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    Abstract     The term epigenome refers to the tissue- and cell-type-specifi c collection 
of DNA methylation, histone modifi cations, and chromatin accessibility and the set 
of coding and noncoding RNA molecules (Bernstein et al., Cell 125:315–326, 2006) 
that are dynamically modulated throughout the lifetime of an individual. Epigenetic 
modifi cations are critical for regular developmental processes in the intestine, but 
variation in the epigenome has also been associated with the development of intes-
tinal diseases, including infl ammatory bowel disease (Vavricka et al., Infl ammatory 
Bowel Diseases 17:1530–1539, 2011). We hypothesize that plasticity of the epig-
enome in different cellular compartments links genetic susceptibility and environ-
mental infl uences and may determine “decision points” in the progression towards 
disease onset (i.e., manifestation) and/or progression of IBD. This chapter reviews 
selected aspects of IBD research with the aim to link the current knowledge of 
genetic, epigenetic, and functional studies into an integrated view on the role of 
epigenetic variation in intestinal infl ammation.  
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        Introduction 

 The term epigenome refers to the tissue- and cell-type-specifi c collection of DNA 
methylation, histone modifi cations, and chromatin accessibility and the set of cod-
ing and noncoding RNA molecules [ 1 ] that are dynamically modulated throughout 
the lifetime of an individual. Epigenetic modifi cations are critical for regular devel-
opmental processes in the intestine, but variation in the epigenome has also been 
associated with the development of intestinal diseases, including infl ammatory 
bowel disease (IBD). We hypothesize that plasticity of the epigenome in different 
cellular compartments links genetic susceptibility and environmental infl uences and 
may determine “decision points” in the progression towards disease onset (i.e., 
manifestation) and/or progression of IBD. This chapter reviews selected aspects of 
IBD research with the aim to link the current knowledge of genetic, epigenetic, and 
functional studies into an integrated view on the role of epigenetic variation in intes-
tinal infl ammation.  

    Epigenetics: Background, Technology, and Potential 
for Common Disease Research 

 Epigenetics can be viewed as paradigm for phenotypic plasticity and was intro-
duced as a separate fi eld to complement genetics by Conrad Waddington in the early 
1940s when studying how the genotype relates to different phenotypes. Although 
the underlying mechanisms were unknown at the time, Waddington envisioned the 
existence of an “epigenotype” to explain the phenotypic plasticity observed during 
normal development [ 2 ]. Since then, many of the mechanisms have been worked 
out in the context of a wide range of biological processes, such as X-chromosome 
inactivation in female mammals [ 3 ], parent-of-origin-specifi c gene expression 
(imprinting) [ 4 ], and developmental [ 5 ] and cellular [ 6 ] reprogramming to name but 
a few. Furthermore, altered epigenetic mechanisms have been linked to cancer as 
early as 1983 [ 7 ] and more recently also to other common diseases [ 8 ,  9 ]. Based on 
these fi ndings, our perception of epigenetics has changed over the years and was 
recently redefi ned as “structural adaptation of chromosomal regions so as to regis-
ter, signal or perpetuate altered activity states” [ 10 ]. 

 Great progress has also been made in elucidating the types of epigenetic marks 
that register, signal, and perpetuate the activity states and the enzymes that read, 
write, and erase these marks which, in concert with other modifi ers, bring about the 
structural adaptation of chromosomal regions. There is ongoing debate on what 
constitutes a true epigenetic mark but also agreement that all marks under consider-
ation at least modulate the epigenome and hence are here referred to as chromatin 
or epigenome modulators of which there are three main categories. The best studied 
is DNA methylation in the context of CpG dinucleotides. Low methylation at 
 promoters and high methylation at gene bodies are usually associated with gene 
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expression and, conversely, high promoter and low gene body methylation are 
 associated with gene silencing [ 11 ]. This simple on/off concept has recently 
become more complex following the discovery of non-CpG methylation and 
other cytosine modifi cations [ 12 ]. Based on current knowledge, genomic cytosine 
bases can exist in at least six states (unmethylated, C5-methylated, N3-methylated, 
C5-hydroxymethylated, C5-formylated, C5-carboxylated) and more modifi cations 
may exist and at other bases as well. On the protein level, histone tails are the target 
for an ever-increasing number of posttranslational modifi cations (that form the sec-
ond category), including acetylation, methylation, phosphorylation, ribosylation, 
ubiquitylation, sumoylation, citrullination, and some even more exotic modifi ca-
tions [ 13 ]. With respect to function, they can loosely be grouped into activating, 
repressive, or bivalent modifi cations. The latter defi ne a combination of activating 
(e.g., H3K4Me3) and repressive (H3K427Me3) modifi cations that have been shown 
to mark poised chromatin which is typical for developmental genes [ 1 ]. The third 
and fi nal category comprises all the remaining modulators, including the enzymes 
that lay down the modifi cations (the “writers”), the proteins that recognize them 
(the “readers”), and the enzymes that remove them (the “erasers”) as well as nucleo-
somes, chromatin-remodeling complexes, and noncoding RNAs. Collectively, these 
chromatin modifi ers provide function to the genome and defi ne the epigenome. 

