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7.1          Introduction 

 The existence of citrulline in proteins was fi rst described in the skin. In a paper 
 published in Nature in 1958, George Rogers reported citrulline in a protein of hair 
follicles (Rogers and Simmonds  1958 ). Twenty-eight years later, Rothnagel and 
Rogers purifi ed and characterised the corresponding protein and called it trichohya-
lin (Rothnagel and Rogers  1986 ). Since then, deiminated proteins have been detected 
in almost all cells, tissues and organs. The enzymes responsible for this posttransla-
tional modifi cation, the peptidylarginine deiminases (PADs), also known as protein-
arginine deiminases, are becoming increasingly well known. Five types of PADs 
have been identifi ed in humans and other mammals, the PAD1, 2, 3, 4 (also known 
as PAD5), and 6 (Vossenaar et al.  2003 ; Chavanas et al.  2004 ; Balandraud et al. 
 2005 ). They are encoded by fi ve paralogous genes clustered on chromosome 1p35-
36 and named  PADI 1, 2, 3, 4 and 6 (Vossenaar et al.  2003 ; Chavanas et al.  2004 ). 
The importance of PADs in many cellular processes is now recognised (Klose and 
Zhang  2007 ; Li et al.  2010 ; Struyf et al.  2009 ; Esposito et al.  2007 ) and PADs have 
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been involved in the pathogenesis of autoimmune diseases, e.g. rheumatoid arthritis 
(Klareskog et al.  2008 ; Sebbag et al.  2004 ), multiple sclerosis (Harauz and Musse 
 2007 ; Kim et al.  2003 ) and cancer (Slack et al.  2011a ), that are described in more 
detail in other chapters of this book. Here, we report on the location of PADs 
expressed in skin; the mechanisms involved in the regulation of their expression and 
activity in keratinocytes, their skin targets and physiological roles; and, fi nally, their 
possible contribution to skin diseases. 

 The skin provides mechanical protection to the organism and is an important 
barrier for preventing the invasion of pathogens, the entry of exogenous substances 
including allergens and toxins, and the uncontrolled loss of body water and solutes. 
This so-called barrier function is performed by the epidermis (Madison  2003 ), a 
stratifi ed squamous epithelium mainly composed of keratinocytes. 

 Terminal differentiation of keratinocytes is an oriented and complex program 
of gene expression from the proliferative basal layer of the epidermis to the upper 
horny layer, also named the  stratum corneum  (Fig.  7.1a ). During their journey 

Translation

Phosphorylation

Cleavage of linker peptides
Dephosphorylation

Profilaggrin (400 kDa)
(aggregated as granules)

Basic filaggrin subunits (37 kDa)
(associated with intermediate

filaments)

Deiminated filaggrin subunits
(40–60 kDa)

Proteolysis (caspase 14, bleomycin hydrolase, calpain 1…)

Free amino acids Natural Moisturizing Factor

Deimination (PAD1 and 3)

Transcription

mRNA

Gene (1q21)

(Pro)FLG PAD3 PAD1
PAD2dFLGdK

K1 + K10

SC
SG

SP

SB

a

b

  Fig. 7.1    Deiminated human epidermal proteins: involvement of PADs in the hydration of the 
 stratum corneum . ( a ) The four epidermal keratinocyte layers are shown on a stained section of 
human skin ( center ): the  stratum corneum  (SC),  granulosum  (SG),  spinosum  (SP) and  basale  
(SB). The immunodetection patterns of keratin (K) 1 and K10, profi laggrin and fi laggrin ((pro)
FLG), deiminated keratins (dK) and fi laggrin (dFLG), and PADs in human epidermis are schemati-
cally indicated on the  left . The complex metabolism of profi laggrin is schematically represented on 
the  right : deimination of fi laggrin, performed by PAD1 and PAD3, is essential for the degradation 
of the protein to free amino acids and the production of the natural moisturizing factor. ( b ) 
Immunochemical detection of deiminated proteins (in  brown ) in the  stratum corneum  of human 
epidermis. Scale bar = 40 μm       
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through the spinous and granular layers, the cells sequentially turn specifi c genes 
on and off and undergo a series of structural and metabolic modifi cations. For 
instance, the expression of keratins KRT1 and KRT10 starts in the spinous layer, 
whereas fi laggrin (FLG) is detected from the granular layer. Finally, the granular 
keratinocytes undergo a specialised form of programmed cell death called corni-
fi cation. Cornifi cation is characterised by (1) the elimination of all organelles and 
the nucleus; (2) the formation of a resistant and insoluble protein shell at the 
keratinocyte periphery, the cornifi ed cell envelope; (3) the transformation of des-
mosomes, the intercellular junctional structures, into corneodesmosomes; and (4) 
the aggregation of the keratin intermediate fi laments to form a macrofi brillar 
intracellular matrix. The resulting corneocytes are embedded in lipidic lamellae 
and form the thin, highly organised and resilient horny layer (Madison  2003 ; 
Candi et al.  2005 ). In order to maintain the thickness of the horny layer, the upper 
corneocytes detach from the skin surface during the strongly controlled process of 
desquamation and are replaced by newly differentiated cells. When human and 
rodent skin was probed with the anti-modifi ed citrulline antibodies developed by 
Tatsuo Senshu (Yokohama, Japan), only the horny layer was stained (Senshu et al. 
 1996 ) (Fig.  7.1b ).

