x) (2.119)

and this approximation has the relative error (on the interval —1 < x < 1) shown
in Fig. 2.8. We will pursue this concept further in later chapters. For now, note that

ALY
\/o}.{sv \/1

Fig. 2.8 The relative error S-exp(—x) — 1 in the truncated Chebyshev series (2.119), computed in
high precision in MAPLE

|7} (x)] <1, and so the size of the coefficients tells us directly how much each term
contributes (at most) to the sum.

In Chebfun itself, this series can be computed as follows, assuming the Chebfun
package has been installed.

x chebfun('x', [-1,1]1);
y = exp (x);

co = chebpoly (y) ;

format long e
co(end:-1:1)"'

ans =

.266065877752008e+000
.130318207984970e+000
.714953395340767e-001
.433684984866388e-002
.474240442093829e-003
.429263119140007e-004
.497732295430233e-005

oo oo oo o oo op op op op

ROk DR R

2.9 Chebyshev Series and Chebfun 93

% 3.198436462443460e-006
3 1.992124806757106e-007
% 1.103677179109604e-008
% 5.505895456820691e-010
% 2.497954620928056e-011
Z 1.039121170062377e-012
2 4.003147020219850e-014
Z 1.395708945243054e-015
t = linspace(-1,1,3011) ;

reler = exp(-t).*y(t)-1;

plot(t, reler, 'k-');

set (gca, 'fontsize', 16);
axis([-1,1,-1.5E-15,1.5E-15]) ;

set(gca, 'YTick', -1.5E-15:5E-16:1.5E-15);

As you can see, the numbers do not quite match (although the largest three do):
The series at the beginning of this section was computed using MAPLE in 60 digits
of precision, and then the coefficients were rounded to 15 digits. They are differ-
ent from the Chebfun series coefficients printed above, but not in any important
way because the differences in the smallest coefficient (which are the greatest, rel-
atively speaking) matter the least to the sum. The source of the difference is not
a numerical error, but rather a difference in type of approximation. We will re-
turn to this later, but for now, observe that Chebfun is doing what it is supposed
to—something similar to the Chebyshev series above, but not exactly the same
thing. As we see in Fig. 2.9, it produces a perfectly acceptable (and even somewhat
similar, ignoring the discrete-level effect of being so close to unit roundoff) error
curve.

—15
15210 : : :

05¢

15 L L L
-1 -0.5 0 0.5 1

Fig. 2.9 The relative error y-exp(—x) — 1 in the chebfun for y = exp(x), as computed in normal
precision in MATLAB

94 2 Polynomials and Series

2.10 Notes and References

This chapter was originally intended for self-study, although the importance of the
material suggests that it should be more formally included in any course using
this book. A more elementary introduction to the theory of univariate polynomials
can be found in Barbeau (2003). A more detailed introduction to the computation
of Taylor series can be found in Henrici (1974). For a statement and discussion
of the fundamental theorem of algebra, see, for instance, Levinson and Redheffer
(1970).

Variations of Theorem 2.9 can be found throughout the literature, so many that
Stetter (1999) says that it is misleading to cite any; the paper (Rezvani and Corless
2005) points out that it is really just an application of Holder’s inequality.

Algorithm 2.1, our version of the synthetic division algorithm, is an adaptation
of Algorithm 5.2 in Higham (2002 p. 96). We modify that algorithm here to return
the local Taylor coefficients, that is, »* (a)/k! instead of multiplying by factorials as
done there to return values of the derivatives p*) (a).

The special case 7, = —k or Ty = k for 0 < k < n— 1 of Newton polynomials is
useful in combinatorics and is sometimes called the Pochhammer basis. We have
already seen this, but called it &, ztothe k falling.

For a thorough treatment of Chebyshev polynomials, see Rivlin (1990).
See Salzer (1972) for more discussion of useful properties of the Chebyshev—
Lobatto points 7. For a discussion of Chebfun and Chebyshev polynomials,
see Battles and Trefethen (2004) and http://www2.maths.ox.ac.uk/
chebfun/.

Some other orthogonal bases are discussed in the venerable book (Abramowitz
and Stegun 1972). That book has been substantially revised to become the Digital
Library of Mathematical Functions from the National Institute of Standards and
Technology (http://dlmf.nist.gov/). A similar INRIA project, the Dy-
namic Dictionary of Mathematical Functions, may be found at http://ddmf .
msr-inria.inria.fr/1.6/ddmf. More details on many orthogonal polyno-
mials can be found in Andrews et al. (1999), and some important algorithms in Wilf
(1962), available for free for educational purposes from http://www.math.
upenn.edu/~wilf/website/Mathematics for the Physical
Sciences.html. A discussion of MAPLE’s methods for othogonal series can
be found in Rebillard (1997) and Ronveaux and Rebillard (2002).

Faster methods of partial fraction decomposition than the one advocated here are
certainly available: Kung and Tong (1977) and Chin (1977) use FFT methods, which
we believe are unstable because they implicitly convert to the monomial basis; the
divided-difference algorithm of Schneider and Werner (1991), which, although not
asymptotically fast, is twice as fast as the algorithm given here, has an unhelpful
dependence on node ordering and again can produce f;; that do not accurately
reproduce 1. Their method is much more stable than methods that convert to the
monomial basis, however.

Sciences.html
http://www.math.upenn.edu/~wilf/website/ Mathematics_for_the_Physical_
http://www.math.upenn.edu/~wilf/website/ Mathematics_for_the_Physical_
http://ddmf.msr-inria.inria.fr/1.6/ddmf
http://ddmf.msr-inria.inria.fr/1.6/ddmf
http://dlmf.nist.gov/
http://www2.maths.ox.ac.uk/chebfun/
http://www2.maths.ox.ac.uk/chebfun/

2.10 Notes and References 95

Problems

Theory and Practice

2.1. Prove Theorem 2.1 on page 44.
2.2. Prove Theorem 2.2 on page 45.
2.3. Show that the roots of 7" — 1 = 0 are z; = exp(27ik/n).

2.4. Show that the roots of 7,,(z) are

ék:cos<@>, 1<k<n.
n

2.5. Consider the polynomial p(x) = X3 —2x—15. Plot this on 0 < x < 4 and see
thereby that there is a root near x = 2. Shift the basis to 1, (x —2), (x —2)?, and
(x —2). By neglecting all but the first two terms, get an improved approximate
root. Shift the basis again to 1, (x —r), (x —), and (x — r)3, where r is your esti-
mated root. Neglect all but the first two terms again, and solve to get an even more
improved root. Repeat the process until you have identified the root to machine ac-
curacy. As discussed in the text, this is how Newton conceived of what we now call
Newton’s method.

2.6. Prove the discrete orthogonality of the Chebyshev polynomials on the zeros of
T,,(x), and show thereby that Eq. (2.31) gives the Chebyshev coefficients of a given
p(x) with degree at most n — 1.

2.7. Download and install the Chebfun package. Execute the following commands.

close all
plot (chebpoly(0), 'k');
hold on
for i=1:30,

plot (chebpoly (i), 'k');
end;
axis ('square')

Explain what you see. The discussion by Rivlin (1990) is very extensive, but for this
problem a simple description will suffice (this problem is more about syntax than
anything).

2.8. Use the change of variables x = cos 6 to show that

/T,,(x)dx = ﬁTnH(x) — ﬁTnfl(x) +C

for n > 1, for some constant C. Since [Ty(x)dx = Ti(x) + C, this gives a beautiful
short formula for integrals of Chebyshev polynomials. The formula for derivatives

96 2 Polynomials and Series

of T,, expressed in terms of lower-degree Chebyshev T' polynomials, is not so el-
egant, but useful nonetheless. It is found in Rivlin (1990), and also as an MAPLE
program in Corless (2002).

2.9. Show that the Chebyshev—Lobatto points n,E") = cos(¥7/n) are the zeros of the
polynomial

sinn0

(1-2%)

sin@ ’

where x = cos 6. The polynomial U,,_; (x) := 5in78 /using (note the extra n in the de-
nominator) is called the Chebyshev polynomial of the second kind, and the 7 are
sometimes called the Chebyshev points of the second kind.

2.10. Show that the Chebyshev—Lobatto points n,E") = cos(k7/n) are (also) the zeros
of the monic polynomial

n
wi) = [T (x=n") =27 (1 () = T ()
k=0
if n > 1. A discussion of this result can be found in Trefethen (2013).

2.11. Show that Horner’s method recursively applied to p(z) = p(7) + q(z)(z —)
gives Algorithm 2.1.

2.12. Prove Lemma 2.1 on page 61.

2.13. Show that for every pair of sets of polynomial bases ¢ (x) and y;(x), 0 <k <
n, there exists a nonsingular matrix A,y for which

[Wo(x), w1 (x), - W (x)] = [B0(x), 01 (x), -, 9u(x)] Ay -
Show Agy = A4

2.14. Show that Algorithm 2.4 costs O(d?) flops to execute. Discuss the varying
cases when all s; are small and the opposite case when only one or two nodes have
high confluency.

2.15. Plot the condition numbers for evaluating the scaled Wilkinson polynomial

W 20 k
20(x) = kl:[l(X— ﬁ)v

in each of the following bases:

1. monomial basis ¢ (x) = x*;
2. Bernstein—Bézier on [0, 1],

2.10 Notes and References 97

3. Lagrange basis on 7, = %, 0<k<20;
4. Lagrange basis on random nodes 7; chosen from a uniform distribution on [0, 1].

2.16. Consider the Taylor series for the Airy function Ai(z). Think about each term
as akzk, for 0 <k < 127. For z= 10, at which a 127-degree Taylor polynomial ought
to give an accurate answer, compute all 128 of these terms separately, and plot them
on a graph, with & on the horizontal axis. Verify that the largest term occurs at about
k = 30, and has size about 107. This picture is why the phenomenon is known as
“the hump.” What does this have to do with our condition number analysis in the
text?

2.17. Compute e* = Y7, /k for various values of x and truncate the series at var-
ious values of N. Does this series converge, in theory? Why, then, does it com-
pute (say) exp(—30) to such poor relative accuracy? Compare with Problems 2.16
and 1.7.

2.18. In this problem, we examine exact formule for finding zeros of polynomials
of low degree. To begin with, the zero polynomial fy(z) = 0 is exceptional; with
deg fo(z) = —-oo, it is zero no matter what z is. Also, degree-0 polynomials, of the
form fy(z) = ao, ap # 0, are never zero; they have no roots. Moreover, degree-1
polynomials, of the form fi(z) = ag +aiz, a; # 0, have one root, which is given
by z = —%/a,. Notice that, as a; — 0, unless ag = 0, this root goes to (complex)
infinity. These are very straightforward cases. Degree-2 polynomials are already
more interesting:

1. Show that f5(z) = ag + a1z + a»z*> with a; # 0 may be written as

2
hE)=a (z+ a_1> b (a% —4dazag)

(because ay # 0), and that therefore the two roots of f>(z) are

—ay £ 4 /a% —4dasay

Z =
2(12 ’

and that as a; — 0, if a; # 0 that one root tends to —4/a, and the other tends to
oo, If a1 = 0, then both roots tend to = (remember: a; € C).
2. What is the absolute condition number of the roots?

Now, let us turn to degree-3 polynomials and, in particular, Cardano’s method:

1. Consider a third-degree polynomial f3(z) = ag + a1z + a2z> + a3z> = 0. Show
that, using z = t — @/3a, this is equivalent to solving > + pt + ¢ = 0.
2. Let t = u+ v and gather terms so that

w2+ + g+ Buv+p)(u+v)=0.

98 2 Polynomials and Series

Conclude that if one can find « and v such that

B3uv+p=0
w4+ qg=0
simultaneously, then one can solve any cubic equation.
3. By solving uv? = —p* /27 and u® + v} = —¢ simultaneously for, say, u* first, and
then using uv = —P/3 to find v unambiguously, show that you really can solve
cubics.

4. The “condition numbers” 2X [‘9’ ‘7’} and {‘9“ Ju gv. gv

dar |95 9q 99 3g° dp> ag | A€ different but
related. Discuss. In particular, is the use of Cardano’s formula always numeri-

cally stable?

Finally, let’s have a look at degree-4 polynomials (encountered in quartic equations),
and in particular Descartes’ method:

1. Convert f(z) = ap + a1z + axz> + azz> + asz* = 0, with as # 0, to F(t) = t* +
pt> +qt+r=0.
2. Show that if

v+w—u2:p

uw—v)=gq
w=r,

then F () = (>4 ut +v)(t> — ut +u). Eliminate v and w to find a cubic equation
for u.
3. Discuss the conditioning of the transformed problems.

2.19. Show that if

n

=Y ank ad (FHANE =3 el +8)6()

k=0 k=0

with |8 | < ewy, that for each simple root 2 of f, when € > 0 is small enough, that
there is a simple root Z of f 4 A f such that Z = Z+ Az and

Ad] < % +o(e),
where B(z) = X{_owi|¢x(2)].
2.20. Find a recurrence relation for the series coefficients of y = Inu if
N
u="Y w(x—ak+0x—a!
k=0

and ug # 0.

2.10 Notes and References 99

2.21. Find a recurrence relation for the series coefficients of s and ¢, where s =
sin(u) and ¢ = cos(u), if

N
u=Y up(x—a)f+0(x—aM*.
k=0

2.22. The JCP Miller formula. If y = u® (for constant o), find a recurrence relation
for the series coefficients of y by use of @¥/ax, where

N
=y u(x—a)+0(x—a)Vtt.
k=0

2.23. The Airy function Ai(z) satisfies the differential equation

2

% =2y(2) (2.120)
with the initial conditions y(0) = 3'%/(3I'(2/3)) and y/(0) = —3"°T"(2/3) /(2). Use
the methods of this section to generate a recurrence relation that determines the
Taylor coefficients of Ai(z) in its series about 0. (That recurrence is used in the
programs in Exercise 2.29.) As for the exponential, sine and cosine, and logarithm,
this can be extended to allow you to generate recurrence relations for the series
coefficients of Ai(u(z)), where u(z) is known by a truncated power series.

2.24. This problem is on series reversion. Suppose that
x=x0+x1(y—y0) +x2(y—y0)* +...,
that we know the xy, and that x; # 0. We wish to find the coefficients y; so that
¥ =yo+y1(x—x0) +y2(x—x0)*+....
Proceed as follows. Take
x = X0 +x1(v1 (x —x0) +y2(x —x0)> +...) +x2(y1 (x —x0) +y2(x —x0)> +...)?
+x3(y(x—xo)+...)° +...,

expand, and solve for yj,y, and y3 in turn. This is the brute force approach. See
Henrici (1974) for a discussion of the Lagrange—Biirmann theorem, which explores
an elegant connection (perhaps originally due to Lambert, if we are to believe his
claims about his Acta Helvetica paper) to powers of the series being reverted.

2.25. Using your answer: For Problem 2.24, find the first three terms of the series

for tan(x) about x = 0 from the series for arctan(x) = [%'

100 2 Polynomials and Series
2.26. Let f(x,y,t) =0 with x = x(r),y = y(¢), g(x,y,¢) = 0, and

f(x0,y0,%0) = g(x0,Y0,%0) = 0.
Show that if the Jacobian determinant

" fe(x0,¥0,70) fy(x0,¥0,%0)

2.121
gx(x0,Y0,%0) &y(X0,Y0,%0) ()

is not zero, and f and g are analytic in all variables, then x(t) = xo +x;(t — o) + ...
and y(¢) =yo+y1(t —to) +. .. may be constructively developed in Taylor series to as
many terms as one likes. (Hint: differentiate. This is the implicit function theorem.)

2.27. If you have access to MAPLE, solve

24 yz —f

25xy—12=0
in series for x and y near r = 1, when x = 3/5 and y = 4/5 (there are three other
intersections also; just follow this one). (Hint: You can dsolve/series, which
implements the ideas of this chapter, but differentiate first.)
2.28. If you have access to MAPLE, consider the command
convert (R, parfrac, z, true);
when R is a simple factored rational function, say T[] ,(x — ‘L’i)_l, with (say)

Chebyshev-Lobatto nodes computed to 16 digits of precision, via commands simi-
lar to

Digits := 16;

n :=5;

tau := [seq(evalf(cos(Pixj/n)), j = 0..n) 1;

R := 1/mul(z-taul[l+j], j = 0..n);

PF := convert(R, parfrac, z, true);

ONE := PF/R;

plots[logplot] (abs (ONE-1), z = -1 .. 1, colour = BLACK, style=
POINT) ;

Try these commands for various n. How well does MAPLE do, in your version? At
this time of writing, MAPLE 15 makes acceptable plots for n as large as 15, but it’s
already bad for n = 20.

Investigations and Projects

2.29. The following MAPLE program uses a handwritten version of Horner’s
method to evaluate the degree-N Taylor polynomial at z = 0 for the Airy func-
tion Ai(z).

© ® N v A W N =

2.10 Notes and References 101

#
Horner form of Taylor polynomial approximation to AiryAi (z)

#

TaylorAi := proc(z, N)
local AiO, AipO, f1, f2, k, n, z3, zsqg;
Ai0 := evalf(37(1/3)/(3%GAMMA (2/3)));
Aip0 := evalf(-37(1/6)«GAMMA (2/3)/(2%«P1i));
z3 := evalf (zxzxz);
n := max(floor((N-2)/3), 0);
f1 := 1;
f2 := 1;
for k from n by -1 to 1 do
f1 := evalf(1 + z3%xf1l/((3%k)«*(3xk-1)));
£f2 := evalf(1 + z3%f2/((3xk+1)*(3xk)));
end do;
return AiO*xfl + AipO*zx+f2

end;

When this is translated into MATLAB via the CodeGeneration [Matlab] fea-
ture of MAPLE, and the resulting code is polished a bit by hand, the result is

Automatic translation of TaylorAi.mpl
which was written by RMC 2011, using
CodeGeneration [Matlab] in Maple
plus fixups GAMMA --> gamma
vectorized multiplications
added "end" to function
function TaylorAireturn = TaylorAi(z, N)

o0 o o oo o o op

Ai0 = ((3 ~ (0.1el / 0.3el) / gamma(0.2el / 0.3el)) / 0.3el);
Aip0 = (-(3 ~ (0.lel / 0.6el)) * gamma(0.2el / 0.3el) / pi /
0.2el);
z3 = (2 .x 2 .% 2);
n = max(floor(N / 0.3el - 0.2el / 0.3el), 0);
f1 = 1;
f2 = 1;
for k = n:-1:1
f1 = (0.1el + z3 . f1 / k / (3 = k - 1) / 0.3el);
f2 = (0.1lel + 23 .%x £f2 / (3 » k + 1) / k / 0.3el);
end
TaylorAireturn = AiO0 x f1 + AipO0 x z .* f2;
end

The automatically generated and curiously ugly 0.3el meaning 3. 0, and its ilk,
were left as-is. Notice also that this automatically generated code does not follow the
MATLARB style guidelines of Johnson (2010). The following MATLAB commands

z = linspace(-13, 13, 40012);
y = TaylorAi(z, 127);

relerr = y./airy(z) - 1;
semilogy (z, abs(relerr), 'k.')
xlabel ('z'), ylabel('relative_error')

axis ([-15 15 10E-21 10E14]);
set (gca, 'YTick', [10.7-20, 10.7-15, 10.7-10, 10.7-5, 10.70,
10.75, 10.710, 10.715]1);

102 2 Polynomials and Series

produce the plot in Fig. 2.10. Explain this plot in general. Can you explain the curi-
ous horizontal line starting at about z = 7? If you have access to MAPLE, you might
consider running the original program at varying levels of precision, say Digits
equal to 5, 10, 15, 20, and 25, in order to help.

108
1010 |
10°
100

107 |

relative error

10—10 L

10—15 L

10720 - . - - *
-15 -10 -5 0 5 10 15
z

Fig. 2.10 The output of the program in Problem 2.29

2.30. Prove that you may algorithmically compute the Taylor coefficients of any
function or set of functions defined by a system of polynomial or rational differential
equations such as this:

d

%:fl(xy)’h)%---ayn) (2122)
d

%:fl(xy)’h)%---ayn) (2123)
dyn

%:fl()(:?yl?yZ?"'ayn) (2124)

with y(a) = y, given, and each f; polynomial or rational in its arguments (with no
poles at a, y(a) in any f;). This is quite a large class of functions!

2.31. We know of one function, the I function (and its derivatives), that does not fall
into the class of functions in Problem 2.30. Can you think of any others? Describe
some.

2.32. Draw the pseudozero sets for the following polynomials as in Fig. 2.7. Choose
interesting contour levels. Use weights equal to the polynomial coefficients.

2.10 Notes and References 103

1. Thp(x). Compare with the Wilkinson polynomial of degree 20.

2. q(x) = (x—1)%(x —2)"8(x — 3)'? (Zeng 2004).

3. p(x) =x'7 — (4x — 1)? (Bini and Mourrain 1996).

4. The Fibonacci polynomials f,(x) = x" — Zz;éxk for, say, n =5 and n = 10.
5. For any of the Zeng (2004) test polynomials that you fancy.

6. One of the paper by Wilkinson (1959a).

2.33. Draw the first 30 Chebyshev polynomials on the same graph (like Fig. 2.1 but
with more of them). You should see several smooth curves suggested by the gaps in
the graph; these curves are called “ghost curves.” They can be described analytically.
See Rivlin (1990).

2.34. Functions containing square roots or other radicals may not have Taylor series
at the branch point. A useful extension is Puiseux series, that is, series in terms
of powers of (z— a)l/ P for some p. Compute five terms of the Puiseux series of
sin(exp(y/x) — 1) about x = 0.

2.35. The Mandelbrot polynomials are defined by po(z) = 1 and

prs1(2) =zpi(z) +1.

Expanding these polynomials in the monomial basis is a bad idea. Demonstrate
this by proving that the coefficients are all positive, the leading coefficient is 1 as
is the trailing coefficient, and at least one coefficient grows doubly exponentially
with & (the degree is exponential in k, so the coefficients grow exponentially in the
degree). Explain why this makes the condition number B(z) of the monomial basis
expression very large on the interval —2 <z < 0.

2.36. Implement and test the Clenshaw algorithm (see Algorithm 2.2) for the Che-
byshev polynomials, which have o4 (z) = 2z and f; = 1 for k > 2.

2.37. The first barycentric form is

where the py are the values of p(z) at z = 7; that is, py = p(7). Since this is true
for all p(z), it is in particular true for the constant polynomial 1:

k— OZ—Tk

Dividing these two gives us the second barycentric form,

Brox
Py 7= rk

p(z) =)
Zk:() z—rk

104 2 Polynomials and Series

about which we will learn more in Chap. 8. By cross-multiplying and using the
product rule, find an expression for the derivative of a polynomial expressed in the
second barycentric form of the Lagrange basis. What is the cost to evaluate this,
supposing that the f3; are available?

2.38. Once one has found an approximate root r of a polynomial, one usually wants
to deflate, that is, find a new polynomial g(z) = P()/(z—r) that has the same roots
as the other roots of p(z) but is one degree less. Done incorrectly, this can lead to
instability; Wilkinson advocated deflating roots from smallest magnitude to largest,
but it has since been realized that by reversing the polynomial, that is, considering
the polynomial P(z) = z"p(1/z), which has as roots the reciprocals of the roots of
p, one can instead deflate from largest to smallest. Use Newton’s method, synthetic
division, and deflation to find all roots of Newton’s example polynomial p(z) =
2 -2z-5.

2.39. Show how to reverse polynomials P(z) = z"p(!/z) that are expressed in a La-
grange basis. Do not convert to the monomial basis.

2.40. Show that if the forward error ¢; = ry —z* in an approximate root to a polyno-
mial p(z) = 0is small, and p’(z) # 0 nearby, then the next iteration r; | has forward
error proportional to the square of e;. This is called quadratic convergence.

2.41. We said in the text that elements of the sequence of Newton iterates ry, | =
i — P /p' (n) were each exact solutions of the polynomials p(z) — p(ry) = 0. This is
trivial, in one sense, and very useful in another if p(r) is small enough to be ignored.
There is another way to look at this that is also useful. Given an approximate root
ry. for p(z), we can ask, “What is the closest polynomial p(z) + Ap(z) for which ry
is an exact root?”

We know that the size of Ap(z) is at most |p(r¢)| by the previous “trivial” state-
ment. But are there closer polynomials? The answer is usually yes, and there is an
analytical formula for the coefficients of the optimal Ap(z) that we can find using
the Holder inequality, as follows.

Given p(z) = Yj_ockdk(z), weights wy > 0 for 0 < k < n not all zero, and
a putative root r, find the minimum € such that (p +Ap)(r) = 0 with Ap(z) =
Yi_o(Ack) @k (z) such that each |Acy| < wie. Then € is the “minimal backward er-
ror” of the root r; you should find that € is proportional to |p(r)|, the residual. (Hint:
Reread Theorem 2.9 on page 70 and then use (C.2) in Appendix C.)

2.42. Following the discussion in Sect. 2.2.6.3 and the solution of the previous prob-
lem, find an expression for the nearest polynomial of lower degree.

Chapter 3
Rootfinding and Function Evaluation

Abstract We introduce general methods to evaluate functions and to find roots (or
zeros) of functions of all kinds. We examine various approximation methods and
study their respective numerical accuracy, by examining their backward error and
the condition numbers for evaluation and rootfinding. <

If you execute the MATLAB command y = sin(3%pi/7), you immedi-
ately get the answer y = 0.9749, where, as usual, you can see more figures in
the answer if you execute format long first. Nowadays one can use a calculator,
a web browser, a phone, and the like to get the same answer. This wasn’t always
so. Before computers, humans compiled tables of trigonometric functions by hand,
beginning with geometrical methods. Analog computers to compute functions (es-
pecially the logarithm) were invented next, and when the digital computer arrived,
one of the first things they were made to do was to compute mathematical functions
on demand. In the early days of modern computing, quite a lot of effort was spent
on the task.

However, nearing the end of the 20th century, the computation of simple mathe-
matical functions such as the elementary functions was already old-fashioned. Now,
in the 21st century, it doesn’t seem to form a large part of numerical analysis either,
although approximation theory is alive and well as a mathematical field.

Most of the theory of evaluation of elementary functions was developed under
the forward error model: A subroutine for the evaluation of a mathematical function
f(x) was judged against the standard of requiring

1f(x) = f(0)] < | £ ()] 5 3.1)

that is, if the computed function f(x) returned an answer with a relative forward
error less than half g (“half a Unit in the Last Place,” or ulp, denoted py in this
book), then the result could be rounded to the machine number nearest to the correct
answer—this is referred to as a correctly rounded result. This was, and is, the gold
standard and is very hard to achieve.

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods: 105
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0_3,
© Springer Science+Business Media New York 2013

106 3 Rootfinding and Function Evaluation

This chapter treats the issue more lightly. Instead of the gold standard, we take a
backward error point of view: We think that a subroutine has done a perfect job if it
evaluates

Fx) = f(x(146)) (3.2)

for some |8,| < . That is, the subroutine is doing its job if it gives you the exact
value of the function at a point differing only by at most a rounding error from
the argument you asked it to evaluate. This is not quite the same thing. And we
may even relax our requirement a little further, too—we might be happy enough
with only giving nearly the right value of the function at nearly the right point, as
captured by the mixed forward—backward notion of stability introduced in Chap. 1.

Our reasons for taking this point of view are twofold. First, it is unlikely that the
reader will be called on to write an industrial-grade piece of software for the evalua-
tion of an elementary function (and if the reader is indeed so lucky, then reliance on
just this book for a reference would be a mistake anyway, as we only have time for
the general picture, and in practice the details really matter, in a nitty-gritty way).
The real reason, however, is that the theory of evaluation of mathematical func-
tions provides a good opportunity to reinforce the backward error point of view.
Moreover, especially when we come to the sections on rootfinding, it’s even quite a
productive way to look at existing code that was designed to try to meet the “gold
standard” mentioned above.

What would a backward error viewpointdo forthe y = sin(3xpi/7) ex-
ample? Well, the answer 0.9749 given is, in fact, the exact sine of a number slightly
different to 37/7, being arcsin(37(1-9.31-107%) /7). If, instead, we use all the decimal
places MATLAB computes, we find that MATLAB has given us (pretty nearly) the
exact sine of 37(1+8) /7, where §, ~ —2.342-10~!7. To find this out, we used a 30-
digit computation in MAPLE. In this case, the two viewpoints don’t disagree: A
small backward error, such as this, entails a small forward error, too, because

sin(x(1 + &,)) = sin(x) +xcos(x) 8, + 0(5?) .

This is, in essence, a description of the condition number of evaluation of the sine
function. In the next section, we will see how to obtain a general understanding of
such condition numbers.

3.1 Function Evaluation

As before, we will in general discuss the case of complex functions. A complex-
valued function f(z) can be treated directly as a univariate complex-valued function
and approximated by various simpler functions over C, or it can be split into a real
part and an imaginary part. Thus, if we let z = x+iy and f(z) = u(x,y) + iv(x,y),
then we are faced with evaluation of two real-valued bivariate functions u(x,y) and
v(x,y). In principle, this is only more complicated, but not intrinsically more difficult
than real-valued univariate functions (although we are now in some sense evaluating

3.1 Function Evaluation 107

on boxes (x,y) € [a,b] X [c,d] and not on disks |z — a| < r). Moreover, it is in many
cases even simpler than that. For example,

sin(z) = sin(x + iy) = sin (x) cosh (y) + icos (x) sinh (y) ,

and now to evaluate sin(z) we see that we should merely evaluate 4 univariate real
functions. Arcane and clever tricks can be used (and are used, in MATLAB, for
example) to ensure that the functions u(x,y) and v(x,y) that are used are accurate and
efficient. Functions such as the Lambert W function (Corless et al. 1996), however,
are best thought of as needing direct complex approximations. We will begin with
this latter case, and then consider splitting a complex function in two real functions.

3.1.1 Condition Number for Function Evaluation

Consider a complex function y = f(z) and, in particular, the value y + Ay = f(z +
Az) it takes for a perturbed argument z+ Az. If f(z) is an analytic function of z, then
Ay . 2f'(z) Az

y flr) z’

so that if we let x(f) = C = 2/'()/f(z), which can be taken as a definition of the
relative condition number for the evaluation of f, we obtain the relation

(3.3)

oy =x(f)dz.

The condition number of a composition of functions may be computed by the chain
rule.

Example 3.1. Consider the function f(x) = €. Its relative condition number is
K(f) = z. Thus, €* is badly conditioned only for large |z|. N

Example 3.2. Now, consider the function f(z) = Inz. Its condition number is x(f) =
1/1nz, and so it is badly conditioned near z = 1. It also has a problem near the branch
cut z < 0. The function is discontinuous across the branch cut, so that a rounding
error that went from a zero imaginary part to a negative imaginary part would cause
a jump in value of order 1, essentially, infinitely larger. <

Example 3.3. The function g(z) = In(1 + z) has the condition number

_ z
K(g) = (1+2)In(1+2z)°

At z=0, x is in an indeterminate form, but we can find the condition near this point
by expanding x as follows:

< 5, 33 4
=l—=4+—=z"—=+ .
K >t 1% ¢ 0(z")

R Y S e

108 3 Rootfinding and Function Evaluation

From this, we see that k(g) ~ 1 near z = 0. This is good, which is surprising given
Example 3.2.! Here, note that these are different functions: one takes a small but
highly precise argument z and then (conceptually) adds 1 to that, whereas the other
starts with a highly precise number near 1, whose difference from 1 will not neces-
sarily be known very well. <

Example 3.4. The function f(z) = /z has the condition number

Z 1

KU) = =5, 34
(N=377%=3 G4
which is good everywhere (except the branch cut). <

Example 3.5. The function f(z) = sin @z has the condition number
WZCOS W

=" 3.5
k(f) sinwz (5
which is good near z = 0, but very bad near z = 7, +£2m, <

It is important to realize that the condition number x(f) estimates relative
changes in output versus small relative changes in input. That is, it is a linear in-
the-limit-of-small-errors perturbation analysis. Nonetheless, it can be very useful.
The reader should be wary, however. Quite a bit of information about the data being
used is contained in the simple assumptions that we care about, for example, 47/
and 47 /: This model makes sense only if z # 0 and f(z) # 0 and is of importance
only if the values of f (or z) differ greatly from 1, either being very large, or very
small (in which case the “nonzero” assumption becomes a bit delicate). The fact
that Inz is ill-conditioned near z = 1 but the function In(1+ §) is well-conditioned
near { = 0 appears to be a contradiction, but 4z/z and A{ will not be the same thing
at all, and this is the first example of such a delicate argument that most numerical
analysts see.

Example 3.6. The Mandelbrot polynomials, which you met in Problem 2.35, have
a natural recurrence relation definition: po(z) = 1 and py11(z) = zp2(z) + 1 there-
after. It is easy to differentiate this rule, to get pf(z) =0 and p}. (z) = pg(z) +
2zpi(2)py(z). This recurrence relation provides an effective method for computa-
tion of py(z) for any reasonable k. For example, we can take k = 7 and compute the
condition number 2Pi(2) /p(z), and plot its contours on, say, —3 <x <1, -2 <y <2,
as follows:

function mandelpic

[X,Y] = meshgrid(-3:.001:1,-2:.001:2) ;
Z=X+11i#Y;

[p,dp]l =mandelbrot (Z,7) ;

I See Higham (2002) for an extended discussion of this issue.

%

22
23

3.1 Function Evaluation 109

contour (X,Y,abs (Z.xdp./p),2."7[-4:1:8], 'k");
axis ('square') ;
axis image, axis off;

end

function [p,dp]=mandelbrot (z,n)
if n<=0
p=ones (size(z));
dp=zeros (size(z)) ;
else
[p0,dp0] =mandelbrot (z,n-1) ;
p=z.%p0."2+1;
dp=p0."2+2.%z.xp0.xdp0;
end
end

The result displayed was computed with MAPLE with color in Fig. 3.1. <

Fig. 3.1 Contours of the condition number of the Mandelbrot polynomial with k = 7, which is of
degree 2% — 1 = 127. The contours are at levels 2" for various m

It will also be important to have a condition number for the evaluation of multi-
variate functions. Thus, if we wish to know how sensitive a function such as

y=f(z1,22,23)

110 3 Rootfinding and Function Evaluation
is to changes in any 7, the chain rule gives

5}, = |:le]/f7X2f2/f7x3f3/f] . [31762753] . (3.6)

Thus, it makes sense to think of a (convenient) vector norm of this vector of scaled
partial derivatives as “the” condition number of this scalar function of a vector of
variables. Similarly, vector-valued multivariate functions give a matrix of scaled
partial derivatives, and the “size” of this matrix (we will study matrix norms in
some detail in upcoming chapters) will give a sense of how errors are amplified
during function evaluation.

3.1.2 Conditioning of Real and Imaginary Parts Separately

If one chooses to treat the real and imaginary parts of f(z) separately, then a matrix
of condition numbers is needed, as we now show. We consider the effects of separate
changes in the real and imaginary parts of z on the real and imaginary parts of f(z).
We write z = x+iy and f(z) = u(x,y) + iv(x,y). Then,

Au Ax
] -els)
where the 2 x 2 matrix C is given by

_ ue(x,y) uy(x,y)
“ {Mxvy) vi(x,y)] ' 3)

Because of the Cauchy—Riemann equations, if f(z) is analytic, these quantities are
related: u, = v, and u, = —v,. So far, this is just differentiation (and, if f(z) is
analytic, equivalent to Af(z) = f'(z)A(z)). However, it sometimes happens that
while |2/'(2)/f(z)| does not have a problem, one of the four values xu, /u, yiy/u, xvy /v,
or yvy /v does have a problem, as (say) v — 0 (but not quite), while « stays bounded
away from O (and hence, f(z) stays bounded away from 0). In this case, we may
be able to compute f(z) perfectly well as a complex function, but (say) errors in
its imaginary part will be large (relative to the imaginary part, although not large
relative to | f(z)]).

Example 3.7. Consider the complex function w = log(x + iy). Its real and imaginary

parts are
u=logr=log/x%+y?
v = arctan(y,x) . (3.8)

Computation of the separate condition numbers gives

Uy x?

Y T Eieg) 59

3.2 Rootfinding 111

2
Uy Y
—_—= 3.10
Vi T W@ logl) 10
Vy Xy
- =— 3.11
5 (x2 4+ y?) arctan(y, x) (.11
Vy xy

- = 3.12
Yy (x2 +y?) arctan(y,x) ’ (3-12)

with the interesting complication that arctan(y,x) has a jump discontinuity across
the negative real axis, that is, x < 0 and y = 0 (and hence, the last two derivative
formule are not valid there).

We see from Egs. (3.9) and (3.10) that the real part is relatively ill-conditioned
on (or near) the unit circle: Small changes in either x or y will cause large relative
changes in the real part of the logarithm. Moreover, we see from Eqs. (3.11) and
(3.12) that there is a problem if both x and y go to zero in such a way that %/,
goes to infinity; on the other hand, if just y — 0, then the arctangent will balance
it. An example of where this gets into trouble is if y = €tan6 and x = &, when
arctan(y,x) = 6 and the condition number is

g 1 cos*(0)
(e2+€2tan20)0 Osec2d O

This clearly has a problem if 8 = 0, but this is fortunately hard to achieve in practice:
The difficulty shows up only when € is small, while 6 is small but not as small as €.
In practice, this problem is ignored (and in any case, the argument arctan(y,x)
doesn’t make much sense if both x and y are very small).

However, the difficulty along the negative real axis is quite genuine. A small
change in y, from positive to negative, will change the arctangent by nearly 2.
Thus, the imaginary part is infinitely ill-conditioned along the negative real axis if
perturbations are allowed to cross the branch cut. N

3.2 Rootfinding

At this point, we can already evaluate polynomial and rational functions. The next
simplest kind of function is an algebraic function, which is defined as a root (or
zero) of a bivariate polynomial function. For instance, the function y> — z = 0 de-
fines y = /z, and by the conventional branch choice, Re(y) > 0, and if Re(y) =0,
then Im(y) > 0 also. Of course, the other branch, y = —+/Z, also satisfies this al-
gebraic equation. To evaluate general algebraic functions, we need techniques for
rootfinding, and similarly for transcendental functions, of course. Can we write a
reliable routine that, given y, finds x so that y = f(x)? That is, can we solve the “in-
verse function” problem and compute x = £~!(y)? What about for complex z and w
in w = f(z), instead of real x and y? In this section, we examine how to approach
such questions.

112 3 Rootfinding and Function Evaluation

3.2.1 The Condition Number of a Root

When we took the equation y = f(x) and considered x as the input and y as the
output, and considered the effects of changes in x on the value of y, we arrived at
the condition number for function evaluation C = x/'(¥)/f(x) and at the relation 8y =
Cdx. Now the situation is similar, but reversed: We are given y, which is y = 0 for
rootfinding problems, and are asked to find x. We can now think about what happens
if y is changed a bit, or alternatively if the function f is changed to (f + Af)(x).
Considering

0+Ay=f(x+Ax) = f(x) + f'(x)Ax+ O(Ax)*,
we obtain Ay = f’(x)Ax, which can be rewritten as

1
7
giving us our absolute condition number. If x # 0, by considering the relative change
in x, we get Av/x = 6x = (1/(xf'(x)) Ay. Since the ratio 4v/y does not make sense be-
cause y = 0, this gives us a mixed absolute-relative condition number that is related
to the reciprocal of C as computed for function evaluation. Indeed, the pure abso-
lute condition number of function evaluation is just f/(x), whereas the pure abso-
lute condition number of rootfinding is exactly its reciprocal, !/f(x). This says that,
where a function is vertical, it is hard to evaluate accurately; and where a function
is horizontal at a root, it is hard to locate the root accurately.

Before we examine the conditioning of roots in general in Sect. 3.2.4, consider
the special case in which f(z) = XJ_,cx ¥ (z) is a polynomial and the coefficients
are perturbed to ¢ (1+ O;), where each || < €, and f(z) has a simple root at z = r,
which gets perturbed to r(1 4 5,) when we evaluate 0 = (f +Af)(r(1 +), we
find that

Ax =

0=(f+Af)(r(1+8)) =f(r) +Af(r) + £ (r)rdy+--- .

Since f(r) = 0, we have to first order that

16, = ‘_Af(r) _ 1 ZRo kb9 ()|
U 20| R]
B(r)e
IO e

The last inequality follows from Holder’s inequality. Therefore, the condition num-
ber of a simple root r # 0 of a polynomial f with respect to changes in its
coefficients is

_ B

rf" (Nl

Here B(z) = Y} |ck||9x(2)| is simply the condition number for evaluation of the
polynomial, which we have seen before in Chap. 2.

3.2 Rootfinding 113

3.2.2 Newton’s Method

For real-valued problems with simple roots, bisection? is slow but reliable, since one
can often then find @ and b with f(a) f(b) < 0. In contrast, Newton’s method, which
we introduced in the last chapter in the context of polynomials, is fast but skittish and
needs derivatives and good initial guesses; the secant method and inverse quadratic
iteration (IQI) are almost as fast but don’t need derivatives. We shall look at all of
these, but let’s begin with Newton’s method.

Newton’s method for solving a general transcendental equation f(x) = 0 is the
1teration

£ (xn)
I ()’

Xp41 = Xn —

which is derived from the Taylor series at the initial guess from the supposed root x*:

0=f(x*") = flxo+ (x —x0)) = f(x0) + f'(x0) (x* — x0) + O(x* —x0)* .

The iteration usually converges quickly if it is given a good enough starting guess
Xo, but it requires a derivative evaluation at each step (and thus can be a bit costly).
Moreover, Newton’s method will have problems if f/(x,) =0 or if f/(x*) =0
(where x* is the root that we are looking for); and it can get caught in various kinds
of oscillations. Without a good starting guess, convergence can be quite slow ini-
tially.

Example 3.8. We start with a polynomial example. Newton’s method can be used
effectively to find the square root of a number. Suppose we wish to find the square
root of, say, 5. In this case, f(z) = z2 — 5, and so f'(z) = 2z. We choose an initial
guess, say xo = 2, and then use this iteration:

x2—5

Tl = n = 2x,
n

Unlike many Newton iterations, this one can be usefully rewritten as

1 5
X1 = 5 <Xn+ —) ; (3.14)

Xn

2 Bisection is explained in many numerical analysis texts, and it isn’t quite trivial: If you know
a function is positive somewhere (say at x = 1) and negative somewhere else (say x = 0), have a
look at it halfway between: If it’s zero there, you’ve found the root; if it’s positive, then the root is
between 0 and /2, and otherwise it’s between !/2 and 1. Repeat as necessary.

114 3 Rootfinding and Function Evaluation

that is, divide your guess into what you want to find the square root of (here, 5),
and then take the mean with what you had before. For taking square roots of pos-
itive x, this has very little trouble from rounding error. We get xo = 2, x; = 2.25,
xp =2.236111111111111, x3 = 2.236067977915804, x4 = 2.236067977499790,
and thereafter all the x; are constant, just the same as x4: The iteration has con-
verged (to the correct square root of 5 to all digits in MATLAB). <

Remark 3.1. Except for square roots as in that example, it’s never good to rewrite
Newton’s method away from its usual form xnew = X014+ small update. In this form,
it tends to minimize the effect of rounding errors. For positive square roots, the
above rewriting does no harm, but this is unusual. N

Theorem 3.1. Newton’s method has quadratic convergence (when it converges).

Proof. Suppose that f(x*) = 0 and, again, that the relation x, 11 = x,, — /&) /f/(x,)
holds. Then

1

0= f('x*) :f(xn _en) = f(xn) —f/(xn)en—|- f?eﬁ

for some average value f” of the second derivative,® and
p— * p— * p—
en =X — X" =2Xp — Xpp1+Xpp1 — X = (X0 —Xnp1) + €1

So, it follows that

1—
0= f(xn) _f/(xn)((xn _xn+l) +en+l) + Ef//ezzz
1—
= f(xrz) —f/(Xn)(Xn —xn+1) —f/(xn)enﬂ =+ Ef”eﬁ .

However, by the definition of the Newton iteration, f(x,) — f/(x,) (% — xpt+1) = 0.
Hence,
7

€nt+l = 5,7 Cn>

21" (xn)
showing that the convergence is quadratic. i

We remark that if f/(x*) # 0, then f”(x,) # 0 for values of x, that are “close enough”
to x*, and of course, f” — f”(x*) as well if the iteration converges. Hence, if the
iteration converges, it does so ultimately with an approximate doubling of correct

digits each iteration.

3 Phrased this way, the proof works even for complex x with an appropriate definition of “average.”
See the complex form of the Taylor series remainder given in Chap. 2.

3.2 Rootfinding 115

This method has many applications. Schoolchild algorithms for multiplication
and division of decimal fractions are likely known to every reader. A few readers
might know such an algorithm for extracting square roots. As we saw, Newton’s
method is very effective for square root computation, which is not surprising, but it
might be surprising to learn that Newton’s method quite often replaces the division
algorithm. One trick for that is to use Newton’s method on f(y) = !y —x to find
y = 1/, because then the iteration is

_ f(n) _ 1/yn—x_ 2\ _
Yl =T S =T =Y+ (0 —X9) = Yn(2 = xyn) ,

which can be carried out using only multiplication and addition.

Newton’s method is surprisingly important in the computation of functions to
arbitrary precision. For instance, if one has a fast method for computing a logarithm,
then the cost to use Newton’s method to find the exponential adds nothing significant
to the asymptotic cost of the algorithm.

