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Abstract We introduce a new regression method—called Correlated Component
Regression (CCR)—which provides reliable predictions even with near multi-
collinear data. Near multicollinearity occurs when a large number of correlated
predictors and relatively small sample size exists as well as situations involving
a relatively small number of correlated predictors. Different variants of CCR are
tailored to different types of regression (e.g. linear, logistic, Cox regression). We
also present a step-down variable selection algorithm for eliminating irrelevant pre-
dictors. Unlike PLS-R and penalized regression approaches, CCR is scale invariant.
CCR is illustrated in several examples involving real data and its performance is
compared with other approaches using simulated data.11
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ance, Cross-validation

1 Background and Introduction

When correlation between predictor variables is moderate or high, coefficients
estimated using traditional regression techniques become unstable or cannot be
uniquely estimated due to multicollinearity (singularity of the covariance matrix).
In the case of high dimensional data, where the number of predictor variables P
approaches or exceeds the sample size N, such instability is often accompanied by
perfect or near perfect predictions within the analysis sample. However, this seem-

1 All data sets are available on the website statisticalinnovations.com
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ingly good predictive performance is usually associated with overfitting, and tends
to deteriorate when applied to new cases outside the sample.

The primary “regularization” approaches that have been proposed for dealing
with this problem are (1) penalized regression such as Ridge, Lasso and Elastic
Net, and (2) dimension reduction methods such as Principle Component Regression,
and PLS Regression (PLS-R). In this paper we describe a new method similar to
PLS-R called Correlated Component Regression (CCR) and an associated step-down
algorithm for reducing the number of predictors in the model to P∗ < P. CCR has
different variants depending upon the scale type of the dependent variable (e.g. CCR-
linear regression for Y continuous, CCR-logistic regression for Y dichotomous, CCR-
Cox regression for survival data). Unlike the other regularization approaches, the
CCR algorithm shares with traditional maximum likelihood regression approaches
the favorable property of scale invariance.

In this paper we introduce CCR, and describe its performance on various real and
simulated data sets. The basic CCR algorithms are described in Sect. 2. CCR is con-
trasted with PLS-R in a linear regression key driver application with few predictors
(Sect. 3) and in an application with Near Infrared (NIR) data involving many pre-
dictors (Sect. 4). We then describe the CCR extension to logistic regression, linear
discriminant analysis (LDA) and survival analysis and discuss results from simulated
data where suppressor variables are included among the predictors (Sect. 5). Results
from our simulations suggest that CCR may be expected to outperform other sparse
regularization approaches, especially when important suppressor variables are in-
cluded among the predictors. We conclude with a discussion of a hybrid latent class
CCR model extension (Sect. 6).

2 Correlated Component Regression

CCR utilizes K < P correlated components, in place of the P predictors to predict
an outcome variable. Each component Sk is an exact linear combination of the pre-
dictors, X = (X1,X2, . . . ,XP), the first component S1 capturing the effects of those
predictors that have direct effects on the outcome. The CCR-linear regression (CCR-
LM) algorithm proceeds as follows:

Estimate the loading λ (1)
g , on S1, for each predictor g = 1,2, . . . ,P, as the simple

regression coefficient in the regression of Y on Xg , λ (1)
g =

cov(Y,Xg)
var(Xg)

. Then S1 is
defined as a weighted average of all 1-predictor effects:

S1 =
1
P

P

∑
g=1

λ (1)
g Xg (1)

The predictions for Y in the 1-component CCR model are obtained from the
simple OLS regression of Y on S1. Similarly, predictions for the 2-component CCR

model are obtained from the simple OLS regression of Y on S1 and S2, where the
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second component S2, captures the effects of suppressor variables that improve pre-
diction by removing extraneous variation from one or more predictors that have
direct effects. Component Sk′ for k′ > 1, is defined as a weighted average of all
1-predictor partial effects, where the partial effect for predictor g is computed as
the partial regression coefficient in the OLS regression of Y on Xg and all previously
computed components Sk,k = 1, . . . ,k′ − 1. For example, for K = 2 we have:

Y = α + γ(2)1.g S1 +λ (2)
g Xg + ε(2)g (2)

and S2 =
1
P

P
∑

g=1
λ (2)

g Xg, or more simply2 we can write S2 =
P
∑

g=1
λ (2)

g Xg.

