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Abstract We present an extension of PLS—called partial least squares
correspondence analysis (PLSCA)—tailored for the analysis of nominal data. As
the name indicates, PLSCA combines features of PLS (analyzing the information
common to two tables) and correspondence analysis (CA, analyzing nominal data).
We also present inferential techniques for PLSCA such as bootstrap, permutation,
and χ2 omnibus tests. We illustrate PLSCA with two nominal data tables that store
(respectively) behavioral and genetics information.
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1 Introduction

With the advent of relatively inexpensive genome-wide sequencing it is now pos-
sible to obtain large amounts of detailed genetic information on large samples of
participants, and, so, several large sample studies are currently under way whose
main goal is to relate genetics to behavior or clinical status. In these studies, the ge-
netic information of each participant is a long list of pairs (one per chromosome)
of DNA nucleotides (A, T , C, and G)—which could occur in 24 = 16 different
configurations—grouped in 23 chromosomes. However, only genomic locations that
show enough variability in a population are used. These locations of variability are
called single nucleotide polymorphisms (SNPs). Each SNP has a major allele (e.g.,
A), which is the most frequent nucleotide (in a population), and a minor allele (e.g.,
T ; rare in a population but required to be found in at least 5% of the population to
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be considered “relevant”). Thus, in practice only three variants for each location are
used: the major homozygote (e.g., AA), the minor homozygote (e.g., T T ), and the
heterozygote (e.g., AT ).

Multivariate data sets of SNPs are most often re-coded through a process of count-
ing alleles: 0, 1, or 2. While 1 is always the heterozygote, 0 and 2 could be am-
biguous. For example, minor homozygotes can be coded according to two different
schemes: (1) having 2 minor alleles [1] or (2) having 0 major alleles [2]. In most
analyses, the SNPs are treated as quantitative data because most statistical methods
used rely upon quantitative measures [3–5]. Some multivariate approaches for SNPs
include independent components analysis (ICA) [6], sparse reduced-rank regression
(SRRR) [7], multivariate distance matrix regression (MDMR) [8, 9], and PLS re-
gression (PLSR) [10, 11]. It should be noted that both SRRR and MDMR are PLSR-
like techniques. However, these methods depend on the allele counting approach
that assumes a uniform linear increase for all SNPs from 0 to 1 and from 1 to 2,
but SNPs do not identify how much of an allele is present, only which allele (i.e.,
nucleotide variation) is present. Because the assumptions of a quantitative coding
scheme seem unrealistic, we have decided to use a qualitative coding scheme and
to consider that the values 0, 1, and 2 represent three different levels of a nominal
variable (e.g., 0 = AA, 1 = AT , and 2 = T T ). In studies relating genetics and behav-
ior, behavior is evaluated by surveys or questionnaires that also provide qualitative
answers. So the problem of relating genetics and behavior reduces to finding the
information common to two tables of qualitative data. Partial least square correla-
tion (PLSC, see [12, 14]) would be an obvious solution to this “two-table problem”
but it works only for quantitative data. An obvious candidate to analyze one ta-
ble of qualitative data is correspondence analysis (CA), which generalizes principal
component analysis (PCA) to qualitative data. In this paper, we present partial least
squares-correspondence analysis (PLSCA): A generalization of PLSC—tailored for
qualitative data—that integrates features of PLSC and CA. We illustrate PLSCA with
an example on genetics and substance abuse.