Remark 3.2. Notice that there is a problem with Newton’s method if the root is
multiple, in which case f’(x*) = 0. Notice also that in this case the root is ill-
conditioned: A tiny change in the function value forces a potentially large relative
change in the root location. N

To end this subsection, we want to stress that determining when Newton’s method
converges is a complicated issue. Cayley had already proved in the 19th century that,
for the simple equation x2 — a, the basins of attraction for Newton’s method, that is,
the sets of initial points xo for which Newton’s iteration converges to a root, were
simple: If Re(xg) < 0, then x, — —+/a, and if Re(xg) > 0, then x, — ++/a. In a
lovely paper, Strang (1991) discusses the chaotic behavior (so that the iteration does
not converge at all) that results from xy € iR.

2 [
7D
r ‘i
i?r
| 9
N
#D
b-c\ o o f?/;lg
OD S [|
N e e |
ilf:__’%‘r“
- N
e é\ ~
=%
& /)
-2 -1 0 1 2

Fig. 3.2 Fractal boundary for the basins of attraction of Newton’s map for f(z) =z> — 1

116 3 Rootfinding and Function Evaluation

But it was not realized until the early 20th century that even the simple cubic

f@)=2—1,
which has roots @) = 1, m, = e ?, and w3 = @y, has very complicated convergence
behavior. If we start the iteration with some z € C, then for almost all z, the Newton
iteration converges to one of w;, @,, or w3. However, while each basin of attraction
has an open interior, the boundary between basins is more complicated. Julia and
Fatou proved (apparently without looking at a picture!) that, given a point z;, in the

boundary, then in every neighborhood |z — z,| < &, there is a zg) such that Z,Elll =
Z,(? — /") has limy_ye, z,?) = ;. That is, arbitrarily near to each boundary
point, there are initial points that lead under Newton’s iteration to each root. This
can only mean that the boundary is fractal, as shown in Fig. 3.2. The MATLAB code

to produce this figure is the following:

Draw an approximate boundary between basins of attraction
in Newton iteration for f(x) = x"3 - 1

RMC November 2010

oo o oo o oo op

x) x.73-1;
(x) 3%x.72;
Newt = @(x) x - f(x)./df (x);
The following takes quite a bit of memory
but makes a nice, lacy picture
lots = 1001;
X = linspace(-2, 2, lots);
y = X';
z = ones (lots,1l)*x + lixyxones(1l,lots);
% Simple initial guess
r = z;
% Thirty iterations is plenty
for j=1:30,
r = Newt (r) ;
end;
% The only points left are the roots or the boundary.
contour (x,y,r, 'k');
axis ('square') ;
set (gca, 'fontsize',16) ;

Remark 3.3. Newton’s method is a workhorse for solving transcendental equations.
It does have its problems: Because derivatives are needed for the iteration, one must
find a way to compute or approximate them; it can be sensitive to rounding errors;
it has difficulty with multiple roots; global convergence is by no means given (and
indeed there can be full-measure regions of initial conditions for which convergence
does not occur); even if the method converges, it may converge to the “wrong root”
(perhaps one you have found already); and in any case, it only finds one root at a
time. Nonetheless, in spite of all these difficulties, it remains a powerful method. <

3.2 Rootfinding 117

3.2.3 Wilkinson’s First Example Polynomial

In order to understand the notion of condition number introduced above, and how it
relates to the use of Newton’s particular method to find roots, we now consider in
some detail Wilkinson’s first (and more famous) example polynomial, namely,

20

p(@)=[lGz—Jj)=(—1)(z—2)---(z—20). (3.15)

j=0

We have already begun to look at this polynomial in Example 2.6. As we said, the
key misstep in evaluating this polynomial or finding its roots is expanding it into
the monomial basis. Since, as written earlier, the polynomial is expressed in the
Lagrange basis on the nodes 0, 1, .. ., 20, this amounts to a change of basis, and this
is a particularly ill-advised one. As Wilkinson himself notes, in the form above the
polynomial is perfectly conditioned. This is trivial: If we know the roots, we can find
them—this is not a surprise. It is a bit more of a surprise to realize that the values of
p(z) for any z can be computed accurately using this formula (which is already in
barycentric form of course), because the evaluation condition number B(z), namely,

20

B(z) = [1G-l, (3.16)

j=0
is of modest size in comparison to |p(z)|. In fact, the ratio is just 1.

In what follows, we use only the evaluation condition number because the
rootfinding condition number is, from Eq. (3.13), just B(r)/|rp’(r)|, and the other
two factors are independent of the basis. Thus, by comparing the size of the evalu-
ation condition number in each basis, we are comparing the size of the rootfinding
condition number in each basis as well. The condition numbers that we will compute
are summarized in Fig. 3.3.

Naively converting Wilkinson’s polynomial to the monomial basis results in

p(z) =22° =210z + 2061528 + - + 20!, (3.17)
where the last coefficient is 20! = 2,432,902,008, 176,640, 000. In this basis,
Buonomial (z) = |2/%° +210[z|" + - - +20! , (3.18)

which is substantially larger, growing to 3.3537 x 10 at z = 20, compared to the
maximum value in the original of 20! = 2.4329 x 108, That’s 10'! times as big.
The rootfinding condition number B(")/rp’(r)| has a maximum of about 10", so in
double precision we might lose all but two figures of accuracy (see Problem 3.24).
For N = 30, this is about 10%!, and for N = 40, this is about 10?°. This is (apparently)
exponential growth in the maximum rootfinding condition number.

Remark 3.4. Stoutemyer’s rule of thumb is, in David Stoutemyer’s own words, this:
“In my experience, it is often wise to use more than n decimal digits of precision

118 3 Rootfinding and Function Evaluation

---.--
1064 u "
] | |
| |
[|
10* u "
<& > -
| <
% &
102 m o . < o u
© <&
|]
10°4 © ©
<&
© S
10724
<&
<&
1074+ ‘ ‘ ‘ ‘
0 5 10 15 20

Fig. 3.3 The condition number B(z) of Wilkinson’s polynomial in two different bases at the roots
of the polynomial: The squares are the “optimal” Bernstein-Béizier basis and the diamonds are a
Lagrange basis on nodes chosen uniformly at random on the interval [0,20]. The monomial basis
condition number is not shown, as it is too large, reaching over 10?° at the right-hand side, and this
would compress the graph unacceptably

when summing n terms of a series, computing nth-degree regressions, computing
the zeros of an nth degree polynomial, etc.” The Wilkinson polynomial examples
have a condition number that grows exponentially with the degree and thus needs a
precision that grows linearly with the degree. To work with N = 20 needs a bit more
than 16 digits; to work with N = 30 requires a bit more than 21 digits; to work with
N = 40 requires a bit more than 29 digits. This provides experimental support for
Stoutemyer’s rule of thumb. <

Farouki and Goodman (1996) show that the condition numbers are much better
and indeed in a certain sense optimal if the polynomial is instead expressed in the
Bernstein—Bézier basis. In this case, the polynomial is (exactly)

14849255421 (20— 27— 617191994979 20— 2P
640000000000000000 Y 7 512000000000000000 .
25953467080473 20— o)t 60042878381637 20— 2"

1024000000000000000 - Y 7 204800000000000000 .
10866631664192427 (20— 215 52830616292575641 (20— 1)1
5120000000000000000 - 5120000000000000000 -)
36026164321154639 (i 88585902536686877 5 202"
1024000000000000000 1024000000000000000 - :

3.2 Rootfinding 119

159947472606929043 g 1071867924710442689 e

12
0—
1024000000000000000 © (20-2) 5120000000000000000 ° ()
1071867924710442689 10

(20 210 IS90ATAT006029043 g
5120000000000000000 1024000000000000000 :
88585902536686877_ 1y 5 36026164321154639 3)
1024000000000000000 Y7 1024000000000000000 - 2
52830616292575641 1, 02— 10866631664192427 5 20—
5120000000000000000 - % 7 5120000000000000000 £
60042878381637 14 . 25953467080473 ;
20— 2)* — 20—
204800000000000000° 2%~ %"~ 1022000000000000000° (20~
617191994979 5 14849255421 o
512000000000000000° 2° %"~ §20000000000000000° 20~ ?)

and the maximum value of the condition number in this basis is about 1.078 x 1020,
only about two orders of magnitude worse than the original formulation. But it
is actually worse, which seems odd, given the (correct!) characterization of the
Bernstein—Bézier basis as “optimal.” The catch is that the optimality only holds
over all nonnegative bases and for generic polynomials, and the Lagrange bases do
indeed take on negative values—and we are looking at a particular polynomial. This
is a concern. However, they are nonnegative on a particular finite set, namely, the
interpolation nodes (where they take on the values O or 1, trivially). This is enough
to extend the optimality result by weakening the conditions, as is done in Chap. 8.

We have already seen that the original Lagrange basis is better for expressing the
Wilkinson polynomial. But that was somehow unfair. What about, say, a Lagrange
basis on nodes chosen at random from a uniform distribution on the interval [0,20]?
Well, sometimes this can be bad, as bad as the monomial basis; but much more
frequently it is better, by as much as six orders of magnitude, than the Bernstein—
Bézier basis! Let us take a particular instance in which we apply Newton’s method
on Wilkinson’s polynomial expressed in the Lagrange basis on the following set of
nodes:

[0.448483409300000,2.13014107314000,3.86279632830000,4.21872857844000,
6.59689183604000,7.72816614900000,7.91437721068000, 7.92825446006000,
8.24572571680000, 8.55104113738000,9.09488793946000, 12.3146413849600,
13.8921437853000, 14.6123258589200, 14.7320524468800, 15.0014414439800,
15.4602596004600, 16.0037496891800, 16.8524536888400, 16.9403753077600,
18.8982670005800, 19.9283442836000].

Starting at xo = 16.5 yields the sequence

X0 = 16.5

x1 = 15.7773942261971
X = 16.1676354668247
x3 = 16.0180872226801

120 3 Rootfinding and Function Evaluation

x4 = 16.0003781413965
x5 = 16.0000001763342
x¢ = 16.0000000000000,

which is entirely satisfactory. Contrariwise, using the monomial basis, we stopped
the iteration after computing x;¢ because nothing had settled down (indeed, xg =
16.4999 had returned quite close to the original starting value). The difficulty is
more than just that we are starting exactly between two roots: Perturbing the mono-
mial basis coefficients by trivial amounts changes the roots by a very large amount,
because this basis is so ill-conditioned. It is almost certainly true that the floating-
point Wilkinson polynomial in the monomial basis does not have 20 real roots, and
the roots near 16 are particularly sensitive.

3.2.4 Backward Error Analysis Again

One can regard a general rootfinding problem as amap ¢ : f — {x| f(x) =0}, where
“f(x) =07 is the defining equation for this problem. For an approximately computed
root £ generated by some engineered version ¢ of the map ¢ (e.g., Newton’s map
iterated 5 times, in which case £ = xs), the defining equation will not be exactly
satisfied. Rather, we will have f(£) = r and, following the definitions from Chap. 1,
we see that this value r is the residual. Moreover, if we simply let g(x) = f(x) —r,
we see that our computed value X is the exact root of a modified function, since
g(®) = 0. As we see, in this case the residual and the backward error are the very
same quantities. Thus, if the residual is small, we know that we have found the exact
root of a slightly perturbed equation.

Backward error analysis for rootfinding of a univariate function can be as simple
as that. This observation brings us back to the question of conditioning. That is, how
sensitive is the root x to such changes? In order to find out, observe that, by Taylor
expansion,

fx) =0=f&)+f(R)(x—1),
so that if f(£) =r, then x — £ = —7/f'(%). Thus, the forward error is approximately

S (xn)
f'Cen)

An iteration of Newton’s method would use this estimate of the error to improve the
root. Here, we will not use it to improve the root, but rather to estimate the error. If
we divide by the root, so that

_'x*_xn;_ f(xn) o 1 e
Ox = x* o x*f/(xn> - x*f/(x*) (I"), (3.19)

Ax=x"—x,=—

3.3 Transcendental Functions 121

and if we then scale by a “typical” size of f(x) on the interval in question, say || f]|,

we obtain the relation

- Al (—r)

X=—Tr7~\7a = K6y, (3.20)
x*f'(x*) I

and so we have obtained a relative condition number for the root.*

Remark 3.5. This is distinct from the condition number of the particular expression
used to evaluate f(x) discussed in Sect. 3.2.1. The notions are related, but here only
the value of the function and its derivatives are used; there is no other perturbation
considered than the perturbation in the value of x, whereas before, the coefficients
of the expression were allowed to change as well. Different condition numbers are
appropriate for different situations. <

3.3 Transcendental Functions

How does a computer evaluate a transcendental function f at a given point z, that
is, find the value of f(z)? Moreover, how does it compute the roots of such func-
tions? In everyday mathematical life, we take the elementary functions \/E, Inz, €%,
sinz, cosz, arcsinz, arccosz, arctanz, and others for granted.5 But what about other
functions? In application, we are very often also interested in the so-called special
functions, too.® How are we to proceed, and what sort of guarantees can be expected
for our computed numerical solutions?

As mentioned in Chap. 1, the IEEE 754 floating-point standard guarantees that
addition, subtraction, multiplication, and division (and possibly square root) are cor-
rectly rounded. That is, they give the nearest machine number to the exact results for
those operations. It would be nice if the built-in routines for the elementary func-
tions (and some special functions) also carried this guarantee. They do not, because
of what’s known as the “table maker’s dilemma,” which essentially consists of not
knowing beforehand how many figures to work to in order to ensure that numbers
containing a long string of Os (is the next bit a 1?) get rounded correctly.’

4 Note that the role of the variables x and y are reversed if we compare it to other relation of
this type derived so far. This is because, as we mentioned, rootfinding is in some sense an inverse
problem.

5 A function is elementary if it can be constructed in a finite tower of Liouvillian extensions of
logarithmic, exponential, or algebraic type: This means that Inx = || lx %, the exponential function,
all rational polynomials, and all roots of polynomial functions are elementary. The trigonomet-
ric functions are just exponentials, for example, sinx = (¢* —¢™)/2i. A transcendental function is a
function that is not algebraic; some elementary functions are transcendental. Transcendental func-
tions that are not elementary (such as the Gamma function) are called special functions. See, for
example, Geddes et al. (1992) for a fuller discussion.

6 See Gil et al. (2007) for an excellent compendium of methods for numerical evaluation of many
special functions of practical interest.

7 See Muller et al. (2009) for a discussion of recent progress toward that laudable goal.

122 3 Rootfinding and Function Evaluation

So, how do computer subroutines for transcendental functions actually work?
The full story is too complicated for this introductory book (indeed, only specialists
know the full story), especially when it is done in hardware. Rather than attempting
to do that in vain, we will illustrate by examples the sort of reasoning that underlies
numerical methods to solve evaluation and rootfinding problems involving transcen-
dental functions.

3.3.1 Evaluation of Transcendental Functions

There are a few basic, simple ideas that find themselves systematically exploited for
the evaluation of transcendental functions: argument reduction, polynomial and ra-
tional approximation, and special algorithms such as the arithmetic—geometric mean
(AGM) method.® Rational approximation uses any of several constructive methods
in order to build a good approximant; this is possibly slow and expensive, but, once
constructed, the approximant can be used cheaply thereafter. But in what follows,
we focus on the interplay between the other two ideas.

The method of argument reduction can be used to evaluate a function f(x) when
two things are known: (1) an accurate way to evaluate f(x) on an interval [a,b],
and (2) an effective way of computing f(x) in terms of f(&), with & € [a,b], plus
possibly some other functions whose evaluation is unproblematic. A very simple
example of argument reduction would arise if we knew how to evaluate sin& on
[—m,7]; since sin(x + 27) = sinx, we can reduce the evaluation of sinx to the eval-
uation of sin& for some & € [~ 7.

Nowadays there is not much call for a numerical analyst to write a subroutine
to evaluate an elementary function. They have almost all been done, and done very
well. In order to understand the basic strategies for evaluation just mentioned, we
will consider the following imaginary scenario in which we are forced to return to
the sources: Robin Crusoe is marooned on an easy-living desert island, where all
material needs are easily satisfied. In order to break the mental monotony, Robin
sets out to do something mentally challenging, but not too taxing. Sand is the only
computing tool available, and Robin will attempt, with its aid, to design a function
for computing the logarithm function. We’ll just follow along in the development.
Our purpose in this hypothetical is not to prepare you for marooning, but rather to
illustrate some of the ideas that have gone into the making of the real subroutines and
chips in use today. We are, of course, going to make full use of MAPLE for solving
the equations, and delicately draw a veil on Robin’s labors on such mechanical
tasks, and we will test Robin’s formule by drawing high-precision pictures of the
error curves, something that Robin obviously cannot do.

8 The AGM is used for elliptic functions and for high-precision computation. See Borwein and
Borwein (1984) and Brent (1976).

® There is a difficulty in this example for very large x; see Problem 3.28.

3.3 Transcendental Functions 123

To begin with, Robin experiments with Briggs’ method.!® A simple variant
of Briggs’ method (mentioned briefly in Chap. 1) consists in taking 12 succes-
sive square roots of a number, subtracting 1, and then multiplying the result by
212 = 4096. It is left to Exercise 3.16 to explain why this method works at all,
and why In(x) = 2'2(¢ — €22+ /3 —¢*/s 4 --.) actually works rather well. The
rule In(y/x) = n®)/2 isn’t quite enough, all by itself, to explain this, but almost.
Thus, Robin takes the square root of 5 to get 2.236067977499790, then takes
the square root of this number to get 1.495348781221221, and so on, until af-
ter the 12th repetition, the answer is 1.000393006384622. Subtracting 1 results in
£ = 0.000393006384622, and multiplying by 2!2 gives 1.609754151411712. As it
happens, the true logarithm of 5 is about 1.60943791243410, and so all that labor
produced an answer accurate only to about 4 decimal places.

Robin is not happy with so little accuracy. Could argument reduction help? Dur-
ing this labor, Robin was reminded that iterated square roots make large numbers
small rather quickly, and make small (positive) numbers larger rather quickly—
driving both extremes toward 1. In fact, the maximum real number in IEEE754
arithmetic (realmax in MATLAB) is about 1.8 - 10°%8, and the minimum positive
real (realmin in MATLAB) is about 2.2 - 1073%. Twelve square roots of each of
these bring them into the interval [1, \/5] Even just nine square roots brings them
into the interval [1/5,5]. Robin then realizes that an accurate logarithm function on
the interval [1/5,5], together with (at most) nine square roots (and doubling at most
nine times afterward), would suffice to compute any IEEE754 double-precision real
number. This is, of course, argument reduction. By using ln(xz) = 2Inx, we have
reduced the range of required accurate logarithm from [realmin, realmax] to [!/5,5].
One could reduce it even further, to [0.707, 1.414] by using 11 square roots, but we
leave that design choice to the exercises.

Robin also considers another common trick, to make the reduced interval sym-
metric. By introducing the change of variables

1+ou
x= ,
1—ou

with a = 2/3, the symmetric u-interval —1 < u < 1 corresponds uniquely to /5 <
x <5 (note that u = = 1) /(a(x+1), and that neither denominators x+ 1 or 1 — ot is
ever zeroon —1 <u <1 or!/5 <x<5). Moreover, this symmetry produces an odd
function of u:

1 2 2 2
In (:gfj) =20m+ §a3u3 + §a5u5 +o’u’+0 (). 3.21)

10 Henry Briggs (1561-1630) made the first truly useful tables of the real logarithm function. The
calculations were carried out, by hand, to astonishing 14-digit accuracy; the tables contained tens
of thousands of entries. Nowadays this computing feat seems superhuman; we doubt Robin could
duplicate this, though as we will see, better methods will occur in this hypothetical than in the
actuality of Briggs’ history.

124 3 Rootfinding and Function Evaluation

Because In(1/r) = —Inr for real r > 0, Robin then saw that only x > 1 has to be
considered, and then the negative is taken.

Now, this series already gives a fairly decent hand algorithm for computing log-
arithms when —1 < u < 1. But Robin still isn’t particularly happy, since it doesn’t
seem accurate enough. We can see that this is true more easily than Robin can:
We can graph the relative error of these approximations, for various degrees (see
Fig. 3.4).

-1 -0.5 0
u
Fig. 3.4 Relative errors in the degree-k Taylor approximations (3.21) for k =9, 13, 17, and 21.

Higher-degree approximations have smaller error, as expected, but the errors seem to grow rather
quickly near the ends of the interval —1 <u <1

Robin is wondering: How can better results be achieved? Given the interval to
which our problem has been reduced, the name “Chebyshev” arises from some dim
recess of memory; indeed, the interval [—1, 1] is the natural domain of Chebyshev
polynomials (see Chap. 2). Given that, the goal would be now to produce not a Tay-
lor series approximation, which is good near # = 0 and not so good near u = 1 (see
again Fig. 3.4), but rather a Chebyshev series, with error more or less equally small
across the interval. Robin also remembers reading about the Lanczos T method,
which is a truly simple idea, and well within reach of a desert island computation.'!
The idea (which Lanczos used to find an approximation to the exponential function)
is to try to solve a differential equation for our unknown function, here In(x), in
Chebyshev series, by using a useful property of Chebyshev polynomials: They can
be multiplied and integrated very easily.

11 See the beautiful book Lanczos (1988). Lanczos’ method is indeed alive and well in modern
numerical analysis, nowadays, but mostly for the solution of partial differential equations; our use
of it here is twofold, as we will see.

3.3 Transcendental Functions 125

To implement this method, the simplest differential equation that can be used for
In(x) is, of course,
dy
——-1=0,
xdx
subject to the initial condition y(1) = 0. The method begins by assigning a Cheby-
shev series for the derivative. As we mentioned, the natural domain for the Cheby-
shev polynomials is the interval [—1, 1], which means that we should be working in
the u-variable, not the x-variable. This only necessitates a change of variable, using
4 fax = (49 [au) / (4% /au), from which we obtain

d
(l—azuz)ﬁ—Z(x:O. (3.22)

This is a purely polynomial differential equation (no transcendental functions; only
multiplication, addition, and differentiation). Thus, we need to determine recurrence
relations for the product and integration of Chebyshev polynomials. By virtue of
their definitions (see Sect. 2.2.3), the products of those polynomials are given by

uTy(u) =Ty (u)
_ Tiera () + T (u)

T; k>1
uTy(u) 3 >
This can be iterated as follows to find 1?7}
1
Ty (u) = E(Tz(u) +15(0))
1 3
T (1) = ZT3(“) + ZTl(“)
and
1
T (u) = 7 (Treya () + 2Ti(u) + Tr2(w)) k>2.
Moreover, using the substitution # = cos 0 (so that du = — sin 6 d0) and the trigono-

metric identity 2 cosn0 sin 8 =sin(n+1)6 —sin(n— 1)0, we find from the definition
of T; that

/Tk(u)du:/cos(kcos_lu)du: —/cos(k@)sin@d@
lcos(k—1)6 lcos(k+1)6

2 k-1 2 k+1

+K.

Choosing the constant of integration K so that the integral is zero at u = 0, and so
that the limit as k — 1 gives

/T1 (u)du= %Tz(u) + él—tTO(“)v

126 3 Rootfinding and Function Evaluation

we find that

/Tk(”)d” = ﬁTk+l(”> - ﬁTk—l(u) + —kski?(jkl/z) :

So, Robin was right: Products and integrals of Chebyshev polynomials are straight-
forward.

This being understood, Robin is able to set up and solve a linear system of equa-
tions for the unknown coefficients ay in the derivative of y(u),

dy X
—_— = T
du k§=0ak k(u) 3

and, once identified, integrate the result to get a Chebyshev series for y as a function
of u. For example, let us take N = 4. If we substitute this series in the differential
equation (3.22), and if we multiply and expand, we obtain a polynomial equation
expressed in the Chebyshev basis:

T To(u) + 11Ty (u) + T (u) + 1375 (1) + 14Ty (u) + 7575 (1) + 76T (u) = 0,

where 7y = (1 — */2)ag — @’ /aa; + 2 ¢, and so on for each coefficient. If the polyno-
mial is zero, then each coefficient must be zero. However, notice that even though
we have only N = 4, there are both 75 (u) and T (u) terms because u> 7T} adds 2 to the
degree, as a result of applying the recurrence relation. But then, setting all seven of
these coefficients to zero would give seven equations, not five, and we have only five
unknowns ay. Fortunately for Robin, setting the first five to zero and hoping for the
best turns out to work; this is why the 7-method is a good method. Lanczos’ great
observation was that the resulting degree-N polynomial for y was the exact solution
of the differential equation

(1 — azuz)ﬂ =20 — TSTS(M) — TﬁTﬁ(M) .
du
Moreover, Lanczos observed that we can expect these 7;s to be small (in virtue
of some theorems about fast convergence of Chebyshev series); in any case, we
can compute them explicitly, and measure them. This is, in embryo, the idea of
residual assessment for the solution of differential equations that we will use in great
detail later in this book; it is also an excellent method of constructing an accurate
approximation to a transcendental function on a fixed interval.
In the case examined, the linear system for the unknowns ag, ay, a», a3, and a4
turns out to be Aot = b, where

—1ha?+1 0 —1 /s 0 0
0 3o +1 0 —1/s0? 0

A=| —1)ho? 0 —1ha?+1 0 —1/s02
0 —1 /s 0 —1ha? +1 0

0 0 —1/s02 0 —1ha?+1

3.3 Transcendental Functions 127

and b = [2c2,0,0,0,0]”. We will look at general methods for solving such equations
in the next few chapters, but here we see that the equations are simple enough to
think about doing by hand. Well, with enough sunshine and sand, anyway. Once we
are done, with o = 2/3 and N = 4, the solution is [288/161,0,12/23,0,12/161]; that is,

2 12 12
W 30000+ 2 Talu) + 1 Tw),
and 75 = 0 while 7g = 4/483. That is, this polynomial is the exact solution of a differ-
ential equation that is only about 1% different to the one that we wanted to solve—
not bad for only five terms, of which only three are nonzero!

Finally, Robin decides to try again and again to find a good enough N. One
problem with the Lanczos method is that if you decide your error is not small
enough, you have to go back to the original system of equations, make it bigger,
and solve again; you can’t just add another term. Here, we just present the solution
with N = 34:

851461103262246 41408833593612
"= 5728507109761 1) 557288527100761 12)
18124402203606 2644314644406
2786442635548805 ©) 3901019689768327 1)
42866700804 56287506246
557288527100761 - “) T G130173798207371 11)
8212236486 399383052
7244750852426893 112)t 3786422635548805 11> W)
174807606 25504086
9473902960865937 7 ")+ Tos88482015085450 1°)
1240332 542886
3901019689768327 ' "+ 12817636123524505 22 W)
79206 428
+ 3932213177734005 2) * 557288507 109761 127)
1686 246
16161367286183060 > ") * T72759243a0402591 > W)

12 6
+ 6130173798207371 T (u) + 19505098448841635 Tss (1) -

(3.23)

How accurate is this answer, in the forward sense? Robin has also computed the
leftox./er T3 = .—m =~ —2.{ 10~15. Thus, thef polynomial is the exact
solution of a differential equation that differs from the desired one by no more than
this. As a result, by simple integration, Robin knows that

14+ au “ T36(u)
=1 — ————=du.
y(u) n(l—au) 136/0 o2 ™

This warrants the conclusion that the relative difference between y and the desired
logarithm is bounded by |36|. In fact, as we can tell using high-precision computa-
tion in MAPLE, the error is somewhat better (see Fig. 3.5).

128 3 Rootfinding and Function Evaluation

2.%x10°

-2.x 10

-4.x 10 '

-6.x 10"

Fig. 3.5 Error in the 17 nonzero term degree-35 Chebyshev series approximation to logarithm on
—1 < u < 1. Note that the error is quite evenly distributed across the interval, but not perfectly
“equal-ripple”

There are two issues that remain. First, is this a numerically stable expression?
The answer is yes, by the theorem of Smoktunowicz referred to in Chap. 2. Using
Clenshaw’s algorithm, this polynomial can be evaluated as the exact value of a poly-
nomial with only relatively tinily perturbed coefficients (it does so componentwise,
so this preserves the zero coefficients).

Second, is the evaluation of this particular polynomial well-conditioned? In other
words, how big is B(u) = 2,17:1 |Dok—1Tox—1(u)|? When we graph this, we see that it
is no larger than about 1.34. That is, an error of about € in a coefficient translates
into an error of about 1.34¢ in the value; this is almost perfect conditioning (see
Problem 3.19 for a comparison to the monomial basis, which for once does even
better). It might be difficult for Robin to ascertain either of these two facts (the
desert island library doesn’t seem to have all the journals that are needed, and the
graphing capabilities on the sand are a little coarse), though they are not hard for us
to see.

We can also collapse this theoretical analysis and experimentally examine and
assess the complete backward error of this formula, in a way that Robin could not.
Using the high-precision facilities of MAPLE, and its exponential function, we can
compute the relative backward error

5 = ~1, (3.24)

where Lg(x) is our computed logarithm approximation, done with 15 digits in
MAPLE, using the Clenshaw algorithm, and where the exponential function is com-
puted to higher precision (here 30 digits). The result, on !/5 < x < 1, is shown in
Fig. 3.6. Curiously, the backward error is larger on 1 < x < 5, by about a factor of
two. In both cases, however, the algorithm appears to have done its job, even in the
face of rounding error. Of course, this plot has only sampled the relative backward

3.3 Transcendental Functions 129

14

1.x10°

5.x10°

-5.x10"

“1x107

02 03 04 05 06 07 08 09 1.0
Fig. 3.6 Backward error in the 17-nonzero-term degree-35 Chebyshev series approximation, as
computed with 15 digits in MAPLE using the Clenshaw algorithm. Here !/5 < x < 1. Rounding
errors are better on this interval than on 1 < x <5, by about a factor of 2. The computed logarithm
is seen by this graph to be the exact logarithm of x(14- &), where |8, < 10714, or less than 64ey

10771

10777

10

1077

10771

02 03 04 05 06 07 08 09 1.0
Fig. 3.7 Relative forward error L¢(*) /in(x) — 1 in the 17-nonzero-term degree-35 Chebyshev series
approximation, as computed with 15 digits in MAPLE using the Clenshaw algorithm. Here !/5 <

x < 1. Although the relative backward error is uniformly small on this interval, as seen in Fig. 3.6,
the forward error is not small near x = 1, because the function is ill-conditioned there

error, and it is conceivable that between samples the error skyrockets; but in the face
of the theory, this seems quite unlikely. We thus conclude that Robin Crusoe has
constructed a method for computing log(x) that is acceptable by the backward error
standard: It computes the exact value of log(x(1 + dy)), where &y is very small.

130 3 Rootfinding and Function Evaluation

T

0.990 0.995 1 1.005 1.010

Fig. 3.8 Zoomed: Relative forward error L&(®)/in(x) — 1 in the 17-nonzero-term degree-35 Cheby-
shev series approximation, as computed in 15 digits in MAPLE using the Clenshaw algorithm. Here
0.99 < x < 1.01. As predicted by the condition number formula k(log(x)) = !/iog(x), the forward
error seems to be going to infinity at x = 1

What about the “gold standard” mentioned on page 105? Does this routine pro-
vide a computed value of log(x) that has small relative forward error? No! See
Figs. 3.7 and 3.8. Because this function is infinitely ill-conditioned near x = 1, tiny
rounding errors (or, equivalently, tiny relative backward errors) are amplified by a
factor !/1og(x). This is unavoidable. Uncertainties in x near 1 will be amplified, full
stop. In some sense this is a victory for backward error analysis and a reason to use
it; we have judged a method acceptable on the basis of it, and with good reason. This
victory, however, does not excuse bad behavior. If one wanted to compute not log(x)
for x near 1 but rather the related function log(1 + x) for x near 0 (the difference is
that, if we know, say, 5 figures of each x, in the first case we have 0.9995 and in the
second —0.49832 - 10~%, which quite different), then it would seem foolish to take
the small x, add 1 to it, round the result (thereby throwing away information), and
then use an ill-conditioned logarithm to evaluate it, even if the approximation being
used there had good backward error.'?

Similar tricks can be used for all other elementary functions. The next most natu-
ral function to want to compute is the exponential function, u = exp(z). As, first, it is
a real function, we can similarly think about reducing the range to (say) —1 <x <1
by using y?> = exp(2x) repeatedly, and then find a polynomial approximation; see
Exercise 3.17. For complex z, we find an equivalence with computing trigonometric
functions. Again, argument reduction and polynomial approximation seem to pro-
vide a method, although there are difficulties in range reduction for the trigonometric

12 There is a very clever trick for recovering some of this information, which can be used to do
nearly this; see Higham (2002). This trick relies on ensuring that the correlated rounding errors
cancel out.

3.3 Transcendental Functions 131

functions owing to the transcendence of 7 and the ill-conditioning of the functions
for large argument. Further desert island computations (for arctangent) will be un-
dertaken in Problems 3.20 and 3.21. However, at this point you may resume your
previous acceptance of modern computers and their easy and accurate (although not
necessarily “correctly rounded”) computation of all the elementary functions.

3.3.2 Roots of Transcendental Functions

Rootfinding problems for transcendental functions are essentially similar, but some
subtleties might enter in the computation. We illustrate this by considering the Lam-
bert W function. The function W (x) is defined by

W)W —x=0.
See Fig. 3.9. As we see from its definition, the study of this function impor-

Real Branches of Lambert W

1_

Branch Point [¢!, ~1] +_1 -

Fig. 3.9 The two real branches of the Lambert W function. This graph can be (nearly, except for
the labels and the dot at the branch point) reproduced in MATLAB by using the commands w =
linspace(-3,1,101); followed by plot (w.+exp(w), w, ‘k-")

tantly relates to rootfinding. We have accepted that there are routines for com-
putation of exp(-), and so computing W given x is a perfectly good rootfinding
problem. The rootfinding problem also makes sense over the complex numbers,
although in that case there are an infinite number of possible values for W (z) so that
W(z)exp(W(z)) =z

132 3 Rootfinding and Function Evaluation

Newton’s method applies immediately to the complex rootfinding problem, since
the formula

f (Zn>

Zn+1 = 2n f/(Zn) (3.25)
can be viewed as coming from the linear Taylor approximation to an analytic func-
tion f(z) near z = z,, and is well-studied as to convergence in the complex plane.
For Lambert W, we change the name of the variable to w, and thus the iterates are
wp; now z is considered a constant for the duration of the iteration. The iteration is
thus

wpe'n —z

(Wn + 1)8W" '
Choosing a good initial guess is an issue (see Corless et al. (1996) for a more com-
plete discussion). But if z is near 0, then it makes sense to use an initial guess based
on the first few terms of the Taylor series for W, namely,

Wil = Wn — (3.26)

3 8 125
_ 2,23 9294, 475 6
W(z)=z z+2z 3z—|—24z —l—O(z). (3.27)

However, if z is large, it makes sense to use an initial guess based on the first few
terms of its asymptotic series:

W(z) ~In(z) —In(In(z)) + %
—In(In(z))+1 (ln(ln(z)))2)
! (ln(zz))z +0((IH(Z)) 3) . (3.28)

For instance, the computation of W (5 + 2i) might start with that asymptotic series
evaluated at z = 5 4 2i (see the sequence in Table 3.1); starting from this initial
guess, Newton’s method converges in four iterations (nearly in three).

Table 3.1 Newton iterates and residuals r, = z— w, exp(w,) for the principal branch of W (5 +2i).
Note that at every stage, w, = W (z+r,) exactly

w, I
1.33231291412843 + 6.24438972458547 1i 0.32494 —0. 12039';'
1.36204391549356 +0.219163426087818i —0.44147 x 1072 +0.86916 x 1072
1.36187799739461 +0.220202860786331i 0.60085 x 107> +0.41220 x 103
1.36187875186406 +0.220203084384894i —2.6264 x 10712 —3.0874 x 1012
1.36187875186369 4 0.220203084384664i —2.3035 x 10714 —5.8301 x 10~

A W o = O3

What is the condition number of W(z)? The function W (z) is defined to be the
root w* (as a function of w, for constant z) of the equation

fw)=we" —z=0,

3.4 Best Rational Approximation 133

and its derivative is
£/(w) = (w 1)e”

As aresult, if we suppose that || f|| = O(1) on the interval of interest, the condition

number is
1 1

Cowr(wr F Dexpwt z(14w*)

This expression is problematic when z = 0, but only because we are considering
relative error. It also has a problem at w = —1, that is, at z = —exp(—1), which is
a genuine difficulty—this is a branch point, and convergence is slowed quite a bit:
Notice that f”(x,) appears in the denominator in the error analysis, and notice that
for branch points, f/(x*) =0, and therefore, f’(x,) will be small. This is how the ill-
conditioning affects the convergence: The residuals get quite small near a multiple
root of f(w), but the distance to the “true” root remains large.

To conclude, we emphasize again that, in this case, Newton’s method has an easy
interpretation in terms of backward error. The residual is given by

rp=2—wpe™", (3.29)

and so every iterate wj, is the exact root of a slightly different equation, namely,
f(w) 4+ r,. Thus, the interpretation of the computed value comes from the fact that

wp=W(z—r). (3.30)

That is, each iterate is the exact value of the Lambert W function at an increasingly
tiny perturbation of the desired argument z. More, this residual r, is computable
(toward the end, we would need more precision to get it accurately, but at least we
will know it is small). Finally, since the Lambert W function is well-conditioned
(away from its branch point at z = —1/¢), this small backward error translates into a
small forward error.

3.4 Best Rational Approximation

In our investigation of function evaluation and rootfinding, we have made use of
polynomials to approximate transcendental functions; specifically, we have used
Taylor polynomials and truncated Chebyshev series polynomials. As we have seen,
the error in the truncated Chebyshev series was smaller, for the same degree of ap-
proximation, and it seemed more equally distributed across the interval of approxi-
mation. This fact can be shown rigorously, and it works for rational approximation
as well.

Theorem 3.2. Let R = P/o be a reduced rational function of degree (n,m); that is,
the polynomials P(x) (of degree n) and Q(x) (of degree m) have no common factor.
A necessary and sufficient condition that R be the best approximation o f(x) in the
infinity norm sense on an interval a < x < b, that is, that

134 3 Rootfinding and Function Evaluation
R — fllec = max |[R(x)—
IR fll = max [R(x) = £(x)

is not greater than ||S — f||« for any other rational function S(x) of degree (n,m), is
that the error function R(x) — f(x) exhibits at least 2 + max{m + degP,n+degQ}
points of alternation (i.e., values of x for which ||R — f||« is attained, and with alter-
nating sign).

For a proof, see practically any book on approximation theory. However, we rec-
ommend the detailed, extensive, historical and constructive discussion of Trefethen
(2013).

This theorem is remarkable in many respects. The most immediately striking
thing about it is that it says that the way to get the best possible answer is to make
sure that the worst case occurs as many times as possible—that is, is distributed
among as many places as possible. This turns out to be an important idea for ap-
proximation: make the error equal-ripple, achieving its maximum as many times as
possible in the interval, and you will simultaneously make the total error as small
as possible. In some sense it is a technical instantiation of the proverb “many hands
make light work™! Speaking of proverbs, the book Trefethen (2013) also shows that
“best” approximation might not be what you want, nicely illustrating the proverb
that “the perfect is the enemy of the good.”

As an example, we use an advanced tool in the numapprox package in MAPLE
to actually find such a best rational approximation to a function; this procedure
should seem natural after following the desert island hypothetical on the computa-
tion of the logarithm. We consider a function such that

log (i‘:zﬁ) — F(2). 3.31)

In MAPLE, we execute the following code:

with (numapprox) ;
minimax (log ((1+2%sqrt (x) « (1/3))/(1-2+«sqgrt (x)*(1/3)))/x"(1/2),
x =0 ..1, [2, 2], 1, 'maxerror');

The answer returned, almost instantly, is

_ 1.76785424617689 4- (—0.685178491836968 4-0.0336567597364259 x) x
~1.32589040187406 + (—0.710301545774409 + 0.0780276560350512x)x

F(x)

This rational function of degree 2 in the numerator and in the denominator is the
best degree-(2,2) approximant on this interval. In Fig. 3.10, we see the character-
istic “equal-ripple” in the error curve; this characterizes best approximations, as
Theorem 3.2 asserts.

Notice that evaluation of the rational approximation F'(x) costs only 4 floating-
point operations. By rewriting it as a continued fraction, we can even reduce it to 2
flops (assuming that a division is really just as cheap as a multiplication). By using
the convert (<>, confrac, x) functionin MAPLE, we find that

3.4 Best Rational Approximation 135

2.x107'

1.x 1071

o

“1x 1077

2% 1077

0 02 04 06 08 i
X

Fig. 3.10 Forward error of the best (2,2) approximant to x~'2In((14 2v%/3)/(1 — 2v%/3)). Note
the equal-ripple character: the maximum error is achieved six times in the interval, as required by
Chebyshev’s theorem

A
Ay
X—AS

Flx)=A, — (3.32)

x—A3—

where we find that Ay = 0.431343980412622, A, = 4.85461456921422, A3 =
5.94597503089102,A4 = 1.78022517753074, and A5 = 3.15722737025930 are the
coefficients returned by the conversion. We now have to worry about two things.
First, is the evaluation of this continued fraction numerical stable; that is, is its eval-
uation exact for slightly perturbed values of each A;? Second, is this particular ex-
pression well-conditioned; that is, how sensitive it is to changes?

We don’t have immediately available a standard theorem of backward stability
for such expressions (we will see why we don’t in a moment), and neither do we
have a standard formula for “the” condition number. However, a moment’s reflection
suggests that the vecror of condition numbers with entries (Az9F /aa,) /F will tell us
what we want. For example,

A3 aF/8A3
F

-2

— _A3A, (x —Ay— A4) F L. (3.33)
X — A5

The other entries are similarly easy to compute in MAPLE. In fact, when we plot

these as functions of x by using the values of A; given above, we find that nowhere

on 0 < x < 1is any of these vector elements larger than 1. We thereby conclude that

this expression is well-conditioned.

What about numerical stability? It turns out that continued fractions can, in gen-
eral, be unstable. The combination of division and addition is such that rounding
errors cannot (in general) be made equivalent to relatively small perturbations to the
data (in this case, the A; and the x); the error bounds include the sums of the abso-

136 3 Rootfinding and Function Evaluation

lute values divided by the absolute values of the sums, which can be small. Another
way to view the difficulty is that errors made lower down in the fraction (for exam-
ple, in the computation of r = x — As) can be revealed by a possible cancellation at
a higher level (here, perhaps, x — A3 —44/r). But in this particular case, it doesn’t
happen. Since 0 < x < 1, x — A5 must be between about —3.15 and —2.15 and so
no cancellation occurs. Hence, —44/(x—45) is between 0.56 and 0.82. Continuing,
X — A3 —44/(x—45) is between —5.38 and —4.12, and no cancellation occurs here
either. Therefore, A, over this is between 0.90 and 1.17. Finally, there is no cancel-
lation in subtracting this from A1, either. Nonetheless, rounding errors do occur, and
because of the subtractions, they cannot, in general, be accounted for as relatively
small perturbations of the A; or of x. But here, because all of the quantities are of
one sign and are of the right magnitude, rounding errors do not accumulate signifi-
cantly or get revealed by a final subtraction. Indeed, one can write a backward error
bound for this expression, involving the norm of the A; vector, and this is sufficient
to guarantee a good forward error bound. See Exercise 3.22.

Remark 3.6. By using a degree-(5,6) approximant rather than a degree-(2,2) ap-
proximant, we get an equal-ripple error curve that is everywhere less than 8 x 10717
This can be converted into a continued fraction that costs only 6 divisions to evalu-
ate and, once again, it is normwise numerically stable. This is considerably cheaper
to evaluate than the Chebyshev series that Robin Crusoe found in the story of
Sect. 3.3.1. Indeed, we believe that this best rational approximant is more like the
methods that are actually used in practice. <

Remark 3.7. The equations that determine the equal-ripple curve are multivariate
(the maximum error is unknown, and the locations at which the maximum error is
achieved are unknown) and nonlinear. The algorithm that the function minimax
uses to solve these equations is called the Remez algorithm. It is essentially a spe-
cialized nonlinear equation solver, a particular multivariate function iteration that
starts with an initial guess for all the variables needed, usually derived from a Che-
byshev series approximation. It doesn’t always converge, but it’s pretty good, as is
the implementation in MAPLE.

While we were writing this book, Bill Gosper and Warren D. Smith were pushing
quite hard on efficient and optimal evaluation of the Gamma function on the interval
[—1/2,1/2] by applying the Remez algorithm in an interesting way; they were able to
achieve 35-decimal-digit accuracy with only 14 parameters, something like a (7,7)
approximation. <

This kind of rational approximation has been devised and implemented for all
elementary functions. As we mentioned, making sure that these elementary func-
tions allow the same guarantee that we have for floating-point arithmetic, namely,
that they give the correctly rounded result, is a very hard problem, because of the
table maker’s dilemma. MAPLE, for example, guarantees only that its elementary
functions are correct to 0.6 units in the last place (and in order to do so, it chooses
quite slow methods to evaluate them).

Finally, we note that the “best approximation” theory is, in practice, not used
as often as one might think; while it is valuable for functions that will be used

3.4 Best Rational Approximation 137

millions (or billions) of times, many functions in applications are not used so of-
ten. Simpler methods, such as using interpolation at Chebyshev nodes, often get
us nearly as accurate approximations on an interval with comparatively much less
effort.