 The main bottleneck that has hampered epigenetic analysis of common diseases 
in the past has been technology. While genome-wide association studies (GWAS) 
[ 14 ] using single-nucleotide polymorphisms (SNPs) uncovered well over 1,000 new 
disease loci across all investigated human diseases with a tally of over 160 loci in 
IBD and signifi cantly advanced the genetic analysis [ 15 ], no comparable technol-
ogy was available for epigenetic analysis. This has changed with the emergence of 
genome-wide methods [ 16 ,  17 ] for the analysis of DNA methylation which is the 
most informative and accessible epigenetic modifi cation in a clinical context. The 
currently most promising platform with respect to accuracy, coverage, throughput, 
and cost is the Illumina 450k Infi nium BeadChip which is essentially the epigenetic 
equivalent of the 500k SNP chip that proved highly successful for GWAS. An obvi-
ous next step was to adapt GWAS to epigenetic analysis to enable epigenome- wide 
association studies (EWAS). Although both analyses have much in common, EWAS 
also presents new challenges. As the epigenotype is cell-type specifi c, special care 
must be taken to select the correct study material. In other words, blood-derived 
DNA (which is suitable for all GWAS) is not necessarily suitable for all EWAS. 
Another problem is a phenomenon known as reverse causality. While GWAS asso-
ciations are usually linked to the underlying causal variation by linkage disequilib-
rium, EWAS associations can also be the consequence (rather than the cause) of the 
phenotype under investigation. This problem can be overcome by inclusion of pro-
spectively sampled individuals in the study design as demonstrated in the fi rst 
EWAS for type 1 diabetes [ 18 ]. As the genotype and epigenotype are inherently 
linked, the need to distinguish genetic from epigenetic effects adds further complex-
ity but can be addressed, e.g., by using monozygotic twins that are disease discor-
dant for the discovery phase [ 19 ]. These advances have paved the way to apply 
epigenetic analysis to common diseases, and the fi rst wave of EWAS is now well 
underway, including for infl ammatory bowel diseases.  
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    Clinical Relevance of Epigenetic Events in Infl ammatory 
Bowel Diseases 

 Infl ammatory bowel diseases are complex disorders, which are known to be strongly 
infl uenced by the genetic background [ 20 ]. The high familiar concordance observed 
in IBD initially introduced this concept [ 21 ]. Further studies identifying various 
disease-associated variants supported this hypothesis [ 22 ]. Several identifi ed vari-
ants additionally provide insight into potential disease relevant molecular mecha-
nisms. A prominent example is  NOD2 , which was the fi rst disease gene identifi ed 
for Crohn’s disease [ 23 ,  24 ] and which is functionally linked to bacterial recogni-
tion. Variants of  IL23R  [ 25 ] and  IL12B  [ 26 ] are associated with both Crohn’s dis-
ease and ulcerative colitis and are involved in immune system activation. 

 As for many complex disorders, the identifi ed genetic variants cannot explain the 
entire disease risk: In Crohn’s disease, currently 140 variants are known to be disease 
associated, and similarly, in ulcerative colitis the number of currently identifi ed vari-
ants is 133 [ 27 ]. In this context, one has to keep in mind that the probability of accu-
mulating all the variants at once in one single genome is extremely low, especially 
since many of those variants have very low frequencies. Consequently, the disease risk 
explained by genetics for a given genome is of purely theoretical nature. Twin concor-
dance rates, which are higher than the currently explained disease risk [ 28 ], indicate 
that several variants are not identifi ed yet. The resulting gap is generally referred as 
missing heritability [ 29 ]. However, the space beyond this gap is even less explored. 