2 PLSC and PLSCA

2.1 Notations

Matrices are denoted by bold face upper-case letters (e.g., X), vectors by bold face
lower case letters (e.g., m). The identity matrix is denoted I. The transpose operation
is denoted T and the inverse of a square matrix is denoted −1. The diag{} operator
transforms a vector into a diagonal matrix when applied to a vector and extracts the
diagonal element of a matrix when applied to a matrix.
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2.2 PLSC: A Refresher

Partial least square correlation [12, 13] is a technique whose goal is to find and
analyze the information common to two data tables collecting information on the
same observations. This technique seems to have been independently (re)discovered
by multiple authors and therefore, it exists under different names such as “inter-
battery analysis” (in 1958 and probably the earliest instance of the technique, [15]),
“PLS-SVD” [12, 17, 18], “intercorrelation analysis,” “canonical covariance analy-
sis,” [19], “robust canonical analysis” [20], or “co-inertia analysis” [21]. In PLSC,
X and Y denote two I by J and I by K matrices that describe the I observations
(respectively) by J and K quantitative variables. The data matrices are, in general,
pre-processed such that each variable has zero mean and unitary norm; the pre-
processed data matrices are denoted ZX and ZY. The first step of PLSC is to com-
pute the correlation matrix R = ZX

TZY, whose singular value decomposition (SVD,
[22–24]) is R = UXΔΔΔUY

T. The matrices UX and UY contain (respectively) the left
and right singular vectors of R. In PLSC parlance, the singular vectors are called
saliences [25]. The diagonal matrix ΔΔΔ stores the singular values of R: each singular
value expresses how much a pair of singular vectors “explains R.” To express the
saliences relative to the observations described in ZX and ZY, these matrices are
projected onto their respective saliences. This creates two sets of latent variables—
which are linear combinations of the original variables— which are denoted LX and
LY, and are computed as:

LX = ZXUX and LY = ZYUY. (1)

A pair of latent variables (i.e., one column from LX and one column LY) is denoted
���X,� and ���Y,� and together these two latent variables reflect the relationship between
X and Y where the singular value associated to a pair of latent variables is equal to
their covariance (see, e.g., [12]).

2.2.1 What Does PLSC Optimize?

The goal of PLSC is to find pairs of latent vectors ���X,� and ���Y,� with maximal co-
variance under the constraints that pairs of latent vectors of different indices are
uncorrelated and coefficients of latent variables are normalized [15, 16]. Formally,
we want to find:

���X,� = ZXuX,� and ���Y,� = ZYuY,� such that ���TX,����Y,� = max (2)

under the constraints that

���TX,����Y,�′ = 0 when � �= �′ (3)

(note that ���TX,����X,�′ and ���TY,����Y,�′ are not required to be null) and

uT
X,�uX,� = uT

Y,�uY,� = 1 . (4)
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2.3 PLSCA

In PLSC, X and Y are I by J and I by K matrices that describe the same I observations
with (respectively) NX and NY nominal variables. These variables are expressed with
a 0/1 group coding (i.e., a nominal variable is coded with as many columns as it has
levels and a value of 1 indicates that the observation has this level, 0 if it does not).
The centroid of X (resp., Y) is denoted x̄ (resp., ȳ), the relative frequency for each
column of X, (resp., Y) is denoted mX (resp. mY). These centroids are computed as:

mX =
(
XT1

)×N−1
X and mY =

(
YT1

)×N−1
Y . (5)

In PLSCA, each variable is weighted according to the information it provides. Be-
cause a rare variable provides more information than a frequent variable, the weight
of a variable is defined as the inverse of its relative frequency. Specifically, the
weights of X (resp Y) are stored as the diagonal elements of the diagonal matrix WX
(resp. WY) computed as: WX = diag{mX}−1 and WY = diag{mY}−1. The first step
in PLSCA is to normalize the data matrices such that their sum of squares is equal to
respectively 1

NX
and 1

NY
. Then the normalized matrices are centered in order to elim-

inate their means. The centered and normalized matrices are denoted ZX and ZY and
are computed as: ZX =

(
X− 1x̄T

)× I−
1
2 N−1

X and ZY =
(
Y− 1ȳT

)× I−
1
2 N−1

Y . Just
like in PLSC, the next step is to compute the matrix J by K matrix R as R = ZX

TZY.
The matrix R is then decomposed with the generalized SVD as:

R = UXΔΔΔUT
Y with UT

XWXUX = UT
YWYUY = I . (6)

In PLSCA the saliences, denoted SX and SY, are slightly different from the singular
vectors and are computed as SX = WXUX and SY = WYUY. Note that

SX
TWX

−1SX = I and SY
TWY

−1SY = I. (7)

To express the saliences relative to the observations described in ZX and ZY, these
matrices are projected onto their respective saliences. This creates two sets of la-
tent variables—which are linear combinations of the original variables—that are
denoted LX and LY and are computed as:

LX = ZXSX = ZXWXUX and LY = ZYSY = ZYWYUY . (8)

2.4 What Does PLSCA Optimize?

In PLSCA, the goal is to find linear combinations of ZX and ZY called latent vari-
ables ���X,� and ���Y,� which have maximal covariance under the constraints that pairs
of latent vectors with different indices are uncorrelated and that the coefficients of
each latent variables are normalized to unit length. Formally, we want to find

���X,� = ZXWXuX,� and ���Y,� = ZYWYuY,� such that ���TX,� ���Y,� = max, (9)



Partial Least Squares Correspondence Analysis 85

under the constraints that

���TX,����Y,�′ = 0 when � �= �′ (10)

and
uT

X,�WX
−1uX,� = uT

Y,�WY
−1uY,� = 1. (11)

It follows from the properties of the generalized SVD [22] that uX,� and uY,� are
singular vectors of R. Specifically, the product of the matrix of latent variables can
be rewritten as (from Eq. 8):

LX
TLY = UT

XWXZT
XZYWYUY = UXWT

XRWYUY = UXWT
XUXΔΔΔUYWYUY =ΔΔΔ .

(12)
As a consequence, the covariance of a pair of latent variables ���X,� and ���Y,� is equal
to their singular value:

���TX,����Y,� = δ� . (13)

So, when � = 1, we have the largest possible covariance between the pair of latent
variables. Also, the orthogonality constraint for the optimization is automatically
satisfied because the singular vectors constitute an orthonormal basis for their re-
spective matrices. So, when � = 2 we have the largest possible covariance for the
latent variables under the constraints that the latent variables are uncorrelated with
the first pair of latent variables and so on for larger values of �. So PLSCA and CA

differ mostly by how they scale salience vs. factors scores and latent variables vs.
supplementary factor scores. Correspondence analysis lends itself to biplots because
the scaling scheme of factors/saliences and factor scores/latent variables allows all
of them to be plotted on the same graph as they both have the same scale.

2.4.1 Links to Correspondence Analysis

In this section we show that PLSCA can be implemented as a specific case of cor-
respondence analysis (CA) which, itself, can be seen as a generalization of PCA to
nominal variables ([26, 27], for closely related approaches see [21, 28, 29]). Specif-
ically, CA was designed to analyze contingency tables. For these tables, a standard
descriptive statistic is Pearson’s ϕ2 coefficient of correlation whose significance is
traditionally tested by the χ2 test (recall that the coefficient ϕ2 is equal to the ta-
ble’s independence χ2 divided by the number of elements of the contingency table).
In CA, ϕ2—which, in this context, is often called the total inertia of the table—is
decomposed into a series of orthogonal components called factors. In the present
context, CA will first create, from X and Y, a J by K contingency table denoted
S∗ and computed as: S∗ = XTY. This contingency table is then transformed into
a correspondence matrix (i.e., a matrix with nonnegative elements whose sum is
equal to 1) denoted S and computed as S = S∗s−1

++ (with s++ being the sum of all
the elements of S∗). The factors of CA are obtained by performing a generalized
SVD on the double centered S matrix obtained as:

(
S−mXmY

T
)
. Simple algebraic
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manipulation shows that this matrix is, in fact, equal to matrix R of PLSCA. Corre-
spondence analysis then performs the SVD described in Eq. 6. The factor scores for
the X and Y set are computed as