Moreover, there is a theory of best approximation over complex domains similar
to that over real intervals; however, again similar to the real case, there is a sim-
pler and almost as efficient alternative. Taylor series and Padé approximants have
the useful property of being near-best on disks (Geddes and Mason 1975), and we
therefore find ourselves using these simple tools in preference to more complicated
approximations, most of the time.'3 As an example, consider the function !/r(z),
which is entire. If we wish to approximate it near zero, we can hardly do better than
its Taylor series. If we take a series correct to O(z'7), then the error |p16(z) — 1/r(z)|
has near-circular contours, and it is bounded between 4 - 1072 and 7- 1072 on the
unit circle. By the well-known result that an analytic function must achieve its max-
imum magnitude on the boundary of any compact domain, we see that the error is
uniformly less than 7 - 10~° inside the disk. An alternative might be to interpolate
1/r(z) at 17 equally spaced points on the unit circle (see Chaps. 8 and 9). This gives
an error less than 10~ on the contour plotted in Fig. 3.11. While this is nearly as

0.5

-0.54

Fig. 3.11 The contour Li7(z) —/r(z) = 10 3exp(i@). Inside this contour the Lagrange interpolat-
ing polynomial on the 17 nodes (plotted as crosses in the figure) is accurate to an absolute accuracy
of better than 1078

13 Despite some of its shortcomings, the monomial basis is very good—near-optimal, in fact—if
the coefficients don’t have too wide a dynamic range—on the unit disk |z] < 1.

138 3 Rootfinding and Function Evaluation

Fig. 3.12 Conditioning of InI” on an interval

good as Taylor series (of equivalent degree), it is not quite as good. The optimal
approximation (which we have not computed) will be better than Taylor approxi-
mation, but not much. For another interesting example, that of InI"(x), we obtain
Fig. 3.12. However, if we had been working over an interval containing x = 2, then
the In function would give trouble near x = 2 since I'(2) = 1. In general, this kind
of thing will be an issue.

The key point is that, with sufficient effort, we can find good rational approx-
imations to our basic building blocks, the elementary functions, and this has been
done (almost completely). Some nagging issues remain, for compositions, because
of potential ill-conditioning (e.g., In(1 + x) vs In(x)).

3.5 Other Rootfinding Methods

In this section, we consider some other useful iterative methods to find the roots of
functions. As we will see, there are situations in which their use is advantageous, in
terms of computational cost.

3.5.1 Halley’s Method

A variation that shares most of the flaws of Newton’s method, but converges faster
when it does work, is Halley’s method:

T ¥ (AT
n n / lfxn f//)
f (‘Xn) - 2 f/(-xn)

(3.34)

3.5 Other Rootfinding Methods 139

There is a term in the denominator added to Newton’s method, but it provides
faster convergence. See, for example, Alefeld (1981), who gives a nice explana-
tion, sufficient conditions for convergence in the real case, and references that
show that (x, 41 —x*) ~ k(x, —x*)3, namely, ultimately “cubic” convergence to the
root x*.

Because for the Lambert W function the dominant cost in the iteration is the
computation of expw, derivatives are almost free, and this makes Halley’s method
attractive. Halley’s method is used by MAPLE to compute Lambert W.

Example 3.9. Consider the seemingly simple function giving the Pythagorean dis-
tance, namely, d = v/a% + b2, for real a and b. This function is used extremely fre-
quently, for example to find the absolute value of a complex number z = x + iy,
whence |z| = \/x% + y2. This function has a bad habit of either overflowing (if one
of a or bis larger than the square root of realmax, i.e., 1.34-10'*) or underflowing
(if one of @ or b is smaller than the square root of realmin,i.e., 1.49-10713%). One
might think that this could never happen in a realistic example, but this ignores in-
termediate computations; it is quite possible, and even likely, that during the course
of a computation the size of the intermediate results might be larger or smaller than
these limits; as N.J. Higham points out, half of all floating-point numbers lie outside
these bounds! In particular, since the Pythagorean function first takes the square and
then takes the square root, it is obviously possible that overflow or underflow would
prevent us from getting an answer, quite unnecessarily.

Several remedies have been put forward for this, but the one described in Prob-
lem 27.6 of Higham (2002), originally due to Moler and Morrison (1983), is partic-
ularly interesting and is sketched below. Notionally, one thinks first of computing
a? + b%; call this pz, and then p is the quantity that we wish to evaluate (accurately,
and avoiding overflow and underflow). If we compute a” + b? to begin with, then we
have already lost; so we must continue the analysis a bit. In any case, the quantity
we want is a root of the equation x> — p> = 0. We can think of applying Halley’s
method to this equation:

2 2
2o
g1 =Xy — —2 xzp_ - (3.35)
2 = anp

We take xo = a, and (this is admirably clever) take y, = /p* — x2, so that at every
step we have p*> = xﬁ + y,zl and initially yy = b. To make it work, we have to assume
0 < yo < xp; if this is not so, interchange the roles of x and y. Then the iteration
above can be rewritten as the pair of iterations

2y2
—x, (14—
x(+4xz+yz>

3
Yn

Y1 = 4x]%+yl% .

140 3 Rootfinding and Function Evaluation

In this case, overflow and underflow can be avoided by scaling these equations:
Dividing each of x,, and y, by the same constant means that each of x,, | and y,+
will also be divided by that constant. In particular, we may take r,, = (¥» /x,,)z, that is,
divide by x;,, and the iterations become

'n
S =
447,
Yn+1 = YnS

Xnt1 =X (1 +25).

These equations have only a single squaring per step. Since, by assumption, yy <
Xp, it can be proved not to cause a problem thereafter (it cannot overflow and if it
underflows, we stop and x,, is the answer). Therefore, it is “immune to underflow
and overflow (unless the [final] result overflows)” (Higham 2002). Moreover, it can
be shown that y, — 0 cubically and that x, — p cubically, which is the desired
constant. Convergence is so rapid, in fact, that if the machine epsilon is larger than
2720 then no more than three passes are necessary. <

Example 3.10. The transcendental equation

y+Iny=z (3.36)
has as the solution
o(2) ifz£r+in andr < -1
y=1 0(z),0(z—2mi) ifz=1+in andr < —1 | (3.37)
no solution ifz=t—ix andr < —1

where @(z) := W(;)(exp(z)) is the Wright @ function (see Corless and Jeffrey
(2002)) and K(z) = (z — Inexp(z))/(2x) is the unwinding number. This function
is a relative of the Lambert W function, but each is useful in different applications.
The Wright o function is better-behaved as z — oo, and indeed ®(z) ~ z outside its
two rays of discontinuity. However, its interest here is as an example of rootfinding,
because Halley’s method and higher-order methods can be used on Eq. (3.36) as a
way of computing (z), and the function also makes a good example of complex
conditioning. In Lawrence et al. (2012), we find that the complex condition number
of m(z) is just
Z

C= T(O(z) (3.38)

by using implicit differentiation. In Exercise 3.10, you are asked to verify this. The
function is ill-conditioned in the complex sense only when @(z) — —1, which hap-
pens at the two singularities z = —1 - im. The conditioning of the real and imaginary
parts separately is also discussed in Lawrence et al. (2012). In Problem 3.13, you
are asked to rederive those results and describe the locations where either the real

3.5 Other Rootfinding Methods 141

part or the imaginary part of the function is ill-conditioned. These are different and
more extensive than just z = —1 £ iz, q

3.5.2 The Secant Method

We now turn to the secant method, which is defined by the iteration

J () (% — Xn—1)
Fn) = fQon-1)

This method uses two previous initial guesses and essentially replaces the derivative
f'(x,) in Newton’s method by the difference quotient (/(n) = f(n-1)) /(x, —x,). It i8
thus cheaper to take a secant step than to take a Newton step (usually). However, we
will have to take more of them, because it converges more slowly.

Xp+1 = Xn — (3.39)

Theorem 3.3. The secant method, when it converges, ultimately has the golden
mean as convergence rate.

Proof. Let e, = x,, — x* be the error in the kth iterate. Then

f(x*+en)(en—en)
fx* +ey) — fx* +en71).

If we take the Taylor expansion of f(x*+e,) and f(x* +¢,_;), we find that

€nt1 = €n —

* * l *
FO +en) = T+ £/ (3 en+ S (3)en + -
* * l *
FO +ent) = flT+ f/ (X")en 1 + Ef”(x Jer 1+
where the f(x*) terms are just zero. As a result, we find that

en(f' () +12f" (x*)en) (en — en—1)
F1(x*)(en—en—1) +1/2f"(x) (2 — €5 _,)
P e
") 1 (x0) (en +ent)
1)+ 121" (x) (en +enm1) = 12f" (¢)en—1
FIO) +1/2f" (x%) (en — en—1) ’

€nt1 = €n —

:en—

=é€np—¢€n

14 Lawrence et al. (2012) concentrate heavily on finding a good initial guess function to start the
iteration, and regularize the problem near the lines of discontinuity. Indeed, the bulk of the paper
is on those two aspects. However, some time is spent on the iteration methods that might be used,
as well. In addition to considering Newton iteration and Halley iteration, the paper also considers a
family of higher-order methods and settles on one of them as being (marginally) the most efficient
for that function.

142 3 Rootfinding and Function Evaluation

and finally that
af"(x%) A
= 1 .—1 +h.o.t. n—1-+ho.t.,
€nt1 (+ f(x) — 7 ¢én—1t+ho. f’(x) —————¢ey_1 +ho.
where “h.o.t.”” stands for “higher-order terms.” Thus,

. L f//(x*
")

€nén—1,

which is similar to e2. Also,

f// (x*)
Wew 1€n—2 -

ey — —

Therefore, the ratio p,,; | := /e, satisfies the relation p,,+1 = pnp,—1. Taking loga-
rithms, we obtain log p,+| = log p, +10g p,+1. Finally, solving this linear recurrence
relation, we see that log p, ~ ¢1¢]' + c205. Now, using ¢; = 1+v5/2=1.618... and
¢ =1-v5/2=—0.618..., we see that, asymptotically,

. pn+1 n d)
Prr1 ~ €1? :(ec“") =p.

As aresult, we have

€n+l _ €n
o ¢
€n €n—1

which is asymptotically constant, that is, e, ~ Keg,’, where ¢ is the golden ratio.

Neumaier (2001) gives an accounting that estimates that if the cost of computing a
derivative exceeds 40% of the cost of computing the function itself, then the secant
method will usually be cheaper to use.

Example 3.11. Consider the nonlinear equation f(w) =w+Inw—2 = 0. By inspec-
tion, f(1) < 0 and f(2) > 0, so we know there is a root between 1 and 2. We set
wo = 1 and w; = 2, and we let

Wn — Wp—1
fwn) = fwp-1)

In MATLAB, this can be done with a simple one-line function and a loop (but this is
not optimized for efficiency—here we call f twice per iteration, which is a waste):

Wptl = Wn — f(Wn) (3.40)

f = () w + log(w) - 2;
w = ones(7,1);
w(2) = 2;
for i=3:7,
w(i) = w(i-1) - £(w(i-1))*(w(i-1)-w(i-2))/(E(w(i-1))-£(w(i-2))

)i

end;

3.5 Other Rootfinding Methods 143

r = £(w);

plot(abs(r(2:7)./r(1:6).7(1.618)), 'kx', 'markersize',6 12)
xlabel ('iteration', 'fontsize',16) ;

ylabel ('asymptotic_constant', 'fontsize',16) ;

set (gca, 'fontsize', 16) ;

The final value of the residual is about 10~'4, and the values of 71/ | are plotted in
Fig. 3.13. We see that the ratios are bounded. The convergence of the answer is too
rapid to really see the rate, but it is plausible that convergence is at a golden-mean
rate. <

asymptotic constant

©c o o ©o o o

N w B [6)] [¢2) ~
X

©
X

iteration

Fig. 3.13 Convergence ratios "/, of the residuals for the secant method applied with wy = 1,
wi =2,to f(w) =w+logw—2=0

3.5.3 Inverse Quadratic Interpolation

Inverse quadratic interpolation is an important method that forms a part of the Al-
gorithm fzero used by MATLAB.! The idea is represented in Fig. 3.14. Assume
no two y-values are identical. The function in Fig. 3.14 is quadratic in y and fits the
data (xo,Mo), (x1,M1), (x2,M2). Here, Ny = f(x¢). In Lagrange form, we would thus
write

=)y —m)xo—x2) =n0)y—m)x —x2)
(Mo —m) (Mo —M2) (Mm—mn0)(m—-m2)

() =0+

Now, consider the point x3 = x(0), namely, the point where the quadratic cuts the
x-axis at y = 0; this approximates the root. A simple calculation reveals that

112 (x0 — x2) NoMNa(x1 — x2)
(Mo—n)(Mo—m2) (M —m0)(Mm —m) "

15 Tt is based on work by Richard Brent (e.g., 1973) and earlier work by Dekker (e.g., 1969).

X3 =X+

144 3 Rootfinding and Function Evaluation

1.5

_05 -

—~
-~ -15-

Fig. 3.14 Inverse quadratic interpolation

This can be rephrased in a way that gives a general iteration:
f(xnfl)f(xn>(xn72 _xn)
(f (en—2) = f(xn—1)) (f (¥n—2) — £ ()

+ f(xn—Z)f(xn)(xn—l _xn)
(f(tn—1) = fon—2)) (f (n—1) = f(3xn))

How accurate is this expression? If we let x; = x* + ¢;, where f(x*) = 0, then the
first terms of the series analysis gives

Xpt1 = Xp+

1 e2ere0 (DO () ()D(A)) = 3D () (x)?)
€3 = —— ¥)
6 D(f)(x*)?
so that e, o< e,e,_1e,_2. Taking ratios as before, we obtain the relation p,; =
PnPr—1Pn—2, and thus the logarithms satisfy the linear recurrence relation log p,,+| =
log p, +logp,_1 +logp,_». From this, we find that 83 = 62 + 6 + 1 becomes im-
portant. This equation has the root

4 1
(194+3v33)/ 4 o 4 5 = 183028

9 P
! 3(19+3v/33)/

Q| —

3.5 Other Rootfinding Methods 145

and two complex roots of modulus about 0.73. Therefore, for large n,

n n 9
Puil ~ (eclelH) _ (eclel) _ pfl 7 (3.41)
from which it follows that, ultimately,

0,

€n+l . Cn
=3

n—1

(3.42)

€n e

So again, é+1/e% is ultimately constant.
As with Newton’s method, Halley’s method, and the secant method, this method
has superlinear convergence; that is,

ent1 = ke,ll'839"' for large n . (3.43)

It is asymptotically faster than the secant method, but hardly more expensive.
Asymptotically, it takes more iterations than Newton or Halley because 1.83928 < 2,
but the steps are cheaper. It is only in exceptional circumstances, when derivatives
are almost free, that Newton or Halley will be more efficient.

3.5.4 Taking a Step Back

Now that we have seen a number of methods that can be used to tackle rootfinding
problems, let us take a step back and take a look at the tools we have. To begin with,
there is no general answer to the question, “Which algorithm should be used?” With
regards to efficiency, we need to consider both the rate of convergence and the cost
of individual steps. Moreover, all these methods have some common limitations and
difficulties. To begin with, these are univariate methods; what about bivariate (or
multivariate) problems such as

f(x,y) =0 9

glxy)=0 -

Also, these methods find one root at a time; but there might, of course, be more than
one. Perhaps even more importantly, these methods may converge very slowly if the
initial guess is bad and may fail to converge at all. In theory, there are theorems of
the form “if xo is close enough to x* and f(x) is smooth enough, then convergence
will be obtained” that guarantee convergence. In practice, it is often simplest just to
try it and see if it works.

This is why it is often said that correctly using iterative rootfinding methods
is all about the initial guess. In our experience, the most common question asked
by people encountering iterative methods for the first time is, “How do you know
where to start?” And, crucially, this is the most important question. A good initial

146 3 Rootfinding and Function Evaluation

guess means the difference between rapid success and expensive time-consuming
failure. To belabor the obvious, nonlinear problems are hard. Globally convergent
algorithms are known only for a few classes of problems.

What is done in practice comes from a variety of tricks. The first one is common-
sensical enough: Use your knowledge of the problem. If you have solved similar
problems before, then use their solutions as initial guesses for this one. This leads to
the next interesting trick: If you haven’t solved a similar problem before, then invent
one and do so now! This idea of looking at similar problems, when developed rig-
orously, leads to the very powerful idea of homotopy; but we will look in this book
only at its simplest expression, that of simple continuation. To do so, we embed
our problem in a family of problems, with a tunable parameter, as in the following
example.'®

Example 3.12. Suppose we wish to solve the equation
y+Iny—-2=0,

and we have no clue about what to use for an initial guess. Introducing a new
parameter, A, gives us the equation

y+Alny—2=0.

We immediately notice that we have our original problem when A = 1, and that
the case A = 0 is easy to solve (we find y = 2). One could then try yop = 2 in the
original problem and use a Newton iteration (and, of course, it works on this simple
example). Suppose that it didn’t work—one could then instead set A = 0.1, and
hope for success on that (more closely related) problem instead. Indeed, for very
small A, success is almost guaranteed. Here this gets us y(0.1) = 1.93. We then let
A =0.2 and yp = 1.93 and iterate using Newton’s method once more, finding this
time that y(0.2) = 1.87. Continuing in this way, we find that the solution to our
original problem is y = 1.557 after 8§ more steps. <

There is a lot of scope for creativity in this process of introducing a new parameter
to simplify things. A generic template is as follows: If you are given a hard problem
H (y) = 0 to solve, then create an easy problem E(y) = 0 and consider the parame-
terized family AH(y) 4+ (1 — A)E(y) = 0. Then for A = 0, this is an easy problem,
and one tracks the zeros for increasing values of A until one gets to A = 1, at which
point we have solved the hard problem. However, we should warn you that it doesn’t
always work as nicely as in our example. As Hamming (1973 p. 77) remarks,

It is a complex, difficult task to design a foolproof method of tracking zeros since sooner or
later almost every possible trouble will occur.

16 This is taken up further in the section on multivariate rootfinding in this chapter, and in Chap. 12,
and again in Chap. 14. For an extensive and thorough treatment of this idea for systems of polyno-
mial equations, see Morgan (1987) and Sommese and Wampler (2005).

3.6 The Multivariate Case 147

3.6 The Multivariate Case

Multivariate generalizations of Newton’s method abound. In all cases, the basic idea
is to replace the nonlinear problem with a sequence of linear ones. Thus, we have
a process of linearization and reduction of the nonlinear problem to a sequence
of linear systems of equations. We will leave the discussion of how to solve such
linear systems aside, since it is the object of Part II. But for an explicit, motivating
example, consider the bivariate case in which we wish to find values of x and y such
that both f(x,y) = 0 and g(x,y) = 0. Suppose also that we have an approximation
(%n,yn) already computed or guessed. Then a linear approximation of f and g near
that point gives

F(x,y) = f(Xn,n) + frdx + fAy
g(x,y) = g(xn,yn) + gxAx 4 gyAy.

Equivalently, but using vector-matrix notation, we have

vttt]| ol et R

The matrix is the Jacobian, evaluated at the current guess. The right-hand side is the
negative of the residual vector, —[f (X, yn),&(Xn,yn)]7 .

Remark 3.8. Notice that, as in the scalar case, the residual vector allows us to
reverse-engineer a problem exactly solved by the current guess, namely, f(x,y) —
S Ou,yn) =0, and g(x,y) — g(xn,¥n) = 0. Of course, this trivially follows from the
definitions; but this obvious fact means that if the residuals are small, compared to
physical or modeling error, we are done! For all we know, we have a solution that is
entirely satisfactory. Of course, we need to know if the multivariate root system is
well-conditioned, but we need to know this anyway. <

To continue with the method, we solve this 2 x 2 linear system for (Ax,Ay)
(again, we will see how to do so in Part II), and then let

Xpt1 Xp+ Ax
= . 3.45
|:Yn+1:| [yn + Ay] (.49)

This iterative process can be repeated as necessary. The generalization to n variables
is immediate:

X1 = X¢ — J 7 (x)F(x). (3.46)

Remark 3.9. Note that the inverse matrix is (generally) never formed explicitly—
instead, the techniques of Part II are used to solve the linear system.

148 3 Rootfinding and Function Evaluation

Efficient variations such as BFGS (for optimization problems) or damped New-
ton iteration (in the solution of differential equations) are used extremely frequently.
This is a serious workhorse of numerical computation. <

Let us now consider examples of the multivariate version of Newton’s method.

Example 3.13. To begin with, consider these equations:

C(fi— £Yen? VAR)

fi—(fi = fo)sn (K(k) e 7k) 0 (3.47)

—%Re:fzg+\/3\/f1—f2 E(k)—E i (3.48)
fi—fo

They arise in the analytical solution of a problem of fluid flow in a wedge-shaped
channel.!” The unknowns are fy and z, and the equations arise in matching the
boundary conditions. Once they are found, the velocity profile across the channel
can be plotted or otherwise analyzed. The equations have a parameter, the Reynolds
number, Re, which is a nondimensional velocity. The equations above are fairly eas-
ily solved when Re is small, but become awkward when Re is large, chiefly because
we have no useful initial guess for f or z in that case. As discussed in an earlier
section, the process known as simple continuation is quite helpful: We use the so-
lution for a slightly smaller Re as the initial guess (and, of course, this idea can be
used recursively).

There are two difficulties that may strike you on examining Eqgs. (3.47) and
(3.48). First, they require computation of the Jacobian elliptic functions—which
may be unfamiliar—and, second, to use Newton’s method, we have to take
derivatives—and these too may be unfamiliar. In any case, the equations are quite
complicated. It turns out that MAPLE (but not MATLAB'®) possesses all the requisite
resources; in fact, MAPLE even has a built-in multivariate solver called fsolve.
The algorithm it uses is more complicated than the Newton iteration but is related
and has similar characteristics. The execution of

fsolve (eval({el,e2a}, R=3), {f0,z});
returns (once we edit the output to make it more readable)

{ £0 = -2.02494131289478, z = -2.02599605566010 }

To get this result, MAPLE used an initial guess of fy = 0 = z9. However, this answer
tells us little about any other roots there might be—and there are many, and indeed
many of them correspond to physically realizable flows. Just like Newton’s method,
fsolve has trouble with multiple roots. N

17 See, for example, the discussion in Corless and Assefa (2007).

18 If we were to try to solve these equations in MATLAB, we would have to first implement
the Jacobian elliptic functions and their derivatives (see the Google project at http://code.
google.com/p/elliptic/, and note that a partial implementation exists in vanilla MATLAB,
ellipj).

http://code.google.com/p/elliptic/
http://code.google.com/p/elliptic/

3.6 The Multivariate Case 149

Rather than pursuing the inspection of Jacobi elliptic functions and related rootfind-
ing problems in more detail, we turn to a simpler example.!®

Example 3.14. Consider the equations

fly) =24y =1=0
g(x,y) =25xy—8=0.

In Chap. 6, we will show that a similar equation system, with 25xy — 12 = 0 instead,
has a solution (x,y) = (3/5,4/5). This will do for our initial guess. The Jacobian is
simple enough to do by hand:

| 2x 2y
J= [25)} ZSX} . (3.49)

Observe that J is singular when 50x> — 50y* = 0, that is, x = +y. Now, let (xg,yo) =
(3/5,4/5). Then the first step of Newton’s method is

N [e B

which has the solution [Ax, Ay]” = [—16/35,12/35]" . This in turn gives
X1 X0 Ax 1/7
= + = , 3.51
ol = Bl 3] =[] asp
and, using MATLAB, we find the next iterations (see Table 3.2). N

Table 3.2 Iterates for the multivariate Newton method for the equation of Example 3.14

Iterates | X Vi

(x2,¥2) 0.3003 0.9803
(x3,¥3) 0.3380 0.9427
(xa,y4) 0.34030 0.94032
(xs,ys) 0.3403312423 0.9403212423
(x6,Y6) 0.340312423743285 0.940312423743285

This simple example already shows features common to Newton’s method ap-
plied to larger systems. At each stage we solve a linear system of equations to find
the update. Therefore, at each stage we must evaluate the Jacobian matrix at the cur-
rent guess (which is here trivial but can itself be expensive for larger systems). Also,
we must have some reliable way of solving the system (usually simple LU factoring
will do, but iterative methods are also common: after all, we don’t need a perfect
(Ax,Ay), just a good one). Finally, convergence can initially be slow. Notice that

19 We return to it when we study boundary value problems in Chap. 14.

150 3 Rootfinding and Function Evaluation

the error did not decrease in both components on the first iteration; quadratic con-
vergence only settles in eventually. Here again, the most important thing is getting
a good initial guess; all the other tricks are secondary.

3.7 Chebfun for Evaluation and Rootfinding

Before ending this chapter, we briefly discuss the Chebfun package, based on com-
mented examples. Let us see what Chebfun can do for the evaluation of the function
In(I"(x)) on the interval 3 < x < 4. The idea is to get Chebfun to construct a best
approximant to this function; this turns out to be easy to do since MATLAB has a
built-in I" function that we can use (while pretending that we didn’t). Execute

1lng = chebfun('log(gamma (x))"', [3,4]);
length (1ng)

returns 14. Then we obtain what we want by executing the following code:

t = linspace(3, 4, 3011);
err = log(gamma (t)) - 1lng(t);
figure(2), plot(t, err, 'k')
$help chebfun/remez

[p,err] = remez(1lng, 8);

The value of err is 1.2714 - 10~ !!. We thus continue with this code:

[p,err] = remez(1lng, 10);
figure (3), plot(t, p(t)-log(gamma(t)), 'k')

See Fig. 3.15, and, for the sake of comparison, see also Fig. 3.15. As we see, it
turns out that Chebfun is very good at representing functions—in some sense, that

x 10715
1.5}

-15¢

3 3.2 3.4 3.6 3.8 4

Fig. 3.15 The error in the chebfun representation of In(I"(x)) on 3 < x < 4. The equivalent
Chebyshev series has 14 coefficients (and therefore is degree 13)

3.7 Chebfun for Evaluation and Rootfinding 151

x 1014

-2

4}

-6
3 3.2 3.4 3.6 3.8 4

Fig. 3.16 The error in the best possible degree-10 polynomial representation of In(I"(x)) on 3 <
x < 4 as computed by Chebfun/remez, rapidly

is what it was designed for—and is, almost incidentally, very good at computing
the best (polynomial) approximations, because it has an excellent initial guess to
the optimum, namely, the Chebyshev series representation, for the iterative Remez
algorithm (Pachén and Trefethen 2009). Interestingly, the rational approximation we
found using MAPLE earlier in the chapter, which was of degree (4,4), has fewer free
parameters and has slightly better accuracy: It seems that a rational approximation
has some advantages over a polynomial approximation. However, the advantage
seems marginal.?’

What about rootfinding? We first look at an easy example, and then a very
hard one. Consider again the equation y +In(y) —2 = 0. A direct use of the com-
mand roots (y+log (y) -2) in Chebfun yields a complaint about the logarith-
mic singularity, which probably can be fixed by the use of various options and
flags. An easy alternative is to replace this equation with the equivalent equation
yvexp(y) —exp(2) = 0 and then executing y = chebfun(’x’, [-1,2]), fol-
lowed by roots (y.x*exp (y) -exp(2)) yields o = 1.55715. The residual is
o +1In(a) —2 =4-10715, Thus, it seems that Chebfun can find simple roots of
nonlinear equations.

Now, we consider a very hard example. Consider the function G : [0,1) — [0, 1)
given by

%modl x#0

G(x) = .
0 otherwise

(3.52)

20 We will see more examples of approximation of functions using Chebfun in Chap. 8, and
many more can be found at http://www2.maths.ox.ac.uk/chebfun/examples/
approx/. A place that Chebfun also shines, however, is in rootfinding. You can find several
very impressive examples at http://www2.maths.ox.ac.uk/chebfun/examples/
roots/.

http://www2.maths.ox.ac.uk/chebfun/examples/roots/
http://www2.maths.ox.ac.uk/chebfun/examples/roots/
http://www2.maths.ox.ac.uk/chebfun/examples/approx/
http://www2.maths.ox.ac.uk/chebfun/examples/approx/

152 3 Rootfinding and Function Evaluation

This function, called the Gauss map, arises in the construction of simple continued
fractions.?! It has an infinite number of jump discontinuities, at x = !/, for positive
integers n. Because of its connection to the theory of continued fractions, quite a
lot is known about it. It seems harsh to try to approximate it by a single smooth
polynomial! Boldly, we try it. The command

G = chebfun(@(x) mod(1./x,1), [0,1])

succeeds (apparently), with a single smooth polynomial, albeit of length 65,537.
Obviously, it can’t be quite right, as polynomials are not discontinuous, and certainly
can’t have an infinite number of discontinuities! But the plot looks pretty good (but
not great, so we don’t show it here). However, when we ask Chebfun to find all the
solutions to G(x) — 0.5 = 0 by the command

roots(G - 0.5)

it seems that Chebfun has met its match at last. On our computer, it went away,
thinking, and didn’t come back before we lost our patience and hit Ctrl-C to interrupt
it.

Well, it really was an unfair test. We didn’t even tell Chebfun the function was
discontinuous! We can do so, by setting the flag splitting to on:

splitting on;

We can also mellow our harshness a bit more by asking for G only on the restricted
subinterval [!/s, 1), where, say, n = 1000. That way, G will only have about a thou-
sand jump discontinuities, not an infinite number (we are giving Chebfun quite a bit
of a break with this concession, don’t you agree?). But we don’t have to be too mel-
low: We can let Chebfun worry about exactly where the singularities are. We mean,
we know where they are (at the points ! /x for positive integers k), and we could tell
Chebfun, but let’s not. Rather, we execute the following code:

n = 1073;
G = chebfun(@(x) mod(1./x,1), [1/n,1])
plot (G, 'k"')

See Fig. 3.17. This time, Chebfun thinks for a bit before answering but comes back
with a 1046-piecewise chebfun as its answer. Examining the pieces, we see that
it puts breaks at what look to be all the right places—its singularity detection seems
pretty good!

Now what about the roots? If we now ask for roots (G - 0.5), we get an
answer back, within the limits of our impatience. But it turns out that there are still
problems: It returns some spurious roots—at the discontinuities. It returns rather a
lot of them: In total, we computed 1997 roots, when we were expecting only 999
(one per subinterval); see Fig. 3.18. Chebfun also (correctly) located the 998 dis-
continuities, with the root s command. If we use the MATLAB command f£ind to
select the &; that actually satisfy |G(&;) —1/2| < 0.05, we find that there are only
999 of them, as expected. Now, in this case, we can show that the reference roots

21 See, for example, Olds (1963). The discussion here relates to Corless (1992).

3.7 Chebfun for Evaluation and Rootfinding 153

1.2

1

0.8

0.6

0.4

0.2

02 04 06 08 1

Fig. 3.17 The chebfun for the Gauss map on the subinterval [!/1000, 1]

1A
_08
(2]
3
e
5 06
Q
“5 oo O o] o]
Q.
£ 04
o
o
o1

0.2
o & n n n
0 02 04 06 08 1
X

Fig. 3.18 G(&;), where the §; are the results of roots(G - 0.5). Clearly, not all of the
returned &; are actually roots

arexj = 1/(j+12) =2/@j+1) for j=1,2,...,999. We can therefore compute the
forward errors &; —x;. When we plot them (see Fig. 3.19), we see that the largest rel-
ative error is about 5¢y,. That is, Chebfun has located all roots of this discontinuous
function to essentially full accuracy. We find this impressive.

The roots command is based on eigenvalue techniques. It changes bases, from
the Lagrange basis on the Chebyshev extreme points to the Chebyshev basis itself
(via the FFT, so this isn’t expensive). Then it constructs the Chebyshev companion
matrices and finds the roots by computing their eigenvalues. Then it throws away
roots that are not in the interval being considered. This is a robust and accurate
method.

In summary, Chebfun has performed truly remarkably on this very hard example.
It successfully located nearly a thousand discontinuities. When asked to find the
values where G(x) = 1/2, it found them all, to basically full accuracy. And it did so
very quickly.

154 3 Rootfinding and Function Evaluation

10714

10—15 L

relative error

10—16 L L L L L L
0 01 02 03 04 05 06
X

Fig. 3.19 The relative forward errors |Si/x; — 1|

3.8 Notes and References

The polynomial discussed in Sect. 3.2.3 seems to need little introduction; Wilkin-
son’s Chauvenet prize-winning paper Wilkinson (1984) is probably the best possible
treatment, but there are hundreds, if not thousands, of other discussions of this ap-
parently innocuous polynomial. It is somewhat surprising to find that in this large
volume of work on the polynomial, there are very few explicit computations of its
condition number. We rectify that omission in this section.

Evaluation of the complex elementary functions is surprisingly involved once all
details are taken care of. See, for example, Hull et al. (1994).

A candidate for a fast method to compute the logarithm would be the arithmetic—
geometric mean (AGM) iteration. See Borwein and Borwein (1984) for more details
and a description of earlier work.

For a historical survey of families of high-order iterative rootfinding methods,
see Petkovic et al. (2010), who finish by showing that a wide variety of rediscovered
methods are actually equivalent to the second method of Schréder, published first in
1870. An attempt at a comprehensive listing of references for polynomial rootfind-
ing can be found in McNamee (1993), which was followed up by McNamee (1997)
and McNamee (2007).

Numerical stability of the evaluation of continued fractions is studied in Jones
and Thron (1974).

We have talked about near-best approximation of interpolation at equally spaced
points on the boundary; that optimality was an Erdds conjecture, proved by De Boor
and Pinkus (1978) (for odd n) and Brutman and Pinkus (1980) (for even n).

3.8 Notes and References 155

Problems

Theory and Practice

3.1. Use Newton’s method to find the zero of f(x) = x — cos(x) starting from an
initial guess obtained by graphing y = x and y = cos(x) and visually picking out
when the curves intersect.

3.2. Use Newton’s method to try to find the (obvious) zero x = 0 of f(x) = x —sin(x)
starting with the initial guess xo = 0.1. This will fail; explain why, in detail. Include
in your explanation a plot of f(x) on the interval —3 x 1078 < x <3 x 1078, Notice
that this plot, which may look surprising, shows the correctly rounded result of
computing f(x) for x near 0.

3.3. A team of pranksters sneak onto a flat railroad track one cold night and weld
an extra 1 foot of track into a mile-long section of track. The next day, as it warms
up, the 5280 + 1-foot-long track expands and bows up into a perfect arc of a circle.
How high is the track at the top of the arc?

3.4. A man has a circular field, a pole, a rope, and a goat. He puts the pole firmly
into the ground at the edge of the field and ties the rope to the pole and the goat in
such a way that the goat is able to eat the grass on exactly half the field. Given the
radius of the field, find the length of the rope.

3.5. If you can, find a copy of the Mathematica poster “Solving the Quintic,” which
uses elliptic functions to solve n = 5. Abel and Galois proved that there was no
general solution using radicals for the n > 5 case. Discuss.

3.6. Consider the Airy function Ai(z) defined in Eq. (1.22) again. Both MAPLE and
MATLAB know about Ai(z) and its derivative, which MATLAB calls airy (1, x).
Plot the condition number of Ai(z) on 0 < z < 100. Is Ai(z) ill-conditioned on that
interval? Modestly ill-conditioned? Well-conditioned? Is the Taylor polynomial ap-
proximation discussed in Chap. 2 much worse-conditioned than the function itself?

3.7. Compute the overall condition numbers and the separate condition numbers of
the real and imaginary parts of each of the following functions:

1. w=exp(z)

2. w=sin(z)

3. w = arcsin(z)

4. w = tan(z). Note that

sin (x) cos (x) isinh (y) cosh (y)
(cos (x))? + (sinh (¥))* * (cos (x))? + (sinh (v))*

tan(x +iy) =

Where is each function ill-conditioned overall? Where is the real part of each
function ill-conditioned? Where is the imaginary part of each function ill-
conditioned? (A computer algebra system might be helpful for this problem.)

156 3 Rootfinding and Function Evaluation

3.8. Catastrophic cancellation. Let

1 —cosx
X)) =
o) = —3
Execute
g =@(x) ((l-cos(x))./(x.72))
X = -4%107(-8) :1e-12:4%10"(-8) ;
plot(x, g(x), 'k.'), set(gca,'fontsize', 16)
in MATLAB. You should get Fig. 3.20.
1
0.8t
0.6]
//// A\
0.4]
0.21
% 2 0 2 4

x 1078

Fig. 3.20 The function (1 — cosx)/x? should be approximately constant on this interval

However, on that interval, f(x) is approximately constant, nearly equal to 0.5!
Indeed, show that

1

64
4.1784<_.1*32
g 10 = g 107

1
<
) =51 <
and explain the plot.

3.9. Use MATLAB to compute exp(x) In(1+exp(—x)) on, first, 0 <x < 20, and then
on 20 < x <40, and plot the results, with commands such as these:

x = linspace(0, 20, 1001);
y = exp(x).xlog(l+exp(-x));
plot(x, y, 'k.')

x = linspace(20, 40, 1001);
y = exp(x).xlog(l+exp(-x)) ;
plot(x, v, 'k.')

Discuss any surprising results that you see. Try to find a range of ¢ that has similar
behavior for y = ¢tIn(1 + /).

3.8 Notes and References 157

3.10. Show that the condition number of the Wright @ function is given by
Eq. (3.38).

311 If ag + a7 +axr* =0, find 97/aag, 97 /da;, and (9‘77’2 without using the quadratic
formula. Since

Aao
Ar = [97/day,9" f0ar, 97 [3ar] | Aay | (3.53)
Aclz

identify all cases where small changes Aay lead to (relatively) large changes in the
roots. Does this contradict Ostrowski’s theorem?

3.12. Suppose that you wish to evaluate the function w = u + iv = (a+ib)/; at the
point z = ¢ + id. Find the relative condition number of this function. Then find the
relative condition numbers of the real part and the imaginary part separately. Are
there any loci where either u or v is ill-conditioned but w is not? In retrospect, is this
surprising? See also the discussion in Example 4.15.

3.13. Let z = x + iy and ®(z) = u + iv (where the latter is the Wright @ function).

1. Show that, away from the lines of discontinuity x < —1,y = 4,

x=u+ % In(u® +1?) (3.54)
y = v+ arctan(v,u) (3.33)
2. Show that
Au/u Ax/x
] _e[2] 55
where ((14u)?+v?) C=
(u+u?+v?) (In(u> +v?) /2+u) /u —v (arctan (v,u) +v) /u
In (u? +v?) /24 u (u+u? +v?) (arctan (v,u) +v) /v

The function arctan (y,x) is the two-argument arctan function that accounts cor-
rectly for quadrant information (atan2 in MATLAB).

3. Describe all the locales in C where either the real part or the imaginary part of
the Wright @ function is ill-conditioned.

3.14. Show that the mixed absolute-relative condition number of rootfinding for an
analytic function w = f(z) at a root z; is given by !/(zif'(z1)) if z; is not zero. Find
a formula for the separate condition numbers of the real part of the root and of the
imaginary part of the root, considered as bivariate real functions x = x(u,v) and

y=y(u,v).

3.15. If w(z) = u(z)v(z), so that the series for w(z) is given by Cauchy convolution
of the series for u(z) and for v(z), that is,

158 3 Rootfinding and Function Evaluation
k
We= 3, ujvi_j, (3.57)
Jj=0

find an expression that tells you how the relative change in wy is related to relative
changes in each coefficient u; and v, of the multiplicand series. That is, find an
expression for the (scalar) change in each wy induced by changes in the (vectors) of
series coefficients for u(z) and v(z). Give an example of a well-conditioned product
of series and an example of an ill-conditioned product of series.

3.16. Briggs’ method says that
In(x) = 281 (x) := 2 (xz”‘ - 1) : (3.58)

Why does this work, and why is

In(x) = 24 (Lk(x) - %L,%(x) + %Lz () = - (~ 1! Ilefy (x)) (3.59)

a better approximation when k is large?

3.17. Lanczos’ own example demonstrating the 7-method was the computation of
the exponential function, y = exp(x). The differential equation it satisfies is y' =y,
with initial condition y(0) = 1. Consider the interval —1 < x < 1. Set up and solve,
by hand, the equations for N = 4 (that is, use N = 4 in your Chebyshev series for
y"). How accurate is your approximation (use the T left over, to answer this)? Is
evaluation of the Chebyshev form numerically stable? Is the (degree-5) Chebyshev
polynomial you get for y(x) well-conditioned to evaluate? Because you have all the
coefficients as exact rationals, you may convert to the monomial basis without error.
(It turns out to be surprisingly similar, but not identical, to the Taylor polynomial of
degree 5.) Is the monomial basis expression better-conditioned than the Chebyshev
basis expression, worse-conditioned, or about the same? You may use a computer
to draw the graphs of the condition number. Everything else can be done by hand.

Investigations and Projects

3.18. The algorithm Robin chose for the logarithm consisted of taking some number
of square roots until the answer was inside the interval [!/5,5], and then of using the
truncated Chebyshev series approximant (found by Lanczos’ 7-method) with N =
34 terms (half of which were zero). Robin did no serious investigation of whether
it would have been better to take more square roots and fewer series terms, or vice
versa. From one point of view, because the square roots are computed by some finite
number of Newton iterations, the whole scheme can be thought of as a family of
rational approximations to the logarithm function. Make a reasonable model of the
cost of executing this kind of algorithm, with k square roots and N (even) Chebyshev

3.8 Notes and References 159

terms, and give a rationale for choosing k and N. You may choose to optimize the
cost of evaluation, but be sure to guarantee that your method of choice is numerically
stable.

3.19. In the hypothetical story in the text, Robin Crusoe uses a polynomial approx-
imation for log((1 +21/3)/(1 — 2¢/3)) that is expressed in the Chebyshev basis, be-
cause that’s the way it comes out naturally from the Lanczos 7-method. Robin no-
tices, however, that the coefficients in Eq. (3.23) are all exact rationals, and since the
Chebyshev basis coefficients are also exact rationals, therefore the polynomial basis
may be converted without rounding errors to the monomial basis. When Robin does
this (there goes another month of sunny afternoons on the island), the polynomial
turns out to be

_743051369479680 2342163497184 ,

m = 557288527109761 T 11857202704463
20355115812768 5 65233594664064

557288527109761 " + 3901019689768327 "
3221402159616 , 12886831097856 |,

+ 557288527109761 " + 6130173798207371 "
5716404264960 5 870244319232 45

7244750852426893 " | 2786442635548805
838993575936, 1464995414016

9473904960865937 " 10588482015085459
714130587648 ,, 4465524473856

T 3901019689768327 " 12817636123524503
5984835600384 .5 228438573056 o,

T 13932213177744025 " " 557288527109761 "
4498441371648 ,, 2261300281344 5,

T 16161367286183069 " | 17275944340402591 "
231928233984 103079215104 s

~ 6130173798207371 " 19505098448841635 "

(3.60)

It can be shown that (surprisingly) in this case the condition number for the mono-
mial basis expression is actually better than the condition number for the Chebyshev
basis expression (only by about 34%, which means that rounding errors will be am-
plified by a factor 1.34 instead of nearly 1, which isn’t likely significant, but still).
What feature of the coefficients in the monomial expression explains the nearness
to 1 of the condition number?

3.20. Use Lanczos’ method and the differential equation

dy
(1+x7) dx (3.61)
subject to y(0) = 0 to give a polynomial, expressed in the Chebyshev basis, that
approximates y(x) = arctan(x) on —1 < x < 1. Note that if x > 1, then arctan(x) =
7 /2 — arctan(!/x), reducing the domain; one could reduce it further using the fact that

160 3 Rootfinding and Function Evaluation

arctan(x) is odd. Choose N so that your answer is accurate to double-precision.
You may use MAPLE to help with the computations. Is your polynomial well-
conditioned? Convert it to the monomial basis (if you have computed the coefficients
as exact rationals; if not, comment on the expected inaccuracy in the resulting mono-
mial basis coefficients if you did). Is the monomial expression well-conditioned?

3.21. Robin also considered an iterative scheme for the computation of real-valued
arctan. This problem asks you to recapitulate Robin’s steps.

1. Prove that

v
arctan(v) = 2arctan | ———— | . (3.62)
®) <1+ V1+ vz)
2. Show also that the mathematically equivalent form
141442
arctan(v) = 2arctan (%) (3.63)
suffers from catastrophic cancellation for small v.
3. Show that the iteration
(3.64)

Vn
Vpp] = ———
/12

with vg = v > 0 converges initially quickly but ultimately only linearly to 0, and
that arctan(v) = 2" arctan(vy).

4. This analysis suggests the following iterative algorithm for the arctangent: Use
the iteration a few times, say k times, until v; is small enough that it is easy to
compute arctan(v;) accurately by using only a few (say N) terms of the Cheby-
shev series (or even the Taylor series) for arctan. What choices of N and k are
“best”? Are there numerical difficulties with this iteration?

3.22. Use the MAPLE command numapprox [minimax] (or another package im-
plementing the Remez algorithm) to find a best rational double-precision approxi-
mant to F(u) on 0 <u < 1, where

arctan(x) = xF (x?). (3.65)

Convert your result to continued fraction form. Compare the cost and stability of
evaluating this expression to that of the Chebyshev series in Problem 3.20. If this
function is to be evaluated millions of times, is its construction worthwhile?