 By defi nition, complex disorders are infl uenced not only by the genetic back-
ground. Environmental factors, such as nutrition, toxin exposure, or the intestinal 
microbiota—to name but few—are being discussed as potential contributors to dis-
ease risk and manifestation. Similarly, a high family concordance rate does not neces-
sarily have to be attributed to the genetic background exclusively. Shared environment, 
nutrients, or toxins could also explain part of the family concordance. Finally, all these 
factors may interact leading to additional events of pathophysiological relevance [ 30 ]. 

 One integral part of this disease risk which cannot be explained by the genetic 
background exclusively is epigenetic modifi cations. Traditionally, epigenetic events 
are defi ned as heritable modifi cations in DNA expression without changing the 
DNA sequence in itself [ 31 ]. Besides DNA methylation, histone modifi cation and 
nucleosome positioning are integrated in this defi nition. More recent defi nitions 
include micro-RNAs as regulators of gene activity in the absence of DNA sequence 
variation [ 8 ]. In complex disorders, a combination of heritable as well as de novo 
events is being considered potentially disease relevant.  

    Epigenetic Events in Complex Diseases: Heading the Way 
to Infl ammatory Disorders 

 Several scenarios, most of them with an oncological background, are known where 
epigenetic modifi cations lead to disease manifestation. A popular example is the 
global hypomethylation often observed in cancer cells [ 32 ]. In the same line, it has 
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been shown that hypomethylation of several genes (e.g., 16 INK4a – p14   ARF  ( CDKN2A ) 
and  MGMT ) can be a causal event in early tumorigenesis [ 33 ]. Following the 
expanded defi nition of epigenetics, miRNAs which are widely downregulated in 
human tumors [ 34 ] as a result of hypomethylated miRNA promoters may play an 
important epigenetic role in cancers [ 35 ]. Beside the large number of studies in 
cancer, various other diseases have been the target of epigenetic research, showing 
the pathophysiological relevance of epigenetic modifi cations and their interactions 
to environmental factors [ 9 ,  36 – 39 ]. Interestingly, only very few studies address 
epigenetic events in infl ammatory diseases, where a regulatory network of signal- 
specifi c and gene-specifi c functions is required controlling appropriate responses 
[ 40 ]. Initial studies have shown a link between the hypomethylation of Toll-like 
receptor 2 (TLR2) and increased proinfl ammatory response to bacterial peptidogly-
can in cystic fi brosis [ 41 ]. Bacterial infection as an environmental factor was shown 
to have impact on the epigenetic status of the genome [ 42 ], while a recent study 
presented a functional map of the psoriasis epigenome [ 43 ], illustrating how this 
potentially could be linked to the transcriptome. Similar transcriptional control is 
provided by micro-RNAs, who are believed to target up to 30 % of all genes [ 44 ]. 
In concordance with DNA methylation, micro-RNAs have been shown to have sig-
nifi cant impact on diseases, including infl ammatory disorders [ 45 ,  46 ].  

    Disease-Associated DNA Methylation in Infl ammatory 
Bowel Disease 

 Taken together, this illustrates the potential impact epigenetic modifi cations may 
have on disease risk, manifestation, and progression in Crohn’s disease and ulcer-
ative colitis. In fact, several studies have addressed this issue. First approaches in 
1996 showed that DNA hypomethylation is a common pattern observed in the rectal 
mucosa of ulcerative colitis patients [ 47 ]. Interestingly, this effect was observed in 
patients with long-standing ulcerative colitis, supporting the hypothesis that epigen-
etic modifi cations in a given tissue are increasing over time. Epigenetic maturation 
and its potential impact on the onset of disease which is in early adulthood have 
been studied in mouse models indicating that mucosal epigenetic maturation contin-
ues after early adulthood in mouse, which could play a role in age-associated 
increase in colitis susceptibility [ 48 ]. 

