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  Pref ace   

 Accumulation of glia, gliosis, in various neurological disorders is not a static scar, 
but actively involved in pathogenesis of various neurological and psychiatric disor-
ders. There, glial cells produce both infl ammatory and neurotrophic factors. These 
factors may play a role in neuronal damage, but also play protective and reparative 
roles by inducing neuroinfl ammation. However, defi nition as well as the mecha-
nisms of neuroinfl ammation is not yet clear. We fi rst defi ne acute, chronic, and 
nonclassical neuroinfl ammation. 

 Glial cells are activated by a variety of stimuli via receptors on glial cells. Toll- 
like receptors (TLRs) are one of these receptors. In response to harmful stimuli, 
neurons produce factors as either eat-me or help-me signals. Glial cells, especially 
microglia and astrocytes, respond to these signals. The signals are initiated by fac-
tors from damaged neurons including cytokines, chemokines, and damage- 
associated molecular pattern (DAMP). Some of them reportedly activate glial cells 
via TLR, and function to protect neurons or further induce neuroinfl ammation. 
Thus, the interaction between neuron–glia and glia–glia is a main feature of neuro-
infl ammation. Recent evidences suggest that glial cell communicates with other 
glial or neural cells via gap-junctions. The communication may also be important 
for the understanding of neuroinfl ammation. Oligodendrocytes also communicate 
with neurons. The communication may be critical in either myelination or demye-
lination. Damage of blood–brain barrier (BBB) is common feature of both infl am-
matory and degenerative neurological disorders. Thus, relation of BBB damage and 
functions of glial cell may also be important in the development of 
neuroinfl ammation. 

 In this book, we focused on neuron–glia interaction of various aspects for under-
standing of pathophysiology of neuroinfl ammation in development of infl ammatory 
as well as degenerative neurological disorders.  

    Nagoya ,  Japan       Akio     Suzumura   
   Okazaki ,  Aichi ,  Japan       Kazuhiro     Ikenaka      
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1A. Suzumura and K. Ikenaka (eds.), Neuron-Glia Interaction in Neuroinfl ammation, 
Advances in Neurobiology 7, DOI 10.1007/978-1-4614-8313-7_1, 
© Springer Science+Business Media New York 2013

    Abstract     There is increased understanding of classical infl ammation in the ner-
vous system in both infection and autoimmune/immunopathologically mediated 
diseases as well as how persistence of infl ammation and conversion to a more dif-
fuse infl ammation mediated predominately by endogenous cells of the nervous sys-
tem lead to damage. More recently it has been appreciated that nonclassical 
infl ammation, termed neuroinfl ammation, can start within the nervous system, often 
as an attempt at protection, when persistent, contributes to damage and furthering of 
the disease process itself, including in disorders that have been considered purely 
neurodegenerative in nature.  

1.1         Introduction 

 There is a long standing interest in the pathogenesis of infl ammatory diseases of the 
CNS and PNS with regard to the role of the infl ammatory system in providing pro-
tection of tissue from effects of infectious agents as well as the role of infl ammatory 
cells and mediators of infl ammation. In the past several decades we have seen a 
dramatic increase in our knowledge about infl ammation in the CNS and PNS that 
includes both in vitro and in vivo observations that cells of the infl ammatory system, 
particularly lymphocytes and monocytes, contain subsets of cells which directly and 
by production of soluble mediators, can also downregulate infl ammation, provide 
tissue protective and even regenerative stimuli (De Santi et al.  2011 ; Dhib-Jalbut 
et al.  2006 ; Hoke  2006 ; Karussis et al.  2006 ; Palace  2008 ; Re and Przedborski  2006 ; 
Schwartz  2001 ; Thippeswamy et al.  2005 ). In addition to cells and secretory factors 

    Chapter 1   
 Acute, Chronic, and Nonclassical 
Neuroinfl ammation: Defi nitions in a Changing 
Scientifi c Environment 

             Robert     P.     Lisak       and     Joyce     A.     Benjamins    

    R.  P.   Lisak ,  M.D., F.R.C.P., F.A.A.N., F.A.N.A. (*) •         J.  A.   Benjamins ,  Ph.D.    
  Departments of Neurology and Immunology and Microbiology , 
 Wayne State University School of Medicine ,   Detroit ,  MI ,  USA   
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that are predominately downregulatory and protective, some of the same factors that 
are proinfl ammatory in disease states such as in multiple sclerosis (MS), acute dis-
seminated encephalomyelitis (ADEM), acute infl ammatory demyelinating polyneu-
ropathy (AIDP), and chronic infl ammatory demyelinating polyneuropathy (CIDP) 
and in animal models including experimental autoimmune encephalomyelitis (EAE) 
and experimental autoimmune neuritis (EAN) can in later stages of classical infl am-
mation become important in recovery and regeneration (Lisak  2007 ). Paradoxically, 
these same “proinfl ammatory” and “downregulatory” secretory factors, including 
chemokines and cytokines, also have important direct and indirect roles during nor-
mal development of the CNS and PNS as well as protective and reparative roles in 
the mature nervous system (Robinson et al.  1998 ; Bagri et al.  2002 ; Tsai et al.  2002 ; 
Mizuno et al.  2003 ; Chalasani et al.  2003 ; Lisak et al.  1997 ,  2006 ; Lisak and 
Benjamins  2007 ). We have seen that cells of the CNS and PNS, both glia and neu-
rons, can respond to classic mediators of infl ammation and not just serve as a target 
for infl ammatory-mediated damage. In addition these same endogenous cells, espe-
cially glia, can produce some of these same factors which originally had been 
thought to be produced only by cells of the classic infl ammatory system (Lisak and 
Benjamins  2007 ; Aloisi et al.  1992 ; Guo et al.  1998 ; Lieberman et al.  1989 ; Rus 
et al.  1992 ; Xiao et al.  1998a ; Wagner and Myers  1996 ; Lisak et al.  2007 ). The 
reverse has also been demonstrated; cells of the immune system can produce growth 
factors, such as nerve growth factor (NGF), brain-derived nerve growth factor, and 
neurotrophin 3 (NT3) (Kerschensteiner et al.  1999 ; Hohlfeld et al.  2000 ; Stadelmann 
et al.  2002 ; Chen et al.  2003 ), originally thought to be produced only by endogenous 
cells of the nervous system. Even neurons and oligodendrocytes are now known to 
be active participants in infl ammation within the CNS, rather than simply targets of 
infl ammatory and other cytotoxic molecules (Lisak et al.  2007 ,  2011 ; Suzumura 
et al.  1986 ; Middleton et al.  2000 ; Rose et al.  2009 ). 

 Cytokines are able to induce regulation of genes for other cytokines as well as the 
levels of synthesis and secretion of cytokines (Lisak et al.  2006 ). In addition they are 
also able to regulate genes and the production of a wide array of infl ammatory and 
growth factors by CNS cells and dramatically affect regulation of hundreds of genes 
and cellular phenotypes of endogenous cells of the CNS and PNS (Lisak et al.  1998 , 
 2007 ,  2009 ; Ozaki et al.  2008 ). The discovery that microglia are members of the 
monocyte/macrophage lineage and are derived during development from the periph-
eral immune/infl ammatory cells (Ting et al.  1983 ; Barron  1995 ; Simard et al.  2006 ), 
the yolk sac equivalent, has also opened up new areas of research including the role 
of cells of the CNS as part of the innate immune system. They therefore are similar 
yet different from peripheral bone marrow-derived circulating monocytes which can 
circulate and enter parenchyma, including the CNS parenchyma (Aguzzi et al. 
 2013 ). Microglia can upregulate major histocompatibility (MHC) class II antigens 
(Lisak et al.  2006 ,  2007 ; Suzumura et al.  1987 ), present antigen (Aloisi et al.  1998 ; 
Cash et al.  1993 ), express receptors that allow them to bind and react to microbial 
products and products of damaged and dead endogenous cells, and initiate infl am-
matory responses, including toll-like receptors (TLRs) (Aloisi et al.  1998 ; Albright 
and Gonzalez-Scarano  2004 ; Appel et al.  1995 ; Banati et al.  1993 ; Barron  2003 ; 
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Bedard et al.  2007 ; Benveniste  1997 ; Block and Hong  2005 ; Block et al.  2007 ; 
Carson et al.  1998 ; Chen et al.  2006 ; Constantinescu et al.  1996 ; Cuzner et al.  1994 ; 
Doi et al.  2009 ; Duke et al.  2004 ; Gehrmann et al.  1995 ; Hanisch  2002 ; Hanisch and 
Kettenmann  2007 ; Jack et al.  2005 ; Kettenmann et al.  2011 ; Kim and de Vellis 
 2005 ; Kreutzberg  1996 ; Magnus et al.  2005 ; Merson et al.  2010 ; Satoh et al.  1995 ; 
Ulvestad et al.  1994 ). It is also of interest that various stimuli, including cytokines 
and cells undergoing cell death, can also upregulate TLRs. Microglia can also be 
activated by other “response molecules” called pattern recognition receptors (PRRs) 
that recognize pathogenic reception-associated molecular patterns (PAMPs) classi-
cally associated with microbial molecules and damage-associated molecular pat-
terns (DAMPs) seen with damaged cells (Kumar et al.  2011 ; Tabas and Glass  2013 ). 
TLRs are able to respond to both microbial products and molecules from damaged 
cells (Jack et al.  2005 ; Hertzog et al.  2003 ; Iliev et al.  2004 ; Kim et al.  2009 ). These 
responses can be protective but if prolonged can turn pathogenic (Aguzzi et al. 
 2013 ; Iliev et al.  2004 ; Takeuchi et al.  2005 ; Krasowska-Zoladek et al.  2007 ; Lee 
et al.  2006 ; Yoon et al.  2008 ). Microglia also have upregulated or can upregulate the 
necessary co-stimulatory molecules required for successful cell activation associ-
ated with antigen presentation (De Simone et al.  1995 ). 

 Astrocytes also participate in both positive and negative responses to microbial 
molecules as well as to damaged and dying cells (Sawada et al.  1995 ; Ma et al. 
 2013 ). This allows the CNS to both initiate infl ammation and interact with the adap-
tive (cognate) immune system early in diseases characterized by classical infl am-
matory lesions as well as become the primary infl ammatory/immune mechanism 
later in the course of the disease in certain diseases like multiple sclerosis (MS) 
(Gandhi et al.  2010 ). The role of Schwann cells and endogenous mononuclear cells 
within the PNS is not as certain, particularly in vivo (Lisak and Benjamins  2007 ; 
Scarpini et al.  1990 ; Skundric et al.  2001 ). Finally cell–cell interactions between 
endogenous cells of the CNS and PNS are involved in disease pathogenesis but also 
involved in normal development of the nervous system and likely in protection and 
repair as well (Lisak  2007 ).  

1.2     Classic Infl ammation in the Nervous System 

 Within the CNS, and perhaps to a lesser extent in the PNS, acute infl ammation is 
usually viewed as precipitated by infectious processes or “autoimmune” or “immu-
nopathogenic” diseases, but classical infl ammation is also important in response to 
trauma and ischemia, albeit to a lesser degree (Zhang et al.  1994 ,  1995 ; Chen et al. 
 1994 ; Schwartz  2000 ; Schwartz et al.  1999 ; Yoles et al.  2001 ; Ziv et al.  2006 ). In 
different settings the cells and their secretory products (including cytokines, chemo-
kines, and vasoactive substances), as well as humoral immune/infl ammatory factors 
including immunoglobulins (antibodies), immunoglobulins bound to circulating 
antigen (immune complexes), and complement components are involved in the 
infl ammatory response. These processes evolve into subacute and then chronic 

1 Acute, Chronic, and Nonclassical Neuroinfl ammation…
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infl ammation before resolving in self-limited infectious disorders (although often 
leaving evidence of damage to the underlying tissue), but continuing in different 
patterns in other diseases, most striking in MS. 

 In the instance when direct infection of the CNS by many different microbial 
agents is the cause of infl ammation, the innate immune system, including some of 
the endogenous cells of the nervous system that are part of the innate immune 
response ,  along with polymorphonuclear leukocytes (predominately neutrophils) 
brings about infl ammation in the nervous system. This is clearly a protective func-
tion as long as it does not persist past the need, although unquestionably there can 
be some damage to the CNS during protective phases of acute infl ammation, a type 
of innocent bystander damage. In parasitic infections as well as in some autoim-
mune/immunopathologically mediated disorders, eosinophils are involved, along 
with lymphocytes and exogenous cells of the monocyte/macrophage lineage. These 
types of classical infl ammation are beyond the scope of this chapter. 

 Exogenously derived mononuclear cells predominate in classical infl ammation, 
their presence and activation generally triggered by cells of the innate immune sys-
tem. The cells of the innate immune system involved in infl ammation in the CNS 
may be endogenous or part of the systemic immune system. Activation of the 
peripheral immune system cells results in entry of lymphocytes and mononuclear 
cells into the nervous system parenchyma during the acute phase of classic infl am-
mation, through a complex process involving adhesion to vascular endothelium and 
then entry into the parenchyma itself (Agrawal et al.  2011 ; Alter et al.  2003 ; 
Brundula et al.  2002 ; Uhm et al.  1999 ; Yong et al.  2001 ). T cells activated in the 
peripheral immune system, through recognition of their specifi c antigen presented 
by antigen presenting cells (APCs; including monocytes, dendritic cells, and B 
cells) and the presence of co-stimulatory molecules, release cytokines and also 
upregulate adhesion molecules which are important in the adherence of infl amma-
tory cells to the vascular endothelium and ultimately entrance into the parenchyma 
(see below). It has also been recently appreciated that B cells also enter the CNS and 
the process is also complex involving adhesion molecules as well. 

 Although the majority of these exogenous cells do not specifi cally recognize the 
presumed autoantigen (Cohen et al.  1987 ; Steinman  1996 ) or antigen of a microbial 
agent, this phase of classic infl ammation is considered to be a function of the adap-
tive or cognate immune system. Proinfl ammatory cytokines produced by activated 
effector T cells in concert with cells of the CNS endogenous innate immune system 
or the APCs of the peripheral immune system lead to release of chemokines (small 
molecular weight cytokines) which attract cells, including the initial activated cells, 
which in turn results in activation and infi ltration of additional hematogenous cells 
as well as activation of endogenous cells, in particular microglia and astrocytes. 
Cytokines released by Th1 and likely by Th17 cells stimulate the glial cells to 
upregulate genes specifi c for the so-called proinfl ammatory cytokines (Lisak et al. 
 2006 ). Production of cytokines and chemokines by the glial cells themselves has 
also been reported (reviewed in Lisak et al.  2006 ). 

 The process of entry of exogenous infl ammatory cells involves the breaching of 
the normally intact blood–brain barrier (BBB) and changes in function of the 
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vascular endothelial cells, pericytes, astrocytes (foot processes of astrocytes are 
involved in maintaining the BBB), and microglia (Dore-Duffy  2008 ; Dore-Duffy 
et al.  1994 ). When antigen-specifi c T cells “see” their cognate antigen presented by 
an APC, likely the microglia in the CNS, in the presence of co-stimulatory mole-
cules, further activation or reactivation occurs with release of cytokines and chemo-
kines (Frohman et al.  2006 ). This leads to a complex series of interactions of different 
exogenous and endogenous cells as well as products of those cells that is still incom-
pletely understood. It should also be noted that changes in oligodendrocytes and 
activation of microglia have been reported in parts of the brain in patients with 
RRMS, prior to pathologic evidence of classic perivenular mononuclear cell cuffs 
(Barnett and Prineas  2004 ). This has led some to speculate that the initial event that 
results in the classical acute infl ammatory lesions is the result of a trigger by dam-
aged oligodendrocytes and microglia activated by that damage (an oligodendroglial 
cytopathy). An alternative is that microglial activation is the initial abnormality, fol-
lowed by damage in the white matter of the most sensitive cells, the oligodendroglia, 
and subsequent classical acute, subacute, and chronic infl ammation. 

 In addition to the role of chemokines and cytokines in activating other infl amma-
tory cells and endogenous cells of the nervous system, exogenous and endogenous 
infl ammatory cells can cause direct damage to cells of the nervous system including 
oligodendrocytes and their myelin and neurons including axonal processes (Aguzzi 
et al.  2013 ; Banati et al.  1993 ; Block and Hong  2005 ; Block et al.  2007 ; Cardona 
et al.  2006 ; Chao et al.  1995 ; Sargsyan et al.  2005 ; Stefanova et al.  2007 ). Production 
of free oxygen radicals, nitric oxide and its metabolites, and excitatory amino acids 
and other transmitters contributes to damage as well. Cytokines are critical in upreg-
ulation of these toxic molecules (Aschner  1998 ; De Keyser et al.  2003 ; Farina et al. 
 2007 ; Guenard et al.  1994 ; John et al.  2005 ; Julien  2007 ; Williams et al.  2007a ). 
In MS and in the animal model of MS, acute EAE, there is clearly synergy between 
the cellular immune response and complement-mediated damage likely elicited by 
the presence of immunoglobulins containing antibodies to constituents of the ner-
vous system, in some experimental paradigms (Genain et al.  1995 ; Linington et al. 
 1988 ; Massacesi et al.  1995 ). In neuromyelitis optica (NMO), antibody to aquaporin 
4, complement activation, Th17 cells, and Th17 typical cytokines are involved in the 
damage to astrocytes (NMO is initially an “astrocytopathy”) with subsequent dam-
age to other cells and their processes (Iorio et al.  2013 ; Lennon et al.  2004 ,  2005 ). 

 In some acute viral infections some damage is due to effects of the virus on cells 
of the nervous system, but it is also clear that the nervous system is damaged as an 
“innocent bystander” by the very cells involved in its defense (Cole et al.  1971 ; 
Gilden et al.  1971 ). 

 The mechanism of damage apparently can involve multiple molecular mecha-
nisms including direct cytotoxicity, apoptosis, demyelination, and interference with 
metabolism and other functions of the cells of the target organ (Floden et al.  2005 ; 
Tolosa et al.  2011 ; Urushitani et al.  2001 ; Akassoglou et al.  1998 ; Andrews et al. 
 1998 ; Barres et al.  1992 ; Boullerne et al.  1999 ; Cammer  2001 ; Casaccia-Bonnefi l 
et al.  1996 ; D’Souza et al.  1996 ; Gu et al.  1999 ; Jana and Pahan  2007 ; Jurewicz 
et al.  1998 ; Leuchtmann et al.  2003 ; Matute et al.  1997 ; Matysiak et al.  2002 ; Merrill 
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and Zimmerman  1991 ; Merrill et al.  1993 ; Selmaj et al.  1991a ; Selmaj and Raine 
 1988 ; Zhang et al.  2005 ). In addition these “proinfl ammatory” cytokines inhibit the 
production of factors important for normal function of the nervous system as well 
as factors important for protection and regeneration (Lisak et al.  2007 ,  2009 ,  2011 ). 
Paradoxically some of the same cytokines can have protective effects on neurons 
and oligodendrocytes and their precursors (Merrill and Benveniste  1996 ; Benveniste 
and Merrill  1986 ; Benveniste  1998 ; Antel  2006 ; Arnett et al.  2001 ; Deierborg et al. 
 2010 ; Franklin et al.  1991 ; Kotter et al.  2001 ; Scurlock and Dawson  1999 ; Soane 
et al.  2001 ; Benjamins et al.  2011 ). 

 As lesions evolve there are changes in the subsets of mononuclear cells, which 
were not apparent with simple histological stains used in early studies. However, 
with newer molecular techniques that identify different phenotypic markers for 
these subsets of cells as well as identifying cell activation and upregulation of dif-
ferent products produced by different subsets of lymphocytes and monocytes/mac-
rophages, it has become apparent that the situation is exceedingly more complex 
than originally thought. These cells predominately produce a different variety of 
cytokines and chemokines as well as other factors including what had been tradi-
tionally believed to only be produced by cells of the nervous system itself, i.e., 
growth factors (Chen et al.  2003 ; Hohlfeld et al.  2006 ; Ziemssen et al.  2002 ,  2005 ). 
The cytokines/chemokines and other factors produced by these so-called anti- 
infl ammatory or downregulatory cells seem to inhibit the “proinfl ammatory” cells 
and the “proinfl ammatory” cytokines but also have direct protective and regenera-
tive capacities. In addition to the direct protective and regenerative potential of the 
cytokines, these “anti-infl ammatory” cells also have the capacity to induce produc-
tion of growth factors and anti-infl ammatory cytokines by endogenous cells of the 
nervous system (reviewed in Lisak et al.  2006 ,  2007 ,  2009 ). 

 It is critical to remember that the idea that there is a clear-cut dichotomy of cyto-
kines into “proinfl ammatory/upregulatory” cytokines and “anti-infl ammatory/
downregulatory” cytokines is an oversimplifi cation (Lisak  2007 ). It is also an over-
simplifi cation that cells cannot produce both “proinfl ammatory” and “anti- 
infl ammatory” cytokines. As an example, while tumor necrosis factor-alpha is 
clearly important in pathogenesis of infl ammatory disease of the nervous system, 
this cytokine may be important in downregulating autoimmune T cells, in remodel-
ing CNS parenchyma for recovery and has other protective effects in the CNS and 
PNS (Selmaj and Raine  1988 ; Brosnan et al.  1988 ; Buntinx et al.  2004 ; Caux et al. 
 1993 ; Chandler et al.  1997 ; Chao and Hu  1994 ; Downen et al.  1999 ; Hofman et al. 
 1989 ; Larrick and Wright  1990 ; Laster et al.  1988 ; Neumann et al.  2002 ; Selmaj 
et al.  1991b ; Chen et al.  1996 ). Much may depend on the balance of the two recep-
tors for this cytokine (Heller and Kronke  1994 ; Skoff et al.  1998 ). IL-3 can be both 
pathogenic and protective (Caux et al.  1993 ; Chavany et al.  1998 ; Frei et al.  1986 ; 
Kannan et al.  2000 ; Wen et al.  1998 ). IL-1 contributes to the pathogenesis of infl am-
matory disorders of the CNS and PNS (Skundric et al.  2001 ; Leonard et al.  1995 ) 
but it may also have protective effects (Lisak et al.  1997 ,  2006 ; Bissonnette et al. 
 2004 ). The relative proportion of different cytokines, differences between 
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cell- bound and soluble cytokines, the relative proportion of different receptors, and 
the time of the evolution of the lesion are critical in whether a cytokine is contribut-
ing to disease or inhibiting disease (Lisak  2007 ). In the case of neurotrophic growth 
factors such as NGF and other members of the NGF family including brain-derived 
neurotrophic factor (BDNF) and NT3, the relative proportion of the pro- development/
protection/repair receptors that signal through tyrosine kinases (trkA, trkB, and 
trkC) and the cell death-inducing p75NGFR, a member of the TNF receptor (TNFR) 
superfamily, as well as other interactions of the signaling pathways may determine 
whether these neurotrophic factors are protective or may contribute to cell damage 
(Bredesen and Rabizadeh  1997 ; Chao  2003 ). 

 In the instance of pathogens eliciting the classic infl ammatory responses, acute 
with evolution to subacute and chronic phases, eventually there is clearing of the 
exogenous cells with evidence of changes in endogenous cells, often increases in 
the number and prominence of astrocytes and microglia along with loss of or evi-
dence of damage to neurons/axons and oligodendrocytes/myelin. Changes in ves-
sels including thrombosis and scarring are also seen. It has become clear that 
astrocytes and microglia are important in the formation and maintenance of syn-
apses and have other protective effects on neurons, and thus changes in these cells 
induced by cytokines and chemokines can have consequences for normal nervous 
system function (Aguzzi et al.  2013 ; Albrecht et al.  2002 ,  2003 ; Horner and Palmer 
 2003 ; Mazzanti and Haydon  2003 ; Nedergaard et al.  2003 ; Slezak and Pfrieger 
 2003 ; Sofroniew  2005 ; Altman  1994 ). This is also true in nonclassical infl ammation 
(see below). In the PNS the perisynaptic Schwann cells are important in formation 
and maintenance of the synapse, a situation similar to the role of the astrocyte, and 
perhaps the microglia, in the CNS.  

1.3     Nonclassical Infl ammation 

 In the case of diseases with presumed autoimmune etiology, many areas of the CNS 
continue to show changes of acute as well as subacute and chronic classical infl am-
mation (Kutzelnigg et al.  2005 ; Trapp and Nave  2008 ; Lassmann  2010 ). In addition 
there is an evolution, not well understood, in the CNS, into what might best be 
described as a chronic nonclassical infl ammatory response. In a disease like MS this 
includes a shift to activation of endogenous cells that are part of the innate immune 
response (Gandhi et al.  2010 ). In the recent emphasis on these endogenous cells 
which function as part of the innate immune system, the presence of lesser numbers 
of exogenous infl ammatory cells, lymphocytes of different subsets, in a diffuse pat-
tern in the CNS, seems to have been overlooked or discounted by many. This has led 
some to characterize this phase of MS, often in secondary progressive MS (SPMS) 
and primary progressive MS (PPMS), incorrectly, as noninfl ammatory/purely neu-
rodegenerative. In PPMS we know very little about the early stages from the point 
of view of pathogenic mechanisms. 
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 What is also important is that the cells of the innate immune system, particularly 
microglia and astrocytes, are activated and seem to be involved in the pathogenesis 
of, and perhaps an attempt to inhibit, diseases thought of as “purely” neurodegen-
erative, including Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), 
and Parkinson’s disease (PD). This seems to be true whether one is dealing with the 
more common sporadic or less common inherited forms of these disorders (Aguzzi 
et al.  2013 ; Sargsyan et al.  2005 ; Henkel et al.  2004 ; Hickman et al.  2008 ; Naert and 
Rivest  2011 ; Borchelt  2006 ; Depino et al.  2003 ; Kim and Joh  2006 ). When such 
infl ammation occurs in diseases in which there is no obvious preceding classical 
infl ammation, as in diseases like AD, PD, and ALS, the term “neuroinfl ammation” 
has been used (Aguzzi et al.  2013 ). In stroke or trauma the situation would seem to 
be different than in these more classically degenerative diseases, although clearly 
differing from RRMS evolving into SPMS. 

 In the early stages of such a nonclassical infl ammatory response triggered by cell 
damage and death, often of neurons, one can view this as a protective response 
including clearing misfolded proteins, dead cells, and extracellular material such as 
amyloid in Alzheimer’s disease (Chen et al.  2006 ; Butovsky et al.  2005 ; Combs 
et al.  2001 ; El Khoury et al.  2003 ) and other proteins in other disorders (Tydlacka 
et al.  2008 ; Gow et al.  1998 ; Southwood et al.  2002 ; Anderson et al.  2008 ,  2009 ; 
Arai et al.  2006 ; Avila et al.  2004 ; Goris et al.  2007 ; Popescu et al.  2004 ). However, 
when this process goes on, that is, the nonclassical “proinfl ammatory” response 
does not switch off, perhaps because of the continued stimulus, the infl ammatory 
response now contributes to CNS damage (Aguzzi et al.  2013 ). This has led to 
attempts to inhibit this infl ammatory/immune response as a therapeutic strategy in 
these disorders (Krause and Muller  2010 ; Aisen  2002 ; Breitner  1996 ; Bachstetter 
et al.  2012 ). Unfortunately clinical trials of anti-infl ammatory agents have yet to 
prove to be successful (Jaturapatporn et al.  2012 ). However, it must be remembered 
that nonclassical infl ammation/immune response is just as likely to be as complex 
as the more classic infl ammatory/immune response and simple suppression of all 
infl ammation might well prove to be counterproductive since the initial activation 
presumably was an attempt to clear cells damaged by various degenerative stimuli. 
As an example, an increase in astrocytes could be detrimental to neuronal outgrowth 
as well as to entry of Schwann cells into the spinal cord, in an attempt to provide a 
source of myelination, either by presenting a physical barrier or by secreting toxic 
substances and/or factors that inhibit migration (Guenard et al.  1994 ; Julien  2007 ; 
Williams et al.  2007a ,  b ; Sofroniew  2005 ; Ahlemeyer et al.  2002 ; Corley et al.  2001 ; 
Liuzzi and Lasek  1987 ; McKeon et al.  1991 ; Sidoryk-Wegrzynowicz et al.  2011 ; 
Shirvan et al.  1999 ,  2002 ). However, astrocytes, as previously noted, are important 
to formation and maintenance of the synapse, are involved in the integrity of the 
BBB, and by taking up excitatory amino acids and excess of electrolytes and via 
other activities, can protect the CNS and help with remyelination and repair 
(Williams et al.  2007a ; Slezak and Pfrieger  2003 ; Sofroniew  2005 ; Xiao et al. 
 1998b ; Ye and Sontheimer  1998 ). It is also of interest that proteins of the comple-
ment cascade may be involved in CNS degenerative diseases (reviewed in Aguzzi 
et al.  2013 ) in a different manner than as part of classical immunologically mediated 
demyelinating diseases as in RRMS (Lucchinetti et al.  2000 ; Storch et al.  1998 ), 
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and that proinfl ammatory cytokines induce upregulation of genes for some of these 
proteins in cultures of glial cells (Lisak et al.  2006 ). One could speculate, however, 
that complement could be important in pruning of synapses during development.  

1.4     Chronic Meningeal Infl ammation 

 Meningeal infl ammation has always been recognized in the pathogenesis of micro-
bial infections of the CNS without or with direct infection of the parenchymal cells 
themselves. The presence of infl ammatory cells and infl ammatory mediators as well 
as infl ammation in blood vessels traversing the meninges can lead to parenchymal 
dysfunction and actual damage to the underlying parenchyma. These effects are 
important in disease symptomatology and outcome. 

 Recently the involvement of the meninges in MS has become clear, both in SPMS 
(Magliozzi et al.  2007 ; Serafi ni et al.  2004 ) and in some patients in the earliest stages 
of MS (Lucchinetti et al.  2011 ). While the meningeal lesions can be considered a 
type of classical acute, subacute, and chronic infl ammation, the possible relationship 
of these meningeal lesions to neurodegeneration in the underlying cortical gray mat-
ter represents another type of nonclassical neuroimmunologic pathogenic mecha-
nism. In SPMS and in early RRMS there are atypical germinal center-like structures 
which include B cells, and the underlying pathology of the cerebral cortex is propor-
tionate to the extent of the cortical demyelination and damage to oligodendrocytes 
and neurons/axons (Lucchinetti et al.  2011 ; Howell et al.  2011 ). It should be empha-
sized that in types II and III cortical damage in MS is relatively acellular (Bo et al. 
 2003a ,  b ). This has led to the hypothesis that in type III subpial damage (demyelin-
ation and axonal/neuronal damage), factors secreted by cells in the meninges, per-
haps B cells, CD8 T cells, or both, diffuse into the cortex and produce the cortical 
damage. While B cells and their progeny, plasmablasts and plasma cells, could well 
be producing antibodies locally which diffuse into the cortex, there is no evidence for 
immunoglobulin or complement activation products in the cortex in MS. B cells 
produce cytokines which could produce this damage (Lisak et al.  2012 ). The pres-
ence of this meningeal infl ammation in early stages of MS has also led some to 
believe that this is the primary lesion in the evolution of MS, with cells fi rst entering 
the CNS via the meninges and/or choroid plexus, then subsequently leaving the CNS 
to reenter the systemic immune system. These cells that now recognize CNS anti-
gens become activated in response to as yet unknown stimuli, perhaps during sys-
temic infl ammatory responses to infectious agents, and subsequently enter via the 
classical perivenular lesions of classical RRMS (Lucchinetti et al.  2011 ). It is of 
interest that in the development of lesions of EAE the earliest pathology is infl amma-
tion of the meninges (Alvord et al.  1959 ). Thus one could view this as still one more 
type of nontraditional infl ammation, that is, one where there are degenerative changes 
accompanied by microglial activation as the result of a more classical infl ammatory 
response adjacent to but not in the parenchyma of the CNS itself. Most recently it has 
been reported that in PPMS there is a more diffuse meningeal infl ammatory response, 
without the focal atypical germinal follicle-like structures (Choi et al.  2012 ).  
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1.5     Summary 

 The chapters in this book detail with how glial cells, including oligodendrocytes, 
interact with neurons/axons and with one another in both classical and nonclassical 
infl ammatory states including degenerative diseases of the nervous system. It is 
clear that the cells of the nervous system are active participants in these responses, 
particularly in the nonclassical infl ammatory responses, both protective and destruc-
tive. An increase in our knowledge of these interactions is important for progress in 
treatment of diseases characterized by classic infl ammation like RRMS and NMO, 
as well diseases where nonclassical infl ammation seems to be most important like 
SPMS, PPMS, and some classical neurodegenerative diseases.     

  Confl ict of Interest   The authors have no confl icts of interest related to the contents of this 
chapter.  
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    Abstract     Neuroglial infl ammation is a pathological hallmark of neuroimmunological 
disorders, such as multiple sclerosis, as well as neurodegenerative diseases, such as 
amyotrophic lateral sclerosis, Parkinson’s disease, and Alzheimer’s disease. Activated 
microglia and reactive astroglia accompany the loss of neurons and myelin in these 
conditions. Both microglia and astroglia can exert neuroprotective and neurotoxic 
functions, which are stage-dependent. Both cell types can switch from an anti-
infl ammatory/neuroprotective to a proinfl ammatory/neurotoxic phenotype according 
to the surrounding environmental stimuli. Deciphering glial dual actions may provide 
insights for the management of neuroglial infl ammation and the future development 
of new drugs targeting glia in neuroimmunological and neurodegenerative diseases.  

2.1         Introduction 

 Demyelinating diseases, such as multiple sclerosis (MS) and neuromyelitis optica 
(NMO), are representative neuroimmunological diseases that affect the central ner-
vous system (CNS). Demyelinating disorders are thought to be triggered by 
immune-mediated mechanisms although this has not been conclusively proven to 
date. MS and NMO subsequently develop neurodegeneration in addition to infl am-
matory demyelination. The accumulating disability and the resultant chronic dis-
ease progression in these conditions are likely determined by secondary 
neurodegeneration. In the chronic progressive phase of MS, T cell infi ltration sub-
sides while CNS-compartmentalized glial infl ammation becomes dominant, which 
induces continuous tissue degeneration. Neurodegenerative disorders, such as 
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Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS), 
are triggered by neuronal abnormalities but are subsequently accompanied by neu-
roglial infl ammation. Increasing evidence suggests that neuroglial infl ammation 
determines disease progression, which is a clinical refl ection of neurodegeneration. 
Therefore, neuroimmunological and neurodegenerative diseases share glial infl am-
mation as an indispensable component of the disease processes, which underscores 
the importance of elucidating the mechanisms of glial infl ammation. This review 
chapter describing neuroinfl ammation in neurological disease will focus on MS as 
a representative neuroimmunological disease affl icting the CNS, and ALS as a neu-
rodegenerative disease accompanied with glial infl ammation.  

2.2     Neuroglial Infl ammation in MS 

2.2.1     Clinical Aspects Related to Neuroglial Infl ammation 
and Neurodegeneration 

 Most MS patients initially develop a relapsing remitting disease course with a mean 
age of onset around 30 years of age (termed relapsing remitting MS, RRMS). After 
10–20 years, approximately 50 % of RRMS patients enter a secondary progressive 
phase with or without superimposed relapses (termed secondary progressive MS, 
SPMS). Approximately 10–20 % of MS patients exhibit a relentlessly progressive 
disease course from the onset (termed primary progressive MS, PPMS). Clinical 
relapse is often accompanied or even preceded by appearance of contrast-enhanced 
magnetic resonance imaging (MRI) lesions in the CNS. Recent 7 T MRI studies 
clearly showed the presence of vessels in the center of MS lesions (Mistry et al. 
 2013 ), confi rming that MS lesions develop around blood vessels. Pathologically, 
perivascular and diffuse lymphocytic infi ltration is a common fi nding in active MS 
lesions. Thus, clinical relapse is likely to be caused by peripheral blood-borne 
infl ammation around the blood vessels. 

 However, clinical relapses have only a weak effect on clinical progression 
(Confavreux et al.  2000 ). Irrespective of the initial disease course, a clinically pro-
gressive phase occurs in both SPMS and PPMS patients around 40 years of age and 
then proceeds at similar rate (Kremenchutzky et al.  2006 ). Large-scale epidemio-
logical surveys revealed that MS patient disability, determined by Kurtzke’s 
Expanded Disability Status Scale (EDSS) scores (Kurtzke  1983 ), progresses at 
approximately the same rate until the EDSS scores reach four, even though the pro-
gression rates varied until the development of an EDSS score of four (Confavreux 
and Vukusic  2006 ). These fi ndings suggest that common pathogenic mechanisms 
may underlie clinical disability progression. At the progressive stage of MS, none 
of the recent disease-modifying therapies (DMT) acting on the peripheral immune 
system are effective, even though they have high effi cacy for reducing annualized 
relapse rates. Thus, disease progression may have distinct mechanisms from relapse 
caused by peripheral immune-mediated infl ammation. 
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 Many MRI studies have reported that the T2 lesion burden in the white matter 
modestly correlates with disability (Fisniku et al.  2008 ) and rather the degree of gray 
matter and spinal cord atrophy correlates best with accumulating disability (Fisniku 
et al.  2008 ; Fisher et al.  2008 ; Bonati et al.  2011 ). These observations suggest that 
disease progression could be attributable to neuroglial infl ammation compartmen-
talized in the CNS behind the blood–brain barrier (BBB) (Reynolds et al.  2011 ), 
which causes neurodegeneration regardless of the initial infl ammatory relapses.  

2.2.2      White Matter Pathology and Oligodendroglia 
in MS Lesions 

 MS predominantly affects CNS white matter that is rich in myelin. Actively demyelin-
ating lesions are destructive lesions that are densely and diffusely infi ltrated with mac-
rophages/activated microglia that phagocytose myelin debris, as identifi ed by Luxol 
fast blue staining and immunohistochemistry for myelin proteins (Lassmann et al. 
 1998 ; Lucchinetti  2007 ). Such lesions are associated with perivascular lymphocyte 
cuffi ng. Chronic active lesions display a rim of macrophages and activated microglia 
while chronic inactive lesions show no increase in macrophage/activated microglia 
numbers throughout the lesions. A mild global infl ammation containing microglial 
activation and a diffuse low-level of T cells is seen even in normal-appearing white 
matter. Such diffuse infl ammatory changes are more prominent in SPMS and PPMS 
than RRMS. In chronic MS, leakage from the BBB is absent, which corresponds to a 
paucity of gadolinium-enhanced lesions in PPMS and SPMS. Thus, compartmental-
ized infl ammation behind the BBB is suggested based on these pathological fi ndings. 

 It is widely accepted that MS pathology shows heterogeneity. Lucchinetti et al. 
( 2000 ) classifi ed four demyelinating patterns of MS lesions, and proposed that an 
individual only develops one pattern, suggesting a single mechanism is operative in 
individual patients. All lesions have infl ammatory infi ltrates composed of T cells 
and macrophages/activated microglia, while each pattern has its own specifi c 
 features as follows.

