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    Abstract     Besides normal hematopoiesis, microRNAs (miRNAs) have been found 
to be essentially involved in the development of various hematological malignan-
cies. Here, we review the role of miRNAs in lymphoid neoplasias, with focus on 
lymphomas as well as myeloid malignancies such as acute myeloid leukemia.  

  Keywords     miRNA   •   Cancer   •   Leukemia   •   Lymphoma   •   Oncogene   •   Tumor 
 suppressor   •   Therapy   •   Survival  

5.1         Introduction 

 Much evidence implicates miRNAs as contributing factors in the pathogenesis of 
hematological neoplasias. A provocative observation made by Calin et al. was that 
a large number of known recurrent genomic alterations involved in cancer are in 
close proximity to miRNA genes, suggesting that these rearrangements affect the 
expression of miRNAs with tumor suppressive or oncogenic properties. Indeed, 
multiple miRNAs have been implied in the pathogenesis of various neoplasias. 
Especially in chronic lymphocytic leukemia (CLL), the fi rst connection between a 
frequent loss of chromosomal region 13q14.2 containing two miRNAs (miR-15a 
and miR-16-1) and the pathogenesis of the disease was discovered. Therefore, the 
pathophysiological role of miRNAs in lymphomas was recognized even before their 
regulatory role in normal hematopoiesis.  
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5.2     Chronic Lymphocytic Leukemia 

 CLL is the most frequent form of leukemia in adults in the western world, affecting 
roughly 4 out of 100,000 people per year with a prevalence in men and a median age 
at diagnosis of 72 years [ 1 ]. People affected by CLL are usually not treated right 
from the time-point of diagnosis but with developing symptoms or progression to 
advanced stage [ 2 ]. Treatment has changed throughout the last decades switching 
from single substance treatment (with Fludarabine) to combined chemotherapy pro-
tocols (including Fludarabine and Chlorambucil) and with the advent of monoclo-
nal antibodies to chemoimmunotherapy (with Fludarabine, Chlorambucil, and 
Rituximab) showing signifi cant improvement in complete response (CR) rates [ 3 ]. 
Deletion of chromosome 17p and mutation of p53 have been clearly identifi ed as 
predictive for refractoriness, but a considerable portion of cases with refractory dis-
ease or insuffi cient response and early relapse might not exhibit these established 
markers [ 4 ,  5 ]. Characterizing the genetic background and clinical presentation of 
CLL helped to identify risk groups the clinician can use for models to predict the 
clinical course, for management of follow up and rational treatment choice [ 5 ]. 

 Classical features include recurring genomic aberrations and gene mutations 
such as TP53 [ 6 ] and ATM [ 7 ], somatic mutations in the variable regions of the 
immunoglobulin (Ig) heavy chain (IGHV) genes [ 8 ,  9 ], biased IGHV usage and 
stereotyped B cell receptors (BCRs) [ 8 ,  10 ,  11 ]. In about 80 % of all CLL cases 
chromosomal aberrations can be identifi ed, mostly showing deletion of chromo-
some 13q14 (55 %) or 11q (18 %), trisomy of chromosome 12 (16 %), or deletion 
of chromosome 17p (7 %) [ 12 ]. Central genes identifi ed at the minimal deleted 
region are the ataxia teleangiectasia-mutated (ATM) gene spanning the chromo-
some bands 11q22.3–q23.1 [ 13 ], the tumor suppressor gene TP53 at 17p13 [ 14 ,  15 ] 
and the cluster of two miRNAs named miR-15a and miR-16-1 within the DLEU2 
gene on chromosome 13q14.2 [ 16 ]. 

 The search for a putative target-gene of these miRNAs identifi ed the BCL-2 gene 
by sequence-complementarity with the seed regions of both miRNAs. Functional 
validation confi rmed the potential for posttranscriptional repression of BCL2 with 
an increased rate of apoptosis in MEG-01 cells in vitro and decreased tumorigenic-
ity in xenograft mouse-models upon transfection with miR-15/16 [ 17 ,  18 ]. By gen-
erating a mouse model with a deletion of the DLEU2/miR-15a/16-1 cluster, Ulf 
Klein and colleagues proved the pathogenic effect mediated through the loss of 
these miRNAs. Mice with loss of the minimal deleted region or with sole miR-
15a/16-1 deletion both developed clonal B-cell lymphoproliferation with a slightly 
pronounced effect when DLEU2 was affected as well. The loss of miR-15a and 
miR-16- 1 affected growth, cell-cycle control and apoptosis, though the effect on 
BCL2 remains controversial [ 19 ]. As the involvement of DLEU2 already implicated 
additional mechanisms beside the loss of miR-15a and miR-16-1 that foster lym-
phoma development, Lia and colleagues provided another mouse model in which 
DLEU7 and RNASEH2B were additionally knocked out. Such mice developed 
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more aggressive lymphomas and presented with a phenotype of CLL or SLL (small 
 lymphocytic lymphoma) [ 20 ]. Most interestingly in the context of these two mouse- 
model studies is the observation that patients with monoallelic 13q14 deletion tend 
to express higher miR-15a/16-1 levels than patients with a biallelic 13q14 deletion 
[ 21 ] and the growth kinetics of lymphocytes is slower in patients with a monoallelic 
compared to biallelic 13q14 deletion [ 22 ]. Although this phenotypes suggest differ-
ences in the clinical course, current studies draw a heterogeneous picture without a 
clear prognostic difference [ 23 ,  24 ]. With ongoing research, the functional network 
of miR-15/miR-16 steadily grows in complexity. Central target genes regulated by 
these miRNAs are involved in cell-cycle, cell-growth and apoptosis. Moreover, a 
regulatory loop with TP53 has been unmasked in a recent study by Fabbri and 
 colleagues. While p53 can lead to the induction of miR-15a/miR-16-1 through 
upstream binding sites, the miRNA themselves specifi cally target TP53 and reduce 
protein and mRNA-levels [ 25 ]. Beside deletions or rare mutations leading to defec-
tive precursor transcript processing [ 26 ] epigenetic mechanisms have recently been 
identifi ed as well. In the study by Sampath et al., epigenetic silencing of miR-15a, 
miR-16, and miR-29b mediated by histone deacetylases has been found in one-third 
of all investigated CLL samples. Exposure to histone deacetylases inhibitors led to 
the induction of all of these miRNAs and was associated with declines in the levels 
of MCL-1 but not BCL-2 [ 27 ]. With respect to the underlying (cyto-) genetic and 
newly identifi ed epigenetic abnormalities and its clinical presentation, specifi c 
miRNA expression patterns help to uncover individual mechanims involved in CLL 
subgroups and to sharpen prognostic models [ 28 – 30 ]. Although the majority of 
deregulated miRNAs are not located at the commonly deleted regions in CLL, the 
regulatory changes seem to converge in similar functional routes as found for the 
p53-pathway. MiRNAs found to be specifi cally deregulated in conditions with dys-
functional p53 include miR-151-3p, miR-29c, miR-34a (downregulated) [ 28 ], miR-
21, miR-155, miR-15a (upregulated) miR-34a, miR-181b (downregulated) [ 30 ], 
miR-34a, miR-29c, miR-17-5p (downregulated) [ 31 ]. Changes of miR-34a levels 
seem crucial, since this miRNA has been identifi ed as a direct target of p53, taking 
a central part in the DNA-damage response [ 32 – 34 ]. The functional role and clinical 
relevance in CLL has been confi rmed in a recent study showing that irradiation of 
CLL cells without functional p53 did not lead to induction of miR-34a. Low levels of 
miR-34a were found in association with fl udarabine-refractory disease and impaired 
DNA-damage response even in cases without 17p-deletion or TP53 mutation. 