3.23. Kepler’s equation 6 — esin@ = M is an interesting example of an equation
we desire to solve for O given the eccentricity e and the mass M. Take e = 0.083
and M = 1 and use a program similar to that on page 116 (or better—that program
can certainly be improved) to draw a picture of the fractal boundary of the basins
of attraction for Newton’s method for this equation. We found Fig. 3.21. Have fun
with this one!

3.8 Notes and References 161

Fig. 3.21 Using contour plot to draw a fractal boundary for the Kepler equation. The half-circles
are artifacts

3.24. Compute the evaluation condition numbers B(z) for the Wilkinson polynomial
of degree 20 expanded in the monomial basis, and plot B(z)/|p(z)| on 0 < z < 21.
Do the same for a similar polynomial of degree 30, defined by

30

p)=][Gz—%k). (3.66)

k=1

To accurately evaluate the ratio, you will need higher precision than is available in
MATLAB. Note that the condition number of both of these polynomials in a La-
grange basis on (say) 7y = 0 and 7 = k is just 1. Plot also the rootfinding condition
numbers B(r)/|rp’(r)| at the roots r = 1,2, ..., 30.

3.25. Split exp(x) into its even and odd parts, exp(z) = cosh(z) + sinh(z), where, as
usual, cosh(z) = 3(exp(z) +exp(—z)) and sinh(z) = }(exp(z) — exp(—z)). If one
has an accurate method to evaluate both cosh(z) and sinh(z), suppose, for example,
a “correctly rounded” method whereby the computed value of cosh(x) for a machine
number x is guaranteed to be the correctly rounded value, that is, cosh(x)(1+ &) for
some |6| < y and similarly for sinh(x), can one then accurately evaluate exp(x)
by the split? What happens as x — —eo? Are any of these functions especially ill-
conditioned?

3.26. The function f(u) = \/—2logcosu?/u® is difficult to evaluate numerically
near u = 0. Compute its condition number and show it is actually well-conditioned.
Show experimentally that the formulation y = cos(u?), and then if y = 1 to all bits
return 1 and otherwise return \/—2Togy/cos™! (y), is more expensive but more ac-
curate (using the built-in acos to compute the arccosine). This formulation is due
to Kahan (1980). Compare it with use of the series

1 3 209
|4 L3 s 12 16 67
124 T 160" T 20320" +0(“) (3.67)

162 3 Rootfinding and Function Evaluation

for small u. You may take more terms if you like, but the function has a singularity
at u = +./7/> anyway. Show that the function is ill-conditioned at its singularities.

3.27. Compute the condition number of the Bessel function Jy(z). Write a pro-
gram to compute also the condition numbers of the real and imaginary parts
separately. The derivative of Jy(z) is —Ji(z). These are besselj (0,z) and
-besselj (1, z), respectively. Are there any regions where Jy(z) or its parts are
ill-conditioned?

3.28. Show that both sin 8 and cos 6 are ill-conditioned for large values of 6. One
proposal to improve the preservation of identities such as sin® @ +cos? 8 = 1, due to
W. Kahan, is to consider instead the functions sin(z¢) and cos(r¢). Notice that the
zeros and maxima of the trigonometric functions occur at integer or half-integer val-
ues of 7, and so in a machine environment, this may offer opportunities to recognize
these points. Discuss this proposal.

Part 11
Numerical Linear Algebra

164 II Numerical Linear Algebra

This part of the book gives an overview of some of the material contained in
works that aim to give a more complete, self-contained presentation of numeri-
cal linear algebra, such as Wilkinson (1963), Golub and van Loan (1996), Dem-
mel (1997), Trefethen and Bau (1997), Meyer (2001), Higham (2002), and Hogben
(2006). That last book, for example, has over 70 chapters, many of them relevant for
numerical linear algebra, and is highly recommended for the reader as supplemen-
tary material for this course. It’s twice as long as this book, though! We do not try
to duplicate that material here, although there is some overlap with the numerical
chapters there, of course. Instead, the goal of this part, being part of an introductory
course, is only to open doors for you; you’ll have to walk through on your own.

The main emphasis of the treatment here is to place the analysis of numerical
methods for linear algebra completely in the framework of backward error analysis.
As some readers will already know, backward error analysis was first used in nu-
merical linear algebra; Wilkinson credits Givens as the first person to do so, but it is
generally agreed that Wilkinson was the first to use it with the generality it deserves.
John von Neumann seems to deserve some credit for the complementary notion of
condition number, which again first appears in numerical analysis in the field of
linear algebra.

This part of the book assumes that the basics of theoretical linear algebra are
known to the reader. The Handbook referred to above is an excellent source for fill-
ing in gaps. Some important notions are reviewed in Appendix C, for convenience.

This part is perhaps the most important in the book because, sooner or later, every
computation comes down to linear algebra. However, the number and length of the
chapters is not proportional to their importance; instead, we limit ourselves to a
“motivated list of facts” approach, together with some discussion of the meaning of
the algorithms; for lack of space, there are very few proofs. We also use MATLAB as
an exemplar of a collection of high-quality numerical linear algebra software tools;
of course there are others. In particular, MAPLE uses a high-quality LAPACK back-
end to provide efficient and robust numerical linear algebra, and can be used with
confidence.??

If we look at linear algebra from the point of view of its applications, four equa-

tions prove to have a central importance®*:

Ax=b (IL1)
AfAx = Afp (IL.2)
Ax = Ax (IL.3)
du
5= Au (IL.4)

The first two equations will be treated together in Chap. 4; Eq. (I1.2)—the so-called
normal equations—will be examined in the context of the solution of overspecified

22 See Anderson et al. (1999) and Hogben (2006 chapter 72) for useful references.
23 This point is emphasized by Strang (2002).

II Numerical Linear Algebra 165

systems Ax ~ b.?* Equation (I.3) determines the nature of eigenvalue problems,
which will be examined in Chap. 5. Equation (II.4) arises from the study of linear
systems of differential equations, which will be treated in Part IV.

Suppose we are given a matrix A € C™*" and a vector b € C™. A central problem
in linear algebra consists in finding vector(s) x € C”" such that Ax = b. There are two
main classes of methods for solving such linear systems of equations:

1. Direct methods for dense matrices, such as Gaussian Elimination (which is
equivalent to an LU factoring, called a Turing factoring if A is rectangular)
or Gram—Schmidt orthogonalization (which is equivalent to a QR factoring);

2. Iterative methods, which are especially suited to sparse matrices (see Chaps. 6
and 7).

To solve problems involving dense matrices, we typically factor the matrices nu-
merically so that the factors have structural properties that make solution easy. The
factorings should be numerically stable, that is, be the exact factors of a matrix near
to the original one. Moreover, the factors should be reasonably cheap to obtain, and
the use of the factors to solve the problem should be similarly cheap (or cheaper).
Some of the most important factorings in linear algebra are the LU factoring and
the Jordan Canonical Form A = XJX!. Nonetheless, as it will become clear, the
most important factorings for numerical linear algebra include the QR factoring,
the Schur factoring A = QTQ!? and the singular value decomposition. The latter
factoring will allow us to introduce two of the most important notions, namely, con-
ditioning of a matrix problem and numerical rank.

Before we begin, we note that most books present the real-number case, A €
R™*" and expect the reader to be able to switch to C when necessary. For various
reasons, we will do the opposite; we assume that A € C™*" and switch to R"™*"
when we want simpler examples. Accordingly, instead of talking about the transpose
AT to a matrix A, we will talk about the complex conjugate transpose (alternatively,
Hermitian transpose) matrix A" If A = [¢;;] € C™", A¥ = [a;;] € C"™™. This is
denoted A’ in MATLAB. The real transpose, unconjugated, is accessed via A.". In
addition, we note that the word ‘orthogonalization’ is often used in the literature in
a way that includes the complex case. We will stick to the common terminology,
instead of using the more peculiar term ‘unitarization.’

24 The normal equations will mostly be left as exercises, since we wish the emphasize the impor-
tance of using the QR factoring. As explained by Stewart (1998 77), “[i]t is hard to argue against
the normal equations in double precision. [...] On the other hand, if one wants a general-purpose
algorithm to run at all levels of precision, orthogonal triangularization is the winner, because of its
stability.” However, we note in passing that the normal equations provide a theoretical approach
and, in many cases, especially when A is sparse and well-conditioned, a practical approach as well.

Chapter 4
Solving Ax=b

Abstract This chapter first shows how to solve Ax = b in the simple cases in which
A is unitary or triangular, and then explains how the QR factoring can be used
to reduce other problems to these simple cases. We show that these methods are
backward stable; that is, they exactly solve a slightly perturbed problem. In order
to understand how these small perturbations affect the solution, we then introduce
the crucial notion of condition number in relation to the most important factoring,
namely, the singular value decomposition (SVD). We also examine the LU factor-
ing (equivalent to Gaussian elimination) and a number of applications of the main
factorings. We end the chapter with a short discussion of nonlinear systems. <

The main goal of this chapter is to give the reader confidence when choosing a
method for solving linear systems numerically: that is, confidence in assessing the
method’s reliability and in assessing the problem’s sensitivity to data error. Implicit
in our objective of giving the reader confidence is that he or she should not have been
too overconfident to begin with. Often, even for simple problems, the numerical
results can be very surprising.

Example 4.1. Consider the linear system

888445 887112 1
Bx= [887112 885781} X= H =b. @1

It is easy to verify that

[885781
= |-887112]

Moreover, since det(B) = 1 # 0, this solution is unique. Now, what happens if you
solve the problem in MATLAB? In MATLAB, this can be achieved by typing the
command B\b, which returns

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods: 167
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0_4,
© Springer Science+Business Media New York 2013

168 4 Solving Ax=b

. 885644.0223037927
T | —886974.8164771678|

The result is different, even in the thousands place! <

In what follows, we will examine one way to understand such surprising events, and
see what the options are if you face such a situation.

In order to achieve this goal, we will apply the general concepts and strategies
articulated in Chap. 1 (the next few paragraphs may be omitted if you have not yet
read Chap. 1—indeed you may as well skip ahead to Sect. 4.1). Our objective is to
solve systems of linear equations of the form Ax = b for the vector of unknowns x;
the reference problem handled in this chapter can thus be represented by the map

¢ : (A;b) = {x[¢(A,b,x) =0}, 4.2)

where ¢(A,b,x) =b — Ax = 0 is what we called the defining function. Often, we
will restrict our attention to problems where A has a particular structure. A numer-
ical method computes an approximate solution X such that AX ~ b. Alternatively,
from the point of view of backward error analysis, we can say that the numerical
method computes the value of an engineered map ¢ for the input data A and b, as
in Fig. 4.1a. For this problem, the forward error is Ax. For a backward error anal-

a b

(Ab) — 5 x (A.b) b

E AX
Ax @

(A+Eb) — %
% ®

Fig. 4.1 Commutative diagrams for the solution of Ax = b. (a) Engineered problem and forward
error. (b) Backward error diagram

ysis, we are interested in finding a perturbation of the input data that amounts to
the error occasioned by using the numerical method computing ¢. Since the input
data is a pair of objects, there are three possible kinds of backward error: Only A
is perturbed; only b is perturbed; and both A and b are perturbed. Following the
literature, we will focus on the former case in the beginning of the chapter. Along
this line, a backward error analysis seeks the smallest matrix E (for “error matrix”)
such that (A +E) = @(A), that is, such that the diagram in Fig. 4.1b commutes.
By default, “smallest” will be based on the matrix 2-norm, but we will sometimes
use other norms (see Appendix C.2). Later in the chapter, we will see that there are
great advantages in doing backward error analysis with perturbation of b only. The
main advantage is to make it easy to combine a priori and a posteriori error analyses.

As explained in Chap. 1, the main tool by which we will assess the reliability
of our method a posteriori is the residual. More formally, for the reference problem

4.1 Why Not Solve Linear Systems Exactly? 169
under consideration, the residual is the vector
r=¢(A,b,X) =b—Ag, 4.3)

that is, what is left over when we substitute our computed solution back into the
original equation. Because we can compute X by means of the numerical method
we are analyzing, and because we can compute matrix—vector products and vector
differences, the residual is easily computable. A posteriori error analyses will thus
be very handy.

The main tool by which we will assess the sensitivity of our problem is called
the condition number. We note immediately that, despite the fact that we write “the
condition number,” there are many condition numbers, corresponding to differing
vector and matrix norms that are called for in differing physical situations. Condition
numbers were first studied in numerical linear algebra, and the theory is still best-
developed here, but we have condition numbers in every chapter of this book, for
all kinds of computational problem. For the linear algebraic case, we will make
heavy use of the so-called singular value decomposition (or SVD).! This factoring
is extremely important, and we will discuss it in detail in Sect. 4.6.

This being said, one might wonder: Why not solve linear systems exactly, instead
of solving them numerically and then analyze the error? We begin this chapter by
addressing this question. Then, we will turn to a discussion of how to solve the
simplest kinds of linear systems and, from there, how to solve less simple linear
systems. At the end, we will briefly discuss nonlinear systems.

4.1 Why Not Solve Linear Systems Exactly?

We saw in Example 4.1 that floating-point solutions of even very small systems
can surprise the person doing the computation. One response in keeping with our
support for the point of view “I don’t care how quickly you give me the wrong
answer” is to abandon floating-point and do only exact arithmetic.

Let’s consider only a small subset of the possibilities here, and look at the prob-
lem of doing exact rational arithmetic on matrices that contain rational entries and,
more importantly, have no data errors. For the moment, we ignore square roots,
other algebraic numbers, and also transcendental numbers like 7. Let’s further sim-
plify things and suppose that we start with simple rational numbers whose numer-
ators and denominators are no more than (say) d decimal digits long. We could
simplify even further and suppose that we are dealing only with integers, and that
helps more than a little in computation but not completely since we fairly quickly

! The word “decomposition” is used in the theory of functions: A function f(z) can be decom-
posed into two (usually simpler) functions if it can be written as f(z) = (goh)(z) = g(h(z)). For
linear transformations, a decomposition like this is equivalent to factoring the matrix of the linear
transformation. We will usually use the word “factoring” in this book (and eschew the longer word
“factorization”); and we can get away with this for the QR and the LU factorings, but for the SVD
the word “decomposition” is indeed entrenched.

170 4 Solving Ax=b

are forced back to rational numbers (solution of linear systems gives us rational
numbers immediately, in general, and the denominator must be a divisor of the de-
terminant).

When we try to find an exact solution, we seem to run immediately into a prob-
lem from the other point of view: “I don’t care how right your answer is, if it takes
a hundred years to get it.” The complexity—that is, the minimal possible cost—of
solving linear systems with rational coefficients must take into account the length of
the exact answer. The solution of a linear system of equations must necessarily allow
for the exact determinant showing up in the answer (you can easily convince your-
self of that by solving a few random linear systems in MAPLE, for example). And
the length of the determinant grows with the dimension of the system. Experiments
show (see Problem 4.13) that the length of the decimal representation of the determi-
nant seems to be of size nd, where n is the dimension of the matrix (this growth can
be estimated using what is known as the Hadamard bound), while we started with
d-digit numbers.? In contrast, a floating-point answer takes only constant storage,
regardless of the dimension. The cost of doing arithmetic on exact rational numbers
depends on how long they are as well, whereas again floating-point operations cost
the same no matter what the floating-point number is. The best-known algorithms
for multiplication of d-digit rational numbers have a cost proportional to dlogd;
hence, nd-digit number operations will cost O(ndlog(nd)).

The true complexity of solving a linear system of equations of dimension n is
not known; the algorithms we study in this book take O(n®) operations, but there
are faster algorithms that take O(n®) operations, where ® is known to be at least 2,
but the least-known @ is, at this time of writing, a little bigger than 2.37. However,
with exact arithmetic, the operations have a cost that depends on the length of the
operands (and it depends on n as well), here O(nd log(nd)) by the observation above.
Thus, the total cost of the exact solution using the algorithms we talk about here is
not O(n®) but apparently rather O(n®ndlog(nd)). For n = 1000, this is already
more than a thousand times as expensive as floating-point solution, and that’s not
taking into account the speed of special-purpose hardware for floats.

Except in special circumstances, we just cannot afford to wait for the exact so-
lution. Moreover, we would be wasting our time anyway, since the floating-point
solution is (as described in this chapter) the exact solution of a nearby problem—a
much cheaper one to solve, but just as good from the modeling context. Even in the
pure mathematical context, once you add back in numbers like 7 or square roots,
you must approximate the initial data, and those errors have consequences.

All this being said, a lot of progress has been made recently on exact algo-
rithms. Dixon (1982) gives a p-adic O(n? log? n) algorithm? that is actually practi-
cal, and Storjohann (2005) shows how the exponent 3 can be reduced to m as above;
if this is done, then these algorithms become more competitive with floating-point
at least for some problems (one might well be willing to live with a factor of a hun-

2 In fact, this is a tight bound, and it is quite close to the average case.

3 The idea of the algorithm in Dixon (1982) is quite strongly related to the algorithm in Sect. 7.1,
and there is a catch to the cost in that it depends on something like the “growth factor” that we will
study in Sect. 4.7. So, even if we do want to use exact algorithms, numerical ideas will help.

4.2 Solving Unitary or Orthogonal Systems 171

dred increase in cost, for instance). As a result, they become quite attractive in some
circumstances, such as when there are no data errors and no approximations made
initially. However, once approximations are introduced into the data (e.g., even by
replacing 7 by a finite approximation, even if there are no actual measurements in
the data), then the advantage of exact computation is already lost. Hence, we need
to study the effects of error propagation, anyway.

4.2 Solving Unitary or Orthogonal Systems

Let us begin our study of numerical solutions of systems of linear equations with a
particular case of reference, Problem (4.2), namely, the case in which A is unitary.
If A is unitary, that is, AfA = I, then solving Ax = b is very simple, since

Ax=b = AfAx=A"b = IKIx=A"b = x=A"Dp. (4.4)

If the matrix A is known explicitly, then computation of the conjugate transpose
seems simple enough.* It merely consists in rearranging the entries of the original
matrix followed by complex conjugation. Thus, the cost of the solution seems to be
one matrix multiplication, plus whatever it costs for the rearranging and conjugation,
which we normally think of as negligible. Hence, a quick estimate of the cost in
terms of the number of floating-point operations (flops) is O(n?).

Now, we turn to the more important question: Is this method numerically stable
in floating-point arithmetic? That is, does floating-point multiplication by A give
the exact solution of a nearby problem? The answer is yes. It is quite straightforward
to show that this is true in good floating-point arithmetic systems.? Matrix multipli-
cation is usually implemented as a collection of inner products (of the rows of A
with the column b), so that the method described is Algorithm 4.1. Thus, we only
need to examine the stability of inner products.

Algorithm 4.1 Solving a system with a unitary matrix
Require: A unitary n X n matrix A and an n x 1 vector b
for i from 1 by 1 to n do
xi:=AH(i)b
end for
return The vector x solving Ax =b

To begin with, observe that inner products are not necessarily relatively accu-
rate, in the forward sense: If the value of the inner product in exact arithmetic is 0,

4 However, not all linear systems have matrices that are so known. For example, some matrices
can be accessed only by calling a subroutine to perform matrix—vector multiplication; we reserve
discussion of this case until later, in Chap. 6. Similarly, the case of a very large matrix A is not so
straightforward either owing to memory issues.

5 Readers who have not yet looked at Chap. 1 may postpone reading the rest of this subsection.

172 4 Solving Ax=b

then the result computed in floating-point arithmetic might be infinitely different.
However, more importantly, inner products turn out to be backward stable, in that
the computed inner product a - b is the exact value of (a+ Aa)-b (with a perturba-
tion wholly in one of the vectors—we get to choose which one) and that, moreover,
the perturbations Aa are very small. As we have shown in Chap. 1, Theorem 1.2,
it turns out that |Ag;| < ¥|a;| if real arithmetic is used, which is a relatively small
perturbation.®
This leads us to the following theorem:

Theorem 4.1. Assume A is a machine-representable unitary matrix. The method
of Algorithm 4.1 is backward stable in floating-point arithmetic; that is, it exactly
solves (A + AA)x = b, where each entry of AA is relatively small.

Proof. Left as Exercise 4.1.

This works because each row of A¥ can be considered as an independent vector,
and all the rounding errors in the inner product with b to obtain the corresponding
result can be considered as perturbations in that row independently, without touch-
ing the vector being multiplied. Therefore, the algorithm for matrix multiplication is
backward stable. However, this supposes that each row of A” is independent. That
is, this part of the argument fails if the entries are correlated, because the round-
ing errors need not be correlated. We return to this in a later chapter, but for now
we suppose entries in A are uncorrelated. This being understood, we conclude that
solving unitary linear systems is expected to be easy, even numerically.’

Example 4.2. In this example we extend the algorithm a bit: The matrix A we choose
will have A A equal to a diagonal matrix but not the identity. Specifically,

(34 1
A_[Z—H 2]'

Suppose the right-hand vector b = [1 /3, —1/3]T. Then, in MATLAB, we compute X =
diag(1/15,1/6)Af’b, because A” A = diag(15,6), not the identity. This gives®

—0.1111111111111111
—0.05555555555555555 +0.05555555555555555i |

6 The ¥, notation is introduced in Chap. 1. By definition, y, = /(1 —nuy), Where iy is the unit
roundoff, that is, half the machine epsilon &y. If complex arithmetic is used, the bound increases
to Y,+2, which is only marginally larger.

7 A caveat that should be kept in mind is that, in Theorem 4.1, A 4+ AA is not in general unitary or
nearly unitary.

8 The MATLAB solution is represented internally in binary. The solution as printed is in decimal
arithmetic. The decimal solution, cut and pasted into a MAPLE worksheet, was what was analyzed.
Conversion to decimal introduces the possibility of further rounding errors, which we ignore here.

4.3 Solving Triangular Systems 173

A short computation in MAPLE (not shown here—you will learn the method later)
shows this to be the exact solution of Ax = b, where A has entries d; j = a; j(1+6; ;).
with the matrix of §; ; approximately equal to

0.74+025i —0.25i
0.77—0.39i 0.3940.39; | HM"

We remind you that uy, = 2753 & 107'%. Each of these perturbations is less than
Uy in size. The bound from Theorem 4.1 was larger, being ¥, for some k. Thus,
this (essentially) unitary matrix equation has a numerical solution that is the exact
solution of a nearby linear system of equations. <

Remark 4.1. If A is unitary but not machine-representable, then the true inverse of

the rounded matrix is not obtained by transposing. We have A"A=1 +E, and each
entry of E is O(npyys). We will ignore this complication, which can be interpreted
as increasing the size of the relative forward error by ||E||, which is O(ty). See
Exercise 4.22. <

4.3 Solving Triangular Systems

If A is lower-triangular, that is, if it is equal to some matrix L of the form

Ly
by £
L= |1 03 l33 (4.5)

énl €n2 £n3 énn

and if fg # 0 for all 1 < k < n, then we may easily solve Lx = b by forward elim-
ination, as described by Algorithm 4.2. This includes, by the way, the even easier
case when A is diagonal, in which case all £;; = 0 for k > j. The process is simple.
First, find x; from ¢11x; = by, namely, x; = 1 /¢,,. Then find x, from a rearrange-
ment of the second equation, £yx, = by — £21x1, or xp = (b2 —21%1) /e, Obviously, the
process continues with x3, and so on. At each stage only one new unknown needs
to be solved for, and we need ¢ # O at every step. As a result, we find that the
components of x are

i-1
bi— Y ligxs
k=1

T 3 (4.6)

Xi =

fori=1,2,...,n,in turn. Note that if /;;, = 1 for all ks, then we say that the matrix
is unit lower-triangular.

174 4 Solving Ax=b

Algorithm 4.2 Forward elimination to solve a nonsingular lower-triangular system

Require: A lower-triangular n x n matrix L with £ #£ 0 (1 <k <n) and an n x 1 vector b
for i from 1 by 1 to n do
x;:=Db;
for jfrom 1 toi—1do
Xi ‘= Xj — Z,-_,-x_,-
end for
X 1= X'/é,,
end for
return The vector x solving Lx =b

Similarly, if A is upper-triangular, that is, if it is equal to some matrix U of the
form

Uil U2 uU13 - Ulp
Uy U3 -+ Uy

U= u33 Uzn | 4.7
Unn

and if uy # 0 for all 1 < k < n, then we may easily solve Ux = b by back substitu-
tion, as described by Algorithm 4.3. Starting from x,, and proceeding backward but
otherwise in a similar fashion, we find that the components of x are

n
bi— Y upxk
k=i+1
Xi=——— 4.8)
Ui
fori=n,n—1,...,1,in turn.
The cost of back substitution and forward elimination, in terms of the number of
floating-point operations, is

1 1
n+142434+--4+(n—-1)= En(n—l)—kn: §n2—|—0(n):0(n2) flops. (4.9)

Algorithm 4.3 Back substitution for a nonsingular upper-triangular system

Require: An upper-triangular n x n matrix U with uy; # 0 (1 <k <n) and an n x 1 vector b
for i from n by —1to 1 do
Xi = h,‘
for j from i+ 1to n do
Xj ‘= X —u,-jxj
end for
Xj =" /u,,
end for
return The vector x solving Ux =b

4.3 Solving Triangular Systems 175

Remember that a “flop” is one multiplication or division together with one addi-
tion or substraction. Note that a multiplication by a triangular matrix costs

1
n+(n—1)+---+1=5n(n+1)ﬂops, (4.10)

which is about the same. Thus, we observe that for triangular matrices, solving and
multiplying costs about the same.

As we see, the problem of solving Ax = b when A is triangular is straightforward.
But are these algorithms numerically stable? The answer is an emphatic yes.

Theorem 4.2. Given a real system Tx = b with a nonsingular triangular matrix T,
the methods of Algorithms 4.2 and 4.3 are backward stable in floating-point arith-
metic, thatis, they exactly solve (T + AT)x =b, where each entry of AT is relatively
small. Specifically, |AT;j| < %|T;j|. Complex-valued systems have a slightly larger
bound, ¥,19|T;;|, because complex division, done in a way to avoid overflow or un-
derflow, incurs a rounding penalty of /27y, at most; but this happens only once per
equation, and otherwise, each component of the solution is an inner product.

The proof of this theorem is similar to the inner-product proof sketched earlier, in
Theorem 1.2.° Consequently, the algorithms compute the exact solution of a trian-
gular system that differs only by about rounding level from the original—and zero
elements are not disturbed. That is, these algorithms are both componentwise back-
ward stable, which is just as good as the stability result for solving a unitary system.
In fact, it’s about as good as it gets in numerical analysis.

Example 4.3. Consider the upper-triangular matrices U with diagonal entries 1 and
all entries in the strict upper triangle —2; that is,

1=
”’71_{—2 j>i

Moreover, let the right-hand-side vector b be defined by

b — 1 i is odd
"1 -1 iiseven ’

Let us first consider the 4 x 4 case. By construction, the exact solution of the linear
system Ux=bisx=[1,—1,1,-1]7/3.

Does it agree with the results obtained with MATLAB? We can simply execute
this:

U = diag(ones(1l,n)) - triu(2+ones(n),1);
b=101,-1/3,1,-1/31";
x = U\b;

Then, by executing 3*x-[1,-1,1,-1]"’, we find a numerical estimate of the
forward error, which in this case is

9 For full details of the real case, see Higham (1989b, 2002).

176 4 Solving Ax=b
3Ax=3%—3x=10"'3[0.4441 0.22200 0]

which shows that the forward error for this small matrix is about what we expect.
However, this example was carefully chosen to show some bad behavior for

larger n.'% If we increase the size of the matrix just to n = 32, then the forward

error is not the same size as the machine epsilon. Generate the system as follows:

b = ones(n,1);
for j=2 2:n,
b(j) = -1/3;
end;
U = diag(ones(1l,n)) - triu(2+ones(n),1);
x = U\b;

Then, if we inspect Ax; by running x (1) -1/3 (where the exact x; is !/3), we
find that about 0.004, or 13 orders of magnitude larger than the machine epsilon!
Note that this is in spite of the excellent backward error: The computed solution is
guaranteed to be the exact answer of a linear system whose matrix differs only by
about 10~ from the specified one. N

Something very strange is going on in this example! Once we get to the SVD in
Sect. 4.6, we will begin an explanation; for now, we will put this (very important!)
issue aside and continue with our discussion of simple algorithms.

4.4 Factoring as a Step Toward Solution

Although the problem of solving Ax = b is simple for unitary and for triangular
systems, we nonetheless have to face the fact that most systems are not unitary or
triangular. Our strategy will then be to reduce these more difficult problems to se-
quences of simpler problem that we know how to solve. To this effect, our main
tool will be matrix factorings: If we can factor the matrices, then we can gener-
ate a product of matrices with special structure that is equal to the original matrix.
Generically, factoring a matrix A into simpler factors F; and F; such that A = FF;
allows us to convert the problem

Ax=h @.11)

into a sequence of simpler problems:

1. First solve F1y = b fory;
2. Then solve Fox =y for x.

This works because matrix multiplication is associative. Denoting F>x by y, we find
that

Ax = (Fle)XZFl(sz) =F1y=b. (4.12)

10 The example is borrowed from Higham (1989b).

4.5 The QR Factoring 177

Given that many factorings provide easily solved systems, this simple idea is very
powerful. For instance, if F; is lower-triangular and F, is upper-triangular, then
solving Ax = b only requires the use of Algorithms 4.2 and 4.3.

With this strategy in mind, we will investigate and use a number of factorings:

The QR factoring In this case, A = QR, where Q is unitary (in the real case, or-
thogonal) and R is upper-triangular (i.e., Right-triangular). See Sect. 4.5.

The SVD “SVD” stands for singular value decomposition: A = UXV# where U
and V are unitary (in the real case, orthogonal) and X is diagonal. See Sect. 4.6.

The LU factoring The basic formis A = LU, but it also includes the variants PA =
LU and PA = LD 1UR, where P is a permutation matrix, L is lower-triangular,
D is a nonsingular diagonal matrix, U is upper-triangular, and R is the unique
reduced row echelon form of A. These factorings correspond to variants of the
well-known Gaussian elimination. See Sect. 4.7.

Notice the reoccurrence of triangular, diagonal, and unitary matrices. These factor-
ings are useful precisely because matrices with such structures are extremely conve-
nient. Many other useful factorings exist, and we will introduce some of them in due
course. The idea of these factorings is always that they allow us to solve problems
(not necessarily Ax = b) by decomposing them into simpler problems.

4.5 The QR Factoring

Let us begin our journey with the QR factoring. Given an equation Ax = b in which
A is not triangular, one cannot directly apply back substitution or forward elimina-
tion. That is where the QR factoring comes in; as we will explain, the QR factoring
will in many cases be the method of choice to solve Ax = b. If we can factor A
as A = QR, where Q is unitary (orthogonal, if A is real) and R is upper-triangular,
then the problem simplifies significantly, since it becomes QRx = b, which is de-
composed as follows:

1. Solve Qy =b fory;
2. Solve Rx =y for x.

Both steps are simple, in that we can use the algorithms just discussed. Solving
Qy = b for y only involves the computation of Qb since Q is unitary, and as we
have seen, this poses no problem once Q is known. Moreover, solving Rx =y is
simply achieved by back substitution, since R is upper-triangular.

Thus, the original problem can be solved by solving two simpler subproblems in
sequence; each of these subproblems comes with a backward error guarantee. Note
that we do not (at this point in this textbook) know whether the overall problem
comes with a backward error guarantee. We reserve discussion of this point until
later, but note for reference that backward error in general does not compose well
in this fashion: It is certainly possible to fail to have good backward error overall
even though each subproblem does; consider the outer product as in Problem 1.19,

178 4 Solving Ax=b

for example; no backward error is possible there even though each subcomputation
has excellent backward error.

Example 4.4. Suppose that we know that the three-by-three matrix A factors as
below:

2 11 26 v 2jvia| [V6 Ve 0
-1 1 1| =|=1/6 4va m@|| 0 vaij vaij |, (4.13)
-1 -11 N6 =2V 3via| | 0 0 Vi)

where Q, the first factor on the right-hand side, is orthogonal. This factoring can
be verified simply by multiplying it out. Now suppose also that we want to solve
Ax =b, where b = [1,—1,1]. Then proceeding as described above, we form

2/\/5
y= QTb = | =5/var 4.14)
4/m

and then solve the triangular system Rx =y to get x = [2/3, —1,2/3]T. When we com-
pute the residual r = b — Ax, we get the zero vector, showing that our arithmetic was
done correctly. The numerical procedure with floating-point arithmetic proceeds in
the same way. <

Now, how do we find the factors Q and R, given a matrix A? There are three
widely used numerically stable algorithms:

1. Gram-Schmidt orthogonalization (modified for stability);
2. Householder reflections;
3. Givens rotations.

The third method is appropriate for sparse or structured matrices and is easily par-
allelized. Reluctantly, we leave the topic aside and focus on the first two. We first
begin with classical Gram—Schmidt, followed by modified Gram—Schmidt, and end-
ing with the method based on Householder reflections. We will investigate their
respective numerical properties at the end of the chapter.

4.5.1 Classical (Unstable) Gram—Schmidt

Let us begin with a warning: Do not use this method for numerical computations!
We will see why. But for pedagogical reasons, the algorithm is important, so a dis-
cussion is included here.

Write the m X n matrix A as a vector of columns,

A=ajay - a,,

where each column a; is m x 1. Also, write the unknown matrix Q as a similar
vector of columns:

4.5 The QR Factoring 179

Q=[q q - q,]

Then A = QR is
i1 r2 - n
r2 =+ Fon
[ajay...a,) =[q; 4 ... q,]
"'nn
and we see on multiplying out that
a; =ruq
a = riaq; + 24, (4.15)

a, =riuq)+rnal+ -+ rad, -

Since Q is unitary, its columns have unit 2-norm, that is, ||q,||2 = 1, and they are
orthogonal, namely,

qi'q; =8/,

where here 5ij is the Kronecker delta (not to be confused with a relative error term).
Thus, we see immediately that r; = ||a; || and q; = r;;'a;.
The next equation is processed by multiplying Eq. (4.15) by qll'l on the left:

qi'a = ringf @y + i@ = 1-r2+0-rn =ri2.
Then, from Eq. (4.15), we obtain
A =724 = 1224, -
Taking the 2-norm of each side and simplifying, we obtain
rn = |laz —riaqq |2
and, just by dividing, we obtain

_ay—rq

q;
rn

Therefore, we have found the second vector component of Q.
We see the recursive pattern emerge. This procedure allows us to identify
r13,13,733 and then q5 from the next equation:

a3 = r13q; + r23q; + 13393 (4.16)

180 4 Solving Ax=b
By manipulating the terms as above, we obtain
qi'a; = ri3
q5'a3 = 3
and, from Eq. (4.16),
33 = [la3 — ri3q; — r23qs |2
together with

a3 —r13q; —n3qp
r33

q3

These are the first steps of “classical” Gram—Schmidt orthogonalization, which is
fully described in Algorithm 4.4. As we see, it fails if any ry; = 0, which happens

Algorithm 4.4 Classical (unstable) Gram—Schmidt orthogonalization

Require: A basis [aj,a;,...,a,] for a subspace S.
for j from 1 to n do
qj =aj;
for i from 1 to j— 1 do
rij = q,Haj
q;:=9q; —rijq;
end for
rji = lg;ll2
q;:= r_;]-l q;, so we require r;; # 0
end for
return A unitary basis Q = [q,,q,,...,q,] for the same subspace, and a matrix R such that
A=QR.

if and only if some columns of A are linearly dependent; our assumption of full
column rank n for A prevents this.

Mathematically, there is nothing wrong with this procedure, but numerically
there is: In floating-point arithmetic, rounding errors can build up in such a way
that the columns of Q are not truly orthogonal. So we will investigate an alternative,
apparently trivially different algorithm, after examining an example.

Example 4.5. Consider the following matrix, chosen by taking integers at random in
the interval [—99,99].

—81 —98 —76 —4 29
38 —77 —72 27 44

A=|-18 57 —2 8 92 |. 4.17)
87 27 —32 69 —31
33 —93 —74 99 67

4.5 The QR Factoring 181

When we use classical Gram—Schmidt on this matrix (using a routine we wrote that
implements Algorithm 4.4), we get the matrix

—0.6215 —-0.3574 —0.2833 —0.3015 —0.5611
—0.2916 —0.3711 —0.3417 —0.1309 0.8021

Q= |—-0.1381 0.4370 —-0.7039 0.5393 —0.0598
0.6675 —0.1291 —0.5544 —0.4624 —0.1287
0.2532 —0.7258 —0.0110 0.6224 —0.1469

We can assess the orthogonality of Q by also computing Q7 Q — I in MATLAB as
follows:

q'xg-eye(5)

In this case, we obtained the result

0 —0.0139 0.0067 —0.0028 0.0326

—0.0139 0 0.0023 —0.0500 0.4940

107 0.0067 0.0023 0.0222 —0.0112 0.3028
—0.0028 —0.0500 —0.0112 —0.0222 0.0167
0.0326 0.4940 0.3028 0.0167 0.0222

and as we see, the matrix Q is fairly close to being orthogonal—not completely
satisfactory, but not too bad. When we try with a 10 by 10 matrix (not shown, for
brevity), the loss of orthogonality is about 10~ again not too bad. <

When we look more systematically, still taking matrices at random so as not to
give the impression that we are looking for hard cases, the picture that emerges
is less comforting. In the following script, we first set up a Fibonacci sequence,
because that provides a set of dimensions that looks good on a log scale and is fine
enough to show a trend. We then take 30 random matrices of each dimension (as
generated by rand), compute their QR factoring by classical Gram—Schmidt, and
measure the departure from orthogonality of each result. This test is performed as
follows:

1 n = [2,3,ones(1,10)];

> for i=3:12,

3 n(i) = n(i-1)+n(i-2);
4+ end;

s nrms = zeros (30,12) ;

¢ for i=1:12,

7 for j=1:30,

8 a = rand(n(i)) ;

9 g = gs(a);

10 nrms (j,1i) = norm(gq'xg-eye(n(i)),inf);
1 end;

12 end;

13 loglog (n,nrms', 'k.',n,n."3/n(12) "3+mean (nrms (:,12)),'k")

182 4 Solving Ax=b

Figure 4.2 shows essentially O(n*) growth of the average departure from orthogo-
nality; by n = 377, the resulting Q is orthogonal only in single precision, not double
precision.

1078

10710 L

10—12 L

10—14 L

10716 : . .
100 10! 102 108

Fig. 4.2 For each dimensionn =2, 3,5, ..., Fi3, where F; is the kth Fibonacci number, 30 random
matrices computed by rand are given to the classical Gram—Schmidt procedure, and the departure
from orthogonality ||Q" Q —I||.. of the result is recorded, and displayed on a log-log scale, with an
O(n?) line for reference. A substantial loss of orthogonality is seen even for such relatively benign
matrices

4.5.2 Modified Gram-Schmidt Orthogonalization

As before, let us write the equation A = QR in the expanded form

[ajay...8,) =[q; q ... q,]

but now R is partitioned in the specific way indicated. We find r; and q; as
before, but then immediately compute

H
r2 =(qyaz

H
ri3=dqpas

H
'tn = (q7 an-

4.5 The QR Factoring 183
We then use this information to generate new vectors a;,43, . .. ,4, as follows:
q=a—ruq, 2<k<n

Then the partition gives

o r3 -+ Iy

o . r33 -+ I3y
[83...8,] = [0y q3 ... q,] L (4.18)

T'nn,

which is a problem of the same type but one dimension smaller. Repeat until the last
1 X 1 system gives 7y,.

Obviously, this solves the same problem. Indeed, it is not immediately clear that
the algorithm differs at all from the previous one. It turns out that the resulting
algorithm (see Algorithm 4.5) is nearly identical, but not quite, to classical Gram—
Schmidt (see Algorithm 4.4). Modified Gram—Schmidt turns out to be better at pro-

Algorithm 4.5 Modified Gram—Schmidt orthogonalization

Require: A full-rank matrix A € C"*"
for i from 1 to n do
q; := a; (it leaves a; unchanged)
end for
for i from 1 to n do
rii = [|q; |2
q; = r;lql-, so we require r;; # 0
for j fromi+1tondo

rij = qf'q;
q;:=49q; —rijq;
end for
end for

return A unitary matrix Q and an upper-triangular matrix R such that A = QR.

ducing a numerically unitary Q. However, we will see that it is not perfect either.
We leave it to the exercises to duplicate the “average” random matrix example we
used previously and to show that the growth is O(n?) and not O(rn?). By n = 377,
modified Gram—Schmidt seems to produce answers that are usually around n times
better than those of Gram—Schmidt. This is not the worst-case scenario, however.

Example 4.6. We now consider a more difficult example, the 5 x 5 Hilbert matrix.
In general, the entry A;; of the n x n Hilbert matrix is

1

184 4 Solving Ax=b

The matrix is famously awkward numerically; we will see more of the Hilbert matri-
ces. There are certainly others as awkward! For now, if we compute the QR factoring
of this matrix in MATLAB, using the commands

a = hilb(5) ;

[gl,rl] = gs(a); %using algorithm classical Gram--Schmidt
[g2,r2] = mgs(a); %using algorithm modified Gram-Schmidt
[g3,r3] = gr(a); %built-in gr routine

we obtain the results displayed in Table 4.1. This represents a dramatic difference.

Table 4.1 Comparing the loss of orthogonality for CGS, MGS, and built-in QR

Method | 1Q7Q-1|>
Gram—Schmidt 3.7-10°8
Modified Gram—Schmidt 45.10712
Built-in gr 6.4-10716

Even on this 5 X 5 matrix, Gram—Schmidt in its classical form behaves very badly,
losing 8 figures of accuracy in Q; mind you, || QR — A is zero! q

The factoring is very good—it’s just that Q is not orthogonal, and so our solving
process, which involved multiplying by Q, is therefore compromised. MGS suffers
much less from this loss of orthogonality, losing only 4 figures of accuracy. But the
real winner in the orthogonality sweepstakes is the built-in gr. See Fig. 4.3. How
does it achieve such good orthogonality? This is the object of the next subsection.

Comparing CGS, MGS, and Householder

100 e
x o
> o
g s ' ¢
8)10 r o
K
5 0
£
£ 0 0
© 10-10}
2 10 <o
]
§ o
X
¢
105 0000500000009
0o 2 4 6 8 10 12 14 16

dimension of Hilbert matrix

Fig. 4.3 Comparison of CGS (cross), MGS (open diamond), and Householder (open circle). We
plot ||QH Q —I|| for each method, where H, = QR and H,, is the n x n Hilbert matrix. Observe
that the slope of CGS is twice the slope of MGS. However, Smoktunowicz et al. (2006) shows that
unless computation is done carefully, there are no bounds for CGS of this kind in general. There
are simple examples where the loss of orthogonality is complete for CGS

4.5 The QR Factoring 185

4.5.3 Householder Reflections

This section describes the method of choice for computing a QR factoring. We begin
with some preliminary formula. Given a nonzero vector v, form the matrix

H
vV
H:I—ZT7 (4.20)
vHy
which is known as a Householder reflector. Note that vv/ is a rank-1 matrix and
that v/’v is a scalar. Moreover, let a € C" be a nonzero column vector, and define

v = signum(ay)||a||.e; +a, 4.21)

where

. ifz#0
signum(z) = { /1‘ZI if z i 0

and e; = [1,0,0,...,0]”.

We may proceed recursively to build the factor Q as a product of unitary matrices
(see Problem 4.16) built from such elementary “Householder reflectors.” The basic
idea is simple. Take a to be aj, the first column of A. Form v as in Eq. (4.21) and
then the resulting H; call it H;. Then (with the help of Problem 4.17) we obtain

o dpp -+ dig
0 Gy - a
HA= . :
0 an2 Qnn
(note that
H H
Vv v(viz)
Hz=(1-2—)z=2z-2
vily vy
is easy to compute for each column z = a;,z = a,,...,z = a,). Now partition the
result as

and suppose that we have computed the QR factoring of this smaller matrix (by
Householder reflections also). Then let

HA = [a iz " al"] .

0| QR

186 4 Solving Ax=b

So, by rearranging the terms, we obtain

R N
and, as result, our factor Q is given by
ull
Q=H; Q , (4.23)

which is unitary. Moreover, the right-hand matrix in Eq. (4.22) is upper-triangular
(though not necessarily with nonnegative diagonal entries). We are done, since this
is what we were after. The method is fully described in Algorithm 4.6.

Algorithm 4.6 Householder QR factoring

Require: A € C"™*", m > n, full column rank.

Q:=1I,

R:=A

for k from 1 to n do
a:=R(k : m,k) (the current col)
vi = signum(ay) ||a|2€1 +a (which is in C"~*+1)
Vi = Vi /[[Vill
R(k:m,k:n) = Ly_t1 —2vVIR(k : m,k : n)
Q(l:k—1,k:m):=Q(1:k—1,k:m)(Ly_y1 —2vvil)
Q(k:m,k:m) = Q(k:mk:m)(Ly_y1 —2vvi)

end for

return A unitary matrix Q and an upper-triangular matrix R such that A = QR.

Time spent doing a QR factoring can’t be spent doing something else. The time
we take to do the factoring, therefore, can be regarded as a cost. Using this measure,
the cost of the classical Gram—Schmidt method is exactly the same as that of the
modified Gram—Schmidt method: 2mn> flops. The Householder reflection method
is slightly cheaper at 2n*(m —/3) flops, provided that one accumulates the Hys but
does not form Q. It is more expensive if you multiply the Hys together to form Q,
but not grossly more. In practice, the Householder method’s greater stability makes
it very attractive.