7.2        PADs Expressed in Skin 

7.2.1     In the Epidermis 

 The expression of only three  PADI  genes, i.e.  PADI 1, 2 and 3 (Guerrin et al. 
 2003 ; Nachat et al.  2005a ), has been evidenced in human skin and epidermis by 
RT-PCR experiments. In cultured human primary keratinocytes, mRNAs encod-
ing the same three PAD isotypes, but not PAD4 or PAD6, have also been detected 
(Méchin et al.  2010 ). In agreement with these fi ndings, only PAD1, 2 and 3 have 
been immunodetected on skin sections with anti-peptide antibodies specifi c for 
each of the isoforms. PAD1 has been localised in the cytoplasm of keratinocytes 
throughout the whole human epidermis, with a higher expression in the granular 
cells and in the corneocyte intracellular matrix. In the granular cells, it is associ-
ated with keratohyalin granules and with keratin intermediate fi laments. PAD2 
has been detected in the cytoplasm of spinous keratinocytes and, with a more 
intense staining, at the periphery of granular keratinocytes. PAD3 is located in 
keratohyalin granules, in the cytoplasm of granular keratinocytes and in the 
matrix of the lower corneocytes (Figs.  7.1a  and  7.2a ). Immunoblotting experi-
ments have confi rmed these data. In particular, immunoblotting carried out on 
samples obtained from the superfi cial horny layer using adhesive tape stripping 
has evidenced that PAD1 is the only PAD isotype present in the upper corneo-
cytes. The same pattern of PAD expression has been described in mouse 
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epidermis (Guerrin et al.  2003 ; Nachat et al.  2005a ; Méchin et al.  2005 ; Coudane 
et al.  2011 ). In addition, the expression of PAD4 in rat epidermis has also been 
reported (Ishigami et al.  2001 ).

7.2.2        In Skin Appendages 

 PAD1 and PAD3 have been immunodetected in the concentric epithelial sheaths 
forming hair follicles at the anagen stage (Nachat et al.  2005b ). PAD1 is expressed 
by differentiated keratinocytes, fi rst those of the cuticle and Huxley’s layer of the 
inner root sheath and second those of the companion layer between the inner and the 
outer root sheaths. PAD3 is expressed in cells of the inner root sheath (Fig.  7.2b ) 
and the medulla. Both enzymes have been immunodetected in the keratinocyte 
cytoplasm. 

 PAD1 and PAD2 have also been observed in the secretory and myoepithelial 
cells of the sweat glands and in the arrector pili muscles (Nachat et al.  2005b ). So 
far, no PADs have been detected in human sebaceous glands.   

  Fig. 7.2    Immunodetection of PAD3 in the epidermis and inner root sheath of hair follicles. 
Cryosections of human skin were analysed by confocal microscopy with anti-PAD3 rabbit anti-
bodies, with a monoclonal antibody directed against profi laggrin and fi laggrin ((pro) fi laggrin) and 
with a monoclonal antibody specifi c for corneodesmosin. ( a ) In the epidermis, PAD3 is co-located 
with profi laggrin in the cytoplasm of the upper granular keratinocytes and with fi laggrin in the 
lower corneocytes. ( b ) In the hair follicles, PAD3 is detected in the cytoplasm of keratinocytes in 
the Huxley layer of the inner root sheath. Bar: 10 μm       
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7.3     Regulation of PAD Expression in Keratinocytes 