As mentioned earlier, predictions for Y in the K-component CCR model are
obtained from the OLS regression of Y on S1, . . . ,SK . For example, for K = 2:

Ŷ =α(2)+b(2)1 S1+b(2)2 S2. In general, K∗ components are computed, where the opti-
mal value, K∗, is determined by M-fold cross-validation (CV). For K = 1, maximum
regularization, no predictor correlation information is used in parameter estimation.
As K is repeatedly incremented by 1, more and more information provided by the
predictor correlations is utilized, and M-fold CV determines the value of K where
near multicollinearity begins to deteriorate the predictive performance, the value
for K∗ being obtained accordingly. Deterioration occurs beginning at K = 3 for the
example illustrated in Sect. 3, and thus K∗ = 2.

Any K-component CCR model can be re-expressed to obtain regression coeffi-
cients for X by substituting for the components as follows:

Ŷ = α(K) +
K

∑
k=1

b(K)
k Sk = α(K) +

K

∑
k=1

b(K)
k

P

∑
g=1

λ (k)
g Xg = α(K) +

P

∑
g=1

βgXg

Thus, the regression coefficient βg for predictor Xg is simply the weighted sum of
the loadings, where the weights are the regression coefficients for the components

(component weights) in the K-component model: βg =
K
∑

k=1
b(K)

k λ (K)
g .

Simultaneous variable reduction is achieved using a step-down algorithm where
at each step the least important predictor is removed, importance defined by the
absolute value of the standardized coefficient β ∗

g = (σg/σY )βg, where σ denotes
the standard deviation. M-fold CV is used to determine the two tuning parameters:
the number of components K and number of predictors P.

Consider an example with 6 predictors. For any given value for K, and say
M = 10 folds, the basic CCR algorithm is applied 10 times, generating predictions
for cases in each of the 10 folds3 based on models with all 6 predictors, yielding
a baseline (iteration = 0) CV-R2(K) for P = 6. In iteration 1, the variable reduc-
tion algorithm eliminates 1 predictor, which may not be the same predictor in all 10

2 Going forward, the factor 1/P will be omitted which will not alter the predictions since multi-

plying Sk by P is offset by the OLS estimate for gamma (i.e., γ(K)
k.g becomes γ(K)

k.g /P).
3 The square of the correlation between these predictions and the observed Y yields CV-R2.
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subsamples, each resulting 5-predictor model being used to obtain new predictions
for the associated omitted folds, yielding CV-R2(K) for P = 5. In iteration 2, the
variable reduction process continues resulting in 10 4-predictor models, which
yields CV-R2(K) for P = 4. Following the last iteration, P∗(K) is determined as
the value of P associated with the maximum CV-R2(K).

The basic idea is that by applying the proper amount of regularization through
the tuning of K, we reduce any confounding effects due to high predictor corre-
lation, thus obtaining more interpretable regression coefficients, and better, more
reliable predictions. In addition, tuning P tends to eliminate irrelevant or otherwise
extraneous predictors and further improve both prediction and interpretability.

Since the optimal P may depend on K, P should be tuned for each K, the optimal
(P∗,K∗) yielding the global maximum for CV-R2. Alternatively, as a matter of pref-
erence a final model may be based on a smaller value for P and/or K, such that the
resulting CV-R2 is within c standard errors of the global maximum, where c ≤ 1.

Since K can never exceed P, for P = K, the model becomes saturated and is
equivalent to the traditional regression model.4 For pre-specified K, when P is re-
duced below K, we maintain the saturated model by also reducing K so K = P. For
example, for K = 4, when we step down to 3 predictors, we reduce K so K = 3.
Similarly, when we step down to 1 predictor, K = 1. This is similar to traditional
stepwise regression with backwards elimination.

Prime predictors, those having direct effects, are identified as those having sub-
stantial loadings on S1, and suppressor variables, as those having substantial load-
ings on one or more other components, and relatively small loadings on S1. See
Sect. 5 for further insight into suppressor variables.