4.5.4 Numerical Stability of the QR Algorithms

In this section, we examine the numerical stability of the three algorithms we ex-
amined to compute the QR factoring. Both CGS and MGS are stable in a normwise
backward sense. Specifically, if Q.R are the computed factors, then there exists an
E such that

4.5 The QR Factoring 187
A+E=QR (4.24)

and |E||r < c,upml||Al|F, where ¢, is a slowly growing function of n and || - ||F is
the Frobenius norm. That is, both CGS and MGS give the exact factors of a slightly
perturbed matrix, differing normwise by only a small amount from the original.

However, both CGS and MGS lose orthogonality in the computed factor Q. For
MGS,

1Q"Q—1|| < cux(A)em,

where ¢, is a slowly growing function of n. The function k(A) is described in detail
in Sect. 4.6. For now, note that it can be large, as it is for the Hilbert matrices, where
it grows exponentially with the dimension. For CGS, we don’t even have this much:
No such bound exists, unless special care is taken (Smoktunowicz et al. 2006).

The situation is better with Householder’s method. If Q and R are the computed
factors, then there exists a unitary matrix (an exactly unitary matrix) Q near Q with

A+E=QR (4.25)

and each column e; of E satisfies ||e;|2 < ¥un||aj||2, where a; is the corresponding
column of the m x n matrix A. Moreover, Q is close to Q: We have

”Q_QHF < \/ﬁ%mna

where c is a small integer constant. This is Theorem 19.4 in Higham (2002). Notice
that the potentially large function x(A) does not appear in this bound: The House-
holder factoring returns matrices that are guaranteed to be close to orthogonal.

Now, let us turn to the residual r = b — Ax, which turns out to be as impor-
tant. Using the above statements, we can say that, when solving Ax = b using the
Householder QR factoring, the residual is guaranteed to be small in the following
sense:

Irll2 < 2 l|AllF(IX]2, (4.26)

where c is a small constant.

We could have introduced the residual already for triangular systems, but a
stronger and more satisfactory backward error guarantee—namely, exact solution
with a relatively tinily perturbed T—was available. However, the vector r will be
used henceforth as appropriate.

Remark 4.2. The residual, as defined above, is important in assessing the credibility
of a numerical solution of square systems. If the computed residual r has a “small
enough” norm, compared to errors in the right-side vector b, then the method (what-
ever it was) has produced an acceptable answer. As we see above, there is a nice
guarantee for the QR method that the residual will always be small in a normwise
sense. <

188 4 Solving Ax=b

The residual gives an extraordinarily simple method for a posteriori backward er-
ror assessment: Simply compute the residual and examine it. This works for solving
square linear systems (rn = n) and for overspecified systems (m > n). It is so simple,
it seems like cheating. To realize how simple its use is, we make the following key
(but trivial) observation: If r = b — Ax, then x is the exact solution of

Ax=Db-—r; 4.27)

that is, we have computed the exact solution of a slightly different system of linear
equations, one with a perturbed right-hand side. If the maximum entry in r is (say)
10713, and the errors in your data vector b are about 10~7, then you are done: For
all you know, you have found the exact solution you are looking for.

A second major point (which we pursue in Sect. 4.6) is that one needs to know
how sensitive a solution is to such changes in the data. Importantly, given our back-
ward error perspective, we have put numerical errors on exactly the same footing as
errors in the data. But one has to understand the effects of perturbation on the data
anyway; so this is already (albeit trivially) a successful analysis.

There is a more subtle point that we have to examine: How do we compute r?
A traditional approach is to use higher precision (such as double precision if you
were working in single precision, or quadruple if you were working in double). The
difficulty is that Ax is very nearly equal to b, and when you subtract, you reveal
rounding errors and don’t leave (much) forward accuracy in r. Sometimes, how-
ever, it is possible to use backward error again: Remember our discussion of matrix
multiplication and backward error. Notice that the computation of Ax (let this be y)
gives you the exact result of (A + AA)x, where each entry of AA is only a tiny rel-
ative perturbation of the corresponding entry of A: That is, we can regard the result
of the matrix—vector product as being exact if we allow some tiny uncorrelated per-
turbations in A. Now when we subtract the result from b, the subtraction is benign:
Each entry is just (b; — y;)(1+ &;), which gives the correctly rounded result (in IEEE
floating-point arithmetic, which has guard digits). That is, each entry of the residual
has been computed to full accuracy if the matrix A is considered to be perturbed
to some very nearby matrix. Thus, we have an argument that the computed residual
and the computed solution together satisfy the following theorem:

Theorem 4.3. The computed residual ¥ is the exactly rounded representation of r
satisfying

(A+AA)x=b-r, (4.28)
where each entry in AA is O(Uy) times the corresponding entry in A.

In practice, the perturbations AA are usually much, much smaller than the entries
that appear in r, and are safely ignored. But when the arguments get delicate, one
can fall back to this position and use Eq. (4.28).

Example 4.7. To make this method of analysis more concrete, let us continue Ex-
ample 4.1. It turns out that the symmetric matrix B factors into the product of two

4.5 The QR Factoring 189

slightly nicer matrices: B = A A, where A is as below, as was noticed in Corless
(1993). Here, we want to solve

666 665 1
Ax= [667 666]X: [o] =b (4.29)

using the QR factoring, and assess the result on the basis on the computed residual.
The solution is found in MATLAB by executing

[Q,R] = qr(A)

y Q'x[1;0]
x = R\y

It returns the vector
< = 102 6.660000000445352
X= —6.670000000446023| ’

which is very close to the exact solution [666,—667]7. If we compute the residual
with the commandr = b - AxXx, we obtain

o o[0.0582
r=10 [0.1164'

Thus, the computed solution (which is near to, but not exactly, the exact solution)
is the exact solution to Ax = b —r, where r has an entry about 1.1 - 10~19, Moreover,
by Theorem 4.3, all figures in each entry of r are correct if we allow tiny (of the order
of L) changes in the entries of A.

However, the truly surprising results in Example 4.1 did not arise for Ax = b,
but rather for Bx = A Ax = b. Using the same solution procedure based on the QR
factoring (using MATLAB’s gr command), we obtain

8.8575

o — 109
x=10 [—8.8709

o 1n-3(0.1221
} and r=10 {0.1221} .

That seems large, until we scale by the norm of B and the size of the solution x: We
can expect rounding errors of size ||B||||x|| times O(uyr), and indeed ||| /||B]|||x]| =
7x 10717,

Even more puzzling though is the computed solution of Bx = [0, 1] and its resid-
ual. Proceeding as above, we find that r is identically zero, not 0(10‘3)! This is
puzzling, since our solution (not shown here) differs from the exact solution (in
the thousands’ place, already), but we have a zero residual. In fact, the residual is
smaller than when we solved the system with A, which is surprising because we
would expect a larger error when the entries of the matrix are larger. However, The-
orem 4.3 gives us grounds for an explanation. The fact that the computed residual is
0 tells us that, for some matrix OB with |6b;;| = O(up|b;j|), we have exactly solved

(B4 6B)x = b —r, where & —r is truly zero (because it is the exactly rounded
result). <

190 4 Solving Ax=b

Remark 4.3. Tt is now clear that a zero computed residual is not a guarantee that we
have found the reference solution. It is only a guarantee that we have found the exact
solution to a nearby problem. <

This will prove to be true if the computed residual is merely “small,” not exactly
zero, as well. The forward error (which we have not shown here) is not explained by
this approach. This will become possible in Sect. 4.6 when we explore the condition
number of matrices.

4.5.5 Solving Overspecified Systems with the QR Factoring

Suppose we are given A € C"™*" and b € C™ and we want to find x € C" such that
Ax=b. (4.30)

If m = n, then we have a system for which we have the same number of equations
and unknowns. When m > n and when the equations are linearly independent, then
we call the system overspecified'': There are more equations than unknowns. In
overspecified cases, there is often no x that satisfies Eq. (4.30) exactly. This situation
occurs very often in applications; perhaps the most common is found in linear least-
square problems. In such cases, our solution will be a vector x in the equation Ax ~ b
for which the 2-norm of the residual is to be minimized. Here, we are looking for
an x such that

X = argmin ||r||, = argmin||b — Ax||, = argmin ||b — Ax|)3, (4.31)
X X X

where argmin is the value of x at which the minimum occurs. We then say that x
is the solution of AX = b in the least-square sense. Note that when presented an
overspecified system and asked to find x=A\b, MATLAB will automatically return
the solution in the least-square sense.

We will now examine how to find x for cases in which A is upper-triangular and
for cases where it is not. If A is upper-triangular and has full column rank, such as
the following example in which Ax = b is

123 g
045 [x 0
006 |n|=],|,
000/ |x; b4

5
000 be

1 We are indebted to David Jeffrey for this term. The more commonly used term, “overdeter-
mined,” isn’t accurate if conflicting information is given by the equations, and once you realize
this, it’s bothersome: If m > n, there is generally too much conflicting information to determine a
solution at all.

4.5 The QR Factoring 191

for any values of b4,bs5 and bg, it is easy to determine x. The exact solution of the
upper part of the system gives x3 = 3/2, then x, = ! /g and x; = 57/12. Then, we will
have the residual

0
0
0
by

bs
be

If b4, bs, and be are 0, then we have found (by back substitution) the vector x that
satisfies Ax = b. If b4, b5 and bg are not 0, we easily find by inspection that

[el3 = |71 >+ [r2* + s> + |ra]* + s + |76,
ri=b;i— A(i,)x;.

r is as small as it gets, for any choice of xj,x, and x3, since r; =0 for 1 <i<3and
ri=b;for4 <i<6.So

)13 > [ba|* + |bs|* + |be|*

(absolute values are needed because b4,bs and bg might be complex). So, for an
upper-triangular A, the process of back substitution for the upper part of the system
gives us the least-squares solution.

However, not all matrices A are upper-triangular. That is where the QR factoring
comes into play. The usefulness of the QR factoring for least-square problems stems
from the following straightforward theorem:

Theorem 4.4. Product by a unitary matrix preserves the 2-norm; that is,
[1xl[2 = [1Qx][2-
Proof. Observe that
%[5 = x"x = x"Q"Qx = | Qx|3

follows from definitions. f
It follows from Theorem 4.4 that

min||b — Ax|3 = min Qb — Q"Ax3 = min | Qb — Rx||3: (4.32)
that is, the residuals r = b — Ax and Q”r = Qb — Q” QRx = Qb — Rx have the
same 2-norm. So, the vector x that minimizes ||r||, will also minimize ||Q”r|,. Con-

sequently, finding miny || Q” x|, is equivalent to finding the least-squares solution of
Ax =b.

192 4 Solving Ax=b

Since R is obtained from the QR factoring, we can let

[ai1 a2 a3 --- ain
0 ax axy - axy
0 0 az -+ as,
R= = .
0 0 0 - aw {0]
0O 0 O 0
L0 0 0 0
Then we write
Rx = {Rﬂ , (4.33)

and the entries of Qb — Rx in rows n+ 1,n+2,...,m cannot be changed by any
choice of x. But, in a way similar to what we have done for upper-triangular matrices
A, we may choose x to make

Rix=Q(1:n,:)"p.
This straightforwardly makes the 2-norm of the residual
b — Ax
minimum.

Example 4.8. Suppose that we have the following data gathered from timing the
execution of an algorithm operating on matrices:

Sizen| 5 55 105 155 205 255 305 355 405 455 505
Time ¢]0.0004 0.0012 0.0024 0.0046 0.0080 0.0120 0.0168 0.0232 0.0320 0.0682 0.0604

See Fig. 4.4. We want to find a third-degree polynomial expressing the execution
time in terms of the size n of square matrices.'> Because of other processes on
any given machine, and perhaps because of minor differences in execution paths
for a given matrix, the fit cannot be exact. This gives 11 equations of the form
cost(ny) = C3n2 + czni + c1ng + ¢p in the four unknowns c;s, clearly overspecifying
the answer. The corresponding matrix is then

12 For theoretical reasons, namely, the flop count, we expect that the computing time will increase
as the cube of the dimension for the QR factoring. Therefore, we may wish to summarize our cpu
time data as a third-degree polynomial.

4.5 The QR Factoring

cpu time

0.07

0.061

0.051

0.04f

0.031

0.021

0.01f

0
0

100

300
n

400

500

600

193

Fig. 4.4 Time taken to compute the QR factoring for some random n x n matrices, fitted by a
least-squares polynomial. The computer used was a 32-bit tablet PC, circa 2009

125 25 51

166375 3025 55 1
1157625 11025 105 1
3723875 24025 155 1
8615125 42025 205 1
A= | 16581375 65025 255 1
28372625 93025 305 1
44738875 126025 355 1
66430125 164025 405 1
94196375 207025 455 1

| 128787625 255025 505 1 |

and we wish to solve Ac = b, where the vector b is the timing data and the 4-vector
¢ contains the coefficients of our polynomial. Simply using MATLAB’s backslash
command uses a QR factoring internally, but we may do that ourselves with the
command [Q,R] = gr (A, 0).'°> We then form the 4-vector y = Qb and solve
the 4 x 4 triangular system Re =y by back substitution. When we do this, we find
that

cost(n) = 3.0427-1071%3 +1.3273 .10~ "n* — 1.2808 - 10 n + 1.2887- 103

fits the cost, in seconds, to the dimension. The leading coefficient is quite small, but
as we see in Fig. 4.4, the fit is good.'* <

13 We use the argument 0 in order to compute a “thin” matrix Q, 11 by 4; if we leave that argument
off, then MATLAB will give an orthogonal completion of those four vectors and return an 11-by-11
matrix (which we don’t need).

14 The two leading terms are equal already for n = 300, so the leading coefficient is significant for
this fit.

194 4 Solving Ax=b

4.6 SVD and Condition Number

It is now time to discuss the relationship between the condition number and the
singular value decomposition. We begin with a statement of the factoring theorem
that we will use repeatedly.

Theorem 4.5. Every m x n matrix A € C"™*" may be factored as
A=UzV", (4.34)

where U € C"™*"™ and V € C"" are unitary matrices and X is an m X n nonnegative
diagonal matrix such that £ = diag(oy,02,...,0p) with p =min(m,n). The os are
known as singular values, and the factoring is known as the SVD.

For a proof, see Stewart (1998 p. 156). Note that the diagonal entries o are arranged
such that

01202 20,>0,41=0=---=0.

The index r of the last nonzero diagonal entry o, is the rank. Moreover, as shown in
Fig. 4.5, the cost of computing the SVD is relatively high, but we will see here that
it is worth the price.

10 Computation time for SVD grows as O(n®)

10% |

_L
Q

100 |

107"}

clock time (seconds)

1072}

1078 : '
10' 102 108 104
n

Fig. 4.5 Time taken to compute the SVD for some random n x n matrices. The computer used was
a 64-bit desktop, vintage 2009, running MATLAB 2009a

There are many important ways to unpack the meaning of this theorem. If we
know the factors U, X, and V in the SVD, we effectively know everything we want
to know about the matrix A. To begin with a simple example, it follows that we
know the inverse, if m = n and o, # 0:

4.6 SVD and Condition Number 195
A l=vz-lu?,

Of course, the inverse of the diagonal matrix X is trivial: Just reciprocate the diag-
onal entries. Thus, the SVD gives us a way to solve Ax = b. In practice, we would
not usually form this inverse, of course, but we will see how to use this factoring to
solve various matrix problems.

One of the more important ways to understand singular values is based on the
following theorem.

Theorem 4.6. Suppose A factors as above. If, for k <r, Uy = [uj,uy,...,u], Vp =
[Vi,V2,...,Vi), Zx =diag(oy, 0, ..., O, O, ..., 0) with Zy being m x n with enough
zeros to fill out the diagonal, and 61 > 03 > ... > 0} > 0, then if we define Ax =
UkaVkH , this m X n matrix satisfies the following property:

Ar—Al,= min |[B—Al,=og0 4.35
(| Ax ”2r£$g” 2 = Oks1 (4.35)

and rank(Ay) = k. That is, Ay is as near (in the 2-norm) to A as any rank-k matrix
can get (see Schmidt 1907).

We do not supply a proof here. One can be found in Golub and van Loan (1996).

Remark 4.4. This theorem has several interesting consequences. First, the distance
to the nearest singular matrix is exactly o, > 0. The relative distance is, therefore,
% /o1, because the 2-norm of A is exactly o (see Exercise 4.10). This supplies a
natural metric for the notion of singularity.

In the first exposure to matrices, one learns that they are either singular or non-
singular. This theorem provides a way of putting shades of gray into that black-
and-white distinction: Some matrices, while nonsingular technically, are so nearly
singular that they might as well be actually singular. If the entries of A are not known
to great precision, and some matrices near to A really are singular, then one ought
to consider the case of singularity. <

In light of this remark, we should ask: Given that the entries of A are sometimes
not known with great precision, how are its singular values affected by small vari-
ations in its entries? A great deal can be said about this question, but the simplest
result is due to Weyl.

Theorem 4.7. If A +E has singular values 6, and A has singular values oy, then
|6 — or| < ||E|| for 1 <k <n.

Note that these are not relative perturbations—small singular values can indeed be
swamped by changes in the data. However, this theorem says that at least the larger
singular values will be accurate if the data are known with any accuracy. '’

It is useful to explore the meaning of the SVD further in geometrical terms (see
Fig. 4.6). Let T = {u: |ju|, = 1} be the unit circle and let

Ar={z | z=Au whereu € T} (4.36)

15 See Stewart and Sun (1990).

196 4 Solving Ax=b

be a (possibly degenerate) ellipsoid (as you will show in Problem 4.18), where the
singular values oy (1 < k < r) are the lengths of the semiaxes. The aspect ratio of
the ellipsoid At is given by the quotient % /o, of the largest and smallest singular
values; in other words, this ratio tells us how skinny the ellipsoid is. On the one
hand, the best ratio is % /o, = 1; this happens for “nice” matrices A whose singular
values are all equal. On the other hand, if A is singular, the ellipsoid will degenerate
to a lower-dimension surface.

Example 4.9. Let

23
A= L 2} : (4.37)

Then At is drawn together with the circle T in Fig. 4.6. The factors in A = UXV#
are as follows:

Fig. 4.6 Transformation of the unit circle by the matrix A = [2,3;1,2]. The largest singular value
(= 4.2361) is the length of the longest semiaxis, and the smallest singular value (= 0.2361) is
the length of the shortest semiaxis. See also the MATLAB command eigshow, for an animated
explanation that may be more helpful than this static explanation

U~ —0.8507 —0.5257} I {4.2361 0] Ve {—0.5257 —0.8507

—0.5257 0.8507 0 0.2361 —0.8507 0.5257 |-

The vector u; (the first column of U) points in the direction of the longest semiaxis;
u; in the direction of the shortest semiaxis. N

4.6.1 The Effect of Data Errorin b

If we know that A = UXV# is in C", U = [uy,uy,...,u,],and V = [v{,v2,...,V,],
then we may examine a “worst-case scenario” for the effect of errors in the data.
Suppose that we are trying to find x such that

4.6 SVD and Condition Number 197
Ax=u;.

Then it is easy to see that x = (1/o;)v; does the trick:

1/()‘1 1
0 0

AL _pusvi Y _yuzs | 0 | —u |0 =u,.
01 01 : :
0 0

Since A is nonsingular by hypothesis, this must be the unique answer.

Now suppose that we are, in fact, horribly unlucky, and the right-side vector b
is not actually u; as we thought, but rather is polluted with errors in the direction
of u,,. So, let b = u; + £u,. If we solve the system again, the solution we get is not
x = 1/6,v| as it was before, but rather X + AX = 1/6,v| + €/5,v,. This can easily be
verified:

1 £ 1 €
A (—V1 + —V,,) = —Av; + —Ay,
o O, O] On

1 n
0 0
0 0
£ €
=u +—UX =wm+—U|: | =u+eéu,.
Op n ’
0
1 On

How big a difference is caused by this variation of the right-side b? The relative
difference between these two solutions is

Jax] _ /ol _ o
X~ el ~ o

)

whereas the difference between the two sets of data is only

I
Bl

E.

In other words, the data error € has been amplified to (°1/s,)€ in the solution; note

that o1 /s, > 1 can be very large indeed if the matrix is nearly singular. A little thought

shows that this is the worst possible amplification (see Problem 4.24).
Consequently, we find that

Ax|| |Ab|
<K(A)=— (4.38)
by |[b]]
where, if A is nonsingular, we define
_ (o)
K2(A) = [|AlA [= = (4.39)

On

198 4 Solving Ax=b

since 01 = ||A||2 and ;' = ||A~!||5. We call x»(A) the 2-norm condition number
of A.

Figure 4.7 displays the condition number of random matrices as a function of
their sizes. This number, or related numbers using other norms, was the beginning of

108
108} o7
-
- o D/ﬁ/n
< 10*} e
X H/
o o 97
o o7
102
=] //
o ,’/
100 . . .
100 10' 102 108 104

n

Fig. 4.7 Condition numbers of some random matrices, A = rand(n). The dashed line shows a
constant times n?

the study of conditioning or sensitivity in the solution of linear systems of equations.
Using this number, we can bound (or estimate) the forward error in a solution given
the backward error of a method.

Example 4.10. Consider again the upper-triangular matrices from Example 4.3. We
generate them in MATLAB as follows:

b = ones(n,1);
for j=2:2:n,

b(j) = -1/3;
end;
U = diag(ones(1,n)) - triu(2+ones(n),1);
x = U\b;

We saw that for n = 32 the accuracy of x; was about 0.0038. This was in spite of the
excellent backward error: The computed x is the exact solution of an upper triangular
system with entries different from those of U by less than simple rounding.

The difficulty, of course, is the conditioning. We compute the SVD in MATLAB
for n = 32 and find that the first 31 singular values are large enough—we find ap-
proximately o7 = 39.5134 and o3, = 2.0006, but 63, = 2.1- 10713, which is less
than pys0;. Thus, this matrix is within roundoff error of a singular matrix. There-
fore, nearby matrices (even matrices essentially within rounding distance from U)
will have greatly differing solutions to (U+ AU)x = b.

As it turns out, the actual error (about 0.0038) is quite a bit less than the approx-
imate bound given by the condition number (which is greater than !/g,) times the

4.6 SVD and Condition Number 199

bound for the rounding error (approximately €). That is, the real scenario is better
than the worst-case scenario. <

Remark 4.5. We may compute the inverse of the matrix U explicitly, and its first row
contains the entries 1, 2, 6, 18, 54, 162, ..., which is the sequence 2-3*~!. Thus, we
see that the norm of U~! must grow exponentially with the dimension, being bigger
than any individual element of the matrix such as the Uy , =2- 3"~! entry; further,
since the 2-norm of U™! is the reciprocal of the smallest singular value of U, we
see that the smallest singular value of U is exponentially small with the dimension
n. This is a somewhat surprising situation: A simple upper-triangular matrix whose
determinant is 1 and whose entries are not larger than —2 can be made arbitrarily
close to being singular simply by increasing the dimension. <

4.6.2 Conditioning, Equilibration, and the Determinant

Is 10~!7 zero? How about 167392 Of course, neither of these numbers is zero.
However, there are situations in which they may as well be, such as in adding 1 +
10~"7 or evaluating y = x* for x = 16~ '% in IEEE double precision. In the first case,
1077 is less than the machine epsilon and the result rounds to 1, and in the second
case 16739 ynderflows to zero because it is smaller than 107361, which is less than
realmin.

But there are situations where neither should be zero. Consider the 100 x 100
identity matrix I and let A = 167°L. Then the determinant of A would underflow
to zero, implying that the matrix is singular. Obviously, it isn’t, and indeed all the
singular values oy = 163 and so its condition number is 1. It’s even true that solving
Ax = Db can be done without rounding error on a binary system (although the result
might overflow if the entries in b are big enough). The two tests for singularity,
namely, the one learned in the first course about the determinant being zero or not,
versus the “nearness to singularity” notion that we get from the SVD, have quite
different behavior, and the second is a good deal more reliable.

The theory of conditioning is elaborate (and indeed we have only just started).
For many reasons, it would be very useful to have a simpler theory, based on some-
thing we know and understand, such as determinants. Unfortunately, there is only
a weak, one-way connection between condition numbers and determinants, as we
will see. Until recently, even this connection was not expected, as is shown by the
following quote from a well-known (and loved) numerical linear algebra book.

It is natural to consider how well determinant size measures ill-conditioning. If det(A) =0
is equivalent to singularity, is det(A) ~ 0 equivalent to near singularity? Unfortunately, there
is little correlation between det(A) and the condition of Ax = b.

It is evident on a quick inspection that a small determinant does not imply an ill-
conditioned matrix; and the converse is not true either. The examples for both ways
from the book quoted above are

200 4 Solving Ax=b

I -1 - -1
1 -~ —1

B,=|. .. . (4.40)
0 O0-- 1

which has determinant 1 while 2"~ < x(B,) < n?2"~!, and the perfectly condi-
tioned matrix diag(1/10,1/10,...,1/10) whose determinant is 10~".

One problem is scaling: If we multiply a matrix A by 10, then the determinant
changes by a factor 10", while the singular values each change by a factor only
of 10, so that the ratio o1 /s, remains unchanged. Note that scaling by nonconstant
diagonal matrices will indeed affect the singular values, by the way.

If we follow this idea and scale the matrix to make things fair—in particular, if
we equilibrate the matrix by multiplying each row by a factor so that the Euclidean
norm of each new row is just I—then it turns out that there is a connection, and it is
a very simple one. If M is the equilibrated version of A, then we have

2
<) < o (4.41)
and the constant 2 is the best possible. The proofs of this, given in Guggenheimer
et al. (1995), are very instructive and show when this inequality is likely to be tight
(namely, when all singular values but the smallest are roughly equal) and when it
will be loose (namely, when there are many singular values of different orders of
magnitude).

A further difficulty not noted there but worth worrying a little about is the pos-
sibility that row-equilibration might not always improve the condition number; that
is, it might not be necessary that x(M) < k(A). But it is shown by Higham (2002
p. 136) that row-equilibration is the optimal row scaling, and in fact we always have
k(M) < k(A).

This brings up the possibility of column scaling, and there is some interesting
work on this hard problem. As noted by Skeel (1980), to do proper column scaling
for solving a linear system, you have to already know something about the solution,
so this is difficult. However, as noted by van der Sluis (1969), one can find (relatively
simply) a diagonal matrix Dy such that the condition number of AD; is not too much
larger than the optimal column scaling—at worst, a factor n' larger. The method is
to choose D so that

D,;A”AD,

has unit diagonal entries. Once that is done, a further row-equilibration can be done
as well. This helps, but automatic scaling isn’t a panacea, and in any case, as the
example below shows, this still doesn’t rescue the determinant as a measure of near-
ness to singularity.

Example 4.11. The row-equilibrated version of the matrix B, from Eq. (4.40) has
det(M,,) = 1/va1, and hence we know x(M,,) < 2v/n!. However, this upper bound is

4.6 SVD and Condition Number 201

1074

1064

5 10 15 20 25 30

Fig. 4.8 Ratio r = (2/detM) /i, (M) for the matrices B,, after row-equilibration. Dashed line is
without column-equilibration, and we see the bound becoming arbitrarily loose, quickly. With the
simple column scaling first (solid line), the situation is better, but still bad. The closeness of the
determinant to zero cannot be used to measure nearness to singularity

significantly larger than x(B,,) for large n. That is, this bound can be arbitrarily bad.
Experiments verify that for n < 80, we have k(M) < k(B,) < n?2"~! < v/n!. In
this case, the upper bound given by the theorem of Guggenheimer et al. (1995) is
very loose.

For column scaling, computation shows that Dy = diag(1,!/v2,1/v3,...,1/vk)
makes the diagonal elements of B,{B equal to 1. This is within a factor /n of opti-
mal column scaling to improve the condition number. When we apply this column
scaling, and then do row-equilibration, we find that, for the example case n = 30,
2/detM is about 52,000 times the 2-norm condition number of M. Without prior col-
umn scaling, the ratio is even higher, namely, about 1.9 - 107. Other dimensions n
are computed and displayed in Fig. 4.8, and we see faster than exponential growth
in the overpredictions by both bounds. This demonstrates that the smallness of the
determinant cannot, even with row and column scaling, always be a good predictor
of nearness to singularity.

Incidentally, the column scaling for this example does improve the condition
number, but not by much; at n = 30, it is only about 6 times better. Most of the
reduction in the ratio is because the determinant is scaled up. In other examples,
column scaling can make the difference between success and failure. The problem
of finding the optimal column scaling is harder than using this simple scaling and is
studied by Watson (1991), for example.

<

202 4 Solving Ax=b

4.6.3 A Naive Way to Compute the SVD

We will not, in this book, study practical or efficient methods to compute the SVD.
However, it is pedagogically valuable to know that there are methods to do so.
Properly, we should leave this story aside until we know how to compute eigen-
values. Yet, at this moment, most readers will believe that there are decent meth-
ods to compute eigenvalues, and so a story that says that we can compute the
SVD if we can compute eigenvalues should be satisfying. This being said, consider
A =UZVH ¢ C™" If we further consider the product

AfA = vEiUfusvY = vizve |

we notice that 7% is diagonal and in C"*", with entries 012, 022, ey 0,2,0,0, ...,0
(if r < n) on the diagonal. That is, the eigenvalues of A A are the squares of the
singular values of A. Incidentally, this shows that, in general, the singular values of
A are not the eigenvalues of A, although if A is symmetric positive definite, they
are. Similarly, we obtain

AAT —uzzHU?,

and X € C"™*™ and, again, has diagonal entries 67,67, ...,07 and possibly some
ZEros.

In exact arithmetic or for very small well-conditioned matrices, this is a feasible
method, provided that one grants the capability to compute eigenvalues. But numer-
ically, we are in trouble if 6, < o1, because then o7 is even more disadvantaged by
012: Rounding errors or data errors will just destroy any accuracy. A better method,
albeit requiring a bit more work, might be to look at the eigenvalues of the matrix

)

0 A
A7 0

:| c C(m+11) X (m+n)

sometimes called the Jordan—Wielandt matrix, which will include +07, 03, ...,
+0,. This seems to require O((m+n)?) flops. If m ~ n, this is 8 times as much
work as an eigenvalue problem of size n X n.

4.6.4 Using Preexisting Software to Compute the SVD

The main algorithms used in practice, the Golub—Kahan—Reinsch and the Chan
algorithms, are described, for example, in Golub and van Loan (1996) and Datta
(2010). Here, we note only that they cost O(n?) flops (with a bigger constant than
QR) and that both algorithms are backward stable (see Fig. 4.9).' In MATLAB, the

16 1 practice, we rely on MATLAB or on LAPACK (Anderson et al. 1999); MAPLE uses the NAG
library code, which itself uses LAPACK.

4.6 SVD and Condition Number 203

computation of the SVD is simplicity itself. For example, let us consider a random
matrix generated by executing a = rand (5); here, in short format, we got

0.8147 0.0975 0.1576 0.1419 0.6557
0.9058 0.2785 0.9706 0.4218 0.0357
0.1270 0.5469 0.9572 0.9157 0.8491
0.9134 0.9575 0.4854 0.7922 0.9340
0.6324 0.9649 0.8003 0.9595 0.6787

We compute the SVD factoring of this matrix by simply executing

10710

10—12. a,’
-

10714} o .

A, -US VI

1078} .

10718 .
10° 102 10*
n

Fig. 4.9 Residual in SVD for various random matrices computed by MATLAB’s effective algo-
rithm. The dashed line is a constant times n?

[u s v] = svd(a)

MATLAB returns the following factors:

[—0.2475 —0.5600 0.4131 0.5759 0.3504
—0.3542 —-0.5207 —0.7577 —0.0111 —0.1707
U= | -04641 0.6013 —0.1679 0.6063 —0.1652
—0.5475 —0.1183 0.4755 -0.3314 —0.5919
| —0.5460 0.1992 —-0.0298 —0.4369 0.6859

[3.3129 0 0 0 0
0 09431 0 0 0
0 0 08358 0 0
0 0 0 04837 0
0 0 0 0 0.0198

204 4 Solving Ax=b

—0.4307 —0.8839 0.0530 —0.0884 0.1503
—0.4309 0.2207 0.1961 -0.7322 —0.4370
V=|-04617 0.0890 -0.7467 0.3098 —0.3539
—0.4730 0.3701 —-0.0798 —0.1023 0.7890
—0.4380 0.1585 0.6283 0.5913 —0.1968

Moreover, we can compute the residual by executing this command:
resid = a - u * s * V'

In this case, MATLAB returns the matrix

—0.1110 0.1943 —0.0278 —0.0278 —0.6661
—0.1110 —0.0555 —0.6661 —0.3331 0.2637

1075 | 0.1665 —0.3331 0.1110 —0.2220 —0.3331
0 —0.3331 0.1110 0 —0.4441

0.1110 —0.6661 0 —0.1110 —0.2220

The computed residual above is not, unfortunately, an exact residual (as in the case
of simple matrix—vector multiplication); after all, there are two matrix—matrix mul-
tiplications. But it is a good indication that the factoring is accurate. Given this easy,
reliable way to compute the SVD, we examine some of its applications in what
follows.

4.6.5 Solving Ax = b with the SVD

Let A = UXV#, 5o that U(Z(V#x)) = b. Then we obtain
Z(VHx) =U"D,

which is computed in m? flops. If m = n = p = r, we also have

It is thus easy to compute V#x = £~!(UHb), an operation that requires O(n) flops.
As a result, we find that

x=V(Z~(Up)).

Alternatively, if we let Vix = y, £y = z, and Uz = b, then we decompose the
problem as follows:

4.6 SVD and Condition Number 205

1. Solve Uz = b for z.
2. Solve Xy =z fory.
3. Solve Vx =y for x.

This is equivalent to solving Ax = b for x, but written as a sequence of three simple
“solve” steps.

4.6.6 The SVD and Overspecified Systems

Let A be a tall, skinny matrix with full column rank (i.e., m > n but ¢, > 0). Then

(9]
(o)

On

In this case, Ax = UXV¥x = b has too many equations, and it is to be solved in
the least-squares sense. But as we have seen, using the SVD, we can minimize the
2-norm of the residual r:

Ir]3 = |[b — Ax[|3 = |U"b — U Ax||3 = [U"b — EV x]|3.
Now, if we let U b = w and V¥x = z, our objective is to minimize

- —3
(9]

Oy

L 4 2

We can choose x, which uniquely specifies z. However, we have no choice about w.
In order to minimize the residual, we can choose x so that the entries of z satisfy
Wi
k= —>
Ok
but we are helpless thereafter. Choosing z,+ to z, makes no difference, so that the
residual is given by

206 4 Solving Ax=b

can change cannot change
r n m
[el3 =3 wi—ozl*+ Y, wil’+ Y, [wil*. (4.42)
i=1 i=r+1 i=n+1

This is minimized with the choice z; = "/, for 1 < k < r. We may as well choose
Zr = 0for r+1 <k <n, if any. Then x = Vz gives a least-squares solution. Written
explicitly, it is
-
Wi
X= Z EVi)

i=1 "

where w; = uiH b, that is, the ith column of U, conjugated and transposed, multiplied
by the right-hand side. Therefore,

" uflpy;

X=) +— 4.43
; - (4.43)
=
is “the” least-squares solution. In fact, any choice for z,y1,...,2, gives the same

value for r.

If r < n, A is said to be column rank-deficient, and least-squares solutions are
then nonunique. In that case, the SVD can be used to chose the least-square solution
with minimum norm, which matters in some applications. This idea can be used to
solve linearly constrained least-squares problems, as we will see in Examples 6.9
and 6.10.

4.6.7 Other Applications of the SVD

In what follows, we briefly examine three other interesting applications of the SVD:

1. numerical rank and null space;
2. Moore—Penrose inverse;
3. data compression and approximation by a low-rank matrix.

In addition to being useful, the last one is also very entertaining. There are many
other very nice applications of the SVD given by Muller et al. (2004). We will see
another one in Chap. 6 that has to do with the GCD of approximate polynomials.

Numerical Rank

Suppose that o,,; # 0, but that it is pretty tiny, say 10~12cy. If 01/6, is small
enough, A can be considered numerically rank-deficient.

Example 4.12. We again return to Example 4.1. As we have noticed, B = ATA,
where

4.6 SVD and Condition Number 207

A _ [666 665
~ 667 666/ °

We saw some peculiar behavior when we tried to solve Bx = [0, 1]”. Now, we can
explain the forward error, and look at A as well. If we execute A to compute the
singular values, MATLAB returns

5 [1.3320
10 {o.oooo ’

and we can find K(A) = % /s, by executing kappa = ans (1) /ans(2), find-
ing the value 1.7742 - 10°. Moreover, as we have seen, the reference value of x is
[—665,666]T. Let this be refx. We can then compute the relative forward error, in
2-norm, by executing

relerr = norm(x - refx, 2)/norm(refx)

and find that MATLAB returns 6.6870 - 10~'!. For the sake of comparison, comput-
ing a bound for the forward error using Eq. (4.38) by executing

errorbound = kappaxnorm(residual,2)/norm([0,1],2)

gives 1.0327 - 10~*. We see in this case that the condition number estimate for the
forward error is a great overestimate; that is, the error is better than it might have
been.

Now let us look at B. In Example 4.7, we have seen how to find a computed so-
lution as well as its residual for Bx = [0, 1] by the QR method. We have found the
residual to be exactly zero and have explained this surprising fact with Theorem 4.1:
The residual is correct only if we allow tiny perturbations to B; thus, we have found
the exact solution to (B + AB)x = [0, 1]¥. This is remarkable, and worth further ex-
ploration, a thing that can be done using the SVD. In Exercise 4.23, you are asked to
see if you can compute (in high precision, say in MAPLE) a tiny perturbation of this
matrix that has this solution. This is followed up by using the SVD in Example 6.9.
Here we also see, as you are asked to show in Exercise 4.25, that the relative forward
error is bounded by the condition number multiplied by the relative backward error,
this time [4All /ja |, which we know to be about the size of the machine epsilon. Thus,
for this matrix, the size of the forward error should be about 10'2 times 10~1°, that
is, 10~*. In fact, if we execute

refx = [-B(2,1), B(1,1)]1"';
relerr = norm(x - refx, 2)/norm(refx)

MATLAB returns 2.9833 - 107>, This time, the condition number gave quite a good
estimate of the forward error; that is, the error was very nearly the worst possible.
Notice that B is “almost” a rank-1 matrix. In fact, its singular values are

o1 = 887113 + 13321443557 ~ 1.774 - 10°

1
0y = — ~5.6362-107".
(9]

208 4 Solving Ax=b

The matrix A has singular values that are just the square roots of these, so they are
about 10° and 1073, The condition number of A is about 10°, while the condition
number of B is about 10!2, Using Theorem 4.6, we can find the nearest rank-1
matrix:

8882445 + 591705037+/443557 443556 + 2954086291/443557

B —U [Gl v 887114 443557
1 p— p—
0 2954086291/443557 885781 | 589930811/443557
443556 + 443557 7 T 887114

B —0.28128988 - 10° 0.28181270-10~°
- 0.28181270-107% 0.28223616-10~°

Remember that ||B|, = 6 ~ 1.774 - 10%. This matrix, which is so close to B, is, in
fact, singular; in fact, it is the nearest singular matrix. It ought not to be surprising,
then, that solution of this linear system in a floating-point environment will be quite
sensitive to rounding errors; after all, the solution would be quite sensitive to data
errors too. <

If the SVD of A has tiny singular values, say 041, Oy412, ..., Oy, and none of
them is zero, then technically the null space of A is empty; but it might be better to
think of the space spanned by v, 1, V412, ..., V» (Which is an orthogonal basis, a fact
that is quite convenient) as your “approximate” null space. After all, the norm of Av
will be less than about o, for any vector in that space; in fact, a small O(0y+1)
perturbation of A will have v as a null vector. We remark that each individual vector
in that space is quite sensitive to perturbations, but that the approximate null space
as a whole is relatively stable.

Moore—Penrose Inverse

Let the matrix £* be such that £ = diag(ofl,cfz, ...,0,7.0,...,0) and

AT =vItul,

Then, the Moore—Penrose conditions, which are

AATA=A
ATAAT =AY
(AAT = AAT
(ATA =ATA,

all hold (see, e.g. Golub and van Loan 1996). For singular A, and some applications,
A" is as good as an inverse.

4.6 SVD and Condition Number 209

Data Compression or Approximation by a Lower-Rank Matrix

Let the matrix A be factored using the SVD, so that

r r
A=UZV = (Z O'illi> Vi = Z G,'lliV{I.
i=1 i=1

Now, keep only the few largest singular values o;; that is, take

few
AR Y oy =i Agy, (4.44)

i=1

which uses only a few u; and v; to represent A. The next singular value tells us how
closely this low-rank approximation is to A; namely,

||A - Afew” _ Ofew+1
A ol

Example 4.13. Consider the closeup photograph of a tawny frogmouth (Podargus
strigoides), displayed in Fig. 4.10. Taking the data for this picture, we get three
matrices each of size 985 x 1314 (some digital zoom and select was used). We take
the SVD of those matrices and find by inspection of the singular values that most
of them are quite small compared to the first 25. We compute the nearest rank-
25 matrices to these by zeroing out all singular values but these, and reconstruct
the matrices using Eq. (4.44). This gives the picture displayed in Fig. 4.11. This
compression has been done using the following code, which is worth examining in
order to understand the power and simplicity of the SVD.

Fig. 4.10 A close-up of a tawny frogmouth sitting on RMC’s rental car at Australian National
University in 2011

210 4 Solving Ax=b

Fig. 4.11 The same picture, but with only 25 nonzero singular values instead of 985. This repre-
sents a significant compression: The picture can be stored or transmitted using only 25 u-vectors,
v-vectors, and singular values, reducing the storage per matrix from 985 x 1141 bytes (or about
1000 Mbytes) to about 50 Kbytes. Of course, the image quality suffers, but the bird is recognizable

1 function pcargbtawny?2

2

3 ¥Get data

4+ Y = imread ('tawny.bmp', 'bmp');
5 [m,n,o]l=size(Y)

¢ image (Y)

7 %colormap (gray (256))

s axis image, axis off

9

10 class (Y)

12 $Convert matrix to double so that we can use the command svd
13 $we'll have to re-convert to uint8 later to use image properly.
14 X=double (Y) ;

16 $ $Now, let's look at a logarithmic plot of the singular values
17 Xr=X(:,:,1);

18 Xg=X(:,:,2);

19 Xb=X(:,:,3);

20 [Ur,Sr,Vr] = svd(Xr);
21 sigmar=diag(Sr) ;

» figure

23 semilogy (sigmar,'."')
» [Ug,Sg,Vg] = svd(Xg) ;
25 sigmag=diag(Sg) ;

% figure

27 semilogy (sigmag, '. ")
28 [Ub,Sb,Vb] = svd(Xb) ;
29 sigmab=diag (Sb) ;

3 figure

31 semilogy (sigmab,'.")

33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

50
51
52
53

4.7 Solving Ax=b with the LU Factoring 211

$Finally, let's compress the image, keeping only k singular
values.

k=25;

AppXr=zeros (m,n) ;

AppXg=zeros (m,n) ;

AppXb=zeros (m,n) ;

for i=1:k

AppXr=AppXr+sigmar (i) *Ur(:,1)*Vr(:,1)"';
AppXg=AppXg+sigmag (i) *Ug(:,1)+vg(:,1)';
AppXb=AppXb+sigmab (i) *Ub(:,1)*Vb(:,1)';

end
AppX (:,:,1)=RAppXr;
AppX (:,:,2) =AppXg;
AppX (:,:,3) =AppXb;

AppX=uint8 (AppX) ;
figure

image (AppX)

axis image, axis off

end

4.7 Solving Ax=b with the LU Factoring

We at last rejoin the mainstream of numerical analysis texts, with a consideration
of Gaussian elimination. We begin with a small example. Suppose we are given a
system of equations such as

2x1 +2x, +4x3 =—10
3x1+5x+7x3=—11
X1+ 7x+7x3 =—6.

We know that we can solve this system using Gaussian elimination, adding multiples
of one row to another in order to remove (eliminate) variables from equations, one
by one. To begin with, we could add —3/2 times the first row to the second, and —1/2
times the first row to the third. Continuing in this way, working with the augmented
matrix, we obtain

224[-101 [224]|-10
[A|b]=|357|—11| &m0 1o 1| 4 | =[U|by]. (445
177] -6 002|-12

From the upper-trapezoidal augmented matrix, we then find that x = [2,5, —6]” by
back substitution.

212 4 Solving Ax=b

In the process of reduction, we have subtracted multiples of rows from other
rows. Specifically, to reduce the first column, we have added —3/2 times row 1 to row
2, and — /> times row 1 to row 3. To reduce the second column, we have added —3
times the new second row to the new third row. In this form, however, the operations
executed are not recorded. But we can record those operations, by encoding the row
operations as matrix multiplications. The so-called elementary matrix L; and its
inverse Lfl (also an elementary matrix), given by

1 00 1 00
Li=(3210 and Li'=|-3210],
1201 1L 01

play a starring role. When multiplied on the left to A, Lfl can be interpreted as
adding —3/2 times row 1 to row 2, and adding —1/2 times row 1 to row 3. Thus, we
can write
22 4
A=LL/'A=L; |02 1 |,
06 —1

and we have now reduced the 3 x 3 problem to a 2 x 2 problem. The next step pro-
ceeds in the same way; indeed, this construction provides a viable recursive formu-
lation for the LU factoring if we embed the smaller factoring in the lower-right-hand
corner, as follows:

]

. 10
0 L, with L, = [} .