7.3.1     Minimal Promoters of  PADI  Genes and Bound 
Transcription Factors 

 Most of the genes expressed during the program of keratinocyte differentiation are 
regulated at the transcriptional level. This is probably also the case for the  PADI  
genes. When differentiation of cultured human epidermal keratinocytes is induced 
by treatment with 10 −7  M of 1-α,25-dihydroxy-vitamin D3 (VitD) for 24 h, higher 
amounts of mRNAs encoding PAD1 (~3-fold increase), PAD2 (~8-fold) and PAD3 
(~10-fold) are detected (Méchin et al.  2010 ). Expression of  PADI 1, 2 and 3 mRNAs 
is also improved when the extracellular calcium concentration is increased (Méchin 
et al.  2010 ; Chavanas et al.  2008 ; Dong et al.  2005 ), another well-known way of 
inducing the differentiation of keratinocytes. 

 The minimal promoters of the  PADI 1,  PADI 2 and  PADI 3 genes have recently been 
delineated as short sequences of 195, 132 and 129 base pairs, respectively, upstream 
of the transcription initiation site (Dong et al.  2005 ,  2006 ,  2008 ). Electrophoretic 
mobility-shift assays, chromatin immunoprecipitation and small interfering RNA 
experiments have shown that binding of transcription factors of the ubiquitous stimu-
lator protein (Sp) family, namely, Sp1 and Sp3, is crucial for the activity of these 
proximal promoters in keratinocytes (Dong et al.  2005 ,  2006 ,  2008 ). This is not sur-
prising, since functional binding sites for Sp1 are frequently found in the promoter 
regions of genes expressed during the late steps of keratinocyte differentiation. These 
include the genes encoding keratin 1, transglutaminases 1 and 3, cornifi ed cell enve-
lope components and profi laggrin (Lee et al.  1996 ; Wong et al.  2005 ; Jang and 
Steinert  2002 ; Crish et al.  2006 ; Eckert et al.  2004 ; Markova et al.  2007 ). 

 The additional binding of MZF1 and NF-Y transcription factors is necessary to 
regulate the expression of  PADI 1 and  PADI 3, respectively (Dong et al.  2006 ,  2008 ). 
Also, the expression of both Sp1 and MZF1 is increased after calcium stimulation 
of keratinocyte differentiation (Dong et al.  2008 ; Wong et al.  2005 ). Interestingly, 
Sp1 and MZF1 are also involved in the regulation of the  BLMH  gene (Kamata et al. 
 2011 ). This gene encodes a neutral cysteine protease, bleomycin hydrolase, impli-
cated downstream of PAD1 and PAD3 in the processing of FLG (see Sect.  5.2 ). This 
suggests a possible co-regulation of FLG processing-related enzymes. In addition, 
a proximal TATA-box is present in  PAD 1 and  PAD 3, but not  PAD 2, genes (Dong 
et al.  2005 ,  2006 ,  2008 ). 

 Since binding sites for Sp1, MZF1 and NF-Y have been identifi ed in silico 
upstream of the transcription start site of the mouse orthologous genes ( Padi 1, 
 Padi 2 and  Padi 3) (Dong et al.  2005 ,  2006 ,  2008 ), the same transcription factors are 
probably involved in the regulation of both human and mouse PAD genes. As in 
humans, when wild-type, but not VitD receptor null, mouse keratinocytes are treated 
with an analogue of VitD (EB1089),  Padi 3 is up-regulated. This twofold activation 
occurs through the binding of activated VitD receptor–β-catenin complexes to two 
VitD response elements located ~3 kb upstream of the transcription initiation site 
(Pálmer et al.  2008 ).  
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7.3.2     Role of Non-coding Conserved Sequences 

 However, considered alone, Sp1 and NF-Y binding to its proximal promoter cannot 
explain the tight control of  PADI 3 expression in the granular keratinocytes, since 
these transcription factors are also involved in the regulation of  PADI 4 (Dong et al. 
 2007 ), the expression of which has not been detected in the keratinocytes. Therefore, 
other levels of  PADI 3 control have been suspected, in particular the role of non- 
coding evolutionarily conserved sequences. 

