
201Y. Sugiyama and B. Steffansen (eds.), Transporters in Drug Development, AAPS Advances 
in the Pharmaceutical Sciences Series 7, DOI 10.1007/978-1-4614-8229-1_9, 
© Springer Science+Business Media New York 2013

    Abstract     The liver is the major organ responsible for the elimination of endogenous 
and exogenous compounds via metabolism and/or excretion. Hepatocytes, the pre-
dominant cell type in the liver, are polarized cells with discrete basolateral and apical 
membranes. In this chapter, localization and function of hepatic transport proteins 
responsible for hepatobiliary drug disposition in humans are introduced. Hepatic 
transport proteins on the basolateral membrane mediate infl ux of compounds from 
sinusoidal blood into hepatocytes (i.e., NTCP, OATPs, OATs, OCTs) or effl ux from 
hepatocytes back to sinusoidal blood (i.e., MRP3-6, OSTα/β). Canalicular transport 
proteins such as BSEP, MDR3, P-gp, BCRP, MRP2, and MATE1 are responsible for 
biliary excretion of compounds. Furthermore, in vitro (i.e., membrane vesicles, 
transfected cell systems, hepatocytes, isolated perfused liver) and in vivo (i.e., biliary 
excretion studies, hepatobiliary imaging techniques) model systems and methods 
that are used to investigate hepatic transport proteins are discussed, and their applica-
tions, advantages, and disadvantages are considered.  

  Abbreviations 

    99m Tc-HIDA     99m Tc- N (2,6-dimethylphenyl carbamoylmethyl) iminodiacetic 
acid   

  ABC    ATP-binding cassette   
  AMP    Adenosine monophosphate   
  ATP    Adenosine triphosphate   
  AUC    Area under the concentration–time curve   
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  BCRP    Breast cancer resistance protein   
  bLPM    Basolateral liver plasma membrane   
  BSEP    Bile salt export pump   
  BSP    Bromosulfophthalein   
  CF-1 mice    Mdr1a-defi cient mice   
  cLPM    Canalicular liver plasma membrane   
  CYP450    Cytochrome P450   
  DDI    Drug–drug interaction   
  DHEAS    Dehydroepiandrosterone sulfate   
  DILI    Drug-induced liver injury   
  DJS    Dubin–Johnson syndrome   
  E1S    Estrone 3-sulfate   
  E 2 17G    Estradiol-17β-D-glucuronide   
  EHBR    Eisai-hyperbilirubinemic Sprague–Dawley rats   
  FXR    Farnesoid X receptor   
  Gd-BOPTA    Gadobenate dimeglumine   
  Gd-EOB-DPTA    Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid   
  HBSS    Hanks-balanced salt solution   
  HCC    Hepatocellular carcinoma   
  HEK cells    Human embryonic kidney cells   
  HMG-CoA    3-Hydroxy-3-methyl-glutaryl coenzyme A   
  HPLC    High-performance liquid chromatography   
  IPL    Isolated perfused liver   
  iPS cells    Inducible pluripotent stem cells   
   K  m     Michaelis–Menten constant   
  LC/MS    Liquid chromatography mass spectrometry   
  LLC-PK1 cells    Porcine kidney epithelial cells   
  MATE    Multidrug and toxin extrusion   
  MDCK cells    Madin–Darby canine kidney cells   
  MDR    Multidrug resistance   
  MRI    Magnetic-resonance imaging   
  MRP    Multidrug resistance-associated protein   
  NCE    New chemical entity   
  NTCP    Sodium taurocholate cotransporting polypeptide (human)   
  Ntcp    Sodium taurocholate cotransporting polypeptide (other species 