Since CCR is scale invariant, it yields identical results regardless of whether pre-
dictions are based on unstandardized or standardized predictors (Z-scores). Other
methods such as PLS-R and penalized regression (Ridge Regression, Lasso, Elas-
tic Net) are not scale invariant and hence yield different results depending on the
predictor scaling used.

3 A Simple Example with Six Correlated Predictors

Our first example makes use of data involving the prediction of car prices (Y) as a
linear function of 6 predictors, each having a statistically significant positive corre-
lation with Y (between 0.6 and 0.9).

• N = 24 car models
• Dependent variable: Y = PRICE (car price measured in francs)
• 6 Predictor Variables:

– X1 = CYLINDER (engine measured in cubic centimeters)
– X2 = POWER (horsepower)
– X3 = SPEED (top speed in kilometers/hour)

4 See Appendix for proof of this equivalence.
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– X4 = WEIGHT (kilograms)
– X5 = LENGTH (centimeters)
– X6 = WIDTH (centimeters)

The OLS regression solution (Table 1a) imposes no regularization, maximizing
R2 in the training sample. This solution is equivalent to that obtained from a satu-
rated (K = P = 6 components) CCR model. Since this solution is based on a rela-
tively small sample and correlated predictors, it is likely to overfit the data and the
R2 is likely to be an overly optimistic estimate of the true population R2. Table 1a
shows only 1 statistically significant coefficient (0.05) and unrealistic (negative) co-
efficient estimates for 3 of the 6 predictors, which are problems that can be explained
by model overfitting due to imposing no regularization.

Table 1: (a) (left) shows OLS Regression Coefficient results (P = K = 6) and (b)
(right) shows R2 and CV-R2 for different numbers of components K and for the final
CCR model (P = 3,K = 2)

Standardized
Unstandardized coefficients coefficients

β̂ Std. error β̂ ∗ t Sig.

CYLINDER –1.9 33.6 –0.02 −0.06 0.95

POWER 1,315.9 613.5 0.89 2.14 0.05

SPEED –472.5 740.3 –0.21 −0.64 0.53

WEIGHT 45.9 100.0 0.18 0.46 0.65

LENGTH 209.6 504.2 0.15 0.42 0.68

WIDTH –505.4 1,501.6 –0.07 −0.34 0.74

(Constant) 12,070.4 194,786.6 0.06 95

P K R2 CV-R2

6 1 0.7852 0.7457

6 2 0.8189 0.7461
6 3 0.8449 0.6732

6 4 0.8469 0.6455

6 5 0.8474 0.6371

6 6 0.8474 0.6342

3 2 0.8362 0.7690

To determine the value for K that provides the optimal amount of regularization,
we choose the CCR model that maximizes the CV-R2. For cross-validation we used
10 rounds of 6-folds, since 24 divides evenly into 6, each fold containing exactly 4
cars. Table 1b shows that K = 2 components provides the maximum CV-R2 based on
P = 6 predictors, and when the step-down algorithm is employed, CV-R2 increases
to 0.769 which occurs with P∗ = 3 predictors.5 While traditional OLS regression
yields a higher R2 in the analysis sample (0.847 vs. 0.836), the 2-component CCR

model with 3 predictors yields a higher CV-R2, suggesting that this CCR model will
outperform6 OLS regression when applied to new data.

Further evidence of improvement for the 2-component models over OLS regres-
sion is that the coefficients are more interpretable. Table 2 shows that the coefficients
in the 2-component CCR models are all positive, which is what we would expect if
we were to interpret them as measures of effect.7

5 The analysis was conducted using the CORExpress® package (patent pending) [1].
6 Since multiple rounds of 6-folds are performed, standard errors are available, which yield 95%
confidence intervals for CV-R2 of 0.746 ± 0.04 for the CCR model with 6 predictors and 0.769 ±
0.056 for the 3-predictor CCR model.
7 Interestingly, each CCR model based on an insufficient amount of regularization (K > 2) provides
uninterpretable coefficients, in each case exactly three coefficients turning out negative.
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Table 2 Comparison of re-
sults from PLSR (a) (left) with
unstandardized predictors,
and (b) with standardized
predictors, and CCR (c) with-
out variable selection and (d)
(right) with variable selection