 The fi rst to be identifi ed was an 8-kb region located between  PADI 2 and  PADI 1, 
42 kb upstream of PADI2 and 37 kb upstream of PADI1 (the two genes are in the 
opposite transcription orientation). This sequence groups together many potential 
transcription factor-binding sites and is in an open conformation state of the chro-
matin in differentiated keratinocytes. It is therefore likely to bind transcriptional 
activators (Chavanas et al.  2004 ,  2008 ). In addition, by the chromosome conforma-
tion capture technique, it has been shown to physically interact with the  PADI 3 
promoter in the nuclei of differentiating keratinocytes through a chromatin loop 
spanning 86 kb (Chavanas et al.  2008 ). Several long-range enhancers and bound 
activators have been experimentally recognised in this region. Two segments of 346 
and 245 bp, 1 kb distant from each other, cooperate in calcium-differentiated epider-
mal keratinocytes to enhance the activity of the  PADI 3 gene minimal promoter 
located 82 kb away (Adoue et al.  2008 ). They have no effect when tested indepen-
dently but act in an orientation-independent and copy number-dependent manner. 
Their effect has not been observed in proliferative epidermal keratinocytes, in 
human fi broblasts or cervix adenocarcinoma HeLa cells or on the  PADI 2 minimal 
promoter. This strongly suggests that these two segments, called PAD intergenic 
enhancer segment 1 (PIE-S1) and PIE-S2, form a real  PADI 3 bipartite enhancer. 
PIE-S2 binds distinct transcription factors of the AP-1 family according to the dif-
ferentiation state of keratinocytes, junD homodimer in proliferative cells and c-Jun 
homodimer in differentiated cells (Adoue et al.  2008 ). PIE-S1 contains an MIBP1/
RFX1-binding site (Adoue et al.  2008 ), but binding of either of these two transcrip-
tion factors has not yet been proved. 

 An additional non-coding conserved segment of 63 bp, called PIE, has also been 
shown to display strong enhancer activity on the  PADI 3 gene minimal promoter in 
calcium-differentiated keratinocytes (Chavanas et al.  2008 ). The enhancer activity 
of PIE does not depend on its orientation; it is low in proliferative keratinocytes and 
insignifi cant in HaCaT and Hela cells. It is low on the  PADI 2 minimal promoter and 
null on  PADI 1 and  PADI 4 promoter. To be active, PIE requires the binding of c-Jun 
and c-Fos, another transcription factor of the AP-1 family. In addition, PIE seems to 
interact functionally with the two CAAT boxes of the PADI promoter, probably 
through a direct interaction between c-Jun and NF-Y (Chavanas et al.  2008 ). 

 Long-range regulatory elements are important for the coordinated regulation of 
many clustered genes, at distances of up to 1 Mb from their cognate promoters and 
in several cell types (Li et al.  2002 ). Whether this is also a key mechanism in regu-
lating genes essential for terminally differentiated keratinocytes is less certain. 

H. Takahara et al.



119

However, a network of conserved non-coding sequences involved in the regulation 
of the numerous genes of the so-called epidermal differentiation complex in kerati-
nocytes has been described recently (Martin et al.  2004 ; de Guzman Strong et al. 
 2010 ). The expression of the p63 gene is also controlled by a long-range keratinocyte- 
specifi c enhancer (Antonini et al.  2006 ). 

 When orthologous PADI genes from multiple mammalian species are aligned, a 
highly conserved 1 kb region is revealed in the  PADI 1 fi rst intron, suggestive of a 
biological role (Ying et al.  2010 ). A 267 bp fragment of this region has been shown 
to enhance the activity of the  PADI 1 minimal promoter in an orientation- independent 
manner in both proliferative and calcium-differentiated human keratinocytes. 
Binding of p65 and p50 subunits of NF-kappaB transcription factor is necessary for 
this enhancer activity. A physical interaction between the  PADI 1 minimal promoter 
and these intronic conserved non-coding sequences, located 2.2 kb apart, has been 
evidenced, indicating chromatin looping (Ying et al.  2010 ). NF-kappaB involve-
ment in keratinocyte differentiation and senescence is well known, as is its tran-
scriptional effect via direct binding to response elements located in gene introns, 
including c-Fos (Bernard et al.  2004 ; Bell et al.  2003 ; Charital et al.  2009 ). 

 As a whole, these data show that the transcription of  PADI  gene during keratino-
cyte differentiation is under the control of multiple and complex regulatory mecha-
nisms, including chromatin structure remodelling (Fig.  7.3 ).