than human)   
  OAT    Organic anion transporter   
  OATP    Organic anion transporting polypeptide   
  OST    Organic solute transporter   
  PBC    Primary biliary cirrhosis   
  PET    Positron emission tomography   
  PFIC2    Progressive familial intrahepatic cholestasis type 2   
  PFIC3    Progressive familial intrahepatic cholestasis type 3   
  Pgp    P-glycoprotein   
  RNA    Ribonucleic acid   
  RNAi    RNA interference   
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  SCH    Sandwich-cultured hepatocytes   
  SD rat    Sprague–Dawley rat   
  shRNA    Short hairpin RNA   
  siRNA    Small interfering RNA   
  SLC    Solute carrier   
  SLCO    Solute carrier organic anion   
  SPECT    Single-photon emission computed tomography   
  TR −  rat    Mrp2-defi cient Wistar rat   
  UGT    Uridine diphosphate glucuronosyl transferase   
   V  max     Maximal transport velocity   

9.1           Introduction 

 The liver is one of the major organs responsible for the metabolism and excretion of 
endogenous and exogenous compounds. Hepatocytes contain transport proteins that 
facilitate the infl ux of many compounds from sinusoidal blood. Once inside the 
hepatocyte, compounds may be biotransformed by metabolizing enzymes and/or 
excreted. Hepatocytes are polarized cells with distinct apical and basolateral 
domains (Fig.  9.1 ); transport proteins on the apical membrane are responsible for 
excretion of compounds into the bile canaliculus, whereas basolateral transport pro-
teins mediate infl ux into hepatocytes and effl ux back to sinusoidal blood. Biliary 
excretion of drugs and metabolites is an active process that requires energy, usually 
in the form of adenosine triphosphate (ATP); the multidrug and toxin extrusion 
(MATE) transporter is one exception that does not require ATP for drug transport 
into the bile canaliculus. ATP-dependent transport proteins also are located on the 
basolateral membrane and are able to effl ux drugs and metabolites from hepatocytes 
into sinusoidal blood.

  Fig. 9.1    In vivo architecture of polarized hepatocytes with distinct apical and basolateral domains 
facing respectively the bile canaliculus and bloodstream (Köck and Brouwer  2012 )       
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   In this chapter, the hepatic transport proteins important for drug disposition in 
humans are introduced based on their localization and function. The nomenclature 
and substrate specifi city of hepatic transport proteins are summarized in Tables  9.1  
and  9.2 . In vitro and in vivo model systems and tools used to answer questions 
related to hepatic transport proteins are discussed, and more sophisticated approaches 
under development are introduced as future directions.

9.2         Hepatic Transport Proteins 

9.2.1     Hepatic Infl ux Transport Proteins 

 The solute carrier ( SLC ) and solute carrier organic anion ( SLCO ) gene families are 
two representative families of transport proteins that mediate the hepatic infl ux of 
xenobiotics across the basolateral hepatocyte membrane (Fig.  9.1 ). The list of 
hepatic infl ux transporters and example substrates is included in Table  9.1 . 

  NTCP (  SLC10A1  ) . The sodium taurocholate cotransporting polypeptide (NTCP) is 
expressed exclusively in hepatocytes and plays a major role in the Na + -dependent 
hepatic infl ux of conjugated bile acids such as glycocholate and taurocholate 
(Stieger  2011 ). NTCP also is capable of transporting bromosulfophthalein (BSP), 
estrone 3-sulfate (E1S), and drugs such as pitavastatin and rosuvastatin, although 
the contribution of NTCP to the uptake of drug substrates into hepatocytes in vivo 
remains to be determined (Table  9.1 ). In rats, Ntcp also may be capable of transport-
ing the thyroid hormones and the mushroom toxin α-amanitin (Gundala et al.  2004 ). 