PLS with PLS with
unstandardized standardized CCR with

predictors predictors CCR selection
(K∗ = 3) (K∗ = 2) (K∗ = 2) (K∗ = 2)

Training R2 0.83 0.81 0.82 0.84
CV-R2 0.69 0.76 0.75 0.77

Predictors β̂ ∗ β̂ ∗ β̂ ∗ β̂ ∗

CYLINDER −0.02 0.19 0.19 0.00

POWER 0.43 0.31 0.37 0.45

SPEED 0.17 0.22 0.20 0.10

WEIGHT 0.48 0.18 0.17 0.44

LENGTH −0.05 0.08 0.02 0.00

WIDTH 0.00 0.01 0.05 0.00

PLS-R with standardized predictors, the recommended PLS-R option when pre-
dictors are measured in different units, yields similar results to CCR here. When
the predictors remain unstandardized, PLS-R yields more components (K∗ = 3), two
negative coefficients, and substantially worse predictions (CV-R2 = 0.69), as the
much larger variance for the predictor CYLINDER causes this predictor to domi-
nate the first component, requiring two additional components to recover.

4 An Example with Near Infrared (NIR) Data

Next, we analyze high dimensional data involving N = 72 biscuits, each measured
at each of P = 700 near infrared (NIR) wave-lengths corresponding to every other
wavelength between the range 1,100–2,500 [2]. Since all 700 predictors are mea-
sured in comparable units in this popular PLS-R application, typically the 700 pre-
dictors are analyzed on an unstandardized basis, or standardized using Pareto scaling
[3] where the scaling factor is the square root of the standard deviation. As shown
above, results from PLS-R differ depending upon whether the predictors are stan-
dardized or not, while for the scale invariant CCR, no decision needs to be made
regarding such standardization, predictions being identical in either case.

The goal of modeling here is to reduce costs of monitoring fat content by pre-
dicting the percent fat based on spectroscopic absorbance variables from the NIR

frequencies. Following Kraemer and Boulesteix [4], we use N = 40 samples as the
calibration (training) set to develop models based on the 700 wave lengths.

It is well known that for NIR data, a column plot of regression coefficients exhibit
a sequence of oscillating patterns, the most important wavelength ranges being those
with the highest peak-to-peak amplitude. For example, for these data, wavelengths
in the 1,500–1,598 range yield a peak to peak amplitude of 0.109− (−0.203) =
0.312, based on a CCR model with K = 9 (see Fig. 1).

Table 3a compares the corresponding amplitudes obtained from CCR and both
unstandardized and Pareto standardized PLS-R models, where the number of com-
ponents is determined based on 10 rounds of 5-folds. As can be seen in Table 3a, all
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three models agree that absorbances from the 1,500–1,598 wavelengths tend to be
among the most important (relatively large amplitude).
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Fig. 1: Column plot of standardized coefficients output from XLSTAT-CCR

Previous analyses of these data excluded the highest 50 wavelengths since they
were “. . . thought to contain little useful information” [5]. Table 3a shows that CCR

identifies these wavelengths as least important (smallest amplitude), but the ampli-
tude of 0.44 resulting from PLS-R suggests that these wavelengths are important.

Figure 2 shows the standardized coefficients for the 50 highest wavelengths for
CCR and PLS-R models. As can be seen, the weights obtained from the CCR model
are small and diminishing, the coefficients for the highest wavelengths being very
close to 0. In contrast, PLS-R weights are quite high and show no sign of diminishing
for the highest wavelengths (Fig. 2(right)), a similar pattern being observed for PLS-
Pareto.

