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    Abstract     The study of the genetic underpinning of heritable human diseases 
stretches back nearly a century. While thousands of mutations in single genes 
have been found that cause severe “Mendelian” disorders, attempts to fi nd such 
single genes for complex diseases have been relatively unsuccessful. Instead it has 
become clear that complex diseases, like IBD, are affected by many (likely hun-
dreds or even thousands) different genes as well as environmental factors. Here we 
describe the process by which that discovery was made, as well as the technological 
advances from small-scale candidate gene to genome-wide association studies. 
These approaches, especially when undertaken in large-scale collaborations, have 
unlocked thousands of complex disease genes, including 163 associated with IBD. 
Despite these exciting developments, the discovery of genes represents the fi rst 
stage in translating that knowledge into biological understanding of disease and 
possible future treatments.  

        Background 

 It has long been appreciated that genetics plays an important role in susceptibility to 
a wide variety of complex human diseases. Indeed it has been almost 100 years 
since R. A. Fisher and others reconciled the discrete Mendelian inheritance of 

      Chapter 4
Complex Disease Genes and Their Discovery 

             Jeffrey     C.     Barrett       and     Mark     J.     Daly     

        J.  C.   Barrett ,  B.S., D.Phil.      (*) 
  Wellcome Trust Sanger Institute ,   Wellcome Trust Genome Campus, Hinxton , 
 Cambridge ,  CB10 1HH ,  UK   
 e-mail: barrett@sanger.ac.uk   

    M.  J.   Daly ,  Ph.D.      
  Simches Research Center ,  Massachusetts General Hospital , 
  185 Cambridge Street, CPZN 6818 ,  Boston ,  MA   02114 ,  USA    

  Analytic and Translational Genetics Unit, Department of Medicine ,  Massachusetts 
General Hospital ,   185 Cambridge Street, CPZN 6818 ,  Boston ,  MA   02114 ,  USA   
 e-mail: mjdaly@atgu.mgh.harvard.edu  



88

individual genes with the continuous distribution of complex heritable traits, such 
as height [ 1 ]. The earliest geneticists at that time were realizing that while most 
traits were correlated among relatives and thereby appeared “heritable,” only a few 
of them strictly followed Mendel’s laws of inheritance. Instead, the majority of heri-
table traits and diseases quite evidently involved the action of many genes (as well 
as nongenetic or environmental factors). The suggestion that individual genetic 
variants might have relatively modest effects on these traits, and that if they were 
suffi ciently numerous, would give rise to normal distributions in general popula-
tions is one which continues to reverberate through the most cutting-edge genetic 
studies of today. 

 Indeed, the history of complex disease genetics has been a story of reconciling 
the obvious family clustering of these diseases with an evolving understanding of 
the types of genetic variation that exist in human populations and how they affect 
disease risk. In this chapter we will describe how that process moved (over many 
decades) from relatively fruitless searches to fi nd single genes explaining disease in 
individual families to international collaborations studying tens of thousands of 
patients with complex diseases at once. At each stage, a combination of dedicated 
clinical researchers, statistical analysts, and new technologies enabled new discov-
eries to be made. We will try to illustrate this process with examples from IBD 
and conclude by considering what biological lessons have been learned and what 
 challenges remain.  

    Chasing a Successful Paradigm: Linkage Studies 
in Complex Disease 

 Even in the simplest, so-called “Mendelian” diseases, the earliest studies of inherited 
phenotypes often showed that two genetic traits cosegregated—that is, were corre-
lated in their transmission from parents to children. This is of course the conse-
quence of the genes being “linked” or closely located on the same chromosome, 
such that from generation to generation, the pair of genes is passed on intact from the 
same parental chromosome without intervening meiotic recombination. Sturtevant 
and Morgan 100 years ago conceived that this cosegregation of phenotypes could be 
used to create a linear map of the underlying order of the genes responsible for those 
phenotypes—thus creating the fi rst linkage map [ 2 ] (in this instance in fruit fl ies). 
Mathematically, the principles of linkage analysis were worked out independent of 
even the defi nition of the structure of DNA [ 3 ], but it was not until the 1970s and 
1980s that the molecular techniques to clone and sequence DNA permitted the 
experimental connection of genetic linkage maps of phenotypes to underlying DNA 
variation and thus to identify genes responsible for phenotype via linkage analysis, 
followed by detailed sequencing and functional studies to defi ne the specifi c under-
lying causal gene and mutation—so-called positional cloning. 