7.3.3        Regulation at the Translational Level 

 As previously reported for other tissues or cells, including optic nerve cells 
(Bhattacharya et al.  2006 ) and monocytes (Vossenaar et al.  2004 ), PAD expression 
in keratinocytes seems to be also regulated at the translational level. For example, 
treatment of keratinocytes with VitD strongly increases the amount of PAD1, 
PAD2 and PAD3 mRNA but has no effect on the corresponding protein (Méchin 
et al.  2010 ).   

7.4     Regulation of PAD Activity in Keratinocytes 

 The presence of one PAD in keratinocytes at a particular time does not necessarily 
mean that the deimination of proteins takes place at the same time. Although PADs 
are immunodetected in basal and suprabasal living epidermal keratinocytes, deimi-
nated proteins are only immunostained in corneocytes. In addition, even though 
Hela and HaCaT cells express at least one PAD, we have not been able to detect 
deiminated proteins, even in cells cultured at a high extracellular calcium concentra-
tions (Méchin et al.  2010 ). In the same way, no deiminated proteins have been 
detected in cells of sweat glands and arrector muscles, where PAD1 and PAD2 are 
expressed (Nachat et al.  2005b ). We suspect that the local intracellular 
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  Fig. 7.3    Schematic model of the transcriptional regulation of  PADI 1 and  PADI 3 gene expression 
in human keratinocytes. Part of the  PADI  gene locus is located in shown: the 5′ region of  PADI 2, 
the intergenic region including two long-distance enhancers (namely, PIE and PIES1/S2), the 
entire  PADI 1 gene including the conserved non-coding sequence its fi rst intron (CNSi) and the 5′ 
region of  PADI 3. Minimal promoters are indicated by  coloured rectangular boxes  and the orienta-
tion of transcription by  black arrows . Bound transcription factors are shown, as are their binding 
sites. To allow activation of the  PADI 3 promoter by PIE and PIES1/S2 enhancers located 87 kb 
upstream, chromatin has to form a large loop to bring them into physical contact. Similarly, a chro-
matin loop allows the activation of PADI1 transcription through an interaction between the tran-
scription complex and p50/p65 NF-κB transcription factors bound 2 kb downstream on the CNSi. 
Transcription factors (MZF1, c-Jun, c-Fos, JunD, NFYA and Sp1/3), the TATA-box-binding pro-
tein (TBP) and RNA polymerase II complex (Pol II) are shown as  open circles  and the transcription 
factor-binding sites by  open boxes . Note that the distances (in bases) are not drawn to scale       
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concentration of calcium plays a role in controlling PAD activity, this ion being 
required for their activity in vitro. 

 Auto-deimination of PADs may also be involved in the regulation of their  activity. 
We have observed calcium-dependent auto-deimination of PAD1, 2 and 3 during in 
vitro incubations. This modifi cation reduces, but does not suppress, their activity 
and changes PAD3 structure. In particular, the distances between the four major 
amino acids of the active site increase (Méchin et al.  2010 ). Considering the high 
sequence homologies between the three isotypes, this is probably true for PAD1 and 
PAD2 as well. Similarly, PAD4 is also auto-deiminated in vitro and in vivo in acti-
vated neutrophils. This posttranslational modifi cation changes the structure of the 
enzyme and could either inactivate it or modulate its ability to interact with other 
histone-modifying enzymes (Slack et al.  2011b ; Andrade et al.  2010 ).  