 Most studies in this fi eld focused on the methylation of individual infl ammation 
or immune-process-associated target genes. IFNγ methylation was investigated in 
various cell types present in the human gut, concluding that its methylation status is 
relevant for the modulation of cytokine secretion in the mucosa [ 49 ]. This subject 
was followed up in 2011, where IFNγ methylation levels correlated with immune 
response to microbial components and expression of IFNγ in ulcerative colitis 
patients, suggesting a categorization of patients based on this response [ 50 ]. 
Quantifi cation of DNA methylation of the promoter region of interferon regulatory 
factor 5 ( IRF5 ) aimed to create a link between epigenetics and genetics, since 
A 5-bp insertion-deletion (indel) polymorphism in the promoter of  IRF5  has been 
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associated with infl ammatory bowel diseases [ 51 ]: However, the results implicate 
that epigenetic dysregulation of the  IRF5  promoter is unlikely to be associated 
with IBD [ 52 ]. 

 Recently, evolving technology enabled assessment of disease-associated meth-
ylation in tissues derived from patients infl ammatory bowel disease on a broader 
scale: Quantifi cation of CpG methylation in a set of 1,505 CpG sites corresponding 
to 807 genes identifi ed seven sites being differentially methylated between healthy 
and disease individuals [ 53 ]. This was expanded to a genome-wide level in Crohn’s 
disease, where 50 methylation sites were identifi ed to be epigenetically modifi ed, 
including several genes involved in immune activation such as  MAPK13 ,  FASLG , 
 PRF1 ,  S100A13 ,  RIPK3 , and  IL21R  [ 54 ]. We have recently published a fi rst epig-
enome-wide DNA methylation analysis (EWAS) combining 27k Illumina, MedIP-
Chip and expression arrays from intestinal biopsies of twins discordant for UC. The 
integrated analysis identifi ed 61 epigenetic disease loci, which were validated in a 
larger case-control cohort of unrelated individuals [ 62 ]. 

 One of the major drawbacks in current approaches investigating the pathophysio-
logical impact of epigenetic modifi cations is the lack of tools to specifi cally validate 
single CpG modifi cations in a model system. Currently, only demethylation agents, 
such as azacitidine and decitabine, which have been used in the treatment of myelo-
dysplastic syndrome, are available [ 55 ,  56 ]. By inhibiting methyltransferases, these 
agents work genome wide. Consequently, it is unclear to which extent the observed 
cellular effects can be attributed to primary modifi cations of the methylation of 
target genes, or to secondary effects, or to interactions of all these.  

    Regulatory miRNA Networks in the Pathophysiology 
of Infl ammatory Bowel Diseases 

 In contrast to DNA methylation, epigenetic research in the fi eld of micro-RNAs 
(miRNAs) has access to such target-specifi c tools: Sequences, complementary to 
the micro-RNAs, so-called anti-miRs (or antagomirs), can be used to modulate 
endogenous miRNA levels. In addition, reporter gene assays represent a powerful 
tool to validate miRNA fi ndings in model systems. After their discovery in 1992 
[ 57 ], miRNAs have been found in all eukaryotes, and recent genome-wide compu-
tational screens for miRNA targets in humans predict that at least 10 % [ 58 ] to 30 % 
[ 44 ] of all genes are regulated by iRNAs. Several studies indicate that miRNAs play 
an important role in infl ammatory scenarios [ 59 – 61 ], including the hypothesis that 
miRNAs are required to control and balance a specifi c infl ammatory response [ 62 ]. 
Several miRNAs were identifi ed to play a potential pathophysiological role in 
infl ammatory bowel diseases, especially when addressing the disease subtypes spe-
cifi cally: In Crohn’s disease miRNAs were associated with ileal and colonic mani-
festations [ 63 ], suggesting that the specifi city of miRNA patterns may help to 
identify disease subtypes. In ulcerative colitis, variants in a noncoding region were 
shown to alter miRNA functionality [ 64 ], providing an explanation on how these 
variants could exhibit their functional effect. Similarly, a variant in the  IL23R  gene, 
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which is associated with IBD, has been reported to result in inhibition of miRNA 
binding to this allele, altering the control of this gene which fi nally may lead to 
sustained IL23R signaling, promoting the chronicity of IBD [ 65 ]. This was fol-
lowed by recent approaches creating genome-wide maps of circulating miRNAs in 
ulcerative colitis, supporting the hypothesis that many previously identifi ed variants 
located in noncoding regions might contribute to disease susceptibility by altering 
miRNA sequences [ 66 ]. Interestingly, some abnormally expressed miRNA could be 
linked to inactive colonic mucosa of patients with IBD [ 67 ], suggesting that not 
only an active infl ammation results in dysregulation of miRNAs. 