  OATPs (  SLCO  , previously   SLC21A  ) . The family of organic anion transporting 
polypeptides (OATPs) plays an essential role in sodium-independent infl ux of 
endogenous and exogenous compounds into hepatocytes and may be the rate- 
limiting step in the hepatobiliary clearance of some drugs, such as statins. OATPs 
exhibit broad and overlapping substrate specifi city; the spectrum of OATP sub-
strates includes organic anions, bulky organic cations (previously referred to as type 
II cations), and neutral steroids. Some OATP isoforms have been hypothesized to 
function as glutathione or bicarbonate antiporters (Briz et al.  2006 ; Li et al.  2000 ; 
Satlin et al.  1997 ), employing the high intracellular glutathione or bicarbonate con-
centrations as a driving force for hepatic infl ux of substrates with high effi ciency. 

 Eleven human OATP isoforms have been identifi ed so far; OATP1B1, OATP1B3, 
and OATP2B1 are the major human OATPs that play an important role in the hepatic 
infl ux of drugs across the basolateral membrane domain. OATP1B1 and 1B3 are 
liver-specifi c, whereas OATP2B1 is widely expressed (e.g., in intestine, brain, and 
kidney). OATP1B1 exhibits the largest diversity of substrates including bilirubin, 
BSP, bile salts, many antibiotics, angiotensin receptor antagonists, 3-hydroxy-
3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins), and anti-
cancer drugs (Table  9.1 ). OATP1B1 is the major human liver transport protein that 
is involved in sodium-independent bile salt and bilirubin infl ux. Inhibition of 
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         Table 9.1    Human hepatic infl ux transport proteins   

 Protein/
trivial names  Gene  Substrate/references 

 NTCP   SLC10A1   Cholate; E1S; glycoursodeoxycholate; pitavastatin; rosuvas-
tatin; taurocholate; tauroursodeoxycholate [U], BSP; 
glycocholate; taurochenodeoxycholate (Ho et al.  2006 ) 

 OATP1B1   SLCO1B1  
( SLC21A6 ) 

 Atorvastatin; bilirubin; bisglucuronosyl bilirubin; bosentan; 
BSP; cholate; CGamF; DHEAS; E 2 17G; E1S; fl uo-3; 
fl uvastatin; glycoursodeoxycholate; methotrexate; 
monoglucuronosyl bilirubin; olmesartan; pitavastatin; 
pravastatin; rifampicin; rosuvastatin; tauroursodeoxycho-
late; valsartan [U], benzylpenicillin (Tamai et al.  2000 ), 
BQ-123; DPDPE; LTC 4 ; PGE 2 ; T 3 ; T 4  (Kullak-Ublick 
et al.  2001 ), caspofungin (Sandhu et al.  2005 ), cerivastatin 
(Shitara et al.  2003b ; Kameyama et al.  2005 ), SN-38 
(Nozawa et al.  2005 ), microcystin-LR (Fischer et al. 
 2005 ), phalloidin (Meier-Abt et al.  2004 ), repaglinide 
(Kajosaari et al.  2005 ; Niemi et al.  2005 ), simvastatin 
(Kameyama et al.  2005 ), troglitazone sulfate (Nozawa 
et al.  2004 ) 

 OATP-C 
 LST-1 
 OATP2 

 OATP1B3   SLCO1B3  
( SLC21A8 ) 

 Amantinin; bilirubin; bosentan; BSP; CCK-8; CGamF; 
digoxin; E 2 17G; E1S; fexofenadine; fl uo-3; fl uvastatin; 
glycoursodeoxycholate; methotrexate; monoglucuronosyl 
bilirubin; olmesartan; paclitaxel; pitavastatin; rifampicin; 
rosuvastatin; taurocholate; tauroursodeoxycholate; 
telmisartan; telmisartan glucuronide; T 3 ; valsartan [U], 
BQ-123; deltorphin II; DHEAS; DPDPE; LTC 4 ; ouabain; 
T 4  (Kullak-Ublick et al.  2001 ), CCK-8 (Ismair et al. 
 2001 ), microcystin-LR (Fischer et al.  2005 ), phalloidin 
(Meier-Abt et al.  2004 ) 

 OATP-8 
 LST-2 

 OATP2B1   SLCO2B1  
( SLC21A9 ) 