   Pattern I:  Active demyelination associated with the infi ltration of T cells and 
macrophage / activated microglia in the absence of antibody and complement 
deposition . These lesions are centered around veins and venules.  

  Pattern II:  Active demyelination associated with immunoglobulin and complement 
deposition . Prominent deposition of immunoglobulins (mainly IgG) and comple-
ment C9neo antigen are found in association with degenerating myelin at the 
active plaque edge. This pattern is also centered around blood vessels.  

  Pattern III:  Distal oligodendrogliopathy characterized by selective  myelin - associated     
glycoprotein  ( MAG )  loss . A profound loss of oligodendroglia at the active plaque 
border, DNA fragmentation, and oligodendroglial apoptosis are observed with T 
cell and macrophage/activated microglial infi ltration but without the deposition 
of immunoglobulins and complement. Such lesions are not centered around 
blood vessels and the margin is ill-defi ned.  
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  Pattern IV:  Oligodendroglial death with DNA fragmentation but without features of 
apoptosis in a small rim of periplaque white matter . A near complete loss of 
oligodendroglia in active and inactive lesions is observed without remyelination. 
The border is sharply demarcated.    

 However, we and others have observed heterogeneous demyelinating patterns 
even within one autopsied individual, indicating such patterns may represent stage- 
dependent heterogeneity but not disease heterogeneity (Matsuoka et al.  2011 ). 
Immunoglobulin and complement deposits are found in lesions from about 50 % of 
autopsied MS patients (pattern II) (Stadelmann et al.  2011 ), suggesting that anti-
body and complement-mediated myelin phagocytosis might become the dominant 
mechanism in established MS lesions (Breij et al.  2008 ). Currently, the idea that an 
individual only develops one demyelinating pattern or can develop more than one 
pattern is still controversial. 

 Oligodendroglial cells are especially vulnerable to oxidative stress and gluta-
mate toxicity associated with infl ammation. Oligodendroglia express the AMPA/
kainite receptor in the cell body and NMDA receptors in the processes. 
Oligodendroglia also express excitatory amino acid transporter (EAAT)-1 and -2 
and are regarded as the principal cells for glutamate clearance in the white matter 
(Benarroch  2009 ). The accumulation of glutamate has been demonstrated in MS 
lesions by biopsy (Werner et al.  2001 ) and magnetic resonance spectroscopy 
(Srinivasan et al.  2005 ) while EAAT-1 and EAAT-2 are reduced in oligodendroglia 
(Pitt et al.  2003 ). In these circumstances, oligodendroglia may be vulnerable to 
toxicity from glutamate secreted by activated microglia. Oligodendroglia contain a 
large pool of iron but have a low capacity for anti-oxidative mechanisms, which 
render the cell especially sensitive to oxidative stress (Benarroch  2009 ).  

2.2.3     T Cells: A Key Player of the Effector Arm That Triggers 
CNS Infl ammation 

 Multiple sclerosis (MS) is thought to be an autoimmune disease that targets myelin 
antigens. This has been suggested from studies demonstrating an increased fre-
quency of T cells showing inter- and intramolecular epitopes spreading against 
myelin proteins, increased levels of interferon (IFN)-γ, interleukin (IL)-17, and 
downstream proinfl ammatory cytokines in the cerebrospinal fl uid (CSF), exacerba-
tion of disease following the administration of IFNγ, and the increased frequency of 
T helper 1 (Th1) cells secreting IFNγ and Th17 cells secreting IL-17, which support 
the involvement of Th1 and Th17 cells in MS, at least for the infl ammatory aspects 
of the disease (Ishizu et al.  2005 ; Tanaka et al.  2008 ; Matsushita et al.  2013 ). CD4+ 
T cells are present mainly in the perivascular areas while parenchyma infi ltrates 
largely consist of CD8+ T cells (Babbe et al.  2000 ). Interestingly, CD8+ T cells out-
number CD4+ T cells in MS lesions (Booss et al.  1983 ); however, the roles of CD8+ 
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T cells remain unclear. In an animal model of MS, experimental allergic encephalo-
myelitis (EAE), the early events in the formation of infl ammatory lesions, involve a 
predominantly CD4+ T cell-mediated process. B cells and plasma cells also exist in 
the perivascular areas, but represent a minor component of infl ammatory infi ltrates 
in the CNS parenchyma (Friese and Fugger  2009 ; Frischer et al.  2009 ). 

 Studies from EAE demonstrated that myelin-specifi c CD4+ T cells could be 
transferred to naïve mice to induce a CNS demyelinating disease. Thus, it was 
hypothesized that in MS, naïve T cells are sensitized by myelin antigens in the 
peripheral lymph nodes, such as deep cervical lymph nodes, and differentiate to 
myelin antigen-specifi c Th1 or Th17 cells. These peripherally activated Th1 or 
Th17 cells express adhesion molecules that allow them to pass through the BBB and 
enter the CNS (Fig.  2.1 ). In EAE, adoptively transferred myelin antigen-specifi c T 
cells require several days to accumulate in the CNS. It was recently shown that such 
encephalitogenic T cells reside in bronchus-associated lymphoid tissue (Odoardi 
et al.  2012 ) and become eligible to enter the CNS.

  Fig. 2.1    Th17/Th1 cells are primed in the periphery and restimulated in the central nervous sys-
tem (CNS). Naïve T cells (Th0) differentiate to Th1 or Th17 cells upon antigenic stimulation in the 
peripheral lymph nodes and enter the CNS via the blood–brain barrier (BBB). Perivascular macro-
phages present antigens to Th1 or Th17 cells in the perivascular space, and restimulated Th1 and 
Th17 cells traffi c to the CNS parenchyma, secrete IFNγ and IL-17, and recruit macrophages and 
neutrophils, respectively. Microglia can produce either toxic or protective factors, sensing either 
“kill me” or “help me” signals from neurons. The destruction of astrocyte endfeet or decreased 
production of IL-25 from endothelial cells can cause the BBB to become “leaky”       
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   T cells egress from postcapillary venules (high endothelial venules) and enter 
into the Virchow-Robins space (perivascular space) in the CNS.    Here, activated T 
cells can fi rmly adhere to the surface of vascular endothelial cells via interactions 
between α4β1 integrin expressed on activated T cells and vascular cell adhesion 
molecule 1 (VCAM-1) on endothelial cells lining the BBB. Anti-α4β1 integrin anti-
body, natalizumab, effectively blocks fi rm adhesion of T cells, thereby markedly 
suppressing MS relapses (Coisne et al.  2009 ). Thus, peripherally activated T cells 
can invade across endothelial cells and the endothelial basement membrane on the 
abluminal side and remain in the perivascular space delineated by the endothelial 
basement membrane and the parenchymal basement membrane, which is an exten-
sion of the subarachnoid space (Ransohoff and Engelhardt  2012 ). T cells require 
restimulation by perivascular macrophages to further traffi c into the CNS paren-
chyma across the glia limitans perivascularis composed of parenchymal basement 
membrane and astrocyte endfeet (Ransohoff and Engelhardt  2012 ). Perivascular 
macrophages continuously repopulated from the peripheral blood can engulf CNS 
antigens in the perivascular space where myelin antigens are conveyed by the CSF 
fl ow pathway to the subarachnoid space, and present these antigens to T cells 
(Ransohoff and Engelhardt  2012 ). Subsequently, T cells restimulated by perivascu-
lar macrophages secrete matrix metalloproteinase (MMP)-2 and -9, which disrupt 
the basement membrane leading to destabilization of astrocyte endfeet anchored to 
the parenchymal basement membrane, and promote their entry into the CNS paren-
chyma (Bechmann et al.  2007 ; Tran et al.  1998 ). Once in the CNS parenchyma, T 
cells secrete proinfl ammatory cytokines and chemokines that further recruit macro-
phages, neutrophils, and activating resident microglia, which serve as effectors for 
tissue destruction, at least during the relapse phase. 

 The ability of natalizumab to markedly suppress relapses implies the critical 
importance of T cell involvement in CNS infl ammation at relapse. However, accord-
ing to MS pathology, there is considerable debate as to whether T cell infi ltration is 
a primary event or secondary to oligodendroglial apoptosis and subsequent microg-
lial activation. Barnett and Prineas ( 2004 ) observed oligodendroglial apoptosis with-
out lymphocyte infi ltration in autopsied cases with very early MS, and proposed that 
oligodendroglial apoptosis preceded the formation of all MS lesions and BBB “leak-
iness,” and that microglial activation and T cell infi ltration were secondary events. 
The source of the substantial debates regarding these issues is partly derived from 
the fact that factors causing initial oligodendroglial apoptosis remain unknown.  

2.2.4     B Cells: Another Important Cell in the Effector Phase 

 Few plasma cells are observed in the CNS during the early stages of MS, but become 
increasingly prominent as disease progresses. In addition, there is an increased 
prevalence of oligoclonal IgG bands (OBs) in the CSF as the disease duration 
increases, which persist stably (Meinl et al.  2006 ). B cells exist in the perivascular 
areas and leptomeninges during all disease stages, but rarely in the CNS 
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parenchyma (Magliozzi et al.  2007 ). Autoantibody and complement-mediated 
myelin phagocytosis are assumed the dominant mechanism in established MS 
lesions, as mentioned in Sect.  2.2  (Breij et al.  2008 ). In the leptomeninges, ectopic 
lymphoid follicle-like structures have been observed in approximately 40 % of post-
mortem SPMS cases (Magliozzi et al.  2007 ,  2010 ). These follicle-like structures 
consist mainly of CD20+ B cell aggregates interspersed with CD21+ CD35+ fol-
licular dendritic cells (FDCs), CD4+ T cells, and CD8+ T cells. They are predomi-
nantly present in the deep cerebral sulci (Magliozzi et al.  2007 ,  2010 ). The majority 
of such meningeal lymphoid follicle-like structures are closely associated with large 
subpial demyelination (Magliozzi et al.  2007 ,  2010 ). MS cases with meningeal 
lymphoid- like structures showed a younger age at disease onset, a shorter time to 
wheelchair- bound disability, and a shorter time to progression than those without 
meningeal lymphoid-like structures (Magliozzi et al.  2007 ,  2010 ). 

 The importance of B cells in MS is clearly indicated by the fact that rituximab, 
that targets CD20 molecules expressed on B cells but not plasma cells, is highly 
effi cacious in suppressing MS relapses (Hauser et al.  2008 ). In rituximab trials, B 
cell numbers decreased in parallel with the reduction of relapses, whereas total anti-
body levels did not decrease signifi cantly. It is thus proposed that B–T cell interac-
tions including antigen presentation or proinfl ammatory cytokine secretion by B 
cells is the critical step inhibited by rituximab, but not the inhibition of autoantibod-
ies themselves. Interestingly, rituximab is also effective in NMO, where there is 
selective optic nerve and spinal cord demyelination in the presence of specifi c anti-
bodies against astrocyte water channel protein, aquaporin-4 (AQP4) (Lennon et al. 
 2004 ,  2005 ), but without reducing anti-AQP4 antibody levels (Pellkofer et al.  2011 ). 
Therefore, B–T cell interactions and B cell cytokines are also thought to be critical 
in NMO. Highly specifi c autoantibodies in MS pathology remain to be identifi ed. 
Autoantibodies against myelin oligodendrocyte glycoprotein (MOG) have been 
detected in children with atypical demyelinating disease (Brilot et al.  2009 ), but not 
in adult cases. The signifi cance of anti-glycolipid antibodies and a recently described 
autoantibody against KIR4.1, an ATP-sensitive inward rectifying potassium chan-
nel expressed in astroglial endfeet and oligodendroglia (Srivastava et al.  2012 ), 
needs further confi rmation in large-scale independent cohorts.  

2.2.5     Gray Matter Lesions 

 Recently, gray matter lesions have gained much attention because they closely cor-
relate with disability and disease progression. The introduction of double inversion 
recovery (DIR) MRI demonstrated that cortical lesions and cortical atrophy are 
present from the early stage of RRMS and become more prominent in SPMS 
(Fisniku et al.  2008 ; Fisher et al.  2008 ; Kutzelnigg et al.  2005 ; Vercellino et al. 
 2005 ). The absence of MRI evidence for noticeable infl ammation suggests that neu-
rodegeneration may take place in cortical lesions. Cortical lesion loads and atrophy 
are signifi cantly associated with clinical progression (Geurts et al.  2005 ) whereas 
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white matter atrophy does not correlate with increasing disability (Fisher et al. 
 2008 ). Thus, cortical lesions may play a major role in the development of both 
physical and cognitive disability (Calabrese et al.  2010 ). 

 Pathologically, demyelination is present in the spinal cord and cerebral and cer-
ebellar cortex but also in the deep gray matter, including the thalamus, basal gan-
glia, and hypothalamus, to varying degrees (Bö et al.  2003 ; Peterson et al.  2001 ). 
Cortical lesions are classifi ed into three types: type I lesions are leukocortical 
lesions affecting both subcortical white matter and the lower layer of gray matter; 
type II lesions are entirely intracortical; and type III lesions involve the subpial gray 
matter regions (subpial demyelination) (Peterson et al.  2001 ). Frontal and temporal 
cortices, cingulate gyrus, and hippocampus are most frequently involved (Reynolds 
et al.  2011 ), and may explain the correlation between cognitive impairment and 
cortical pathology. In hippocampal demyelinated lesions, a reduction of synaptic 
density has also been reported (Dutta et al.  2011 ). However, cortical demyelination 
does not correlate with white matter pathologic changes (Bö et al.  2003 ), suggesting 
independent mechanisms may be operative. 

 Cortical lesions are accompanied with mild, if any, infl ammatory infi ltrates, but 
with increased numbers of activated microglia (Magliozzi et al.  2010 ; Bö et al. 
 2003 ; Peterson et al.  2001 ). Other differences between cortical and white matter 
lesions include the lack of signifi cant leakage of plasma proteins, suggesting the 
BBB is preserved, and the absence of complement activation (Reynolds et al.  2011 ). 
In extensive subpial demyelination, increased numbers and activation status of 
microglia, increased axonal injury, and neuronal loss are greatest close to the pial 
surface (Magliozzi et al.  2007 ,  2010 ), implying that secretion of proinfl ammatory 
cytokines into the CSF from lymphocytes in the follicles may be responsible for the 
activation of microglia, cortical demyelination, and neuronal damage. In these 
cases, the loss of layer III and V pyramidal neurons exceeded 40 % and 50 %, 
respectively, and was accompanied by loss of interneurons in other cortical layers 
(Magliozzi et al.  2010 ). Cortical neuronal loss was also reported to occur diffusely 
even in normal-appearing gray matter (Magliozzi et al.  2010 ), suggesting that 
demyelination and neuronal loss may not be directly linked (Reynolds et al.  2011 ). 
Neuronal apoptosis and mitochondrial damage were thought to be responsible for 
the neuronal loss (Reynolds et al.  2011 ; Campbell et al.  2011 ; Dutta et al.  2006 ). 
However, other research groups did not confi rm such a relation between meningeal 
lymphoid follicles and cortical demyelination (Kooi et al.  2009 ), and more studies 
are required to establish the roles of meningeal lymphoid follicles in MS.  

2.2.6     Mechanisms of Axonal Injury 

 Acute axonal damage is accompanied by active focal infl ammatory demyelination 
and is most prominent during the early stages of MS (Ferguson et al.  1997 ; Trapp 
et al.  1998 ) but decreases with disease progression (Frischer et al.  2009 ; Kornek and 
Lassmann  1999 ; Kuhlmann et al.  2002 ), suggesting that infl ammation plays a 
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signifi cant role in axonal loss. Cumulative axonal loss and resultant brain and spinal 
cord atrophy are signifi cantly correlated with permanent disability (Frischer et al. 
 2009 ; Kuhlmann et al.  2002 ; Bjartmar et al.  2000 ). Acute damage can be detected 
by the presence of accumulated amyloid precursor protein (APP)-positive spheroids 
that refl ect impaired axonal transport (Ferguson et al.  1997 ). APP-positive spher-
oids are more extensive during the fi rst year of disease onset, and the number of 
acutely injured axons decrease with increasing disease duration (Kuhlmann et al. 
 2002 ). The extent of axonal loss correlates well with numbers of CD8+ T cells and 
macrophages/activated microglia that are present in close proximity (Kuhlmann 
et al.  2002 ) and numerous CD8+ T cells that infi ltrate into CNS parenchyma tran-
sect axons possibly via major histocompatibility complex (MHC) class I-mediated 
self-antigen recognition (Trapp et al.  1998 )   . Furthermore, reactive oxygen and 
nitrogen species and proinfl ammatory cytokines secreted by these cells may sup-
press axonal functions and cause mitochondrial damage (Dutta et al.  2006 ). 

 In limited numbers of MS cases, autoantibodies against nodal and paranodal 
antigens, such as neurofascin, contactin-2, and TAG-1, have been reported (Mathey 
et al.  2007 ; Derfuss et al.  2009 ). For example, anti-neurofascin antibody was found 
in one-third of MS patients, with higher prevalence in chronic progressive MS than 
in RRMS (Mathey et al.  2007 ). Neurofascin 186 expressed on the axolemma at the 
node of Ranvier concentrates voltage-gated sodium channels at the node while neu-
rofascin 155 expressed on oligodendroglial membranes connects them to axons via 
binding to contactin-1 and Caspr1 (Ratcliffe et al.  2001 ; Sherman et al.  2005 ). 
Autoantibodies to nodal and paranodal antigens can induce axonal dysfunction in 
vivo and may be involved in axonal damage in MS (Desmazières et al.  2012 ).  

2.2.7     Microglia and Monocyte/Macrophage in Demyelinating 
Diseases 

 The mononuclear phagocyte system in the CNS, including peripheral blood-borne 
monocytes/macrophages and resident microglia, plays major roles in the effector 
arm of demyelinating diseases by restimulating T cells within the CNS and by 
 damaging and repairing CNS tissue. 

2.2.7.1      Roles of Microglia and Monocytes/Macrophage in MS 

 The origin of microglia has long been a matter of debate, but recent studies indi-
cated microglia are derived from extraembryonic yolk sac myeloid cells. Colony 
stimulating factor 1 receptor (CSFIR) is a cell-surface receptor for the cytokines 
CSF-1 and IL-34. CSF1R is usually expressed on monocytes and macrophages in 
the peripheral blood as well as on the surface of microglia in the CNS (Ransohoff 
and Cardona  2010 ). During fetal development, yolk sac myeloid cells colonize in 
the CNS due to IL-34 signaling through CSF1R. Once colonized, such cells lose 
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surface markers characteristic of mononuclear phagocytes, and are assumed to 
become microglia in adults (Ransohoff and Cardona  2010 ). CSF1 on CSF1R signal-
ing is associated with survival, proliferation, regulation, and differentiation of 
microglia (Wang et al.  2012 ). In adult CNS, microglia consist of more than 10 % of 
all cells. In the resting state, microglia have a small body with extensively branched 
processes and are termed “ramifi ed microglia.” Microglia expressing CD11b, ion-
ized calcium-binding adapter molecule 1 (Iba1), and CD68 constantly monitor the 
CNS environment (Ransohoff and Cardona  2010 ). Upon activation, the soma is 
enlarged while processes are retracted and these cells are termed “amoeboid microg-
lia.” Myeloid cell markers are enhanced on “amoeboid microglia.” 

 Microglia are the only cells that express CX3CR1 in the CNS. CX3CR1-defi cient 
mice develop severe EAE and increased neuron loss in a transgenic model of ALS 
(Cardona et al.  2006 ). Its ligand CX3CL1 is produced by neurons and down- 
regulates microglial neurotoxicity. A lack of CX3CL1 input from neurons rapidly 
activates microglia (Ransohoff and Cardona  2010 ). Furthermore, plasma fi brinogen 
extravasated from disrupted BBB also can activate microglia (Ransohoff and 
Cardona  2010 ). Activated microglia produce numerous cytokines/chemokines, 
growth factors, reactive oxygen and nitrogen species via oxidative burst, and induc-
ible nitric oxide synthase (iNOS). Activated microglia can express MHC class II 
molecules and costimulatory molecules. However, they never traffi c to the draining 
lymph node, unlike dendritic cells in other tissues. 

 In the CNS, peripheral blood-borne perivascular and meningeal macrophages 
play a major role in antigen presentation to restimulate T cells. Without restimula-
tion by relevant antigens, T cells do not survive in the CNS. The recruitment of 
monocytes/macrophages is mediated by CCL2–CCR2 signaling. Hypertrophic 
astrocytes in active MS lesions express CCL2 while its receptor, CCR2, is expressed 
on monocytes/macrophages (Mahad and Ransohoff  2003 ). CSF CCL2 levels are 
decreased in MS (Mahad et al.  2002 ), which is presumably because of its consump-
tion by infi ltrating cells (Mahad et al.  2002 ). CCR2-defi cient mice develop mild 
EAE with neutrophil infi ltration (Yamasaki et al.  2012 ). Thus, macrophages play 
major roles in antigen presentation and tissue destruction while microglia induce 
tissue damage. However, microglia may also have neuroprotective properties 
through phagocytizing tissue debris and producing neurotrophic substances.  

2.2.7.2     Hereditary Microgliopathy Showing Widespread Myelin 
and Neuroaxonal Loss 

 Hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS), a rare auto-
somal dominant disease characterized by cerebral white matter degeneration with 
axonal spheroids presenting cognitive decline, depression, and motor impairment, is 
caused by mutations in the  CSF1R  gene (Rademakers et al.  2012 ). As mentioned in 
Sect.  2.2.7.1 , IL-34 signaling through CSF1R is related to microglial migration into 
the CNS during the embryonic period, while CSF1 signaling is associated with 
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survival, proliferation, and differentiation of microglia (Wang et al.  2012 ). We 
recently observed that microgliopathy caused by  CSF1R  mutation in HDLS causes 
myelin and axonal loss in the CNS, where CD4+ and CD8+ T cell infi ltration occurs 
possibly through the actions of cytokines/chemokines produced by reactive microg-
lia (Saitoh et al.  2013 ). In addition, a primary microglial disease known as Nasu–
Hakola disease (NHD) is characterized by white matter degeneration and bone 
cysts. The recessive loss of function mutations in the gene encoding triggering 
receptor expressed on myeloid cells 2 (TREM2) and transmembrane adaptor signal-
ing protein DAP12 that transduces TREM2 signals in NHD causes a lack of microg-
lia and osteoclasts (Paloneva et al.  2000 ,  2002 ; Kondo et al.  2002 ). The 
TREM2–DAP12 protein complex is crucial for proliferation and survival of mono-
nuclear phagocytes and is related to CSF1R signaling (Otero et al.  2009 ). That 
genetic mutation of indispensable molecules in microglial development and func-
tion causes diffuse myelin and axon degeneration underscores the critical roles of 
microglia in the maintenance of myelin and neurons. Thus, in HDLS and NHD, it 
has been suggested that microglial maintenance of myelin turnover is disrupted. 
Therefore, the disruption of normal microglial maintenance functions may exacer-
bate neurodegenerative process in neuroglial infl ammation.   

2.2.8     Roles of Astrocytes in Demyelinating Disease 

 Astrocytes normally have neuroprotective functions while in infl ammatory circum-
stances they become neurotoxic. Such biphasic behavior of astrocytes makes neuro-
glial infl ammation more complex. 

2.2.8.1     Neuroprotective Aspects 

 Astroglia extend numerous processes, forming highly organized domains with little 
overlap between adjacent cells. Astroglia appose each other and interconnect via 
Cx43 gap junction channels to form functional networks. Highly ramifi ed proto-
plasmic astrocytes in the gray matter ensheath synapses, forming tripartite synapses, 
while fi brous astrocytes in the white matter cover the nodes of Ranvier (Miller and 
Raff  1984 ). Astrocyte endfeet also have close contact with parenchymal basement 
membrane around vessels and contribute to maintenance of the BBB through the 
induction of tight junctions between endothelial cells (Janzer and Raff  1987 ). 
Astroglia also produce components of extracellular matrix, such as collagens, lami-
nins, fi bronectins, hyaluronan, chondroitin sulfate, and heparin sulfate (Zimmermann 
and Dours-Zimmermann  2008 ; van der Laan et al.  1997 ; van Horssen et al.  2007 ), 
which constitute the basal lamina around vessels. Astroglia constitutively express 
the membrane bound death ligand, CD95L, and can induce CD95L-mediated apop-
tosis of infi ltrating T cells (Bechmann et al.  1999 ,  2002 ). Astroglia also secrete 
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tissue inhibitor of metalloproteinase (TIM), thereby limiting disruption of basement 
membrane and extracellular matrix by MMPs secreted by infi ltrating T cells 
(Miljković et al.  2011 ). Ablation of proliferating astroglia exacerbates EAE and is 
associated with the massive infi ltration of macrophages and T cells (Voskuhl et al. 
 2009 ), suggesting critical roles of astroglia in preventing the expansion of infl am-
mation. We demonstrated that CSF levels of angiotensin and angiotensin-converting 
enzymes produced and secreted from astrocyte endfeet were signifi cantly decreased 
in NMO (Matsushita et al.  2010 ) and MS (Kawajiri et al.  2008 ,  2009 ) patients, sug-
gesting that injury of astrocyte endfeet and dampening of astrocytic barrier func-
tions may occur in both MS and NMO. 

 Astroglia also produce a variety of growth factors that promote oligodendrocytes 
to form myelin (Moore et al.  2011 ) by infl uencing oligodendroglial progenitor cells 
(OPCs) (Gallo and Armstrong  2008 ). IL-6 and transforming growth factor (TGF)-β 
produced by activated astrocytes may promote neuroprotection (Allaman et al. 
 2011 ). A recent study showed that ablation of astroglia in glial fi brillary acidic pro-
tein (GFAP)-thymidine kinase transgenic mice with ganciclovir caused a failure of 
damaged myelin removal through decreased microglial activation during cuprizone- 
induced demyelination (Skripuletz et al.  2013 ). Thus, astroglia can deliver signals to 
microglia to clear myelin debris, thereby contributing to the regenerative process.  

2.2.8.2     Neurotoxic Aspects 

 Activated astroglia morphologically demonstrate hypertrophy and increase expres-
sion of GFAP. Activated astroglia produce cytokines/chemoattractants as well as 
adhesion molecules for lymphocyte traffi cking. For example, astroglia produce 
various proinfl ammatory cytokines, such as IL-1, IL-6, IL-12, IL-15, IL-23, IL-27, 
IL-33, CCL2 (MCP-1), CCL5 (RANTES), CXCL8 (IL-8), CXCL10 (IP-10), and 
CXCL12 (SDF-1). IL-12, IL-23, and IL-27 are essential for inducing Th1 and Th17 
cells (Xu and Drew  2007 ; Kroenke et al.  2008 ; Markovic et al.  2009 ) while IL-15 is 
crucial for the activation of encephalitogenic CD8+ T cells (Saikali et al.  2010 ). 
CCL2 is a critical chemokine that attracts peripheral blood macrophages into the 
CNS (Yamasaki et al.  2012 ). Moreover, astroglia can express VCAM-1 and fi bro-
nectin CS-1, which are up-regulated in MS lesions (van Horssen et al.  2005 ; 
Engelhardt  2010 ). α4β1 integrin expressed on T cells interacts with its receptors, 
VCAM-1 and CS-1, thereby enabling T cells to traffi c from the perivascular areas 
deep into the CNS parenchyma (Gimenez et al.  2004 ). Astroglia can express MHC 
class II and costimulatory molecules such as B7-1, B7-2, and CD40 (Chastain et al. 
 1812 ) dependent on the presence of IFNγ, TNF, and IL-1β (Dong and Benveniste 
 2001 ). Thus, astroglia may present autoantigens to T cells in the context of MHC 
class II molecules. Astroglia also produce iNOS via effects of endoplasmic reticu-
lum stress chaperones (Saha and Pahan  2006 ), leading to the production of superox-
ide anion and peroxynitrite, which can damage oligodendrocytes harboring low 
antioxidant levels (Antony et al.  2004 ).  

J.-I. Kira



33

2.2.8.3     Hereditary Astrogliopathy 

 Alexander disease is caused by mutations in the  GFAP  gene (Brenner et al.  2001 ; Li 
et al.  2005 ), and thus is regarded as a primary astrocytic disease. Alexander disease 
shows leukodystrophy with macrocephaly. Its characteristic feature is the wide-
spread presence of Rosenthal fi bers containing mutant GFAP, heat shock protein 27, 
and αB-crystallin that are exclusively found in astrocyte foot processes and cell 
bodies (Quinlan et al.  2007 ). Rosenthal fi bers are plentiful, especially in the astro-
cytic foot processes around blood vessels, and in subpial, subependymal, and peri-
ventricular zones (Liem and Messing  2009 ). Mutant GFAP may act as a toxic 
gain-of-function (Liem and Messing  2009 ). Alexander disease develops frontal 
dominant white matter degeneration while postnatal myelination progresses from 
the central sulcus to the occipital, frontal, and temporal poles. This suggests that 
Alexander disease is not dysmyelinogenic (Sawaishi  2009 ). Megalencephalic leu-
kodystrophy with subcortical cysts (MLC) is another example of leukodystrophy 
caused by mutations in the  MCL1  gene that encodes a protein exclusively expressed 
in astrocytes (Leegwater et al.  2001 ). MLC1 is normally expressed in astrocyte 
endfeet around the blood vessels (Boor et al.  2005 ). These examples indicate astro-
cytes are important for the maintenance of myelin in the CNS and astrocytic endfoot 
dysfunction may induce widespread myelin loss.   

2.2.9     Oligodendrocyte Precursor Cells and Remyelination 
in MS 

 Remission results from the resolution of infl ammation, redistribution of ion chan-
nels along demyelinated axons, and remyelination. Many studies have demon-
strated that demyelination in the MS brain and spinal cord can be followed by 
remyelination to a variable extent (Patrikios et al.  2006 ; Patani et al.  2007 ; Prineas 
et al.  1993 ). Remyelination is more prominent in the early stages of disease while 
chronic lesions have less or no remyelination. PPMS brains had a lower number of 
infl ammatory active lesions and more complete remyelination than SPMS brains 
(Reynolds et al.  2011 ). Remyelination requires new oligodendroglia. OPCs express-
ing neuron glia 2, an integral membrane chondroitin sulfate proteoglycan, and 
platelet-derived growth factor receptor α, were shown to exist even in chronic MS 
lesions (Chang et al.  2000 ,  2002 ). Nonetheless, in chronic lesions demyelination 
tends to persist. These observations suggest that remyelination failure in MS is not 
attributable to the absence of OPCs, but rather the blockade of OPC differentiation 
to myelinating oligodendroglia. This blockade is explained by the existence of 
extracellular inhibitors or intrinsic intracellular blocking mechanisms. Examples of 
extracellular inhibitors include Jagged 1 expressed by astrocytes, which activates 
Notch 1 receptors on oligodendroglia to promote expression of Hes5 (John et al. 
 2002 ), a transcriptional inhibitor that blocks differentiation. LINGO-1 expressed on 
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astrocytes and macrophages (Satoh et al.  2007 ; Mi et al.  2005 ), PSA-NCAM abnor-
mally expressed on demyelinated axons (Charles et al.  2002 ), and myelin debris 
(Kotter et al.  2006 ) can inhibit the differentiation of OPCs to myelinating oligoden-
droglia. A recent report showed that aggregates of fi bronectin produced by astro-
cytes and leaked from damaged BBB inhibited oligodendroglial differentiation and 
remyelination (Stoffels et al.  2013 ). Increased expression of fi bronectin in active 
MS lesions (Stoffels et al.  2013 ) may also inhibit remyelination. Furthermore, 
OPCs expressing Notch1 were stimulated by contactin expressed by demyelinated 
axons in chronic MS lesions while over-expression of TAT-interacting protein 
30 kDa, a direct inhibitor of importin B, in OPCs blocked the translocation of 
Notch1-intracellular domains produced by cleavage of Notch1 receptor engage-
ment (Nakahara et al.  2009 ). Thus, signals required for myelinogenesis are not 
operative in chronic MS lesions.  

2.2.10     Connexins 

 Connexins (Cxs) form homotypic or heterotypic gap junctions between astrocytes, 
or between astrocytes and oligodendrocytes. Gap junctions appose two cells and 
form channels for direct intercellular communication through which intracellular 
second messengers such as calcium ions and other small molecules are exchanged. 
Astrocytic Cx43 and Cx30, oligodendrocytic Cx32 and Cx47, and astrocytic Cx43 
and oligodendrocytic Cx32 double-knockout mice showed diffuse demyelination 
(Lutz et al.  2009 ; Magnotti et al.  2011 ; Menichella et al.  2003 ). Notably, Ezan et al. 
( 2012 ) demonstrated that mice lacking Cx43/Cx30 in GFAP-positive astrocytes dis-
played astrocyte endfeet edema and a partial loss of AQP4. Thus, astrocytic and 
oligodendrocytic Cxs may play critical roles in maintaining CNS myelin. 

 Recently, we showed the extensive loss of Cxs43, 32, and 47 in demyelinated 
and myelin-preserved layers of acute lesions from patients with Baló’s concentric 
sclerosis, a rare extremely severe variant of MS (Masaki et al.  2012 ). In the leading 
edge areas, where the expression of MAG was partly diminished with other myelin 
proteins well preserved, compatible with distal oligodendrogliopathy, astrocytic 
Cx43 was totally lost. Similar changes were also observed in MS and NMO cases 
culminating in death within 2 years after the disease onset (Masaki et al.  2013 ). 
It was reported that a signifi cant reduction of Cx32 and Cx47 occurs in active 
lesions of MOG-induced EAE (Markoullis et al.  2012 ). In MOG- and myelin basic 
protein (MBP)-induced EAE (Brand-Schieber et al.  2005 ), astrocytic Cx43 was 
also diminished in active lesions, suggesting that myelin antigen-specifi c T cells 
may down- modulate Cx expression in oligodendrocytes and astrocytes. In the 
healthy state, Cx43 on astrocytes apposes Cx47 on oligodendrocytes, forming 
astrocyte–oligodendrocyte (A/O) gap junctions. A/O gap junctions are important 
for intercellular communication through this channel. Disruption of A/O gap junc-
tions may cause the loss of glia syncytium, thereby inducing oligodendroglial dam-
age and myelin loss (Fig.  2.2 ).
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2.3         Neuroglial Infl ammation in ALS 

 ALS is a progressive, fatal neurodegenerative disease where the loss of motor neu-
rons in the spinal cord, brainstem, and motor cortex causes progressive motor paral-
ysis. ALS usually develops sporadically; however, around 10 % of cases have a 
family history. A variety of susceptibility genes for familial ALS have been identi-
fi ed including mutations in  Cu   2 +  Zn   2 +   superoxide dismutase  ( SOD1 ) gene (20 % of 
cases). Mutations in  TADRBP ,  FUS ,  ANG ,  VCP ,  OPTN , and  C9ORF72  genes are 
less frequent (Ince et al.  2011 ; Philips and Robberecht  2011 ). Although glutamate 
excitotoxicity, oxidative stress, neuroinfl ammation, and neurotrophic factor failure 
have been proposed to explain the pathogenesis of ALS, the mechanisms underly-
ing ALS remain to be elucidated. 

 The appearance of reactive microglia and astroglia is a characteristic feature of 
ALS and other neurodegenerative diseases, such as Parkinson’s disease and 
Alzheimer’s disease. In this section, the review will focus on microglia and astroglia 

  Fig. 2.2    Loss of astrocytic Cx43 and disruption of astroglia–oligodendroglia gap junction chan-
nels in the leading edge areas of Baló’s disease lesions. ( a ) In the normal state, astrocyte–oligoden-
drocyte gap junction channels are formed by Cx43 and Cx43. ( b ) In the outer portion of the leading 
edge areas ( dagger ), astrocytic Cx43 is preferentially lost and therefore oligodendrocytic Cx47 
forms a oligodendroglia       
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that are thought to have key roles in neuroinfl ammation in neurodegenerative diseases. 
However, recent studies have revealed that oligodendroglia have close connections 
with neurons and support the metabolism of neuronal cells (Philips et al.  2013 ). 

2.3.1     Non-cell Autonomous Cell Death 

 Neuroinfl ammation characterized by activated microglia and infi ltrating T cells is 
one of the prominent pathological features of ALS (Philips and Robberecht  2011 ; 
Kawamata et al.  1992 ). Motor neuron-specifi c expression of mutant SOD1 (mSOD1) 
does not result in ALS-like disease (Pramatarova et al.  2001 ), and wild-type non- 
neuronal cells extend the survival of mSOD1-positive motor neurons in a mSOD1 
transgenic ALS mouse model (Clement et al.  2003 ). The selective lowering of 
mSOD1 levels in microglia or astroglia slows disease progression, while reducing 
mSOD1 levels in neurons delays disease onset (Boillée et al.  2006 ; Yamanaka et al. 
 2008 ). These results suggest that mSOD1 in motor neurons determines disease 
onset while its expression in microglia and astroglia determines disease progres-
sion. Thus, motor neurons do not die by intrinsic mechanisms and motor neuron 
death is now regarded as non-cell autonomous cell death.  

2.3.2     Alterations of Cytokines/Chemokines and Growth 
Factors Infl uencing Neuroinfl ammation 
and Neurodegeneration in ALS 

 We and others have demonstrated that proinfl ammatory cytokines/chemokines, 
such as CCL2 (MCP1), CCL4 (MIP1β), CXCL8 (IL-8), CXCL10 (IP10), IL-1β, 
IL-7, IL-9, IL-12 (p70), IL-17, IFNγ, and TNFα, were elevated in CSF from ALS 
patients (Tanaka et al.  2006 ; Mitchell et al.  2009 ; Tateishi et al.  2010 ). These proin-
fl ammatory cytokines were also elevated in spinal cord tissues (Weydt et al.  2004 ; 
Meissner et al.  2010 ). Interestingly, CCL2 and CXCL8 levels in CSF showed a 
signifi cant positive correlation with disease severity while those of CCL4 and 
CXCL10 had a negative correlation with disease severity (Tateishi et al.  2010 ). 
Thus, the relationship of proinfl ammatory cytokines/chemokines with disease 
severity is not uniform, suggesting that CCL2 and CXCL8 may be neurotoxic while 
CCL4 and CXCL10 may be neuroprotective. 

 We also found increased granulocyte colony stimulating factor (G-CSF) levels in 
the CSF of ALS cases (Tanaka et al.  2006 ). G-CSF was expressed in reactive astro-
glia from ALS cases but not controls, while G-CSF receptor expression was signifi -
cantly decreased in motor neurons in ALS cases (Tanaka et al.  2006 ). Thus, the 
neuroprotective effects of G-CSF secreted by astroglia do not occur because of the 
down-modulation of G-CSF receptors in motor neurons (Tanaka et al.  2006 ).  
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2.3.3     Microglia in ALS 

 Activated microglia produce a variety of proinfl ammatory cytokines/chemokines 
and oxidative molecules, such as NO and O 2 . In contrast, they can also secrete neu-
rotrophic factors and anti-infl ammatory cytokines. Microglia producing proinfl am-
matory cytokines are termed M1 microglia and exert deleterious effects and those 
that secrete anti-infl ammatory cytokines are termed M2 microglia and exhibit neu-
roprotective activity. However, the clear-cut separation of M1 and M2 microglia 
may be diffi cult and the surrounding environment may modify the dual features of 
microglia. Another issue of note is that the classifi cation of activated microglia 
residing in the CNS and infi ltrating macrophages from the peripheral blood is often 
diffi cult when staining for cell-surface markers, and therefore immunohistochemi-
cal results should be interpreted cautiously. 