FX = WXUXΔΔΔ and FY = WYUYΔΔΔ . (14)

For each set, the factor scores are pairwise orthogonal (under the constraints im-
posed by WX

−1 and WY
−1) and the variance of the columns (i.e., a specific factor)

of each set is equal to the square of its singular value. Specifically:

FX
TWX

−1FX = FY
TWY

−1FY =ΔΔΔ 2 . (15)

The original X and Y matrices can be projected as supplementary elements on
their respective factor scores. These supplementary factors scores denoted respec-
tively GX and GY are computed as

GX = N−1
X XFXΔΔΔ−1 = N−1

X XWXUX and GY = N−1
Y YFYΔΔΔ−1 = N−1

Y YWYUY .
(16)

Note that the pre-multiplication by NX and NY transforms the data matrices such
that each row represents frequencies (this is called a row profile in correspondence
analysis) and so each row now sums to one. This last equation shows that an ob-
servation is positioned as the barycenter of the coordinates of its variables. These
projections are very closely related to the latent variables (see Eqs. 8 and 16) and
are computed as

GX = I
1
2 LX and GY = I

1
2 LY. (17)

Both PLS and CA contribute to the interpretation of PLSCA. PLS shows that the
latent variables have maximum covariance, CA shows that factors scores have max-
imal variance and that this variance “explains” a proportion of the ϕ2 associated to
the contingency table. Traditionally CA is interpreted with graphs plotting one di-
mension against the other. For these graphs, using the factor scores is preferable to
the saliences because these plots preserve the similarity between elements. In CA, it
is also possible to plot the factor scores of X and Y in the same graph (because they
have the same variance) which is called a symmetric plot. If one set is privileged, it
is possible to use an asymmetric plot in which the factor scores of the privileged set
have a variance of one and the factor scores of the other set have a variance of δ 2.

2.5 Inference

Later in this paper, we present with an example three inferential methods of PLSCA:
(1) a permutation test of the data for an omnibus χ2 test to determine if, overall,
the structure of the data is not due to chance, (2) a permutation test of the data to
determine what, if any factors are not due to chance, and (3) a bootstrap test to
determine which measures contribute a significant amount of variance.
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3 Illustration

To illustrate how PLSCA works and how to interpret the results, we have created a
small example from a subset of data to be analyzed. The data come from a study on
the individual and additive role of specific genes and substance abuse in marijuana
users [30]. Here, our (toy) hypothesis is that marijuana abusing participants (I =
50) with specific genotypes are more likely to frequent additional substances (i.e.,
certain genotypes predispose people to be polysubstance users).

3.1 Data

Each participant is given a survey that asks if they do or do not use certain (other)
drugs—specifically, ecstasy (e), crack/cocaine (cc) or crystal meth (cm). Addition-
ally, each participant is genotyped for COMT (which inactivates certain neurotrans-
mitters) and FAAH (modulates fatty acid signals). The data are arranged in matrices
X (behavior) and Y (SNPs; see Table 1).

Table 1: Example of nominal coding of drug use (left) and genotype (right).
(a) Drug use (b) Genotypes

(a)

CC CM E

yes no yes no yes no

Subj.1 1 0 1 0 1 0

Subj.2 1 0 0 1 0 1

. . . . . . . . . . . . . . . . . . . . .

Subj.49 0 1 1 0 0 1

Subj.50 1 0 0 1 1 0

(b)

COMT FAAH

AG AA GG CA AA CC

Subj.1 1 0 0 1 0 0

Subj.2 0.56 0.20 0.22 1 0 0

. . . . . . . . . . . . . . . . . . . . .