 Profi ling studies aiming to discover miRNAs that could be further used as sur-
rogate or prognostic markers were able to identify specifi c patterns of deregulation. 

 Initial studies using supervised approaches generated characteristic profi les 
based on the IGHV mutation status and ZAP-70 expression [ 26 ,  35 ]. Subsequent 
studies were able to confi rm the association of decreased miR-223 levels and mem-
bers of the miR-29 family with unmutated IGHV genes and disease progression [ 11 , 
 21 ,  29 ,  36 ]. Shorter treatment free survival and reduced overall survival was shown 
for cases with low miR-223 and miR-29c. By using a specifi cally developed score 
based on the expression levels of these two miRNAs, ZAP-70 and LPL levels, 
Stamatopoulos et al. were even able to distinguish prognostic subgroups [ 29 ]. 
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 With the focus on miRNAs that correlate with 17p-deletion in CLL, one study 
was able to identify two miRNAs with prognostic relevance irrespective of other 
clinical-pathologic factors. Low miR-181b expression and high miR-21 expression 
were identifi ed as poor prognostic features and signifi cantly associated with OS and 
PFS [ 30 ]. Confi rmation of the prognostic relevance of miR-181b came from a sub-
sequent study that analyzed miRNA expression changes in patients with stable and 
progressive CLL. By investigating patient-matched and sequentially sampled leuke-
mic cells, miR-181b was found to decrease over time only in samples derived from 
patients with progressive disease [ 37 ]. Putative targets of miR-181b include the 
myeloid cell leukemia sequence 1 gene (MCL-1) [ 37 ], a member of the BCL-2 
 family with anti-apoptotic function, and the pleomorphic adenoma gene 1 (PLAG1) 
oncogene [ 38 ]. Of note in this context is the observation that miR-181 together with 
miR-29c have previously been shown to be downregulated in cases with 11q deletion 
and found to inversely correlate with the TCL1-oncogene [ 39 ]. Interestingly, the 
 miR- 29 family also downregulates MCL1 [ 40 ], which itself is associated with unfa-
vorable prognostic factors and disease course [ 41 ]. The example of concomitant 
downregulation of miR-181 and miR-29 highlights the functional synergism 
 miRNAs can generate in pathogenic circumstances.  

5.3     Follicular Lymphoma 

 Follicular lymphoma (FL) represents one of the most common non-Hodgkin lym-
phomas in the western world. Its incidence approximates 2.6 per 100,000 with an 
median age ranging between 60 and 70 years at diagnosis with a slight predomi-
nance in females: FL typically exhibits the t(14;18)(q32;q21) chromosomal translo-
cation with subsequent proximity of the BCL2 gene on chromosome 18 and the 
immunoglobulin heavy chain gene locus which result in high levels of the anti- 
apoptotic protein BCL-2. Despite its frequency, literature covering the relevance of 
miRNAs in this disease is rare. Roehle et al. investigated the lymphoma specifi c 
expression signature in DLBCL, FL and non-neoplastic lymph nodes and developed 
a classifi cation tree consisting of four miRNAs (miR-330, miR-210, miR-17-5p, 
and miR-106b) with which most cases were assigned to the  correct entity [ 42 ]. 

 Though FL usually shows a slow and indolent clinical course transformation to 
more aggressive DLBCL takes place in a considerable portion of cases [ 43 ,  44 ]. To 
detect transformation associated changes in miRNA expression levels, Lawrie 
et al. compared transformed DLBCL cases with de novo DLBCL and FL cases with 
subsequent transformation to cases without transformation at a median follow-up of 
5 years. 

 Of note, prediction of transformation for FL cases was possible by utilizing six 
miRNAs (miR-223, miR-217, miR-222, miR-221, and let-7i and let-7b) and there-
fore highlights the potential as novel prognostic marker. In addition, de novo 
DLBCL and transformed cases were differentiated based on a 12 miRNA signature 
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[ 45 ]. Despite FL mostly evolves through its characteristic translocation, a subset of 
approximately 10 % of cases do not exhibit the t(14;18)(q32;q21) and mostly BCL2 
is not expressed. Analysis of differences in miRNA levels of t(14;18)-positive and 
t(14;18)-negative FL identifi ed 17 miRNAs to be downregulated in FL lacking 
t(14;18). Using a highly sophisticated approach, the authors succeeded to correlate 
fi ve downregulated miRNAs (miR-16, miR-26a, miR-101, miR-29c, and miR-138) 
in the t(14;18)-negative FL subset with signifi cant mRNA expression changes of 
their predicted targets. Validation of these miRNAs using qPCR confi rmed the 
downregulation of miR-26a, miR-29c, miR-138, and most signifi cantly miR-16. 
The investigation of putative miR-16 targets like CHEK1 and CDK6 by immuno-
histochemistry revealed an inverse correlation with the respective protein expres-
sion levels [ 46 ].  

5.4     Mantle Cell Lymphoma 

 Mantle cell lymphomas (MCL) represent a highly aggressive form of lymphoma 
and account for 3–10 % of all non-Hodgkin lymphomas that manifest in advanced 
stage with predominance in male patients at higher age [ 47 ,  48 ]. Outcome with 
conventional therapies is poor and median survival ranges around 3–4 years. 
However, novel approaches with intensive regimen, combining immuno- 
chemotherapies followed by autologous stem-cell-transplantation currently lead the 
way to considerable improvement [ 49 ]. The central pathogenic event in MCL is 
t(11;14)(q13;q32) which links the cyclin D1 gene (CCND1) to the immunoglobulin 
heavy chain promoter and leads to consecutive overexpression of cyclin D1 with 
subsequent deregulation of the cell cycle control. In addition, cell-cycle regulators 
like BMI1, INK4a, ARF, CDK4, and RB1 and DNA-damage-pathway members 
like ATM, CHK2, or p53 are frequently affected by chromosomal alteration or 
mutation [ 50 ,  51 ]. 

 Cyclin D1 mRNA transcripts without a full-length 3′ UTR are often detected in 
more aggressive MCL variants with a high proliferation rate and short clinical 
course [ 52 ,  53 ]. Highly interesting in this context is the role of miR-15/miR-16 
which regulate Cyclin D1 expression by targeting its 3′ UTR. Truncation of the 
gene therefore renders MCL cases unresponsive to the posttranscriptional regula-
tion of CCND1 [ 54 ,  55 ]. Moreover, other cell-cycle regulators like CDK6 have been 
identifi ed as miRNA targets. CDK6 belongs to the family of cyclin-dependent pro-
tein kinases and, as the name suggests, acts together with Cyclin D1 (and CDK4) to 
accelerate proliferation. One profi ling-study identifi ed the miR-29 family as regula-
tors of CDK6 and found that patients with signifi cant downregulated miR-29 levels 
had a less favorable clinical course than those with higher expression of miR-29 
[ 56 ]. Another study performed by Navarro et al., investigated the expression of 86 
miRNAs that are located at commonly disrupted genomic regions in MCL. Two 
clusters characterized by different mutational status of the immunoglobulin genes, 
proliferation signature, and number of genomic alterations were detected based on 
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an unsupervised analysis of the generated miRNA expression profi les. Like in 
DLBCL, overexpression of miR-17-5p/miR-20a was found in aggressive tumors 
with high MYC levels [ 57 ]. Another profi ling study, using 23 primary MCL sam-
ples and 8 MCL cell lines identifi ed a MCL miRNA-signature consisting of 117 
miRNAs when compared to that of 11 reactive lymphoid tissues and CD19þ/IgDþ/
CD27 lymph node-sorted B cells, respectively. MiR-617, miR-370 and miR-654 
were found among the most signifi cantly upregulated miRNAs whereas miR-31, 
miR-148a and miR-27b ranged among the most signifi cantly downregulated ones. 
A subsequent bioinformatic approach by combining regular gene expression and 
miRNA-profi les with target-prediction databases hinted to several overactive routes 
including CD40, NF-kB, and mitogen-activated protein kinase (MAPK) pathways. 
Moreover, the authors provide evidence that downregulation of miR-26a leads to 
NF-kB activation potentially by targeting MAP3K2. They show that induced 
expression of miR-26a leads to abrogation of the nuclear translocation of RelA. 
Similar to other studies on different cancer types, the authors here identify miR-20b 
as signifi cantly associated with prognosis in MCL. Patients exhibiting low levels of 
miR-20b had a higher probability for longer survival than patients with high miR- 
20b levels [ 58 ].  