 Microglial activation is observed in the anterior horns, along the corticospinal 
tract, and in the motor cortex of postmortem ALS samples (Kawamata et al.  1992 ). 
However, some studies have reported a more widespread infi ltration of activated 
microglia (Hayashi et al.  2001 ). Intriguingly, [11C]-PK11195 PET imaging observed 
the in vivo activation of microglia in motor cortices, dorsolateral prefrontal cortices, 
and thalami from ALS patients (Turner et al.  2004 ). In a G93A mSOD1 transgenic 
ALS mouse model, microglial activation occurred well before motor neuron loss 
and was present even at preclinical stages (Yamasaki et al.  2010 ; Kawamura et al. 
 2012 ; Nagara et al.  2013 ). In the sciatic nerves, macrophage infi ltration occurs early, 
probably refl ecting that the mSOD1 ALS model has characteristics of distal axo-
nopathy (Fischer et al.  2004 ). Microglial activation is frequently associated with 
CD4+ and CD8+ T cell infi ltration in ALS (Engelhardt et al.  1993 ), suggesting 
interactions between these two cell types. Activated microglia in the spinal cord 
from ALS patients up-regulate dendritic cell markers, such as CD11c and CD86 
(Henkel et al.  2004 ). Similar up-regulation of antigen-presenting markers is also 
seen in the late stage of the mSOD1 transgenic ALS mouse model (Henkel et al. 
 2005 ). Therefore, microglia may present antigens to T cells (Henkel et al.  2004 ), 
similar to dendritic cells, during the late stages of ALS, while T cells may potentiate 
neuroinfl ammation (Chiu et al.  2008 ) or act neuroprotectively (Yamasaki et al.  2010 ; 
Beers et al.  2008 ). Although activated microglia may be toxic in the progressive 
stages, in mSOD1 ALS mice, motor neuron loss was not altered by ablation of pro-
liferating microglia (Gowing et al.  2006 ). However, the same procedure worsened 
animal models of Alzheimer’s disease (Simard et al.  2006 ), suggesting the roles of 
activated microglia are not similar among various neurodegenerative disorders. 

 In mSOD1-Tg mice, microglial proliferation and T cell infi ltration occurred rela-
tively early in the spinal cord (Alexianu et al.  2001 ), but not in the brainstem 
(Yamasaki et al.  2010 ). Furthermore, relatively preserved motor neurons were 
observed even in the disease progression stage (Chiu et al.  1995 ). Thus, we studied 
the actions of microglia following acute and chronic motor neuronal insults in 
mSOD1 ALS mice (Yamasaki et al.  2010 ; Kawamura et al.  2012 ) by unilateral 
hypoglossal nerve axotomy at young (8 weeks) and adult (17 weeks) ages. On day 
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21 following hypoglossal axotomy, the numbers of surviving neurons were mark-
edly reduced in mSOD1 mice than non-transgenic littermates at 17 weeks of age but 
the same difference was not seen at 8 weeks, suggesting increased vulnerability of 
hypoglossal motor neurons to neuronal injury in adult mice (Yamasaki et al.  2010 ). 
On day 3 after axotomy, the number of microglia expressing glial cell-derived neu-
rotrophic factor (GDNF) and insulin-like growth factor (IGF-1) that surrounded 
axotomized hypoglossal neurons was signifi cantly lower in mSOD1-Tg mice than 
in non-transgenic mice at 17 weeks but not at 8 weeks, despite the good preserva-
tion of hypoglossal neurons. Infi ltration of CD3+ T cells, mostly expressing CD4, 
occurred on day 7 (Kawamura et al.  2012 ). The migratory ability of cultured 
microglia from mSOD1 mice to MCP-1 was decreased compared with those from 
non-transgenic littermates (Yamasaki et al.  2010 ). G-CSF signifi cantly restored the 
impaired migratory ability of mSOD1 microglia in vitro, while in vivo it increased 
the number of microglia surrounding axotomized neurons and improved neuronal 
survival following axotomy in mSOD1 ALS mice. Moreover, chronic administra-
tion of G-CSF signifi cantly increased the numbers of GDNF-positive microglia sur-
rounding spinal motor neurons in the anterior horns and increased the life span of 
mSOD1 ALS mice (Yamasaki et al.  2010 ). These fi ndings suggest that microglia act 
protectively through the production of growth factors, and that decreased microglial 
protective ability of mSOD1 mice can be restored by appropriate growth factors, 
such as G-CSF. It is interesting to note that CNS microglia and peripheral blood 
monocytes/macrophages show decreased chemotactic activity in mSOD1 mice 
(Yamasaki et al.  2010 ). Decreased mobilization of microglia into the damaged CNS 
and macrophages into the peripheral nerves may explain the acceleration of motor 
neuron death, because these myeloid cells produce neuroprotective factors.  

2.3.4     Astroglia in ALS 

 Astroglia usually have a neuroprotective function but can become neuroinfl amma-
tory upon interactions with their surrounding microenvironment. Reactive astroglia, 
characterized by increased expression of GFAP, exist in the anterior and posterior 
horns in the spinal cord from ALS patients and are present in the gray and subcorti-
cal white matter, not being limited to the motor cortex (Nagy et al.  1994 ; Kushner 
et al.  1991 ; Schiffer et al.  1996 ). Reactive astroglia can overexpress neurotoxic fac-
tors such as iNOS, which in turn produces reactive oxygen and nitrogen species 
(Sasaki et al.  2001 ). 

 Astroglia produce a variety of neurotrophic factors, such as GDNF, brain-derived 
neurotropic factor (BDNF), and IGF-1. Astroglia also produce VEGF that induces 
vascular proliferation and enhances neuronal survival (Jin et al.  2002 ; Tolosa et al. 
 2008 ). However, VEGF receptor 1 and 2 are decreased during disease progression, 
and, therefore, the over-expression of VEGF is unable to exert its protective effects in 
human ALS (Nagara et al.  2013 ). Astroglial expression of glutamate transporter 
EAAT2 and GLT1 is decreased in ALS patients and the mSOD1 ALS mice, respec-
tively (Rothstein et al.  1992 ,  1995 ; Howland et al.  2002 ). Neurons can increase 
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astroglial glutamate transporter expression through the induction of kappa B-motif 
binding phosphoprotein factor to the GLT1 promoter (Yang et al.  2009 ), thereby rein-
forcing the clearance of glutamate. Decreased neuronal regulation may in turn accel-
erate excitotoxic neuronal death by overstimulation of AMPA and NMDA receptors.  

2.3.5     T Cells in ALS 

 T cells are rarely seen in the normal CNS, which is an immunologically privileged 
site, while infi ltrating T cells were observed in postmortem tissues of ALS patients 
(Engelhardt et al.  1993 ). Depletion of T cells in mSOD1 mice crossbred with 
RAG2−/− or CD4−/− mice resulted in accelerated motor neuron degeneration 
(Beers et al.  2008 ) where CD11b+ microglia were markedly reduced. In ALS mod-
els, depletion of T cells induces CNS neurotoxic substances, such as TNFα, and 
reduces neuroprotective factors, such as IGF-1, GDNF, and BDNF (Chiu et al. 
 2008 ; Beers et al.  2008 ). The adoptive transfer of regulatory or effector T cells from 
wild-type mice to mSOD1 Tg mice delayed disease progression (Banerjee et al. 
 2008 ) and the passive transfer of CD4+ CD25+ FoxP3+ regulatory T cells into 
mSOD1 mice ameliorated ALS (Beers et al.  2011 ). IL-4 produced by regulatory T 
cells suppressed the toxic properties of microglia (Beers et al.  2011 ). T cells from 
ALS CNS tissues may be neuroprotective; however, their protective function 
appears to be insuffi cient.  

2.3.6     Experimental Therapy in ALS 

 The presence of glial infl ammation in ALS encouraged the use of anti-infl ammatory 
and immunomodulatory drugs, and several case reports have described benefi cial 
effects of anti-infl ammatory therapies, even in familial ALS cases (Saiga et al. 
 2012 ). This suggested that some infl ammatory components are involved in human 
ALS pathogenesis. However, clinical trials investigating these drugs demonstrated 
no effi cacy. Trials of nonspecifi c immunosuppression with cyclophosphamide or 
cyclosporin, whole body irradiation, or bone-marrow stem cell transplantation have 
all been unsuccessful (Appel et al.  2008 ). Expression of cyclooxygenase 2 (COX2), 
which is critical in producing proinfl ammatory prostaglandins, is increased in ALS 
patients and mSOD1 mice (Almer et al.  2001 ). However, although the COX2 inhibi-
tor celecoxib is effective at delaying the disease course in ALS model mice, it has 
no effect in human ALS (Drachman et al.  2002 ; Pompl et al.  2003 ). Minocycline 
down-modulated microglial activation and improved the survival rate of mSOD1 
ALS mice (Zhu et al.  2002 ), but it was not effective in humans with ALS (Scott 
et al.  2008 ). To date, no single anti-infl ammatory drug has been successful in human 
ALS even though some are effective in animal models. Not all infl ammatory 
 components are toxic and some might act protectively. This may explain in part 
why general anti-infl ammatory procedures are not benefi cial in human ALS. 
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Either  TNFα  (Gowing et al.  2008 ) or  IL - 1β  gene knockout (Nguyen et al.  2001 ) did 
not ameliorate disease in mSOD1 ALS mice. Thus, it is unlikely that a single cyto-
kine is responsible for the exacerbation of motor neuron degeneration in ALS, but 
rather the combined effects of such proinfl ammatory cytokines may accelerate 
motor neuron death. 

 Although the administration of neurotrophic factors, such as GDNF, BDNF, 
IGF-1, and VEGF, increased the survival of mSOD1 Tg mice (Kaspar et al.  2003 ; 
Azzouz et al.  2004 ; Storkebaum et al.  2005 ), these factors could not suffi ciently 
delay clinical progression in human ALS patients. This may be explained by the 
differences in bioavailability and dosage between mice and humans. In our study, 
mSOD1-harboring microglia increased GDNF expression upon stimulation with 
G-CSF while concurrently such GDNF-positive microglia also expressed iNOS, a 
potential neurotoxic factor (Yamasaki et al.  2010 ; Kawamura et al.  2012 ). These 
fi ndings support the idea that M1 and M2 microglia are not clearly separable and 
that microglia may simultaneously produce both protective and toxic substances. 
Thus, the nonselective targeting of microglia may not be successful in future clini-
cal trials for neurodegenerative diseases.   

2.4     Conclusion and Future Perspectives 

 Neuroglial infl ammation has dual actions; protective and toxic. Neuroglial infl am-
matory reactions are distinct between neuroimmunological and neurodegenerative 
diseases and even among neurodegenerative disorders. Detailed analyses of glial 
activation states may increase our understanding and infl uence how we can decipher 
and control glial dual actions, thereby enabling new drug development targeting glia 
in humans.     
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    Abstract     Neuron–glial interactions play important roles in the maturation and 
maintenance of the central nervous system (CNS). Glial cells including astrocytes 
and microglia support and survey neuronal activity, whereas neurons provide tro-
phic support for glial cells through the production of various molecules such as 
cytokines, chemokines, and neurotrophins. CNS diseases, including neurodegenera-
tive diseases, demyelinating disease, epilepsy, and brain ischemia, often involve the 
disruption of neuron–glial interactions. Furthermore, neuroinfl ammation induced 
by glial activation contributes to the pathogenesis of these diseases. Damaged neu-
rons can trigger glial activation, resulting in the production of infl ammatory mole-
cules and phagocytosis of injured neurons by glial cells. On the other hand, these 
neurons can also suppress glial activation through the induction of anti- infl ammatory 
cytokines and chemokines. Here we review the roles of various molecules induced 
by intact or damaged neurons with respect to neuron–glial interactions.  

3.1         Introduction 

 Neuron–glial interactions are important to the regulation of the development, matu-
ration, and maintenance of the central nervous system (CNS). Astrocytes and 
microglia, which are representative glial cells, support and survey neuronal activity 
through the production of various molecules such as cytokines, chemokines, and 
neurotrophins (NTs). 
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 Microglia play pivotal roles in synaptic remodeling and plasticity in the healthy 
brain. Synaptic pruning by microglia is necessary for brain development. Indeed, 
defi cient synaptic pruning results in an excess of dendritic spines and immature 
synapses (Paolicelli et al.  2011 ). Furthermore, phagocytosis of neuronal debris by 
microglia helps maintain neuronal networks (Neumann et al.  2009 ). Microglial 
phagocytosis is dependent upon neural activity and the microglia-specifi c phago-
cytic signaling pathway including complement receptor 3/C3 (Schafer et al.  2012 ). 
On the other hand, neurons regulate microglia via signals such as fractalkine, trans-
forming growth factor-β (TGF-β), cluster of differentiation (CD) 22, CD200, and 
neurotrophins under physiological conditions (Biber et al.  2007 ). Neurons damaged 
by CNS diseases (including neurodegenerative diseases, demyelinating disease, 
epilepsy, and brain ischemia) produce signals such as glutamate, high-mobility 
group protein 1 (HMGB1), chemokine (C–C motif) ligand 21 (CCL21), and nucleo-
tides that can trigger microglial activation (Biber et al.  2007 ; Koizumi et al.  2007 ). 
Activated microglia then produce proinfl ammatory cytokines such as interleukin 
(IL)-1 and tumor necrosis factor-α (TNF-α); glutamate; chemokines; complement 
components; and reactive oxygen species (ROS) including superoxide anions and 
hydroxy radicals (Barger and Basile  2001 ; McGeer and McGeer  2001 ; Takeuchi 
et al.  2005 ,  2006 ). These molecules further accelerate neuronal damage. Damaged 
neurons, however, are not merely passive targets of microglia, but rather suppress 
microglial activity through the production of fractalkine, C–C chemokine receptor 
type (CCR)-5, IL-34, macrophage colony-stimulating factor (M-CSF), and TGF-β. 

 Astrocytes provide nutritional support for neurons, maintain the extracellular ion 
balance, and increase the uptake of glutamate via glutamate transporters (Magistretti 
and Pellerin  1999 ; Bouvier et al.  1992 ). They also produce antioxidants such as 
glutathione and superoxide dismutases, and exert antioxidant effects on neurons 
(Dringen et al.  1998 ; Mokuno et al.  1994 ). Neuronal activity regulates the function 
of astrocytes; for instance, the expression of glutamate transporter GLT-1 is 
increased in astrocytes when astrocytes are cultured with neurons, and, conversely, 
the expression is decreased in astrocytes cultured without neurons (Swanson et al. 
 1997 ). Neurons also regulate both the organization of GLT1 in developing astro-
cytes and their position relative to synapses (Benediktsson et al.  2012 ). Neurons are 
thought to provide trophic support for astrocytes; however, the precise mechanism 
is unknown. In the present review, we focus on the molecules derived from intact or 
damaged neurons, and clarify their effects on glial function in physiological or path-
ological conditions (Fig.  3.1 ).

3.2        Molecules Derived from Intact Neurons 

 Neurons maintain their own synaptic transmission by regulating the function of 
microglia and astrocytes. Various molecules secreted from intact neurons are 
involved in neuron–glial interactions. In this report, we provide more information 
on fractalkine, TGF-β, CD22, CD200, and neurotrophins. 
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3.2.1     Fractalkine 

 The CX3C chemokine fractalkine is a 373-amino acid protein that has a chemokine 
domain on top of an extended mucin-like stalk (Bazan et al.  1997 ). Fractalkine exists 
in the membrane-anchored or soluble form. Neurons secrete fractalkine, and its recep-
tor CX3CR1 is exclusively expressed in microglia (Harrison et al.  1998 ). Fractalkine 
contributes to maintain microglia in a resting ramifi ed phenotype. It also plays a piv-
otal role in memory formation and synaptic plasticity. The hippocampus contains 
IL-1β binding sites (Takao et al.  1990 ). Under physiological conditions, mice lacking 
CX3CR1 show cognitive dysfunction in contextual fear conditioning and Morris 
water maze tests; defi cits in motor learning; and signifi cant impairment in long-term 
potentiation (LTP) via increases in IL-1β produced by microglia (Rogers et al.  2011 ).  

3.2.2     TGF-β 

 TGF-β is a neurotrophic cytokine responsible for the initiation and maintenance of 
neuronal differentiation and synaptic plasticity (Zhang et al.  1997 ). TGF-β is mainly 

  Fig. 3.1    Glial cells are affected by factors secreted from healthy and damaged neurons. Fractalkine, 
TGF-β, CD22, CD200, and neurotrophins secreted from healthy neurons keep microglia in a qui-
escent state. Fractalkine, CCR5, IL-34, M-CSF, TGF-β, and neurotrophins secreted from damaged 
neurons suppress microglial activation. On the other hand, glutamate, HMGB1, CCL21, and 
nucleotides activate microglia. Healthy neurons up-regulate GLT-1 in astrocytes. Details on the 
trophic support for astrocytes by neurons remain unknown       

 

3 Factors from Intact and Damaged Neurons



52

produced by astrocytes and microglia; however, neurons also produce TGF-β and 
regulate glial cells. For instance, cortical neurons induce astrocyte differentiation 
from radial glial cells through the TGF-β1 pathway (Stipursky and Gomes  2007 ). 
TGF-β also regulates the proliferation of postnatal progenitors and Müller glia in 
the rat retina (Close et al.  2005 ). Furthermore, TGF-β enhances the expression of 
CX3CR1 in microglia (Chen et al.  2002 ).  

3.2.3     CD22 

 CD22 is known as a B-cell transmembrane protein that functions by mediating cell–
cell interactions with T cells, and is an endogenous ligand for the CD45 receptor 
(Stamenkovic et al.  1991 ). Neurons express CD22 and secrete a soluble form of 
CD22, whereas microglia express the CD45 receptor. Reports suggest that CD22 
acts on microglia to inhibit the production of proinfl ammatory cytokine such as 
TNF-α (Tan et al.  2000 ; Mott et al.  2004 ).  

3.2.4     CD200 

 CD200 is a membrane glycoprotein expressed in neurons that suppresses immune 
activity via the microglial CD200 receptor (CD200R) (Wright et al.  2000 ). It has 
been reported that a lack of CD200 results in the rapid onset of experimental auto-
immune encephalomyelitis (EAE) via nitric oxide (NO) production (Hoek et al. 
 2000 ), and in the impairment of LTP via toll-like receptor (TLR) activation in 
microglia (Costello et al.  2011 ). The soluble form of CD200 induces IL-10 in 
microglia, and IL-10 protects neurons from microglia-induced neurotoxicity. The 
up-regulation of CD200R by endocannabinoid anandamide also exerts a neuropro-
tective effect on Theiler’s virus-induced demyelinating disease (Hernangómez 
et al.  2012 ).  

3.2.5     Neurotrophins 

 Neurotrophins including nerve growth factor (NGF), brain-derived neurotrophic 
factor (BDNF), neurotrophin (NT)-3, and NT-4 are normally secreted by neurons 
and glial cells, and have pivotal roles in cell survival, neurite growth, synaptic plas-
ticity, and neurotransmitter release in the CNS (Barde  1989 ; Davies  1994 ). 
Neurotrophins also affect the function of glial cells; for example, NGF and BDNF 
promote microglial proliferation, whereas NT-4 enhances microglial viability 
(Zhang et al.  2003 ).   
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3.3     Molecules Derived from Degenerated Neurons 

 Degenerated neurons induced by glutamate or oligomeric amyloid β (Aβ) release 
soluble factors known as help-me, fi nd-me, or eat-me signals. These factors can 
induce or suppress glial activation. The difference in glial response may depend on 
the degree of neurodegeneration; however, the precise mechanism is unknown. 

3.3.1     Glutamate 

 Glutamate is an excitatory neurotransmitter, and excessive amounts are released as 
a result of neurodegenerative processes in Alzheimer’s disease (AD) and amyo-
trophic lateral sclerosis (ALS). Microglia express the AMPA and kainate subtypes 
of ionotropic glutamate receptors, which mediate TNF-α production (Noda et al. 
 2000 ). Metabotropic glutamate receptor (mGluR)-2, mGluR3, and mGluR5 are also 
expressed in microglia (Taylor et al.  2005 ; Piers et al.  2011 ). Excessive glutamate 
activates microglia through mGluR2 and promotes microglial neurotoxicity. 
Microglial mGluR5, on the other hand, exerts a neuroprotective effect by inhibiting 
the production of NO and TNF-α (Piers et al.  2011 ).  

3.3.2     HMGB1 

 HMGB1 is a ubiquitously expressed nonhistone DNA-binding protein, and is included 
in the class of molecules termed “damage-associated molecular patterns” (DAMPs). 
DAMPs are released from injured or infectious cells and activate immune cells to 
induce infl ammation. HMGB1 is secreted from damaged neurons; for instance, it is 
upregulated in the postischemic brain (Kim et al.  2006 ). Secreted HMGB1 accumu-
lates in the media of NMDA-treated primary cortical neuron cultures, and induces 
neuronal cell death via RAGE–ERK and RAGE–p38 MAPK interactions (Kim et al. 
 2011 ). Moreover, HMGB1 activates microglia and acts as an endogenous toxic mol-
ecule. HMGB1 released from dying neurons is reported to inhibit microglial Aβ 
clearance and enhance the neurotoxicity of Aβ (Takata et al.  2004 ).  

3.3.3     CCL21 

 The chemokine CCL21 is released from damaged neurons by glutamate toxicity. 
CCL21 activates microglia via two different receptors, CXCR3 and CCR7, and trig-
gers chemotaxis of microglia through CXCR3 (de Jong et al.  2005 ). CCR7 is upreg-
ulated in reactive astrocytes upon intracerebral lipopolysaccharide (LPS) treatment 

3 Factors from Intact and Damaged Neurons



54

(   Gomez-Nicola et al.  2010 ). CCL21 thus affects both types of glial cells. In spinal 
cord injury, CCL21 does not change the mRNA expression of these receptors, but 
upregulates P2X4 receptors in spinal cord microglia, resulting in an untreatable 
pathological pain reaction (Biber et al.  2011 ).  

3.3.4     Nucleotides 

 Nucleotides adenosine triphosphate (ATP) and uridine diphosphate (UDP) function 
as fi nd-me and eat-me signals for recognition and phagocytosis, respectively, which 
are released from degenerated neurons. Microglia, on the other hand, express iono-
tropic (P2X4 and P2X7) and metabotropic (P2Y1, P2Y2, P2Y6, and P2Y12) puri-
nergic receptors, and migrate to damaged or dead neurons and phagocytose them. 
ATP regulates microglial branch dynamics in the intact brain, and mediates a rapid 
microglial response towards injury (Davalos et al.  2005 ). Microglial chemotaxis by 
ATP is induced via P2Y12 receptors (Haynes et al.  2006 ). UDP triggers microglial 
phagocytosis via P2Y6 receptors that are upregulated when neurons are damaged 
(Koizumi et al.  2007 ).  

3.3.5     Fractalkine 

 Secreted from glutamate-damaged neurons, fractalkine promotes microglial phago-
cytosis of neuronal debris through the release of milk fat globule-EGF factor 8 
(MFG-E8) and induces the expression of the antioxidant enzyme heme oxygenase 
(HO)-1 in microglia. These actions by microglia are neuroprotective against gluta-
mate toxicity (Noda et al.  2011 ). Fractalkine upregulates MFG-E8 (Leonardi- 
Essmann et al.  2005 ) and suppresses the production of NO, IL-6, and TNF-α 
induced by activated microglia (Mizuno et al.  2003 ). MFG-E8 signifi cantly attenu-
ates oAβ-induced neuronal cell death through microglial phagocytosis of oAβ (Li 
et al.  2012 ). In addition, its expression is reduced in AD (Boddaert et al.  2007 ). In 
regard to HO-1, its end-products, such as biliverdin, carbon monoxide, and iron, 
provide cellular and tissue protection through anti-infl ammatory, anti-apoptotic, or 
anti-oxidative effects (Morse et al.  2009 ). Indeed, the up-regulation of HO-1 in the 
CNS is benefi cial to counteract neuroinfl ammation and in turn neurodegenerative 
diseases (Syapin  2008 ). The roles of fractalkine and MFG-E8 in neuron–microglia 
interactions are shown in Fig.  3.2 .

   In addition to inducing MFG-E8 and HO-1, fractalkine has other effects in the 
CNS. For instance, exogenous fractalkine reduces ischemia-induced cerebral infarct 
size, neurological defi cits, and caspase-3 activation in mouse model of permanent 
middle cerebral artery occlusion (Cipriani et al.  2011 ). Furthermore, fractalkine 
signaling is defi cient in AD, and CX3CR1 defi ciency worsens AD-related neuronal 
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and behavioral defi cits. These effects were associated with cytokine production but 
not with plaque deposition (Cho et al.  2011 ). In contrast, CX3CR1 defi ciency is 
reported to reduce Aβ deposition in AD mouse models including APP/PS1 and 
R1.40 transgenic mice (Lee et al.  2010 ). Thus, fractalkine–CX3CR1 signaling in 
AD warrants further exploration.  

3.3.6     CCR5 

 CCR5 is the chemokine receptor of three β-chemokines, CCL3, CCL4, and CCL5, 
and is expressed in astrocytes and neurons, but not in microglia. CCR5 is upregu-
lated in brain ischemia (Spleiss et al.  1998 ) and HIV-associated dementia (Kaul 
et al.  2007 ). It has been reported that a lack of CCR5 increases the severity of brain 
injury following occlusion of the middle cerebral artery (Sorce et al.  2010 ). The 
neuroprotective effect of CCR5 is thought to suppress microglial activation. 
Moreover, the cytokines CCL3 and CCL4 prevent excitotoxicity induced by NMDA 
(Bruno et al.  2000 ).  

  Fig. 3.2    The roles of fractalkine and MFG-E8 in damaged neuron–microglia interactions. 
Fractalkine, which is secreted from damaged neurons by glutamate or oAβ, induces MFG-E8 in 
microglia. Fractalkine–MFG-E8 system exerts neuroprotection by phagocytosis, anti-oxidation, 
and anti-infl ammation       
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3.3.7     IL-34 

 Mainly expressed in neurons, the cytokine IL-34 regulates microglial function 
through the colony-stimulating factor (CSF)-1 receptor. IL-34 stimulates the dif-
ferentiation and proliferation of monocytes and macrophages (Lin et al.  2008 ). We 
have shown that microglia treated with IL-34 play neuroprotective roles against 
oAβ toxicity. IL-34 induces microglial proliferation and the production of antioxi-
dant enzyme HO-1 and insulin-degrading enzyme (IDE), which is known as Aβ 
degrading enzyme. Moreover, single intracerebroventricular injection of IL-34 
ameliorates the impairment of associative learning in an APP/PS1 transgenic mouse 
model of AD. In the contextual learning test, IL-34 treatment signifi cantly reverses 
the contextual freezing response as compared to vehicle-injected APP/PS1 trans-
genic mice (Mizuno et al.  2011 ). IDE activity affects the level of Aβ. It has been 
reported that the levels of membrane-bound IDE protein and activity are signifi -
cantly decreased in the hippocampal formation of subjects affected by mild cogni-
tive impairment who are at high risk to develop AD (Zhao et al.  2007 ). In IDE/APP 
double-transgenic mice, the transgenic overexpression of IDE decreases Aβ levels 
and prevents amyloid plaque formation (Leissring et al.  2003 ). Recently, we found 
a novel mechanism of IL-34 in microglial neuroprotection: IL-34 dose-dependently 
induces TGF-β in microglia, and the TGF-β attenuates oAβ neurotoxicity in neu-
ron–microglial cocultures (Ma et al.  2012 ).  

3.3.8     M-CSF 

 In addition to IL-34, M-CSF is also a ligand of the CSF-1 receptor; however, IL-34 
and M-CSF differ in structure and CSF-1 receptor binding domains. They also have 
different bioactivities and signal activation kinetics (Chihara et al.  2010 ). M-CSF 
enhances the acidifi cation of lysosomes in macrophage and microglia, and leads to 
the degradation of internalized Aβ (Majumdar et al.  2007 ). For instance, intraperito-
neal injection of M-CSF increases the number of microglia, induces microglial 
phagocytosis of Aβ, and prevents memory disturbance in APP/PS1 mice (Boissonneault 
et al.  2009 ). Thus, M-CSF also exerts microglial neuroprotective properties.  

3.3.9     Neurotrophins 

 Neurotrophins, including NGF and BDNF, are another group of soluble factors used 
by neurons to control immune cell functions. NGF inhibits the expression of major 
histocompatibility complex (MHC) class II and co-stimulatory molecules CD86 
and CD40 in microglia (Neumann et al.  1998 ; Wei and Jonakait  1999 ). BDNF 
 suppresses the release of NO from activated microglia (Mizoguchi et al.  2009 ). 
In contrast, it has been reported that the expression of BDNF receptor TrkB is 

T. Mizuno



57

induced on astrocytes in white matter lesions in multiple sclerosis and EAE mice, 
and, furthermore, that astrocytes stimulated with BDNF amplify EAE-induced neu-
rodegenerative processes via NO production (Colombo et al.  2012 ). Thus, the 
effects of BDNF on glial cells are unresolved.   

3.4     MicroRNAs 

 MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate the 
expression of multiple target genes and are involved in many fundamental biologi-
cal processes, such as embryonic development, cell proliferation, differentiation, 
and apoptosis. Recent reports have shown that some miRNAs are produced by neu-
rons and regulate glial cells. 

 miR-124 is known to promote neuronal differentiation by targeting the mRNA of 
the antineural function protein SCP1, which represses neuronal gene expression in 
non-neuronal cell types (   Makeyev et al.  2007 ). miR-124 also promotes microglia 
quiescence: it has been reported that during EAE, miR-124 is down-regulated in 
activated microglia (Ponomarev et al.  2011 ). Furthermore, peripheral administra-
tion of miR-124 causes systemic deactivation of macrophages, reduced activation of 
myelin-specifi c T cells, and marked suppression of EAE. miR-124 produced by 
neuronal cells is thought to be transferred into macrophages and microglia through 
exosomal shuttle vesicles (   Ponomarev et al.  2013 ). 

 Hypoxic microglia produce Fas ligand (FasL) and induce neuronal apoptosis. 
miR-21 suppresses FasL production in microglia (   Zhang et al.  2012 ). Thus, miR-21 
inhibits microglial toxic effect. 

 On the other hand, miR-155 is induced by infl ammatory stimuli such as 
interferon- gamma (IFN-γ) and TLR agonists (Ruffell et al.  2009 ). miR-155 pro-
motes microglial activation by down-regulating the suppressor of cytokine signal-
ing 1 (SOCS-1) and induces NO and infl ammatory cytokines in microglia (Cardoso 
et al.  2012 ). IFN regulatory factor 3 is reported to suppress miR-155 and to inhibit 
infl ammatory gene expression in astrocytes (Tarassishin et al.  2011 ). miR-206 is 
increased in human AD brains and Tg2576 AD transgenic mice. It decreases BDNF 
expression via translational repression. A neutralizing inhibitor of miR-206 
increases BDNF and improves the memory function (Lee et al.  2012 ). This suggests 
that miR-206 may activate microglia. However, the production of miR-21,  miR- 155, 
and miR-206 by neurons remains unknown.  

3.5     Conclusion 

 It is clear that molecules derived from healthy or damaged neurons regulate glial 
activation. Healthy neurons produce various cytokines, chemokines, membrane CD 
proteins, and neurotrophins under physiological conditions. Fractalkine maintains 
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microglia in a resting ramifi ed form, and TGF-β, CD22, and CD200 suppress the 
microglial production of infl ammatory molecules. Neurotrophins also enhance 
microglial proliferation. Neurons regulate glutamate uptake of astrocytes; however, 
it remains unclear whether neuron-derived soluble factors affect astrocytes. 
Damaged neurons, on the other hand, produce molecules that exert microglial neu-
rotoxicity or neuroprotection. Glutamate, HMGB1, CCL21, and nucleotides induce 
microglial activation. Fractalkine, CCR-5, IL-34, M-CSF, and neurotrophins sup-
press microglial activation or exert antioxidant effects. miRNAs also play pivotal 
roles in neuron–glial interactions as outlined above. The conditions that determine 
microglial toxic or protective effects remain to be elucidated. Clarifying these issues 
may contribute to the understanding of neurodegenerative disorders.     
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    Abstract     Microglia often accumulate around degenerating neurons. These 
macrophage- like immune cells produce a variety of neurotoxic and neuroprotective 
factors. Thus, the accumulation of glia in various neurologic disorders does not 
refl ect only gliosis, but likely results in an active contribution to neuroinfl ammation, 
neural degeneration, and cell regeneration. We previously showed that glutamate is 
the most neurotoxic factor released by activated microglia, and suppressing gluta-
mate release from microglia can inhibit disease progression in various animal mod-
els of neurodegenerative disorders. Interferon-γ (IFNγ) is also neurotoxic after 
binding to IFNγ receptor alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
(AMPA) receptor complexes. On the other hand, when exposed to harmful stimuli, 
neurons also produce and release various factors that serve as “help-me” signals. 
For example, the CX3C chemokine fractalkine, interleukin-34, and fi broblast 
growth factor-2 are secreted from damaged neurons; these help-me signals induce 
various microglial activities to rescue neurons, including upregulated phagocytosis 
of toxicants and damaged debris, and production of antioxidant enzymes and other 
neurotrophic factors. Elucidating the interactions between neurons and microglia 
will help uncover the mechanisms underlying chronic neuroinfl ammatory condi-
tions, and may provide insights into new therapeutic strategies for neurodegenera-
tive disorders.  

    Chapter 4   
 Interactions Between Neurons and Microglia 
During Neuroinfl ammation 

                Akio     Suzumura     

        A.   Suzumura ,  M.D., Ph.D.      (*) 
  Department of Neuroimmunology ,  Research Institute of Environmental Medicine, 
Nagoya University ,   Furo-cho, Chikusa ,  Nagoya ,  Aichi ,  Japan   
 e-mail: suzumura@riem.nagoya-u.ac.jp  



64

4.1         Introduction 

 Microglia are macrophage-like immune cells in the central nervous system (CNS). 
Microglia accumulate in the lesions that form in neurodegenerative disorders, 
including Alzheimer’s disease (AD), Parkinson’s disease, amyotrophic lateral scle-
rosis (ALS), multiple sclerosis (MS), and ischemic and infectious diseases. 
Microglia are thought to play both toxic and protective functions for neuronal sur-
vival (Farfara et al.  2008 ). When activated, microglia undergo morphologic 
changes to an ameboid state, proliferate, migrate toward lesions, release various 
soluble factors, and phagocytose foreign substances and cellular debris. The migra-
tion of microglia to injured areas is controlled by chemokines and nucleotides 
(Honda et al.  2001 ; El Khoury and Luster  2008 ). Phagocytosis may prevent senile 
plaque expansion in AD by removing amyloid β (Aβ) deposits (Bard et al.  2000 ). 
Microglia not only engulf Aβ protein but also phagocytose apoptotic cells and 
neuronal debris. 

 Degenerating neurons also release signaling molecules, including nucleotides, 
cytokines, and chemokines, to recruit microglia and enhance their activities (Hoarau 
et al.  2011 ; Fuller and Van Eldik  2008 ). These factors act as “fi nd-me,” “eat-me,” 
and “help-me” signals. The best characterized eat-me signal is phosphatidylserine, 
which is present on the cellular membranes of apoptotic cells (Sambrano and 
Steinberg  1995 ; McArthur et al.  2010 ). Nucleotides are also thought to act as eat-me 
signals. Microglia express various P2X and P2Y nucleotide receptors, which regu-
late chemotaxis and phagocytosis (   Fuller and Van Eldik  2008 ; Horvath and DeLeo 
 2009 ; Hoarau et al.  2011 ). Microglia also express many other surface receptors that 
interact with targets and initiate phagocytosis (Fuller and Van Eldik  2008 ). These 
receptors include phosphatidylserine receptor, the lipopolysaccharide (LPS) recep-
tor CD14 (Liu et al.  2005 ), the scavenger receptor CD36 (Stolzing and Grune  2004 ), 
the purine receptor P2Y6 (Hoarau et al.  2011 ), and toll-like receptors (TLRs) 
(Landreth and Reed-Geaghan  2009 ). The CX3C chemokine fractalkine (FKN) 
receptor CX3CR1 is almost exclusively expressed on microglia in the CNS. 
CX3CR1 reportedly contributes to the progression of neurodegenerative diseases by 
altering microglial activities (Cardona et al.  2006 ). Removing CX3CR1 from 
microglia was shown to cause progressive neuronal cell death in an animal model of 
neurodegenerative disease. Neurons themselves produce cytokines and chemokines, 
such as FKN. We previously reported that neurons produce interleukin-34 (IL-34), 
whereas its receptor, colony-stimulating factor 1 receptor, is primarily expressed on 
microglia (Mizuno et al.  2011 ). Fibroblast growth factor-2 (FGF-2) is also produced 
by damaged neurons. These factors may contribute to the induction and mainte-
nance of neuroinfl ammation. Clarifying signaling pathways that mediate interac-
tions between neurons and microglia may uncover therapeutic targets in 
neurodegenerative diseases. In the following sections, we discuss mechanisms 
underlying communication between microglia and neurons.  
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4.2     Effects of Microglia-Derived Factors on Neurons 

4.2.1     Neurotoxic and Neuroprotective Effects 

 Microglia produce a variety of neurotoxic and neuroprotective factors. Thus, some 
authors have referred to this cell population as a double-edged sword (Fig.  4.1 ). 
Microglia produce infl ammatory cytokines, such as IL-1β, tumor necrosis factor 
(TNF)-α, IL-6, IL-12, and interferon-γ (IFNγ). They also produce superoxide com-
pounds, nitric oxide, and excitatory amino acids. These factors may disrupt neuro-
nal functions. Microglia also produce various neuroprotective factors, such as 
brain-derived neurotrophic factor, glia-derived neurotrophic factor, and nerve 
growth factor. When stimulated, microglia express the antioxidant enzyme heme 
oxygenase-1 and such amyloid-degrading enzymes as insulin-degrading enzyme 
and matrix metalloproteinase-9.

4.2.2        Infl ammatory Cytokines 

 In vitro and in vivo studies indicate that infl ammatory cytokines derived from 
microglia may be involved in neurodegeneration, either directly or indirectly. 