31

Grouping the lower-triangular elementary matrices together, we arrive at A = LU,
all by the simple act of recording the multiples of the “pivot” row used for elimina-
tion.

Just to be absolutely clear, the key step requires understanding what the inverse
L' of an elementary matrix L is. Another example of this would be

— O O

S OO OO OO
SO, OO O OO
SR OO OO oo
—_— O O OO o oo
S OO, OO OO
SO R OO O oo
O —, OO OO OO0
— O OO OO oo

eNeoloBoNeolel =
|
S o oo~ O OO

SO OO OO O -

SO OO OO o~
=NeoloBoNoNel =
0NN kA= O O
S o oo~ O OO

|
[IS e NV RN

The product of a sequence of such elementary triangular pieces (in the right order)
will build up a lower-triangular matrix; inserting pairs LL~! into AjA»=A;LL"'A,

4.7 Solving Ax=b with the LU Factoring 213

allows the gradual splitting of two initial factors IA into a product of a lower-
triangular factor and an upper-triangular factor. That is so, provided that no zero
pivots are encountered.

Why factor, when one can use elimination? The first answer to this is that one
might wish to solve Ax = b for several right-hand-side vectors b. In that case, rather
than redo the elimination each time, one can store the factors and for each b solve
the two triangular systems to get the correct X each time. Another answer is that
the factoring often reveals useful information about the matrix itself; sometimes the
factoring is the solution to the question one ought to have been asking.

4.7.1 Instability of Elimination Without Pivoting

That Gaussian elimination is the same as LU factoring is a basic fact of linear alge-
bra. However, the story does not end here in numerical linear algebra. Consider the

following system:
el X1 3
11 X2 o 7

By inspection, we see that if |¢| < 1, the solution should be close to x = [4, 3]7.
Using Gaussian elimination, but this time with floating-point arithmetic, we obtain
the following:

1
el|3 R265®R1 e 1
117 011/

)

We follow this operation with a back substitution, also in floating-point arithmetic:

(o (i-)
xi=0Box)oe

In MATLAB, if we let £ = 1071, we obtain the solution

_18.881784197001252
"~ 12.999999999999999|

which is a far cry from the reference answer near [4,3]. And yet, this matrix is quite
well-conditioned. It is easy to see that, for floating-point arithmetic of any given
precision, we will be able to find some values of € for which Gaussian elimination
will return dramatically wrong answers. The source of the error lies in the bad nu-
merical management of matrix entries of very different orders of magnitude. Since
the pivot (i.e., the ay; entry occurring as divisor in the multiplier) is very small

214 4 Solving Ax=b

compared with the other subdiagonal entries, the multiplier is very large, much
larger than the largest subdiagonal entries. Consequently, significant floating-point
error will accumulate through the algorithm.

The backward error way of viewing the difficulty is to realize that there is, in
general, no bound on AA such that the computed L. and U are the exact factors of
A + AA. For this example,

=Ll)

if exact arithmetic is used. The problematic case in floating-point is the computa-
tion of 1 —1/e, which will round to —!/e (assuming € is such that this is machine-
representable) if € < iy, the unit roundoff. Even with just this single rounding error
(no accumulation of error is necessary to demonstrate the problem) we have that the
computed factors are the exact factors not of the original matrix, but of

el
o)
which differs by 1 from the original matrix, which is unboundedly larger than the
size of €. That is, the computed LU factors are not the exact factors of any nearby
matrix.

On the other hand, a conventional way of viewing the difficulty is to use the
growth factor bound p, which is the ratio of the maximum element growth that
occurs in elimination. Let al(k)
Then p is defined as follows:

be the entries in the matrix after & steps of elimination.

max
iJ .k

max |a; j|
L]

aij

(k) ‘

In the example above, the multiplier for the row-reduction is e 1. Thus, the growth
factor is such that p = O(!/e). The significance of the growth factor is seen from the
following consideration. Assuming that no actual zero pivots are encountered (in
which case the algorithm terminates incomplete), Gaussian elimination produces a
solution X that is the exact solution of (A + AA)% = b, with

|4A] < cn*pul|All-,

where c is a modest constant. However, for Gaussian elimination without pivoting,
p can be unboundedly large as we have seen. As a result. the forward error can
subsequently be large as well.

One solution to this problem consists in partial pivoting, which simply exchanges
two rows in the current submatrix to ensure that the pivot used has the largest
magnitude in the remainder of the column. This is not the only possible strategy,
although it is very commonly used. Complete pivoting consists in looking at the

4.7 Solving Ax=b with the LU Factoring 215

not-yet-reduced submatrix for the largest entry in absolute value; we then inter-
change rows and columns so that the pivot is this entry. Partial pivoting is less
costly, since it only searches one column used to find a multiplier. We refer to Gaus-
sian elimination with partial pivoting as GEPP.

To be concrete, if, at the kth step of Gaussian elimination, we have a matrix

aip app ... Ay ... dAip
ay ... Ak ... Ayp
Al -+ Akn ’
L Amk -+ Amn |

then we want the pivot p; to be

Pk = maX{|akk|7 |ak+1,k|a~~~7|am71,k|a |amk|} .

We thus exchange the rows (or, equivalently, pointers to the rows) so that p; be-
comes the new ayy, entry.

As is the case for simple Gaussian elimination, GEPP can be understood as a
factoring. First, observe that just as adding a multiple of a row to another can be
encoded as a multiplication on the left by an elementary matrix, also note that a
row exchange can be encoded as a left multiplication by an elementary permuta-
tion matrix, namely, an identity matrix in which rows have been interchanged. For
instance, if

- o O O
S o= O
o= O O
S oo

then PA would exchange rows 1 and 4 in A. Second, one should understand how the
elementary permutations that we need for pivoting percolate through elementary
matrix encodings of row operations. Once that is understood, then it is obvious that
GEPP can be understood as a matrix factoring. The key observations, which are
easier to understand by running the MATLAB demo lugui than reading this, are
that elementary row-permutation matrices are their own inverses (exchanging rows
back again) and that when multiplied on the left, they interchange columns; in order
to make the result lower-triangular again, one has to interchange rows again. Briefly,
A=LU=L(PP)U, and then A = (LP) U, so PA = (PLP) U. If the matrix L has an
identity matrix block in the lower-right corner, then exchanging any two columns of
that block, followed by exchanging any two rows of that block, as the product PLP
does, leaves the result lower-triangular.

Thus, GEPP proceeds in a way similar to GE, except that a sequence of permuta-
tion matrices is included, so that the pivots have the largest magnitude entries. If all

216 4 Solving Ax=b

possible pivots have zero magnitude (unlikely as this is in floating-point arithmetic),
then the matrix is singular. The permutation matrix is determined by the indices k
and the number of the row j (k < j < m) with the largest entry. We thus obtain a
product of matrices of the form

U=R,_P,_;...R.P,...RyP;R | P/A.

Note that all the subdiagonal entries of R;Py ... RyP,R P A are zero, so U is upper-
triangular.

Percolating the permutation matrices through the elementary lower-triangular
matrices as discussed shows that Gaussian elimination with partial pivoting is equiv-
alent to a

PA=LU

factoring, where P is a permutation matrix (being a product of the elementary per-
mutations that encode the row exchanges that took place), L is unit lower-triangular,
and U is upper-triangular. If A is rectangular, we can use the Turing factoring
PA = LD 'UR, where R is the row-echelon form.!” Indeed, there are a great many
variations of the LU factoring.

On the basis of the PA = LU factoring, we can also solve the equation Ax = b
in a straightforward manner. We need only notice the following implications (in the
square nonsingular case):

Ax=b = PAx=Pb = LUx=Pb.
So, we can split the system so that L(Ux) = Pb and solve
Ly =Pb,
where y = Ux. Then we solve
Ux=y.

These are cheap to solve: O(n?) given the factoring, which costs O(n?) (see
Fig. 4.12). In MATLAB, we use 1u or \ (backslash).

The alert reader will have noticed that we have not provided a formal algorithm
for PA = LU factoring. Algorithms can be found, for example, in Golub and van
Loan (1996) and in many other places; but implementing such algorithms is another
story. There are a great many details that deserve attention (for example, efforts to
avoid overflow and underflow if it isn’t necessary). Frankly, we’re all better served
to use the very fine implementations provided by LAPACK (and thereby MATLAB
and MAPLE, for instance). One hopes that the essence of the algorithms will have
been conveyed by the foregoing discussion.

17 See Corless and Jeffrey (1997).

4.7 Solving Ax=b with the LU Factoring 217

PA = LU factoring takes cpu time O(n3)

102

100

clock time (seconds)
=
S

1074 . .
102 103 10* 10°
n

Fig. 4.12 Computing time for PA = LU. Notice that we may solve larger systems with PA = LU in
the time it takes SVD to solve smaller systems; but there is more information in an SVD solution.
The reference line is a constant times 7>

4.7.2 Numerical Stability of Gaussian Elimination

If Gaussian elimination without pivoting does not encounter a zero pivot, Wilkinson
(1963) showed that there exists a matrix E such that

(A+E)&=b,

with ||E|j« < cn®p||Al|w, where p measures the growth of the maximum element
during the process. It can happen that p is arbitrarily large, for general matrices.
For some restricted classes of matrices, such as diagonally dominant or tridiagonal
matrices, p is bounded.

As we have mentioned, pivoting improves the situation. The PA = LU factoring
(which can be computed with »’ /3 flops) is such that

p S 2n71

for nonsingular matrices and attains this bound only in rare examples (see Trefethen
and Schreiber 1990). Both complete pivoting and rook pivoting have better bounds,
but are not used as often because they are more expensive and partial pivoting usu-
ally works well in practice.

In practice, p is almost always small for GEPP, but this fact calls out for a serious
explanation, such as is begun in the reference just cited. We do not discuss this fur-
ther in this book, but instead rely on a posteriori computation of the residual, which
provides a guarantee for any particular computation.'® See Fig. 4.13 this backward

18 Moreover, the Oettli—Prager result that we will see in Sect. 6.6 gives us a computable minimal
backward error. Also, as we will see in Chap. 6, a single pass of iterative improvement will fix
many cases where the growth factor is unacceptably large.

218 4 Solving Ax=b

error bound difficulty is why we have postponed the LU factoring until the end of
the chapter.

Residuals [|PA — LU||/||A]| grow like O(n'?2)

—15|
10 /<>/<>
6
— 0/0
< &
= 0°
3 o
| 1016} 6005°
= 0% 7
= o //
100 101 102 103 104 10°

n

Fig. 4.13 Scaled residual in PA = LU, that is, |[PA —LU]||/||A|| vs n, for A = rand(n), with n
being some Fibonacci number up to n = 10,946

Example 4.14. Again, let A = B'B, where

B— [666 665]
667 666| °
We will again solve the equation Ax = b, where b = [0, 1]7. Here, instead of using
the QR factoring, we use MATLAB’s built-in backslash solver, which in this case
uses the LU factoring. We will see a behavior similar to what was observed when
we used the QR factoring or the SVD to solve the problem. So let us execute the
command

x = A\b,

which returns

x—10° —8.871583031996495 '
8.884913727761688

We can then compute the residual a posteriori by simply executingr = b - Axx;
once again, we find that the computed residual is r = [0,0].

The entries of x ought to be (and would be if we were using exact arithmetic) just
integers; they are not. Indeed, they are different from what we expect, already in the
fifth significant digit. When we compute the residual (using IEEE double-precision)
the answer is exactly zero, as it was for the SVD solution—that is, MATLAB is con-
tending that we have found the exact solution. And so we have. We have found the

4.8 Why Not Use A™!? 219

exact solution to (A4 AA)x = [0, 1], and moreover we know that the entries of
AA are at most &) times the corresponding entries of A. We saw this before, but it
seems so extraordinary that we want to verify it by computing in higher precision
(as you are asked to do yourself in Problem 4.23). We import the MATLAB results
into MAPLE, and compute using (say) 100 digits there. We look for minimal per-
turbations &;; so that the perturbed matrix equation has this exact solution, and we
find that

AA | 18214 10-1 1.8242x 101!
| 1.1186 x 10711 —1.1203 x 10~ 1!

works very well.!” Notice that each entry of A is about 10%; indeed, when we divide
each of the entries in AA above by the corresponding entry of A, we get

—2.0501 x 1017 2.0563 x 10~17
1.2609 x 10717 —1.2648 x 10~17

That is, MATLAB did not lie to us: That solution, strange as it seems, is the exact
solution of a linear system that is within machine epsilon (in a relative sense) of the
specified (integer) system.

We can again use the SVD to help us to explain the forward error. As we noted,
the ratio of the largest to the smallest singular values was about 10'2. Thus, the
forward error can be expected to be about 10'%- 10716, that is, 107*. When we
compute the relative forward error by executing

relerr = norm(x - refx, 2)/norm(refx)

(where x=A\ [0, 1] "), we find the value 5.2195 - 1073, which is the right order of
magnitude (and about twice what the forward error in the SVD solution was). N

Remark 4.6. Above we have shown how to compute the residual a posteriori. This
being said, we emphasize that until you compute the condition number, you haven’t
finished solving your problem. The condition number explains forward error, given
numerical rounding and approximation errors in the solution, yes; but that’s not its
most important purpose. It also explains the sensitivity of the solution to data error,
which you have to think about anyway. <

4.8 Why Not Use A~!?

In a first course in linear algebra, one is taught about the inverse: If the determinant
is not zero, the inverse exists, and the solution of Ax = b is just x = A~ 'b. In this
section, we ask whether the matrix A~! should be used in numerical linear algebra.

19 1t’s not symmetric, though; but with about the same effort we can, in fact, find a symmetric
perturbation that is very nearly as small.

220 4 Solving Ax=b

The question arises because we typically don’t have to use it; as Forsythe and Moler
(1967) observe, “[A]lmost anything you can do with A~! can be done without it.”

The first reason for which one does not usually compute the inverse in order to
solve the system is simply cost. One way to compute the inverse, often the cheapest
way, is to use Gaussian elimination on an augmented matrix, and one can easily
check that the cost is about the same as that of one LU factoring plus 2n solutions of
triangular systems, plus a final matrix multiplication. This should be compared with
the cost of one LU factoring plus 2 solutions of triangular systems. Since a matrix
multiplication costs about twice what the solution of a triangular system is, one sees
that, in terms of cost, the PA = LU factoring wins.

The second reason is more subtle. Backward error results exist for the solution of
Ax = b; each computed solution is the exact solution of a nearby linear system. But
the computed matrix inverse is not usually the exact inverse of a very nearby matrix!
Instead, each column of the computed inverse is the exact column of the inverse of
a nearby matrix—which is not quite the same thing. This distinction complicates
some numerical analyses.

Nonetheless, for some applications, one indeed wants to know the inverse—the
entries of the inverse may be the numbers one wants to know. In that case, it turns
out that a mixed backward and forward error analysis is best. The computed entries
of the inverse are then supposed to be (and estimated to be) nearly the exact entries
of the inverse of nearly the right matrix. We do not pursue this further here.

Example 4.15. Consider the usual formula for complex division:

a—|—ib_(a—|—ib)(c—id)_ac—|—bd+ibc—ad
c+id A+d*> A4d? A +dr

u+iv= (4.46)
As discussed by Higham (2002), although this formula looks innocuous enough, it
is susceptible to overflow or underflow at intermediate stages in the computation—
both bc and ¢ may overflow, for example, while their ratio would fit quite nicely into
the range of standard floating-point numbers. This difficulty has produced several
responses.”’ Here we look at a very simple approach?!: Replace a formula with an
algorithm directly motivated by factoring a matrix problem. The underlying idea is
that complex numbers can be concretely realized as matrices; indeed, the complex
number ¢ + di can be thought of as the real matrix

o]

and the process of complex division above can be interpreted as the solution of the
linear system

20 They include a much-used algorithm due to Smith (1962), a modification for increased robust-
ness and accuracy by Stewart (1985), and most recently an efficient and very robust algorithm
discussed in Priest (2004).

21 We admit that this approach is not practical since it is at least 50% too expensive, because it
doesn’t use the symmetry. This is really just for practice with factoring.

4.8 Why Not Use A™!? 221

B L]

Of course, the inverse of this 2 x 2 matrix is easily available and leads us directly to
the formula used above, which suffers from overflow and/or underflow.22 What if,
instead of using the inverse, we factor the matrices? For example, we might choose
to use the PA = LU factoring, pivoting if |d| > |c| (or, equivalently, dividing —i(a +
ib) by —i(c+id)).>* Because of the pivoting, we can assume therefore that |d| < |c|.
Then no overflow can occur if we divide ¢ by d, although underflow certainly may.
If we do so, we find that the factoring is

c—d| _|10]|]c —d

d c | |4 1]|0c+(de)d]|”’
where the parenthesized formula ¢ + (4/c)d is used because again it almost always
won’t overflow (whereas ¢*/c is much more likely to). Then, solving the factored

equations and unrolling the loops gives us the following algorithm for complex
division:

to :d/c
th=b—tya
ty =c+tod
h
V= —
15}
u= a/c+t0v, (4.47)

This is no more susceptible to overflow or underflow than the ordinary solution of
2 x 2 systems,’* and it has the usual normwise backward error together with the
usual normwise condition number forward error. This is quite good—much better
than the formula arising from the inverse matrix—but not perfect, and in partic-
ular not as good as the method described by Stewart (1985). Note that while the
backward error is good, it does not respect the structure of the matrix (i.e., it does
not automatically show that we have done an exact division by a different complex
number ¢(1+ &) +id(1 + &;), although we will show how this can work, below),
and it does not guarantee relative accuracy in each of the real and imaginary parts
of the answer, u and v. But it works and avoids overflow and underflow to a large
extent.?>

22 This is a bit of a straw man; of course, we could fix up the inverse formula, so this example isn’t
really a strong argument against using the inverse explicitly but still it gives some flavor.

23 An alternative would be to use QR, which is greatly assisted by the fact that the columns of
the matrix are already orthogonal; indeed, this amounts to converting the denominator to polar
coordinates. We ignore that option for now.

24 And it is no less susceptible, either. We did say this wasn’t a practical algorithm. But it’s better
than the naive formula.

25 Its real flaw is that it takes 6 real flops, whereas the formula of Smith takes only 4, making this
example only of didactic interest.

A woN =

222 4 Solving Ax=b

Continuing the analysis, we want to find the residual, which is given by

o lal_]c¢ —d||d
b d c vl
We can then try to look at the minimum backward error (in some sense; below we

use least-squares); that is, find perturbations ¢ + Ac, d + Ad, a+ Aa, and b+ Ab
such that

(14 i) (c+ Ac+i(d+ Ad)) = a+ Aa+i(b+ Ab),

in a way that makes some norm of the vector [Aa,Ab,Ac,Ad] as small as possible.
When we use least-squares, a short computation gives

_r_l, Ab:_r_z, C:WI—W and Ad:w7
1+p? 1+ p? 1+ p? 1+p?

(4.48)

where p is the magnitude of the computed answer, p = V2 + 2. Since by the
standard backward error results we have that the residual components r; and r, are
of the order of gy||[a, b, c,d]]||«, this shows that the backward error of this approach
is also small. For the condition number, see Problem 3.12. N

4.9 Relative Costs of the Different Factorings

We have already discussed the cost of various factorings and algorithms in the previ-
ous sections of this chapter by means of the flop count. As previously mentioned, the
flop count does not fully reflect the actual computation time that an actual modern
computer will use, although for MATLAB it does give a rough idea. In this section,
we explain how to evaluate the relative costs of different factorings in a simple and
practical way. The Schur factoring is discussed in Chap.5. To begin, consider this
code:

function [tlu,tqr, tschur,tsvd] = cost (n)

[tlu, tgr, tschur, tsvd] = cost (n)

avg time for five tries.

Each routine called once before timing starts, to eliminate
loading effects

a = rand(n);

t0 = clock;

[u,s,v] = svd(a);

[q,r] gr(a) ;

[u, t] schur (a) ;

[L,u,p] = 1lu(a);

t = etime (clock,tO);

f=1; % retain dependence on n, expected to be 0O(n"3)

tlu=0;

tgr=0;

oo oo op

oW o -

ENEY

[SES)
(NI

)
G

27

4.9 Relative Costs of the Different Factorings 223

tschur=0;
tsvd=0;
for i = 1:5,
a = rand(n);
t0 = clock;
[L,u,pl = 1lu(a);
tlu = tlu + etime (clock,tO);
t0 = clock;

[g,r] = gqr(a);
tgr = tgr + etime (clock,tO);
t0 = clock;
[u,t] = schur(a);
tschur = tschur + etime (clock,tO0);
t0 = clock;
[u,s,v] = svd(a);
tsvd = tsvd + etime(clock, tO) ;
end;
tlu = tlu/5/f;
tqr = tqr/5/f;
tschur = tschur/5/f;
tsvd = tsvd/5/f;

It measures the computation time in MATLAB for four different factorings: LU, QR,
Schur, and the SVD. We can then execute this code:

nstart = 11;
nmax = 50;

data = zeros (nmax-nstart+1,4);
for n=nstart:nstart+nmax,
[tlu, tgr, tschur, tsvd] = cost (5%n);
data (n-nstart+1,1) = tlu;
data (n-nstart+1,2) = tqr;
data (n-nstart+1,3) = tschur;
data (n-nstart+1,4) = tsvd;

end;

en = linspace(5xnstart, 5* (nmax+nstart)+nmax, 6xnmax-5xnstart);
n = (nstart:nstart+nmax) ;

A = [(5%¥n)."3', (5%n)."2', 5xn', ones(size(n))' 1;
lufit = A\data(:,1);

grfit = A\data(:,2);

schurfit = A\data(:,3);

svdfit = A\data(:,4);

lun = polyval(lufit, en);

grn = polyval(grfit, en);

schurn = polyval(schurfit, en);

svdn = polyval(svdfit, en);

figure (1), plot(en, lun, 'k-', 5xn, data(n-nstart+1,1), 'k+')

figure (2), plot(en, grn, 'k-', 5xn, data(n-nstart+1,2), 'k+')

figure (3), plot(en, schurn, 'k-', 5xn, data(n-nstart+1,3), 'k+'
)

figure (4), plot(en, svdn, 'k-', 5+n, data(n-nstart+1l,4), 'k+')

figure (5), semilogy(en, lun, 'k-', 5%n, data(n-nstart+1,1), 'k+'

’

en, qgrn, 'k--', 5%n, data(n-nstart+1,2), 'ko',

28

29

30

31
32

224 4 Solving Ax=b

en, schurn, 'k-.', 5xn, data(n-nstart+1,3), '
kx!',

en, svdn, 'k:', 5xn, data(n-nstart+1,4), 'k.'
) o ..

, axis([5xnstart,nstart+6+nmax,10” (-3)
,2%107(0) 1) ;

set (gca, 'fontsize', 16) ;
xlabel ('n', 'fontsize',16) ;
ylabel ('cpu time_ (seconds) ', 'fontsize', 16) ;

On a 2009 tablet PC, we obtained the following results:
>> data(end, :)

ans =

0.0166 0.0622 0.8326 0.2678

These numbers are the average number of seconds required to compute the LU fac-
toring, the QR factoring, the Schur factoring, and the SVD of five random matrices
of dimension 555 x 555, respectively. We observe that

SVD ~ 16-LU
Schur =~ 50-LU
QR~3.7-LU.

This explains why the LU factoring is so often the method of choice: It is much
the fastest. We also observe an O(n*) behavior, as theory says that we should. See
Fig. 4.14. With this type of behavior in mind, we can estimate answers to questions

100 |

1071¢

cpu time (seconds)

102k T

1073

Fig. 4.14 Average timings for various factorings: LU (solid line, with + for data); QR (dashed
line, with circles); SVD (dotted line, with . for data); and the Schur factoring (dash-dot line, with
x’s). The lines are least-squares fit to the data of polynomials cubic in the dimension n

4.10 Solving Nonlinear Systems 225

of this kind: If LU decomposition takes 0.0166s for n = 555, how long would it take
for n = 600,000? Evaluating our polynomial fit, we predict by executing

polyval (lufit, 600000)/3600/24/7/4

that it will take 1.2813 (in units of four-week months). Or rather, it would be the
case if the computer could even store the 600,000 x 600,000 matrix!

4.10 Solving Nonlinear Systems

At the end of Chap. 3, we showed how to transform the question of solving a non-
linear system of equations F(x) = 0 into a sequence of linear systems of equations.
We began with an initial guess Xg, and linearized the problem about that point:

0 =F(xo) +Jr(x0) (x —x0) + -+ (4.49)
leading to the linear equations
Jr(x0)Ax = —F(x0) . (4.50)

To solve this, the matrix J is then factored, often with a PA = LU factoring, and the
unknown vector Ay is solved for. We then put x; = xg + A, and repeat the process.
On every step of this process as laid out here we must evaluate the function F,
evaluate the Jacobian matrix Jr(xy), and factor the matrix once evaluated (it is this
cost that is often the largest on any step).

Notice also that at each stage the function F must be evaluated at the current
estimate of the root. The size—the norm of the vector—of this function value tells
us something about the backward error: x; is the exact solution of the (possibly
nearby) function F(x) — F(x). It is up to the modeler to decide if this modified
problem is near enough to the one whose solution was desired.

As usual, it is also possible to estimate the forward error in some cases, by look-
ing at the norm of the Jacobian matrix Jr(x¢). Once the iteration has started to
converge, the next iterate will be more correct than the current one: Comparing two
successive iterates is equivalent to using the condition number estimate from the
Jacobian to decide the accuracy of the earlier iterate.

Newton’s method can be sped up, or made more reliable (sometimes both) by
various modifications. Reusing a Jacobian matrix (and its factoring) for a few iter-
ations can be helpful sometimes; this lowers the asymptotic convergence rate but
also lowers the cost per step. One can choose a damping parameter i < 1 and up-
date Xg1 = X; + UA,; that is, we don’t take the full Newton step but proceed cau-
tiously. Again, this lowers the asymptotic convergence rate but can damp unwanted
oscillations about the reference solution. There are many variants. For a thorough
exploration of the current state-of-the-art, see Deuflhard (2011).

Example 4.16. Consider the Lorenz system, which is a system of three first-order
differential equations:

226 4 Solving Ax=b

x=yz—Px x(0)=a
y=0(z—y) y(0)=b. (4.51)
z=y(p—x)—z z(0)=c¢

We use Saltzman’s values of the parameters: ¢ = 10,p = 28, and 8 = 8/3. We will
take a =27, b = —8, and c = 8 initially. The following nonlinear system of equations
arises on using the implicit midpoint rule (to be studied in Chap. 13) for solving the
Lorenz system:

x=a+t 4 <<b+yi<c+z> B ﬁ(a2+x>>
ymps Aoletizboy
Z:CM’((%“/Z) Q*%‘%)‘%—%)? (4.52)

where the unknowns to be solved for are (x,y,z), the constants a, b, and ¢ are known
(they are the midpoint rule approximations of the components at the current value
of ¢), and the time-step 4, is also known during the solution process and presumed
to be “small,” although in practice we want to take it as large as possible. Moreover,
we find that the Jacobian matrix is

1448/ —Ale+2)/a —A(b+y) 4
I=| o 1440/ ~aop | (4.53)
Ab+Y e —Ap(p—a—xp) 14+4)

As you can see, it depends not only on the parameters and on a, b, ¢, and 4;, but
also on the (so far unknown) x, y, and z.

To get started, we need an initial guess. One could use an Euler method predictor,
or a higher-order explicit predictor, but for the purposes of this example we will just
use xg = a, yo = b, zo = c¢ (with the Saltzman values), and A; = 0.05. Then the value

of Fis
6.8

-8.0], (4.54)
0.80

which isn’t very small. Moreover, the value of the Jacobian at the initial guess is

1.06666666666667 —0.2 0.2
Jo= 0 1.25 =025, (4.55)
-0.2 —0.025 1.025

and this matrix factors as follows:

1 0 O 1.06666666666667 —0.2 0.2
Jo= 0.0 1 0 0.0 1.25 -0.25|. (4.56)
—0.1875 —0.05 1 0.0 0.0 1.05

4.10 Solving Nonlinear Systems 227
Finally, the first change is

—4.93571428571436055
Ap=| 6.08095238095237888
—1.59523809523810932

As a result, the next iterate [x(1), y(1) z(] is

22.0642857142856386
—1.91904761904762111 | . (4.57)
6.40476190476189089

This is already a better solution (mostly because & = 0.05 is pretty small); its resid-

ual is
0.121257086167793737

F(x;) = | 8.88178419700125232 x 1016 | . (4.58)
—0.375173044217692376

But three more iterations get us to

21.9216316009086648
x4 = | —1.84806892654072974 | (4.59)
6.75965536729635108

and the norm of the residual F(x4) is then 5- 107!%; then no further iterations are
necessary.

We remark that in this example the Jacobian matrix was very well-conditioned
so the linear system solving was very accurate. The nonlinear system is also very
well-conditioned, and these two facts are related. We also remark that the nonlinear
system of equations has more than just this one solution. In fact, there are three
pairs (x,y) that solve these polynomial equations (we found these by an eigenvalue
technique that will be sketched in Chap. 5):

21.9216 —1.8481 6.7597
—380.1483 +47.8430i 6.5240+82.9117i 48.6202+414.5585i
—380.1483 — 47.8430i 6.5240—82.9117i 48.6202 —414.5585i

You see the solution found by Newton’s method appears in the first line and also that
there are in addition two complex roots. The solution found by Newton’s method
is indeed the desired solution for this application—the solution near the values of
x(t),y(t), and z(¢) at the previous value of ¢ is what is wanted—but you can also see
that in other cases there may be trouble if some of the unwanted solutions are too
close to the initial guess; this happens especially if the Jacobian is singular or nearly
singular, for example. Finally, note that this solution process must be carried out at
every time-step of the method, so it seems important to worry about efficiency as
well as stability. <

228 4 Solving Ax=b

4.11 Notes and References

The notion of condition number of a linear system goes back at least to Alan
Turing. However, the quantities Turing called “condition numbers” were each dif-
ferent to the 2-norm condition number favored here, while Von Neumann and Gold-
stine (1947) had already used exactly this, though they called it a “figure of merit.”
See Grcear (2011), and also Wilkinson (1971).

It isn’t traditional to begin with the QR factoring; here, we follow Trefethen
and Bau (1997), who make a persuasive case that the QR factoring is numerically
simpler than Gaussian elimination (the LU factoring), being provably stable and
much better understood. We left aside the method of Givens rotation; for details,
consult Golub and van Loan (1996) or Higham (2002). A complex-valued Givens
rotation is explored briefly in Problem 4.15. A beautiful paper on the development
of Gram—Schmidt orthogonalization has been written by Leon et al. (2013).

Theorem 4.6 related to the SVD has been generalized to other norms by Kahan,
who attributes the result to Gastinel. See Higham (2002).

In addition to the elimination methods discussed here, there is also “rook™ piv-
oting, less expensive than complete pivoting, but more stable than partial pivoting.
See Higham (2002). There is also Neville elimination, less expensive and less stable
than partial pivoting, but which is useful for totally positive matrices.

Finally, our running example that we first introduce in Example 4.1 is taken from
Nievergelt (1991).

Problems

Theory and Practice

4.1. Prove Theorem 4.1. (Hint: Fill in the discussion that follows it in the text.)
4.2. Implement Algorithm 4.2 in MATLAB.

4.3. Implement Algorithm 4.3 in MATLAB.

4.4. Implement Algorithms 4.4 and 4.5 and test your programs.

4.5. Suppose the upper-triangular matrix U is in addition bidiagonal:

urp U2
Uz Uuz3

4.11 Notes and References 229
Write an algorithm to solve Ux = b under the condition that each uy # 0, and then
show that your algorithm costs about 2n flops.

4.6. Factoring structured matrices is often cheaper than factoring unstructured ma-
trices. For example, tridiagonal or pentadiagonal matrices can be factored into
banded lower and upper factors if no pivoting is used. Discuss.

4.7. Show that the cost, in flops, of solving the sequence of problems

Ly =Pb

Ux =y,
where P is a permutation matrix that exchanges rows, L is unit lower-triangular,
and U is upper-triangular, is almost the same as multiplying to get x = Zb, where
Z = A~! is known and presumed dense, or full. The conclusion we want you to

draw is that knowing P, L., U for which PA = LU is, in some sense, just as useful as
knowing Z = A~!. (But not for all applications—sometimes you want Z itself.)

4.8. Show that the cost, in flops, of solving the sequence of problems

Qy=b
Rx=y,

where Q is unitary and R is upper-triangular, is 50% more than that of problem 4.7.
Note, however, that this is applied to rectangular systems. Compare also to the cost
of solving A” Ax = A"’b if the Cholesky factors LL” are known for LL” = A#A.

4.9. Find by hand the singular values of

A:

O = =
—_— O

4.10. Show that the largest singular value of A is the 2-norm of A. Recall that

A
|A][2 := max | Ax]l> .
Ixj#0 [[x[l2

4.11. Consider the Pascal matrices (pascal (n) in MATLAB). How does their con-
dition number grow with n? You may do this experimentally.

4.12. Choose n = 100. Choose a random complex vector of length n, and call it x.
Choose a random complex matrix of size n X n, and call it A. Solve the equation b =
Ax in MATLAB using the QR factoring, the SVD, and the PA = LU factoring (for
the latter, you may use the backslash operator). In each case, compute the residual
of the computed solution and compute the condition number of the matrix A. Since
you know what x you were supposed to get, compare the forward error with the
estimate obtained by the product of the condition number with the norm of the
residual. Discuss your results.

230 4 Solving Ax=b

4.13. This problem requires MAPLE or another computer algebra system. Take
dimensions equal to the first 9 distinct Fibonacci numbers 1,2,3,...,34, and cre-
ate random rational matrices of each dimension n. Compute the lengths of the exact
rational determinants of these matrices and show that the lengths grow as a power
of n.

4.14. By using a variation of Gaussian elimination where you add a multiple of the
previous row, show that the determinant of the Vandermonde matrix

1 1 1 1 1
To T1 Th T3 T

702 7«'12 1.22 1.32 1.42
103 113 1723 1733 1743
704 7«'14 1.24 1.34 1.44

is Hi>j(7i — Tj).

4.15. A complex-valued Givens rotation matrix G(i, j,0) is equal to the identity
matrix except that four matrix elements are different:

G(i,j,0) =1+ (c— l)eieiT —EeieJT» +sejel-T +(c— l)eje.?)

where |c| = cos 0 and |s| = sin 8. Show that G is unitary independent of the complex
sign of either ¢ or s. Show that ¢ and s can be chosen to zero out the (i, j) entry of
GA. Show that a sequence of such transformations can factor A into a product of a
unitary matrix Q and an upper-trapezoidal matrix R.

4.16. Show that HH” = Iso H is unitary if H is defined as in Eq. (4.20).
4.17. Consider Eq. (4.21). Show that

H
H=1-2— (4.60)
vily
satisfies Ha = ce; with oo = —signum(ay)||al|>.

4.18. Show that At as defined in Eq. (4.36) is an ellipsoid.
4.19. Show that the product of row-exchange matrices (P35Pys)? # L.

4.20. The so-called normal equations for solving overspecified systems Ax = b are
A Ax = Afb. Show that if we solve these equations, we minimize the 2-norm
of the residual ||b — Ax||. Use this method to solve the least-squares problem of
Example 4.8.

4.21. Modify the cost program so that it uses complex random matrices, and run it.
Comment on what happens. (Timing results on some machines can be quite differ-
ent. The results on one machine surprised us. Perhaps yours will also be surprising.)

4.22. Fill in the details of the argument in Remark 4.1.

4.11 Notes and References 231

Investigations and Projects

4.23. In Example 4.12, we solved Ax = [0, 1]’ by QR factoring, and got (printing all
digits this time)
X =
-8.870855351158672e+005
8.884184953489713e+005

and the computed residual was r = [0, 1]’ — Ax = [0,0]’. Using high precision, per-
haps in MAPLE or in another CAS, say working to 32 digits, explicitly find a matrix
AA such that (for this x exactly!) (A+ AA)x = [0,1]" and each entry of AA is less
than tyA; ;. One method is to try to minimize the sum of the squares of the entries
of AA, using Lagrange multipliers to ensure the two constraints are satisfied; but the
problem only asks for a “small enough” perturbation and other approaches will also
work. Do it again but this time looking for a symmetric perturbation matrix AA.

4.24. Let || - || be any vector norm, for example, any p-norm
" Y
X[l := (Z |x,~|1’>)
i=1
and let
|AX[[»

Al|, := max
H ||]7 X#O ||XHp)

be the subordinate (or “induced”) norm of the matrix A.
1. Show that this matrix norm is submultiplicative, that is, that || AB|| < ||A]|||B]].
2. Show that if Ax = b, where A € C"*" is nonsingular, and x,b € C", and per-
turbing b gives
A(x+ Ax) =b+Ab,

then

< x(a)20 (4.61)

where k(A) := ||A||||A™"||. x(A) is called the condition number of A.

3. Show that K (A) > 1, and that &, (U) = 1 for unitary matrices U when the 2-norm
is used: ||A|| = [|A]]2-

4. Show that k(AB) < x(A)x(B), unlike the case of determinants where there is
an equality sign. Give an example where inequality is strict.

5. Draw the unit “circles” |||/ = 1 and ||x||; = 1. Compare to the usual circle,
X2 = 1.

6. Show that

n
[|A]]} =max Z |ai;| (i.e., maximum column sum)
I i=1
n
[|A]|c =max z lai;| (i.e., maximum row sum).
1 .
j=1

(4.62)

232 4 Solving Ax=b

7. 1f A = [2,3;—1,2], compute each of ||A||1, [|All2, ||A]|F, and ||A|e. Show your
work, but you may check your answers with MATLAB.

8. Explain in words the geometric meaning of Eq. (4.61), using the 2-norm and
the singular value decomposition. You may suppose b and Ab are chosen dia-
bolically, so as to induce the worst possible error Ax, in relation to the size of
Ix].

4.25. Show that, in a linearized sense, the solution to
(A+AA) (x+Ax)=Db (4.63)

differs from the solution to Ax = b in norm by at most

< k(A) " +0(A?). (4.64)

4.26. The determinant of a square matrix is justifiably famous for being useful in the
theory of matrices. For example, it is used in the well-known theoretical algorithm
known as Cramer’s rule for the solution of nonsingular linear systems: If det A # 0,
then the ith component of the solution of Ax = b is

det (A — b)
L

detA ’

Xi =

where det (A‘?b) means that we replace the ith column of A with the vector b.
Thus, the solution of the linear system has been reduced to the computation of
determinants. But how does one compute determinants? Laplace expansion, as
taught in a first linear algebra class, is combinatorially expensive—that is, the
growth in cost is faster than exponential in the dimension n—and becomes hideously
impractical even for modest n. That is, unless A has some very special structure that
can be exploited.

A more or less practical method for computing the determinant is to factor the
matrix, and use det(F,F,) = det(F;)det(F,). If the QR factoring is used, for ex-
ample, then detA is just detR, because detQ = 1. Moreover, since the determinant
of an upper triangular matrix is the product of the diagonal entries, detR is easily
evaluated. LU factoring with partial pivoting is, of course, even cheaper. This being
said, consider these problems:

1. Show that the cost of evaluating the determinant of a dense n X n matrix by
using Laplace expansion is # times the cost of evaluating the determinant of an
(n—1) x (n— 1) matrix, plus some arithmetic to combine the results. Give a
three-by-three example and count the multiplications.

2. Estimate the cost of solving Ax = b using Cramer’s rule, with QR factoring to
evaluate the determinants. Compare with the cost of solving Ax = b by direct
use of the factoring.

4.11 Notes and References 233

3. As if the overly high cost were not already enough to discourage its use in
general, Cramer’s rule by Laplace expansion is also known not to be back-
ward stable. For n = 2, it has reasonable forward accuracy (see Problem 1.9
in Higham (2002)), but not if » > 3. Find an example that shows instability.
That is, find a 3 x 3 matrix A and a right-side b for which the solution computed
in MATLAB by Cramer’s rule using Laplace expansion for the determinants has
a much worse residual than is expected from (say) solving the problem by QR
factoring instead. Note that even for a 3 x 3 matrix there are several choices
for Laplace expansion, so you can see that already analysis is difficult; and
indeed no good error bounds are known. Recently, Habgood and Arel (2011)
have found that the use of the so-called condensation (which seems to be just
the Schur complement) can improve the cost of Cramer’s rule, and seems to
confer stability; but this is not really a “pure” Cramer’s rule anymore.

4.27. The matrices

11 ol —11 1 1
Ao = Al=|-1 10| A=
~11 T 111
1 -1 11

and so on, which are lower-triangular except for a 1 in the northeast corner, have an
interesting didactic role to play with LU factoring.

1. Show that A; = LUy, where

1 1
-1 1 1

LU= |1 -11 1
-1 =1 =1 ---1 2K 41

and the final column of Uy is [1,1,2,4,8,...,2k1 2k 4 1]T.

2. Show that both L; and Uy are ill-conditioned, that is, that k(L) = O(2%)
and k(U;) = O(2%). You may use any norm you like in k(A) = ||A||,[|[A™"]|,
(clearly, both L; and Uy, are invertible).

3. Show that, in contrast, Ay is well-conditioned (you may show this experimen-
tally if you like).

4. Since pivoting is not needed in this factoring, this example shows that the algo-
rithm for solving Ayx = b given by Gaussian elimination with partial pivoting
(solve Ly = b, then solve Uyx =y) is numerically unstable. Discuss. Wilkin-
son claimed that matrices like these were almost never seen in practice, and
indeed GEPP is in heavy use today:

There are rather special matrices for which the upper bound is attained, so that the final
pivot is 2"~ !a, but in practice such growth is very rare. (Wilkinson 1963 p. 97)

Trefethen and Schreiber (1990) go some way toward explaining this.

234 4 Solving Ax=b

4.28. The Gram—Schmidt orthogonalization procedure can be carried out on poly-
nomials, not just vectors. Indeed, this is one way of generating orthogonal polyno-
mials. With the Legendre—Sobolev inner product, defined as

1 1
(f.8) == / Os0dr+p / 080

for u > 0, and the initial polynomials Lo = /2 and L; = 3t/+/6 + 18 1, find the
first few orthogonal polynomials by using the modified Gram—Schmidt process. Be
aware that using symbolic t generates enormously long expressions, even for com-
puter algebra systems. Is it easier using a vector of values for 1, or perhaps quasi-
matrices in Chebfun? See also Trefethen (2010). If using Chebfun, it may be helpful
to orthogonalize starting from chebpoly (i-1, [-1,1]), thatis, the Che-
byshev polynomials themselves. The interval used in this problem is different from
the one used in Golubitsky and Watt (2010), to make the answers look simpler.

4.29. The Clement matrix family (Clement 1959) is one of the example families in
MATLAB’s gallery:

gallery ('clement',6)

yields

N O
w o A~
O W
W O

1
0
These matrices have a number of interesting properties. With these integer entries,
it is also known as the Kac matrix, after Mark Kac.

1. Show that the 6 x 6 Clement matrix

0(15
(110(14
(120(13
a30a2
a40a1
(150

(4.65)

is nonsingular if the odd entries a4 are nonzero.

2. Find the inverse (MAPLE or another CAS is helpful).

3. Show that if ay; = 1 and ay_1 = !/2, then the n x n Clement matrix is ill-
conditioned; that is, k(C,) grows exponentially with .

4. Estimate the growth of x(C,) for the n x n Kac matrix, which has n — 1,
n—2, ... on the superdiagonal and the same numbers in reverse order on the
subdiagonal.

4.11 Notes and References 235

4.30. Let A,B € C"*". The Hadamard product or elementwise product A oB is
defined by

(AOB),‘j = (A)” . (B),‘j = a,'jb,'j. (466)

The Hadamard product is what one obtains in MATLAB by typing A . xB.
1. Let A)B,C € C™*" and let o € C. Show that

a. It is commutative; that is, AcB =B o A.

b. It is associative; that is, Ao (BoC) = (AoB)oC.

c. It is distributive; that is, Ao (B+C) =AoB+ Ao C.
d.Ao(AB) = x(AoB).

e. C™*" is closed under o.

2. What are the identity under o and the inverse under o (when it exists)?

3. Show that if A, B are diagonal, then AoB = AB.

4. Show that if A € C"™" has an eigenvalue factoring A = XA X! [so that (A)ii=
Ai for 1 <i<n], and if we let (A);; = a;;, then

aly A1
a A

2= [Xo (X HT] N (4.67)
Apn /’Ln

So, if you have the eigenvectors of A, finding the eigenvalues only involves
solving a system of linear equation of the form Ax =b.

5. Show that if A € C"*" has an SVD factoring A = UZV* (so that (X);; = o; for
1 <i<n),andif welet (A);; = aj;, then

apn (9]
az ()

= [U o W . (4.68)
Ann Op

So, if you have the eigenvectors of AA”, finding the singular values of A only
involves solving a system of linear equation of the form Ax =b.