One possible reason that the conclusions from CCR and PLS-R differ regarding
the importance of these high wavelengths is that its scale invariance property allows
CCR to better determine that the high variability associated with these wavelengths
is due to increased amounts of measurement error. In other words, the much higher
amplitude obtained from PLS-R is likely due to the higher standard deviations of the
absorbances in this range.
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Table 3: (a) (left) Comparison of peak-to-peak amplitudes for various frequency
ranges based on three models, with the most and least important ranges according
to CCR in bold, and (b) (right) comparison of CV-R2 (highest is bold) obtained
from three models with (P = 700) and without (P = 650) the highest wavelengths
included among the predictors

Peak-to-peak amplitude
based on standardized coefficients

CCR PLSR PLS-Pareto
Wavelengths (K = 9) (K = 13) (K = 13)

1,100–1,198 0.16 0.12 0.19

1,200–1,298 0.24 0.15 0.24

1,300–1,398 0.11 0.08 0.13

1,400–1,498 0.27 0.25 0.21

1,500–1,598 0.31 0.31 0.32
1,600–1,698 0.23 0.14 0.15

1,700–1,798 0.27 0.24 0.22

1,800–1,898 0.20 0.15 0.17

1,900–1,998 0.07 0.47 0.36

2,000–2,098 0.22 0.37 0.30

2,100–2,198 0.16 0.17 0.15

2,200–2,298 0.18 0.30 0.29

2,300–2,398 0.18 0.55 0.47

2,400–2,498 0.06 0.44 0.25

CCR PLSR PLS-Pareto

K P = 700 P = 650 P = 700 P = 650 P = 700 P = 650

1 0.237 0.232 0.260 0.257 0.247 0.245

2 0.506 0.589 0.345 0.461 0.412 0.477

3 0.759 0.860 0.736 0.725 0.721 0.736

4 0.914 0.932 0.906 0.835 0.922 0.882

5 0.948 0.946 0.916 0.928 0.933 0.917

6 0.948 0.951 0.919 0.947 0.927 0.949

7 0.945 0.947 0.930 0.942 0.936 0.946

8 0.955 0.953 0.936 0.938 0.944 0.948

9 0.962 0.960 0.932 0.952 0.946 0.952

10 0.960 0.963 0.939 0.958 0.946 0.961

11 0.957 0.959 0.942 0.959 0.951 0.962
12 0.958 0.959 0.949 0.958 0.952 0.961

13 0.958 0.959 0.950 0.956 0.954 0.9059

14 0.958 0.958 0.947 0.953 0.953 0.957

15 0.958 0.957 0.946 0.952 0.952 0.956

CCR: Fat / Standardized coefficients PLS(unst): Fat / Standardized coefficients
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Fig. 2: Comparison of column plots of standardized coefficients for 50 high-
est wavelengths based on the CCR (left) vs. PLS-R estimated with unstandardized
predictors (right)
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To test the hypothesis that these higher wavelengths tend to be unimportant, we
re-estimated the models after omitting these variables. Table 3b shows that for all
three models, the CV-R2 increases when these variables are omitted, supporting the
hypothesis that these wavelengths are not important.

In order to compare the predictive performance of CCR with other regularization
approaches, 100 simulated samples of size N = 50 were generated with 14 predic-
tors according to the assumptions of OLS regression. An additional 14 extraneous
predictors, correlated with the 14 true predictors, plus 28 irrelevant predictors, were
also generated and included among the candidate predictors. The results indicated
that CCR outperformed PLS-R, Elastic Net, and sparse PLS with respect to mean
squared error, and several other criteria. All methods were tuned using an indepen-
dent validation sample of size 50 (for more details, see [6]).

5 Extension of CCR to Logistic Regression, Linear
Discriminant Analysis and Survival Analysis

When the dependent variable is dichotomous, the CCR algorithm generalizes di-
rectly to CCR-LOGISTIC and CCR-LDA respectively depending upon whether no
assumptions are made about the predictor distributions, or whether the normality
assumptions from linear discriminant analysis are made. In either case, the gener-
alization involves replacing Y by Logit(Y ) on the left side of the linear equations.
Thus, for example, under CCR-LOGISTIC and CCR-LDA Eq. 2 becomes:

Logit(Y ) = α + γ(2)1.g S1 +λ (2)
g Xg (3)

where parameter estimation in each regression equation is performed by use of the
appropriate ML algorithm (for logistic regression or LDA).