  Fig. 4.1    Factors produced by activated microglia. LPS binds TLR4 on microglia, resulting in the 
production of neurotoxic and neuroprotective factors. Therefore, these cells are often described as 
a double-edged sword.  NGF  nerve growth factor,  BDNF  brain-derived neurotrophic factor,  TGF  
transforming growth factor,  GDNF  glia-derived neurotrophic factor,  LIF  leukemia inhibitory fac-
tor,  CNTF  ciliary neurotrophic factor       
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Although a growing pool of evidence suggests that infl ammatory cytokines—for 
example, IL-1β and TNF-α—are neurotoxic, this hypothesis remains controversial. 
Both of these cytokines do not cause neuronal death in healthy brain tissue or nor-
mal neurons (Rothwell et al.  1977 ) and a few studies have suggested neuroprotec-
tive roles for TNF-α and IL-1β (Strijbos and Rothwell  1995 ; Bruce et al.  1996 ). We 
examined the effects of infl ammatory cytokines on cultured neurons. Alone, each of 
the microglia-derived cytokines did not induce neuronal cell death. IFNγ, however, 
directly induced neuronal dysfunction, which manifested as dendritic bead forma-
tion in mouse cortical neurons and enhanced glutamate neurotoxicity via α-amino- 
3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptors but not 
 N -methyl- d -aspartate (NMDA) receptors. In the CNS, IFNγ receptors form neuron- 
specifi c, calcium-permeable receptor complexes with the AMPA receptor subunit 
GluR1. Through this receptor complex, IFNγ phosphorylates GluR1 at serine 845 
via the JAK1.2/STAT1 pathway, increases calcium ion infl ux and nitric oxide pro-
duction, and decreases ATP production, leading to dendritic bead formation (Mizuno 
et al.  2008 ). These mechanisms of neuronal excitotoxicity may occur in both infl am-
matory and neurodegenerative diseases of the CNS (Fig.  4.2 ).

  Fig. 4.2    Neuronal damage induced by activated microglia. Glutamate is neurotoxic via NMDA 
receptors, whereas IFNγ is neurotoxic via AMPA–GluR1–IFNγ receptor complexes. Both signal-
ing pathways induce calcium ion infl ux and mitochondrial dysfunction, which results in neuritic 
beading and neuronal cell death       
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4.2.3        Excitatory Amino Acids 

 Glutamate released by activated microglia induces excitotoxic neuronal death, which 
likely contributes to non-cell autonomous neuronal death in certain neurodegenera-
tive diseases, including ALS and AD. We showed that glutamate is the most neuro-
toxic factor released from activated microglia (Takeuchi et al.  2006 ,  2011 ). Upon 
activation, microglia use glutaminase to produce large amounts of glutamate from 
extracellular glutamine, and release the glutamate through gap junction hemichan-
nels, but not through glutamate transporters. Although blocking glutamate receptors 
and inhibiting microglial activation are potential therapeutic approaches in various 
neurodegenerative diseases, glutamate receptor blockers also perturb physiologic 
glutamate signaling and inhibitors of microglial activation suppress the neurotoxic 
and neuroprotective roles of microglia and have not been shown to markedly affect 
disease progression. Instead, gap junction hemichannels could be developed for the 
treatment of neurodegenerative diseases. However, the well-known gap junction 
inhibitor carbenoxolone failed to ameliorate disease progression in animal models of 
AD and ALS, although it suppressed glutamate release from activated microglia in 
vitro. Based on glycyrrhetinic acid, we synthesized INI0602, a novel gap junction 
hemichannel blocker that permeates the blood–brain barrier. INI0602 inhibited 
excessive glutamate release from activated microglia in vitro and in vivo and no 
notable toxicity was observed. Blocking gap junction hemichannels signifi cantly 
suppressed neuronal loss in the spinal cord and extended survival in a transgenic 
ALS mouse model bearing a mutation in human superoxide dismutase 1. Moreover, 
INI0602 signifi cantly reduced memory impairments in a transgenic mouse model of 
AD bearing both mutated human amyloid precursor protein and presenilin 1 
(Takeuchi et al.  2011 ). Our results suggest that gap junction hemichannel blockers 
may provide a new therapeutic strategy to target neurotoxic microglia and prevent 
microglia-mediated neuronal death in various neurodegenerative diseases.  

4.2.4     Miscellaneous 

 Microglia also produce various factors that are toxic to neurons and involved in 
neurodegenerative disorders like AD (Zhong et al.  2002 ). Activated microglia can 
damage or kill neurons in vitro by generating nitric oxide (Boje and Arora  1992 ; 
Meda et al.  1995 ), various toxic oxygen species (Tanaka et al.  1994 ),  l -cysteine 
(Yeh et al.  2000 ), and tissue plasminogen activator (Flavin et al.  2000 ). Nitric oxide 
and superoxide react to form neurotoxic peroxynitrite (Estevez et al.  1998 ), which 
may have a role in AD; the levels of nitrotyrosine—a product of the reaction between 
peroxynitrite and tyrosine—increase in AD (Smith et al.  1997 ).  
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4.2.5     Factors that Activate Microglia 

 Although microglia activated via TLR4 or CD14 with LPS are highly neurotoxic, 
how microglia are activated in neurodegenerative disorders is unclear. Recent stud-
ies suggest that misfolded protein (e.g., Aβ, α-synuclein), and factors from damaged 
neurons called damage-associated molecular patterns, including ATP, high morbid-
ity group box 1, heat shock protein 70, and microRNAs, can bind surface receptors 
on microglia (TLR4, CD14, P2X, and RAGE, among others) to initiate microglial 
activation (see Chap.   3    ) (Fig.  4.3 ).

4.3         Neural Factors That Affect Microglia 

 Recently, several lines of evidence have suggested that damaged neurons are not 
merely passive targets of microglia, but rather regulate microglial activity through 
cytokines, nucleotides, and chemokines. Degenerating neurons produce signaling 
molecules that regulate microglia-mediated phagocytosis and neuroprotection. 
Some of this signaling may be controlled by chemokines and chemokine receptors, 
which are widely expressed throughout the CNS (Tran and Miller  2003 ). These fac-
tors may function as help-me signals (see Chap.   3    ), whereas others may activate 
microglia to further damage neurons. 

  Fig. 4.3    Mechanisms of microglial activation during neuroinfl ammation       
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4.3.1     FKN 

 The CX3C chemokine FKN (CX3CL1), which occurs as soluble and membrane- 
anchored forms, may play a pivotal role in signaling between degenerating neurons 
and microglia. FKN and its receptor CX3CR1 are highly expressed in brain tissue 
(Pan et al.  1997 ; Nishiyori et al.  1998 ; Harrison et al.  1998 ; Hatori et al.  2002 ), par-
ticularly in neurons and microglia. We previously demonstrated that FKN functions 
as an intrinsic inhibitor of microglial neurotoxicity (Mizuno et al.  2003 ). CX3CL1 
directly induces various microglial activities, including migration, proliferation (Pan 
et al.  1997 ), and inhibition of Fas-ligand-induced cell death (Boehme et al.  2000 ), 
glutamate-induced neurotoxicity (Noda et al.  2011 ), and proinfl ammatory cytokine 
production (Zujovic et al.  2000 ). Recently, we showed that soluble CX3CL1 directly 
enhances microglial clearance of neuronal debris, an effect that is mediated through 
phosphatidylserine receptors and production of milk fat globule- EGF factor 8 pro-
tein (Fig.  4.4 ) (Leonardi-Essmann et al.  2005 ; Noda et al.  2011 ). Neurons produce 
soluble CX3CL1. Membrane-anchored CX3CL1 is cleaved by several proteases, 
including members of the disintegrin and metalloprotease (ADAM) family (ADAM-
10 and ADAM-17) and cathepsin S (Garton et al.  2001 ; Tsou et al.  2001 ; Hundhausen 
et al.  2003 ; Clark et al.  2007 ). When neurons are injured or exposed to glutamate, 
CX3CL1 is immediately shed. Little, however, is known about potential connections 
between Aβ-induced neuronal toxicity and CX3CL1 shedding   .

  Fig. 4.4    Factors from injured neurons that activate microglia as help-me signals. Damaged neu-
rons produce and secrete FKN (CX3CL1), IL-34, and FGF-2. Microglia express receptors for 
these factors, including CX3CR1, colony-stimulating factor 1 receptor, and FGF receptors. FKN, 
IL-34, and FGF2 activate microglia as eat-me or help-me signals       
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   Microglia respond to CX3CL1 through CX3CR1. CX3CL1 is protective against 
activated microglia-induced neurotoxicity (Noda et al.  2011 ). CCL2 appears to acti-
vate CX3CR1 expression via CCR2 and p38 MAPK activation (Green et al.  2006 ). 
CX3CR1 defi ciency increases susceptibility to neurotoxicity in mice administered 
LPS and mouse models of Parkinson’s disease and ALS (Cardona et al.  2006 ). A 
recent report also detailed CX3CL1-induced neuroprotection in a rat model of 
Parkinson’s disease (Pabon et al.  2011 ). In addition, some studies have shown the 
worsening of pathologic features in an AD mouse model after knocking out 
CX3CR1 (Fuhrmann et al.  2010 ). Therefore, FKN from damaged neurons may be a 
help-me signal for microglia.  

4.3.2     IL-34 

 The cytokine IL-34 is broadly expressed in various organs, including the heart, 
brain, lung, liver, kidney, spleen, and colon (Lin et al.  2008 ). We examined the 
effects of IL-34 on microglia because it has been shown to induce monocyte and 
macrophage proliferation through the colony-stimulating factor 1 (CSF-1) receptor. 
The function and production of IL-34 in the CNS, however, was unclear. We found 
that IL-34 is primarily produced by neuronal cells and microglia express CSF-1 
receptor. IL-34 promoted microglial proliferation and the clearance of soluble 
oligomeric Aβ (oAβ), which plays a critical role in AD-associated synaptic dys-
function and neuronal damage. IL-34 increased the expression of insulin-degrading 
enzyme, enhancing oAβ clearance, and induced the expression of the antioxidant 
enzyme heme oxygenase-1 in microglia, reducing oxidative stress without produc-
ing neurotoxic molecules. Consequently, microglia treated with IL-34 attenuated 
oAβ-related neurotoxicity in primary cocultures of neurons and microglia. 
Intracerebroventricular administration of IL-34 in an APP/PS1 transgenic mouse 
model of AD ameliorated the impaired associative learning phenotype and reduced 
oAβ levels by upregulating levels of insulin-degrading enzyme and heme oxygen-
ase- 1. These fi ndings suggest that enhancing the neuroprotective roles of microglia 
using IL-34 may be an effective approach against oAβ-mediated neurotoxicity in 
AD (Mizuno et al.  2011 ).  

4.3.3     FGF-2 

 FGF-2 (also called basic FGF) plays a role in communication between degenerating 
neurons and microglia. We found that neurons damaged by oAβ 1–42 or glutamate 
secreted FGF-2, but these neurotoxic agents did not affect FGF-2 release from 
astrocytes or microglia (Noda et al.  2011 ). FGF-2 promoted microglial migration 
and the phagocytosis of neuronal debris through FGF receptor 3 (FGFR3). FGF-2 
was neuroprotective and induced microglial migration via FGFR3 and the 
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extracellular signal-regulated kinase (ERK) signaling pathway. Moreover, Wnt sig-
naling directly controlled FGFR3–ERK signaling in microglia. Taken together, 
these results show that FGF-2 secreted from degenerating neurons may act as a 
neuroprotective help-me signal by activating microglial migration and the phagocy-
tosis of debris.   

4.4     Concluding Remarks 

 Microglia produce factors that can be toxic or protective for neurons. Neurons send 
a variety of signals to microglia, including factors that signal “fi nd me,” “eat me,” or 
“help me.” Bidirectional communication between microglia and neurons is likely 
critical to maintaining a healthy CNS and also may contribute to the development of 
chronic neuroinfl ammation.     
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    Abstract     Reactive astrogliosis is a prominent feature of the brain infl ammatory 
response and it represents a hallmark of many CNS pathologies including 
Alzheimer’s and Parkinson’s diseases and amyotrophic lateral sclerosis. While in 
physiological conditions astrocytes serve as multifunctional housekeeping cells, 
once activated they may affect neuronal survival in many different ways. Depending 
on the type of the stimuli and/or pathological conditions reactive astrogliosis may 
lead to either neuroprotective or neurotoxic infl ammatory responses. Here we sum-
marize the current knowledge of the origins and neuropathological features of reac-
tive astrogliosis. Furthermore, we discuss the role and the potential of astrocytes as 
resident brain immune cells with particular emphasis on how astrocyte immune 
profi les may determine the cross talk between activated astrocytes and neurons in 
acute brain injuries such as stroke versus nonresolving, chronic infl ammation asso-
ciated with neurodegenerative disorders. Finally, because of the complex nature of 
the brain infl ammatory response and its relevance in drug discovery programs, we 
highlight the value and importance of live imaging models in which different ele-
ments of neuroinfl ammation, including astrocytes activation and glia/neuron cross 
talk, can be visualized and studied in real time.  
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  CCD       Coupled charged device   
  CNS    Central nervous system   
  ERE    Estrogen responsive element   
  Fluc    Firefl y luciferase   
  FTD    Fronto-temporal dementia   
  GFAP    Glial fi brillary acidic protein   
  GFP    Green fl uorescent protein   
  ICAM-1    Intercellular adhesion molecule 1   
  IFN-γ    Interferon gamma   
  IL-1β    Interleukin-1beta   
  IL-6    Interleukin-6   
  iNOS    Inducible nitric oxide synthase   
  MCAO    Middle cerebral artery occlusion   
  MHC    Major histocompatibility complex   
  NF-κB    Nuclear factor kappa B   
     NO    Nitric oxide   
  NPCs    Neuronal progenitor cells   
  PD    Parkinson’s disease   
  ROS    Reactive oxygen species   
  SOD1    Cu/Zn Superoxide Dismutase 1   
  TDP-43    Tar binding protein 43   
  TLRs    Toll-like receptors   
  TNF-α    Tumor necrosis factor alpha   

5.1          Astrocytes: Housekeepers of the Brain 

 Astrocytes are the major resident glial cell population within the central nervous 
system (CNS) comprising nearly 35 % of the total brain cell population. Previously 
considered as simple cellular layer that fi lls interneuronal space, it is now recog-
nized that astrocytes are multifunctional housekeeping cells involved in a permanent 
cross talk with neurons and other neighboring glial cells (for review, see Parpura 
et al.  2012 ). In physiological conditions and in healthy brain the astrocytes perform 
numerous functions that are essential for neuronal survival (Pekny and Nilsson 
 2005 ; Parpura et al.  2012 ). For example, astrocyte–neuron cross talk through the 
release of several neurotrophic factors is instrumental in maintenance of the brain 
homeostasis and the brain energy metabolism (Pellerin and Magistretti  1994 ; 
Ransom et al.  2003 ). Moreover, astrocytes play a pivotal role in modulating extra-
cellular glutamate level contributing both to the functional synapse and to the pre-
vention of glutamate-induced excitotoxic neuronal injury (Pellerin and Magistretti 
 1994 ; Parpura and Zorec  2010 ). Astrocytes are also central to the formation of the 
neurovascular unit and regulation of the blood–brain barrier (BBB). Namely the 
close interactions between astrocytes, neurons, and blood vessels make astrocytes a 
key element involved in coupling of neuronal activity and cerebral blood fl ow 
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(Gordon et al.  2008 ; Choi et al.  2012 ) inducing either constriction or dilation of the 
neighboring blood vessels (for review, see Attwell et al.  2010 ). Altogether, under-
standing these multiple functions should be taken into consideration when question-
ing the role of astrocytes in neuroinfl ammation. Infl ammation is a defense reaction 
against diverse insults designed to remove noxious agents and to limit their detri-
mental effects. Although CNS has been long considered as an immune privileged 
site, infl ammation does occur in the brain and neuroinfl ammation has been increas-
ingly considered as a prominent feature of many chronic neurodegenerative disor-
ders including Alzheimer’s disease (AD) and Parkinson’s disease (PD), amyotrophic 
lateral sclerosis (ALS), etc. (for review, see Maragakis and Rothstein  2006 ). 
Infl ammatory response is also a key element and integral part of the complex patho-
physiological cascade triggered by ischemic and/or other types of brain injuries. 
Experimentally and clinically, brain ischemia is followed by acute and prolonged 
infl ammatory response characterized by the activation of resident glial cells (microg-
lia and astrocytes), production of infl ammatory cytokines, and leukocyte infi ltration 
in the brain, events that may contribute to brain pathology (Stoll et al.  1998 ; Lo et al. 
 2003 ; Kriz and Lalancette-Hébert  2009 ; Iadecola and Anrather  2011 ). However, 
whether infl ammatory processes and associated glial phenotypes are deleterious or 
benefi cial to recovery is presently a matter of debate and controversies.  

5.2     Reactive Astrogliosis as a Hallmark of Brain 
Infl ammatory Response 

 Astrocyte activation is one of the key components of the cellular responses to brain 
injuries and chronic neurodegeneration (Ridet et al.  1997 ; Hall et al.  1998 ; McGeer 
et al.  1991 ; Nagele et al.  2004 ; Pekny and Nilsson  2005 ). The passage from the 
quiescent to reactive astrocytes observed in many neuroinfl ammatory conditions is 
associated with the strong up-regulation of the intermediate fi lament, glial fi brillary 
acidic protein (GFAP), and under certain conditions the reactive astrocytes may also 
up-regulate their progenitor markers such as vimentin and nestin (Ridet et al.  1997 ; 
Eng et al.  2000 ; Pekny and Nilsson  2005 ). While to date it has been widely estab-
lished that strong transcriptional activation of GFAP is hallmark of many neuro-
pathological conditions the precise molecular mechanisms underlying the GFAP 
induction remain less clear. Interestingly, however, recent work by Bae et al. ( 2006 ) 
reveals that one of the important molecules involved in transcriptional regulation of 
GFAP is nuclear factor kappa B (NF-κB) thus suggesting that GFAP up-regulation 
is indeed strongly associated with neuroinfl ammation. Reactive astrogliosis is the 
universal reaction to brain injuries; however, the reason for this response and how it 
may effect neuronal survival have been somewhat controversial. It has been sug-
gested that reactive astrogliosis comprises two major events; mobilization (and 
hypertrophy) and proliferation of mature astrocytes around the site of injury 
(Fawcett and Asher  1999 ; Silver and Miller  2004 ). However, the most comprehen-
sive analysis of the morphological changes associated with the reactive astrogliosis 
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has been presented by Wilhelmsson et al. ( 2006 ). In their efforts to visualize the 
morphological changes linked to reactive astrogliosis and to identify their respec-
tive occupied domain they actually redefi ned the concept of reactive astrocyte 
Wilhelmsson et al. ( 2006 ). Namely, by using novel dye fi lling method the authors 
described and assessed the full three-dimensional shape of quiescent and reactive 
astrocytes in two different models of neurotrauma including denervated hippocam-
pus and lesioned cerebral cortex. Interestingly in both experimental paradigms, the 
reactive astrocytes increased the numbers and the thickness of their cellular pro-
cesses but did not extend to occupy a greater volume of tissue than nonreactive 
astrocytes. Importantly, the domain of an individual astrocyte did not change 
between activated and the resting cells. Actually in both experimental paradigms the 
most striking difference between quiescent and reactive astrocytes was in the num-
bers of visible processes leaving the soma Wilhelmsson et al. ( 2006 ). 

 Another important question raised here is to what extent and/or whether reactive 
astrocytes have a potential to proliferate? The evidence to date has been rather con-
troversial. While mature astrocytes normally do not divide, a subpopulation of reac-
tive GFAP positive cells does proliferate in response to injury. Because increase in 
GFAP immunoreactivity is commonly used as a marker of reactive astrogliosis this 
raises the question of whether the proliferating GFAP+ cells arise from endogenous 
glial progenitors or from mature astrocytes that start to proliferate in response to 
injury. By targeting quiescent astrocytes by either genetic or viral manipulations and 
following these cells in their reactive response to injury allowed the fate mapping 
analysis and establishment of the lineage relation between reactive and quiescent 
astroglia (Buffo et al.  2008 ). Using this powerful molecular technique the authors 
observed that considerable proportion of quiescent astrocytes indeed resume prolif-
eration in response to injury suggesting that astrocytes are not permanently postmi-
totic cells and in certain conditions may retain the capacity to resume proliferation 
(Buffo et al.  2008 ). Interestingly, however, in the experimental model of chronic 
neurodegenerative disease, in the mutant SOD1 G93A  mice (mouse model of ALS) the 
origin of the GFAP+ cells’ contribution to “reactive astrogliosis” seems to be rather 
different (Lepore et al.  2008 ; Magnus et al.  2008 ). In the studies employing trans-
genic mouse model in which the herpes simplex virus-thymidine kinase (TK) is 
expressed in GFAP+ cells the authors investigated the role of proliferating GFAP 
cell in ALS (Lepore et al.  2008 ). Here it is important to mention that in this mouse 
model astrocyte proliferation can be completely blocked by the ganciclovir treat-
ment (Bush et al.  1999 ). In the context of ALS, fi rst the GFAP-TK mouse was 
crossed with SOD1 G93A  mouse model and once double transgenic animals were 
obtained the GFAP+ astrocyte/cells were ablated by ganciclovir treatment (Lepore 
et al.  2008 ). Intriguingly in this experimental model ablation of dividing astrocytes 
did not affect overall astrogliosis nor the clinical course of disease suggesting that 
astrocyte proliferation does not play an important role in ALS pathogenesis (Lepore 
et al.  2008 ). However, an additional interesting observation came from this study. 
Namely the data analysis revealed that the probable source of reactive astrogliosis in 
ALS models was NG2+ glial progenitors. This was also confi rmed by    Magnus et al. 
( 2008 ). They examined in the mouse model of ALS (in the adult spinal cord of Cu/
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Zn Superoxide Dismutase 1 (SOD1) mutant mice) whether glial progenitors became 
activated and contribute to the astroglial response in this model. Interestingly, the 
progenitor marker NG2 was increased in parallel with GFAP during the symptom-
atic phase of disease. Furthermore, in in vitro conditions the treatment of SOD1 
mutant expressing glial progenitors with pro-infl ammatory cytokines such as tumor 
necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) (unlike the wild-type 
glial progenitors) induced marked proliferation and translocation of the transcription 
factor Olig2 from the nucleus to the cytoplasm consequently resulting in astrocyte 
differentiation. Taken together the results from this study suggest that glial progeni-
tor cells from SOD1G93A mutant mice differentially respond to pro- infl ammatory 
cytokines and contribute to reactive astrogliosis (Magnus et al.  2008 ). Thus it may 
be concluded that both mature astrocytes and multipotent progenitors may prolifer-
ate; however, their contribution to reactive astrogliosis and associated increase in the 
GFAP immunoreactivity may be context- and injury-dependent. What should not be 
forgotten when comparing differential infl ammatory profi les and origin of reactive 
astrocytes is that in SOD1 G93A  mice (and in some other genetic disease models) 
mature astrocytes as well as glial progenitors express high levels of the mutated gene 
which may considerably affect functional properties of astrocytes and other cell 
types implicated in the infl ammatory response and disease pathology.  

5.3    Astrocytes as Resident Brain Immune Response 

 Neuroinfl ammation is a complex tissue response to different types of pathological 
stimuli and it comprises reaction of all cell types within the CNS. Microglia are the 
principal immune cells of the brain and their activation is one of the earliest features 
of almost any changes in microenvironment often preceding astrogliosis (Carson 
et al.  2006 ). While numerous studies have confi rmed the role of microglia as anti-
gen presenting cells within the CNS the role of astrocyte remains controversial. 
However, some evidence suggests that astrocytes have also potential to act as immu-
nocompetent cells (for review, see Yuanshu and Benveniste  2001 ). Namely, it has 
been reported that astrocytes activation in certain conditions can be associated with 
the expression of the major histocompatibility complex (MHC) class II molecules 
which play a critical role in induction of immune response through the presentation 
of the antigen to CD4 T helper cells. Furthermore, previous studies revealed that 
reactive astrocytes again in certain conditions may express molecules such as inter-
cellular adhesion molecule 1 (ICAM-1) (Aloisi et al.  1998 ), B7, and occasionally 
CD40 (Nguyen and Benveniste  2000 ; Aloisi et al.  1998 ; Tan et al.  1998 ; Abdel-Haq 
et al.  1999 ). While there have been discrepancies in the literature regarding the abil-
ity of astrocytes to act as the antigen presenting cell, on the other side it has been 
widely accepted that these cells can produce several pro- and anti-infl ammatory 
molecules as well as a variety of trophic factors. For example, following pro- 
infl ammatory stimuli, brain injury and/or chronic brain pathology-activated astro-
cytes can produce interleukin-1beta (IL-1β), TNF-α, IL-6, as well as nitric oxide 
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(NO) and reactive oxygen species (ROS). Furthermore, astrocytes are in particular 
strong producers of IL-6 in diseased brain and the toxicity of the astrocytic IL-6 has 
been demonstrated in the transgenic mouse models where IL-6 is expressed under 
GFAP promoter. In this mouse model high levels of IL-6 have been associated with 
neurodegeneration, breakdown of the BBB, and increased expression of the com-
plement proteins (Campbell et al.  1993 ). Moreover, destructive potential of astro-
cytic IL-6 has been also demonstrated in the transgenic mouse model (GFAP-IL6) 
whereas IL-6 production has been restricted to cerebellum (Quintana et al.  2009 ). 
Following immunization protocols these mice develop tissue damage characterized 
by exaggerated infl ammatory response restricted to cerebellum which further was 
associated with severe ataxia (Quintana et al.  2009 ). On the other hand, the results 
of the recent study indicate that the astrocyte IL-6 has a major pro-survival role at 
early ages of intrauterine life (Quintana et al.  2012 ). Some additional evidence fur-
ther supports the dual role of astrocyte in brain infl ammatory response. Astrocyte 
are the cells involved in the brain innate immune response and recent evidence sug-
gests that many of the toll-like receptor (TLR) ligands may induce pro- infl ammatory 
and neurotoxic profi les in astrocyte (Ma et al.  2012 ). Interestingly, however, in pre-
vious studies Bsisbi and colleagues reported that contrary to TLR3 response in mac-
rophages, activation of the TLR3 pathway in astrocytes was associated with 
expression of anti-infl ammatory cytokines including IL-9, IL-10, and IL-11 pro-
moting neuroprotection and increasing neuronal survival in organotypic slice assays 
(Bsibsi et al.  2006 ). This may suggest that TLRs as key molecules of innate immune 
system may exert context-specifi c and rather differential effects. In our previous 
work using the TLR2 reporter mouse models and analyzing induction of the TLR2 
following pathogen- and/or danger-associated molecular patterns, contrary to a 
robust induction of TLR2 observed on microglial cells (mRNA as well as on protein 
levels), we did not observe any up-regulation of the TLR2 on astrocytes (Lalancette- 
Hébert et al.  2009 ).  

5.4     Functional Role of Activated Astrocytes: 
Astrocyte–Neuron Cross Talk in Acute Injuries 

 In animal models as well as in human disease astrogliosis is prominent feature and 
it is thought to be associated with infl ammation-induced neurotoxicity. However, 
growing evidence suggests that astrocytes as microglia act as dual edge swords. 
Depending on the injury and disease context, including here spatial and temporal 
components, astrocyte activation may be viewed as benefi cial event characterized 
by production of growth factors and neurotrophins thus promoting neuronal sur-
vival and supporting neuronal growth. On the other hand reactive astrogliosis may 
be detrimental for neuronal function by production of potentially neurotoxic mole-
cules and by causing a major impediment to CNS repair processes due to a glial scar 
formation (for review, see Trendelenburg and Dirnagl  2005 ; Pekny and Nilsson 
 2005 ; Hamby and Sofroniew  2010 ). 
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 In the context of cerebral ischemia, reactive astrogliosis is strongly associated 
with increase in GFAP immunoreactivity and the GFAP levels have been widely 
used as an alternative marker of neuronal damage (   Herrmann and Ehrenreich  2003 ; 
Vissers et al.  2006 ; Petzold et al.  2006 ). The process of astrocytes activation follow-
ing brain ischemia is initiated approximately 4–6 h after ischemic attack and it 
develops during initial few days and may persist up to 7 days and longer after stroke 
(Stoll et al.  1998 ; Cordeau et al.  2008 ). Astrocytes become hypertrophic while 
microglial cells retract their processes and assume an amoeboid morphology that is 
typical for activated microglia. Previous studies have demonstrated that following 
middle cerebral artery occlusion (MCAO) from 2 days reperfusion onward, there 
was a marked increase in intensively stained GFAP positive astrocytes in the areas 
surrounding ischemic lesions (Stoll et al.  1998 ; Cordeau et al.  2008 ). As shown in 
Fig.  5.1 , contrary to activated microglial cells stained with the activation marker 
Mac-2/Gal-3 and situated within the core of infarction, 48 h after experimental 
stroke the GFAP positive astrocytes are barely detectable in the lesion core but they 
markedly increase in numbers and in the intensity of the GFAP staining in the peri- 
infarct area. The distinct spatial distribution of the astrocytes is also confi rmed by 
using spectral imaging and 3D reconstruction of the GFAP signals obtained from 
the GFAP-luc reporter mouse after stroke (Cordeau et al.  2008 ) (see Fig.  5.2 ). In 
addition to distinct spatial distribution between activated microglia/macrophages 
and astrocytes we also observed marked difference in the temporal activation pro-
fi les. As described by Cordeau et al. ( 2008 ) the GFAP signal peaked 48–72 h after 
stroke and it was barely detectable 7 days after stroke, while microglial activation 
may last several months after initial stroke (Lalancette-Hébert et al.  2009 ). Although 
the functional signifi cance of reactive astrogliosis in acute injuries is still debated, 
evidence suggests that it is involved in the formation of the astroglial scar and 

  Fig. 5.1    Differential spatial distribution of activated microglia and astrocytes 48 h following 
experimental stroke (60 min transient left middle cerebral artery occlusion (MCAO)). Activated 
microglial cells were detected by fl uorescent immunolabeling of Mac-2/gal-3 ( red ) while activated 
astrocytes were labeled by glial fi brillary acidic protein (GFAP) ( green ). Note there is no spatial 
overlap between activated microglia and astrocytes. Scale bars: 500 and 50 μm       
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considered as major impediment to axonal regeneration. However, recent studies 
employing GFAP knockout mouse suggested that the role of this intermediate fi la-
ment protein in brain injuries and the glial scar formation may be more complex 
than initially thought (Pekny  2001 ). Contrary to expectations, the absence of the 
GFAP protein has been associated with increased susceptibility for ischemic brain 
damage following MCAO (Pekny et al.  1999 ) and by marked alterations in post-
traumatic glial scarring and tissue healing (Nawashiro et al.  1998 ). Additional evi-
dence of the protective role of functional astrocyte and scar tissue formation in the 
brain response to injury came from the studies performed on the GFAP-TK mice 
(Bush et al.  1999 ). The results have shown that selective ablation of the proliferating 
astrocytes following traumatic (Bush et al.  1999 ) or spinal cord injury (Faulkner 
et al.  2004 ) worsens the outcome. Namely, in both experimental paradigms defec-
tive astrocyte response was associated with marked increase in neuronal and oligo-
dendrocytic death, increase in lesion size, and diminished functional recovery (Bush 
et al.  1999 ; Faulkner et al.  2004 ). Taken together, these fi ndings suggest that reac-
tive gliosis may play protective role in the brain response to acute injuries.

    One of the rather intriguing results we obtained in our “stroke” experiments was 
marked gender difference in neuroinfl ammatory astrocyte response to ischemic 
injury. While previous studies on non-injured astrocytes demonstrated cyclic, estrus-
dependent variations of GFAP expression in certain nuclei of the rat brain (Garcia-
Segura et al.  1994 ; Stone et al.  1998 ), a putative estrogen responsive element (ERE) 
binding site has been detected in the 5′-upstream region of the human and rat GFAP 
promoter (Laping et al.  1994 ) thus suggesting that the level of circulating gonadal 
hormones would predict and/or modulate glial response to brain injury. Importance 

  Fig. 5.2    In vivo 2D and 3D imaging of astrogliosis after ischemic injury. 3D reconstruction of in 
vivo biophotonic/bioluminescent GFAP signals emitted from the brain of the living GFAP-luc mice 
48 h after MCAO. ( a ) Using diffuse light imaging tomography DLIT-algorithms and structural 
images the data was transformed to 3D images.  Red  areas represent the regions of the brain with 
highest intensity of the photon emission. The localization of the highest intensity area was mea-
sured and presented in three axes ( x ,  y , and  z ) in mm from the scull surface ( upper ). ( b ) Representative 
images show collection of imaging samples at three different wavelengths across the emission 
spectrum of the bioluminescent source (fi refl y luciferase) with the substantial fraction of the light 
620 nm. The scales on the right are the color maps for photon density and source intensity       
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of gonadal hormones in modulation of astrocyte response to injuries was further 
confi rmed in our hormone-deprivation experiments. Namely, ischemic lesions were 
in general smaller in female mice when compared to GFAP- luc males. In addition, 
the infarcts were signifi cantly smaller in females during estrus and in the females on 
estrogen replacement therapy (pharmacological doses), thus confi rming a direct 
neuroprotective effect of estrogen in ischemia (Cordeau et al.  2008 ). However, con-
trary to the fi ndings in male mice where positive correlation was observed between 
bioluminescent signal intensities/GFAP up-regulation and the size of infarctions, 
there was no correlation between GFAP up-regulation/astrocyte responses and 
infarct size in any of the experimental groups employing female GFAP-luc mice, 
thus suggesting that GFAP up-regulation/astrocyte response to ischemic injury may 
not have the same functional signifi cance in male and female mice.  

5.5     Astroglia–Neuron Cross Talk in Chronic Neurological 
Disorders 

 Infl ammatory response and associated reactive astrogliosis are hallmark of many 
neurological disorders including AD and PD, ALS/fronto-temporal dementia 
(FTD), and many other similar conditions (for review, see Maragakis and Rothstein 
 2006 ). While infl ammation may represent a natural and benefi cial mechanism that 
helps the nervous system to recover from acute injury, such as cerebral ischemia, 
spinal cord and brain injuries, or nerve degeneration, the tissue response is however 
different in chronic neurological disorders, with an issue of nonresolving infl amma-
tion (Nagele et al.  2004 ; Maragakis and Rothstein  2006 ; Carson et al.  2006 ; Nathan 
and Ding  2010 ; Parpura et al.  2012 ). In chronic neurodegenerative disorders infl am-
mation may persist for several years or even decades. In these conditions, astro-
cytes, as well as other glial cells, are exposed to an ongoing infl ammatory stimulation 
that eventually reduces the glial capacity to release neurotrophic factors and provide 
support to neurons. Results obtained from the studies on triple transgenic AD mouse 
model (comprising both amyloid and tau pathology) revealed the age-dependent 
astroglia atrophy as well as astrogliosis (Olabarria et al.  2010 ). However, to what 
extent and/or how these morphological changes affected astrocyte function in this 
model is less clear (Olabarria et al.  2010 ). Growing line of evidence suggests that 
astrocytes are involved in the pathogenesis of AD at multiple levels. As resident 
immune cells they act as an important source of cytokines and the major site of 
expression of the inducible nitric oxide synthase (iNOS), in human disease as well 
as in related mouse models (   Heneka et al.  2005 ). On the other hand Koistinaho et al. 
( 2004 ) (Pihlaja et al.  2011 ) have shown that astrocytes are actively involved in the 
degradation and clearance of Aβ from the brain involving direct and indirect actions, 
as modifi ers of microglial phagocytosis. Hence, in chronic conditions such as AD 
astrocytes may be driving neurodegeneration by release of various neurotoxic pro- 
infl ammatory mediators, but also trying to resolve the pathological stimuli by 
 modifying uptake and degradation of Aβ. 

5 Neuron–Astrocyte Interactions in Neuroinfl ammation



84

 The neuron/astroglia cross talk is equally complex in ALS especially in geneti-
cally inherited disease where function of non-neuronal cells is additionally affected 
by the presence of mutated proteins such as SOD1 and more recently Tar binding 
protein-43 (TDP-43) (for review, see Rowland and Shneider  2001 ; Lagier-Tourenne 
and Cleveland  2009 ). Although restricted over-expression of the mutated SOD1 in 
astrocytes (using GFAP promoter) resulted in reactive astrogliosis but surprisingly 
did not cause motor neuron degeneration in this transgenic model (Gong et al.  2000 ) 
more recent evidence suggest that expression of mutated SOD1 protein in astrocytes 
may indeed be neurotoxic. Namely, in the parallel papers by Di Giorgio et al. and 
Nagai et al. the expression of the mutated SOD1 in astrocytes, but not other cell types, 
induced selective death of motoneurons in cultures, thus suggesting that astrocytes 
may play a role in the specifi c degeneration of motor neurons in ALS (Di Giorgio 
et al.  2007 ; Nagai et al.  2007 ).    Further supporting the role of astrocytes in ALS is the 
converse set of experiments where mouse models with deletable transgenes (SOD1 G37R  
fl anked by LoxP sequences to allow excision by the Cre recombinase in specifi c cell 
types) have been generated (Boillee et al.  2006 ; Yamanaka et al.  2006 ). The deletion 
of mutant SOD1 transgene from Cd11b positive cells increased the life span of Lox 
SOD1 G37R  mice by approximately 100 days, whereas deletion of the SOD1-mutated 
gene from GFAP expressing cells also resulted in signifi cant increase in survival of 
ALS mice (Boillee et al.  2006 ; Yamanaka et al.  2006 ). However, the strongest evi-
dence yet for direct involvement of astrocytes in ALS pathology came from the stud-
ies on astrocytes generated from human postmortem tissue from familial and sporadic 
ALS patients (Haidet-Phillips et al.  2011 ). In this study the astrocytes were derived 
form the adult postmortem neuronal progenitor cells (NPCs) proved to be tripotent 
thus capable of differentiating into neurons, oligodendrocytes, and astrocytes. 
Importantly the NPCs-derived astrocytes markedly up- regulate infl ammatory gene 
expression while cocultured with motor neurons derived from familiar and sporadic 
ALS patients. Interestingly the network-based pathway analysis of different networks 
ranked by statistical scoring analysis identifi ed the NF-κB signaling complex as a 
highest ranked network, followed by IFN-α and stress kinases network, all involved 
with numerous interactions with infl ammatory genes (Haidet-Phillips et al.  2011 ). 
That infl ammatory pathways and in particular NF-κB signaling pathway may play a 
role in TDP-43-related ALS/FTD pathogenesis has been recently reported by Swarup 
et al. ( 2011a ). In this work, the real-time RT-PCR data analysis from the spinal cord 
samples from sporadic ALS cases and control individuals revealed approximately a 
threefold increase in mRNA coding for TDP-43 and p65 NF-κB (Swarup et al. 
 2011a ). Moreover, it has been demonstrated that TDP-43 interacts and co-localizes 
with NF-κB p65 in glial and neuronal cells of ALS patients as well as in a mouse 
model. Further analysis revealed that TDP-43 acts as a co-activator of p65 resulting 
in exaggerated glial infl ammatory response and increased neurotoxicity while treat-
ment with NF-κB inhibitor withaferin A reduced ALS disease symptoms (Swarup 
et al.  2011a ). Here, it is important to mention that in mouse models expressing 
genomic fragments of human wild-type and mutant TDP-43 one of the fi rst signs of 
pathological changes in presymptomatic period (as well as in SOD1 mutant mice) 
was early increase in markers of glial activation, in particular GFAP, suggesting a 
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complex dialog between stressed neurons and astrocytes before clinical onset of 
 disease (Keller et al.  2009 ; Swarup et al.  2011b ).  