Subj.49 1 0 0 1 0 0

Subj.50 1 0 0 0 1 0

Sometimes genotype data cannot be obtained (e.g., COMT for Subject 2). This
could happen if, for example, the saliva sample were too degraded to detect which
nucleotides are present. Instances of missing data receive the average values from
the whole sample. From X and Y we compute R (Table 2), which is a contingency
table with the measures (columns) of X on the rows and the measures (columns) of
Y on the columns. The R matrix is then decomposed with CA.
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Table 2: The contingency table produced from X and Y

COMT FAAH

AG AA GG CA AA CC

cc.yes 18.705 5.614 6.682 15.927 3.366 11.707

cc.no 9.705 4.614 4.682 13.341 0.293 5.366

cm.no 19.841 7.023 9.136 20.098 1.512 14.39

cm.yes 8.568 3.205 2.227 9.171 2.146 2.683

e.yes 10.000 1.000 9.000 10.171 2.146 7.683

e.no 18.409 9.227 2.364 19.098 1.512 9.39

3.2 PLSCA Results

With factor scores and factor maps, we can now interpret the results. The factor
map is made up of two factors (1 and 2), which are displayed as axes. As in all
SVD-based techniques, each factor explains a certain amount of variance within the
dataset. Factor 1 (horizontal) explains 69% of the variance; Factor 2 explains 21%.
Plotted on the factor map we see the rows (survey items, purple) and the columns
(SNPs, green) from the R matrix (after decomposition). In CA, the distances between
row items are directly interpretable. Likewise, the distances between column items
are directly interpretable. However, the distances between row items and column
items are not directly interpretable; the distances are relative. That is, “e.yes” is
more likely to occur with COMT.GG than other responses.

In Fig. 1 on Factor 1, we see an interesting dichotomy. Marijuana users who have
used crystal meth (cm.yes) are unlikely to use other drugs (e.no, cc.no); whereas
marijuana users who have not used crystal meth (cm.no) may have used other drugs
(e.yes, cc.yes). One explanation for this dichotomy is that ecstasy and cocaine could
be considered more “social” drugs, whereas crystal meth is, socially, considerably
frowned upon. But on Factor 2 we see that all “yes” responses occur above 0, where
all “no” responses occur below 0. In this case, we can call Factor 1 “social drug
use”, and Factor 2 “any drug use”. It is important to note that items (both rows
and columns) near the origin occur in high frequency and therefore are considered
“average.” Items that are not average help with interpretation. Additionally, we see
SNPs with our responses on the factor map. From this map, we know that FAAH.AA,
COMT.GG and COMT.AA are rare (small frequency). Furthermore, we can see that
FAAH.AA is more likely to occur with other drug use (besides marijuana) than no
drug use, compared to other SNPs.



Partial Least Squares Correspondence Analysis 89

cc.yes

e.yes

FAAH.AA

cm.yes

COMT.AG

cc.no

e.no
COMT.AA FAAH.CA

cm.no COMT.GGFAAH.CC

Fig. 1: Factors 1 (horizontal: 69% of variance) and 2 (vertical: 21% of variance).
From the relative distances between SNPs and other drug use, we can infer that
FAAH.AA is more likely to occur with other drug use (besides marijuana) than no
drug use, compared to other SNPs; or, the AA allele of FAAH may predispose indi-
viduals to polysubstance abuse

3.3 Latent Variables

In the PLS framework, we compute latent variables from the singular vectors. The
latent variables of X (LX) and Y (LX) are computed in order to show the relation-
ships of participants with respect to SNPs (X; Fig. 2a) and behaviors (Y; Fig. 2b). In
the latent variable plots, the circle size grows as more individuals are associated to
it. That is, for example, in Fig. 2a, the large circle on the bottom left, with the num-
ber 13 in it, represents 13 individuals. This dot indicates that 13 individuals have the
same patterns of responses to drug use.