 In summary, the results of studies targeting DNA methylation as well as miRNAs 
in infl ammatory bowel disease represent not only a set of independent disease- 
associated mechanisms but also create a link between variants in noncoding regions 
and effects on pathophysiologically relevant target genes. Finally, epigenetics might 
help to answer the question whether we not only inherit the genetic background of 
our ancestors but also the footprints of their lifestyle.  

    Dialogue Between Epigenetics, Environmental Infl uences, 
and the Intestinal Microbiome in Infl ammatory Bowel Disease 

 Due to the increasing prevalence of IBD in industrialized societies, the question 
arises which environmental factors lead to changing manifestation of disease, as 
this observation cannot be attributed to changes in genetic background of the respec-
tive populations [ 20 ]. While many factors have been discussed, the most drastic 
lifestyle changes within the last century are likely related to childhood infection 
rates (due to vaccination and antibiotics), increased hygiene in general and nutri-
tional habits. It has been shown in epidemiological studies that improvement of 
hygienic conditions (such as warm water or water toilets) is positively correlated 
with incidence rates for Crohn’s disease [ 68 ,  69 ]. Likewise in Europe there is a 
striking north–south and west–east gradient of IBD prevalence, and immune- 
mediated diseases in general are much more common in larger cities than in rural 
areas and are related to the presence of bacterial antigens [ 70 – 72 ]. Of course, it 
could be speculated that all these observations are infl uenced by mere confounding 
and the true factors are yet to be identifi ed. Still, several striking hypotheses have 
been raised by genetic studies as well as functional underpinnings that point to a 
crucial role of the balance of intestinal host–microbiome interactions, and it is 
tempting to speculate that this long-term infl uencing factor actually is a major deter-
minant of epigenetic profi les along the entire gastrointestinal tract. For this hypoth-
esis several facts about this type of stable host–microbe interaction are important. 
Large international efforts have been made to systematically profi le the properties 
and functional repertoires of human microbial communities [ 73 ,  74 ]. These studies 
have clearly shown a huge diversity of microbial species that is specifi c to the body 
region as well as to the individual (microbial “fi ngerprint”). Even after drastic life 
history events, e.g., intestinal infections or courses of combination antibiotic 
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therapies, intestinal microbial consortia display evidence of resilience, i.e., after a 
certain time the specifi c consortia return to their previous diversity that is similar to 
the one before the event. It has been proposed that only few stable states of the 
human intestinal core microbiome exist, the so-called enterotypes [ 75 ]. These 
metagenomic states, representing differences in core metabolic activities and path-
ways, could be caused by the genetic (and epigenetic) makeup of the host, but on the 
other hand the enterotypes together may also imprint on the long-term epigenetic 
(and thus functional) profi les in the different cellular compartments of the intestinal 
mucosa [ 76 ]. Exciting data point to long-term infl uences of dietary modifi cations on 
microbial communities that in turn cause functional changes in the human host. 
This principle was fi rst described in animal models of obesity, where microbial 
communities that were transplanted from obese individuals led to increased energy 
harvest and weight gain in lean individuals [ 77 ]. This principle of microbiota- 
transmissible susceptibility has now been expanded to a number of immune- 
mediated diseases including IBD. In a genetic model of amino acid malnutrition 
resulting in dysbiotic microbial communities and increased susceptibility to colitis, 
it has been shown that long-term dietary supplement with chemically modifi ed tryp-
tophan resulted in changes of antimicrobial peptide profi les and decreased infl am-
matory responses [ 78 ]. Interestingly, the infl ammatory phenotype could be 
transmitted to germfree wild-type animals by stool transplantation pointing to a 
crucial role of the microbiome in exerting this long-term effect. Further, the state of 
the intestinal microbiome has been shown to imprint on long-term functional prop-
erties of natural killer cells that result in different outcomes after experimental 
induction of colitis [ 79 ]. This effect was only restricted to a defi ned “vulnerable” 
period in the immunological life history and linked to changes in DNA methylation 
patterns making it likely that changes in the cell-type-specifi c epigenomes may 
modulate infl ammatory responses in the long term. Along this line, in a larger cohort 
of monozygotic twins, stable correlations between the presence of distinct bacterial 
species and certain host transcripts or transcript profi les have been shown [ 80 ]. In 
IBD twins, this stable correlation is lost, which points to a gradual loss of epigenetic 
control of this two-way interaction. 