5.6     Live Imaging of Neuroinfl ammation and Astrogliosis: 
What We Can Learn from the Studies Using 
GFAP-Reporter Mouse Model 

 To date, most of the basic knowledge about functional changes associated with glial 
cells’ activation profi les, including astrogliosis, is based on detailed immunohisto-
logical/morphological evaluation of the cell-specifi c markers. Due to a static nature 
of this approach, it is possible that some early events may have been overlooked due 
to a lack of sensitive markers for detection of subtle and/or transient changes in 
early cellular phenotypes. To address this issue over the past several years in the 
laboratory we developed and validated series of mouse models of bioluminescence 
and fl uorescence allowing the noninvasive and time-lapse imaging of processes 
associated with brain injuries and repair including astrogliosis, microgliosis, and 
neuronal damage and regeneration (Cordeau et al.  2008 ; Lalancette-Hébert et al. 
 2009 ; Gravel et al.  2011 ). The strategy was to generate transgenic mice expressing 
dual reporters, the fi refl y luciferase (Fluc) and the green fl uorescence reporter GFP, 
whose transcription is dependent upon the selected gene promoter (Lalancette- 
Hébert et al.  2009 ; Gravel et al.  2011 ). 

 In order to visualize neuroinfl ammatory changes and astrocyte activation from 
the brain of live animals in our studies we took advantage of the mouse model 
expressing Fluc under transcriptional control of the murine GFAP promoter, ini-
tially described by Zhu et al. ( 2004 ). Although GFAP-luc mouse has proved to be a 
very useful tool in in vivo analysis of neuroinfl ammatory response in stroke (Cordeau 
et al.  2008 ) (see Fig.  5.2 ) and in the murine experimental autoimmune encephalo-
myelitis (Luo et al.  2008 ), the most intriguing and interesting results using this 
model have been obtained in the studies focused on early disease pathogenesis in 
ALS and ALS/FTD models. Here, it is important to mention that ALS, AD, and 
other neurodegenerative disorders are chronic diseases that may have an asymptom-
atic phase spanning over several decades; therefore, using sensitive imaging 
approaches may help discover early biomarkers of disease. We generated double 
transgenic SOD1G93A/GFAP-luc mutant (Keller et al.  2009 ) as well as the TDP- 
43/GFAP-luc mice (Swarup et al.  2011b ) and by using sensitive coupled charged 
device (CCD) camera, an in vivo biophotonic/bioluminescence imaging, in this 
models we were able to visualize early and disease-specifi c changes in astrocyte 
phenotypes. Importantly in both experimental models changes in astrocyte profi les/
increase in the GFAP signals preceded clinical onset of disease. Our initial analysis 
revealed that similar tendency has been also observed in the mouse model of AD 
(unpublished observations), thus suggesting that increase in GFAP signals and asso-
ciated increase in the expression of infl ammatory molecules may be considered as 
an early biomarker in chronic neurodegeneration. Moreover, using the GFAP-luc 
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reporter mouse in preclinical in vivo pharmacological studies revealed that the 
GFAP biophotonic signals can be used as a valid readout in preclinical studies inves-
tigating therapeutic effi cacy of immunomodulatory molecules such as minocycline 
and withaferin A in ALS and ALS/FTD models (Keller et al.  2011 ; Swarup et al. 
 2011a ). Finally, our studies suggest that biophotonic signals imaged from the live 
animals can be used as valid biomarkers to screen for novel drugs/biocompatible 
molecules (Maysinger et al.  2007 ; Hutter et al.  2010 ; Lalancette-Hébert et al.  2010 ) 
and/or to visualize distinct pathological events and therapeutic effi cacy in ALS and 
in other neurological disorders (Keller et al.  2009 ,  2011 ; Swarup et al.  2011a ,  b ). 

 Over the last years, studies targeting glial cells, including astrocytes, in neurode-
generative diseases taught us that infl ammation is a double-edged sword (Wyss- 
Coray and Mucke  2002 ; Hamby and Sofroniew  2010 ) leaving the question of 
adequacy of this approach open, especially when considering that the border 
between benefi cial and detrimental effects of glial cell activation seemed to be very 
narrow. Growing line of recent evidence suggests that infl ammation is promising 
but rather complex therapeutic target and in order to fi nd novel and effi cient 
neuroinfl ammation- based therapies there is need for better understanding (decod-
ing) of glia neuron cross talk in diseased as well as in healthy brain.     
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    Abstract     Axon–oligodendrocyte progenitor cell (OPC) interactions are required 
for proper development of axons and OPCs. (1) Axons direct the OPC to differenti-
ate and initiate myelination. (2) Signals from the myelinating oligodendrocyte (OL) 
trigger reorganization of axonal proteins. (3) The conduction velocity increases fur-
ther because of reciprocal signaling between the OL and the myelinated axon. (4) 
Myelin is crucial for maintenance of the axon. Neuroinfl ammation affects neuron–
OL interactions during each of these stages, and results in demyelination, which 
causes redistribution of axonal proteins and ineffi cient impulse conduction. 
However, in the early phases, OPCs present at the lesion remyelinate the naked axon 
and promote axon recovery. When cyclical demyelination and remyelination occur, 
remyelination is hampered by several inhibitors. Thus, a new type of axon–OL 
interaction is established, resulting in chronic demyelination.  

6.1         Introduction 

 The most representative of the neuron–oligodendrocyte (OL) interactions is myelin-
ation. Myelin is a multilamellar structure that ensheathes axons and enhances con-
duction velocity by inducing saltatory conduction. In the central nervous system 
(CNS), myelination is accomplished by a series of orchestrated interactions between 
axons and oligodendrocytes (OLs). During early stages of CNS development, axons 
also interact with OPCs. OPCs are generated in several loci in the ventricular zone 
and migrate to the future white matter, where many axons are waiting for their 
arrival. Axons and OPCs communicate with each other vigorously, by releasing 
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humoral factors and making direct contact. At sites of axon–OPC contact, unmy-
elinated axons assemble a vesicular release apparatus that supports the activity- 
dependent release of neurotransmitters such as glutamate, and even form synapses 
(or synaptic-like structures) with OPCs (Kukley et al.  2007 ; Ziskin et al.  2007 ). 
These interactions are required for proper development of several morphological 
and functional features of OPCs and axons. First, the signaling from the axon directs 
the OPC to differentiate and initiate myelination. In mammals, the myelin mem-
brane inhibits axonal extension; therefore, myelination can only be initiated after 
neural circuits have been established. Thus, myelination must be strictly regulated 
by the axon. Second, the myelinating OL signals to the axon, triggering reorganiza-
tion and localization of membrane proteins that had been evenly distributed along 
the unmyelinated axon. The localization of distinct sets of membrane proteins along 
the length of a myelinated axon creates four unique regions: the node of Ranvier, the 
paranode, the juxtaparanode, and the internode. Creation of these regions is essen-
tial for the induction of saltatory conduction. Myelin also increases the diameter of 
axons. Third, after saltatory conduction has been induced, axonal activity in the 
axon leads to increases in the intracellular calcium concentration in the OL. The 
activated OL in turn signals to the myelinated axon to further increase the conduc-
tion velocity (Yamazaki et al.  2007 ). Fourth, myelin plays an important role in the 
maintenance and survival of the axon (Lee et al.  2012 ). 

 Neuroinfl ammation affects neuron–OL interactions during each of these stages. 
Multiple sclerosis (MS) is the most common disabling CNS disease in young adults. 
It is characterized by recurrent periods of relapse and progression that result from 
multifocal brain and spinal cord infl ammation. Thus, in this chapter, MS will be 
mainly considered as a cause of neuroinfl ammation. Herein, I will describe neuron–
OL interactions in normal conditions for each of the stages described above, and 
then describe how these interactions are affected by neuroinfl ammation.  

6.2     Neurons Stimulate Differentiation of Oligodendrocyte 
Progenitor Cells 

 Cross talk between OPCs and axons begins when OPCs encounter naked axons in 
the future white matter. First, the axons direct the OPCs to delay further differentia-
tion. Nerve growth factor (NGF) is a potent regulator of the axonal signals that 
control myelination, and reduces OL myelination (Chan et al.  2004 ). NGF and its 
cognate receptor, TrkA, induce the expression of leucine-rich repeat (LRR) and Ig 
domain-containing, Nogo receptor-interacting protein (LINGO-1) (Lee et al.  2007 ) 
that inhibits OL differentiation (Mi et al.  2005 ). OL differentiation is also regulated 
by Notch signaling. OPCs/OLs in the developing rat optic nerve express Notch1 
receptors and retinal ganglion cells express Jagged1, a ligand of the Notch1 receptor, 
along their axons. Jagged1 expression decreases with a time course that parallels 
myelination in the optic nerve (Wang et al.  1998 ). Conversely, Notch1 interactions 
with contactin 1 (also known as neural cell surface protein F3), which is clustered at 
axonal/paranodal junctions, promote OL differentiation by initiating Deltex1 

K. Ikenaka



93

signaling (Hu et al.  2003 ). Thus, the timing of both OL differentiation and myelina-
tion is controlled by the Notch pathway. Another inhibitor of OPC differentiation, 
PSA-NCAM, is fi rst expressed on all growing fi bers and negatively regulates myelin 
formation. Then axonal expression is down-regulated and myelin deposition occurs 
only on PSA-NCAM-negative axons (Charles et al.  2000 ). Thus, OPC differentia-
tion is inhibited by unmyelinated axons through several distinct pathways. 

 Once the neural circuitry of the CNS has been established, the axons now direct 
OPCs to differentiate and initiate myelination. The electrical activity coursing 
through the axon could easily be considered as one of the candidates for this signal, 
because electrical activity increases after circuit formation. In mice reared in com-
plete darkness for 20 and 30 days, delay in myelination of the optic nerve fi bers 
caused a reduction in the number of myelinated axons by some 12–13 % (Gyllensten 
and Malmfors  1963 ). Artifi cial opening of the eyes of young rabbits on the fi fth 
postnatal day led to accelerated myelination: the myelin basic proteins and proteo-
lipid proteins nearly doubled between the seventh and the tenth postnatal days when 
compared to controls; 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNP) activity 
also increased by about 60 % (Tauber et al.  1980 ). These results clearly demonstrate 
that electrical activity controls OPC differentiation. 

 Axonal electrical activity has been shown to control the production and release 
of growth factors that regulate OPC proliferation. Therefore, the level of activity 
determines the number of OLs that develop in a given region (Barres and Raff 
 1993 ). OPCs express adenosine receptors, which are activated in response to action 
potential fi ring. Adenosine acts as a potent neuron–glial transmitter to inhibit OPC 
proliferation, stimulate differentiation, and promote the formation of myelin. This 
neuron–glial signal provides a molecular mechanism for promoting OL develop-
ment and myelination in response to impulse activity (Stevens et al.  2002 ). A mech-
anism for nonsynaptic, nonvesicular release of adenosine triphosphate (ATP) from 
axons through volume-activated anion channels (VAACs) activated by microscopic 
axon swelling during action potential fi ring was identifi ed. ATP release from cul-
tured embryonic dorsal root ganglion axons persisted when bafi lomycin or botuli-
num toxin was used to block vesicular release, whereas pharmacological inhibition 
of VAACs or prevention of action potential-induced axon swelling inhibited ATP 
release and disrupted activity-dependent signaling between axons and astrocytes 
(Fields and Ni  2010 ). The cytokine leukemia inhibitory factor (LIF) is released by 
astrocytes in response to ATP liberated from axons fi ring action potentials, and LIF 
promotes myelination by mature OLs. This activity-dependent mechanism promot-
ing myelination could regulate myelination according to functional activity or envi-
ronmental experience and may offer new approaches to treating demyelinating 
diseases (Ishibashi et al.  2006 ). 

 An important fi nding to understand communication between axon and OPCs is that 
OPCs form synaptic contacts with axons in cerebral white matter in neonatal rodents 
(Kukley et al.  2007 ; Ziskin et al.  2007 ). Glutamate is released from synaptic vesicles 
along axons of mouse dorsal root ganglion neurons in culture and promotes myelin 
induction by stimulating formation of cholesterol-rich signaling domains between 
OLs and axons, and increasing local synthesis of the major protein in the myelin 
sheath, myelin basic protein, through Fyn kinase-dependent signaling. This axon–OL 
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signaling would promote myelination of electrically active axons to regulate neural 
development and function according to environmental experience (Wake et al.  2011 ). 

 During early stages of development, white matter injury due to hypoxia, isch-
emia, and the resultant neuroinfl ammation often results in periventricular leukoma-
lacia (PVL), which is the predominant form of brain injury and the most common 
cause of cerebral palsy in premature infants. In a mouse model of PVL, synapses 
between axons and OPCs are profoundly damaged (Shen et al.  2012 ). Synaptic 
damage could disrupt the communication between axons and OPCs, and may cause 
PVL. Ischemia is also damaging to OLs, because the reduced energy supplies and 
the increased intracellular Ca 2+  levels can injure OLs and damage myelin. Although 
mature OLs are sensitive to hypoxia and ischemia (Matute et al.  2006 ), immature 
OLs in the perinatal brain are even more sensitive, most likely because they express 
a variety of glutamate receptors. Infl ux of extracellular Ca 2+  through AMPA and 
kinate receptors is probably the most important mechanism of Ca 2+  overload in OLs 
(Matute  2011 ).  

6.3      Oligodendrocytes Induce Clustering of Axonal Channels 
and Increase Axon Diameter 

 While axon-derived signal induces the OL to initiate myelination, myelin-derived 
signals in turn induce the axonal ion channels to redistribute. For example, the 
voltage- gated sodium channel Nav1.6 clusters at the nodes of Ranvier (Caldwell 
et al.  2000 ) and the voltage-gated potassium channels Kv1.1 and Kv1.2 cluster at 
the juxtaparanodal regions (Wang et al.  1993 ). Correct clustering of these channels 
is essential for the induction of saltatory conduction. As shown in Fig.  6.1 , intracel-
lular complexes regulate the formation of ion channel clusters and paranodal junc-
tions, which are induced by interactions between neurofascin 155 (NF155), 
contactin, and contactin-associated protein 1 (Caspr/CNTNAP1).

   When demyelination occurs, sodium and potassium channels redistribute and 
delocalize, but they do so with different kinetics. Potassium channels delocalize 
much faster than sodium channels do (Ishibashi et al.  2003 ). In the absence of a 
myelin sheath, clustered sodium channels and unclustered potassium channels 
could contribute to the conduction block observed in patients with MS. 

 Myelin and OLs also affect axonal caliber. Axon caliber may be infl uenced by 
intrinsic neuronal factors and extrinsic factors related to myelination. Caliber expands 
and neurofi laments accumulate only along regions of the axon with OL in mouse 
optic nerve during development. Very proximal portions of axons within a region of 
the optic nerve from which OLs are excluded remain unchanged. More distally, these 
axons rapidly expand an average of fourfold as soon as they were recruited to become 
myelinated between postnatal days 9 and 120 (Fig.  6.2 ). Axons ensheathed by OL 
processes, but not yet myelinated, were intermediate in caliber and neurofi lament 
number. Thus, signals from oligodendrocytes, independent of myelin formation, are 
suffi cient to induce axonal caliber expansion (Sánchez et al.  1996 ).
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6.4        Axon–Myelin Interactions After Myelin Formation 

 Many people are aware that myelination increases the axonal conduction velocity. 
However, less consideration is given to the nature of the communication between 
axons and OLs after myelination is complete. Lev-Ram and Ellisman ( 1995 ) and 

  Fig. 6.1    Molecular composition of the node of Ranvier, paranode, and juxtaparanode.  AnkB  
ankyrin B,  Caspr  contactin-associated protein,  ECM  extracellular matrix,  NF  neurofascin,  NrCAM  
neuronal cell adhesion molecule,  TAG  transient axonal glycoprotein       

  Fig. 6.2    Myelination induces local expansion of axonal caliber       
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Micu et al. ( 2007 ) demonstrated that Schwann cells and OLs respond to axonal 
activity by increasing the intramyelin Ca 2+  concentration. Additionally, a ground-
breaking study by Yamazaki et al. ( 2007 ) revealed that activated OLs-derived sig-
nals could further increase the conduction velocity of axons in which saltatory 
conduction had been induced. Therefore, axonal activity can be detected by myelin-
ating OLs, and this activity can activate OLs and lead to regulation of the conduc-
tion velocity. One particularly interesting aspect of this relationship that is not 
known is whether OL signaling affects the conduction velocity of all the axons it 
ensheathes or only the axon in which it detected electrical activity. 

 OLs also support axon survival and function through mechanisms independent 
of myelination, and their dysfunction leads to axon degeneration in several diseases. 
A possible cause of this degeneration has recently been determined (Lee et al. 
 2012 ). Lee et al. showed that the most abundant lactate transporter in the CNS, 
monocarboxylate transporter 1 (MCT1, also known as SLC16A1), is highly enriched 
within OLs and that disruption of this transporter produces axon damage and neu-
ron loss in animal and cell culture models. Thus, OLs support neurons and their 
axons by providing them with lactate. In cases of prolonged demyelination, a dimin-
ished lactate supply could be one of the reasons for axonal degeneration.  

6.5     Axon–Myelin Interactions During Demyelination 

 In patients with MS, neuroinfl ammation causes degeneration of OLs and the myelin 
sheath; thus, all neuron–OL interactions could be affected. However, OPCs are 
present abundantly throughout the CNS, and are capable of generating OLs and 
remyelinating the naked axons. Although it is true that many thin myelin-containing 
structures have been observed in the shadow plaques that surround the MS lesions, 
indicating that remyelination is ongoing, the central regions of the lesions contain 
naked axons. Signs of remyelination are usually not found in these lesions, and they 
become chronically demyelinated. Although it has been believed that OPCs are 
depleted in chronic lesions because of extensive regeneration of OLs, Chang et al. 
( 2002 ) demonstrated that, in rodents, that may not always be true. Thirty-four of the 
48 chronic lesions of MS contained OLs with multiple extended processes that asso-
ciated with demyelinated axons but failed to myelinate them. In some regions, the 
densities of premyelinating oligodendrocytes (25 mm −2  of tissue) were similar to 
those in the developing rodent brain (23 mm −2 ) (Chang et al.  2002 ). These results 
show premyelinating OLs are present in MS chronic lesions; thus, remyelination is 
not limited by an absence of OPCs or their failure to generate OLs, but instead the 
axons are not receptive for remyelination. 

 Various factors that inhibit OL differentiation and maturation have been identi-
fi ed in chronically demyelinated lesions (Fig.  6.3 ). Many of these factors are 
expressed during normal development and are required to delay OPC differentiation 
until neural circuits have been established (see Sect.  6.3 ).

   During development PSA-NCAM is expressed at the axonal surface and acts as 
a negative regulator of myelination. PSA-NCAM, normally absent from adult brain, 
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was reexpressed on demyelinated axons in the chronic lesions (Charles et al.  2000 ). 
Within shadow plaques, remyelinated axons did not express PSA-NCAM. 
Re-expression of PSA-NCAM could act as an inhibitor of remyelination and par-
ticipate in disease progression in MS. 

 The Notch pathway is also reexpressed in the adult CNS in cases of MS. John 
et al. ( 2002 ) found that within and around active MS plaques lacking remyelination, 
Jagged1 was expressed at high levels by hypertrophic astrocytes, whereas Notch1 
and Hes5 localized to cells with an immature OL. In contrast, there was negligible 
Jagged1 expression in remyelinated lesions. These data implicate the Notch path-
way regulates remyelination in MS. In contrast Stidworthy et al. ( 2004 ) found that 
OPC-targeted Notch1 ablation in cuprizone-treated Plp-creER Notch1(lox/lox) 
transgenic mice yielded no signifi cant differences in remyelination parameters 
between knock-out and control mice. Thus, in contrast to developmental myelina-
tion, adult expression of Notch1 and Jagged1 neither prevented nor played a major 
rate-determining role in remyelination. Therefore, the role of Notch signaling dur-
ing demyelination and remyelination is still controversial. 

 Nakahara et al. ( 2009 ) found that one Notch ligand, contactin, was saturated on 
demyelinated axons, Notch1-positive OPCs accumulated in contactin-positive 
lesions, and the receptor was activated to generate Notch1-intracellular domain 
(NICD). However, nuclear translocalization of NICD, required for myelinogenesis, 
was virtually absent in these cells. NICD and related proteins carrying nuclear 
localization signals were associated with the nuclear transporter importin but were 
trapped in the cytoplasm. Abnormal expression of TIP30, a direct inhibitor of 
importin, was observed in these OPCs. Therefore, an intrinsic nucleocytoplasmic 
transport blockade within OPCs may be involved in the pathogenesis of remyelin-
ation failure in MS. 

  Fig. 6.3    Inhibitors of remyelination found in chronically demyelinated lesions.  Green dots  show 
voltage-gated potassium channels, and  red dots  sodium channels.  PSA-NCAM  polysialylated- 
neural cell adhesion molecule       
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 The glycosaminoglycan hyaluronan, and in particular its high molecular weight 
(HMW) form, is synthesized by astrocytes and accumulates in demyelinated lesions 
from individuals with MS and in mice with experimental autoimmune encephalo-
myelitis (Back et al.  2005 ). OPCs did not mature into myelin-forming cells in 
demyelinating lesions where HMW hyaluronan was present. Furthermore, the addi-
tion of HMW hyaluronan to OPC cultures reversibly inhibited progenitor cell matu-
ration, whereas degrading hyaluronan in astrocyte–OPC cocultures promoted OL 
maturation. HMW hyaluronan may therefore contribute substantially to remyelin-
ation failure by preventing the maturation of OPCs that are recruited to demyelinat-
ing lesions.  

6.6     Conclusions 

 OLs are sensitive to infl ammation; thus, interactions between axons and OLs are 
severely affected by neuroinfl ammation. This is especially true when infl ammation 
induces demyelination. OLs not only contribute to the induction of saltatory con-
duction but they also regulate conduction velocity, affect axonal caliber, and support 
axonal survival. It is important to consider all of these factors when treating demy-
elinating diseases. Therefore, the outcomes of artifi cial remyelination (such as those 
induced by Schwann cell transplantation) should be carefully analyzed to determine 
if the remyelinated axons function normally.     
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    Abstract     Initially described as target-derived survival factors for neurons, neuro-
trophins are now known to exert pleiotropic actions as they also regulate neuronal 
development, function, and plasticity. These processes however are not cell autono-
mous but derive from the complex interplay between neurons and glia cells. 

 In this chapter we offer an overview of the current knowledge on the functions 
supported by neurotrophins in neurons, and focus the attention on the role of neuro-
trophins in the cross talk between neurons and myelinating cells, microglia, and 
astrocytes.  

  Abbreviations 

   BDNF    Brain-derived neurotrophic factor   
  DRG    Dorsal root ganglion   
  LINGO-1    LRR and Ig domain containing nogo receptor interacting protein   
  LRR    Leucine-rich repeats   
  LTD    Long-term depression   
  LTP    Long-term potentiation   
  MAG    Myelin-associated glycoprotein   
  NGF    Nerve growth factor   
  NgR    Nogo receptor   
  NO    Nitric oxide   
  NT    Neurotrophin(s)   
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  OL    Oligodendrocyte(s)   
  OMgp    Oligodendrocyte myelin glycoprotein   
  SC    Schwann cell(s)   
  TK    Tyrosine kinase   

7.1           The Neurotrophin System: Ligands and Receptors 

 In mammals the family of neurotrophins (NT) has four members which share high 
homology in sequence and structure: nerve growth factor (NGF), brain-derived 
 neurotrophic factor (BDNF), neurotrophin-3 (NT3), and neurotrophin-4 (NT4). All 
NT are translated from single coding exons and synthesized as larger precursors 
(proneurotrophins) of 30–34 kDa that associate non-covalently to form homodi-
mers. Proneurotrophins are then cleaved intracellularly by furin and proconvertases 
to produce mature NT of circa 13 kDa (Reichardt  2006 ) (Fig.  7.1 ).

   NT exert their actions by two structurally unrelated classes of receptors: the 
p75NTR receptor and the Trk receptors (Fig.  7.1 ). The p75NTR receptor is a member 
of the tumor necrosis factor (TNF)-receptor superfamily and has an extracellular 
domain with four cysteine-rich motifs, a single transmembrane domain, and a cyto-
plasmic tail containing a death domain similar to those present in other members of 
this family. Although this receptor does not have catalytic properties, it interacts with 
several adapter proteins, as NRIF and NRAGE, that further transmit the information 
(see Reichardt  2006  for details). p75NTR binds to all four neurotrophins equally well 
(Reichardt  2006 ), with a 2:2 stoichiometry (Aurikko et al.  2005 ; Gong et al.  2008 ). 

 The Trk receptors are tyrosine-kinase (TK) membrane receptors and include 
three receptors (TrkA, B, and C). Their extracellular domain exhibits three 

  Fig. 7.1    The neurotrophin system       
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leucine-rich repeats (LRR) fl anked by cysteine clusters and two immunoglobulin- 
like domains next to the second cysteine domain. The Trk receptors bind specifi cally 
distinct members of the NGF family of NT, with TrkA, TrkB, and TrkC interacting 
preferentially with NGF, BDNF or NT4/5, and NT3, respectively. In addition, NT3 
can activate the other Trk receptors with less effi ciency. The intracellular portion 
contains the catalytic tyrosine-kinase (TK) domain surrounded by several tyrosines 
that serve as phosphorylation-dependent docking sites for cytoplasmic adaptors and 
enzymes (Reichardt  2006 ). Binding of NT leads to dimerization of Trk receptors, 
resulting in activation through transphosphorylation of the kinases present in their 
cytoplasmic domains. Truncated Trk isoforms lacking the TK domain occur in 
nature and may form dimers with, and thereby inhibit the activation of, the full-
length isoforms (Eide et al.  1996 ). The observation that, for example, truncated 
TrkB allows binding, internalization, and subsequently release of BDNF (Biffo et al. 
 1995 ) led to the hypothesis that truncated receptors function as reservoirs of BDNF. 
More recent work demonstrated that truncated Trk receptors are also important sig-
nal transducing molecules (Rose et al.  2003 ; Ohira et al.  2005 ; Colombo et al.  2012 ). 

 Neurotrophins were fi rst identifi ed as promoters of neuronal survival (Huang and 
Reichardt  2001 ) (Fig.  7.2 ). These effects are clearly mediated by Trk receptors, as 
specifi c neuronal cell populations are lost in Trk gene knockout animals (Huang and 
Reichardt  2003 ). Moreover, NT play a key role in synaptic plasticity, as they take 
part to structural (e.g., growth vs. shrinkage/retraction of dendritic spines) and func-
tional (e.g., long-term potentiation (LTP) vs. long-term depression (LTD)) events in 
synaptic regulation (Lu et al.  2005 ). Here, distinct tasks are performed by Trk and 
p75NTR receptors, with TrkB signalling supporting synapse formation and LTP, and 
p75NTR signalling contributing to synapse retraction and LTD (Lu et al.  2005 ). 
Further, tuning of Trk actions is exerted by p75NTR receptor, which either interferes 
with Trk signalling or directly forms heterodimers with Trk receptors, obtaining 
agonistic or antagonistic effects on Trk-mediated signal transduction. In fact, it was 
demonstrated that p75NTR can enhance ligand binding (Davies et al.  1993 ; Esposito 
et al.  2001 ) and retrograde transport (Curtis et al.  1995 ), and promote Trk signalling 
(Makkerh et al.  2005 ), axon growth, and target innervation (Bentley and Lee  2000 ; 
Harrison et al.  2000 ). By contrast, p75NTR leads to axon pruning in postnatal life 
by attenuating Trk signalling (Singh and Miller  2005 ; Singh et al.  2008 ).

   Interestingly, proneurotrophins, which may escape intracellular processing and 
be released by neurons, constitute the main form of NT in brain (Fahnestock et al. 
 2001 ) and are biologically active, as they bind selectively to p75NTR but not Trk 
receptors. In this case, interactions between proNT and p75NTR in complex with 
another protein called sortilin lead to neuronal apoptosis (Lee et al.  2001 ; Nykjaer 
et al.  2004 ; Teng et al.  2005 ) (Fig.  7.2 ). 

 p75NTR acts as an inhibitory coreceptor also for other receptors (Fig.  7.2 ). Eph 
receptors and ephrins are two families of proteins involved in nervous system pat-
terning (Murai and Pasquale  2011 ). ephrinA ligands are GPI-anchored to the mem-
brane and regulate growth cone mobility during establishment of neuronal connections 
(Winslow et al.  1995 ; Janis et al.  1999 ; Bundesen et al.  2003 ). Interestingly, forma-
tion of the complex ephrinA–p75NTR mediates retinal axon repulsion during devel-
opment after proNT binding to p75NTR (Lim et al.  2008 ; Marler et al.  2010 ). 
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  Fig. 7.2    NT system and 
biological effects in neurons       
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In parallel, ephrinA enhances BDNF-induced TrkB signalling leading to enhanced 
axon branching and synaptogenesis (Marler et al.  2008 ). Thus, the coordinated inter-
action of ephrins with distinct neurotrophin receptors results in growth cone arrest, 
branching, and specialization of the synaptic membrane. Finally, another group of 
axonal growth inhibitory cues regulated by p75NTR is that of class 3 semaphorins 
(Sema3) (Roth et al.  2009 ). Sema3A binding to the receptors neuropilin 1 and Plexin 
A4 modulates axonal pathfi nding and pruning. There, p75NTR interaction with 
Sema3A receptor complex reduces receptor activation (Ben-Zvi et al.  2007 ). 

 Several neuronal features (e.g., survival and synaptic activity) rely on the interac-
tion between neurons and glia cells via neurotrophins. The next paragraphs high-
light the current knowledge on the role of NT as mediators in neuron–glia cross talk.  

7.2     Neurotrophins in Neuron–Myelin Forming Cell 
Interaction 

 A superb example of neurotrophin-mediated cell–cell interaction is the formation of 
myelin, which consists of the unidirectional wrapping of multiple layers of mem-
brane around an axon initiated at the side of the axon–glial junction. It is probably 
no accident that the evolutionary expansion of the neurotrophin family early in ver-
tebrates coincides with the evolution of myelin (Hallbook et al.  2006 ). It is well 
established that both peripheral and central neurons as well as Schwann cells (SC) 
and oligodendrocytes (OL) express NT and their receptors. Thus, NT system inte-
grates neurite growth with myelination processes either by mediating axonal signals 
or by acting directly on myelinating glia (Figs.  7.3 ,  7.4 , and  7.5 ).

     During development growth inhibitory signals regulate axon guidance and medi-
ate synapse selection (Flanagan and Vanderhaeghen  1998 ; Yu and Bargmann  2001 ). 
In the postnatal period the regulation of neurite growth is a fundamental issue espe-
cially when considering the impact on axonal regeneration after injury. It is known 
that injured central nervous system (CNS) offers a physical barrier to regeneration 
due to the formation of a gliotic scar. In addition, a series of molecular signals may 
dampen axonal outgrowth. Among them oligodendrocyte myelin glycoprotein 
(OMgp), myelin-associated glycoprotein (MAG), and Nogo-A are myelin-derived 
factors which inhibit axonal regeneration upon binding to nogo receptors (NgRs) 
(Chen et al.  2000 ; GrandPre et al.  2000 ; Fournier et al.  2001 ; Venkatesh et al.  2005 ) 
or PIR-B (Fujita et al.  2011a ). Being a GPI-linked membrane receptor, NgR needs 
to associate with additional membrane proteins to deliver the signal into the cell. 
Importantly, p75NTR neurotrophin receptor is part of this complex together with 
LRR and Ig domain containing nogo receptor interacting protein LINGO-1 (Wang 
et al.  2002 ). Likewise, PIR-B association with Trk receptors mediates myelin sup-
pression of axon growth (Fujita et al.  2011a ) and this effect depends on p75NTR 
which interacts with PIR-B/Trk complex (Fujita et al.  2011b ). Finally, in addition to 
growth inhibition, myelin delivers signals for axon degeneration which depend on 
p75NTR but can be overcome by robust Trk receptor activation (Park et al.  2010 ). 
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 Neurotrophins are essential regulators of myelination during development and of 
remyelination after injury. The identifi cation of the precise cellular and molecular 
basis of myelination has been complicated by the severe neuronal phenotype expe-
rienced by NT and NT receptor knockout mice, so that changes in myelination there 
most probably result from neuronal alterations. In vitro myelination assays, encom-
passing the coculture of defi ned populations of neurons (normally dorsal root 

  Fig. 7.3    NT system in 
neurons regulating 
myelination and responses to 
myelin-derived factors       
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ganglion (DRG) neurons) with SC or, more recently, oligodendrocytes have been 
used to recapitulate fundamental aspects of in vivo myelination. In this experimen-
tal set-up NGF promotes myelination of TrkA-positive DRG neurons by SC, while 
it inhibits OL myelination by inducing expression of axonal LINGO-1 (Chan et al. 
 2004 ; Lee et al.  2007 ). Interestingly, the neurotrophin BDNF enhances myelination 
of NGF-dependent peripheral neurons, an effect dependent on neuronal expression 
of the p75NTR receptor, whereas it inhibits myelination of BDNF-dependent neu-
rons via the full-length TrkB receptor (Xiao et al.  2009 ) (Fig.  7.3 ). These evidences 
highlight how distinct axonal signals may control myelination. 

 Furthermore, NT have direct effects on myelin forming cells, beginning with 
glial development to the migration of myelin forming cells along the axons until the 
ensheathment of the axon and the active synthesis of myelin proteins (Figs.  7.4  and 
 7.5 ). Regarding peripheral myelination, NT3 regulates survival of SC which express 
TrkC (Meier et al.  1999 ; Woolley et al.  2008 ), and NGF and BDNF direct SC migra-
tion through p75NTR (Bentley and Lee  2000 ; Anton et al.  1994 ; Yamauchi et al. 
 2004 ) (Fig.  7.4 ). However, the expression of the myelin proteins in SC and the 

  Fig. 7.4    NT system 
and biological effects 
in Schwann cells       

  Fig. 7.5    NT system 
and biological effects 
in oligodendrocytes       
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formation of internodes are inhibited by NT3 and TrkC signalling, while supported 
by BDNF binding to p75NTR (Chan et al.  2001 ; Pruginin-Bluger et al.  1997 ; 
Cosgaya et al.  2002 ). Additionally, the truncated TrkB receptor is induced during 
active myelin formation and negatively regulates myelination by SC (Cosgaya et al. 
 2002 ) (Fig.  7.4 ). Thus, peripheral myelination is the result of time-controlled 
expression of NT and their receptors: NT3 supports survival of SC via TrkC, while 
p75NTR signalling regulates SC migration; downregulation of TrkC signalling at 
the beginning of myelination removes an inhibitory signal, while expression of the 
BDNF–p75NTR axis supports myelination; and, fi nally, induction of the truncated 
TrkB, which scavenges extracellular BDNF, switches off the process. 

 Regarding central myelination (Fig.  7.5 ), TrkC activation upon binding to NT3 
regulates survival and proliferation of OL (Barres et al.  1993 ,  1994 ; Cohen et al. 
 1996 ). BDNF, NGF, and NT3 were found to promote differentiation of basal fore-
brain OL, while NGF and NT3 but not BDNF induce differentiation of cortical OL 
(Du et al.  2003 ). The regional effects of NT are due to the distinct expression of NT 
receptors on OL, as cortical OL lack TrkB expression (Du et al.  2003 ,  2006 ). 

 A few evidences indicate a role for NT also in regulating cell death of oligoden-
drocytes (Fig.  7.5 ). An in vitro study shows that NGF can induce cell death of mature 
cortical oligodendrocytes but not of OL precursor cells via p75NTR (Casaccia-
Bonnefi l et al.  1996 ) and that forced expression of TrkA may rescue cells from 
apoptosis (Yoon et al.  1998 ). Indeed, OL express p75NTR after spinal cord injury 
and are apoptotic. Consistently, proNGF levels increase in injured spinal cord and 
are effective in inducing p75NTR-mediated OL death in culture (Beattie et al.  2002 ). 

 Remyelination is thought to be a process which recapitulates myelination. 
Transplantation of fi broblasts engineered to release BDNF and NT3 into the injured 
spinal cord results in enhanced axonal growth, OL precursor proliferation, and 
improved myelination (McTigue et al.  1998 ). Additional studies support the view 
that administration of NT in vivo may be effective in sustaining remyelination 
(Tuszynski et al.  1998 ; Cao et al.  2005 ; Girard et al.  2005 ). 

 Altogether, the role of the NT in myelination is complex and may be characterized 
by opposite effects depending on the cell type and on the members of the NT system 
present at distinct stages of the neuron–glia interaction, suggesting that careful and 
balanced timing of expression of these molecules is responsible for process control.  

7.3     Neurotrophins in Neuron–Microglia Interaction 

 Microglia are myeloid cells entering the nervous tissue at early stages during devel-
opment and reaching a maximum at the end of the second postnatal week when 
intense synaptogenesis is occurring. Though exerting immune cell functions (Aloisi 
 2001 ; Farina et al.  2007 ), microglia secrete a variety of growth factors, including 
neurotrophins, implicated in all aspects of neuronal functions (Hanisch  2002 ). 

 Several evidences indicate that microglia have the ability to kill neurons by 
secreting glutamate, TNF-alpha, Fas ligand, interleukin 1b, nitric oxide (NO), and 
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reactive oxygen species (ROS). At the same time microglia may increase neuronal 
survival through the release of trophic factors and anti-infl ammatory factors. 
Interestingly, neurotrophins may support the detrimental side in microglia–neuron 
interaction (Fig.  7.6 ). In embryonic chick retina about half of the neurons die in a 
restricted time window that follows invasion of neural tissue by microglia. However, 
neuronal death is reduced when the embryonic chick retina is dissected before colo-
nization by microglial cells, and is restored by the addition of microglia (Frade and 
Barde  1998 ). Importantly, this effect is blocked by antibodies to NGF (Frade and 
Barde  1998 ), indicating that microglia NGF induces developmental neuronal death. 
In vitro experiments demonstrated that retinal microglia release proNGF, which in 
turn drives photoreceptor cell death via binding to p75NTR (Srinivasan et al.  2004 ). 
Similarly, in a model of light-induced retinal degeneration p75NTR upregulation on 
Muller glia cells leads to decreased production of basic fi broblast growth factor 
(bFGF), a survival factor for photoreceptor cells (Hayashi et al.  1997 ). Blockade of 

  Fig. 7.6    NT system in the 
interaction between neurons 
and microglia       
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p75NTR prevents bFGF reduction, thereby promoting photoreceptor survival 
(Harada et al.  2000 ). Importantly, following retinal degeneration microglia release 
neurotrophins, which block bFGF synthesis in Mueller glia (Harada et al.  2002 ), 
highlighting how neuronal fate can be determined by microglia–Mueller glia inter-
action via neurotrophins.