5.5     Diffuse Large B-Cell Lymphoma 

 Diffuse large B-cell lymphoma (DLBCL) belongs to the most frequent aggressive 
B-cell neoplasms with an incidence of approx. 25,000 cases per year in the US [ 59 ]. 
Signifi cant progress in treatment effi cacy has been achieved through the addition of 
rituximab to CHOP-like regimen [ 60 – 63 ]. However, treatment outcome remains 
variable due to the heterogeneity DLBCL presents with regards to clinical aspects, 
biology and pathogenesis. By the use of gene-expression profi ling it was possible to 
link the molecular phenotype of biologically distinct groups to the clinical presenta-
tion. DLBCL can be split in three major subtypes, namely, the germinal-center 
B-cell-like (GCB) DLBCL, the activated B-cell-like (ABC) DLBCL, and the pri-
mary mediastinal DLBCL (PMBCL) with survival rates of 59, 30, and 64 % after 
5-years [ 64 – 66 ]. Molecular characteristics of ABC-DLBCL include overexpression 
of BCL2 and amplifi cation of its locus, deletion of the INK4A–ARF locus, trisomy 
3 with consecutive upregulation of FOXP1 and a constant activation of the nuclear 
factor (NF)-κB pathway. GCB-DLBCL show recurrent t(14;18), TP53 mutations, 
loss of PTEN and amplifi cation of the oncogenic miR-17-92 cluster as well as the 
proto-oncogene REL. Similar to the ABC-subtype, PMBCL present with overactive 
NF-κB signaling, in addition PMBCL show frequent amplifi cation of a chromo-
some region on 9p24 encoding JAK2 and loss or mutation of its suppressor SOCS1 
[ 67 ,  68 ]. Extending the molecular characterization of DLBCL to the miRNA level 
helped to identify further pathogenic mechanisms. The lymphoma specifi c rele-
vance of the BIC-locus transcript has been known since the end of the 1980s [ 69 ]. 
However, suggestions for the classifi cation and a putative role as noncoding RNA 
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[ 70 ,  71 ] as well as the observation that miR-155 is encoded in the BIC- transcript 
were published several years later [ 72 ]. Consequently miR-155 has been classifi ed 
as an oncogenic acting miRNA due to its frequent overexpression in a variety of 
B-cell neoplasms [ 72 ,  73 ]. Following experiments confi rmed its oncogenic poten-
tial in transgenic mice that overexpress miR-155 and develop a pre-B- 
lymphoproliferative disease with consecutive progression to high-grade B-cell 
neoplasms [ 74 ]. Mechanistically, the downregulation of SHIP, a negative regulator 
of PI3K-signaling, and C/EBPβ have been attributed to the lymphoma mediating 
effects of this miRNA [ 75 ,  76 ]. MiR-155 shows higher levels in PMBCL and ABC- 
than in GCB-DLBCL which may be attributed to the constitutive activation of the 
(NF-κB) pathway in these DLBCL subtypes [ 66 ,  77 ,  78 ], beside AP1 and MYB, 
NF-κB has been identifi ed as central regulator of miR-155 expression [ 79 ,  80 ] and 
sustained upregulation of miR-155 was found to happen in response to autocrine 
stimulation by the tumor necrosis factor α (TNFα) [ 76 ]. GCB-DLBCL have lower 
levels of miR-155, however, the GCB-type specifi c loss of PTEN [ 81 ,  82 ] or ampli-
fi cation of the miR-17-92 cluster [ 82 ] which targets PTEN [ 83 ] point to the observed 
importance of maintaining PI3K-signaling in DLBCL [ 84 ]. Overexpression of the 
miR-17-92 cluster in lymphomas [ 85 ] and a MYC driven overexpression in DLBCL 
has been confi rmed in independent studies [ 82 ,  86 ]. By using an integrative approach 
through combining the results of miR specifi c array CGH and microarray based 
miRNA expression profi ling, Li et al. were able to generate a detailed map of com-
monly disrupted miRNA-loci in the DLBCL genome [ 86 ]. Hierarchical clustering 
of the investigated miRNAs separated the analyzed DLBCLs in three subsets inde-
pendent of the hitherto identifi ed DLBCL subclasses but with respect to the tran-
scriptional level of MYC. Generated subgroup profi les were associated with 
transcriptional levels of MYC, infl uenced by genomic abnormalities and showed 
signifi cant overlap with the discriminating miRNA profi les of B-cell subsets [ 86 ]. 
The central role for malignant transformation has been shown in a mouse B-cell 
lymphoma model where enforced expression of the miR-17-92 cluster acted with 
MYC expression to accelerate tumor development [ 87 ]. This miRNA cluster was 
identifi ed to regulate the cell cycle and inhibit apoptosis that takes place at a higher 
rate if the miR-17-92 cluster is not expressed. Essentially, this effect was attributed 
to miR-17 and miR-20a by targeting the E2F family members [ 88 – 90 ]. With respect 
to the seed sequence homology the miR-17-92 cluster consists of the families miR- 
17/miR-20a, miR-18a, miR-19a/1miR-19b, and miR-92a. The selective deletion or 
overexpression of single family members of this cluster helped to identify the miR- 
19 family as most relevant for MYC-induced lymphomagenesis with PTEN as its 
main target [ 91 ,  92 ]. Moreover the miR-17-92 cluster was found to target the cyclin- 
dependent kinase inhibitor CDKN1A/p21 with consecutive increase in cell growth 
and to regulate the proapoptotic protein Bim, leading to overexpression of BCL-2 
[ 93 ]. Uncontrolled expression of the clusters miR-17-92/miR-106b-25 and/or other 
family members in the miR-106a-363 cluster may also guide malignant cells to 
escape from TGFβ-dependent cell cycle arrest and apoptosis as previously exempli-
fi ed [ 94 ]. Since miR-155 targets SMAD5 and renders DLBCL resistant to growth 
inhibitory effects that are mediated through cytokines of the bone morphogenetic 

5 MicroRNAs in Hematologic Malignancies



74

protein (BMP) family and transforming growth factor (TGF)-β [ 95 ], the  cooperative 
action of these miRNAs represents an exemplary model on how different molecular 
routes may converge in pathogenic effects. Clinical relevance was found by the 
observation that DLBCL cases with upregulation of miR-17-92 and its paralog 
miR-106a-363 had the worst overall survival (OS) in one study [ 86 ].  