 It will thus be interesting to link the more classical view of nutrigenomics that is 
regularly defi ned as the investigation of how food components impact on pheno-
type–genotype interactions [ 81 ] with the “other” dimension of our intestinal 
genome, the microbiome, and related epigenetic marks. The advent of large-scale 
sequencing now allows for time and cost-effi cient investigation of different sequence 
spaces, including the many epigenomes of the intestinal tract and their potential 
functional consequences (see Fig.  9.1 ). For the fi rst time, the hypothesis that epigen-
etic modifi cations are the missing connection between genetic predisposition, envi-
ronmental infl uences, and disease manifestation can be tested and put into a 
functional and clinical perspective. Several consortia have been launched within the 
framework of the International Human Epigenome Consortium (IHEC) including 
the BLUEPRINT [ 82 ] and DEEP networks that exactly address these questions in 
the different cellular compartments of the intestinal mucosa.
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       Is Epigenetics the Missing Link Between Infl ammation 
and Cancer? 

 Tissue damage, wound healing, and continuously increased cell proliferation are 
only a few mechanisms of infl ammation, which are believed to contribute to the 
initiation and development of cancer [ 83 ]. However, many elements of this link are 
still not understood. Since tumor tissue is often found to be globally hypomethyl-
ated and locally hypermethylated [ 32 ] which is believed to inactivate tumor sup-
pressor genes [ 84 ], a key question is how infl ammation can promote such changes 
in methylation. A general principle discussed in this context is infl ammation- 
mediated cytosine damage: DNA damage caused by infl ammatory agents such as 
reactive oxygen species can lead to inappropriate methylation, fi nally resulting in 
the development of cancer [ 85 ]. One pioneering study in this fi eld demonstrated that 
epigenetic modifi cation of the promoter of E-cadherin is associated with ulcerative 
colitis in patients undergoing colectomy [ 86 ], hypothesizing about its role in the 
progression from chronic infl ammation to cancer. Interestingly, assessment of the 
methylation of 11 genes comparing 48 ulcerative colitis-associated cancers, 21 
ulcerative colitis-associated dysplasias and 69 sporadic colorectal cancers could not 
show that epigenetic modifi cations lead to more aggressive clinical courses [ 87 ]. In 
contrast to that, other studies linked altered methylation in several target genes to 

  Fig. 9.1    Scheme of cellular compartments of the intestinal mucosa that are potentially infl uenced 
by epigenetic alterations in IBD       
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predisposition, manifestation, or progression of colorectal cancer in patients with 
ulcerative colitis as well as in model systems: Studies on the alternate reading frame 
p14 (ARF) [ 88 ], WNT signaling pathway genes [ 89 ], DNA mismatch repair genes 
[ 90 ], genes coding for the tumor suppressors ESR1 and N33 [ 91 ], and death- 
associated protein kinase DAPK [ 92 ] supported this concept. 

 Similarly, several miRNAs have been shown to potentially play a role in infl am-
matory bowel-associated neoplastic transformation: miRNA-31 dysregulation was 
presented as a candidate in the context of chronic infl ammation progressing into 
tumor. This micro-RNA has been also shown to increase with disease progression 
in IBD patients [ 93 ]. Neurotensin, which promotes infl ammation and colon cancer 
by activating neurotensin-1 receptor, has been shown to stimulate the expression of 
miR-21 and miR-155, suggesting a functional link. Furthermore, tissue levels of 
both micro-RNAs correlated with tumor stage in human colon tumor samples [ 94 ]. 
Recent studies have identifi ed several miRNAs being regulated during the progres-
sion from dysplasia to cancer in patients with IBD (miR-122, miR-181a, miR-
146b- 5p, let-7e, miR-17, miR-143) [ 95 ]. 

 As the potential development of colorectal cancer is one of the most serious 
complications for patients with IBD, the need of a more detailed understanding how 
infl ammation can progress is evident. Epigenetic modifi cations, especially DNA 
methylation, may represent an infl ammatory memory in the intestinal mucosa. 
However, as many of the studies provide mostly an exemplary view on a selected 
group of patients, drawing conclusions on the validity of the results for larger 
cohorts should be undertaken carefully. Further functional studies, documenting 
both the functional background and the clinical validity, will be required to further 
progress in this fi eld.  