   Microglia regulate also synaptic function. Mice with loss of function of DAP12, 
a transmembrane protein specifi cally expressed in developing microglia, display 
altered synaptic function and plasticity. Neurotrophins are known to modulate syn-
aptic transmission and LTP (Klintsova and Greenough  1999 ). In particular, BDNF 
affects function and traffi cking to synaptic sites of glutamate receptors (Levine et al. 
 1998 ; Levine and Kolb  2000 ). Consistently, the observed synaptic phenotype in 
DAP12-defi cient mice is characterized by a dramatic decrease in the postsynaptic 
density of the full-length TrkB isoform. Thus a microglial defect may lead to synap-
tic impairment by targeting the BDNF–TrkB pathway in neurons. Importantly, in the 
spinal cord microglia respond to ATP stimulation with release of BDNF, which 
causes allodynia by activating microglia themselves (Zhou et al.  2011 ) and by induc-
ing a depolarizing shift in the anion reversal potential in neurons (Coull et al.  2005 ). 
This shift inverts the polarity of currents activated by GABA (gamma-amino butyric 
acid) (Coull et al.  2005 ), as has been shown to occur after peripheral nerve injury. 

 By contrast, the observation that dopaminergic sprouting following striatal injury 
is accompanied by the accumulation of BDNF-expressing microglia at the wound 
site (Batchelor et al.  1999 ) suggests that microglia BDNF supports tissue repair. 
Indeed, NT release from microglia may be enhanced by stimuli derived from neu-
rons themselves. In vitro experiments show that, when exposed to neuronal factors, 
microglia promote the survival and maturation of catecholaminergic, GABAergic, 
and cholinergic neurons via neurotrophin synthesis (Nakajima et al.  2007 ). 

 Microglia are also target of neurotrophic action as they express neurotrophin 
receptors (Nakajima et al.  1998 ). Neurotrophins suppress the LPS-induced release 
of nitric oxide (Nakajima et al.  1998 ; Tzeng and Huang  2003 ; Mizoguchi et al. 
 2009 ) and of TNF-alpha (Tzeng and Huang  2003 ) by microglia, and contribute to 
the low expression of major histocompatibility class II molecules on microglia 
(Neumann et al.  1998 ) (Fig.  7.6 ), indicating that NT may dampen the infl ammatory 
side of microglia.  

7.4     Neurotrophins in Neuron–Astrocyte Interaction 

 Astrocytes are the most abundant glia cells in the CNS and are of neuroectodermal 
origin. They are fundamental for brain structure and function. In fact they regulate 
ion homeostasis in the extracellular space, keep balance between clearance and 
release of the neurotransmitter glutamate, produce metabolic substrates for neurons, 
and take care of the structural maintenance of neuronal synapses (Nedergaard et al. 
 2003 ). Clearly, astrocyte dysfunction can be detrimental for neurons. In fact, on the 
one hand astrocytes may protect neurons from ROS- and NO-induced cell death by 
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providing antioxidants such as glutathione, thioredoxin, and metallothioneins 
(Chiueh et al.  2003 ), on the other hand upon activation they can contribute to oxida-
tive stress by releasing NO (Colombo et al.  2012 ) which is then converted into 
neurotoxic products like peroxynitrite. 

 Astrocytes are sensitive to neurotrophin action, as they bear NT receptors 
(Colombo et al.  2012 ; Condorelli et al.  1994 ). Astrocyte responses to NT include 
cell cycle arrest via p75NTR (Cragnolini et al.  2009 ,  2012 ), and calcium fl ux via 
truncated TrkB (Rose et al.  2003 ; Colombo et al.  2012 ) (Fig.  7.7 ).

   The cross talk between astrocytes and neurons via neurotrophins modulates neu-
ronal survival and activity (Fig.  7.7 ). 

 Astrocytes upregulate synthesis of NGF in vitro in response to glutamate (Wu 
et al.  2004 ) or to peroxynitrite (Vargas et al.  2004 ), and produce proNGF in vivo 
following kainic acid-induced seizures (Volosin et al.  2006 ). Importantly, astrocyte 
proNGF triggers neuronal apoptosis via activation of p75NTR–sortilin complex 
(Volosin et al.  2006 ; Domeniconi et al.  2007 ). Glutamate induces also BDNF in 

  Fig. 7.7    NT system in the interaction between neurons and astrocytes       
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astrocytes via binding to glutamate metabotropic receptors and astrocyte BDNF 
supports activity and survival of cholinergic neurons in vitro (Jean et al.  2008 ). 
BDNF release by astrocytes during neuroinfl ammation protects from neurodegen-
eration (Linker et al.  2010 ), probably targeting neurons via full-length TrkB (Linker 
et al.  2010 ). By contrast, CNS infl ammation upregulates TrkB on astrocytes and 
astrocyte responsiveness to TrkB ligands in vivo is detrimental to neurons (Colombo 
et al.  2012 ; Colombo and Farina  2012 ). These data clearly indicate that NT may 
lead to opposite outcomes (neuroprotection vs. neurodegeneration) depending on 
the cell types and receptors they bind. In fact, differently from the positive signal 
mediated by full-length TrkB in neurons, activation of truncated TrkB on astrocytes 
results in NO production, which triggers a secondary NO wave in neurons leading 
to apoptosis (Colombo et al.  2012 ; Colombo and Farina  2012 ) (Fig.  7.7 ). 

 Astrocytes may regulate LTP of synaptic transmission by internalizing proBDNF 
secreted by neurons via p75NTR and storing it so that it is released upon astrocyte 
activation (Bergami et al.  2008 ). In this way, glia cells regulate synaptic plasticity by 
clearing and recycling BDNF. Moreover, astrocytes participate to inhibitory synapse 
formation by modulating the number of postsynaptic GABA A  receptor clusters, and 
these effects are mediated by TrkB signalling in neurons (Elmariah et al.  2005 ).  

7.5     Conclusions 

 Neurotrophins display a Janus-like function in the nervous system as they may pro-
mote survival or death, proliferation or differentiation, protection or degeneration. 
Several efforts led to the defi nition of the ligands, receptors, and main signalling 
pathways, and highlighted that timely expression of the neurotrophin system allows 
system-wide integration of information, so that complex processes as myelination 
and synaptic plasticity can correctly take place. Future challenges regard the devel-
opment of appropriate tools and approaches to better refi ne the conditions that move 
the balance from one action to the opposite considering that several distinct cell 
types contribute to the fi nal outcome. Unraveling the settings sustaining neuropro-
tection, neuroregeneration, and remyelination has great importance for the develop-
ment of appropriate therapeutic strategies for human neurodegenerative disorders.     

  Confl ict of Interest   The author declares she has no confl ict of interest. This chapter does not 
contain any studies with human or animal subjects.  
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    Abstract     Gap junction is the major intercellular channel that facilitates direct sig-
naling between cytoplasmic compartments of adjacent cells by transferring various 
small molecules (~1,000 Da) and ions. Gap junction consists of a pair of hemichan-
nels, each of which is a hexameric cluster of protein subunits named connexin. 
Recent studies have revealed that uncoupled “free” hemichannels also facilitate 
two-way transfer of molecules between the cytosol and extracellular space. In the 
central nervous system (CNS), gap junctions and hemichannels form the neuron–
glia network and contribute to the maintenance of homeostasis by propagating sig-
nals and buffering against toxins. Other evidence suggests that gap junctions and 
hemichannels—especially in glial cells—are also involved in the initiation and 
amplifi cation of neuroinfl ammation in various neurological disorders. The purpose 
of this review is to summarize recent insights into the roles of gap junctions and 
hemichannels in the physiologic and pathologic conditions of the CNS.  

8.1         Introduction 

 Gap junctions are the major intercellular channels that directly connect the cyto-
plasmic compartments of adjacent cells (Yeager and Harris  2007 ). These channels 
allow various small molecules (~1,000 Da) and ions to pass freely between cells, 
although recent evidence suggests that the charge and shape of the molecules can 
affect the rate of transfer via gap junctions (Goldberg et al.  2004 ). Gap junction 
consists of hemichannels docked in a head-to-head confi guration; the hemichannel 
is organized as a hexagonal cylinder with a central pore, and each hemichannel is 
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made up of a hexameric cluster of protein subunits named connexin (in vertebrates) 
or innexin (in invertebrates). 

 Connexins are encoded by a conserved family of genes composed of at least 21 
members in mammals. There are 21 connexin genes in the human genome and 20 
connexin genes in the mouse genome; 19 of connexins have orthologs in humans 
and mice (Table  8.1 ) (Laird  2006 ; Willecke et al.  2002 ). Members of the connexin 
protein family are named using Cx (abbreviation of connexin) followed by a suffi x 
indicating the predicted molecular weight (e.g., the ~43 kDa connexin protein is 
called Cx43). When different connexins have similar molecular masses, a decimal 
point is used to distinguish between them (e.g., Cx30 and Cx30.3). Human and 
mouse connexin genes begin with  GJ  and  Gj , respectively (abbreviations for gap 
junction), followed by a Greek letter indicating the subgroup (α to ε), and a number 
based on the order in which the proteins were discovered. Each connexin contains a 
short cytoplasmic amino-terminal domain, four transmembrane hydrophobic 
domains (M1 to M4), one cytoplasmic loop, two extracellular loops (E1 and E2), 
and a cytoplasmic carboxyl-terminal domain (Fig.  8.1 ) (Loewenstein  1967 ; Flower 
 1977 ; Peracchia  1980 ; Flagg-Newton et al.  1979 ; Schwarzmann et al.  1981 ; Revel 
et al.  1971 ). The extracellular loops E1 and E2 are the most conserved regions in the 
proteins and mediate hemichannel docking to form gap junctions. The cytoplasmic 
loop and the cytoplasmic carboxyl-terminal domain are the most divergent regions 
among the connexins, conferring unique functional or regulatory properties to chan-
nels formed by different connexins. The different connexin isoforms structurally 

   Table 8.1    The connexin 
family   

 Human  Mouse 

 Protein name  Gene name  Protein name  Gene name 

 Cx43   GJA1   Cx43   Gja1  
 Cx46   GJA3   Cx46   Gja3  
 Cx37   GJA4   Cx37   Gja4  
 Cx40   GJA5   Cx40   Gja5  
 –  –  Cx33   Gja6  
 Cx50   GJA8   Cx50   Gja8  
 Cx59   GJA9   –  – 
 Cx62   GJA10   Cx57   Gja10  
 Cx32   GJB1   Cx32   Gjb1  
 Cx26   GJB2   Cx26   Gjb2  
 Cx31   GJB3   Cx31   Gjb3  
 Cx30.3   GJB4   Cx30.3   Gjb4  
 Cx31.1   GJB5   Cx31.1   Gjb5  
 Cx30   GJB6   Cx30   Gjb6  
 Cx25   GJB7   –  – 
 Cx45   GJC1   Cx45   Gjc1  
 Cx47   GJC2   Cx47   Gjc2  
 Cx30.2/Cx31.3   GJC3   Cx29   Gjc3  
 Cx36   GJD2   Cx36   Gjd2  
 Cx31.9   GJD3   Cx30.2   Gjd3  
 Cx40.1   GJD4   Cx39   Gjd4  
 Cx23   GJE1   Cx23   Gje1  
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interact in various ways. Homomeric hemichannels consist of a single connexin 
isoform. Heteromeric hemichannels contain two or more different connexin iso-
forms. Homotypic gap junction channels are composed of two identical hemichan-
nels, whereas heterotypic gap junction channels are formed by two different 
hemichannels. Thus, compositional patterns of gap junctions can be categorized 
into four types: homomeric and homotypic; heteromeric and homotypic; homo-
meric and heterotypic; and heteromeric and heterotypic (Fig.  8.2 ).

     Gap junctions allow direct intracellular propagation of second messengers 
(e.g., Ca 2+ , IP 3 , cAMP, and cGMP), metabolites (e.g., glutamate, glucose, and 
 glutathione), and nucleotides (e.g., ATP, ADP, and RNA) between adjacent cells 
(Laird  2006 ; Saez et al.  2003 ; Harris  2001 ,  2007 ; Goldberg et al.  1999 ,  2002 ; 
Valiunas et al.  2005 ). Moreover, recent evidence suggests that uncoupled “free” 
hemichannels can facilitate two-way transfer of molecules between the cytosol and 
extracellular milieu (Laird  2010 ; De Vuyst et al.  2007 ; Retamal et al.  2007 ). 

  Fig. 8.1    A diagram of connexins, hemichannels, and gap junctions. Connexin contains four trans-
membrane domains (M1 to M4), one cytoplasmic loop, and two extracellular loops (E1 and E2). 
The amino terminus and carboxyl terminus (NH 2  and COOH, respectively) are located in the 
cytoplasm. A hexameric cluster of connexins forms a hemichannel characterized by a hexagonal 
cylinder with a central pore. Gap junctions consist of hemichannels that have docked together in a 
head-to-head confi guration       
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Intracellular communication via gap junctions and hemichannels is regulated by 
such mechanisms as channel gating via chemical, pH, and voltage, and changes in 
connexin transcription, translation, posttranslational phosphorylation and ubiquiti-
nation, membrane insertion, and hemichannel internalization and degradation 
(Laird  2006 ; Solan and Lampe  2009 ; Leithe and Rivedal  2007 ). The time courses of 
these changes range from milliseconds to hours and are infl uenced by the environ-
mental conditions in the cells and tissues. 

 Whereas connexins form gap junctions and hemichannels in vertebrates, inverte-
brates use innexins, which lack sequence homology with connexins. A search of the 
human genome identifi ed three innexin-related genes (Barbe et al.  2006 ). Because 
of the occurrence of homologous genes in both vertebrates and invertebrates, the 
corresponding proteins were termed pannexins, denoted pannexin1 (Panx1), pan-
nexin2 (Panx2), and pannexin3 (Panx3). Pannexins have the same transmembrane 
topology as connexins, with four transmembrane domains and cytoplasmic amino- 
terminal and carboxyl-terminal domains. Recent evidence indicates that pannexins 
also form uncoupled hemichannels in the mammalian cells; however, it is not clear 
whether they form functional gap junctions (Dahl and Locovei  2006 ). Therefore, 
this review is mainly restricted to the connexins.  

8.2     Gap Junctions in the Central Nervous System 

 Various tissues exhibit characteristic connexin expression profi les. Multiple con-
nexins are expressed in the central nervous system (CNS) (Rouach et al.  2002 ; Nagy 
and Rash  2000 ; Takeuchi et al.  2006 ; Parenti et al.  2002 ; Bittman and LoTurco  1999 ; 
Rash et al.  2001 ; Chang et al.  1999 ; Dermietzel et al.  1989 ,  2000 ; Eugenin et al. 
 2001 ; Altevogt et al.  2002 ; Odermatt et al.  2003 ; Teubner et al.  2001 ) (Table  8.2 ).

  Fig. 8.2    The composition of gap junctions. Each colored column ( orange ,  blue ,  green , and  pur-
ple ) represents a different connexin isoform. Hemichannels may be homomeric (composed of one 
connexin isoform) or heteromeric (composed of more than one connexin isoform). Gap junction 
channels may be homotypic (formed by identical hemichannels) or heterotypic (formed by differ-
ent hemichannels)       
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8.2.1       Neurons 

 All neurons mainly express Cx36 and Cx45, whereas other neural connexins are 
expressed with more specifi c spatiotemporal profi les (Sohl et al.  2005 ). Electrical 
coupling between neurons has been implicated in neuronal synchronization in vari-
ous areas of the CNS (Christie et al.  1989 ; Wong et al.  1995 ; Bouskila and Dudek 
 1993 ). Neuronal gap junctions composed of Cx36 and Cx45 are thought to be 
homomeric and homotypic (Teubner et al.  2001 ; Al-Ubaidi et al.  2000 ), and play 
important roles in electrical synapses (Hormuzdi et al.  2001 ; Deans et al.  2001 ). 
Interestingly, some rodent knockout models have shown that other connexins can 
compensate for the functions of Cx36 and Cx45 despite different conformations or 
permeabilities (Zlomuzica et al.  2010 ; Frank et al.  2010 ). In vitro and in vivo studies 
have also revealed a critical role for gap junction coupling in neuronal differentia-
tion. Mice lacking Cx43 die as neonates and exhibit abnormal migration in the 
neural crest and neocortex (Lo et al.  1999 ; Xu et al.  2001 ; Fushiki et al.  2003 ). 
Blocking gap junctions also suppresses retinoic acid-induced neuronal differentia-
tion of NT2 and P19 cells (Bani-Yaghoub et al.  1999a ,  b ). Moreover, Cx36- 
containing gap junctions are required for neuronal remodeling and short-term 
spatial memory in some mature organisms (Hartfi eld et al.  2011 ; Allen et al.  2011 ). 
In contrast to convincing evidence of neuron–neuron coupling, the existence of 
functional neuron–glia coupling in the CNS is still a matter of debate (Rash et al. 
 2001 ,  2007 ; Nadarajah et al.  1996 ; Alvarez-Maubecin et al.  2000 ).  

8.2.2     Astrocytes 

 Astrocytes are the main type of cells in the CNS that are coupled by gap junctions. 
Astrocytes mainly express Cx43 and Cx30 (Nagy and Rash  2000 ; Dermietzel et al. 
 1991 ); Cx43/Cx30 double-knockout mice show minimal gap junction communica-
tion between astrocytes (Rouach et al.  2008 ; Wallraff et al.  2006 ), suggesting that 
functional astrocytic gap junctions are primarily composed of these connexins. Cx43-
defi cient astrocytes show reduced gap junctional coupling, although they express 

   Table 8.2    Connexins in the 
central nervous system   

 Neurons  Astrocytes  Oligodendrocytes  Microglia 

 Cx26  Cx26  Cx29  Cx32 
 Cx30.2  Cx30  Cx31.3  Cx36 
 Cx32  Cx40  Cx32  Cx43 
 Cx36  Cx43  Cx36 
 Cx40  Cx45  Cx45 
 Cx43  Cx46  Cx47 
 Cx45  Cx47 
 Cx47 
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other connexin subtypes such as Cx30, Cx26, Cx40, Cx45, and Cx46 (Dermietzel 
et al.  2000 ; Naus et al.  1997 ; Scemes et al.  1998 ). Mice lacking Cx30 exhibited only 
mild abnormalities, including hearing loss due to cochlear degeneration, although 
Cx30 has been detected exclusively in astrocytes (Teubner et al.  2003 ). Thus, other 
astrocytic connexin subtypes do not seem to compensate for a lack of Cx43. 

 Astrocytic gap junctions facilitate the formation of functional syncytium that buf-
fers extracellular glutamate elevation, pH, and K +  concentrations that are associated 
with fi ring neurons, and propagate intracellular Ca 2+  waves to modulate neuronal 
activities (Jefferys  1995 ; Walz and Hertz  1983 ; Charles  1998 ; Ransom et al.  2003 ; 
Anderson and Swanson  2000 ). Moreover, astrocytic gap junctional communication 
facilitates the traffi cking of glucose and its metabolites, thereby mediating interac-
tions between cerebral vascular endothelium and neurons (Goldberg et al.  1999 ; 
Giaume et al.  1997 ; Tabernero et al.  2006 ). Thus, astrocytic gap junctions play criti-
cal roles in modulating neuronal activities and maintaining CNS homeostasis. 

 Astrocyte–astrocyte coupling can result from any of the allowed combinations of 
homomeric or heteromeric hemichannels in homotypic or heterotypic confi gura-
tions. Cx30 and Cx26 form heteromeric and heterotypic channels (Altevogt and 
Paul  2004 ; Nagy et al.  2003 ), whereas Cx43 forms homomeric and homotypic chan-
nels (Orthmann-Murphy et al.  2007 ). A previous report demonstrated that gap junc-
tional coupling in astrocytes results in two distinct subpopulations of cells. 
Astrocytes expressing glutamate transporters are extensively coupled to each other, 
whereas astrocytes expressing glutamate receptors are not coupled to other astro-
cytes (Wallraff et al.  2004 ), suggesting a role in buffering extracellular glutamate 
(Anderson and Swanson  2000 ). Astrocyte–oligodendrocyte coupling will be dis-
cussed in the following section.  

8.2.3     Oligodendrocytes 

 Oligodendrocytes mainly express Cx29, Cx32, and Cx47 (Dermietzel et al.  1989 ; 
Altevogt et al.  2002 ; Odermatt et al.  2003 ). Oligodendrocytic gap junctions facili-
tate the traffi cking of ions and nutrients from somas to myelin layers (Paul  1995 ). 
Mice defi cient for Cx32 exhibit a reduced volume of myelin and enhanced excit-
ability in the CNS as well as progressive peripheral neuropathies (Sutor et al.  2000 ; 
Anzini et al.  1997 ). Cx32/Cx47 double-knockout mice show abnormal movements 
and seizures associated with vacuolated myelin and axonal degeneration in the 
CNS, whereas Cx47-defi cient mice display only minimal effects in the CNS 
(Menichella et al.  2003 ). Cx32 and Cx47 in oligodendrocytes are critical for spatial 
buffering of K +  in response to neuronal activity; failure of this function leads to 
myelin swelling and following axonal degeneration (Menichella et al.  2006 ). 
Oligodendrocyte–oligodendrocyte coupling can result from homotypic confi gura-
tions with homomeric or heteromeric hemichannels containing Cx32 or Cx47 
(Orthmann-Murphy et al.  2007 ). Oligodendrocytes also couple with astrocytes. 
Astrocyte–oligodendrocyte coupling may include heterotypic confi gurations of 
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Cx43–Cx47, Cx30–Cx32, or Cx26–Cx32 (Altevogt and Paul  2004 ; Nagy et al. 
 2003 ; Orthmann-Murphy et al.  2007 ). Like astrocyte–astrocyte coupling, astrocyte–
oligodendrocyte coupling plays an important role in the formation of the glial syn-
cytium to facilitate the propagation of Ca 2+  waves and the buffering of extracellular 
K +  and neurotransmitter such as glutamate (Jefferys  1995 ; Walz and Hertz  1983 ; 
Charles  1998 ; Ransom et al.  2003 ; Anderson and Swanson  2000 ).  

8.2.4     Microglia 

 Microglia express Cx32, Cx36, and Cx43 (Takeuchi et al.  2006 ; Parenti et al.  2002 ; 
Eugenin et al.  2001 ; Kielian  2008 ; Garg et al.  2005 ). Microglia form few amount of 
functional gap junctions under resting conditions. The expression of connexins 
increases in activated microglia although whether upregulated expression of con-
nexins leads to enhanced formation of functional gap junctions with microglia and 
other CNS cells is still a matter of debate (Eugenin et al.  2001 ; Kielian  2008 ; Garg 
et al.  2005 ; Takeuchi  2010 ). Recent evidence demonstrates that uncoupled microg-
lial hemichannels play important roles in bidirectional traffi cking of small mole-
cules between the cytoplasm and the extracellular space (Takeuchi et al.  2011 ; 
Eugenin et al.  2012 ).   

8.3     Glial Gap Junction in the Pathological Condition 

 As described above, glial gap junctions contribute to the maintenance of homeostasis 
in the CNS under the physiological conditions. These structures, however, also con-
tribute to the initiation and propagation of pathologic conditions (Orellana et al.  2009 ). 

8.3.1     Brain Ischemia 

 A sudden reduction in cerebral blood fl ow leads to a rapid decrease in intracellular 
oxygen levels and subsequent drops of ATP synthesis, which are the initial steps of 
eventual cell death (Kalogeris et al.  2012 ). Injured cells contain toxic molecules at 
high concentrations (e.g., Ca 2+ , K + , reactive oxygen species (ROS), nitric oxide 
(NO)). These toxic molecules can be propagated from injured cells to healthier cells 
through gap junctions. Ischemic conditions also induce uncoupled hemichannels to 
open, leading to paracrine transfer of toxic molecules (De Vuyst et al.  2007 ; 
Thompson et al.  2006 ). These waves of death signaling activate astrocytes and 
microglia, causing the release of toxic molecules including glutamate, ROS, NO, 
and pro-infl ammatory cytokines and chemokines. This vicious amplifi cation spiral 
of signaling could worsen neuroinfl ammation by recruiting leukocytes and increase 
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lesion area (Orellana et al.  2009 ). Moreover, a growing pool of evidence demon-
strates that gap junction and hemichannel blockers are therapeutic in experimental 
models of stroke (Rawanduzy et al.  1997 ; Takeuchi et al.  2008 ; Frantseva et al. 
 2002 ; Tamura et al.  2011 ; de Pina-Benabou et al.  2005 ).  

8.3.2     Multiple Sclerosis (MS) 

 Recent studies have reported abnormal expression of glial connexins in the infl amed 
lesions of MS patients and experimental autoimmune encephalomyelitis (EAE) ani-
mals. Expression of oligodendrocytic Cx32 and Cx47 and astrocytic Cx43 is down-
regulated in the active lesions of MS patients and EAE mice (Eugenin et al.  2012 ; 
Markoullis et al.  2012 ; Brand-Schieber et al.  2005 ). Expression levels of Cx47 and 
Cx32 increase during remyelination but decrease in the relapsing phase, and EAE 
induced in Cx32 knockout mice results in an exacerbated clinical course with more 
demyelination and axonal loss (Markoullis et al.  2012 ). Whereas mice lacking 
astrocytic expression of Cx43 and Cx30 exhibit white matter vacuolation and hypo-
myelination, the severity of EAE was similar to that in wild-type mice (Lutz et al. 
 2012 ). Thus, oligodendrocytic expression levels of Cx32 and Cx47 appear to be 
associated with the degree of damage and remyelination, whereas astrocytic expres-
sion levels of Cx43 do not. Recent studies, however, indicate that a loss of Cx43 in 
astrocytes precedes demyelination in the MS-related disorders neuromyelitis optica 
and Balo’s disease (Masaki et al.  2012 ; Matsushita et al.  2011 ). Further studies are 
needed to elucidate the precise role of glial connexins in the pathogenesis of MS.  

8.3.3     Neurodegenerative Disease 

 Scientifi c and clinical data have implicated neuroinfl ammation, including accumu-
lating activated astrocytes and microglia, in the pathogenesis of such neurodegen-
erative diseases as Alzheimer’s disease (AD), Parkinson’s disease (PD), and 
amyotrophic lateral sclerosis (ALS) (Glass et al.  2010 ). Microglial activation fol-
lowed by astrocytic activation is the earliest pathologic fi nding in many of these 
diseases, appearing before the manifestation of overt symptoms. Recent studies 
have indicated that activated microglia release a large amount of glutamate through 
Cx32 hemichannels resulting in excitotoxic neuronal death (Takeuchi et al.  2006 , 
 2008 ; Yawata et al.  2008 ). Interestingly, microglia-derived glutamate and pro- 
infl ammatory cytokines induce dysfunction of gap junction and hemichannels in 
astrocytes (Kielian  2008 ), which may disrupt homeostasis in the CNS. 

 Reactive astrocytes at amyloid β (Aβ) plaques show increased levels of Cx43 and 
Cx30 in the brains of AD patients (Koulakoff et al.  2012 ). A recent study demon-
strated that Aβ peptide induces the release of glutamate and ATP via uncoupled 
hemichannels in microglia and astrocytes, leading to neuronal death (Orellana et al. 
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 2011 ). Agreeing with this observation, blocking gap junctions and hemichannels 
ameliorates memory impairments in a mouse model of AD (Takeuchi et al.  2011 ). 
MTPT-treated mice and rotenone-treated rats—two animal models of PD—show 
increased astrocytic expression of Cx43 in affected areas (Rufer et al.  1996 ; 
Kawasaki et al.  2009 ). A recent report demonstrated that α-synuclein—a main com-
ponent of Lewy bodies—directly binds to Cx32, and overexpression of α-synuclein 
inhibits the activity of Cx32 in the SH-SY5Y dopaminergic neuroblastoma cell line 
(Sung et al.  2007 ). Other studies have revealed that microglia and astrocytes are 
determinants of disease progression in ALS (the nonautonomous neuronal death 
hypothesis) (Yamanaka et al.  2008 ; Boillee et al.  2006 ). Activation of microglia and 
astrocytes is associated with enhanced expression levels of gap junctions and hemi-
channels. In fact, blocking gap junctions and hemichannels slowed disease progres-
sion in a mouse model of ALS (Takeuchi et al.  2011 ). Few studies, however, have 
focused on the expression profi les and functions of connexins in these diseases. 
Therefore, whether gap junctions and hemichannels are involved in the pathogene-
sis of neurodegenerative diseases remains largely unclear.   

8.4     Conclusions 

 Several lines of evidence have uncovered pathologic roles for gap junctions and 
hemichannels in various neurological disorders. For example, dysfunction of these 
structures in glial cells contributes to neuroinfl ammation in the CNS, often resulting 
in neuronal damage (i.e., glial cells as “bad neighbors” for neurons) (Block et al. 
 2007 ). Despite recent progress in elucidating the pathologic roles of gap junctions 
and hemichannels, many challenges remain due to the technical limitation. For 
instance, reagents that are commonly used to block connexin channels are not spe-
cifi c for those channels; connexin channel blockers such as glycyrrhetinic acid, its 
derivative carbenoxolone, nifl umic acid, and octanol also block pannexin channels. 
Although the most specifi c gap junction and hemichannel blockers currently are 
mimetic peptides that refl ect specifi c sequences in the extracellular loops E1 and 
E2, recent studies showed that mimetic peptides specifi c for Cx32 ( 32 gap 24 and 
 32 gap 27), Cx43 ( 43 gap 27), or Panx1 ( 10 panx1) nonspecifi cally block both connexins 
and pannexins (Wang et al.  2007 ). The heterogeneity of gap junctions and hemi-
channels (Fig.  8.2 ) and the potential for various connexins to compensate for the 
loss of other isoforms (e.g., in connexin-knockout studies) also complicate analysis 
of this system. Whereas the development of fl uorescently tagged connexins—for 
instance, with EGFP—has facilitated live cell imaging, tagging and/or overexpres-
sion of connexins in cultured cells often produces abnormally large gap junction 
plaques (Gaietta et al.  2002 ; Hunter et al.  2003 ; Lopez et al.  2001 ). Moreover, tag-
ging the amino termini of connexins results in nonfunctional channels, whereas 
tagging the carboxyl termini alters the properties of the channels (Contreras et al. 
 2003 ; Bukauskas et al.  2000 ). Therefore, future studies should detail spatiotemporal 
expression profi les of connexin isoforms under pathologic conditions in the CNS, 
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which will require the specifi c blockers and tracers for each connexin isoform, 
hemichannel, and gap junction. Understanding the precise pathologic roles of gap 
junctions and hemichannels may lead to new therapeutic approach that can slow and 
halt the progression of various chronic neurologic disorders.     
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    Abstract     Infl ammatory responses are pathological hallmarks of infectious  diseases 
of the nervous system such as bacterial meningitis and viral encephalitis. 
Noninfectious neurological disease or injury often accompanies neuroinfl amma-
tion, although the underlying mechanisms of such “sterile neuroinfl ammation” are 
not completely understood. Studies conducted over the past 10 years on the function 
of Toll-like receptors (TLRs) in the nervous system have shed new light on the 
molecular and cellular mechanisms of neuroinfl ammation. TLRs belong to a class 
of pattern-recognition receptors that play important roles in host defense against 
pathogens and tissue injury/recovery by recognizing a wide variety of pathogen- 
associated molecular patterns (PAMPs) and damage-associated molecular patterns 
(DAMPs). In the nervous system, different members of the TLR family are expressed 
on astrocytes, microglia, oligodendrocytes, and Schwann cells, implicating these 
glial cells in neuroinfl ammation in pathological contexts. In this chapter, we sum-
marize recent studies of TLR expression in the cells of the nervous system and 
discuss its roles in neuroinfl ammation in the context of infectious diseases as well 
as noninfectious neurological disorders such as stroke, spinal cord injury, and 
peripheral nerve injury.  

9.1         Introduction: Toll-Like Receptors and Their Ligands 

 Toll-like receptors (TLRs) are type I transmembrane glycoproteins that are evolu-
tionarily conserved between insects and mammals. The Toll gene was originally 
identifi ed in  Drosophila  as an essential gene regulating the development of the 
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dorsal–ventral axis during embryogenesis (Hashimoto et al.  1988 ). Later, it was 
found that Toll also plays a role in the  Drosophila  innate immune response against 
microbial infection (Lemaitre et al.  1996 ; Williams et al.  1997 ). Based on these 
fi ndings, the quest for a mammalian homologue of Toll was initiated and in 1997, 
the fi rst human homologue, called Toll-like receptor (TLR), was identifi ed 
(Medzhitov et al.  1997 ). Since then, 10 genes have been described in humans and 
13 have been described in mice (Uematsu and Akira  2006 ). Among them, ligands 
for 10 TLR members (TLR1–9 and TLR11) were identifi ed, leaving others yet to be 
elucidated. Briefl y, TLR2, in association with either TLR1 or TLR6, recognizes a 
wide array of bacterial-derived pathogen-associated molecular patterns (PAMPs) 
including peptidoglycan (PGN), lipoteichoic acid (LTA) and lipoproteins of Gram- 
positive bacteria, and mycoplasma lipopeptide (Aliprantis et al.  1999 ; Brightbill 
et al.  1999 ; Schwandner et al.  1999 ). In addition, the receptor binds to zymosan, a 
yeast cell wall component (Underhill et al.  1999 ). TLR4 binds to lipopolysaccha-
ride (LPS) from Gram-negative bacteria in association with the co-receptor MD-2 
(Shimazu et al.  1999 ). TLR5 was shown to be activated by bacterial fl agellin 
(Hayashi et al.  2001 ). Mouse TLR11 recognizes uropathogenic bacteria such as 
uropathogenic  Escherichia coli  or profi lin-like protein from  Toxoplasma gondii  
(Yarovinsky et al.  2005 ; Zhang et al.  2004 ). TLR10 is known to be able to heterodi-
merize with TLR1 and TLR2, but its ligand remains to be identifi ed (Hasan et al. 
 2005 ). Compared to these TLRs that function on the cytoplasmic membrane, other 
TLR members bind to their ligands on the endosomal membrane. Among them, 
TLR3 recognizes double-stranded RNA (dsRNA), which is generated as an inter-
mediate product of viral replication within cells (Alexopoulou et al.  2001 ). TLR7 
and TLR8 function as receptors for the GU-rich single stranded RNA (ssRNA) that 
is also produced during viral infection. TLR9 is also expressed on the endosomal 
membrane and functions as a receptor for bacterial and viral DNA that is enriched 
with an unmethylated CpG sequence motif (Latz et al.  2004 ). 

 TLR can be activated not only by pathogen-derived molecules but also by endog-
enous molecules that are exposed during tissue damage. For example, TLR4 can be 
activated by extracellular matrix components fi bronectin, hyaluronan, biglycan, 
fi brinogen, and soluble heparin sulfate (Smiley et al.  2001 ; Okamura et al.  2001 ; 
Termeer et al.  2002 ; Johnson et al.  2002 ; Schaefer et al.  2005 ). These molecules can 
be released during enzymatic degradation of the extracellular matrix during tissue 
injury. Cytoplasmic or nuclear proteins that are not normally exposed to innate 
immune cells such as heat shock protein (HSP) 60, HSP70, HSP22, HSP72, and 
high mobility group box-1 (HMGB1) may also activate TLR4 once released extra-
cellularly due to necrotic cell death. In addition, lung surfactant protein A, beta- 
defensin, tenascin-C, and S100 proteins were implicated as TLR4 endogenous 
agonists (Guillot et al.  2002 ; Biragyn et al.  2002 ; Vogl et al.  2007 ; Midwood et al. 
 2009 ). Among these TLR4 agonists, HSP60, HSP70, HMGB1, hyaluronan, and 
biglycan were shown to activate TLR2 as well. TLR2 also functions as a receptor 
for gangliosides and necrotic neurons, though the specifi c molecular identities of 
the ligand have not been identifi ed (Kim et al.  2007 ). TLR3 has been reported to 
recognize mRNAs or RNAs with hairpin structures (Kariko et al.  2004a ,  b ). 
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Similarly, RNAs and small interfering RNAs can induce intracellular signals 
through TLR7 and TLR8 (Barrat et al.  2005 ; Vollmer et al.  2005 ). Chromatin–
immunoglobulin G complexes of necrotic cells have been shown to activate den-
dritic cells via TLR9 (Leadbetter et al.  2002 ). It is generally believed that in 
pathological conditions, these various ligands can be either released from injured 
tissues and dying cells or actively secreted by activated cells in order to serve as 
“danger signals” in response to tissue damage. Recognition of these damage- 
associated molecular patterns (DAMPs) by TLRs triggers sterile infl ammatory 
responses, which have relevance in various neurological disorders. The DAMPs 
identifi ed thus far are summarized in Table  9.1 .