5.6     Primary CNS Lymphoma 

 Beside the frequent occurrence of DLBCL without involvement of the central ner-
vous system, a rare subtype of lymphoma presents with isolated manifestation in the 
brain, spinal cord or related structures and is therefore called primary CNS lym-
phoma (PCNSL). The majority of these cases can be classifi ed as DLBCL and show 
an invariably poor outcome [ 96 ]. Data on differential regulation of miRNAs in this 
lymphoma-subtype and a specifi c pathogenic role is scarce due to the rare occur-
rence and diffi cult sampling procedure. A recent study investigated the miRNA 
expression in 11 samples of PCNSL compared to 10 samples of nodal DLBCL. 18 
miRNAs turned out to be differentially regulated. Upregulated miRNAs in PCNSL 
were associated with the Myc-pathway (miR-17-5p, miR-20a, miR-9), blocking of 
terminal B-cell differentiation (miR-9, miR-30b/c) and infl ammatory cytokines 
(miR-155), whereas downregulated miRNAs were found to involve miRNAs with 
ascribed tumor-suppressor function (miR-199a, miR-214, miR-193b, miR-145). 
Amongst brain specifi c miRNAs, only miR-9 was found to be upregulated in 
PCNSL cases [ 97 ]. Another study analyzed the differential expression of 15 miR-
NAs (miR-15a, miR-15b, miR-16, miR-17-3p, miR-17-5p, miR-18a, miR-19a, 
miR-19b, miR-20a, miR-21, miR-92, miR-127, miR-155, miR-181a, and miR-221) 
in 19 nodal cases without extranodal dissemination, 9 cases of PCNSL, 11 cases of 
primary testicular and 11 cases of other primary extranodal DLBCL and identifi ed 
a signifi cantly higher expression level of miR-17-5p in the cases with CNS manifes-
tation [ 98 ]. Both studies did not identify differential expression between germinal 
and non-germinal center DLBCL cases of any of the investigated miRNAs [ 97 ,  98 ]. 

 Investigations on the prognostic value of miRNAs in DLBCL identifi ed several 
miRNAs that may help to predict the clinical course. Montes-Moreno et al. retro-
spectively analyzed a series of 258 de novo cases of DLBCL treated with standard 
protocols (243 Patients of this cohort were treated with R-CHOP) and identifi ed a 
set of 9 miRNAs with prognostic relevance. Seven of these miRNAs (miR-221, 
miR-222,miR-331, miR-451, miR-28, miR-151, and miR-148a) were identifi ed 
with respect to the putative cellular origin as previously described [ 99 ]. Two addi-
tional, independent prognostic miRNAs were miR-93 and miR-491. The authors 
succeeded to identify a high-risk group of patients with a 2-year OS and a progres-
sion free survival (PFS) probability of <50 % by applying a combined model includ-
ing the IPI score [ 100 ]. Lawrie et al. who evaluated three miRNAs (miR-21, 
miR-155, or miR-221) which were differentially expressed between ABC and 
GCB-DLBCL identifi ed miR-21 as independent prognostic marker. In this 
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retrospective series of 49 de novo DLBCL, high miR-21 expression was associated 
with longer relapse free survival [ 101 ]. The specifi c evaluation of three miRNAs 
(miR- 21, miR-155, and miR-222) in another study on 106 DLBCL cases uniformly 
treated with R-CHOP therapy found a correlation of high levels of miR-222 and 
shorter OS and PFS [ 102 ]. 11 miRNAs that had been previously identifi ed as vari-
ably expressed in DLBCL were investigated in an independent study in patients 
uniformly treated with R-CHOP, high levels of miR-18a were correlated with 
shorter OS, high levels of miR-181a were associated with longer PFS and increase 
expression miR-222 with shorter PFS [ 103 ].  

5.7     Burkitt’s Lymphoma 

 Burkitt’s Lymphoma (BL) represents a high-grade B-cell neoplasm belonging to the 
class of Non-Hodgkin’s lymphoma. BL has a highly aggressive clinical phenotype 
and is one of the most rapidly dividing tumors in humans with an approximate dou-
bling time of 24 h [ 104 ]. With respect to its epidemiological presentation BL is 
subdivided in three different groups, namely, endemic BL, HIV-associated BL, and 
sporadic BL. Epstein–Barr Virus genome (EBV) is found in nearly all cases with 
endemic BL with its geographic hot-spot found in equatorial Africa, whereas the 
minority of sporadic BL and less than half of the HIV-associated BL are tested posi-
tive for EBV. Endemic BL in equatorial Africa is prevalent in children of the younger 
age, has distinct predilection sites like the jaw and shows an incidence that is 50 
times higher than in the US. Unlike endemic BL sporadic BL mostly manifests with 
abdominal bulks in young adults and, with an incidence of 1–2 %, belongs to the 
less frequent form of lymphoma in Western Europe and the United States. Mortality 
shows a close correlation with age, rising consistently from pediatric patients to 
older adults [ 105 ]. The current basis of BL treatment consists of high intensity, 
brief-duration regimens, with which 65–100 % of adults achieve a CR and 47–86 % 
of patients maintaining these remissions at least 1 year following therapy (reviewed 
in [ 106 ]). The combination of high intensity regimen with the monoclonal antibody 
Rituximab has increased response rates in BL patients [ 107 ]. The major pathogenic 
event in BL is the translocation of the MYC gene to the immunoglobulin (Ig) heavy- 
IgH t(8;14) or light-chain (Ig-κ, Ig-λ) t(2;8) or t(8;22) locus with subsequent over-
expression of MYC [ 108 ]. Similar to mRNA-based gene expression profi ling that 
can reliably classify classic BL and might even more reliably distinguish borderline 
cases [ 109 ], miRNA based approaches succeed to accurately classify cases with 
DLBCL or BL regardless to the sometimes overlapping morphology [ 110 ]. 
However, subtypes of BL show a rather homogenous miRNA profi le and might 
therefore be more similar with respect to underlying pathogenic mechanisms than 
one would assume from the epidemiologic distribution [ 110 ]. Transcriptional 
 activity of Myc is central to differences in miRNA profi les between BL and other 
lymphoma entities [ 110 ,  111 ]. Especially members of the miR-17-92 cluster were 
identifi ed as targets of Myc with a signifi cant overexpression in Myc driven 
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lymphomas [ 87 ]. In contrast, activation of Myc may also leads to a widespread 
repression of miRNAs with tumor suppressive function. MiR-22, miR-26a, miR-
29c, miR-30e, miR-146a, let-7, miR-15a, miR-29a, miR-34a, miR-195, and miR-
150 were identifi ed in one study by microarray screens as specifi cally downregulated 
by Myc. Enforced expression of these miRNAs reduced the tumorigenic potential 
of lymphoma cells [ 112 ]. Myc-dependent deregulation of miR-26a, miR-181a, and 
miR-16 has been associated with altered cell proliferation and loss of miR-26a leads 
to overexpression of its targeted oncogene EZH2 [ 113 ]. In addition let-7a, which 
targets and suppresses Myc is similarly downregulated in this genetic entity and 
therefore represents a blocked autoregulatory mechanism for the control of Myc 
[ 114 ]. However, deregulated miRNA expression is not only induced on the basis of 
the transcriptional activity of Myc itself. The closer analysis of t(8;14) negative BL 
cases and translocation-positive BL provides evidence for a specifi c role of miR-9* 
in this context. Of note is the fi nding of signifi cant downregulation of miR- 9* in 
cases without Myc-translocation and a strong methylation of the miR-9-1 gene. 
Mechanistically, miR-9* can target E2F1 (which itself is able to induce Myc) and 
by this indirectly leads to changes in Myc expression levels [ 115 ].  