4.31. One extremely common use of Newton’s method is to find zeros of the gra-
dient VF, in attempting to optimize the scalar objective F(x). This is often called
Gauss—Newton iteration, and the Jacobian needed is actually the matrix of second
derivatives of F, also called the Hessian matrix. This particular application is so
important that it has attracted a significant amount of attention, and there is a great
deal to be said about how to do this efficiently, reliably, and robustly. We will content
ourselves here with a single problem, namely, that of fitting the nonlinear function

y =Aexp(—Ar) + Bexp(—put)

A woN =

ENYY

236 4 Solving Ax=b

to data; that is, the coefficients A and B that appear linearly are not known, but
neither are the decay rates A and u.?® This exponential fitting problem is well un-
derstood to be ill-conditioned, as you will see.

Suppose that we are given the data

y=[2.3751,1.4591,0.90357,0.57181,
0.35802,0.23126,0.14492,0.099135]

attained at 7 = 30, 60, 90, ..., 240s. Try to find A, B, A, and u that minimize the
objective function

8 2
0=Y (yj —Ae7Mi —Be’”’f> .
=0

There are many ways to do this. Try an initial guess of A = 0.01 and u = 0.02,
together with a linear least-squares fit for A and B with those values of the decay
rates. (Once the nonlinear parameters are guessed, then the linear parameters must
then be the solution of the linear subproblem. Your first task is to find that A and B.)

After you have found your full nonlinear solution, try changing the initial guess
to A =0.015 and p = 0.025, solve it again, and see if the answer changes much.
If your second solution is different, which one is better? Now change the data a
little bit and solve the problem yet again. Is this instance of this exponential fitting
problem ill-conditioned?

4.32. We look again at the backward stability of the QR factoring.”’ Consider doing
a QR factoring of a matrix for which we know the answer already, namely, one we
build ourselves:

Taken directly from Ray Spiteri's notes,

http://www.cs.usask.ca/ spiteri/M313/notes/Lecturelé6.pdf

which themselves were taken from Trefethen and Bau:

R=triu(randn (50)+li+randn (50)); % Set R to a 50x50 upper-
triangular matrix

¢ with normal random entries

[Q,X]=qr (randn (50) +1li+randn (50)); % Set Q to a 50x50 random
orthogonal matrix

% by orthogonalizing a random matrix

A=Q*R; % Set A=QR, up to rounding errors

[Q2,R2]=gr (A); % Compute QR factorization by Householder

o o op

Modified from here (RMC)

Make sure the signs are the same even

in the complex case (which this isn't now, but might be)
= diag(diag(sign(R))) ;
= diag(diag(sign(R2))) ;

% in each case Dbar * D =

o0 op oo op

g g
N B

eye

26 This particular optimization problem has a method all its own, by the way, called Prony’s method
(see the references in Giesbrecht et al. (2009)); but here we simply use Newton’s method on the
gradient.

27 This problem owes its genesis to Trefethen and Bau (1997 Lecture 16).

4.11 Notes and References 237
A = Q2%R2

Good factoring initially
orm(A - Q2xR2, inf)

% A = Q2%Dbar+DxR2
Dbar = conj(D1xD2);

oo oo

=}

D = D1xD2;
Q3 = Q2xDbar;
R3 = Dx%R2;

norm(A - Q3%xR3, inf)

We test that we have adjusted MATLAB’s output so that the signs match:

norm(A - Q2xR2, inf)
norm(A - Q3%R3, inf)

We find 2.6906 - 10~!4 and 2.6906 - 10~ !4, respectively, which is fine. But now we
look at the forward errors:

norm(Q - Q3, inf)
norm(R - R3, inf)

This time, we find 2.1400- 1073 and 2.5755 - 107, respectively. These are, as stated
in the source, “huge.” Yet we are able to compute the solution accurately to Ax =
b using these computed factorings, because of the backward error results that are
available.

Write a one-paragraph summary of why the backward error theorems discussed
in the text justify the accuracy of the solution to linear systems using House-
holder QR. You may also wish to comment on the perturbations in A + AA =
(Q+AQ) (R+ AR), which you can compute explicitly for this case.

Chapter 5
Solving Ax = Ax

Abstract This chapter aims to introduce the reader to the numerical treatment of
eigenvalue problems, that is, to the solution of the equation Ax = Ax. This chapter
is shorter than the previous one, as it relies on many notions already introduced in
the context of numerical linear algebra: factoring, backward error, condition num-
ber, and residual. We examine additional factorings relevant to eigenvalue problems,
namely, the Schur factoring and the Jordan canonical form. We also outline algo-
rithms to compute eigenvalues and eigenvectors, namely, the power method and
the OR algorithm. Then, a condition number of simple eigenvalues is derived and,
finally, the concept of pseudospectrum is introduced to further characterize the con-
ditioning of eigenvalue problems. <

5.1 Generalized Eigenvalues

An eigenvalue A of a square matrix A € C"*" is a complex number A such that there
exists a nonzero vector x € C" for which

Ax = Ax. (5.1

The set A(A) of eigenvalues is called the spectrum of A. Also, the vector x satisfy-
ing this equation is called the right eigenvector of A corresponding to A. It is easy
to geometrically interpret the meaning of eigenvalues and eigenvectors of a matrix
A from Eq. (5.1): A vector x is an eigenvector of A precisely when the vector Ax
is in the direction of x, where A represents by how much the vector Ax is stretched
in comparison to x. It is important to remember that eigenvectors are not unique;

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods: 239
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0_5,
© Springer Science+Business Media New York 2013

240 5 Solving Ax = Ax

indeed, if X is an eigenvector, so is kx for some constant k. However, if we normal-
ize them using some norm, for instance, if we impose the condition ||x||; = 1 and
also insist that the first nonzero component x, be strictly positive by dividing by
exp(i0) =signum(x;), then we may speak of the eigenvector corresponding to an
eigenvalue.

Similarly, it will be useful in what follows to introduce the concept of left eigen-
vector. A left eigenvector y” (which is a row vector) corresponding to an eigenvalue
A is a vector such that

y7A =2y". (5.2)

The ordered set (y",A,x) is called an eigentriplet. If we leave off y, we have the
eigenpair (A,X).

A generalized eigenvalue of a matrix pair (A,B) is a pair of numbers (¢, §) that
are not both zero and such that there exists a nonzero vector x satisfying

oAx = BBx. (5.3)

If B =1, then this reduces to the ordinary eigenvalue problem and A = B/a. It can
happen in the generalized case when B is singular that one or more of the pairs
(o, B) has o = 0, in which case we say that the matrix pair has an infinite general-
ized eigenvalue (we will get lazy and drop the word “generalized” henceforth except
when we wish to emphasize the distinction). It can also happen that det(zB — A) is
identically zero, in which case we say that the problem itself is singular. As is easily
seen from the definition, if (¢, §) is a generalized eigenvalue, then so is (o, uf3)
for any nonzero . Again, the eigenvalues are usually normalized in some conve-
nient fashion; for ease of interpretation in terms of standard eigenvalues, one often
takes it = !/a if & # 0, but it is often better to impose the condition |o|*> +|B]> = 1,
o > 0, or if o =0 then B > 0. Finally, the expression A — zB, for indeterminate
z, s called a matrix pencil, for a rather obscure reason.! Because of the one-to-one
correspondence between pencils and pairs, precise use of the terminology is not
necessary.

Example 5.1. Eigenvalues are easily computed in MATLAB and MAPLE. Consider
the matrix

1.0+ 1.0§ 0.50000 —0.14286: 0.33333 4 0.020408i
A= 0.5000041.0i 0.333334-0.090909: 0.25000+ 0.0082645
0.333334-1.0¢ 0.25000+0.23077:¢ 0.20000 - 0.053254i

Then, if we execute the command eig (A) in MATLAB or Eigenvalues (A) in
MAPLE, we obtain the eigenvalues

[1.6019+1.1621i —0.1189 —0.0518; 0.0504 +0.0339i] .

! There is a reason, but we feel it takes longer to explain than it is worth.

5.1 Generalized Eigenvalues 241

Moreover, in MAPLE, the eigenvectors can be obtained by executing the command
Eigenvectors (A). N

Note that MATLAB’s command eig can be used to compute generalized eigen-
values in a similar way. In fact, to find generalized eigenvalues as in Eq. (5.3), one
simply executes the command with two arguments, that is, eig (A, B) . Let’s look
at an example with an infinite eigenvalue.

Example 5.2. Consider the matrices associated with MATLAB’s commands A =
gallery(’grcar’,5) andB = gallery(’clement’, 5),respectively,

I 1 1 10 01000
-1 1 1 11 40200
A=(0 -1 1 1 1| and B=[({03030
0 0 -1 11 00204
0 0 0 —-11 00010

The matrix pair (A, B) has a singular B, and therefore at least one infinite eigenvalue.
This can be seen by executing svd (B) , which returns

[4.8990 4.3589 4.0000 1.0000 0] ,

showing that the last singular value of B is zero. Thus, as we expect, executing
eig(A,B)

shows that the last generalized eigenvalue is infinite:
[5.0874 1.1322 —0.3946 —0.8250 inf}

A separate computation in MAPLE (which makes numerical sense since the entries
of these example matrices are all integers) shows that the characteristic polynomial
det(zB — A) is the degree-4 polynomial —8z* +407> 4+ 1272 — 40z — 15, which has
roots approximately [—0.82502, —0.39457,1.1322,5.0874] computed via MAPLE’s
fsolve routine. Since the degree of the determinant is 4 although the matrices are
5 x 5, we know that the pencil has an infinite eigenvalue. The relative forward error
in the finite eigenvalues computed by MATLAB is about 5 x 10~13. q

In the next example, we show how to obtain not only the eigenvalues, but some
useful factors, and how to verify how accurate the factoring is by computing its
residual.

Example 5.3. The gallery (3) matrix from MATLAB is a well-known eigenvalue
example matrix:

—149 —50 —154
A= | 537 180 546
=27 -9 =25

242 5 Solving Ax = Ax

In MATLAB, we compute both eigenvalues and eigenvectors as follows:

A = gallery(3);
[V E] = eig(A)

These commands return

0.3162 —0.4041 —0.1391 1.0000 0 0
V=|-09487 09091 0.9740 and E= 0 20000 O
—0.0000 0.1010 —0.1789 0 0 3.0000

The column V(:,k) of the matrix V returned by MATLAB is the eigenvector corre-
sponding to the eigenvalue Ay, which is given as the entry (E)g of the matrix E
returned by MATLAB.

The exact eigenvalues of this matrix are 1, 2, and 3, but they’re a bit delicate to
obtain (as we’ll soon say, they’re a bit ill-conditioned). For now, let A — VEV~!
be the residual. Computing it in MATLAB, we find that it has norm about 10710,
which seems surprisingly large given that the computation happened in double
precision. <

Let us consider one more example exploring the relation between eigenvalues
and generalized eigenvalues in a problem that may arise in applications.

Example 5.4. Linear vibration analysis in the undamped case studies differential
equations of the form MX + Kx = 0. Both M and K are symmetric and positive
definite matrices (so long as no mass is zero and no spring constant is zero). Substi-
tution of x(¢) = sin(®?)v into the equation leads to the matrix equation

(K—o*M)v=0.

Consider first
410 210
M=1|141 and K=([121
014 012

We can convert this generalized eigenproblem into a standard eigenproblem as fol-
lows. To begin with, take the Cholesky factoring of M = LL”, which is possible
and reasonably stable since M is symmetric positive definite. Then, form the matrix

A=L'K(@L")".
It is easily verified that
det(K — ©”M) = detLdet (A — ®”I) detL” .

Thus, the generalized eigenvalues w? of the original problem are standard eigen-
values of A. Alternatively, we could have formed B = KM !, but this destroys the
symmetry. We will see that symmetric matrices have perfectly conditioned eigen-
values, and so we want to preserve this property if we can.

5.1 Generalized Eigenvalues 243

To compute the value of w in MATLAB, we first enter the matrices, and then we
compute the Cholesky factoring (plus its residual to make sure that things are as
expected):

M= [410; 141; 01 4];
K=[210; 121; 012;]1;
U = chol (M)
U'xU - M
This gives us, respectively,
2.0000 0.5000 0 0 0 0
0 1.9365 0.5164 and 107210 o0 —0.1110 | ,
0 0 1.9322 0 —0.1110 0

and so we see that the factoring has a small residual. We then form the matrix A and
check its symmetry. Executing

A = inv (U') *Kxinv (U)
A-A"

gives us, respectively,

0.5000 0.1291 —0.0345 0 0 0
0.1291 0.4333 0.1514 and 1070 0 -0.2776
—0.0345 0.1514 0.4238 0 02776 0

We can then simply execute eig (A), which returns the eigenvalues

0.2265
0.5000
0.6306

Their square roots are [0.4760,0.7071,0.7941]7; those values indeed match those
resulting from the direct computation of the generalized eigenvalues, using the com-
mand eig (K, M) and only displaying MATLAB’s short format.

In this example, the cost of solving the original generalized eigenproblem is still
very small. For larger systems, the cost of a generalized eigenproblem can be a
modest factor (say, 5) times that of solving a standard eigenproblem; so, if one can
make the transformation, one ought to do so.

Now, if the mass matrix M is singular, this transformation is not possible. For
example, if the final entry is not 4 but rather 4/is, then M is singular. Then, we can
directly compute the generalized eigenvalues as follows:

M= [410; 14 1; 01 0.4el / 0.15e2;];
K=[210;121; 012;];

eig(K, M)

ans.” (1/2)

The resulting values are 0.5338, 0.7691, and v/2.8503 - 1016, This compares well
with the true answers of /3471 489+/186/89 and . Of course, if we had instead

244 5 Solving Ax = Ax

performed the Cholesky factoring of K and put A = !/0?, we could have again used
a standard eigenproblem. This simple example is intended to show you what can be
done. <

As we see, the use of MATLAB or MAPLE to find eigenvalues and eigenvectors
is straightforward. Formerly, eigenvalues and eigenvectors were considered difficult
to compute; nowadays, unless the matrices are very large or have some other spe-
cial property, the solution is pretty much routine, with the right software, although
somewhat more expensive than, say, LU factoring. Nonetheless, there are important
numerical subtleties to consider; in what follows, we will look at the numerical as-
pects of the study of eigenvalues, eigenvectors, and eigenspaces. The main purpose
of this chapter is to help you to realize exactly the way in which these computations
are routine: The methods pretty quickly give you the exact eigenvalues of slightly
different problems, and you have to worry (a bit) about the conditioning of the eigen-
values (and worry a bit more about the conditioning of the eigenvectors, which tend
to be quite a bit more sensitive).

5.2 Schur Factoring Versus Jordan Canonical Form

In this section, we examine and compare two factorings that can be used to solve
problems involving eigenvalues: the Jordan canonical form and the Schur factoring.
We will show that the first one might be problematic numerically and that the second
is to be preferred. Let us begin the discussion with this theorem:

Theorem 5.1. Every square matrix A can be brought by similarity transformation
to Jordan canonical form (abbreviated as “JCF”) J; that is, we have the relation

A=XJX"!, (5.4)

where the eigenvalues of A are arranged in convenient blocks, called Jordan blocks,
of the form

along the diagonal of J.

For a proof, see, for instance, Meyer (2001). There is a related form, the Weyr form,
that has been receiving some attention at the time of this writing.

Remark 5.1. The Jordan form is, as a function of the entries of A, discontinuous,
because the eigenvector’s existence is discontinuous. The discontinuity of the JCF

5.2 Schur Factoring Versus Jordan Canonical Form 245

and of its generalization, the Kronecker canonical form, for matrix pencils, does not
entirely preclude its numerical utility in some circumstances, as shown in Demmel
and Kagstrom (1993a,b), but it does make life difficult.

Why is the discontinuity of the Jordan form as a function of the entries of A a
problem? It is because a nonzero backward error, however small, possibly means an
O(1) forward error; that is, the condition number of the eigenvectors and hence the
JCF may be infinite. <

To illustrate the last remark concretely, we examine a simple case.

11
Ae = [82 1] '
whose eigenvalues are 1 + €. For € # 0, the JCF is
1—¢ 0
J= [0 1+ 8] ’
for which lim,_,oJ = I. However, the JCF of A is not such that Ay = I, rather, we
have

Example 5.5. Consider the matrix

11 . I-¢ 0
JO_{OJQLI%{ 0 l—i—s]'
Note that there are two eigenvectors for all € > 0, but there is only one for € = 0. «

For most purposes, a factoring that is computationally superior to the Jordan
form—that is, one that does not suffer the numerical difficulties that arise from
discontinuity—is the Schur form, which uses unitary similarity.

Theorem 5.2. Every square matrix A € C"*"* can be brought by unitary similarity
transformation to triangular form. The eigenvalues of A may appear in any order
on the diagonal of the result. That is, there exist unitary U and upper-triangular T
such that

A=UTU". (5.5)

The columns of U are called Schur vectors, and Eq. (5.5) is called the Schur
factoring.

For a proof, see, for instance, Stewart (1998), who gives a proof by induction.

Remark 5.2. There is a “real-only” form for real matrices, which does not give a
strict upper triangle if any roots are complex but rather two-by-two blocks that
specify a complex conjugate pair of eigenvalues. This bookkeeping device improves
speed for some applications but just gets in the way for our purpose; henceforth, we
ignore the option (which is the default in MATLAB, and when we issue the command
schur below, we must use the “complex” option to override the real form). <

For Hermitian matrices, the Schur factoring has an important property. If A =
A, that is, A is Hermitian, then because

246 5 Solving Ax = Ax
(UTU?) —uTHU" = A = A =UTU? |

we must have T = T, so that T is also Hermitian. But then T is diagonal (and not
just upper-triangular) and, moreover, the diagonal entries satisfy #; = #; and hence
are real.

What of the effect of perturbations of the entries of A on this factoring? Suppose
that A = UTU”, and consider

UZ (A4+AA)U=T+U?AAU. (5.6)

If the subdiagonal elements are small, and they will be if AA is small, say O(¢), be-
cause multiplication by unitary matrices does not amplify the size of entries much,
then the eigenvalues of the result are going to be within 0(8]/ ") of those of T—this is
a standard eigenvalue perturbation result, and handles the case when all eigenvalues
are equal (and therefore most sensitive to perturbation). In essence, multiplication
by unitary matrices does not disturb the well-known result that eigenvalues are con-
tinuous functions of the matrix parameters, although they may be sensitive. But at
least they are not discontinuous.

To be fair, the eigenvalues in the Jordan form are not discontinuous either—it is
the eigenvectors that are the problem. For the Schur form, eigenvector computation
is not involved, and the Schur vectors are better behaved because the matrices are
unitary.

Example 5.6. Execute A=rand (3) in MATLAB to generate a random 3 X 3 matrix;
in our case, it has generated the matrix

0.8147 0.9134 0.2785
A = 10.9058 0.6324 0.5469
0.1270 0.0975 0.9575
‘We then use the command

[U,T] =schur (A, 'complex')

As stated previously, using the complex option so as to guarantee that we get a
genuine upper-triangular matrix T results in the matrices

0.6752 —0.7248 —0.1368 —0.1879 0.0326 —0.2271
U= | -0.7375 —0.6604 —0.1413 | and T = 0 1.7527 —0.4150
—0.0120 —0.1963 0.9805 0 0 0.8399

As it happened, the matrix had real eigenvalues and so the option wasn’t needed—
but running the command again with another random matrix as input might
have produced a different result. The column vector U(:,1) is an eigenvector,
but U(:,2) and U(:,3) are not; they are Schur vectors. The diagonal elements
dr =[—0.1879,1.7527,0.8399] are eigenvalues.

Now, we compute a residual—in this case, the residual is A — UTUY, which is a
matrix—to assess the quality of this computation. By executing

5.2 Schur Factoring Versus Jordan Canonical Form 247

A-UxT*U'
we find the matrix

0.0111 0.0999 0
10741 0.0444 0.1110 0.0111
0.0250 0.0389 —0.0333

We see that the residual is small. Strictly speaking, that residual may not be very
accurate; inner products in one matrix—vector product can be considered (backward)
exact, but it’s trickier with matrix—matrix—matrix products. By executing

UxU'-eye (3)

to determine whether a loss of orthogonality happened, we find that

—0.1110 0.0035 —0.1110
107 | 0.0035 —0.5551 —0.0833
—0.1110 —0.0833 0.2220

The 10~ shows that the factor U is orthogonal up to a quantity of the order of
roundoff error. <

The implementation of the Schur factoring in MATLAB does not always reflect
the continuity of the Schur vectors. Choices are made about the possible signs of the
Schur vectors, and these can differ when the input differs by trivial amounts. Let us
consider an example.

Example 5.7. Consider the matrices

110 110
A=|011] and A+AA=|0 11
001 ty O 1

They are identical, to the exception of the unit roundoff u, entry in the lower-left
corner. We can compute their respective Schur factorings; that is, we can compute
the matrices U and T factoring A and the matrices U+ AU and T + AT factoring
A+ AA. By executing

[U,T] = schur (A, 'complex')
[UDU, TDT] = schur (ADA, 'complex')

we find the following matrices:

100 110
U=(010 T=]011
001 001
1 00 1 -1 0
U+AU=|0-10 T+AT=|0 1 -1
001 00 1

248 5 Solving Ax = Ax

Notice that while the eigenvalues on the diagonal of T are identical to those of
T + AT, the Schur vectors have differing signs. This will occasionally require book-
keeping. <

In the next section, after some preamble, we introduce the QR algorithm to com-
pute the Schur factoring. This algorithm computes A = UTU? and tries to guarantee
that the computed matrices T and U are such that (A +E) = UTU* for some U near
U and ||E||r < cntim||A|F. The algorithm also ensures that the computed U is nearly

unitary; that is, |\fJHfJ— I|| = O(uwm).

5.3 Algorithms for Eigenvalue Problems

In this section, we examine the algorithms used to compute eigenvalues and eigen-
vectors. The objective is not to provide a detailed analysis of multiple algorithms,
but rather to simply outline the main ideas that come into the best algorithms that
are used, for instance, to compute the Schur factoring.

5.3.1 Simple Iterative Methods

We begin with a very simple method that can be used to find approximate eigen-
values. As we will see, more refined algorithms build on its core idea. Suppose that
a square matrix A has distinct eigenvalues A1,A;,...,A, and, moreover, that A; is
strictly the largest one. How can we find A;? As we know, the defining equation of
eigenvalue problems is Ax = Ax. Thus, if the jth entry of the eigenvector x is x; and
is nonzero, then

AX)]'
)Cj '

l:(

This suggests that if we find an eigenvector first, then we will have our eigenvalue.
How might we do that? We first describe an amazingly simple algorithm known as
the power method or power iteration.

To begin, take some random unit vector as an initial guess for x and call it Xo.
Then, let x; = AXg, X = AX{, and so on. The hope is that this sequence of iterates
converges to the eigenvector corresponding to A;; and so it does, in certain circum-
stances. We also take care to normalize each iterate x; in order to avoid overflow
and underflow (also, by normalizing, the iterates will form a sequence on the unit
sphere). That is, we let y; = Ax;_; and

Yk
Xk = 77>

Al

so that each x is a unit vector.

R R N SO R

5.3 Algorithms for Eigenvalue Problems 249
Example 5.8. Consider the matrix

-2 1
A={(1 -2 1
1 -2

Take xo = [1,0,0]” (which isn’t very random) as the initial guess. Then our first
iteration results in

-2 1 1 —2 —2/\5 —0.8944
vi=|1 -2 1 0|=11 andso x; = | I/v5 | =] 0.4472
1 -2{ (0 0 0 0

Continuing our computation with the MATLAB commands

r iteration

% Pow
[1, 0; 1,-2,1;0,1,-2]

e
= 2
=[1
Axx

1:19,
= y/norm(y,2)

end

we eventually find

—0.5081 0.5647
x9 = | 0.7071 and xj0= [—0.7071],
—0.4918 0.4952

which looks promising. If we look further, we find

—0.5001 0.5000
Xi18 = 0.7071 and X9 = —0.7071 s
—0.4999 0.5000

which appears to have converged. (The sign changes at each iteration, but we could
normalize the y, s differently to account for the direction of the eigenvector.) Indeed,
we can verify that this result is correct:

-2 1 ~1h 1412 —1h
1 -2 1 | |['N2] =|-V2—1|=A|1)2
1 =2| |- i+l —1/

From this, we find that

1 1
A = +1//2‘/§: 223414

is the largest, dominant eigenvalue. <

250 5 Solving Ax = Ax

Why did this simple iterative method work? First of all, it is because, as we
supposed, the matrix A had distinct eigenvalues and that one of them, A;, was strictly
largest. When a matrix such as A has distinct eigenvalues, then its eigenvectors form
a basis for C". That is, every vector Xy can be expressed as a linear combination of
the eigenvectors v, va,...,Vy,:

n

X) = z O V.
k=1

We know neither the coefficients o4 nor the eigenvectors v at this point, but we
know that they exist and are unique. Then we can rewrite our first iterate X; as
follows:

n n n
X| = AXQ =A Z Oy Vi = Z OCkAVk = Z Otk/lka.
k=1 k=1 k=1

Similarly, the second iterate can be written as X, = >, ock?tkzvk. It is then a simple
matter to show by induction that all the iterates x,, can be written as

n
X, = Z (xkl,:"vk.
k=1

From this expression, it is easy to see why the iterative method works: Since A; is
larger than all other eigenvalues, /'Ll’” grows faster than all others; that is, we have

xm:lf”alvl+2akl,:”vkzlf”alvl (14—0((%))) ,
1

k=2

where A, is the next-largest eigenvalue. Thus, the iteration picks out the eigenvector
v corresponding to the largest eigenvalue A;.

Under the same assumptions, a similar iterative method can be used to find
other eigenvalues A; with k # 1. This method, known as the inverse-power itera-
tion, is investigated in Problem 5.16. The underlying idea for this method is that if
A1, A2, ..., Ay are the eigenvalues of A, then (A; —u) =", (A —)7t ..., (A —pu) ™!
are the eigenvalues of (A — uI)~!. Moreover, by an argument similar to that for the
simple power iteration above, the dominant eigenvalue of (A — uI)~! will be the
eigenvalue of A closest to it. So, with an estimate of an eigenvalue, we can choose
a U to find a refined computed value.

However, as usual, we don’t want to actually compute inverse matrices. Instead,
we start from a random vector xo, normalize it to get zy = Xo/||Xo||, and then solve

(A—uhx =z

for x. Then we let z; = X, and repeat the process.

® N o w R W o -

5.3 Algorithms for Eigenvalue Problems 251

Example 5.9. We continue Example 5.8, but this time we will use inverse-power
iteration to find the smallest magnitude eigenvalue A3. For this matrix, we can use
the shift value 4 = 0 and simply execute this code:

%% Inverse power iteration

A= [-2, 1, 0; 1,-2,1;0,1,-2]
x=[1;0;0]
mu=0
for i=1:10,
y = (A-muxeye (3))\x

x = y/norm(y,2)
end

After 10 iterations only, we obtain the eigenvector

0.5000
x= [0.7071] ,
0.5000

which seems to be correct to four digits (i.e., MATLAB’s short format). From it, we
find that the smallest eigenvalue is A3 = (Ax);/x; = —0.5858. By comparing the
result with MATLAB’s built-in eig function, we find that the forward error is of the
expected order; namely, it is —1.3204 - 1075, <

For the rest of this section, we will not look at all the theory of convergence and
stability for such algorithms. Instead, we turn immediately to the go-to algorithm
for eigenvalue problems.

5.3.2 The QR Algorithm for Ax = Ax

In this section, we convey the main idea of the QR algorithm for computing eigen-
values. This algorithm is almost magical in the simplicity of its basic formulation
and is one of the most highly valued numerical algorithms of the 20th century. Its
key step is connected with the inverse-power iteration. Jumping ahead a bit, we are
trying to find a unitary similarity Q transform that changes

B h B h
]
in a way that makes ||g” || smaller than ||g||. By the Gershgorin circle theorem,
it will follow that fI is a better approximate eigenvalue than the original y was.
Moreover, as Problem 5.9 asks you to show, if we can make gH =0, then we will
have found an eigenvalue, namely, {i (to show that the ideal choice for Q in Q7AQ
is Q = [Qy,q], where q is the eigenvector associated with 1).

This being said, we know neither q nor A: That’s what we’re trying to find out.
We instead try to “bootstrap”: If g is already small in norm, then the standard basis
vector e is an approximate eigenvector, though not good enough of one for the
transform to make g smaller (try it!). But we can improve e by one step of the
inverse-power iteration:

252 5 Solving Ax = Ax

1. Solve g/ (A —sT) = e/l for q

2. Letq=4q/|q||.
Here the shift s might be the Rayleigh quotient e Ae,, or we might choose another;
a better choice will mean faster convergence.

Now comes the real magic of the QR algorithm. Using the QR factoring, we
factor the matrix A — sI:

A—sI=QR.

The final column of this Q is exactly the q that arises on the step of the inverse-
power iteration. To see this, note QH =R(A- sI)’1 and, as a result,

e/ Q" =q"" =ruell (A—sD)7". (5.8)
Moreover, ||q || = 1. But another way to express the inverse iteration q is

H el(A—sI)~!

= el (A)T’ 69

and these are now seen to be the same. Finally, we wish to form the similarity
transformation Q7 AQ. Since we have

RQ = Q"(A—s1)Q = Q"AQ I,

we find that RQ + sI = Q" AQ is what we want. We thus reach the heart of the QR
algorithm:

1. A —sI = QR (shift and factor)
2. A; = RQ +sI (reverse the factors and put back the shift).

Let’s look at an example to grasp how it works more concretely.

Example 5.10. In this example, we carry out three explicit steps of this process for
this small matrix randomly generated:

0.9649 0.9572 0.1419
A= |[0.1576 0.4854 0.4218
0.9706 0.8003 0.9157

We take a small complex shift to begin with (this also works for real eigenvalues,
but a real shift won’t help find a complex eigenvalue). The first step of the iteration
is obtained by executing

= 0.51i;
Q,R] = gr(A - sxeye(3));
1 = RxQ + sxeye(3)

> o= 0

5.3 Algorithms for Eigenvalue Problems 253
which produces the matrix

1.5888 —0.1579i 0.8763 —0.4759i —0.5453 4 0.2804i
A} =10.307740.3348; 0.4831—0.1208; 0.1224+0.1884:
0.3461 —0.0000i —0.0019 —0.1338; 0.29414-0.2787i

This does not look like it has made progress, but we now take the corner element
0.2941 4 0.2787i as our approximate eigenvalue and shift by that amount. We then
take a second step:

s = Al(3,3);

[Q,R] = gqr(Al - sxeye(3));
A2 = R*Q + sxeye(3)

From the newly produced matrix

1.7227—0.0076i —0.3520+0.5627i —0.6601 + 0.5240i
Ay = | —0.0466 —0.1935; 0.3711—-0.2913; 0.3187—-0.2840i | ,
—0.0076 4+-0.0000; —0.0107 —0.0032i 0.2722+0.2989i

we already see progress, since the elements in the last row are concentrated on the
diagonal. Once again, we take the corner element 0.2722 + 0.2989i as our approxi-
mate eigenvalue and shift and iterate one more time:

s = A2(3,3);

[Q,R] = gqr(A2 - sxeye(3));
A3 = R*Q + sxeye(3)

This time, we find the matrix

1.8036+40.0241i 0.30294-0.3767i —0.7026 —0.4352i
Az = | —0.0216 - 0.0827i 0.2865—0.3301; —0.023840.4331i | ,
—0.00004-0.0000; —0.0002 —0.0000; 0.2758 +0.3061i

and convergence is now obvious. We have one eigenvalue to approximately four
places. In comparison, the result of eig is [1.8146,0.2757 + 0.3061i, 0.2757 —
0.30611]. <

There are some important details left out: converting A into Hessenberg form for
efficiency, deciding when to stop iterating, managing deflation in case the problem
becomes reducible, determining how best to pick the shifts, and how to do it effi-
ciently in real arithmetic. There are important theoretical considerations, too: No
global convergence theorem is known, although in practice it works very well, in
O(n?) flops. The stability can always be checked afterward by forming a posteriori
the residual matrix R = QTQ’” — A and checking that it satisfies ||R|| = O(u)—as
it should, so that the computed eigenvalues are the eigenvalues of a nearby matrix
A +R (thus giving computed elements in what we will call the pseudospectrum
of A in Sect. 5.5). Note that one cannot have an eigenvalue without (at least one)

254 5 Solving Ax = Ax

eigenvector; therefore, the computed eigenvectors will also be exact eigenvectors of
nearby matrices. But in the end, the QR algorithm for finding the Schur factoring
is one of the most efficient and stable algorithms going—one of the jewels in the
crown of numerical analysis.

The algorithm used to solve generalized eigenvalue problems is similar; it is
called the QZ algorithm. A generalization of the Schur factoring is available: Us-
ing two unitary matrices U and Z, we can bring the matrix pair simultaneously to
upper-triangular form. Then, from the diagonal entries of each triangular matrix, the
generalized eigenvalues can be read off. The algorithm tries to guarantee that

QY(A+E)Zo=R
QiB+F)Zy=S,

where Qy, Z are unitary and ||E|| = O(uy||A||) and ||F|| = O(tar||B||). The cost of
the QZ algorithm is approximately 157 flops to compute R and S, plus an additional
8n3 to compute Q and 107° to compute Z.

5.4 Condition Number of a Simple Eigenvalue

In the preceding sections, we have once again interpreted computation errors as
backward errors, similar to data errors. What, then, are the consequences of these
errors? We find an answer to this question by determining the conditioning of eigen-
problems. Let us consider the case of a simple (nonrepeated) eigenvalue.

Suppose that Ax = Ax, where X is a right eigenvector. Also suppose that y7A =
Ay, where y is a left eigenvector. Consider the perturbed system

(A+E)(x+Ax) = (A +AL1)(x+ Ax),
and simplify this by ignoring quadratically small terms:

AAX + Ex +EAX = AAX + AAX + AAAX.

We multiply by y”, so that
VIAAX + Yy Ex = Ay AKX+ ALy x.

We require that y’x # 0; in the exercises, you will prove that y/x # 0 for a simple
eigenvalue. As a result, we find that

y7Ex

AL = .
yix

(5.10)

This says that if y"x is small relative to y?Ex, then AA will be large. This can hap-
pen. Data errors may make A inaccurate. In Problem 5.4, you will show that (y”x)~!
can indeed be used as an absolute condition number for a simple eigenvalue.

5.5 Pseudospectra and Eigenvalue Conditioning 255

Multiple eigenvalues are ill-conditioned: A tiny change in the data of size € can
cause a change in the eigenvalues of 0(8'/’”), where m is the multiplicity of the
eigenvalue. The problem of ill-conditioned eigenvectors is worse. Eigenvectors can
fail to exist when eigenvalues are multiple, so the problem of computing them is
ill-posed (and thus ill-conditioned). Even when eigenvalues are simple, eigenvalues
can be close together; and this closeness strongly affects the conditioning of the
eigenvectors. See Hogben (2006 chapter 43).

The conditioning of eigenvalues is crudely measured by the (ordinary) condition
number of the matrix of eigenvectors.

Example 5.11. Consider the matrix

4-g2 2-2¢
A_{—Z—zs g2]’

for a small &. This matrix has eigenvalues 2 & £2, which are simple, but close. The
matrix of eigenvectors is

[—(1—11—8)1 —ll—i-e} 7

and its inverse has norm O(¢~2). Thus, the eigenvalues are ill-conditioned. <

5.5 Pseudospectra and Eigenvalue Conditioning

5.5.1 Spectra and Pseudospectra

We have already seen that the set of eigenvalues A (A) of a matrix A is called its
spectrum. Pseudospectra are eigenvalues of perturbed matrices. Given an € > 0, a
pseudospectrum A (A) is defined by

A¢(A) = {z | 3AA with || AA|| < € and det(zI — (A+AA)) =0}. (5.11)

That is, z is an eigenvalue of a matrix not too different from A. For just one eigen-
value at a time, Stewart (1998) has a simple pseudospectral result. If u € C is an
approximate eigenvalue and

r =Ax— Ux,
then let

rx*

I3 °

256 5 Solving Ax = Ax
and notice that Ex = —r. It follows that

(A+E)x = ux.
As aresult, u is an exact eigenvalue of A + E, and

|E[2 = IIrlla (5.12)

x[|>°

So, if the residual r has a small norm, then we have the exact eigenvalue of a com-
putably nearby matrix; again, t is in the pseudospectrum of A.

How different from A (A) can A¢(A) be? That is, how sensitive to changes in
A are the eigenvalues of A? In one sense, not very sensitive: Eigenvalues are con-
tinuous functions of the entries of A. In another, they can be arbitrarily sensitive.
Consider the matrix

11

11,
1

which, being a defective matrix, is particularly sensitive. Perturb the (3, 1) entry to
€%, and the eigenvalues change to 1 + w*e, with @ = §(iv/3 —1). That is, changing
A by O(&?) changes the eigenvalues by O(g). Increasing the dimension makes it
WOrse.

More generally, consider the following pragmatic observation or rule of thumb.
The MATLAB function schur will always produce a matrix U unitary up to the

order of unit roundoff, that is, such that
~H o~
0"0 =1+ O(uw) .
and an upper-triangular matrix T such that
o H
A=UTU" + O(un)||All

That is, the residual R = A — OTO” will have entries not much bigger than
U ||A||—at worst, a small constant depending only on n times worse. Therefore,
by computing T, we are computing elements of the pseudospectra of A, not exactly
eigenvalues, where the € is just a smidgen bigger than ||R]|.

Remark 5.3. The QR algorithm that underlies MATLAB’s schur function has a
very clever design, many years of refinement, and has been tested on millions of
matrices. But the global convergence of the iteration is not proved. One of the more
interesting lines of attack might be via isospectral flows and the Toda lattice, where
the QR iteration is interpreted as steps along the flow of a dynamical system (see
Watkins 1982, 1984; Chu 1984). <

5.5 Pseudospectra and Eigenvalue Conditioning 257

5.5.2 Powers and Exponentials with Spectra and Pseudospectra

The connection between powers and eigenvalues is well known, and between ma-
trix exponentials and eigenvalues also: If A is diagonalizable, say A = XAX ™!,
then both matrix powers AF = XA X! and the matrix exponential exp(tA) =
Xexp(tA)X~! become simpler, essentially reducing to a collection of scalar cases.
If A is not diagonalizable, then in theory one uses the Jordan canonical form; in
practice, the Schur form can be used instead. In either situation, more bookkeeping
is needed, but the connection between powers and spectra is still unquestioned. We
get well-known theorems that say, for example, that the limiting behavior of A is
determined entirely by its eigenvalues. To be precise, if x, ;| = Ax,, or y = By, then
the following results hold. In the first case, x,, = A"x(goes to zero eventually if all
eigenvalues of A satisfy |A| < p < 1. In the second case, y(t) = By, goes to zero
eventually if all eigenvalues satisfy ReA < 0. But this is not the whole story!
Let A be an m x m matrix such that

1h 1
1h 1

A= 1L
-1
lﬂ
This is in Jordan form, but that doesn’t matter. All eigenvalues are ! /2, so there ought
to be no problem. But even for m = 5, we don’t get what we expect! The matrix—
vector products Axo, A%xg, A’xo, ... initially grow. And when m = 50, they grow
very rapidly. Let us look at the details, using MATLAB. To generate the matrix, we
can use this command:

nna=@(n) eye(n)/2+triu(ones (n),1)-triu(ones(n),?2);
a=nna (5) ;

This being done, we can produce the Akxo as follows:
x=rand (5,1) ;
nrms=zeros (10,1) ;
nrms (1) =1;
for i=2:10, x=a*x; nrms (i)=norm(x) ;end;
The resulting values are 1.0000, 2.1400, 3.0207, 4.1047, 5.1064, 5.6831, 5.6926,
5.2177,4.4492, and 3.5781. As we see, the size initially increases, only eventually
decaying. It is true that A" — 0 as n — o, just like (1/2)". But the eigenvalues told
us nothing about transient growth.
Now, consider now the same example but with n = 50:
a=nna (50) ;
x=rand (50,1) ;
nrms=zeros (200, 1) ;
nrms (1) =1;
for 1=2:200, x=a*x; nrms(i)=norm(x); end;
semilogy (1:200, nrms)

258 5 Solving Ax = Ax

1015

1010 L

105 L

10° y - -
0 50 100 150 200

Fig. 5.1 Initial growth of matrix powers of a 50 x 50 matrix, not forbidden by all eigenvalues being
1/2 but not predicted by that, either

We see in Fig. 5.1 that the powers are going to zero via 10'%, which might present
a problem. Compare the related system X, = AXx, + small noise. In this case, the
noise may continually activate the growth; the decay may never happen.

To understand such difficulties, one trick is instead to compute pseudospectra
according to (5.11). The reason that pseudospectra bear on this dynamical behavior
comes from the following observation. Define the €-pseudospectral abscissa of A
to be

0e(A):= sup Re(z),
€A (A)

that is, the largest that any real part of any pseudo-eigenvalue of A can be. Then a
lower bound for the norm of exp(tA) is?

og (A
sup |42 > 2e(A)
>0 €

Similarly, define the e-pseudospectral radius ps(A) by

pe(A):= sup |z|. (5.13)
z€A¢(A)

Then powers of A have norms that must grow at least as so much that

A)—1
sup A¥) > PEA) L
k>0 £

2 See Trefethen and Embree (2005).

5.5 Pseudospectra and Eigenvalue Conditioning 259

For the 50 x 50 matrix above, the package eigtool computes® the pseudospectral
radius for € = 10712 to be 1.08018, which gives a lower bound on the norms of
powers of A as 8- 100 (see Exercise 5.12). We do indeed have growth at least this
large in Fig. 5.1. That is, pseudospectra provide a partial explanation of behavior
that we see in this graph, behavior that eigenvalues alone cannot explain.

Of course, matrix powers are easier to compute than the pseudospectrum is;
therefore, using pseudospectra to predict such behavior is something that will hap-
pen only if we have prior knowledge. An alternative characterization that is easier
to use computationally is the following:

Ae={z: (A=) > e} (5.14)

that is, the norm of the resolvent (A —zI)~! is large. Rather than prove this al-
ternative characterization for the ordinary (simple) eigenproblem, we generalize to
matrix polynomials,

P(z) = i Cro(2)
k=0

where the C; € C"*" are matrices and the ¢(z) are basis polynomials. The simple
eigenvalue problem has Cp = A and C; = —1I, ¢o(z) = 1 and ¢ (z) = z. A nonlinear
eigenvalue A has detP(4) = 0. The spectrum

A(P):={z| detP(z) =0}

is the set of nonlinear eigenvalues. This is a simultaneous generalization of polyno-
mial zeros p(z) = 0 and generalized eigenvalues det(zB — A) = 0. Matrix polyno-
mials find many applications, and we will see some later.

The following proposition allows us to separate the influence of the basis from
the influence of the matrix polynomial.

Theorem 5.3 (Amiraslani 2006; Green and Wagenknecht 2006). Given weights
wy > 0, not all zero, and a basis ¢ (z), define the weighted e-pseudospectrum of
P(z) as

Ae(P)={A € C:det(P+AP)(A) =0,||AC|| < ewy,k=0,...,n}

and suppose that
n
AP(z) = > ACk(2).
k=0
Moreover, let

B = 3 wilon(2).
k=0

3 The routine issues a warning, stating that it is not confident that the result is accurate. For £ =
10~?, the result is 1.168, giving a more certain lower bound of 1.6-108.

260 5 Solving Ax = Ax
Then the pseudospectrum of P(z) may be alternatively characterized as
A:(P)={AeC: P (A)[| > (eB(1))'}. (5.15)
Proof. Let
S ={AeC:[P7'(2)] > (eB(1))"'}.

We show that this set is equal to A (P).

First, take A € A¢(P), and we show that A € .. There are two cases. First, if A is
an eigenvalue of P(z), then by convention, |[P~!(1)|| = e, and so A € .. Second,
if A is not an eigenvalue of P(z), then P(1) is nonsingular. Since P(1) + AP(A) =
P(A) (I+P~'(1)AP(1)) is singular, |[P~'(1)AP()|| > 1 must hold and so we
obtain

L< P @) (i IACk||¢k(7L)I> <[Pt (i EWkIdJk(l)I)
k=0 k=0
<[P~ (2)[eB(R).

Hence, A € .77.
Now, let A € . and assume P(1) is nonsingular. The insight comes from this:
1. Choose a unit vector y such that |[P~'(A)y|| = [[P~1(1)]|.

2. Consider the vector u = Hl:l ((M)H

Then, there exists a matrix H such that ||H|| = 1 and Hu = y (see Higham (2002)).
Now define E to be E = —H/|[P~'(1)||. Then

which is also a unit vector.

A y vy
PO B = 0] o)~
and
1
B(A
I ey =
Define

AC; = signum (¢ (A))wi B~ ()E,
where signum(z) = /|z| if z # 0, and 0 otherwise. Then it follows that

2) = i AC(A) =Y signum(@e(A))bx(A)weB~ (A)E

k=0

_Z|¢k)wiB~ (A)E=B(2)B"'(A)E =E.

This proves the theorem. f

5.5 Pseudospectra and Eigenvalue Conditioning 261

Remark 5.4. This proposition allows us to separate some of the properties of the
polynomial P(z) from the properties of the basis. In particular, notice that the left-
hand side of the inequality in this characterization of the pseudospectrum is basis-
independent, being merely a property of the size of P~!(1), whereas the right-hand
side of the inequality depends only on the tolerance € and the value of the scalar
function B(z) at z = A, which depends only on the basis and on the weights wy.
More, it was noticed in Green and Wagenknecht (20006) that the basis functions need
not even be polynomials—this gives a pseudospectral theorem for general nonlinear
eigenvalues as well. <

Remark 5.5. When all weights wy, = 1, the function B(z), in the case of Lagrange
interpolation, is precisely what is known as the Lebesgue function of the set of in-
terpolation nodes (Rivlin 1990). There is an extensive theory of such functions, and
their connection to the problem of conditioning. In the standard notation, for wy =1,
B(2) = (x;2). N

To end this section, we provide an example of how to generate a contour plot of
pseudospectra.