   Table 9.1    DAMPs: endogenous TLR ligands   

 TLRs  Endogenous ligands  References 

 TLR2  HSP60, 70, Gp96  Asea et al. ( 2002 ), Vabulas et al. ( 2001 ,  2002 ) 
 HMGB1  Park et al. ( 2004 ) 
 β-Defensin3  Funderburg et al. ( 2007 ) 
 Surfactant protein A, D  Ohya et al. ( 2006 ), Murakami et al. ( 2002 ) 
 Eosinophil-derived neurotoxin  Yang et al. ( 2008 ) 
 Gangliosides  Yoon et al. ( 2008b ) 
 Serum amyloid A  He et al. ( 2009 ) 
 Hyaluronic acid fragment  Termeer et al. ( 2002 ) 
 Biglycan  Schaefer et al. ( 2005 ) 

 TLR3  mRNA  Kariko et al. ( 2004a ) 
 Small interfering RNA  Kariko et al. ( 2004b ) 

 TLR4  HSP60, 70, 22, Gp96  Asea et al. ( 2002 ), Vabulas et al. ( 2001 ,  2002 ), 
Roelofs et al. ( 2006 ) 

 HMGB1  Park et al. ( 2004 ) 
 Fibrinogen  Smiley et al. ( 2001 ) 
 Fibronectin extra domain A  Okamura et al. ( 2001 ) 
 Tenascin-C  Midwood et al. ( 2009 ) 
 Surfactant protein A, D  Guillot et al. ( 2002 ), Ohya et al. ( 2006 ) 
 β-Defensin2  Biragyn et al. ( 2002 ) 
 S100A8, 9 (MRP8, 14)  Vogl et al. ( 2007 ) 
 Neutrophil elastase  Devaney et al. ( 2003 ) 
 Lactoferrin  Curran et al. ( 2006 ) 
 Gangliosides  Jou et al. ( 2006 ) 
 Serum amyloid A  Hiratsuka et al. ( 2008 ) 
 Oxidized LDL  Miller et al. ( 2003 ) 
 Saturated fatty acids  Shi et al. ( 2006 ) 
 Hyaluronic acid fragment  Termeer et al. ( 2002 ) 
 Heparan sulfate  Johnson et al. ( 2002 ) 
 Biglycan  Schaefer et al. ( 2005 ) 

 TLR7  ssRNA  Barrat et al. ( 2005 ), Vollmer et al. ( 2005 ) 
 TLR8  ssRNA  Vollmer et al. ( 2005 ) 
 TLR9  Chromatin–IgG complexes  Leadbetter et al. ( 2002 ) 

 DNA immune complexes  Barrat et al. ( 2005 ) 

9 Toll-Like Receptors and Neuroinfl ammation



138

   For TLRs, the ligand–receptor interaction occurs in the extracellular domain of 
receptors, which share a common structural framework containing several leucine- 
rich repeats (LRRs) (Medzhitov et al.  1997 ). Ligand binding to this LRR induces 
dimerization of this extracellular domain with other TLR molecules or co-receptors 
to form an “m-shape” dimer structure. The cytoplasmic portion of TLRs contains a 
domain that is similar to those of IL-1 receptors and is thus called the TLR/IL-1 
receptor homology domain (TIR). Upon binding to its cognate ligands, this TIR 
domain is utilized to recruit other TIR-containing intracellular signaling adaptor 
proteins to transmit intracellular signals (Akira and Takeda  2004 ). Thus far, fi ve 
TIR-containing adaptor proteins, MyD88, Mal, TRIF, TRAM, and SARM, have 
been reported. Most TLRs utilize MyD88 to transduce an intracellular signaling 
cascade, with the exception of TLR3 which uses TRIF for transduction instead. 
TLR4 signaling may utilize TRAM as an additional adaptor protein to recruit TRIF, 
thus allowing it to transmit both MyD88- and TRIF-dependent signaling cascade. 
The recruitment of MyD88 to the cytoplasmic TIR of TLRs leads to the activation 
of IL-1 receptor-associated kinase (IRAK) and TRAF6. Next, TRAF6 induces the 
activation of TAK1, which eventually leads to NF-κB activation mediated by IKK. 
TRAF6 also activates the p38 and JNK MAP kinase pathways through the phos-
phorylation of MKK3/6 and MKK4, respectively. Meanwhile, TRIF activation by 
TLR3 or TLR4 recruits TRAF3, which allows activation of TBK1 and IKKε. These 
kinases are responsible for the phosphorylation of specifi c transcription factors 
called IRFs (IRF3 and 7), which induce the transcriptional activation of antiviral 
genes such as type I interferon (IFNα/β). At the same time, TRIF can mediate 
NF-κB and MAP kinase activation independently of MyD88 via RIP1 binding.  

9.2     TLRs in the Nervous System 

 There are different types of glial cells in the nervous system, including microglia, 
astrocytes, oligodendrocytes, and Schwann cells. Among these cell types, microglia 
are of hematopoietic cell lineage and are considered to be innate immune cells in the 
central nervous system (CNS). Similar to the innate immune cells in peripheral 
organs, microglia function as sentry cells that constantly monitor the CNS microen-
vironment for infection and damage (Ramlackhansingh et al.  2011 ). Thus, it was 
anticipated that this glial cell type is well-equipped with receptors for detecting 
pathogen infection and tissue damage, namely TLRs. To test this hypothesis, we 
have screened for the mRNA expression of different TLR members in a BV-2 
microglia cell line and found that transcripts of all TLR members (TLR1–9) are 
expressed (Lee and Lee  2002 ). These fi ndings were later confi rmed in primary 
mouse cultures and in human microglial cells (Jack et al.  2005 ; Olson and Miller 
 2004 ; Bsibsi et al.  2002 ). Within the TLR family, only TLR1, 2, 3, 4, and 9 have 
been detected in primary rodent cultures or in human microglial cells at the protein 
level (Bsibsi et al.  2002 ; Kielian et al.  2002 ; Yoon et al.  2008a ; Cassiani-Ingoni 
et al.  2006 ). These data suggest that there may be distinct posttranscriptional 
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regulatory mechanisms involved for different TLR members. Still, it is possible that 
other TLR proteins, namely TLR5, 6, 7, and 8, are also expressed, but their levels 
were too low to be detected by immunohistochemistry. In microglia, the activation 
of TLRs by their cognate agonists induces strong infl ammatory responses, culmi-
nating in the expression of typical proinfl ammatory genes such as TNF-α, IL-1β, 
and IL-6 (Olson and Miller  2004 ; Kinsner et al.  2006 ). These data indicate that 
microglia not only express TLRs but are also equipped with intracellular signaling 
machinery that enables proinfl ammatory gene induction by TLR engagement. 

 For astrocytes, TLR2, 3, 4, 5, and 9 were detected in in vitro-cultured cells 
(Lehnardt et al.  2006 ; Bowman et al.  2003 ; Scumpia et al.  2005 ; Park et al.  2006 ). 
However, their TLR expression profi le is more limited in vivo. In studies investigat-
ing TLR mRNA expression in rat brains using in situ hybridization, TLR2 and 
TLR4 mRNAs were not detected in astrocytes, but were detected in microglia 
(Lafl amme and Rivest  2001 ; Lafl amme et al.  2001 ). These data suggest that TLR2 
and TLR4 are not expressed in resting astrocytes in vivo, but are only induced in 
cultured astrocytes that become activated during the culturing process (Passaquin 
et al.  1994 ). In support of this notion, TLR2, 4, 5, and 9 can be strongly induced in 
primary cultured astrocytes upon activation (Bowman et al.  2003 ). In addition, 
TLR4 protein expression was detected in astrocytes in areas of brain lesions in mul-
tiple sclerosis (MS) patients, but was barely detected in astrocytes from unaffected 
white matter (Bsibsi et al.  2002 ). This localization further supports the idea that 
TLR2 and TLR4 are only expressed in activated astrocytes in vivo. Thus far, there 
is no clear evidence of TLR5 or TLR9 expression in astrocytes in vivo. Unlike 
TLR2 or TLR4, TLR3 is constitutively expressed in murine astrocytes in vivo as 
well as in vitro (Park et al.  2006 ). Taken together, these data indicate that astrocytes 
express TLR3 in vivo at the resting state and may express TLR2, 4, 5, and 9 upon 
activation in pathological contexts. 

 TLR expression in oligodendrocytes and Schwann cells is limited compared to 
that of microglia. Initially, the expression of TLR2 and TLR3 mRNAs was reported 
in primary cultured human oligodendrocytes (Bsibsi et al.  2002 ). Later, the expres-
sion of TLR2 protein was documented in human oligodendrocytes in normal regions 
of the brain and MS lesion areas (Sloane et al.  2010 ), and TLR2, 3, and 4 were 
documented in in vitro-cultured oligodendrocyte precursor cells (OPCs) (Taylor 
et al.  2010 ; Bsibsi et al.  2012 ). Similarly, TLR2 protein expression was documented 
in human Schwann cells (Oliveira et al.  2003 ). Later, TLR3 and TLR4 were also 
detected in murine or rat Schwann cells at both the mRNA and protein levels 
(Colomar et al.  2003 ; Karanth et al.  2006 ; Lee et al.  2007 ; Hao et al.  2009 ). Although 
the TLR expression profi le in oligodendrocytes and Schwann cells is similar, the 
functional outcome of TLR activation in these cell types seems to be distinct. For 
instance, in oligodendrocytes, the activation of TLRs, especially TLR3, induced an 
apoptotic oligodendrocyte cell death signal (Bsibsi et al.  2012 ). In Schwann cells, 
TLR activation usually resulted in a proinfl ammatory intracellular signal, inducing 
TNF-α and IL-1β expression (Colomar et al.  2003 ; Cheng et al.  2007 ) as well as NO 
production (Zhang et al.  2010 ). The proinfl ammatory TLR signal in Schwann cells 
implies that they not only function as myelin-forming cells but may also play a role 
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in detecting pathogen infection or tissue damage in nerves and thereby initiate 
infl ammatory responses or tissue repair in the PNS. 

 Recent studies show that certain TLR members are also expressed in neurons. 
Among the different members of the TLR family, TLR3 and TLR8 were fi rst 
reported in human neuronal cell lines and primary cultured mouse cortical neurons, 
respectively (Ma et al.  2006 ; Prehaud et al.  2005 ). In addition, primary cultured 
murine cortical neurons were reported to express TLR2 and TLR4 at both the 
mRNA and protein levels (Tang et al.  2007 ). TLR11, 12, and 13 were constitutively 
expressed in neurons in a murine model of neurocysticercosis (Mishra et al.  2008 ). 
In the PNS, TLR3, 4, 7, and 9 were detected in dorsal root ganglion (DRG) sensory 
neurons and cells of the enteric nervous system (Barajon et al.  2009 ; Qi et al.  2011 ). 
These data suggest that neurons may also be involved in neuroinfl ammation or that 
PAMPs or DAMPs released during infection and injury may directly affect neurons 
via TLRs. The TLR protein expression profi le in the cells of nervous system is sum-
marized in Table  9.2 .

9.3        TLRs in Pathogen Infection 

 Studies of the expressions of TLRs in the cells of the nervous system and their func-
tion as receptors for PAMPs suggested that TLRs may detect pathogen infection in 
the nervous system and thereby trigger infl ammatory responses. Indeed, studies for 
the past decade using TLR-defi cient mice have accumulated data supporting a pivotal 
role of TLRs in infectious neuroinfl ammatory diseases such as bacterial  meningitis, 
abscess, and viral encephalitis, which are briefl y summarized in this section. 

   Table 9.2    TLR expression in the nervous system   

 Cells  TLRs  Species  References 

 Neuron  TLR3, 4, 7, 9  H  Prehaud et al. ( 2005 ), Qi et al. ( 2011 ) 
 TLR2–4, 6–8, 11–13  M  Tang et al. ( 2007 ), Mishra et al. ( 2006 ,  2008 ), 

Barajon et al. ( 2009 ), Qi et al. ( 2011 ) 
 Astrocytes  TLR3, 4  H  Jack et al. ( 2005 ), Bsibsi et al. ( 2002 ) 

 TLR2–5, 9  M  Bowman et al. ( 2003 ); Park et al. ( 2006 ), 
Carpentier et al. ( 2005 ), El-Hage et al. ( 2011 ) 

 Microglia  TLR1–4  H  Jack et al. ( 2005 ), Bsibsi et al. ( 2002 ), 
Cassiani-Ingoni et al. ( 2006 ) 

 TLR2, 4, 9  M  Yoon et al. ( 2008a ), Kielian et al. ( 2005a ), 
Lehnardt et al. ( 2007 ) 

 Oligodendrocytes  TLR2  H  Sloane et al. ( 2010 ) 
 TLR2–4  M, R  Lehnardt et al. ( 2006 ), Taylor et al. ( 2010 ), 

Bsibsi et al. ( 2012 ) 
 Schwann cells  TLR2  H  Oliveira et al. ( 2003 ) 

 TLR3, 4  R  Karanth et al. ( 2006 ), Lee et al. ( 2007 ) 

  H: human, M: mouse, R: rat  
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9.3.1     Bacterial Meningitis 

 Bacterial infection of the leptomeninges and subarachnoid space results in bacterial 
meningitis, of which the morbidity and mortality rates remain high. The leading 
cause of bacterial meningitis is  Streptococcus pneumonia  followed by  Neisseria men-
ingitides  and group B streptococci (Schuchat et al.  1997 ). A series of in vitro studies 
indicate that TLR2, 4, and 9 are involved in detecting these bacteria by host immune 
cells. Initially, it was shown that TLR2 can be activated by  S. pneumonia  via pneumo-
coccal LTA (Yoshimura et al.  1999 ). Later, it was shown that TLR4 responds to the 
pneumolysin from ethanol-killed  S. pneumonia  (Malley et al.  2003 ) and TLR9 can be 
activated by the genomic DNA of  S. pneumonia  (Mogensen et al.  2006 ). These TLRs 
are also implicated in the recognition of  N. meningitides  (Mogensen et al.  2006 ). The 
ability of TLR2 to detect  N. meningitides  involves the recognition of the neisserial 
porin PorB, the major outer membrane protein of this bacteria (Massari et al.  2002 ). 
In addition, TLR4 and TLR9 recognize meningococcal LPS (Pridmore et al.  2001 ) 
and DNA (Mogensen et al.  2006 ), respectively. These in vitro data suggest that these 
TLRs may play an important role in the pathogenesis of meningitis. 

 The fi rst in vivo study implicating TLR in meningitis was carried out by 
Echchannaoui et al. ( 2002 ), in which they induced pneumococcal meningitis in 
mice by directly injecting  S. pneumonia  in the CNS. In their study, TLR2 knockout 
(KO) mice had more severe clinical symptoms and more bacterial accumulation in 
the brain than wild-type control mice. In addition, TNF-α level was signifi cantly 
up-regulated in the cerebrospinal fl uid (CSF) of TLR2 KO mice compared to wild- 
type mice, indicating that the enhanced infl ammatory gene expression may have 
resulted in the exacerbated clinical symptoms in the KO mice. However, in a later 
study by Koedel et al., an enhanced proinfl ammatory cytokine expression was not 
observed in TLR2 KO mice (Koedel et al.  2003 ). This suggests that the enhanced 
clinical symptoms observed in the TLR2 KO mice are probably due to impaired 
bacterial clearance. Nevertheless, these reports suggest that TLR2 is required for the 
successful defense from pneumococcal meningitis, at least in an experimental ani-
mal model. This hypothesis was further supported by experiments using MyD88- 
defi cient mice (Echchannaoui et al.  2005 ). In these mice, pneumococcal infection 
led to increases in the mortality rate, indicating an impaired host defense to bacterial 
infection. In TLR2 and TLR4 double KO mice, the host immune response to pneu-
mococcal bacterial infection was further impaired compared to single KO of these 
TLRs (Klein et al.  2008 ). These data demonstrate that the concerted action of both 
TLR2 and TLR4 plays an important role in host defense and the innate immune 
response to pneumococcal meningitis. However, contrary to the in vitro data, TLR9 
seems to play a minimal role in pneumococcal meningitis in vivo, since TLR2, 4, 
and 9 triple KO mice show comparable phenotypes to those of TLR2 and 4 double 
KO mice (Klein et al.  2008 ). Although it was not demonstrated in these in vivo stud-
ies, it is conceivable that TLRs expressed on the macrophages and dendritic cells in 
the leptomeninges and subarachnoid space may at least in part contribute to the 
phenotypes observed in the KO mice.  
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9.3.2     Bacterial Brain Abscess 

 Localized bacterial infection in brain parenchyma results in abscesses in the brain 
that are characterized by suppurative lesion formation. Brain abscesses can be 
caused by a variety of microorganisms including bacteria and fungi (Mathisen and 
Johnson  1997 ), yet the leading etiologic agent is  Staphylococcus aureus . The 
pathogenic process of human brain abscesses can be recapitulated by an animal 
model by injecting  S. aureus  directly into mouse brain parenchyma (Kielian et al. 
 2001 ). In this model,  S. aureus  infection initially triggers microglia and astrocyte 
activation, which later leads to macrophage and lymphocyte infi ltration. A series 
of in vitro studies indicate that TLR2 is involved in the activation of glial cells 
against  S. aureus . First, primary cultured microglia can be activated by intact  S. 
aureus  to express the proinfl ammatory cytokines IL-1β and TNF-α, chemokines, 
and costimulatory molecules (Tallini and Stoner  2002 ). This activation of proin-
fl ammatory microglia was recapitulated by the stimulation of  S. aureus -derived 
PGN, and these effects were abrogated in TLR2-defi cient microglia (Kielian et al. 
 2005a ). Likewise,  S. aureus  and its PGN induce proinfl ammatory gene expression 
in primary astrocytes, which is also dependent on TLR2 (Esen et al.  2004 ). These 
fi ndings suggested that these glial cell types may play a key role in the initial anti-
bacterial innate immune response in the CNS through the engagement of TLR2. 
However, an initial study using a mouse brain abscess model has revealed a limited 
role of TLR2 in the induction of infl ammatory responses (Kielian et al.  2005b ). In 
this study, proinfl ammatory gene induction after  S. aureus  injection was delayed, 
but not inhibited in TLR2 KO mice compared to wild-type mice. In addition, the 
bacterial titer was not much different in the TLR2 KO mice compared to the con-
trol. Instead, TLR2 infl uenced adaptive immune responses against  S. aureus  in the 
later phases (Nichols et al.  2009 ). There was a signifi cant increase in IL-
17-producing T cell-, NKT cell-, and γδT cell-infi ltrates following CNS  S. aureus  
infection in the TLR2 KO mice (Nichols et al.  2009 ; Vidlak et al.  2011 ). However, 
in a later study by Stenzel et al., it was shown that brain abscess size was exacer-
bated and bacterial clearance was impaired in TLR2 KO mice (Stenzel et al.  2008 ). 
Taken together, these reports  indicate that TLR2 indeed plays an important role in 
defending the host against  S. aureus  infection in the CNS, with functions not lim-
ited to initial pathogen recognition, but also encompassing the complex regulation 
of both innate and adaptive immune responses. Of particular interest, one study 
has shown that the host immune response to  S. aureus  is also compromised in 
TLR4 KO mice, which have enhanced bacterial burdens and mortality rates com-
pared to wild-type mice (Stenzel et al.  2008 ).    Considering that the Gram-positive 
bacteria  S. aureus  do not activate TLR4, it is likely that certain certain endogenous 
agonist of TLR4 released during brain tissue damage may regulate antibacterial 
immune responses via TLR4, the mechanism of which needs to be clarifi ed in the 
future studies. 
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9.3.2.1     Viral Encephalitis 

 Viral infection in the brain parenchyma can elicit devastating infl ammatory 
responses in the CNS that are usually called viral encephalitis. A series of RNA and 
DNA viruses, including herpes simplex virus-1 (HSV-1), West Nile virus (WNV), 
rabies virus, and HIV, can cause brain encephalitis. Endosomal TLRs (TLR3, 7, 8, 
and 9) are known to function as pattern-recognition receptors for these viral RNA 
and DNA, so the involvement of these TLRs in viral encephalitis has long been 
suspected. Among these TLRs, TLR3 was fi rst implicated in CNS virus infection by 
Wang et al. ( 2004 ). In their study using TLR3-defi cient mice, they demonstrated 
that TLR3 is required for the entry of WNV into the brain. Compared to wild-type 
control mice, TLR3 KO mice were more resistant to viral infection-induced mor-
bidity, and their CNS viral load was also reduced. However, a later study by Daffi s 
et al. argued that TLR3 has antiviral effects in WNV-induced brain encephalitis 
(Daffi s et al.  2008 ). In this study, TLR3-defi ciency enhanced WNV mortality and 
increased the viral burden in the brain. Thus far, it is not clear why TLR3 shows 
confl icting roles in these two studies. 

 Contrary to its role in WNV encephalitis, it seems clear that TLR3 signaling is 
vital for the successful antiviral responses against HSV-1 encephalitis in humans. In 
a study characterizing patients with HSV-1 encephalitis and dominant-negative 
mutant TLR3, researchers found high levels of viral replication and cell mortality in 
the fi broblasts from these patients (Zhang et al.  2007 ). In addition, these fi broblasts 
had impaired antiviral infl ammatory gene (IFN-α/β) expression. These data support 
the hypothesis that humans with defects in TLR3 signaling have an elevated suscep-
tibility to HSV encephalitis. One study with TLR3-defi cient mice in HSV-2 enceph-
alitis shows that the TLR3 expressed in astrocytes plays an important role in 
controlling the viral infection in the CNS (Reinert et al.  2012 ). In this study, TLR3 
KO mice were hypersusceptible to HSV infection in the CNS, with their astrocytes 
most frequently infected. In wild-type mice, astrocytes respond to HSV infection by 
the production of type I IFN, which was defective in TLR3-defi cient astrocytes. 
Thus, the TLR3 on astrocytes is likely to sense HSV-2 infection after entry into the 
CNS, preventing HSV from spreading by IFN production. Studies of the role of 
other TLR members, namely TLR2 and TLR9, in HSV encephalitis reported con-
fl icting results. In one study, TLR2 KO mice had reduced mortality compared with 
wild-type mice, and HSV-induced MCP-1 induction in the CNS was signifi cantly 
reduced in these mice (Kurt-Jones et al.  2004 ). These data seem to indicate that 
TLR2 facilitates and contributes to HSV encephalitis. However, in a more recent 
study, HSV viral load in the brain was much higher in TLR2/9 double KO mice 
compared to wild-type mice (Sorensen et al.  2008 ). In addition, antiviral gene 
expression in the CNS was reduced in either TLR2 or TLR9 KO mice. These studies 
argue that TLR2 and TLR9 synergistically stimulate innate antiviral activities, 
thereby protecting against HSV infection in the brain. Although TLR7 and 8 have 
the potential to recognize virus infections as well, their involvement in viral enceph-
alitis has not been formally addressed and needs to be investigated in future studies.    
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9.4     TLRs in Sterile Neuroinfl ammation 

 As the receptors for DAMPs, TLRs have been suggested to play a role in sterile 
neurological diseases involving tissue damage. For the past several years, increasing 
amounts of evidence have supported the pivotal role of TLRs in the initiation, pro-
gression, and resolution of various acute neurological diseases including strokes, 
traumatic spinal cord/brain injuries, and peripheral nerve injuries. In this section, 
we will briefl y summarize the studies which implicate TLRs in these acute neuro-
logical disorders. 

9.4.1     TLRs in Stroke 

 Strokes are one of the leading causes of death and severe long-term disability in adults 
in developed countries. The interruption of blood supply to the brain and the rupture 
of cerebral blood vessels lead to ischemic and hemorrhagic strokes, respectively 
(Donnan et al.  2008 ). In both types, the primary insult elicits an infl ammatory response 
in the CNS that contributes to secondary brain damage. The infl ammatory responses 
are likely initiated by the activation of local glial cells, microglia, and astrocytes by the 
DAMPs released due to the initial insult (Wang et al.  2011 ). Therefore, it has been 
speculated that TLRs might be involved in secondary neuroinfl ammation during 
stroke injury. This hypothesis was formally addressed using TLR KO mice in several 
different studies. In ischemic/reperfusion (I/R) injury models, there were signifi cant 
decreases in infarct volume and neurological defi cit in both TLR2- and TLR4-defi cient 
mice when compared to wild-type control mice (Tang et al.  2007 ; Ziegler et al.  2007 ; 
Lehnardt et al.  2007 ; Cao et al.  2007 ; Caso et al.  2007 ). Although these reports all 
agree on the detrimental role of TLR2 and TLR4 in I/R-mediated secondary damage, 
the precise mechanisms underlying these effects remain to be fully elucidated. In 
TLR4-mutant mice, the expression of potentially neurotoxic mediators that are 
induced in the CNS parenchyma upon I/R insult, including TNF-α, IL-6, iNOS, and 
MMP-9, was signifi cantly reduced when compared to wild-type mice (Cao et al. 
 2007 ; Caso et al.  2007 ). In this study, TLR4 was detected mainly in activated microg-
lia and astrocytes in the brain parenchyma, suggesting that TLR4 activation in these 
cells augments the expression of the above genes. TLR2 is also mainly found in the 
microglia in post-ischemic brain tissue (Ziegler et al.  2007 ), and contributes to the 
expression of post-ischemic proinfl ammatory genes in the brain (Ziegler et al.  2011 ). 
These studies suggest that TLR2 and TLR4 expressed on microglia or astrocytes may 
recognize DAMPs released during ischemic brain injury, thereby mediating the 
infl ammatory responses in the CNS that result in secondary brain damage. 

 The role of TLRs in intracerebral hemorrhagic (ICH) injuries has been also doc-
umented. Intracerebral injections of autologous blood result in hematoma and 
infl ammatory responses in the brain, a process which is utilized for animal models 
of ICH injury   . In TLR4-defi cient mice, there is markedly reduced macrophage and 
neutrophil infi ltration in perihematoma tissues, and lower neurological defi cits upon 
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autologous blood injection (Sansing et al.  2011 ). In one study, the TLR4 on leuko-
cytes and platelets within the hemorrhage contributed to perihematomal leukocyte 
infi ltrations and neurological defi cits (Sansing et al.  2011 ). However, in a study by 
Lin et al., a signifi cant increase in TLR4 expression was detected mainly in reactive 
microglia (Lin et al.  2012 ), suggesting that microglial TLR4 may trigger and/or 
potentiate the infl ammatory response in the damaged brain. Therefore, the relative 
contribution of these cell types in ICH injury needs to be characterized in future 
studies.    Thus far, the putative role of TLR2 in ICH injury has not been character-
ized. Considering its pivotal function in I/R brain injury, it will be interesting to see 
if TLR2 plays a comparable role in ICH.  

9.4.2     TLRs in Traumatic Spinal Cord and Brain Injuries 

 Traumatic injury in the spinal cord may cause massive tissue destruction and cel-
lular damage at and around the injury site. The primary tissue injury is usually 
followed by secondary infl ammatory injury cascades that are featured with the 
infi ltration of blood-derived immune cells, activation of resident glial cells, and an 
increase in proinfl ammatory and cytotoxic gene expression in the spinal cord. 
This often accompanies delayed neuronal death, demyelination, and axonal 
degeneration in the penumbrae of the injury site (Profyris et al.  2004 ; Tator and 
Fehlings  1991 ; Popovich and McTigue  2009 ). It was fi rst reported by Kigerl et al. 
that the mRNAs of several TLRs, including TLR1, 2, 4, 5, and 7, were expressed 
in spinal cord tissue after injury (Kigerl et al.  2007 ). Among these receptors, the 
levels of TLR2 and TLR4 are massively increased in the spinal cord after injury. 
TLR4 expression is induced mainly in activated macrophages and microglia in the 
spinal cord, while TLR2 expression has been detected in astrocytes as well. It is 
suspected that TLR2 and TLR4 expression in spinal cord glia and tissue-infi ltrat-
ing immune cells may contribute to the infl ammatory response in the spinal cord 
after injury. However, in TLR4-mutant or TLR2-defi cient mice, the locomotor 
defi cits due to injury were sustained for longer periods of time compared to wild-
type control mice. In addition, injury-related pathological changes such as demy-
elination, astrogliosis, and microglia and macrophage activation were further 
aggravated in TLR4-mutant mice. These reports demonstrate that TLR2 and 
TLR4 play a neuroprotective role in spinal cord injury (SCI). This is contrary to 
their roles in I/R injuries, in which TLR2 and TLR4 potentiate tissue damage and 
neurological defi cits after the injury. It is plausible that the endogenous TLR ago-
nists released during SCI may be distinct from those of I/R injury, which induce 
delayed tissue repair responses in the SCI-induced tissue microenvironment. 
Recently, one study proposed that HMGB1 may function as an endogenous ago-
nist for TLR2 and TLR4 in SCI (Chen et al.  2011 ). In this study, HMGB1 was 
induced in macrophages and neurons immediately after SCI and preceding proin-
fl ammatory gene expression. HMGB1 also co-localized with TLR2 or TLR4 on 
glial cells and macrophages, suggesting that HMGB1 may directly activate these 
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TLRs and induce infl ammatory gene expression. These data posit a HMGB1–
TLR2/4 interaction as being a major player in the acute phase proinfl ammatory 
responses in SCI. It will be interesting to test if depletion of HMGB1 in the 
 context of SCI would mimic the pathological phenotype of SCI observed in 
TLR2-defi cient or TLR4-mutant mice. 

 Similar to SCI, traumatic brain injuries (TBIs) cause acute infl ammatory 
responses that result in secondary neuronal damage. These infl ammatory responses 
are characterized by proinfl ammatory cytokine and chemokine expression and the 
recruitment of leukocytes in the brain parenchyma (Morganti-Kossmann et al.  2007 ; 
Harting et al.  2008 ; Ziebell and Morganti-Kossmann  2010 ). In an animal model of 
TBI, the expression of TLR2 and TLR4 was up-regulated in the areas with lesions 
(Chen et al.  2008 ; Zhang et al.  2012 ). While the TLR4-expressing cells were mostly 
infi ltrating leukocytes, TLR2 protein expression was observed on macrophages and 
microglia in the lesion areas as well as in the astrocytes in the subcortical white mat-
ter (Zhang et al.  2012 ). Studies of the role of TLRs in TBI have shown that TLR2 is 
required for microglia and astrocyte activation around the lesion site of a stab wound 
(Park et al.  2008 ). In addition, TLR2-defi cient mice had signifi cantly ameliorated 
neurological defi cits, which were associated with decreased expression of infl am-
matory cytokines compared with wild-type counterparts (Yu and Zha  2012 ). These 
results suggest that TLR2 expressed on the activated glia may function as a receptor 
for DAMPs released during TBI and contribute to secondary brain injuries possibly 
by regulating neuroinfl ammation.  

9.4.3     TLRs in Peripheral Nerve Injury and Neuropathic Pain 

 Traumatic peripheral nerve injuries commonly cause Wallerian degeneration in 
damaged axons. In this process, Schwann cells fi rst respond to the nerve injury and 
become dedifferentiated or activated (Stoll et al.  2002 ). Next, the activated Schwann 
cells express various infl ammatory mediators including cytokines and chemokines 
(Bolin et al.  1995 ; Chattopadhyay et al.  2007 ; Levy et al.  1999 ; Takahashi et al. 
 2004 ; Tofaris et al.  2002 ; Wagner and Myers  1996 ). The chemokines, specifi cally 
MCP-1 and LIF, then recruit monocytes/macrophages to the injury site (Tofaris et al. 
 2002 ). These peripheral immune cells, in turn, remove the myelin debris and degen-
erating axons, completing the cleaning process. In addition, Schwann cells and 
recruited macrophages regulate axonal regeneration by producing various growth 
factors such as NGF, CNTF, GDNF, and BDNF (Hammarberg et al.  1996 ; Meyer 
et al.  1992 ; Smith et al.  1993 ). Schwann cell activation thus plays a central role in 
regulating infl ammatory responses in injured nerves. However, it is not well- known 
how Schwann cells are initially activated and subsequently regulate these neuroin-
fl ammatory responses. Recent studies of the expression of TLRs on Schwann cells 
in the PNS and the critical role of TLRs in sensing tissue damage have suggested a 
putative role for TLRs in this process. Previously, we have reported that necrotic 
neurons induced the expression of various proinfl ammatory genes, including TNF-
α, MCP-1, and LIF, all of which were detected in Wallerian degeneration in Schwann 
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cells, which were completely blocked in TLR2-defi cient Schwann cells and partially 
blocked in TLR3-defi cient Schwann cells (Lee et al.  2006 ). These data suggest that 
TLR2 and TLR3 are involved in the activation of Schwann cells following nerve 
injury. Similarly, blocking TLR4 with neutralizing antibodies inhibited the induc-
tion of Schwann cells by nerve injury (Karanth et al.  2006 ). In an in vivo study, 
TLR2- and TLR4-defi cient mice showed delayed Wallerian degeneration, axonal 
regeneration, and reduced locomotor recovery after sciatic nerve injury compared 
with wild-type mice (Boivin et al.  2007 ). Taken together, these data support the pos-
sibility that the TLR2, 3, and 4 that are expressed on Schwann cells may, at least 
partly, function as receptors for DAMPs released from the damaged nerve and 
thereby trigger subsequent infl ammatory responses in the PNS. 

 Injuries in peripheral nerves often result in abnormal chronic pain sensations 
called “neuropathic pain” (Marchand et al.  2005 ). Studies of the mechanisms of 
these diseases have revealed that spinal cord microglia activation plays a critical 
role in the development of neuropathic pain. Proinfl ammatory cytokines and growth 
factors secreted from the activated microglia such as TNF-α, IL-1β, IL-6, and BDNF 
may induce pain hypersensitization, either by directly enhancing the excitability of 
pain-transmitting neurons or by attenuating inhibitory synaptic transmission 
(McMahon et al.  2005 ; Coull et al.  2005 ). However, it is not clear how nerve injury 
induces spinal cord glial cell activation. So far, several studies have proposed that 
glial TLRs may function as receptors for sensing peripheral nerve injury. TLR4 was 
found to be up-regulated in spinal cord microglia after L5 nerve transection injury 
(Tanga et al.  2004 ), and the expression of TLR4 was determined to be required for 
injury-induced spinal cord microglia activation and neuropathic pain (Tanga et al. 
 2005 ). Similarly, TLR2 is also required for injury-induced spinal cord microglia 
activation and the subsequent development of neuropathic pain (Kim et al.  2007 ). 
This TLR2-dependent activation of microglia in the spinal cord after nerve injury is 
mediated by intracellular Nox2 expression and ROS production in the microglia 
(Kim et al.  2010 ). Interestingly, nerve injury-induced infl ammatory gene expression 
and macrophage infi ltration in the DRG were signifi cantly reduced in TLR2- 
defi cient mice (Kim et al.  2011 ). In this study, TLR2 expression was detected in 
satellite glial cells in the DRG. Taken together, these data suggest that TLR2 in 
satellite glial cells and spinal cord microglia may trigger infl ammatory responses in 
the DRG and spinal cord, respectively, that eventually lead to the development of 
neuropathic pain (Kim et al.  2011 ). At present, it is not clear whether microglial 
TLR2 or DRG TLR2 contributes independently to nerve injury-induced pain hyper-
sensitivity. Dissecting the relative contribution of TLR in these two cell types would 
greatly advance our knowledge on the mechanisms of neuropathic pain.   

9.5     Summary 

 Neuroinfl ammation is an integral component of infectious and sterile neurological 
diseases. Studies for the past decade have demonstrated that many TLR members 
including TLR2, 3, 4, and 9 are expressed in the cells of the nervous system. 
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Recent studies using KO or mutant mice of these TLR members are beginning to 
reveal the in vivo roles of these pattern-recognition transmembrane receptors in the 
development or regulation of neuroinfl ammation in the context of various neuro-
logical diseases. In bacterial meningitis caused by  S. pneumonia  and  N. meningiti-
des  infection, TLR2 and TLR4 play neuroprotective roles by clearing CNS-infecting 
bacteria and thereby reducing meningitis. The same TLR members function to 
defend against  S. aureus -induced brain abscesses. It is conceivable that the proin-
fl ammatory signals transmitted by TLR2 and TLR4 during bacterial infection are 
prerequisite for successful bacteria clearance. Such bactericidal effects of TLRs 
seem to outweigh the putative detrimental effects of TLR-triggered infl ammation in 
the brain, thus implicating the neuroprotective roles of TLRs in meningitis and 
abscess. Studies of animal models of viral encephalitis suggest that TLRs play a 
more complex role in the host response. In many studies, TLR3 exerted antiviral 
and neuroprotective effects on WNV- and HSV encephalitis. Nevertheless, other 
studies show that TLR3 contributes to WNV infection into the brain parenchyma. In 
addition, both benefi cial and detrimental roles of TLR2 have been reported in mod-
els of HSV encephalitis. Studies of the in vivo role of TLRs in sterile neurological 
damage also show both benefi cial and detrimental roles of TLR as well. TLR2 and 
TLR4 exacerbate neuroinfl ammation after stroke or TBI. Similarly, TLR2 and 
TLR4 contribute to the infl ammatory response and the induction of neuropathic 
pain after nerve injuries. However, TLR2 and TLR4 have been shown to exert neu-
roprotective or regulatory effects after SCI and to facilitate recovery from nerve 
injury. It is obvious that each TLR plays distinct roles depending on the injury 
model. Even in the same injury context, different receptors may induce unique 
effector functions in specifi c injury microenvironments. The response can be 
affected by the location of the infection or injury, as well as the type and concentra-
tion of the DAMPs. In addition, differences in the TLR-expressing cell types 
involved in pathogen- or injury-recognition may differentially direct the in vivo role 
of TLR. It is conceivable that the TLRs on brain- resident glial cells are involved in 
bacterial abscess but have limited roles in meningitis. Likewise, the TLRs on spinal 
cord glial cells may behave differently compared to those in brain glial cells. 
Therefore, the molecular and cellular mechanisms of TLR functions in these neuro-
infl ammatory diseases need to be more thoroughly investigated in future studies. 
Nevertheless, based on the studies so far, it is indisputable that TLRs play an impor-
tant role in the development and resolution of various neuroinfl ammatory diseases, 
and thus could be utilized as a therapeutic target.     
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    Abstract     The blood–brain barrier (BBB) is brain-specifi c capillary barrier that 
restricts the movement of soluble mediators and leukocytes from the blood to the 
central nervous system (CNS). The pathological breakdown of the BBB may be the 
initial key step of various neuroinfl ammatory CNS diseases including multiple scle-
rosis, bacterial meningitis, and neuroAIDS. This review describes an update of the 
biology of the cell comprising the BBB, and highlights the pathology and 
pathomechanisms of BBB breakdown in neuroinfl ammatory diseases. The human 
immortalized cell lines of BBB origin established in our laboratory will facilitate 
the future development of BBB research.  

10.1         Introduction 

 The presence of the blood–brain barrier (BBB) restricts the movement of soluble 
mediators and leukocytes from the blood content to the central nervous system 
(CNS). Since the CNS homeostasis protected by the BBB is a prerequisite for the 
proper function of the CNS, pathological breakdown of the BBB may be a key event 
in the induction of various neuroinfl ammatory diseases, such as multiple sclerosis 
(MS), neuromyelitis optica (NMO), bacterial meningitis, and neuroAIDS. The aims 
of this chapter are to review the recent progress made in cell biology research regard-
ing BBB-composing cells, and to discuss the importance of BBB breakdown in neu-
roinfl ammatory diseases to provide a better understanding of their pathogenesis and 
for the future development of novel therapies against these intractable disorders.  
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10.2     Structure and Function of the BBB 

 The BBB is primarily composed of microvascular endothelial cells, which are sur-
rounded by basement membranes, pericytes, and astrocytes (Fig.  10.1 ) (Abbott 
et al.  2006 ). The highly differentiated endothelial cells comprising the BBB are 
completely surrounded by basement membrane with embedded pericytes (Fig.  10.1 ) 
(Man et al.  2007 ). In the BBB, the entire abluminal aspect of this endothelial cell/
pericyte/basement membrane complex is further ensheathed by a unique structure 
called the glia limitans perivascularis, consisting of a basement membrane com-
posed of laminins, which is distinct from that of the endothelial basement mem-
brane (Fig.  10.1 ) (Sixt et al.  2001 ) and of a layer of astrocytic endfeet. The 
endothelial cells composing the BBB are normally nonfenestrated and contain few 
pinocytotic vesicles, and adjacent endothelial cells are connected by complex and 
continuous tight junctions (TJs) (Gloor et al.  2001 ; Kniesel and Wolburg  2000 ). In 
addition, endothelial cells forming BBB express various receptors and transporters 
which remove toxic metabolites to maintain CNS homeostasis and help to incorpo-
rate necessary compounds into CNS parenchyma (Begley and Brightman  2003 ). 
Thus, BBB is not just a “barrier” or “wall,” but a competent interface which actively 
exchanges materials between the brain microenvironment and blood contents. The 
infi ltration of mononuclear cells and leakage of soluble factors across the BBB is 
the key step for the development of neuroinfl ammatory disorders including MS, 
NMO, bacterial meningitis, neuroAIDS, and so on (Larochelle et al.  2011 ; Shimizu 
et al.  2012a ; Bencurova et al.  2011 ).