5.8     Multiple Myeloma 

 Multiple myeloma is characterized by uncontrolled clonal expansion of malignant 
plasma cells. Usually, the clinically defi ned stages in the supposed sequential devel-
opment of myeloma include monoclonal gammopathy of undetermined clinical sig-
nifi cance (MGUS), consecutive progression to smoldering myeloma and at the end 
to symptomatic myeloma [ 116 ]. The approximate incidence per year is 5–6 cases 
per 100000 persons, with a median age of 70 years. Post-germinal-center B-cells 
with constant proliferation are considered as basis for further transformation trig-
gered by genetic and microenvironmental changes [ 116 ,  117 ]. On the molecular 
level multiple myeloma is usually characterized by a complex karyotype. Recurrent 
genomic changes are regularly found and include hyperdiploidy, deletion of chro-
mosome 13, gain of chromosome 1q, translocations with IgH on chromosome 14q, 
deletion of chromosome 17p and indicate variable clinical course [ 116 ,  118 – 120 ]. 
Translocations of 14q involve specifi c partner regions with consecutively deregu-
lated genes on 11q13 (CCND1) [ 121 ,  122 ] and 6p21 (CCND3) [ 123 ], 4p16 
(MMSET and FGFR3) [ 124 – 126 ], 16q23 (MAF) [ 126 ,  127 ], and 20q11 (MAFB) 
and are additionally used as subgroup discriminators [ 119 ]. Beside cytogenetic 
changes, NRAS and KRAS have been found mutated in approximately one-third of 
investigated MM cases [ 128 ] and differentiate between MM and MGUS to a certain 
extend as mutations are found only in 5 % in MGUS [ 116 ,  129 ,  130 ]. Profi ling of 
miRNAs with respect to the underlying cytogenetic changes in MM identifi ed 
expression patterns mainly linked with the major IGH translocations [ 131 ,  132 ]. 
Especially in cases with t(4;14) the miR-let-7e, miR-125a-5p, and miR-99b from 
the cluster region at 19q13.33 were specifi cally overexpressed. Allelic imbalances 
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and LOH was associated with changes in expression levels of miRNAs located in 
the affected regions and included miR-let-7b (22q13.31) and miR-140-3p (16q22) 
[ 132 ]. A global assessment aiming to detect differential miRNA expression between 
samples from MM and MGUS patients compared to healthy donors identifi ed sev-
eral discriminating miRNAs with specifi c regulatory function [ 133 ]. Most upregu-
lated miRNAs in MGUS and MM samples involved miR-181a/b, cluster 
miR-106b-25, and miR-21. MiRNAs predominantly upregulated in MM involved 
miR-32 and the miR-17-92 cluster. Functional investigations on these miRNAs 
revealed a potential role in controlling p53 activity by targeting the p300-CBP- 
Associated Factor (PCAF). MiR-19a and b were almost exclusively upregulated in 
MM and shown to target SOCS-1 which suggests a functional interconnection to the 
Il-6R/STAT-3 pathway. Moreover the miR-17-92 cluster was confi rmed as specifi c 
regulator of the pro-apoptotic gene BIM [ 133 ]. MiRNA profi les derived from sam-
ples of relapsed or refractory patients exhibit an overexpression of miR-222, miR- 
221, miR-382, miR-181a and b and decrease of miR-15a and miR-16. Functional 
investigation of miR-15a and miR-16 implicated these two miRNAs as regulators of 
growth and proliferation by interacting with BCL2 (which has been identifi ed in 
CLL [ 18 ]) and AKT3, the ribosomal protein S6 and MAP kinases. Specifi c inhibi-
tion has further been demonstrated on the NF-kB pathway, probably by regulating 
TAB3 [ 134 ] which has previously been found to activate NF-kB signaling [ 135 , 
 136 ]. Myeloma cell surrounding osteoclasts, bone marrow stromal cells or osteo-
blasts secrete numerous factors including IL-6 and MM cells with amplifi cations of 
chromosome 1q21 show overexpression of the IL-6 receptor [ 137 ]. Both mecha-
nisms therefore build the ground for steady or enhanced upregulation of IL-6 depen-
dent genes as was shown for Stat3 mediated and dependent miR-21 expression 
[ 138 ]. Increase of miR-21 levels in the absence of IL-6 signifi cantly reduce apopto-
sis in myeloma cells [ 138 ]. Like miRNA expression can be infl uenced by factors 
derived from surrounding cells as reported for IL-6 [ 138 ], miRNAs themselves can 
shape the microenvironment by regulating the release of mediators like vascular 
endothelial growth factor (VEGF) [ 134 ] which induces neo-angiogenesis and again 
IL-6 secretion [ 139 ]. Overexpression of miR-15a and miR-16-1 can diminish VEGF 
release by direct interaction and decreases consecutive capillary formation in vivo 
and in vitro [ 134 ]. Increased angiogenesis has been shown to promote disease pro-
gression and to render MM cells more resistant to conventional therapeutic 
approaches [ 140 – 143 ]. Decrease or loss of miR-15a and miR-16-1, as found in 13q 
deleted cases, therefore confers advantage in MM and represents an example on 
how pathogenic axes can be interconnected on different levels. However, the exact 
role of miR-15a and miR-16-1 in MM currently remains unclear. While miR-15a 
has been found to be upregulated in newly diagnosed cases [ 133 ,  144 ], other authors 
report low levels of 15a in advanced stages [ 134 ]. Similar to MM with deletion 13q, 
cases with 17p deletion or TP53 mutation show a very poor outcome. Inactivation 
of the p53 pathway by deletion or mutation is usually found at advanced stages 
[ 128 ] though, p53 inactivation has been suggested in the context of MDM2 overex-
pression in MM [ 145 ,  146 ]. A recent study identifi ed a p53 dependent miRNA feed-
back-loop that regulates the expression levels of MDM2 expression. As previously 
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shown for miR-34a (reviewed in [ 147 ]) the miRNA cluster miR-194- 2-192 and 
miR-194-1-215 are direct p53 targets. Activation of p53 induces upregulation of 
these miRNAs with a subsequent downregulation of their mutual target MDM2 and 
fi nally leads to cell-cycle arrest or apoptosis in a p53-dependent manner [ 148 ]. 
Moreover the authors identify the miR-192 and miR-215 dependent inhibitory 
effect on the MDM2 mediated ubiquitination of IGF-1R and its consecutive infl u-
ence on the IGF-1 dependent mobility and invasion of MM cells as previously 
described [ 148 – 150 ]. Of note is the observation that these miRNAs show different 
expression levels in plasma-cells (highest), samples derived from MGUS-patients 
and MM cells (lowest). Aberrant promoter methylation of the miR-194-2-192 cluster, 
which has been identifi ed in MM cell lines, might serve in part as explanation for 
this deregulated miR-expression and consecutive clonal selection [ 148 ].  