7.5     Deiminated Proteins and Role of Deimination in Skin 

7.5.1     In the Appendages 

 As already mentioned in the introduction ( Sect. 1 ) to this chapter, the fi rst protein 
shown to be deiminated was trichohyalin. Trichohyalin is a member of the S100 
fused-type protein (SFTP) family (Henry et al.  2012 ). Like the other SFTPs, tricho-
hyalin is a large protein (220 kDa in human) formed by three domains: an amino- 
terminal domain homologous to S100A proteins and containing two functional 
EF-hand calcium-binding sites (91 amino acids long), a highly charged central 
domain formed by a series of peptide repeats (1,581 amino acids long) and a short 
carboxy-terminal tail (50 amino acids long). Trichohyalin is preferentially expressed 
in the inner root sheath and medulla of hair follicles and in the granular layer of the 
epithelium of dorsal tongue papillae (Hamilton et al.  1991 ; O’Keefe et al.  1993 ). It 
initially accumulates as large cytoplasmic granules. Then it associates with keratin 
intermediate fi laments. Later it becomes cross-linked to itself, to keratin head and 
tail domains and to several cornifi ed cell envelope components through ε-(γ- 
glutamyl) lysine isodipeptide bonds catalysed by transglutaminases (O’Keefe et al. 
 1993 ). Trichohyalin serves as a strengthener of the envelopes and as an anchor 
between the envelope and the corneocyte cytoplasmic matrix. This forms a continu-
ous hardened supramolecular structure conferring high mechanical strength on the 
inner root sheath (Steinert et al.  2003 ). Trichohyalin contains 435 arginine residues, 
many of them being citrullinated. Trichohyalin deimination modifi es its α-helical 
structure, resulting in unfolding; makes it more soluble, inducing granule solubilisa-
tion; and makes it a better substrate for transglutamine 3 (Tarcsa et al.  1996 ,  1997 ). 
Because PAD3 and trichohyalin expression patterns are very similar, this isotype is 
certainly responsible for trichohyalin deimination. In addition, the tail of mouse 
inner root sheath-specifi c type-I keratin 27 (formerly K25irs3) and type-II keratin 
71 (K6irs1) are also deiminated before the proteins are cross-linked by 
 transglutaminase 3 (Steinert et al.  2003 ). 

7 Deimination in Skin and Regulation of Peptidylarginine Deiminase…



122

 S100A3, a calcium- and zinc-binding protein, is another substrate of PAD3 in the 
hair follicles. S100A3 is located in the cuticle and the cortex of the hair shaft and is 
believed to be involved in hair shaft formation. In vitro deimination of S100A3 by 
PAD3 promotes the assembly of a homotetramer and increases its affi nity for cal-
cium ions (Kizawa et al.  2008 ). This is described in greater detail in Chap.   8    . 

 As a whole, these data indicate that deimination in the hair follicles is important 
for the mechanical resistance of cells in the inner root sheath and hair shaft. No 
deiminated proteins have yet been identifi ed in sweat gland or arrector muscle cells.  

7.5.2      In the Epidermis 

 Several epidermal deiminated proteins have been characterized, and all of them are 
modifi ed in the horny layer (Fig.  7.1a, b ). The effect of deimination on their proper-
ties is starting to be unravelled and will be described below. 

 The major targets of PADs in the epidermis are two closely related SFTPs, i.e. 
FGL and FLG-2 (Henry et al.  2012 ). Their repetitive central domains show 45 % 
amino-acid sequence similarity and similar amino-acid compositions with particular 
high levels of serine, glycine, histidine, glutamine and arginine (70.4 and 74.2 %, 
respectively, of total amino acids). Both are specifi cally expressed in the granular 
layer of the epidermis in the form of large insoluble precursors (400 and 248 kDa) 
which accumulate in the cytoplasmic keratohyalin granules (Henry et al.  2012 ; Dale 
et al.  1990 ; Hsu et al.  2011 ). At the  stratum granulosum / stratum corneum  transition, 
they are proteolytically processed to smaller basic subunits that interact with and are 
believed to aggregate keratin intermediate fi laments. In the lower  stratum corneum , 
they are co-located in the corneocyte fi lamentous matrix (Henry et al.  2012 ; Dale 
et al.  1990 ; Hsu et al.  2011 ). In the upper  stratum corneum , FLG and probably 
FLG-2 subunits are totally degraded by several proteases, including caspase-14, cal-
pain-1 and bleomycin hydrolase (Hsu et al.  2011 ; Hoste et al.  2011 ; Kamata et al. 
 2009 ; Yamazaki et al.  1997 ). The resulting amino acids form part of the natural 
moisturizing factor, a mixture of osmotic molecules allowing water retention in the 
upper  stratum corneum  (Harding and Scott  1983 ; Rawlings and Matts  2005 ). Some 
of the amino acids are further modifi ed. For example, trans-urocanic acid, involved 
in photoprotection since it absorbs part of ultraviolet radiation, is derived from histi-
dine in a reaction catalysed by histidase (Barresi et al.  2011 ). In contrast, pyrolidone 
carboxylic acid, the most hygroscopic amino acid, derives from glutamine (Rawlings 
and Matts  2005 ). With a pKa of 3.9, it also contributes to the acidifi cation of the 
superfi cial  stratum corneum . This acidic pH is crucial for the antimicrobial activity 
of the layer, for its waterproof nature through the control of lipase activities and for 
the regulation of desquamation (Rawlings and Matts  2005 ; Harding et al.  2000 ). 