  Fig. 10.1    The cellular structure of the blood–brain barrier (BBB). Endothelial cells ( orange ) have 
luminal tight junctions and form the capillaries and the barrier. There is a basement membrane 
( pink  and  yellow - green ) that surrounds the pericytes ( blue ) and astrocytes ( green ) outside the endo-
thelial cells. Astrocytic endfeet are in close proximity to all of these structures. Another basement 
membrane, which is distinct from that of the endothelial basement membrane ( pink ) and of the 
layer of astrocytic endfeet ( yellow - green ), is called the glia limitans perivascularis       
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10.3        Cellular Biology of the BBB 

 Brain microvascular endothelial cells (BMECs) directly mediate BBB function. 
The endothelial cells forming the BBB express many tight junction-associated mol-
ecules, including occludin, claudin-5, claudin-3, claudin-12, ZO-1, ZO-2, and 
JAM-A (Hawkins and Davis  2005 ; Harhaj and Antonetti  2004 ). These molecules 
form tight junctions and limit the paracellular permeability in order to maintain the 
brain microenvironment, thus exerting barrier properties. Occludin is a 60–65 kDa 
protein with a carboxy (C)-terminal domain that is capable of binding to ZO-1 (Yu 
et al.  2005 ). The main function of occludin appears to be in tight junction regula-
tion. In the BBB, the expression of the claudin-3, claudin-5, and, possibly, claudin-
 12 proteins appears to contribute to the high TEER (Wolburg and Lippoldt  2002 ). 
The uptake of essential molecules occurs through specifi c carrier and transport sys-
tems, including the glucose transporter 1 (GLUT1) glucose carrier, and several 
amino acid carriers (including large neutral amino acid transporter-1 (LAT1), sys-
tem L for large neutral amino acids) (Begley and Brightman  2003 ). 

 Astrocytes are important components of the BBB. Astrocytic endfeet ensheath 
99 % of the surface of brain microvessels, from which their endfoot processes are 
separated only by a thin basal membrane (Hawkins and Davis  2005 ). There is now 
strong evidence, particularly from studies in in vitro models, that astrocytes regulate 
various aspects of BBB physiology via secreted factors, and infl uence particular 
BBB features, such as the permeability, leading to tight junction formation and 
expression in endothelial cells (Alvarez et al.  1812 ). Astrocytes are able to secrete 
several growth factors, including transforming growth factor-β (TGF-β), glial- 
derived neurotrophic factor (GDNF), basic fi broblast growth factor (bFGF), and 
angiopoietin 1 (Ang-1), thus playing a major role in BBB maintenance (Dohgu 
et al.  2005 ; Igarashi et al.  1999 ; Reuss et al.  2003 ). 

 Pericytes are morphologically, biochemically, and physiologically heteroge-
neous and they may have distinctive characteristics in different organs (Armulik 
et al.  2005 ). Pericytes are localized at the abluminal side of the microvascular endo-
thelium and are completely enveloped by a basement membrane (Shepro and Morel 
 1993 ). The extensive pericyte coverage is found around microvessels in organs that 
have a barrier system, and the pericyte-to-endothelial ratios are 1:1–3 in the brain 
and approximately 1:10 in the lung (Shepro and Morel  1993 ; Dalkara et al.  2011 ). 
It is not clear why the nervous system requires a larger degree of pericyte coverage 
than other organs, but one possibility is that brain pericytes contribute to the barrier 
maturation and maintenance in the BBB. Several in vitro studies demonstrate that 
pericytes can increase vascular stability and regulate the BBB by secretion of para-
crine growth factors including bFGF, TGF-β, Ang-1, VEGF, GDNF, and BDNF 
(Shimizu et al.  2008 ,  2011 ). Pericytes as well as astrocytes are contributors to bar-
rier induction in the BBB.  
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10.4     Cell Lines for BBB Experiments 

 Primary cultures of BMECs, pericytes, and astrocytes derived from rat, cow, and pig 
have been used for in vitro investigation of the physiological roles of BBB (Deli 
et al.  2005 ). The use of human BMECs is rare and limited due to the restricted avail-
ability of human brain tissue partly due to the diffi culty in isolation and culture of 
primary human BMECs (Bernas et al.  2010 ). Unfortunately, most primary BMECs 
lose their specifi c characteristics in culture within limited passages and rapidly 
become less useful as in vitro models of the human BBB (Nakagawa et al.  2009 ). To 
address these issues, we established the immortalized human brain microvascular 
endothelial cell line (TY08) and human brain pericytes cell line (Sano et al.  2010 ). 
These cell lines were isolated from human brain tissue, which harbored a 
temperature- sensitive SV40 large T-antigen (tsA58) protein. Human primary astro-
cytes were also immortalized via transfection by retroviral vectors harboring the 
tsA58 gene. The gene product of tsA58 is in an active conformation and binds to 
p53 at 33 °C, thus facilitating the immortalization of the cells, whereas the confor-
mation of the gene product can change, leading to its degradation and the release of 
p53 when the cells are grown at 37 °C. These cells are thus conditionally immortal, 
thus retaining BBB-like differentiated characteristics. The TY08 expressed all key 
tight junctional proteins, such as occludin, claudin-5, ZO-1, and ZO-2, and had low 
permeability to inulin across monolayers and high expression of infl ux and effl ux 
transporters (Sano et al.  2010 ). We demonstrated that the brain pericytes secreted 
several growth factors, including bFGF, TGF-β, Ang-1, VEGF, GDNF, and BDNF, 
and that the barrier function in TY08 was increased through the up-regulation of 
claudin-5 by soluble factors released from brain pericytes (Shimizu et al.  2011 ). 
These cell lines might therefore be useful tools for understanding the BBB function 
under both physiological and pathological conditions.  

10.5     BBB Alterations in Neuroinfl ammation 

 Because the healthy CNS is tightly sealed by the BBB, the intrusion of pathogenic 
T cells, as well as humoral factors, including immunoglobulin, into the CNS paren-
chyma needs to follow BBB impairment. Although elevated levels of soluble adhe-
sion molecules, chemokines, and matrix metalloproteinases (MMPs) in serum and 
cerebrospinal fl uid (CSF) observed in patients with neuroinfl ammatory diseases 
such as MS may be indicative of T-cell migration across the BBB (Alvarez et al. 
 1812 ; Larochelle et al.  2011 ), only magnetic resonance imaging (MRI) and patho-
logical examination can be the reliable methods so far to assess whether there are 
BBB derangements in these neuroinfl ammatory diseases. Enhancement of the brain 
parenchyma in the T1-weighted MRI with gadolinium enhancement is occasionally 
observed in neuroinfl ammatory diseases, including MS, NMO, or immune- mediated 
encephalitis, and is interpreted as a hallmark of BBB breakdown (Waubant  2006 ).  

F. Shimizu and T. Kanda



161

10.6     Blood-to-Brain Leukocyte Traffi cking Across 
the BBB is a Multistep Process 

 The CNS exhibits strictly controlled infl ammatory reactions, in part because the 
BBB restricts the exchange of infl ammatory cells and mediators. Leukocytes have 
to perform various actions before being allowed to move across the endothelial 
layer (into the perivascular space) and to subsequently fi nd a way through the glia 
limitans (into the brain parenchyma). Most studies about the passage of immune 
cells across the BBB have not been in normal animals, but in models of multiple 
sclerosis (MS). The most commonly used animal models in the study of MS are 
those with experimental autoimmune encephalomyelitis (EAE), which is induced 
by generating a T-cell-mediated autoimmune response against CNS antigens.    As 
shown in MS patients and the EAE animal models, the main routes of entry for 
leukocytes into the CNS are through postcapillary venules, to which many proper-
ties of the BBB extend (Engelhardt and Ransohoff  2005 ; Engelhardt  2010 ). Such 
entry of leukocytes into the brain parenchyma requires the sequential interaction 
and activation of different signaling and adhesion molecules on the surfaces of both 
the brain endothelial cells and leukocytes. These steps include the capture of the 
immune cells by the brain endothelium, the cessation of rolling, fi rm adhesion to the 
endothelium, and subsequent passage across the capillary wall of the BBB (Ley 
et al.  2007 ) (Fig.  10.2 ). The details of the fi ve steps concerning transendothelial 

  Fig. 10.2    Multistep recruitment of leukocytes into the central nervous system (CNS). Capture/
rolling: the binding of P-selectin and PSGL-1 in leukocytes and VCAM1 and VLA-4 in leukocytes 
allows the leukocytes to slow on endothelial cells. Activation: chemokines on the endothelial cells 
activate the rolling leukocytes. Adhesion: activated leukocytes upregulate their expression of 
VLA-4 and LFA-1. Binding to VCAM-1 and ICAM-1 on the endothelial cells allows the activated 
leukocytes to attach to endothelial cells. Crawling: arrested leukocytes crawl to the preferred sites 
for migration. Transmigration: crawling leukocytes migrate across the endothelial cells via the 
paracellular or transcellular pathway. Abluminal chemokines stimulation induces the migration of 
leukocytes to the CNS across the glia limitans       
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leukocyte migration across the BBB are described below (Fig.  10.2 ). (1) Rolling—
This fi rst step involves an initial, relatively weak interaction between the leukocytes 
and endothelium that occurs through two mechanisms in the CNS during EAE. The 
fi rst mechanism requires the expression of selectins on the vascular surface, which 
can then bind to the carbohydrate ligand, PSGL-1, on the lymphocyte surface 
(Kerfoot and Kubes  2002 ). The second mechanism requires the binding of 
α4-integrins expressed on the lymphocyte surface to endothelial VCAM-1, which 
can also mediate the initial interaction between the activated leukocytes and brain 
vessels (Kerfoot et al.  2006 ; Engelhardt  2008 ). This results in lymphocyte “rolling” 
across the vessel. (2) Activation—The second step involves the activation of integ-
rins on the leukocyte surface (Engelhardt  2008 ). This occurs when chemokines bind 
their receptors, which results in G-protein signaling within the leukocyte. The acti-
vation of G-protein signaling pathways then causes conformational changes in 
surface- expressed leukocyte integrins (Ward and Marelli-Berg  2009 ). The result is 
an increased affi nity and avidity of integrins for their cell adhesion molecule recep-
tors on the endothelial cell surface. (3) Arrest—The third process involves fi rm 
adhesion of leukocytes to the vasculature. In EAE, the interactions between ICAM-1 
and LFA-1 or VCAM-1 and α4 integrins result in fi rm adhesion between leukocytes 
and brain vessels (Greenwood et al.  2011 ; Correale and Villa  2007 ). (4) Crawling—
This fourth step involves leukocytes seeking preferred sites of transmigration across 
the endothelium, with a probable involvement of endothelial ICAM-1 and ICAM-2 
(Engelhardt and Ransohoff  2005 ). (5) Transmigration—The fi nal step involves the 
migration of leukocytes across the CNS endothelial cells into the perivascular space 
in a LFA-1⁄ICAM-1- and ICAM-2-dependent manner, leaving tight junctions mor-
phologically intact (Lyck et al.  2003 ). After penetrating the endothelial monolayer, 
T cells have to migrate across the endothelial basement membrane and encounter 
antigen-presenting cells in the CSF drained from the perivascular space. Entry into 
the CNS parenchyma requires local digestion of the glia limitans perivascularis, 
composed of a second basement membrane and astrocytic endfeet. Currently, there 
are no suitable in vitro BBB models for analyzing this transmigration of cells. 
Therefore, this process remains incompletely understood, including which chemo-
kines and chemokine receptors are critical for the process.

   After considering the steps outlined above that are involved in leukocyte traffi ck-
ing across the BBB in EAE, it was clear that lymphocyte-expressed α4 integrin 
plays an important role (Miller et al.  2003 ). This conclusion led to the development 
of drugs to block α4 integrin on the lymphocyte surface, in the hope of preventing 
the pathological entry of leukocytes into the brain observed in MS patients. It was 
initially shown that a monoclonal antibody blocking α4 integrin could prevent leu-
kocyte traffi cking across the BBB in vitro, and could also reverse the disease in a 
murine model of chronic EAE (Coisne et al.  2007 ). A humanized form of this anti-
body, natalizumab, was developed based on its demonstrated effi cacy in treating 
EAE. Following success in clinical trials, natalizumab was approved by the FDA in 
2004 for the treatment of relapsing remitting MS (Engelhardt and Kappos  2008 ). As 
of May 3, 2012, approximately 99,600 MS patients have received natalizumab 
worldwide (Biogen Idec, 2012). The magnitude of both the clinical and radiological 
effi cacy of this agent had not previously been documented with any other 
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disease- modifying strategy (Miller et al.  2007 ). However, the use of natalizumab for 
the treatment of MS patients has been associated with the development of progres-
sive multifocal leukoencephalopathy (PML), with 264 PML cases reported as of 
Aug 15, 2012 (Biogen Idec, 2012). Further knowledge concerning the pathological 
process of blood-to-brain leukocyte traffi cking across the BBB may be able to pro-
vide information that would be helpful for the development of the novel, more 
highly selective and specifi c, immunomodulatory therapies.  

10.7     Role of Soluble Immune Mediators in the Disruption 
of the BBB 

 Neuroinfl ammatory disorders, including MS and EAE, are immune CNS-mediated 
disorders characterized by immune cell infi ltration and up-regulation of proinfl am-
matory cytokines and chemokines such as IL-1β, IL-17, IL-22, IFN-γ, and CCL2, 
among others (Kebir et al.  2009 ; Mahad et al.  2003 ; Badovinac et al.  1998 ). Most of 
these immune mediators are released by leukocytes during transmigration, and they 
can also affect the integrity of the BBB within the CNS by promoting and expand-
ing the immune cell activation. However, some cytokines and MMPs produced by 
peripheral blood mononuclear cells can directly disrupt components of the BBB or 
act on receptors expressed by BBB comprising endothelial cells. Some in vivo and 
in vitro studies have demonstrated that IL-1β indirectly destabilizes the BBB by 
inducing the production of MMP-9 (Bolton et al.  1998 ; Sozen et al.  2009 ), which 
degrades tight junction proteins, including occludin, ZO-1, and claudin-5 (Asahi 
et al.  2001 ; Bauer et al.  2010 ). IL-17 and IL-22 have also been shown to destabilize 
the BBB by inducing alterations in the BBB permeability that coincide with 
decreased expression of occludin and ZO-1 (Kebir et al.  2007 ). TNF-α can also 
affect the barrier permeability by up-regulating the expression of NF-κB, which 
induces the transcription of myosin light chain kinase (MLCK), a factor known to 
induce the internalization of TJ proteins (Nusrat et al.  2000 ). IFN-γ induces actin 
restructuration and decreases the protein levels and changes the subcellular local-
ization of ZO-1 in the BBB (Youakim and Ahdieh  1999 ; Blum et al.  1997 ). VEGF 
was able to induce BBB impairment by increasing the phosphorylation of occludin 
and ZO-1, or by decreasing the expression of claudin-5 (Argaw et al.  2009 ). 
Chemokines can also affect the stability of the BBB by modifying the phosphoryla-
tion state of the proteins in TJs. For example, the chemokine CCL2 (formerly known 
as MCP-1) affects the permeability of the BBB by inducing the phosphorylation of 
occludin, ZO-1, ZO-2, and claudin-5 (Stamatovic et al.  2006 ,  2009 ). 

 In contrast to the detrimental effect of proinfl ammatory cytokines, other soluble 
immune mediators and growth factors, such as IFN-β, IL-25, bFGF, and GDNF, 
promote BBB integrity and impermeability. IFN-β is a type I IFN with immuno-
modulatory effects that has been used for the treatment of MS for more than 15 
years (Hohlfeld and Wekerle  2004 ; Yong et al.  1998 ). Several studies have shown 
that IFN-β increases the transendothelial resistance, reduces permeability, stabilizes 
the barrier function (Kraus et al.  2004 ,  2008 ), and induces cell surface shedding of 
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adhesion molecules on BMECs (Calabresi et al.  2001 ; Graber et al.  2005 ) in vitro 
and in vivo. In addition, IL-25 is a member of the IL-17 family and is expressed in 
BMECs. The stimulation of BMECs with infl ammatory cytokines such as TNF-α, 
IL-17, IFN-γ, and IL-1β reduces the IL-25 expression, a pattern also observed in 
active MS lesions and in EAE (Sonobe et al.  2009 ). IL-25 has a protective effect on 
the BBB, because the expression of claudin-5, JAM-A, and occludin which is 
decreased by treatment with TNF-α can be reversed by treatment with IL-25 
(Sonobe et al.  2009 )   . In addition, bFGF and GDNF are also candidate agents for 
increasing the BBB properties.    GDNF is a member of the TGF-β superfamily, and 
its neurotrophic action is mediated by a unique multicomponent receptor system 
consisting of the GDNF-family of receptors (GFRa1–4) (Sariola and Saarma  2003 ). 
We have previously demonstrated that brain pericytes produce bFGF or GDNF, and 
that those secreted from brain pericytes increase the transendothelial resistance, 
reduce permeability, and increase the expression of claudin-5 in the BBB (Shimizu 
et al.  2008 ,  2012b ). Taken together, these studies provide strong evidence that 
numerous cytokines or growth factors play important roles in regulating multiple 
aspects of TJ proteins and, ultimately, BBB permeability.  

10.8     Bacterial Translocation Across the Blood–Brain Barrier 

 Several bacterial species have been shown to be common causes of CNS infections. 
 S. pneumoniae ,  N. meningitidis , and  H. infl uenzae  type b remain the most common 
causes of meningitis in adults, while  S. pneumonia  and  N. meningitidis  are the most 
prominent pathogens that cause meningitis in children (Hart and Thomson  2006 ). 
How these bacteria cross the BBB and cause meningitis is still incompletely under-
stood (Fig.  10.3 ). Recent studies have shown that successful crossing of the BBB by 
circulating bacteria requires: (1) a high degree of bacteremia; (2) bacteria binding to 

  Fig. 10.3    The cellular pathways through which pathogens cross the BBB. (1) Transcellular pen-
etration via a receptor-mediated mechanism without evidence of tight junction disruption. (2) 
Paracellular entry between cells with or without disruption of tight junctions. (3) The Trojan horse 
mechanism (transmigration with infected leukocytes)       
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and invading the BMECs (Fig.  10.3 ); (3) rearrangements of the BMEC actin cyto-
skeleton; and (4) traversal of the BBB by live bacteria.

   Studies in humans and experimental animals have suggested a relationship 
between the level of bacteremia and the development of meningitis due to 
 Escherichia coli  (Kim  2002 ), group B  Streptococcus  (Ferrieri et al.  1980 ), and 
 S. pneumoniae . However, while a high level of bacteremia is necessary, it is not 
 suffi cient for the development of meningitis, and binding to and invasion of BMECs 
is a prerequisite for bacteria penetration of the BBB in vivo (Kim  2006 ). Recent 
studies have suggested that bacteria invade human BMECs via ligand–receptor 
interactions (Fig.  10.3 ). For example,  S. pneumoniae ,  N. meningitidis , and  H. infl u-
enza  adhere to the BMECs via the 37/67-kDa laminin receptor (LR), which binds 
 pneumococcal  CbpA,  meningococcal  PilQ and PorA, and OmpP2 of  H. infl uenza  
(Orihuela et al.  2009 ), thus suggesting that these pathogens use the same strategy 
for targeting a BBB receptor. The invasion of  S. pneumonia  into BMECs is also 
promoted by cytokine activation, which increases the amount of surface-expressed 
platelet-activating factor receptor (PAFr) on the endothelial membrane (Cundell 
et al.  1995 ; Swords et al.  2001 ). The binding of bacterial phosphorylcholine to PAFr 
leads to the activation of β-arrestin-mediated endocytosis of the bacteria into 
BMECs (Radin et al.  2005 ). In addition, the outer membrane protein, Opc, and the 
pili type IV proteins have an important role in the  meningococcal  invasion of the 
BBB (Pron et al.  1997 ; Nassif  2000 ). Opc binds to fi bronectin and vitronectin, 
which anchor the bacterium to the endothelial α5β1-integrin (the fi bronectin recep-
tor) and αVβ3-integrin (the vitronectin receptor) (Unkmeir et al.  2002 ; Sa et al. 
 2010 ). Pili type IV proteins interact with CD46, a human cell surface protein 
involved in the regulation of complement activation (Kallstrom et al.  1997 ; Kirchner 
et al.  2005 ). The involvement of Pili in the adhesion to BMECs contributes to the 
formation of microvilli-like cell membrane protrusions underneath bacterial colo-
nies, which help the bacteria to form microcolonies on the BMEC surface and to 
destabilize cellular junctions (Mairey et al.  2006 ; Coureuil et al.  2009 ). 

     E. coli  invades the BMECs by interacting various bacterial proteins with endo-
thelial receptors, including type 1 fi mbriae (FimH), outer membrane protein A 
(OmpA), Ibe proteins (IbeA and IbeB), YijP, AslA, and cytotoxic necrotizing factor 
1 (CNF-1). IbeA interacts with the specifi c receptor vimentin, which causes the 
activation of focal adhesion kinase (FAK) and paxillin leading to cytoskeletal rear-
rangements and thus allowing  E. coli  to cross the endothelial monolayer (Chi et al. 
 2010 ). IbeB and OmpA interact with different receptors on BMECs, although the 
effects of these interactions are additive. OmpA interacts with glycoprotein gp96 of 
BMECs via  N -glucosamine epitopes and leads to the FAK-dependent invasion of 
bacteria (Khan et al.  2002 ; Wang and Kim  2002 ). 

  Listeria monocytogenes  invasion of BMECs has been shown to be mediated by 
internalin B (Greiffenberg et al.  1998 ). Two receptors for internalin B have been 
identifi ed; gC1q-R (the receptor for the globular head of the complement compo-
nent, C1q) and Met tyrosine kinase (Braun et al.  2000 ; Shen et al.  2000 ). Host–
pathogen protein interactions during the penetration and invasion of the BBB are 
summarized in Table  10.1 . Further studies are needed to understand the contribution 
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of these ligand–receptor interactions to BMEC invasion and the traversal of the 
BBB by meningitis-causing bacteria.

   Previous studies revealed that internalized bacteria are found within membrane- 
bounded vacuoles of BMECs and transmigrate without multiplication and are pro-
tected from fusion with lysosomes (Kim  2003 ,  2006 ). Electron microscopy studies 
have shown that  E. coli  and group B  Streptococcus , as well as  M. tuberculosis  inva-
sion, are associated with microvilli-like protrusions at the entry site on the surface of 
human BMECs (Nizet et al.  1997 ), suggesting that there is a rearrangement of the 
host cell actin cytoskeleton. Actin cytoskeleton rearrangements are necessary for 
BMEC invasion by meningitis-causing bacteria, but the signaling mechanisms 
involved in actin differ among the meningitis-causing bacterial species. These include 
FAK, paxillin, phosphatidylinositol 3-kinase (PI3K), Src kinase, Rho GTPases, cyto-
solic phospholipase A2 (cPLA2) and ezrin, radixin, and moesin (ERM) (Reddy et al. 
 2000 ; Das et al.  2001 ; Khan et al.  2002 ; Kim et al.  2005 ). For instance,  E. coli  K1 
invasion of human BMECs depends on the activation of FAK, Src kinase, PI3K, and 
cPLA2. In contrast, group B  streptococcal  invasion of human BMECs was found to 
be independent of Src kinase and cPLA2 activation and  L. monocytogenes  invasion 
of human BMECs was independent of FAK and cPLA2 activation. 

 Another crucial factor for the development of meningitis is the ability of patho-
gens to cross the BBB as live bacteria. No free bacteria are found in the cytoplasm 
of BMECs (Kim  2003 ), and transcytosis of BMECs by meningitis-causing bacteria 
is shown to occur without any change in the integrity of BMEC monolayers (Nizet 
et al.  1997 ; Ring et al.  1998 ), suggesting that meningitis-causing bacteria, such as 
 E. coli  and group B  Streptococcus , traverse the BBB using a transcellular mecha-
nism involving ligand–receptor interactions.  

10.9     Transloaction Across the Blood–Brain Barrier 
by Fungi and Parasites 

 Several fungi have been shown to cause CNS infections in humans.  Cryptococcus 
neoformans  (Gordon et al.  2000 ) are the most frequently isolated yeasts from 
patients with CNS involvement. In the case of  Cryptococcus neoformans , brain 
invasion does not require the recruitment of host infl ammatory cells (Chrétien et al. 
 2002 ; Chang et al.  2004 ), which eliminates the possibility that these penetrate into 
the brain using a Trojan horse mechanism via transmigration of infected phagocytes 
(Fig.  10.3 ).  Cryptococcus neoformans  can traverse BMECs without any obvious 
change in their integrity. Transmission and scanning electron microscopy studies 
have revealed that  C. neoformans  induces the formation of microvilli-like protru-
sions to initiate entry into BMECs. These fi ndings indicate that  C. neoformans  uses 
a transcellular mechanism for entry into the CNS (Chang et al.  2004 ). 

 Malaria is another major public health problem in many parts of the tropical 
world. Cerebral malaria is the most severe pathology caused by the malaria parasite, 
 Plasmodium falciparum  (Schofi eld and Grau  2005 ). The pathogenic mechanisms 
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leading to cerebral malaria are still poorly defi ned, as studies have been hampered 
by limited access to human tissues. Nevertheless, the histopathology of postmortem 
human tissues and mouse models of cerebral malaria have indicated the involve-
ment of the BBB in cerebral malaria (Rénia et al.  2012 ). 

 In cases of cerebral malaria, the endothelial barrier is often compromised by 
interactions with parasitized red blood cells (PRBCs), as well as innate and adaptive 
immune responses. One of the early steps in cerebral malaria is the sequestration of 
PRBCs in the brain microvasculature.  Plasmodium falciparum  erythrocyte mem-
brane protein (PfEMP-1) mediates endothelial binding and affects the barrier integ-
rity. PfEMP-1 binds to ICAM-1, CD36, chondroitin sulfate, and other 
trypsin-sensitive binding determinants (Chang et al.  2004 ; Craig and Scherf  2001 ; 
Tripathi et al.  2007 ). ICAM-1 ligation of the endothelium was demonstrated to 
cause stress fi ber formation through cytoskeletal rearrangements (Etienne- 
Manneville et al.  2000 ), providing another potential mechanism by which PRBC 
adherence alters the vascular permeability. The adherence of  P. falciparum  PRBCs 
also induces the apoptosis of endothelial cells via Rho kinase signal transduction in 
human endothelial lines (Pino et al.  2003 ; Taoufi q et al.  2008 ). PRBCs thus amplify 
the immune response and utilize multiple pathways to begin the process of vascular 
breakdown during cerebral malaria.  

10.10     Mechanisms of the Blood–Brain Barrier Disruption 
by HIV-1 Infection 

 NeuroAIDS is becoming a major health problem among AIDS patients and long- 
term HIV survivors. The two main CNS complications in individuals with HIV are 
encephalitis and dementia, which are characterized by leukocyte infi ltration into the 
CNS, microglial activation, aberrant chemokine expression, BBB disruption, and 
eventual damage and/or loss of neurons (McArthur  2004 ; Gendelman  2005 ). One of 
the major mediators of neuroAIDS is the transmigration of HIV-infected leukocytes 
across the BBB into the CNS. The molecular mechanisms by which HIV enters the 
CNS and contributes to both acute and chronic infl ammatory processes are still 
unclear. HIV can access the CNS due to increased traffi cking of HIV-infected CD4+ 
T cells or circulating monocytes (Ivey et al.  2009 ). Infl ammatory responses within 
the brain vasculature also have critical signifi cance for the development of the neu-
ropathology associated with neuroAIDS, because the lymphocytes and monocytes/
macrophages can gain access to the CNS by increased migration through the BBB 
under infl ammatory conditions, although leukocyte traffi cking toward the CNS is 
very low in healthy individuals (Tardieu  1999 ). For instance, the viral Tat protein, 
which is secreted by infected cells, induces the expression of adhesion molecules on 
endothelial cells and chemokine secretion by astrocytes and microglial cells, pos-
sibly enhancing leukocyte traffi cking toward the CNS (Weeks et al.  1995 ; Wu et al. 
 2000 ). In addition, the viral protein gp120, which can be detected in the brain of 
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HIV-1-infected patients, triggers the release of MCP-1 (CCL2), a potent chemoat-
tractant for monocytes (Jones et al.  2000 ; Fantuzzi et al.  2003 ). Interestingly, an 
increased risk of HIV-associated dementia (HAD) has been shown to be linked to a 
mutant MCP-1 allele (Gonzalez et al.  2002 ). Finally, the proinfl ammatory cytokine 
levels are elevated in the CSF and brain parenchyma of HAD patients. These can 
alter the BBB integrity, and increase the expression of the adhesion molecules 
ICAM-1, VCAM-1, and E-selectins on endothelial cells, thus facilitating leukocyte 
adhesion, rolling, and estravasation into the brain (Yadav and Collman  2009 ). 

 This recruitment allows for subsequent infection of these resident cells and the 
spread of HIV within the CNS. HIV infects perivascular macrophages and microg-
lia productively, while astrocyte infection is restricted, resulting in the formation of 
viral reservoirs within CNS cells in which replication competent viral genomes per-
sist in a stable state (Lavi et al.  1998 ). There is no evidence of direct HIV infection 
of neurons; therefore, the neuronal cell damage and death that occurs in HAD must 
be mediated by the production and release of neurotoxic factors by other infected or 
uninfected cells within the CNS. In fact, neuronal dysfunction correlates more 
closely with infl ammation and activated monocytes/microglia than with the viral 
load (Sevigny et al.  2004 ).  

10.11     Infl ammatory Response of the Blood–Brain Barrier 
in Alzheimer’s Disease 

 Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized 
by a gradual loss of memory, orientation, judgment, and reasoning (Roses  1996 ; 
Zlokovic  2008 ). The infl ammation and BBB dysfunction in the adult brain are con-
sidered to play an important role in the pathogenesis of AD, because infl ammatory 
reactions around the cerebral microvessels are frequently observed in the brain sec-
tions from AD patients (D’Andrea  2003 ; Sardi et al.  2011 ; Stewart et al.  1992 ; Ujiie 
et al.  2003 ; Stolp and Dziegielewska  2009 ). The primary neuropathology of AD 
patients is characterized by the extracellular deposition of amyloid β (Aβ) peptide 
in senile plaques, and intracellular neurofi brillary tangles composed of phosphory-
lated tau, within the brain (Trojanowski et al.  1995 ; Wenk  2003 ). Aβ is a series of 
proteolytic by-products of the amyloid-β precursor protein (AβPP) that vary in 
length from 39 to 43 amino acids. According to the “amyloid hypothesis,” the 
increased Aβ in the brain of AD patients induces the hyperphosphorylation of tau 
and synaptic dysfunction and leads to neuronal cell death (Deane et al.  2009 ). The 
infl ammation in AD is generally considered to be a consequence of Aβ accumula-
tion, and the number of perivascular macrophages increases and hypertrophy of 
astrocytes and microglia is observed in brain section of AD patients (Minagar et al. 
 2002 ). Several proinfl ammatory substances could be involved in the development of 
AD; IL-1β is expressed by activated microglia surrounding plaques, and seems to 
promote the production and metabolism of amyloid precursor protein (APP), 
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increasing the amyloid deposition and plaque formation (Griffi n et al.  1998 ). 
Increased levels of IL-6 and MCP-1 in the plasma and CSF of AD patients may also 
be good candidates as biomarkers for monitoring the infl ammation process in AD 
(Sun et al.  2003 ). The VEGF concentration is higher in the cortex of affected brains, 
thus causing increased vascular permeability, neuronal loss, and amyloid deposition 
(Sardi et al.  2011 ). Some studies have proposed a protective role of anti- infl ammatory 
drugs, including NSAIDs (Gupta and Pansari  2003 ; Zotova et al.  2010 ), although 
trials in AD patients did not lead to encouraging results, in spite of good outcomes 
in a murine model (Sardi et al.  2011 ). 

 The dysfunction of the BBB is implicated in the pathogenesis of AD (Zlokovic 
 2011 ). The fi rst report about the BBB disruption in the AD brain described the 
observation that IgG and complement proteins aggregated near plaques, thus indi-
cating focal or subtle changes in BBB permeability (Alafuzoff et al.  1987 ). 
Subsequent studies confi rmed the notion that the BBB disruption is a pathological 
feature of AD; albumin concentrations are enhanced in the CSF of patients with AD 
at the early onset of AD, apparently resulting from an increased permeability of the 
BBB (Algotsson and Winblad  2007 ; Bowman et al.  2007 ). Subtle abnormalities in 
endothelial tight junctions in brain biopsies from patients with AD were also 
observed, and suggested that they may be responsible for the damage of the BBB 
(Zipser et al.  2007 ; Farkas and Luiten  2001 ; Bailey et al.  2004 ). The reduced stain-
ing of endothelial markers, CD34 and CD31, observed in AD brains suggested that 
there was an extensive degeneration of the endothelium during the disease progres-
sion (Kalaria and Hedera  1995 ). The loss of integrity of the BBB can cause aboli-
tion of the immunological privilege of the CNS and lead to a penetration of 
circulating Aβ in the brain, where it can bind astrocytes, starting a degenerative and 
infl ammatory process. Furthermore, the disruption of the BBB also allows T lym-
phocyte infi ltration, and the number of T lymphocytes is increased, especially in the 
hippocampus and temporal cortex, of the brains of AD patients (Sardi et al.  2011 ). 
Currently, BBB dysfunction is considered to be one of the earliest pathological 
events underlying the development of AD. 

 It is considered that signifi cant amounts of Aβ are produced by the peripheral 
sources, including the blood, platelets, and skeletal muscle (Tang et al.  2006 ; Kuo 
et al.  1999 ,  2000 ). The BBB dysfunction could affect AD pathogenesis by decreas-
ing the Aβ clearance and increasing the Aβ production. The clearance of Aβ is 
controlled in part by an intact and functional BBB that transports soluble Aβ from 
the blood to the brain, mainly via the receptor for advanced glycation end-products 
(RAGE) and from the brain to the blood via the low-density lipoprotein receptor- 
related protein (LRP-1) (Deane et al.  2003 ,  2004 ), and depends on the apolipopro-
tein E (ApoE) isoform, the Aβ chaperone proteins (Deane et al.  2008 ). Thus, altered 
BBB function could cause the accumulation of Aβ within the brain due to inade-
quate Aβ effl ux induced by the decreased expression of LRP-1 and accelerated Aβ 
infl ux via the increased expression of RAGE (Zlokovic  2008 ; Bell and Zlokovic 
 2009 ). The ApoE4 allele, which is considered to be genetic risk factor for sporadic 
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AD, slows Aβ clearance from brain in an isoform-specifi c manner (Deane et al. 
 2008 ). In addition, Aβ can be produced locally in and around the BBB; AβPP is 
expressed in endothelial cells and pericytes, and Aβ production has been demon-
strated in isolated brain microvessels of AD patients (Kalaria et al.  1996 ; Natté et al. 
 1999 ). Perivascular infl ammatory reactions during AD can cause Aβ production in 
the BBB. Therefore, the impaired clearance of Aβ from the brain and increased Aβ 
production by the cells of the neurovascular unit may lead to its accumulation in 
blood vessels and in the brain parenchyma.  

10.12     The Blood–Brain Barrier in Parkinson’s Diseases 

 Parkinson’s disease (PD) is a chronic and progressive neurodegenerative disorder 
characterized by abnormal motor symptoms, including tremors, bradykinesia, rigid-
ity, and postural instability (Obeso et al.  2000 ). The pathological feature of PD is a 
loss of dopaminergic neurons, mainly in the substantia nigra pars compacta (Obeso 
et al.  2000 ). The cellular and molecular mechanisms underlying the pathogenesis of 
PD are currently unclear, but it has increasingly been considered to be linked to 
neuroinfl ammation and oxidative stress (Stolp and Dziegielewska  2009 ). 

 Similar to AD, BBB disruption may play an important role in the pathogenesis 
of PD. Rite et al. found that increased permeability in the BBB induced by the injec-
tion of VEGF into the substantia nigra of experimental animals could induce a sub-
sequent loss of dopaminergic neurons, thus suggesting a pathogenic link between 
BBB disruption and the degeneration of dopaminergic neurons (Rite et al.  2007 ). 
Pathological alterations in endothelial cells within the substantial nigra are also 
found in the brain sections of PD patients (Faucheux et al.  1999 ). The results of this 
pathological study are ambiguous when examined alone, because it was unclear 
how to interpret the reported increases in endothelial nuclei within the vasculature 
(Faucheux et al.  1999 ). However, combined with the results of the recent experi-
mental study of Rite et al. (Rite et al.  2007 ), it can be hypothesized that increased 
angiogenesis within the substantia nigra induced by VEGF may result in altered 
function of the BBB, and may play an important role in the pathogenesis of PD 
(Stolp and Dziegielewska  2009 ). Moreover, there is increasing interest in infl amma-
tion as a pathogenic mechanism in PD, and a mechanism involving alterations in 
BBB properties has been suggested by many different experimental methods 
(Faucheux et al.  1999 ; Whitton  2007 ). Kortekaas et al. provided the fi rst evidence of 
increased dysfunction of the BBB in PD patients using a PET study (Kortekaas 
et al.  2005 ). They showed a signifi cantly increased uptake of  11 C-verapamil in the 
midbrain of PD patients relative to controls, which they suggested was due to a 
decreased function of P-glycoprotein (Kortekaas et al.  2005 ). It was also speculated 
that an increased passage of metals, such as iron or manganese, through the BBB 
may be involved in the pathogenesis of PD (Toescu  2005 ).  
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10.13     Conclusion 

 BBB dysfunction, often referred to as “BBB opening,” has long been known to 
constitute a key feature of the progression of several CNS diseases, as a conse-
quence of neuroinfl ammation. It is likely that the recently acquired knowledge 
about TJ regulation and leukocyte transmigration at the BBB will pave the way to 
novel therapeutic strategies for neuroinfl ammatory CNS diseases. Just like anti-
VLA- 4 antibody treatment has recently appeared as a benefi cial approach to limit 
leukocyte infi ltration to the brain in MS, the identifi cation of various active trans-
port systems or other membrane proteins at the BBB may allow for the development 
of new brain-targeted strategies to effi ciently deliver drug to the CNS. Finally, 
obtaining a complete understanding of the microbial–human BMEC interactions 
that are involved in translocation of the BBB will provide the fi rst step in the devel-
opment of novel strategies for the prevention and treatment of CNS infections.     
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