 Use of this strategy to approach human disease was outlined at this time [ 4 ,  5 ] 
and fi rst successfully demonstrated in the localization of the Huntington’s disease 
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gene in 1983 [ 6 ]—later coming to fruition in the identifi cation of genes for cystic 
fi brosis and Duchenne muscular dystrophy as the 1980s drew to a close. Family- 
based linkage studies in humans are the most direct approach to analyzing the 
 simple consequences of Mendelian inheritance from one generation to the next and 
the resulting sharing of relatively long segments of DNA  identical by descent . 
Consider families with multiple individuals affected with a rare disease (see Fig.  4.1 ) 
such as Huntington’s disease (   which affects a handful of individuals per 100,000 
populations [ 7 ]): it is very unlikely that such co-occurrence would happen by 
chance, so a genetic explanation is likely. If the family is large, with a suffi cient 
number of affected individuals, a classic pattern of Mendelian inheritance might be 
clear, such as  recessive  (requiring two copies of a damaging mutation to be affected, 
one from each parent) or  dominant  (individuals with one copy of the mutation, from 
either parent, are affected—the pattern seen in Huntington’s). Because the segments 
of shared chromosomes between nearby relatives are large (tens of megabases among 
fi rst-degree relatives), it is possible to identify which parts of which chromosomes 
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  Fig. 4.1    Three illustrations of the spectrum of disease genes. Six images of imaginary “patient 
genomes” with  red circles  corresponding to risk alleles for a particular disease. Three columns 
( a – c ) correspond to different disorders, with two patients of each for comparison. ( a ) Some single 
gene, or Mendelian, disorders, such as sickle cell disease, are caused by mutations in the same 
gene in all patients. ( b ) Other disorders, such as intellectual disability, are often caused by a single 
mutation in each patient, but can be in a variety of genes. ( c ) Complex diseases, like IBD, are 
instead affected by a large number of individually weak variants across the genome, none individu-
ally as strong as the Mendelian variants       
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are shared between affected individuals with relatively few DNA markers. If one 
chromosomal segment is shared in a consistent way among all affected family mem-
bers, but not those who are healthy, it likely carries a mutation that causes disease. 
The same region (containing the relevant gene) will be “linked” in this way in many 
different families, even if the individual mutations responsible vary across families.

   For this reason, the earliest studies of complex disease genetics built upon the 
successes of family-based linkage studies in mapping Mendelian disease genes. The 
linkage approach was rapidly applied across a range of rare diseases suspected of 
Mendelian inheritance, leading to the identifi cation of hundreds of disease genes 
throughout the 1990s. These successes led to the application of the same approach 
to more common, complex diseases, such as type 2 diabetes and infl ammatory 
bowel disease. Much like Mendelian disease, these diseases were known to run in 
families, and studies of disease concordance in monozygous and dizygous twins 
rigorously established that genetics plays an important role in their etiology. With a 
few exceptions (see next chapters), however, linkage studies in these complex dis-
eases did not lead to the discovery of major genetic risk factors. 

 The principal insight from this failure was the lesson learned from the earliest 
genetic studies in fruit fl ies, specifi cally that, in contrast to Mendelian disease, there 
was not a single gene (nor even a very small number) for most complex diseases. 
This was partially unsurprising, as multiply affected families with these diseases did 
not display the classic Mendelian patterns of inheritance, but instead appeared to be 
driven by combinations of many genetic factors each exerting a relatively weak 
effect—just as predicted by the biometrical models of Fisher. These realizations 
lead to the invention of more sophisticated statistical techniques for linkage analysis 
[ 8 ] aimed at discovering loci which only partially explain the disease state of family 
members. 

 A key observation was made [ 9 ] that the power of linkage studies falls rapidly 
with decreasing effect size of the associated genetic variant. If the genetic basis of 
complex disease was completely unlike Mendelian disease, and instead consisted of 
dozens or hundreds of small effects, then linkage would never, for practical pur-
poses, be able to discover them.  Association studies , where one simply compared 
the allele frequency of a particular variant between unrelated cases and controls, had 
the potential to discover these tiny effects. At the time of this publication, however, 
technology did not exist to make such studies possible, nor was there even a com-
pelling estimate of how much genetic variation existed in the human population. By 
contrast to genome-wide linkage mapping, where the recombination map of humans 
had been described for a decade and could be conveniently assayed by fewer than 
1,000 polymorphic markers, genome-wide association would need to wait.  