    Outlook: Epigenetic Strategies in Diagnostics and Treatment 
of Infl ammatory Bowel Disease 

 Biomarkers to classify diseases or disease subtypes have been always a major goal 
in epigenetic research. However, providing validated biomarkers of adequate diag-
nostic value is a challenging and considerably expensive endeavor. Most publica-
tions are descriptive and use the term biomarker in the context of an observed 
molecular pattern, without the fi nal validation which could demonstrate the validity 
of this observation in a clinical setting. In fact, most current approaches cannot 
afford taking their fi ndings into very large cohorts. Such cohorts could be only cre-
ated in joint efforts between academia and industry [ 96 ]. As epigenetic modifi ca-
tions in IBD have been linked to cancer, several therapeutical avenues from the fi eld 
of cancer drugs could be potentially of interest in the therapy of IBD. However, it 
has been recently questioned whether premature claims on the effectiveness of 
some drugs are the result of peer pressure rather than the result of validated clinical 
research [ 97 ]. 
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 Independent of these shortcomings, several studies aimed to utilize the  specifi city 
of observed epigenetic patterns. Easily accessible biomaterials, such as peripheral 
blood, are of particular interest in this context: In children, where noninvasive meth-
ods are often favored, a study has presented 11 CD-associated serum miRNAs 
potentially suitable for diagnostic purposes [ 98 ]. Similarly, differentiating active 
ulcerative colitis from Crohn’s disease was possible using a defi ned set of miRNAs 
from peripheral blood in adults [ 99 ], further supporting the hypothesis of specifi c 
patterns. A recent study confi rmed this concept with a different and reduced set of 
miRNAs in circulating blood [ 100 ], which suggests that the number of specifi c sig-
nals is substantially larger than the number of biomarkers currently published. 

 A major issue of the upcoming large-scale epigenomic studies in IBD will be the 
elucidation of cellular specifi city of such epigenetic events. As epigenetic profi les 
are highly cell-type specifi c [ 16 ,  17 ,  101 ], most of the previous studies aiming to 
develop clinical biomarkers or novel therapeutic principles suffer from the fact that 
sum signals (i.e., the entire mucosa or whole peripheral blood) were investigated. 
Even reproducible changes could thus refl ect secondary differences in cellular com-
position rather than pathophysiologically relevant differences in epigenetic profi les. 
If epigenetic marks are to be translated to clinical therapies, the molecular chain of 
events has to be detected and linked to defi ned cell populations. It is evident that 
epigenetic variation may have broad consequences on cellular phenotypes in all 
functional compartments of the intestinal mucosa (see Fig.  9.1 ). It is thus important 
to experimentally understand the impact of certain marks in a functional context, 
e.g., how are lineage decisions infl uenced by epigenetic alterations in intestinal epi-
thelial stem cells? What is the impact of epigenetic modifi cations on tolerance to 
microbial stimuli in professional migratory immune cells? Is there a trans-genera-
tional effect of infl ammatory effects that can be attributed to epigenetic principles? 
If these aims can be reached, it is likely that we can start looking for epigenetic 
marks (that could possibly be linked to microbiome changes) even prior to clinical 
manifestation of disease. It will be a challenge to identify therapeutic principles that 
specifi cally target single epigenetic modifi cations; so far compounds like HDAC 
inhibitors completely lack target specifi city, but still have been found effi cacious in 
defi ned infl ammatory indications like systemic sclerosis. Patterns of epigenetic 
marks represent a dynamic picture into etiology. The ultimate goal of EWAS is to 
merge high-resolution information on epigenetic variation such as differential DNA 
methylation or miRNA levels with functional consequences on mRNA regulation 
and clinical phenotypes into a molecular risk map that will contribute to a clearer 
understanding of the etiology of IBD. This map will help bridging the gap between 
unexplained disease susceptibility and disease manifestation and may lead to the 
identifi cation of novel diagnostic and therapeutic targets. Broadening the scope of 
such studies to longitudinal studies that follow high-risk populations (e.g., IBD kin-
dred cohorts) into manifestation may even result in biomarkers for identifying sus-
ceptible individuals prior to disease manifestation. Applying targeted preventive 
measures (e.g. modifi cation of the intestinal microbiome) in such high-risk indi-
viduals would—for the fi rst time—aim for a causative intervention, which in the 
end may only be possible before the onset of clinically overt disease.     
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