M-fold cross-validation continues to be used for tuning, but CV-R2 is replaced
by the more appropriate statistics CV-Accuracy and CV-AUC, AUC denoting the
Area Under the ROC Curve. Accuracy is most useful when the distribution of the
dichotomous Y is approximately uniform, about 50% of the sample being in each
group. When Y is skewed, accuracy frequently results in many ties and thus is not as
useful. In such cases AUC can be used as a tie breaker with Accuracy as the primary
criterion or in the case of large skew, AUC can replace accuracy as primary.

For survival data, Cox regression and other important log-linear hazard models
can be expressed as Poisson regression models since the likelihood functions are
equivalent [7]. As such, CCR can be employed using the logit equation above where
Y is a dichotomous variable indicating the occurrence of a rare event. In this case
since Y has an extreme skew, the AUC is used as the primary criterion.

Similar to the result for CCR-linear regression, predictions obtained for the satu-
rated CCR model for dichotomous Y are equivalent to those from the corresponding
traditional model (logistic regression, LDA and Poisson regression).8 In addition, for

8 In general, the saturated model occurs when K ≥ minimum(P,N −1).
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dichotomous Y the 1-component CCR model is equivalent to Naı̈ve Bayes, which is
also called diagonal discriminant analysis [8] in the case of CCR-LDA.

In a surprising result reported in [9], for high dimensional data (small samples
and many predictors) generated according to the LDA assumptions, traditional LDA

does not work well, and is outperformed by Naı̈ve Bayes. Because of the equiva-
lences described above, this means that the 1-component CCR model should outper-
form the saturated CCR model under such conditions. However, we know that the
Naı̈ve Bayes model will not work well if predictors include 1 or more important
suppressor variables, since suppressor variables tend to have 0 loadings on the first
component and require at least two components for their effects to be captured in
the model [10]. Thus, a CCR model with two components should outperform Naı̈ve
Bayes whenever important suppressor variables are included among the predictors.

Despite extensive literature documenting the enhancement effects of suppressor
variables (e.g. [11, 12]), most pre-screening methods omit suppressor variables prior
to model development, resulting in suboptimal models.9 Since suppressor variables
are commonplace and often are among the most important predictors in a model
[10], such screening is akin to “throwing out the baby with the bath water.”

In order to compare the predictive performance of CCR with other sparse model-
ing methods in a realistic high dimensional setting, data were simulated according
to LDA assumptions to reflect the relationships among real world data for prostate
cancer patients and normals where at least one important suppressor variable was
among the predictors. The simulated data involved 100 samples each with N = 25
cases in each group, the predictors including 28 valid predictors plus 56 that were
irrelevant. The sparse methods included CCR, sparse PLS-R [13, 14] and the penal-
ized regression methods Lasso and Elastic Net [15–17]. For tuning purposes, cross-
validation with five folds was used with accuracy as the criterion for all methods.

Results showed that CCR with typically 4–10 components outperformed the other
methods with respect to accuracy (82.6% vs. 80.9% for sparse PLS-R, and under
80% for Lasso and Elastic Net), and fewest irrelevant predictors (3.4 vs. 6.2 for
Lasso, 11.5 for Elastic Net and 13.1 for sparse PLS-R). The most important variable,
which was a suppressor variable, was captured in the CCR model in 91 of the 100
samples compared to 78 for sparse PLS-R, 61 for elastic net and only 51 for Lasso.
For further details of this and other simulations see [6].

6 Extension to Latent Class Models

In practice, sample data often reflects two or more distinct subpopulations (latent
segments), with different intercepts and/or different regression coefficients, possibly
due to different key drivers or at least different effects for the key drivers. In this
section we describe a 2-step hybrid approach for identifying the latent segments
without use of the predictors (step 1) and then using CCR to develop a predictive

9 For a rare exception, ISIS (see [19]) corrects for the exclusion of suppressor variables by the
popular SIS screening. CCR has been shown to outperform ISIS in a simulation study [10].
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model based on a possibly large number of predictors (step 2). If the predictors
are characteristics of the respondents, then the dependent variable (Y ) would be the
latent classes, while if the predictors were attributes of objects being rated, Y would
be taken as the ratings.