3.4 Inferential Results

3.4.1 Permutation Tests

A permutation test of the data can test the omnibus null hypothesis. This test is
performed by computing the χ2 value (or alternatively, the total inertia) of the entire
table for each permutation. The original table has a χ2 value of 19.02, which falls
outside the 95 %-ile for 1,000 permutations (which is 18.81) and this indicates that
the overall structure of the data is significant (see Fig. 3).The same permutation
tests are used to determine which components contribute more variance than due to
chance. We test the components with the distribution of the eigenvalues. From the
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toy example, only the third component (not shown above, see Fig. 4) contributes a
significant amount of variance (note that this implementation of the permutation test
is likely to give correct values only for the first factor, because the inertia extracted
by the subsequent factors depend in part upon the inertia extracted by earlier factors;
a better approach would be to recompute the permutation test for a given factor after
having partialled out the inertia of all previous factors from the data matrices).

p < 0.05 cutoff Our value

Fig. 3: The distribution for the omnibus χ2 test. The red line shows the 95 � (i.e.,
p < 0.05) for 1,000 permutations and the green line is the computed inertia value
from our data. The overall structure of our data is significant (p = 0.027)

p < 0.05 cutoff Our value p < 0.05 cutoffOur value p < 0.05 cutoff Our value

Fig. 4: Distributions for the permutation tests for each factor (1, 2, and 3, respec-
tively). The red lines show the 95 � (i.e., p < 0.05) for 1,000 permutations and
the green lines are the eigenvalues of the factors. Factors 1 and 3 reach significance
(p = 0.048 and p = 0.033, respectively) but Factor 2 does not (p = 0.152)
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3.4.2 Bootstrap Ratios

Bootstrap resampling [31] of the observations provides distributions of how each of
the measures (behavior and SNPs) changes with resampling. These distributions are
used to build bootstrap ratios (also called bootstrap intervals t). When a value falls
in the tail of a distribution (e.g., a bootstrap ratio of magnitude > 2), it is considered
significant at the appropriate α level (e.g., p < 0.05). Table 3 shows that COMT
(AA and GG) and ecstasy use (and non-use) contribute significantly to Factor 1.

The bootstrap tests, in conjunction with the descriptive results, indicate that cer-
tain genotypes are related to additional drug use or drug avoidance. More specifi-
cally, COMT.AA is more associated to “no ecstasy use” than any other allele and,
oppositely, COMT.GG is more associated to “ecstasy use” than any other allele.

Table 3: Bootstrap ratios for the first three factors of the PLSCA. Bold values indicate
bootstrap ratios whose magnitude is larger than 2 (i.e. “significant”). (a) Drug use
(b) Genotypes

(a)

Factor 1 Factor 2 Factor 3

cc.yes 0.291 0.714 −0.767

cc.no −0.480 −2.978 0.879

cm.no 0.308 −1.434 −0.475

cm.yes −0.786 1.036 0.697

e.yes 2.458 0.133 0.232

e.no −3.175 −0.157 −0.266

(b)

Factor 1 Factor 2 Factor 3

COMT.AG −0.531 0.336 −0.430

COMT.AA −2.797 −0.218 0.039

COMT.GG 3.982 −0.499 0.403

FAAH.CA −0.858 −0.216 0.834

FAAH.AA 0.535 1.724 −0.033

FAAH.CC 0.693 −0.549 −1.367

4 Conclusion

In this paper, we presented PLSCA, a new method tailored to the analysis of genet-
ics, behavioral and brain imaging data. PLSCA stands apart from current methods,
because it directly analyzes SNPs as qualitative variables. Furthermore, PLSCA is
particularly suited for the concomitant analysis of genetics and high-level behaviors
as explored, for example, with surveys. Surveys are essential for the analysis of ge-
netics and behavior as they are often designed and refined to capture the specific
behaviors of given populations or psychological constructs. This way, these survey
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data work as an “anchor” to provide variance for genetics data. PLSCA, being the
ideal tool to analyze the relationship between survey and genetic data, will help to
better understand the genetic underpinnings of brains, behavior, and cognition.
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