    Motivated by Biology: Candidate Gene Studies 

 The complex disease genetics community was thus faced with the twin realities that 
linkage mapping would be unlikely to discover risk loci for these diseases and 
that genome-wide application of the association study paradigm was still 
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technologically impossible. One possible solution to this problem would be to 
 prioritize genes for genetic study that seemed biologically plausible candidates for 
particular diseases. For instance, one of the few success stories in complex disease 
linkage mapping was the identifi cation of a tandem repeat polymorphism in  INS  
(the gene encoding the insulin protein) associated with type 1 diabetes [ 10 ]. This 
discovery fi t neatly into the developing biological understanding of the disease and 
suggested that perhaps genetic discoveries could be made by fi rst guessing the rel-
evant candidates. 

 Unfortunately, three problems undermined this candidate gene approach. First, 
and perhaps most importantly, the ability of researchers to predict which genes 
would be associated with which diseases was poor: obvious connections like insulin 
and type 1 diabetes were not common. Second, the available patient collections 
typically numbered in dozens or low hundreds: too small to detect the very weak 
effects that would come to typify the contribution of common alleles to complex 
diseases. Finally even with the good fortune of picking the right gene, it was not 
possible to select SNPs that represented the diversity of variation within that gene in 
a systematic fashion. Just as it had been impossible to query the reference sequence 
of a gene before the draft human genome was fi nished, it was now impossible to 
look up how a particular gene commonly varied within a population of interest.  

    Maps of Common Human Genetic Variation 

 As noted above, a common feature of candidate gene studies was the selection of 
only a handful of SNPs in each gene being considered to test for association. This 
limitation was largely a result of a lack of comprehensive databases of genetic varia-
tion throughout the human genome. The fi rst project aimed at producing such a 
database was the SNP Consortium [ 11 ], which undertook large-scale genome re- 
sequencing and identifi ed over one million SNPs. This effort provided the substrate 
for a wide array of subsequent investigations into the number, distribution, and fre-
quency of SNPs throughout the genome. 

 One research area transformed by this new abundance of variation data was the 
study of population genetics: the quantity and frequency of, and patterns of correla-
tion among, genetic variation in different populations around the world provided 
empirical data with which to fi t models of human demography and selection. Two 
forces increase variation in the genome: mutation, which introduces new variants, 
and recombination, which reshuffl es the existing patterns. Random drift, evolution-
ary selection (either positive or negative), and human population history then shape 
this pool of variation into the patterns seen in modern humans. Previous population 
genetics work could be used to make very specifi c predictions about the extent of 
correlation between nearby SNPs (known as  linkage disequilibrium , or LD) given 
certain assumptions about the history of humans and, crucially, that recombination 
occurred uniformly throughout the genome. Two simultaneous observations 
 suggested, however, that recombination was instead clustered in punctate 
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“hotspots”—the vast majority of historical human recombinations had happened in 
a relatively small fraction of the genome sequence. Molecular typing of multiple 
sperm from a single individual showed clustering of directly observable recombina-
tions [ 12 ], and an analysis of the precise positions where LD decayed in a survey of 
general population variation suggested this process was consistently concentrated 
over many generations [ 13 ]. 

 Prompted by these insights, the International HapMap [ 14 ] project was launched 
to create a genome variation reference for medical genetics in multiple human pop-
ulations across the entire genome. The project was undertaken in two main phases 
which yielded a map of the frequencies and LD patterns of over 2.5 million SNPs in 
individuals of European, West African, and East Asian ancestry. The HapMap pro-
vided both a generic variation reference and revealed new specifi c insights into 
human population history, such as strong support for the out-of-Africa hypothesis of 
human migration and a realization that a huge fraction of variation is shared across 
the world. In addition, this large-scale collaboration contributed heavily to the 
development of high-throughput genotyping technologies. In the course of the proj-
ect, it became possible to move from genotyping dozens of SNPs to thousands and 
then hundreds of thousands—technological advances which would prove to be just 
as transformative as the scientifi c discoveries of the project. 

 Nowhere were the implications of these data and technologies greater than for 
the study of the role of genetic variation in disease risk. It became clear that it was 
possible to select a small number of SNPs from a particular region of the genome 
that were highly correlated with all nearby SNPs. These “tag” SNPs could then be 
genotyped as an effi cient means of capturing all the information contained in the 
full complement of SNPs in the region [ 15 ]. This tagging approach was quickly 
shown to be scalable genome wide, so that fewer than 500,000 carefully chosen 
SNPs could capture nearly all the common variation in populations of European 
descent [ 16 ]. The stage was set for a revolution in the discovery of genetic risk loci 
for common diseases.  