As an example of the first case where the latent segments have different inter-
cepts, in step 1 a latent class (LC) survival analysis was conducted on a sample of
patients with late stage prostate cancer. The LC model identified both long-term and
short term survival groups [18]. The goal in that study was to use gene expression
measurements to predict whether patients belong to the longer or shorter survival
class. Since the relevant genes were not known beforehand, the large number of
available candidate predictors (genes) ruled out use of traditional methods.

In this case, CCR can be used to simultaneously select the appropriate genes and
develop reliable predictions of LC membership based on the selected genes. One
way to perform this task is to predict the dichotomy formed by the two groups of
patients classified according to the LC model. However, this approach is suboptimal
because the classifications contain error due to modal assignment. That is, assigning
patients with a posterior probability of say 0.6 of being a long term survivor to
this class (with probability 1) ignores the 40% expected misclassification error (1−
0.6= 0.4). The better way is to perform a weighted logistic (or LDA) CCR regression,
where posterior probabilities from the LC model serve as case weights.

Table 4: Results from CCR showing that P = 3 of the 16 attributes were selected for
inclusion in the model together with the random intercept CFactor1

Results for segment 1

Standardized
Variable coefficient

CFactor1 0.425

Fructose −0.128

Sweeteningpower 0.238

Acidity −0.325

Results for segment 2

Standardized
Variable coefficient

CFactor1 0.555

Sweeteningpower −0.169

Smellintensity −0.129

Acidity 0.214

As an example of the second case, consider ratings on 6 different orange juice
(OJ) drinks provided by 96 judges [20]. Based on these ratings, in step 1 a LC regres-
sion determines that there are two latent segments10 exhibiting different OJ prefer-
ences. In step 2, separate weighted least squares CCR regressions are performed for
each class to predict ratings based on the 16 OJ attributes. For a given class, posterior
membership probabilities for that class are used as case weights.

For this application CCR is needed because traditional regression can include no
more than six attributes in the model due to the fact that the attributes describe the
six juices rather than the respondents. In addition, since these data consist of mul-
tiple records (6) per case, residuals from records associated with the same case are
correlated, a violation of the independent observations assumption. This violation

10 The number of classes was determined based on the Bayesian Information Criterion. For further
details of this methodology, see [21].



76 J. Magidson

is handled in step 1 by the LC model satisfying the “local independence” assump-
tion. In step 2, the cross-validation is refined by assigning records associated with
the same case to the same fold. Separate CCR models are developed for each LC

segment, and then combined to obtain predicted ratings, providing substantial im-
provement over the traditional regression (CV-R2 increases from 0.28 to 0.48). Re-
sults of step 2 are summarized in Table 4, showing that the most important attribute
for both segments is acidity since it has the highest standardized coefficient mag-
nitude. Segment 1 tends to prefer juices with low acidity (negative coefficient) and
high sweetening power (positive coefficient) while the reverse is true for segment
2. Details of this analysis are provided in tutorials from www.statisticalinnovations.
com.
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Appendix

Claim: OLS predictions based on X are equivalent to predictions based on S = XA,
where A is a nonsingular matrix.

Proof:

• Predictions based on X :

Ŷ = X β̂ = X(X ′X)−1X ′Y.

• Predictions based on S:

Ŷ = Sγ̂

= S(S′S)−1S′Y = XA((XA)′XA)−1(XA)′Y

= XA(A′X ′XA)−1A′X ′Y = XAA−1(X ′X)−1A′−1A′X ′Y

= X(X ′X)−1X ′Y.
Equations 4 and 5 above follow from standard operations with square matrices:

(BC)′ =C′B′ and (BC)−1 =C−1B−1.

It also follows that the OLS regression coefficients for X are identical to those
obtained from CCR with a saturated model (i.e., K = P).

www.statisticalinnovations.com
www.statisticalinnovations.com
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[13] H. Chun and S. Keleş, “Sparse partial least squares regression for simultaneous dimension
reduction and variable selection,” University of Wisconsin, Madison, 2009.
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