5.9     Hodgkin Lymphoma 

 Hodgkin Lymphoma (HL) is a hematologic malignancy with an approximate inci-
dence in the western world of 3 new cases per 100,000 persons and year. Effectiveness 
of treatment has consistently increased over the last years and therapy with current 
protocols achieves 5-year survival rates for patients with early-stage Hodgkin’s 
lymphoma of at least 90 %. With regard to this development, reduction of long-term 
complications affecting the heart or lung and prevention from secondary malignan-
cies gains importance [ 151 ]. The main groups of HL consist of the frequently 
 diagnosed classical Hodgkin’s lymphoma (cHL) and the rare nodular lymphocyte-
predominant Hodgkin’s lymphoma (NLPHL), which account for 95 % and 5 % of 
all HL cases. The classifi cation is based on differences in the morphology, specifi c 
aspects of lymphoma cells and cellular infi ltration pattern. With the diagnosis of 
cHL, subclassifi cation into nodular sclerosis, which accounts for the majority of 
cHL cases, mixed cellularity, lymphocyte depletion, and lymphocyte- rich HL is 
applied. The hallmark of HL is the typical presentation of Hodgkin and Reed–
Sternberg (HRS) cells and the extensive surrounding of these cells with a reactive, 
infl ammatory environment consisting of putatively nonmalignant B- and 
T-lymphocytes, eosinophils, and plasma cells [ 152 ]. 

 Though research currently considers HRS cells as derived from germinal center 
(GC) or post-GC-B-cells, it seems controversial that HRS cells have lost most of 
their B-cell-specifi c gene expression [ 152 ]. HRS cells show constitutive activation 
of NF-κB, JAK–STAT, PI3K–AKT, ERK, AP1, and NOTCH1 signaling and several 
recurrent genetic lesions have been found to majorly involve members of the NF-κB 
and Jak–Stat signaling pathways [ 152 ]. Moreover, the  TNFAIP3  tumor suppressor 
gene, a negative regulator of NF-κB signaling, has been identifi ed to be affected in 
up to 40 % by inactivating mutations [ 153 ,  154 ]. HRS cells are latently infected by 
Epstein–Barr virus (EBV) in about 40 %. The pathogenic relevance for this fi nding 
is attributed to two latent membrane proteins expressed by EBV, which are able to 
mimic active BCR and CD40 receptors [ 155 ,  156 ]. Revelations from miRNA 
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mediated pathogenic effects perfectly fi t into the hitherto delineated pathogenic 
traits that have been identifi ed in HL. Studying microdissected HRS cells from cHL 
patients revealed a specifi c miR expression pattern when compared to CD77+ 
GC-B-cells. Putative targets of these miRNAs (overexpressed: miR-20a, miR-21, 
miR-9, miR-155, miR-16, miR-140, miR-18a, miR-30b, miR-30a-5p, miR-196a, 
miR-374, miR-186 and downregulated: miR-520a, miR-614, miR-200a) include 
numerous members of the SOCS family [ 157 ] which might lead to inactivation of 
SOCS with consecutively activated JAK/STAT signaling as previously described 
[ 158 ]. In addition, this miRNA expression pattern includes multiple well known 
miRNAs from studies on HL [ 73 ,  159 ,  160 ] or other lymphoma entities and differ-
ent cancers as previously outlined. Beside the activation of the JAK/STAT-signaling 
pathway other miRNA mediated mechanisms have been revealed that may have a 
role in HL. Amongst these is the regulation of PRDM1 that is centrally involved in 
the process of plasma cell differentiation and is a target of miR-9 which itself is 
overexpressed in HL [ 159 ]. In addition high levels were found for miR-155 [ 73 ] 
which have been attributed to its specifi c induction through NF-κB, based on the 
EBV mediated expression of LMP1 [ 161 ]. In contrast, the study of Navarro et al. 
could not identify miR-155 as signifi cantly upregulated based on the EBV status. 
Ten miRNAs (miR-96, miR-128a, miR-128b, miR-129, and miR-205 (low levels), 
miR-28, miR-130b, miR-132, miR-140, and miR-330 (high levels)) were differen-
tially expressed in EBV+ cHL compared with EBV− cHL [ 162 ]. 

 Amongst the signature based on 25-miRNAs that could be used to differentiate 
between classic HL and reactive lymph nodes, miR-138 expression levels were 
found in relation with the Ann Arbor stage of investigated Hodgkin cases. 
Interestingly, chromosomal mapping locates differentially expressed miRNAs to 
regions of frequent loss or gain in cHL that in part explains the observed deregula-
tion. Exemplarily, gains were found for 17q harboring miR-21, 2p and miR- 216, 
22q and miR-185 and 14q with miR-134. Losses are found for 4q with miR-302a, 
miR-302b, and miR-302c and 3p with miR-135a [ 162 ]. A subsequent analysis by 
the same group showed that low levels of miR-135a expression were associated 
with shorter disease-free survival and more frequent relapse in patients with cHL. 
Transfection experiments of cell lines with pre-miR-135 increased apoptosis and 
reduced proliferation. The specifi c evaluation of the predicted target JAK2 con-
fi rmed its downregulation when miR-135a was overexpressed and in addition 
revealed that JAK2 is coordinatively downregulated together with the antiapoptotic 
protein BCL-XL [ 163 ].  

5.10     Chronic Myelogenous Leukemia 

 Chronic myelogenous leukemia (CML) is a clonal myeloproliferative disorder of 
the pluripotent stem cell and affects approximately 1–2 per 100,000 persons and 
year with a slight predominance in men at a median age around 65 years. Usually 
the disease manifests with a sudden onset of symptoms caused by progressive 
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splenomegaly, marrow hypercellularity and resulting anemia, thrombocytopenia, 
and leukocytosis. The pathogenic reason is cytogenetically identifi ed by the pres-
ence of the Philadelphia (Ph) chromosome that is caused by the reciprocal translo-
cation t(9;22)(q34;q11) in 90–95 % of CML patients. 

 The involved genes ABL1 and BCR are coupled to the fusion gene BCR–ABL 
with sustained kinase activation of ABL which leads to the uncontrolled expansion 
of the malignant clones. If untreated, the disease typically follows a biphasic or tri-
phasic course with an initial chronic phase changing to the accelerated phase after 
an average of 5–5.5 years and fi nally to the so called blast crisis [ 164 ,  165 ]. 

 Approaches using miRNA-profi ling have integrated the miRNAs into the con-
cepts of pathogenesis and disease progression of CML. Similar to other hematologi-
cal malignancies the miR-17-92 cluster was identifi ed as Myc dependent in CML 
and in addition has been found to be regulated by BCR–ABL. Modes of specifi c 
inhibition of BCR–ABL through either using Imatinib or RNA interference resulted 
in decreased expression of miRNAs encoded in the miR-17-92-cluster. Coordinate 
signaling through a BCR–ABL–MYC–miR-17-92 pathway has therefore been sug-
gested for enhanced miRNA expression in early chronic phase in CML [ 166 ]. 
Similar to this, another independent study reported about the relevance of another 
miRNA involved in the regulation of the BCR–ABL pathway. Initially miR-203 
was identifi ed by characterizing the fragile region on the mouse chromosome 12 
that harbored about 12 % of the known miRNAs and was mostly lost in γ-radiation- 
induced T cell lymphomas. Though, downregulation of this miRNA was caused in 
a considerable portion of cases not through deletion of the chromosomal region but 
through the hypermethylation of the corresponding promoter region of Ph+ malig-
nancies like B-ALL and CML. Most signifi cantly, the authors identifi ed ABL as the 
specifi c target of miR-203 and showed that expression of miR-203 leads to the 
inhibition of proliferation in malignant cells [ 167 ]. Comparative analysis of cells 
from healthy donors and newly diagnosed CML patients identifi ed miR-96 as over-
expressed and miR-10a, miR-150, and miR-151 as selectively downregulated in 
CML samples. BCR–ABL independent downregulation of miR-10a was found to 
correlate with upregulation of the putative target gene upstream stimulatory factor 2 
(USF2), which itself leads to increased cell growth upon overexpression [ 168 ]. 