    Genome-Wide Association Studies 

 Several developments from the HapMap project presented new opportunities for 
disease gene mapping: an understanding of genome-wide LD patterns, algorithms 
and tools for selecting effi cient tag SNP sets, and affordable technologies for geno-
typing hundreds of thousands of SNPs. Taken together, these offered the ability to 
genotype large groups of healthy individuals and cases of particular diseases in a 
way which captured nearly all the common variation in individuals of European 
ancestry on an affordable scale. It was also recognized that robust genome-wide 
statistics would likely only emerge from much larger sample collections than cus-
tomarily used in candidate gene studies, and indeed even at this time both the lack 
of consistent marker maps and small samples with inconclusive statistical support 
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were creating a cacophony of inconsistent candidate gene studies for many gene, 
disease pairings. These early  genome - wide association studie s (GWAS) showed 
some early successes [ 17 ]; they also confi rmed the increasing suspicion that indi-
vidual common risk alleles generally exercised very weak effects on disease risk: 
few odds ratios were >1.2. Crohn’s disease (as will be described in future chapters) 
benefi ted from a number of early GWAS discoveries, increasing the number of 
 confi rmed loci to a dozen [ 18 – 20 ]. 

 It quickly became clear that data quality control of GWAS data was essential to 
producing interpretable and reproducible results [ 21 ]. While the genotyping plat-
forms produced data that were extremely high quality on average, the sheer size of 
the datasets compared to earlier studies meant that even very low error rates could 
produce spurious associations. A suite of quality control metrics, including missing 
data rates, Hardy–Weinberg equilibrium, and overall heterozygosity quickly 
became standards in GWAS analysis, and geneticists became familiar with 
QQ-plots and other statistical tools as a rapid transition from genetic studies where 
each genotyping assay was manually inspected and scored to automated genome-
wide typing technologies took place. It was also recognized that, even if genotyp-
ing data were perfect, false inference of association could arise if the ancestries of 
cases and controls were not well matched and the frequency differences character-
istic of different populations were confounded with case–control status. Here a 
parallel set of methods emerged [ 22 ,  23 ] to measure and control for population 
structure in association studies that, like the QC standards, are still in wide use. 
Furthermore, the genetics community insisted on stringent statistical signifi cance 
thresholds ( p  < 5 × 10 −8  being a common criterion for genome-wide signifi cance 
[ 24 ]) and replication of any putative fi ndings in independent samples [ 25 ] to gener-
ate ultimate assurance that novel genetic fi ndings constituted truly durable insights 
into disease pathogenesis. 

 These rigorous guidelines for GWAS produced a substantial shift away from the 
contentious and generally irreproducible fi ndings from linkage and candidate gene 
studies and rapidly produced a swath of bona fi de associations to a wide variety of 
common diseases. Despite these early GWAS successes, however, it became appar-
ent that associations from the fi rst generation of studies explained only a very small 
fraction of the total genetic contribution to disease [ 26 ]. A variety of hypotheses 
were proposed to explain this so-called missing heritability, including a preponder-
ance of rare variants, copy number variation, and complex interactions among risk 
loci [ 27 ]. None of these explanations lent themselves to straightforward post-GWAS 
experimentation nor had direct evidence that they explained the majority of what 
was not yet found. What was clear was that the confi rmed fi ndings from GWAS 
were both numerous and generally barely strong enough to have been detected, sug-
gesting that many more results might lie just beneath the surface. Thus, the natural 
next step was for geneticists to set aside historical competitions in favor of combin-
ing GWAS datasets studying the same disease to investigate what additional 
 associations might be discovered via collaboration.  
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    Meta-analysis and the Importance of Sample Size 

 Early examples of GWAS  meta - analysis , where individual scans were combined, 
often using summary association statistics from individual projects, began shortly 
after the initial GWAS publications [ 28 ,  29 ]. These studies, which typically con-
sisted of a few thousand individuals, rapidly confi rmed the suspicion that a large 
number of additional common alleles of small effect were waiting to be identifi ed. 
Reassuringly, and in contrast to the experience of both complex disease linkage and 
candidate gene studies, GWAS meta-analyses also confi rmed nearly all the previ-
ously published associations in the smaller scans. 

 The possibilities of this approach were most clearly realized by researchers 
studying quantitative traits, such as height or cholesterol levels, which had been 
measured in hundreds of thousands of individuals subjected to GWAS analysis. 
Unlike specifi c disease studies, which were limited by the incidence of diseases and 
the diffi culty of recruiting large numbers of cases, these quantitative trait studies 
could draw samples collected for any number of different study designs, so long as 
the measurement of interest had been recorded in a consistent way. In the most 
recent meta-analysis of height GWAS [ 30 ], for instance, nearly 200 independent 
genomic loci showed signifi cant association. A similar trend was observed across a 
wide variety of traits and diseases: as sample sizes increased, so did the number of 
associated loci. What often differed, however, was the number of samples required 
to make the earliest discoveries (i.e., fi nd the biggest effects in that disease) and the 
rate at which loci subsequently accumulated. It is still unclear whether fundamental 
differences in genetic architecture, heterogeneity of diagnoses, or other factors 
might explain this locus discovery “coeffi cient.” IBD once again reaped the benefi ts 
of these approaches via a series of successively larger meta-analyses culminating in 
the discovery of 163 independent loci [ 28 ,  31 – 33 ]. 