Example 5.12. The following degree-2 matrix polynomial is expressed in the La-
grange basis at the three points 7, = 0,—1, —2. The pseudospectra can be analyzed
with the help of the following MATLAB code:

Example 2 by 2 matrix polynomial pseudospectrum
in the Lagrange basis, using Mandelbrot polynomials

RMC 13.12.2010 after an idea by Piers Lawrence
and after discussion with Nic Fillion

This first section just sets up the matrix polynomial of degree
2"level - 1, formed by interpolating at n+2 = 2" (level-1)+1
points giving 2 by 2 matrices at each interpolation point.

o0 oP o0 o oo oo op oo op oo oo op

=
0]
<
(0]
=

= 6;

o]
I
i

rts = [-1];

for i=2:1level,

Evaluate the matrix polynomials at x=0, x=-2, and x=all
roots previous.

n =2"(i-1) - 1; % n roots available

tau = [0, rts', -2]; % n+2 evaluation points

gamma = genbarywts(tau, 1);

gamma = gamma/norm (gamma,inf) ;

o op

A = zeros(2x(n+2)+2, 2x(n+2)+2); % extra block at end
B0 = eye(2% (n+2)+2, 2x(n+2)+2);

BO(end-1l:end, end-l:end) = zeros(2,2);

A(1:2, 1:2) = [0, 0; 0, 0 1;

A(l1:2, end-1l:end) = [0, -1; 1, 1];

28
29
30

31
32

33
34
35
36
37
38
39
40
41
42

43
44
45

46
47
48
49
50
51

63

70
71
72

262 5 Solving Ax = Ax

A(end-1:end,1:2) = [gamma(l), 0; 0, gamma(1)];
for j=1:n,
A(2 + 2%j-1:242%3F, 2+42%j-1:242*+3) = [tau(j+1), 0 ; O,
tau(j+1) 1;
A(2+2%j-1:2+2+j, end-l:end) = [0, -1; 1, 0];
A(end-l:end, 2+2%j-1:2+42%j) = [gamma(j+1), O0; 0, gamma
(3+1) 1;
end;
A(end-3:end-2,end-3:end-2) = [-2, 0; 0, -2];
A(end-3:end-2,end-1:end) = [2, -1; 1, -1];
A(end-1:end,end-3:end-2) = [gamma(end),0; 0, gamma (end)];

rts = eig(A, BO);
k = find(abs(rts) < 3);
rts = rts(k);

At this point, we have our matrix, interpolated at the
nonlinear
eigenvalues of the previous level matrix polynomial.

oo

% Compute the weights for B as the 2-norms of the polynomial
coefficients
alpha = zeros(1, n+2);
for i=1:n+2,
alpha(i) = norm(A(2%i-1:2%i, end-l:end), 2);
end;
% Now evaluate the matrix polynomial at a bunch of points and
compute
% the 2-norm of its inverse, by simple svd computation.
nsamp = 400;
= linspace(-2.5,0.7,nsamp) ;
= linspace (-2,2,nsamp) ;
% z(j, k) = x(7) + i*xy(k)
V = zeros (nsamp,nsamp) ;
for j=1:nsamp,
for k=1:nsamp,
z = x(j)+sqgrt (-1) xy (k) ;
w = prod(z - tau);
P = gamma(1)*[0, -1; 1, 1]1/(z-0) + gamma(end)=x[2, -1; 1,
-11/(z+2);
B = abs(alpha(l) xgamma (1) /z) + abs (alpha (end) xgamma (end)
/(z+2)) ;
for ell=1:n,
P = P + gamma (ell+1)*[0, -1; 1, 0 1/(z-tau(ell+l));
B = B + abs(alpha(ell+l)+gamma (ell+1l)/(z-tau(ell+1))
)i

<X

end;
S = svd(wxP);
V(k,j) = S(2)/(abs(w)*B);

end;
end;
o

% Choose among the following options by commenting out as
appropriate.

73

74
75

76

77
78
79
80
8

5.6 Notes and References 263

% The first two lines, with level=2, were used to generate the
figure

¢ in the text.

$[C,h] = contour(x, y, log(V)/log(10), [-2,-1.5,-1,-0.75, -0.5,
-0.25], 'k-');

[C,h] = contour(x, y, log(V)/log(10), [-22,-18,-14,-10,-6,-21, '
k-')3

clabel(C, h);

$contour (x, y, log(Vv)/log(10),[0,-2,-4], 'k-');

$[C,h] = contour(x, y, log(V)/log(10), 'k-');

$clabel(C, h);

axis ('square')

The resulting contour plot of the pseudospectra is displayed in Fig. 5.2. <

1.5}F

-0.5¢}

1t

-1.5¢

) L L L L
-2.5 -2 -15 -1 -0.5 0 0.5

Fig. 5.2 Pseudospectrum of a 2 X 2 matrix polynomial of degree 3

5.6 Notes and References

Once again, a useful reference for the themes discussed in this chapter is the Hand-
book by Hogben (2006). For an introduction to the Weyr form, which we have
merely mentioned, see O’Meara et al. (2011).

264 5 Solving Ax = Ax

Our discussion of the QR algorithm follows that of Stewart (1998 chap. 15),
where the algorithm is described in detail. Golub and Uhlig (2009) contains histori-
cal details surrounding the development of the QR algorithm.

The proof of Theorem 5.3 is taken from Amiraslani (2006) and was modeled
there exactly on the one for the monomial basis in Tisseur and Higham (2001).

Problems

Theory and Practice

5.1. Show that a left eigenvector y of A with eigenvalue A corresponds to a right
eigenvector y of A” with eigenvector A.

5.2. Suppose that Ax = Ax. Show that

1. A —sI has eigenvalues A — s.

2. A* has eigenvalues AX.

3. Consider the polynomial f(z) = ¥7_, 047" and the matrix polynomial f(A) =
1, oxA. Show that the eigenvalues of f(A) are f(A).

4. If A is nonsingular, then the eigenvalues of A~ are 1.

5. Let h(z) = f(z)/g(z) be a rational function (f and g are polynomials). Suppose
g(A) is nonsingular. Define 1(A) = g(A)~! f(A). Show that 2(A) has eigenval-
ues h(A).

6. Show that g(A) is singular if g(1) = 0 for any eigenvalue A of A.

5.3. If A is a simple eigenvalue of A, that is, of multiplicity 1, show that its left and
right eigenvectors y” and x satisfy

yix #0.

(Hint: Unitary similarity transformations of A, say to T = U” AU, do not change
y*x (show this). Then you can work with T, and you may assume A is in the (1,1)
position, and because it is simple, that’s the only diagonal entry where it appears.)

5.4. Show that if 4 is a simple eigenvalue of A with left and right eigenvectors y
and x, and E is a matrix with small enough norm, then there is an eigenvalue A of
A + E such that

H
A y ' Ex
A=A+ VT +O(|[E|3).

Moreover, show that, as a result,

A —A| < secO|E|2+O(|E),

5.6 Notes and References 265

where 6 is the angle between the vectors x and y. Therefore, sec 8 = (yx) ! serves
as an absolute condition number for a simple eigenvalue A if ||x|| = ||y|| = 1.

5.5. Show that the eigenvalues of the matrix

21
e 2
are increasingly ill-conditioned as € — 0.

5.6. MAPLE or another CAS may be helpful for this problem.

1. Show that you may choose a;,ay,...,a1o leaving ajy,ai2,...,a19 free in such
a way that the eigenvalues of the 20 x 20 Clement matrix of Problem (4.29)(a)
are 1/, £3/, 45/, ... 49/, so that 21 LI+ C has eigenvalues 1,2, 3, ..., 20 (the
same as the roots of the first Wilkinson polynomial).

2. Choose ay; through a9 to minimize k1 (V) = ||V||;|[V~!||; (the 1-norm condi-
tion number) as best you can.

3. Letting o = ||V&>1 |2, the 2-norm of the ith row of V=1, and B; = ||V;||», the
2-norm of the ith column of 'V, show that o;3; is the condition number of the ith
eigenvalue. What are these numbers, and how do they compare to x;(V)?

5.7. Use the normalized power method to find the largest eigenvalue of the Clement
matrix of order 10, to three digits of accuracy. Use the fact that if r = Ax — ux, then
u is an eigenvalue of A + E with E = —rx!? /||x||3 to argue for the accuracy of your
result. What is the condition number of the largest eigenvalue?

5.8. The most common use of the power method is to find an eigenvalue of
(A —uI)~! close to u. That is, for random xo, define zg = xo/||xo|| and z,, for
m=1,2,... by solve (A — uI)x = z; and put z;;; = x/||x||. Use this iteration to
find an eigenvector for the smallest eigenvalue of the symmetric Clement matrix of
order 10.

5.9. If ¢/ is a left eigenvector of A corresponding to A, and Q = [Qy, q] is unitary,
show that

Hao - |QIAQI Qi'Aq
QAQ—[10 1 I)L :l

and that the other eigenvalues of A are the eigenvalues of the smaller matrix

Q7AQ;,.

5.10. In this problem, we examine how to construct a unitary matrix Q with a given
unit vector q € C" as the last column, that is, such that Q = [Qy, q].

1. Putu = q+ ue,, where g = signum(g,) = 4/|¢,| unless g, = 0, when you take
i = 1. Show that u’u = 2(1+|q,|).
2. Show that R = I— 2% is unitary.

u

266 5 Solving Ax = Ax

3. Show that Re, = —u~'q. Put Q = R -diag(1,1,...,—u) and show that Q is
unitary and Qe, = q.
4. Show that Ru = —u (so R is a “reflector”), R, = —pe,.

5.11. Let
0150 0 0 0
10150 0 0
o020 0
T=1001p0 150 (5.16)
00 0150 1)
000010

and P(z) = (zT)” — L Draw the pseudospectra of the matrix polynomial P(z), choos-
ing pleasing or informative contour levels (or both).

5.12. Suppose J,(rexp(i0)) is an n x n Jordan block matrix with eigenvalue z =
rexp(if), where 0 < r < 1, so powers of J must ultimately decay. By taking € =
er”*, where e is the base of the natural logarithms, and using the analytic formula
for R = (z1 —J)~' [all you need is the (1,n) entry], give a lower bound on the
pseudospectral radius and thus a lower bound on the maximum value of || J*||. Take
r =1/ and n = 50 and compare your results with Fig. 5.1.

5.13. Show that by using Householder reflectors, one may find a matrix H = QHAQ
similar to A that is upper Hessenberg in structure, meaning that the entries below
the first subdiagonal are zero.

5.14. Show that the QR factoring of an upper Hessenberg matrix costs O(n?) flops.
So, QR iteration is much cheaper if it is preceded by a similarity transformation to
upper Hessenberg form.

Investigations and Projects

5.15. The matrix gallery (3) in MATLAB

149 —50 —154
A=| 537 180 546, (5.17)
27 -9 25

is known to have somewhat sensitive eigenvalues. The exact eigenvalues of this
matrix are A = 1, 2, and 3. If we perturb this to A + tE, where

~390 1170 0
E=|-129 387 0], (5.18)
—399 1197 0

5.6 Notes and References 267

which happens to be an outer product yx, where x and y are eigenvectors of the
smallest eigenvalue A = 1 of A, then we find for

t=—2.612641635322647 x 107’

(approximately) that A +¢E has a double eigenvalue. This means that if we change
the matrix by approximately 10~7, one of the eigenvalues must change at least by
1/, Compute the condition number of each eigenvalue of A in MATLAB or MAPLE
and plot the eigenvalues of A +fE on —5 x 1077 < <0 for, say, 300 values of ¢.
Compute the pseudospectral contours of A using eigtool. Discuss.

5.16. Suppose AX = XA for A = diag(A,Az,...,A,) and nonsingular matrix X of
eigenvectors. Suppose further that the eigenvalues A, are distinct.

1. If we know W, and it happens to be true that = A, + ¢, for some |€| < 1, show
that one step of inverse-power iteration

(A—ul)y=z

improves on z as an estimate of the first eigenvector x; by a factor !/e. Hint:
Write
n
Z=aX]+ 2 aiXy
k=2
and (as a theoretical tool) use the above factoring in the conceptual solution
process. (Of course, when we actually solve this system, we’d use something
like an LU factoring. But for the purpose of analysis, you can use the (unknown)
eigenvector—eigenvalue decomposition.)
2. Fill in the details as to why, if the residual

r=z—(A—pul)y

is small compared to ||A||, then rounding errors in the solution of the system for
the inverse-power iteration don’t matter much even if € is very tiny, so that A —
uX is very nearly singular and thus extremely ill-conditioned. Can we expect,
though, that the residual r will be small?

5.17. A companion matrix for z> — 2bz+ 1 =0 is

0 —1
cz[l 2b]. (5.19)

1. Compute the condition number for each eigenvalue of C. Identify any values of
b for which the eigenproblem is ill-conditioned.

2. Forgetting the companion matrix for the moment, compute the condition num-
ber of each root of z> —2bz+ 1 = 0 as a function of b. This is a structured
condition number of the eigenvalue problem. Compare with your previous an-
SWer.

268 5 Solving Ax = Ax

3. In Question 1.18, you used the quadratic formula to compute each root and com-
puted the product, which should have been 1, but instead gave curious “tiger
stripes” for b ~ 107 and ultimately became zero if b was large enough. Is this
behavior a result of ill-conditioning, or is it instead a result of numerical insta-
bility? Justify your choice.

Chapter 6
Structured Linear Systems

Abstract We define structured linear systems to include sparse systems or systems
with correlated entries or both. We define the structured backward error and a
structured condition number. We give examples of various classes of structured
linear systems and examples of algorithms that take advantage of the special
structure. <

6.1 Taking Advantage of Structure

Taking advantage of structure is an very important aspect of numerical linear al-
gebra. We articulate the discussion that follows around the notions of sparsity and
correlation of matrix entries.

Definition 6.1. A sparse matrix has a large proportion of entries that are equal to
Zero.

The zero entries do not need to be stored, and arithmetic with zero is, of course, easy
and accurate.! See Fig. 6.1 for a simple visualization of a particular sparse matrix.>

Definition 6.2. A matrix has correlated entries when all entries of the matrix are
determined wholly by a small number of parameters.

The following simple example should make the idea of correlation clear.

1 See Davis and Hu (2011) for a beautiful collection of useful sparse matrices. See http://
www.cise.ufl.edu/research/sparse/matrices/synopsis/ for anintroduction to
visualizing large sparse matrices by minimizing the “energy” in a graph related to the matrix.

2 Also, see Fig. 16.15 for spy pictures of sparse matrices arising in finite-difference solutions to
partial differential equations.

R.M. Corless and N. Fillion, A Graduate Introduction to Numerical Methods: 269
From the Viewpoint of Backward Error Analysis, DOI 10.1007/978-1-4614-8453-0_6,
© Springer Science+Business Media New York 2013

http://www.cise.ufl.edu/research/sparse/matrices/synopsis/
http://www.cise.ufl.edu/research/sparse/matrices/synopsis/

270 6 Structured Linear Systems

10}
20t
30 -.. .
40t

sl

6or-

0 20 40 60
nz =150

Fig. 6.1 A simple visualization of the inverse of the 64 x 64 Mandelbrot matrix, using the spy
command. This sparse matrix has only 150 nonzero entries out of a possible 64 x 64 = 4096 entries,
or about 3.6%

Example 6.1. The 2 x 2 matrix

cos® sin6
—sin® cos@

is determined entirely by one parameter, 0. Thus, all entries are correlated, in this
case nonlinearly. 4

Definition 6.3. We call a matrix structured if it is sparse, has correlated entries, or
both.

Example 6.2. We have already seen examples of structured matrices, including the
generalized Vandermonde matrices whose n” entries are completely determined by
just the n nodes Ty, 71, ..., T,—1 and the choice of basis functions. Another espe-
cially nice example family are the circulant matrices, which we discuss in detail in
Chap. 9. Consider a 4 x 4 circulant matrix:

S0 AU
o L &
_L T o
Q0o X

The pattern is as follows: The first row is repeated but shifted cyclically, then again
for the next row, and so on. Thus, each row is correlated with the first one. We will
shortly see other structures that are important in practice. <

6.1 Taking Advantage of Structure 271

Until now, we took no advantage of any structure that happened to be present in
our examples, except for unitary or triangular matrices: otherwise, A € C™*" was
treated as a collection of m - n independent complex nonzero numbers. But if there
is one lesson to draw from the applications of linear algebra, it is this: Many, if not
most, system matrices found in applications are structured. To solve such systems
accurately, efficiently, or at all (when they are really large), the structure must be
used. Sparsity is especially helpful. Correlations in the entries also have a large
impact but often introduce nonlinearities and so are usually much harder to take
advantage of. This chapter gives a too-brief introduction to these ideas. We look at
some of the most elementary techniques for solving structured linear systems and
for structured eigenproblems.

First, though, we remind the reader of the unstructured case. The techniques of
LU factoring, pivoting, QR factoring, and the SVD were presented in the two pre-
vious chapters for dense matrices. Such matrices are called dense in the literature
because most entries a;; in the matrix A are presumed to be nonzero and indepen-
dent. In that case, the cost of solving a typical n X n dense system by each of those
methods, using a serial (nonparallel, nonvector) computer, is reasonably well known
and typically is considered to vary as the cube of n:

* LU factoring costs %n3 + o(n?) flops.
* QR factoring costs 4n° 4+ o(n*) flops.
* SVD costs (about) 1113 + o(n?) flops.

We see that the SVD is in theory the most expensive. These estimates are reasonable
models for many computers, as we see in simulation.

Nonetheless, as a matter of fact, GOOGLE plays with its PageRank matrix, where
n is measured in billions. They get answers in (pretty much) real time. How? Fast
computers, sure. But really: fast algorithms. The key to fast algorithms is parsimony.
As the philosopher Seneca is said to have said:

Economy is in itself a significant source of revenue.

A parsimonious approach can often be adopted in order to take advantage of the
structure of matrices.

Example 6.3. Consider the following structured matrix:

4
1

—_— N =
—_— N =
—_ =
—_ =

1
4
We focus first on its sparsity and ignore the correlations between the nonzero entries.

Such a matrix is an example of a “banded matrix,” in this case with three bands, or
in other words “tridiagonal.” It is not necessary to store the zeros. We just store the

© ® N v A W N -

272 6 Structured Linear Systems

diagonal entries. If we note the symmetry (which is a correlation), then we only
need to store the diagonal and one copy of the other bands, that is,

(444444 and [11111].

We will take further advantage later of the fact that all entries of these vectors are
identical. Note that the LU factoring of this tridiagonal matrix, in which T = LDL#
with

1 0 0 0 O
a1 0 0 O
L=|0 45 1 0 0 (6.1)
0 0 1356 1 0
0 0 0 56ho 1

and D = diag(15/4,56/15,209 /56,780 /209), may be done with O(n) work, not O(n*). The
savings are substantial for large n. Again, the zeros in L need not be stored, and
neither need the entries along the diagonal, which are all 1. <

Remark 6.1. In the previous example, notice also that the inverse matrix T~ is full:

209/780 —14/195 1/52 —1/195 1/780
—14/195 56/195s —1/13 4/195s —1/195

T !'=| 12 13 1550 —l3 1/
—1/1s 4/19s —1/13 56/195 —14 /105
1/80 —1/1os 1/s2 —14/105 209 /780

Thus, the inverse does not have the sparsity T has. Therefore, knowledge of the
factors is better, that is, more economical, and has the same utility as knowledge of
the inverse. N

Tridiagonal LU factoring (without pivoting, true, so we have to worry about nu-
merical stability) is good in this case, but we may do even better by writing an
algorithm specifically conceived for this type of problem. One trick is to not even
store the 4s and 1s, and to use a program to multiply Tx:

function y=Seneca (x)

[n, ignorel =size (x(:)) ;

y = zeros(n,1l);

v(1)=4xx(1)+x(2) ;
for i=2:n-1,

y(i)=-x(i-1)+4%x(i)+x(i+1);

end;

y(n)=-x(n-1)+4*x(n) ;

end;

Notice this program occupies constant storage, independent of n. Even better than
this code is to eliminate the loop, as follows:

R R N SR R

6.2 Real Symmetric Positive-Definite Matrices 273

function y=Seneca (x)
[n, ignorel =size (x(:)) ;
y = zeros(n,1l);

y(1)=4+x(1)+x(2);
y(2:n-1)=-x(1:n-2)+4*x(2:n-1) +x(3:n) ;
y(n)=-x(n-1)+4*x(n) ;

end;

This makes things a constant factor better. As Cleve Moler emphasized, “[W]hen
you have mastered the colon, you have mastered MATLAB.”

But if all we can do is call a subroutine to multiply x by a matrix A (such as T
above), how can we solve Ax = b? Basically, we use powers of the matrix, as we will
see in Chap. 7; if we can compute y = Ax, then it is easy to compute w = Ay = A’x,
and so on. These vectors can be used to find a solution. But for now, before turning to
those iterative methods, we will look at examples of classes of structured matrices.
Even simple structures can be very important.

6.2 Real Symmetric Positive-Definite Matrices

We begin with a venerable and benign class: real symmetric positive-definite (SPD)
matrices. It is easy to verify that the matrix T from Example 6.3 was of this type.

Definition 6.4. A matrix A € C"*" is real symmetric positive-definite if

1. A € R™" thatis, A is real,

2. A7 = AT = A, that is, A is symmetric,

3. A is positive-definite, a condition that can be formulated in three equivalent
ways:

a. xI Ax > 0 for all nonzero x € R";
b. all eigenvalues A of A are real and positive;
c. all pivots in the LU factoring (without pivoting) are positive.

Such matrices are very common in applications.

In what follows, we will expand on this appropriate description of PSD matrices by
Higham (2002,196):

Symmetric positive definiteness is one of the highest accolades to which a matrix can aspire.
Symmetry confers major advantages in the eigenproblem and [...] positive definiteness
permits economy and numerical stability in the solution of linear systems.

To begin with, if A is SPD, A = LU, the factoring arising from Gaussian elimina-

tion without pivoting, can be expressed as A = LL’ (the Cholesky factoring); in this
book, we will also loosely call the factoring A = LDL” [the symmetric (no square
root) factoring] Cholesky factoring. This saves a (modest) factor of two in compu-
tation cost and in storage cost; but a factor of two is not nothing, especially for large
systems.

274 6 Structured Linear Systems

More importantly, if we had to pivot, we would potentially have had to destroy
the structure. Avoidance of pivoting means more efficiency, in this case. Of course,
eschewing pivots means accepting possibly worse accuracy because, as we saw in
Chap. 4, LU factoring without pivoting was numerically unstable in general, giving
rise to growth factors arbitrarily larger than the worst-case 2"~ of partial pivoting.
Indeed, the condition number of A, k,(A), for solving Ax = b, can be large, and
is in some applications. That is, even if we did use pivoting, our answers might be
inaccurate; numerical instability could only make things worse. For SPD matrices,
though, we hope that any instability is not too serious, because we are in a hurry
for a solution. And we are in luck: Theorem 10.4 of Higham (2002) assures us that
for SPD matrices, Cholesky factoring is perfectly stable in a normwise backward
error sense. Indeed, the growth factor is just 1 and is not much worse even in a
componentwise sense.

In addition, the simple eigenvalues of A are perfectly conditioned, because left
eigenvectors are also right eigenvectors; that is,

Ax=1x < x'A=Ax".

So the condition number (y”x)~! is just 1 (normalizing so ||x|| = 1). In fact, the
Schur factoring

A =UTU” (6.2)

has a diagonal matrix T (not just upper triangular) and so A is unitarily diago-
nalizable, even if A has multiple eigenvalues. Up to this point, this is true of all
real-symmetric matrices; we haven’t used positive-definiteness. If all A > 0, then
Eq. (6.2) gives the SVD of A, not just the Schur factoring! For symmetric positive-
definite matrices A, eigenvalues are singular values.

Algorithms for solving the symmetric eigenproblem are significantly faster and
more reliable than those for the unsymmetric eigenproblem, as a result of the sym-
metry (see Problem 6.16). This extends to Hermitian matrices A € C™*" with
A" = A, but not to “complex symmetric” matrices with A” = A (about which more
appears later). For example,

2
i

is complex symmetric but not Hermitian, since A7 = A but

o i

A =17 | #A.

Also, by inspection (actually by construction),

Al =Eol =T =)

6.3 Banded Matrices 275

So 1 is an eigenvalue with eigenvector [1,i]”. By symmetry, [1,i] is the left eigen-
vector, but y'x is

1 i M:l—lzo,

and so 1 is infinitely ill-conditioned as an eigenvalue (in fact, 1 is a double eigen-
value). Contrast this case with a different A, such as

i
SEHE

which is Hermitian, since A” = A, and has eigenvectors [1,i]” and [1,—i]”. The
corresponding left eigenvectors are [1, Fi], with

L i) [il] o, 6.3)

not 0, and indeed, if we normalize the eigenvectors, we have perfect condition num-
ber 1.

6.3 Banded Matrices

Perhaps the next most commonly useful structured matrices are banded, either tridi-
agonal, such as we have already seen, or as below:

2 —1 2 —1
-1 2 -1 -1 3 -1
-1 2 -1 or —lh 4 3]
-1 2 —-17 1

The first is also symmetric positive-definite, a double benefit, while the second is not
even symmetric. If the matrix has five bands, it is sometimes called pentadiagonal.
For instance, consider the matrix

2 —lh —1f
—1h 2 —lph —1/
—a —=1p 2 —1h 14|
1y —1py 2 —1)
—ls —1ph 2

which has two subdiagonals and two superdiagonals. Again, this example is sym-
metric positive-definite; it thus permits LU factoring without pivoting, in which ei-
ther the Cholesky factoring or the symmetric factoring can be banded; in fact, we
have A = LDL” with

276 6 Structured Linear Systems

1 1
-1 1 15/
L=|-18 =30 1 and D= 9/s
“2hs -B/pn 1 1027 /576
—5/36 —324/1027 1 5474 /3081

Once again, we emphasize that the zero entries need not be stored, for a banded
matrix. That is, a matrix with k£ bands occupies about & - n units of memory, not n?;
for n > 100 and k < 5, this become significant, indeed crucial. A less obvious point
(which we have made already but which we repeat here) is that A~ !is dense and
takes O(n?) storage and costs O(n?) flops to use. We are thus in better position with
a banded symmetric positive-definite matrix not to have the inverse explicitly! To
compute A~ b, just solve the sequence of problems

Lz=bDb
Dw=1z
L'x=w

instead, for O(n) cost in total. Savings are so great that we will even tolerate some in-
stability and fix that by iterative refinement (see the next chapter, and Problem 6.6).

6.4 Block Structure

The third most commonly useful structure has entries occurring in distinct blocks,
such as

L]

— —

which is “almost block diagonal” in that the blocks align on the diagonal, with
overlap. Among other things, this type of matrix occurs in the numerical solution of
boundary value problems for ODE (see Ascher et al. (1988) and Chap. 14).

A slightly different block idea occurs when matrices are naturally represented by
the Kronecker product (tensor product), defined by

(111B alzB alnB
a1B apB --- a),B
AB=| | .

auB apB - a,,B

6.5 Other Structured and Sparse Matrices 271

Finally, the following partitioned matrix,

Al A
Ar; Ay An
A= Az Az . ;
Anfl,n
An,nfl Ann

which has been carved up into blocks, is block tridiagonal. Often the blocks are the
same size, but this is not necessary. If we take, say, the matrix

A1 A
Ari Ap |’

then the blocks A1 and A,; must have the same column dimension, and the blocks
A1 and A, must have the same row dimension; in other words, the blocks must be
such that the partition is conformal.

Matrix multiplication of conformally blocked matrices follows the same sort of
rules as scalar matrix multiplication:

A A | |Bi Bio| _ [AnBii+ApRBy ABip+ApBy
A1 Ap| |Bo B A2 1B +A»By Ay Bio+A2Bo

where each product inside is itself a smaller matrix—matrix product. B has to have
the same number of rows as Aj; has columns, and so on, and these products are
not, of course, commutative. Given this, we have block LU factoring and the Schur
complement (see Appendix C.4):

{An A12:| _ [An } [I AﬁlAlz]

Azi Ay Ay I S ’

where S = Ay — A21A1_11A12 is the Schur complement of Ay, in A; clearly, A has

to be nonsingular for this to make sense (this is the block analog of a nonzero pivot).
Block algorithms have interesting data locality advantages and on some comput-

ers can perform significantly better when organized one way rather than another.

However, we note that there can be severe compromises to numerical stability as
a price.’

6.5 Other Structured and Sparse Matrices

In the context of polynomial interpolation and approximation, we often encounter
the Vandermonde matrices, defined by (V);; = ¢;(7;) for some polynomial basis
¢;(x). Obviously, the entries of this matrix are correlated. These can be inverted or

3 Here, we only warn the reader. See Higham (2002, chap. 13) for a detailed introduction to these
issues.

278 6 Structured Linear Systems

solved in O(n?) time, often stably in spite of notorious ill-conditioning. We have also
encountered circulant matrices in Example 6.2. They have remarkable properties
and can be easily solved using the Fourier transform.

Toeplitz and Hankel matrices (defined in the problems) similarly depend only on
O(n) parameters, and the Sylvester matrices consist of two stacked Toeplitz blocks,
for instance,

B fo
B fo
82 81 80
22 81 80
82 81 80

Such matrices arise in computing the GCD of f(z) = f32° + fo2> + fiz + fo and
2(z) = g22° + g1z + go. This is taken up further in Example 6.10. Many structured
matrices including Sylvester matrices have “low displacement rank”(see Kailath and
Sayed 1995). Low-displacement-rank matrices are determined by an O(n) number
of entries, and algorithms exist to take advantage of these correlations. For exam-
ple, “diagonal-plus-rank-one” matrices are useful in several applications (see, e.g.,
Gemignani 2005); and there are yet more.

In contrast, a general sparse matrix has no apparent pattern. It is characterized
by not having many nonzero entries; perhaps only a few percent of the entries of A
are nonzero. MATLAB caters to this kind of matrix, where instead of storing entries
contiguously, entries are recorded together with (i, j) indices, which necessitates
careful bookkeeping by the computer. True advantage can be taken of sparsity and
structure by using graph-theoretic ideas.*

Example 6.4. In MATLAB, we can generate random sparse matrices with the com-
mand sprand. For example, we can solve a random sparse 3,000 x 3,000 system
by executing

A=sprand (3000,3000,0.1) ;

b=sprand (3000,1,0.2) ;

x=A\b;

res=b-Axx;

norm (res, inf)

which returns the residual
[|r]| = 1.253702003323198 - 10~ 13.

The sparse random matrix here has about 10% nonzeros, so instead of (3 -103)? =
9-10° entries, it has about 9- 10° entries; MATLAB then quickly solves Ax = b (for
a random 3000 vector with about 600 nonzeros) with an accuracy in the residual of
about 10~ '3—all in time barely noticeable. q

4 See Davis (2006), whose techniques are used under the hood in MATLAB and in many other
problem-solving environments.

6.5 Other Structured and Sparse Matrices 279

Consider another example in which sparsity can be used to our advantage by
reordering matrices.

Example 6.5. Consider the example bfwa3 98 from the Florida Sparse Matrix Col-
lection.” Its spygraph is shown in Fig. 6.2. The matrix is not symmetric, though

50 |
100
150 [\Y:
200 |
250 |
300 |

350

i) . RN
0 100 200 300
nz=3678

Fig. 6.2 The structure of the sparse matrix bfwa393 from the Florida Sparse Matrix Collection

it looks as though it might be. Because it’s not very large, we can actually do a
PA = LU factoring directly, although the resulting factors are not very sparse. The
original matrix is about 2.3% nonzero and the rest zero. However, as we see in
Fig. 6.3, each of the factors L and U is about 30% full. In this example, we could
still solve the problem because it is of small enough dimension. However, for larger
problems, such “fill-in” can make the factoring completely impractical.

For various classes of matrices, it can help significantly to reorder the variables
and thus the columns. MATLAB has several routines to do so, such as colamd,
which tries to reorder the variables to get an “approximate minimal degree” order-
ing. When we do this for this example, by executing
p = colamd(Problem.A);

[L,U,P] = 1lu(Problem.A(:,p));
figure(3), spy(L, 'k');

we get the factor shown in Fig. 6.4. <

Finally, we mention the black-box matrix. This is a matrix given only in proce-
dure form, which perhaps all you are permitted to do with is call with a vector v,

5 Available at http://www.cise.ufl.edu/research/sparse/matrices/Bai/

bfwa398.html.

http://www.cise.ufl.edu/research/sparse/matrices/Bai/bfwa398.html
http://www.cise.ufl.edu/research/sparse/matrices/Bai/bfwa398.html

280 6 Structured Linear Systems

501
100 :
150 -
200
250 f
300

350 |

0 100 200 300
nz=45899

Fig. 6.3 The LU factoring of bfwa398 exhibits considerable fill-in. The factors are not sparse

0

50

100 |

150

200

250

300

350

= jgpe—
0 100 200 300
nz=4602

Fig. 6.4 Using colamd significantly reduces the fill-in for this example, bfwa398

and get back another vector w together with a certificate that w really is Av (an
example of this is the Seneca function on page 272). You could, of course, probe the
procedure n times with v=e;,v=e;,...,v = e, in turn and recover the matrix: But
if n = 10°, perhaps you don’t want to do that (even one call may take a while!).
What can be done with just a black box? We can take vy at random (or,
for example, if we’re trying to solve Ax = b, we might try vo = b) and com-

6.5 Other Structured and Sparse Matrices 281

pute the sequence v, = BB(v;_1), that is, v, = Av,_| = Akvo. The sequence
vo,Avo, A%V, ..., Akvy is called a Krylov sequence, and if we can discover (some-
how) a relation between these vectors, say

oovo+onvy+ -+ ogvp =0,

then (if oy # 0), we have

and so we will have solved Ax = b. This trick works in exact arithmetic® because if
p(x) is the minimal polynomial of A, then

k
p(A) =Y pA =0
j=0
(note that p(x) divides the characteristic polynomial), and thus
k ' k -
pol=—Y pjA/=A(= pA7).

j=1 j=1

As aresult, we have effectively identified the inverse. To discover the 04s, you only

have to solve a (k— 1) x (k— 1) linear system.

Example 6.6. In Chap. 11, we will take up finite differences, which replace deriva-
tives with sums of function values, somewhat like

foe+h) = flx—h)

2
o +0(h?).

fx) =

The use of finite differences to approximate derivatives generates sparse matrices
from linear differential equations. MATLAB has several two-dimensional grids built
into its example function numgrid and has an approximation to the Laplacian op-
erator V2u called delsq that relates the value of u(x,y) to the four surrounding
values u(x — h,y), u(x+h,y), u(x,y +h), and u(x,y — h). At each node, therefore,
there is an equation relating these five values. There may be many nodes and equa-
tions, but each one relates only a few variables. Therefore, the matrix will be sparse.
Asking for a square 5 x 5 grid by executing numgrid (’ S’ , 5) returns

[eNeNoNeNel
S W= O
[N NV, BN NN e
O O 00O
[eNeNoNeNel

6 Using exact arithmetic, this is really practical only if k < n (Chen et al. 2002).

282 6 Structured Linear Systems

The boundary conditions u(x,y) = 0 are applied on the edges, leaving only the
values at the nine interior nodes unknown. The finite-difference Laplacian matrix
is constructed and shown by

A = delsg(numgrid('S',5));
spy (A, 'k")

This graph is shown in Fig. 6.5. Larger square grids are sparser; if one makes the
grids large enough, the spy picture looks as though it has a thick diagonal, but it’s
really banded. The matrix is symmetric.

0

A

4.......

A

6 L

10O 5 10
nz =33

Fig. 6.5 The Laplacian approximation on a 5 x 5 square grid, numbered as in the text

Other built-in grids are available. See the documentation for numgrid for a
listing. The C option cuts out a semicircular section of the square grid (as closely
as it can, given the discretization). See Fig. 6.6. When we construct the Laplacian
approximation on this 20 x 20 grid, we get a “widening” band matrix. See Fig. 6.7.

10

15

20

Fig. 6.6 The result of spy (numgrid(’C’,20), ‘k.’)

6.6 Structured Backward Error and Conditioning 283

0

50
100 \\

150

200

250

0 100 200
nz=1228

Fig. 6.7 The shape of the discrete Laplacian on the 20 x 20 grid in Fig. 6.6. Notice that the bands
appear to spread apart as we move farther down the matrix

This entails “fill-in” if we perform Cholesky factoring: The original A has 1228
nonzero entries out of a possible 260 x 260, or about 1.8%. This count is from the
call nnz (A) . If we form

L =1u(A);

we find that L has 3971 nonzero entries, meaning that about 5% of the possible
entries are nonzero. This growth of the number of nonzero entries (a factor of about
three for n = 20, and this factor grows linearly with n) is not terribly significant
for this example, but can be a problem for other examples. Sometimes the grid
numbering needs to be reordered (and can be reordered) to minimize the bandwidth
or minimize the fill-in in the factoring. For an example of that, see the sparsity demo
(type doc sparsity at the command line, or simply just sparsity) and also
the documentation for symamd. N

6.6 Structured Backward Error and Conditioning

For dense matrices, we have concentrated on the relatively accessible normwise sta-
bility results, for instance, that the matrix R computed by Householder QR factoring
is the exact R of A +E with ||E|| < c,uum||A||. However, for matrices with particular
structure—because they either are sparse or have correlated entries—some addi-
tional guarantees may be required. In this section, we examine such cases.

6.6.1 Structured Backward Errors and Componentwise Bounds

When they are available, componentwise bounds—for example, for triangular sys-
tems, (U+E)%X = b with |e;j| < ¢, tp|u;j|—are much superior: Tiny but important

284 6 Structured Linear Systems

entries u;; are not potentially polluted by errors from larger coefficients, due to the
fact that ||U|| could be very much larger than |u;;|. This is a real difficulty with many
problems, and in particular sometimes with the SVD: The smaller singular values
may not be accurate, especially if o; < uy07. As a consequence, a componentwise
backward error bound is a tighter constraint on an algorithm; it is easier to satisfy
normwise bounds, since a given solution may require a larger € to have a compo-
nentwise backward error of €. In some structured cases, componentwise bounds can
be obtained.
The componentwise backward error Higham (2002,122)

wgs(y) :=min{e | (A+AA)y =b+Ab,|AA| < ¢E,|Ab| < ef} (6.4)

uses absolute values on matrices and vectors to mean that the inequalities hold com-
ponentwise: For all i, j,

|Aa,-j| < €ej; and |Ab,‘| <ef;.

e;j and f; are assumed to be nonnegative, and some, though not all, may be zero. In
such a case, no change is permitted in that particular component, which may rep-
resent an intrinsic coefficient, in Stetter’s terminology; If the coefficient has arisen
from measurement, then it may more reasonably be permitted to change; Stetter
calls such a coefficient empiric.

We have at hand all the machinery we need to prove the following version of a
classic result in structured backward error, originally due to Oettli et al. (1965).

Theorem 6.1. If the matrices A and E are elements of C"*", the vectors X, b, and £
are in C", and the elements of E and f are nonnegative, then the minimum structured
backward error € is

e=min{r: (A+AA)x=b+ Ab & |[AA| <(E & |Ab| < f}
|ril
— 6.5
11;11?2;1 27216i7j|xj'|+fi7 (©6.5)

where ¥ = b — AX is the residual. If any r; # 0 while the denominator is zero, the
structured backward error is infinite.

Proof. As pointed out in Oettli et al. (1965), we may consider this problem one row
at a time. Taking the ith row of the rearrangement AAx — Ab =r, we have

n
2 Aai‘jxj — Ab,’ =1r;. (6.6)
Jj=1
We define the components of the (n + 1)-vectors ¢ and d as follows:

Adijfe,;, ife;j #0 .
= ’ I 7 <j<
€ { 0, otherwise l<j=n

om0 £0
Cntl =

0, otherwise .

6.6 Structured Backward Error and Conditioning 285

Then putd; =e; jxjfor 1 < j <nandd,;; = — f;. Equation (6.6) is then just ¢-d =
ri, and we may use the Holder inequality (see Appendix C.2) to find the minimum
infinity norm of the vector ¢. Holder’s inequality gives

[ril = [e-d| < [le[||d]}x

with equality iff each |c;| = A4, a constant, and all the complex angles of ¢;d; = 0,
again a constant. That is,

el > oA
~ldyy
and note that the right-hand side is independent of our choice of Aa; ; or Ab;. Putting
cj =|cjlexp(ig;) (here i is the square root of —1, not to be confused with the row
index) and d; = |dj|exp(iy;), we must then have ¢; + y; = 6. Notice that the y;
are given—they are the arguments of the x; for 1 < j <n, and y, | = 7. Therefore,
cj=|cjlexp(i(6 —y;)). Using |c;| = A and substituting into ¢-d = r;, we may solve
for A:

e“eri

A= .
2 eiixj+ fi
j=1
If r; = 0, we simply take the perturbations to be zero, regardless. If r; # 0, then this
expression for A gives

o
Aa; ;= eijxj+fi 7!

j=1

oo otherwise

n
— el Y e+ fi 70
Ab; = zewx}'-kfi J=1
j=1

oo otherwise

By the Holder inequality, each entry in ¢ has the same magnitude, which means
that with this choice we have the guaranteed minimum ¢ for the ith row. Taking the
maximum over all rows gives us the theorem. i

Example 6.7. Consider the matrix

0 0 0 —1
A_ |l 0 0 eltet2
10 1 0 2e1—-2¢e-2
0 0 1 elqe+2

This kind of matrix will be taken up in detail in Sect. 6.6.3. The characteristic poly-
nomial of this matrix is (A —1)2(A — €)(A — /&), which is a “reciprocal polynomial”

286 6 Structured Linear Systems

in that all its roots come in reciprocal pairs. The polynomial is monic, which means
that its trailing coefficient (in the monomial basis, which we’re using here) is also
1. Because this is a “companion matrix” (we explain more about this in the next
section), the only matrix entries that can reasonably be perturbed are the ones com-
ing from the coefficients of the polynomial, namely, the last column. Because this is
a reciprocal polynomial, the (1,4) entry should not be changed either. This means
that the matrix E can be taken quite reasonably to be zero unless j =4 and i = 2,
3,or4. Taking e; ; = |a,~7 j| in those cases also seems reasonable; we will allow only
relatively small perturbations in those coefficients.

Let € = 3.27 x 1073, We choose as our right-hand side an approximate eigenvec-
tor for the double eigenvalue 1, namely,

[(—0.0158857 — 4.6244530i) - 1078]
0.0048580 + 1.4142050i
—0.0044964 — 1.4142060i

(0.0147031 +4.6244550i) - 10~% |

When we solve this linear system using LU factoring, we get an answer near

[(—0.0142444 — 5.4172453i) - 1077]
0.0052197 + 1.4142051i
—0.0048580 — 1.4142058i
| (0.0158857 +4.6244528) - 1078 |

The residual, computed in 30 digits precision but printed only to 2 significant figures
here, is

0.0 +0.0i
—2.0-10718-6.5-10716;
—1.0-10717-32.10715
—1.6-10718-6.2.10716;

Since the residual in the first component is exactly zero, no change need be made
in the first row of A or b to accommodate it—which is lucky, as there are no co-
efficients that can be perturbed in the first row of A. For the other rows, we have
Zei7j|xj| = |cl,'74||)C4|, and so

o Iril
" Jaiallxa + |bil”

which gives 2.3 x 1071%, 7.5 x 10716, and 4.4 x 10716 for i = 2, 3, and 4. Thus, the
maximum structured backward error is 7.5 x 10716,

If instead we distributed this error over all entries of A, the overall size might be
less (the optimum cannot be larger, of course), but it probably isn’t much less; after
all, it can’t be much smaller than the unit roundoff, after scaling. N

6.6 Structured Backward Error and Conditioning 287

Although the structured backward error must be at least as large as the unstruc-
tured backward error, a structured condition number may be much, much smaller
than the unstructured condition number. Perturbations that don’t change tiny but
important components much may produce better-quality solutions. The following
definition makes this idea more precise. Let

condg ¢(A,X) 1= hm sup{ |Ax] (A+AA)(x+Ax) =b+ Ab,

H ||°°

|AA| < €E,|Ab| < Ef} . (6.7)
In the important case when E = |A| and f = |b|, this can be shown to be within a
factor of 2 of

A~ A x| [l

cond(A,x) = i

(6.8)

(a ratio of two vector norms, with a product by two positive matrices |A| and [A ™!
on top). See Problem 6.10. This is (up to an irrelevant constant factor) bounded by
what is called the Skeel condition number:

cond(A) = cond(A,e) = || A7 |A|]|« < Ko (A). (6.9)

The Skeel condition number is invariant under row scaling DAx = Db. Moreover,
the gain can be great:

min { k..(DA)| D is diagonal} = cond(A),

and if Dg equilibrates the rows of A, then

Ko(A) _ ond(A) < xea(A).

We will see further discussion of this in the next chapter. The comp