 Progenitors of CML blast crisis have been shown to lose their ability for differ-
entiation by suppression of the transcription factor CEBPα, which controls myeloid 
differentiation. Interestingly CEBPα protein levels are regulated by hnRNP E2 
through interacting with the UTR of CEBPα, correspondingly upregulation of 
hnRNP E2 diminishes CEBPα protein levels. Of note is the observation that changes 
in posttranscriptional gene regulation induced by hnRNP E2 have been found as 
central mechanism for the transition to blast crisis in CML [ 164 ,  169 – 171 ]. 
Investigations on the role of miRNAs this context identifi ed miR-328 as specifi cally 
modulated through the MAPK-hnRNPE2 pathway with decreased miR-328 levels 
in blast crisis CML [ 169 ,  170 ]. Analysis of the molecular architecture of miR-328 
uncovered a high similarity between this miRNA and the binding site for hnRNP E2 
contained in the CEBPα mRNA region. As expected, functional investigation iden-
tifi ed miR-328 as competitive target and therefore decreases hnRNP E2 binding and 
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association of hnRNP E2 to CEBPα, respectively. Reconstitution of miR-328 
expression was found to recover the ability of maturation in BCR–ABL positive 
cells with subsequently higher rates of apoptosis [ 167 ].  

5.11     Acute Lymphoblastic Leukemia 

 Acute lymphoblastic leukemia (ALL) is the most common childhood leukemia with 
a peak incidence at 2–5 years of age. Cure is a realistic goal, as ≥94 % of children 
have continuous disease-free survival for 5 years and appear cured [ 172 ]. In con-
trast, only 25 % of adults in the age group of 45–54 have continuous disease-free 
survival for 5 years [ 172 ]. Recurring genetic abnormalities with prognostic and 
therapeutic relevance involve hyperdiploidy, MLL and BCR–ABL translocations, 
HOX genes as well as PAX5 and IKZF1 [ 173 ]. The potential of miRNAs to distin-
guish between related hematological diseases was shown in the study by Mi et al., 
demonstrating that four miRNAs, including miR-223, miR-128a, miR-128b (miR- 
128a and miR-128b were later found to be identical) and let-7b were the most dis-
criminatory between acute myeloid leukemia (AML) and ALL, regardless of 
leukemia subtype [ 174 ]. A combination of any two of these miRNAs could dis-
criminate ALL from AML cases with an overall diagnostic accuracy of 97–99 %. 
However, it is not clear if this study was performed on solely on ALL and AML 
samples from adults. Comparing exclusively pediatric AML and ALL, Zhang et al. 
found miR-100, miR-125b and miR-335 more abundant in AML samples compared 
to the healthy donors [ 175 ]. Subsequently, Fulci et al. identifi ed a three-miRNA 
signature of miR-148, miR-151, and miR-424 as discriminative of adult T-lineage 
versus B-lineage ALL [ 176 ]. Furthermore, the authors described a set of six miR-
NAs, miR-425-5p, miR-191, miR-146b, miR-128, miR-629, and miR-126, that dis-
tinguished between B-ALL subgroups harboring distinct molecular lesions such as 
BCR-ABL, MLL-AF4, and E2A-PBX1 fusions [ 176 ]. These fi ndings were extended 
by Schotte et al., who quantifi ed 397 miRNAs in pediatric precursor B-ALL patients, 
demonstrating that miRNA expression profi les vary between leukemic cells, normal 
bone marrow, and sorted CD34 +  cells [ 177 ]. Based on ALL cytogenetics, Schotte 
et al. were also able to identify characteristic miRNA expression signatures [ 177 ]. 
Differences were found for 11q23/MLL-rearranged precursor B-ALL cases, which 
exhibited a downregulation of miR-708 and increased levels of miR-196b as well as 
t(12;21)/TEL–AML1-positive precursor B-ALL cases, which displayed an upregu-
lation of miR-383, miR-99a, miR-100, and miR-125b [ 177 ]. Signatures that associ-
ate with prognosis, include high expression of miR-33, miR-215, miR-369- 5p, 
miR-496, miR-518d, and miR-599 for a worse outcome and high abundance of 
miRNAs such as miR-10a, miR-134, miR-214, miR-484, miR-572, miR-580, miR-
624, and miR-627 with a more favorable prognosis in pediatric ALL [ 177 ]. Central 
nervous system (CNS) involvement is a common and prognostic relevant feature of 
ALL. Therefore, Zhang et al. have identifi ed a blood miRNA signature in pediatric 
ALL complicated by central nervous system (CNS) relapse [ 175 ]. They found 
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signifi cant upregulation of miR-7, miR-198, and miR-633 and a downregulation of 
miR-126, miR-345, miR-222, and miR-551a in ALL patients with CNS relapse ver-
sus non-CNS relapsed ALL. In contrast, Kaddar et al. found miR- 16 to be of prog-
nostic relevance for ALL patients [ 178 ]. The authors describe that high miR-16 
levels were associated with hyperleukocytosis and poor cytogenetic subgroups. 
Disease-free survival (DFS) was shown to be signifi cantly shorter for miR-16 levels 
above the 75th quartile in all analyzed B-cell ALL samples. Considering the promi-
nent role of miR-16 in CLL, these fi ndings might point towards a dual role of miR-
16 in both diseases and even a shared mechanism in their pathogenesis.  

5.12     Acute Myeloid Leukemia 

 The incidence of acute myeloid leukemia (AML) is 3–5 cases/100,000 [ 179 ]. Its 
prognosis and subtypes are mainly determined by cytogenetics and molecular 
genetics as refl ected in the WHO classifi cation [ 180 ]. Before the fi rst comprehen-
sive miRNA profi ling studies in AML were published, the role of individual miR-
NAs has preferentially been studied based on their expression in normal 
hematopoiesis [ 181 ,  182 ]. Therefore, miR-223 became one of the most investigated 
miRNAs in myelopoiesis (and AML) due to its specifi c expression in differentiated 
myeloid cells [ 181 ]. Although, its role in the pathogenesis of AML is not clear, 
profi ling miRNA expression in hematopoietic subpopulations as well as in a human 
APL cell line (NB4) upon differentiation with ATRA revealed miR-223 to be 
expressed at low levels in the stem cell compartment with increasing expression 
throughout myeloid differentiation [ 182 ,  183 ]. Lentiviral overexpression of miR- 
223 in an AML cell line as well as in AML patient samples induced myeloid dif-
ferentiation [ 183 ,  184 ], demonstrating that changes in the miRNA transcriptome 
can promote reprogramming of AML cells. 

 Gain and loss of miR-223 was shown to have distinct effects, as genetic deple-
tion of miR-223 led to a signifi cant increase of myeloid progenitor cells as well as 
hyper-mature circulating neutrophils [ 185 ]. However, AML profi ling studies did not 
connect miR-223 expression to a particular leukemia subtype [ 186 – 189  {   Marcucci, 
2008 #272}]. Contradicting the prevailing view that only one strand of the 
miRNA:miRNA* duplex is actively silencing genes, it was further shown that both 
strands miR-223 and miR-223* are functionally relevant in myeloid cells [ 190 ]. 