 In addition to unleashing a torrent of individual associations across hundreds of 
diseases and traits, large meta-analysis sample sizes encouraged the application of 
newly developed statistical methods that analyzed the entire genome at once. Rather 
than focus on the most statistically signifi cant associations, these methods [ 34 ] aimed 
to evaluate the total amount of phenotypic variance explained by common variation 
across the entire genome. These models suggested that a much larger fraction of total 
variance in many traits and risk of diseases could be explained by common variation 
than was explained by the genome-wide signifi cant loci. It may be, therefore, that 
seeking to fully uncover the “missing heritability” is a fruitless effort since these 
hundreds or thousands of tiny effects will be impossible to pinpoint individually.  

    Biological Insights from Disease Gene Mapping 

 In parallel to the goal of trying to identify the specifi c regions of the genome associ-
ated with disease risk, or particular DNA variants which cause those associations or 
the overall contribution of common variation in general, disease gene mapping also 
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provides an opportunity to better understand the biological mechanisms of health 
and disease. Indeed, given the diffi culty in accurately predicting disease susceptibil-
ity from GWAS-type analyses [ 35 ], it is likely that new biological insights will be the 
most important long-term benefi ts of studying the genetics of complex diseases. 

 GWAS studies of fetal hemoglobin (HbF) levels in sickle cell disease (SCD) 
patients offer an informative example of this process. In some ways, SCD is the 
fundamental example of a Mendelian genetic disease, as the recessive mutation (in 
the hemoglobin beta gene) which causes the disease has been known for over 60 
years [ 36 ]. It has also been long known that increased levels of HbF (encoded by a 
different gene and typically not expressed after birth) substantially reduce the sever-
ity of SCD. This observation led to a GWAS for HbF level [ 37 ], which identifi ed a 
strong effect of variants near the  BCL11A  gene on persistence of HbF after birth. 
This discovery was followed by the remarkable discovery that reducing the activity 
of  BCL11A  could substantially alleviate SCD in mice [ 38 ]. A single new GWAS 
discovery opened a potential therapeutic avenue that had remained undetected 
despite decades of biologically motivated research into the relationship between 
HbF and SCD. 

 The discovery of  BCL11A  as a key regulator of HbF also serves as an illustration 
of the caution needed when predicting how quickly GWAS results will enable new 
diagnostics or treatments. They serve as a critical starting point, a biological truth 
that some functional unit in a particular part of the genome is related to disease risk. 
That piece of information alone offers little clue how to then move towards more 
complete knowledge of disease processes but certainly offers better prospects than 
aimlessly trying to make sense of those same processes in the context of the entirety 
of human biology.  

    Future Directions 

 The most substantial change to mapping complex disease genes at the present is the 
transition from GWAS-style data (where only a subset of common variation is 
studied) to complete genome sequencing, enabled by the plunging cost of sequenc-
ing compared to genotyping [ 39 ]. These technological shifts have the potential to 
open up the study of a wide spectrum of variation beyond the common alleles tar-
geted by GWAS. It will be important, however, not to forget the lessons of that era 
principally that large sample sizes are critical to success. In addition to broadening 
the types of genetic variation which can be detected, sequencing-based studies 
(either directly or indirectly through imputation in projects like 1,000 Genomes) 
have the potential to more rapidly proceed from region of association to specifi c 
causal variants. While these discoveries only slightly affect the amount of variation 
explained in a disease or trait of interest, they have great potential to aid the bio-
logical inferences described above. 

 In a very real sense the progression of gene mapping described in this chapter is 
approaching its fi nal stages: it will soon be possible to analyze the complete genome 
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sequence of nearly all the patients seen with a particular disease. It is likely that 
even at that point, it will be impossible to perfectly predict an individual’s risk of 
disease. Instead, we must ask whether we can use this limited information in a clini-
cally useful way (in a similar sense to currently used risk measures, like cholesterol 
levels, which are strongly but imperfectly predictive of outcomes like heart disease) 
and simultaneously promote the utility of genetic association results in more funda-
mental biological studies of human health.     
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