 FLG and FLG-2 deimination are thought to be necessary for their dissociation 
from the matrix. They also promote their proteolysis by calpain-1 and are a requisite 
for their proteolysis by bleomycin hydrolase (Hsu et al.  2011 ; Kamata et al.  2009 ). 
As a consequence, deimination participates in, and presumably controls, the 
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hydration of the upper epidermis and the epidermal barrier functions. On the basis 
of their enzymatic properties and their diffuse location within the fi brous matrix of 
the lower corneocytes (Méchin et al.  2005 ), PAD1 and PAD3 are probably the 
 isotypes responsible for the deimination of FLG and FLG-2. 

 In the upper cornifi ed layer, the head and tail of keratin K1 and K10 are deimi-
nated (Senshu et al.  1996 ; Méchin et al.  2005 ; Ishida-Yamamoto et al.  2002 ). The 
enzyme involved is probably PAD1, since it is the only PAD isoform detected in this 
location (Méchin et al.  2005 ). The effect of deimination on the properties of these 
keratins is not known; however, it is concomitant with the observed ultrastructural 
modifi cations of the intracorneocyte fi brous matrix. Similarly to inner root sheath 
keratins, we could suspect that deimination precedes the cross-linking of these pro-
teins to the cornifi ed cell envelopes. 

 FLG has been known for a long time. It came back under the spotlight when 
nonsense mutations of its gene were shown to be responsible for ichthyosis vul-
garis (OMIM 146700) and to be a high-risk factor for atopic eczema (OMIM 
#605803) (Smith et al.  2006 ; Palmer et al.  2006 ; Irvine and McLean  2006 ; 
Sandilands et al.  2007 ).   

7.6     Deimination and Skin Diseases 

 Despite the accumulating data obtained on PADs by using skin as a model and the 
importance of deimination in skin physiology, few data are available concerning 
PAD implication in skin diseases. Lower amounts of citrullinated keratins have 
been detected in the epidermis of patients with epidermolytic hyperkeratosis 
(OMIM #113800; also known as bullous congenital ichthyosiform erythroderma) 
and psoriasis (Ishida-Yamamoto et al.  2000 ) (in addition to our unpublished data). 
However, in one study, paclitaxel, a well-known drug used in cancer therapy, but 
also an in vitro inhibitor of PAD, has been reported to improve severe psoriasis 
(Ehrlich et al.  2004 ). No further data has been published about this topic. 

 PAD could also be involved in skin tumorigenesis. Differential expression of the 
four genes encoding PAD1 ( PADI 1), laminin-γ2 ( LAMC 2), collagen type IV α1 
( COL4A 1) and collagen type I α1 ( COL1A 1) has been claimed as a predictive bio-
marker of squamous cell carcinomas of the oral cavity and oropharynx (Chen et al. 
 2008 ). In a genome-wide study concerning 930 Icelanders with cutaneous basal cell 
carcinoma, which is the most common cancer among Europeans, a single- nucleotide 
polymorphism in intron 13 of the PAD6 gene has been identifi ed as a strong genetic 
risk factor (Stacey et al.  2008 ). This association has been replicated in an additional 
population from Eastern Europe. The estimated risk of the mutation carriers is 2.68 
times that of noncarriers (Stacey et al.  2008 ). Finally, expression of PAD4, the iso-
type involved in gene expression regulation through deimination of histones, has 
been observed in skin carcinomas and extramammary Paget’s disease (OMIM 
#167300) (Chang et al.  2009 ; Urano et al.  1990 ). Since PAD4 inhibition results in 
cell cycle arrest and apoptosis (Li et al.  2008 ) and since PAD4 represses the p53 
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target genes (Yao et al.  2008 ), this observation could be of relevance for skin 
tumours. A more detailed discussion on the role of deimination in cancer is dis-
cussed in Chap.   17    .  

7.7     Conclusion 

 PADs are increasingly considered as crucial molecular actors in cell physiology and 
human diseases. The data reported here highlight their importance in skin, particu-
larly in the epidermis and hair follicles. However, more work needs to be done to 
defi nitively prove their contribution to skin diseases. Detailed analysis of mecha-
nisms involved in controlling PAD expression and activity during keratinocyte dif-
ferentiation indicates multiple levels of regulation. This indicates that deimination 
is a crucial post-translational modifi cation of proteins that require tight control.     
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