 Multiple miRNA expression studies of AML patient samples have been per-
formed using different methodological approaches and different patient subgroups 
[ 186 – 188 ,  191 ,  192 ]. Recently, Garzon and colleagues applied custom DNA micro-
arrays to quantify miRNA expression levels in 240 AML patient samples with inter-
mediate and poor cytogenetics. Based on this approach, miRNA signatures associated 
with 11q23 translocations`, trisomy 8 and FLT3 mutations (FLT3-ITD) were identi-
fi ed, demonstrating that cytogenetics drive miRNA profi les [ 191 ]. The same group 
further investigated the role of miRNAs in AML carrying NPM1 and FLT3-ITD 
mutations, the two most frequent molecular aberrations in AML [ 187 ]. A signature 
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distinguishing mutated  NPM1  from wildtype cases included the  upregulation of 
miR-10a, miR-10b as well as let-7 and miR-29 family members. The correlation of 
the presence of FLT3-ITD and miR-155 upregulation was further confi rmed by sev-
eral works [ 187 ,  188 ,  191 ,  193 – 195 ] although FLT3 inhibitor studies showed that the 
upregulation of miR-155 was independent from FLT3 signaling [ 187 ]. However, 
only little overlap was found between the different miRNA signatures published for 
NPM1+ AML, which might depend on the applied technology, patient samples and 
the comparisons made within the study. For example, Jongen- Lavrencic et al. and 
Cammarata et al. used a similar multiplexing RT-PCR approach, whereas Garzon 
et al. profi led their AML samples with a custom made miRNA microarray [ 188 ,  191 , 
 192 ]. In each study a different number of patients, ranging from 9 to 68 was analyzed 
and different comparisons were made: Garzon et al. profi led cNPM1+ and cNPM1− 
NK-AML, whereas Cammarata et al. compared their AML miRNA profi les to 
CD34 +  bone marrow cells. Jongen-Lavrencic et al. applied unsupervised ordering to 
create subgroups with similar expression patterns of miRNAs. A total of three miR-
NAs, miR-10a, miR-10b, and miR-9 were consistently deregulated in all three stud-
ies. This indicates that they might not only be important for the pathogenesis of 
cNPM1+ AML, but also refl ect the minimum phenotype of this AML subgroup. 

 In addition, multiple studies exploring the expression of miRNAs by quantitative 
RT-PCR in AML patient cohorts could also associate miRNA expression patterns 
with cytogenetic and molecular subtypes [ 188 ,  196 ]. However, for a miRNA based 
prediction of AML subtypes the necessary number of miRNAs varied drastically. In 
the study of Jongen-Lavrencic et al. a class predictor of only ten miRNAs predicts 
AML with t(8;21) and a set of seven miRNAs AML with t(15;17). In contrast, a 
predictor comprising 72 miRNAs was necessary for AML with inv(16), thereby 
suggesting that not all cytogenetic aberrations might have a quite unique miRNA 
expression pattern and indeed some of the heterogeneity may stem from the fact that 
current subgroups may need to be further subdivided. In addition, miRNA expres-
sion levels might mainly be infl uenced by the differentiation stage of the leukemic 
cells, and thus for example inv(16) might be hard to distinguish form other inv(16)-
negative AML cases with an identical morphology. In contrast to the complexity of 
AML subgroups, a signature of only two miRNAs (miR-128 and miR-223) is highly 
discriminate between AML and acute lymphoblastic leukemia [ 174 ]. 

 Similarly, smaller genome-wide miRNA expression studies using bead-based 
miRNA profi ling approaches, microarrays and quantitative RT-PCR confi rmed 
miRNA expression patterns characteristic of cytogenetic subgroups such as t(15;17), 
t(11q23), t(8;21) and inv(16) [ 192 ,  197 ], as well as molecular subtypes like AML 
with  CEBPA  and  NPM1  mutations or deregulated  MN1  expression [ 198 ]. 
Interestingly, almost all studies pointed towards the deregulation of miRNAs 
located in the  HOX  gene cluster, including miR-10a/b and miR-196a/miR-196b, as 
well as miR-221, let-7 family members, miR-155, miR-29, miR-125b, miR-181 
and members of the miR-17-92 cluster in AML. This suggests that a defi ned group 
of miRNAs, possibly associated with normal hematopoietic stem cells might be 
involved in leukemogenic processes such as impaired differentiation and increased 
self-renewal. 
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 Being correlated with altered gene expression and cytogenetic and molecular 
genetic aberrations, miRNA expression signatures have been shown to also confer 
prognostic information. While the study of Garzon and colleagues could identifi ed 
two miRNAs, miR-191 and miR-199a to be signifi cantly correlated with overall 
(OS) and disease-free survival (DFS) [ 191 ], Sun et al. could show that miR-212 
expression correlates with OS, DFS and relapse-free survival independent of cyto-
genetic subgroup in AML [ 199 ]. Within cytogenetically normally AML (CN-AML), 
Schwind et al. described an association of high miR-181a levels with favorable OS, 
especially CN-AML with FLT3-ITD and NPM1 wildtype [ 200 ]. The same group 
also found that the combination of high BAALC expression and a BAALC-hosted 
miRNA, miR-3151 identifi ed CN-AML patient subset with a poor outcome [ 201 ]. 
However, in the future additional studies are needed to determine the impact of 
miRNAs as reliable biomarkers for diagnosis as well as prognosis in AML. 

 So far, only few studies investigated the role of miRNAs in leukemic stem cells 
(LSC) as well as leukemia development. Recently, Wong et al. showed that the 
miR-17- 92 polycistron regulates LSC activity through p21 in a murine MLL model 
[ 202 ]. In a more direct approach, Han and colleagues showed that retroviral overex-
pression of miR-29a can induce AML in mice [ 203 ], and O’Connell and colleagues 
demonstrated similar fi ndings through overexpression of miR-155 in primitive 
hematopoietic cells that led to a myeloproliferative syndrome [ 204 ]. In contrast to 
miRNAs that can function as proto-oncogenes, there also has been evidence that 
distinct miRNAs can function as tumor-suppressor in AML. For example, recently 
Garzon and colleagues highlighted the potential of miR-29b as tumor suppressor by 
inducing apoptosis and reducing tumorgenicity in a xenograft AML model [ 205 ]. 
Furthermore, miRNAs have also been shown to represent both targets and effectors 
of the epigenetic machinery. In accordance to other genes, miRNA expression can 
be affected by DNA promoter methylation and histone modifi cations. As mentioned 
above AML1-ETO can lead to heterochromatic silencing of the miR-223 genomic 
region and demethylation can restore miR-223 expression followed by differentia-
tion of leukemic blasts [ 184 ]. On the other hand, miRNA expression can impact the 
epigenetic modifi cations as for example miR-29b targets DNA methyltransferases 
in AML [ 205 ].  

5.13     Summary 

 Here, we show that our knowledge about miRNAs in aberrant hematopoiesis has 
dramatically advanced since their discovery in CLL. However, most of the studies 
are descriptive and the functional relevance for many potential oncogenic miRNAs 
is still questionable. Functional approaches, especially animal models might signifi -
cantly add to the understanding how miRNAs contribute to the development of 
cancer, by revealing novel miRNAs, miRNA isoforms, mutations, and absolute 
sequence counts, thereby highlighting additional miRNAs that might serve as future 
therapeutic targets in hematological neoplasias.     
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