 Atorvastatin; bosentan; BSP; E1S; fexofenadine; fl uvastatin; 
glyburide; pitavastatin; pravastatin; rosuvastatin; 
taurocholate; telmisartan glucuronide [U], DHEAS 
(Kullak-Ublick et al.  2001 ), pregnenolone sulfate (Grube 
et al.  2006 ) 

 OATP-B 

 OAT2   SLC22A7   2′-Deoxyguanosine; 5-fl uorouracil; bumetanide; cyclic GMP; 
erythromycin; paclitaxel; PGE 2 ; PGF 2α ; tetracycline; 
theophylline; zidovudine [U], allopurinol;  l -ascorbic acid; 
DHEAS; E1S; glutarate (Kobayashi et al.  2005 ), 
methotrexate (Sun et al.  2001 ), ranitidine (Tahara et al. 
 2005 ) 

 OAT7   SLC22A9   DHEAS; E1S (Shin et al.  2007 ) 
 OCT1   SLC22A1   DASPMI; acyclovir; furamidine; ganciclovir; metformin; 

 N -methylpyridinium; oxaliplatin; pentamidine; PGE 2 ; 
PGF 2α ; ranitidine; tetraethylammonium; YM155 [U], 
ganciclovir (Takeda et al.  2002 ), azidoprocainamide 
methoiodide;  n -methylquinidine;  n -methylquinine; 
tributylmethylammonium (van Montfoort et al.  2001 ), 
choline (Grundemann et al.  1999 ), imatinib (Thomas et al. 
 2004 ), MPP + ;  N -methylnicotinamide (Gorboulev et al. 
 1997 ; Zhang et al.  1999 ), famotidine (Bourdet et al.  2005 ) 

(continued)
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OATP1B1-mediated infl ux by drugs has been correlated with the incidence of 
hyperbilirubinemia (Campbell et al.  2004 ). OATP1B1 is important in the hepatic 
infl ux of statins; genetic polymorphisms in  SLCO1B1  have been shown to be asso-
ciated with increased systemic exposure of statins and increased risk of statin- 
induced myopathy (Link et al.  2008 ). While OATP1B3 has overlapping substrate 
specifi city with OATP1B1, distinct substrate specifi city has been reported; repa-
glinide and troglitazone sulfate are more selective substrates for OATP1B1, while 
digoxin, cholecystokinin-8, and paclitaxel show selectivity for OATP1B3 
(Table  9.1 ). Bile acids are known to be transported by OATP1A2, OATP1B1, and 
OATP1B3, but OATP2B1-mediated bile acid transport has not been investigated. 

  OATs (  SLC22A  ) . Organic anion transporters (OATs) mediate transport of small 
anionic compounds in exchange for dicarboxylate ions. Among six human OATs 
that have been functionally characterized, OAT2 ( SLC22A7 ) is expressed in the 
basolateral membrane of hepatocytes and renal proximal tubule cells, while OAT7 
( SLC22A9 ) is expressed exclusively in the liver (Hagenbuch  2010 ). The known 
substrates for human OAT2 include prostaglandins, dehydroepiandrosterone sulfate 
(DHEAS), E1S, and anticancer drugs such as 5-fl uorouracil and methotrexate 
(Table  9.1 ). OAT7, a recently characterized OAT, has been shown to transport sul-
fated hormones such as E1S and DHEAS when expressed in  X .  laevis  oocytes (Shin 
et al.  2007 ). Interestingly, typical OAT substrates such as  para -aminohippurate, 
α-ketoglutarate, prostaglandins, cyclic nucleotides, and salicylic acid were not 
transported by OAT7, while OAT7 could transport the short-chain fatty acid butyr-
ate (Shin et al.  2007 ). 

 Protein/
trivial names  Gene  Substrate/references 

 OCT3   SLC22A3   Epinephrine; etilefrine; histamine; metformin; 
 N -methylpyridinium; norepinephrine [U], adrenaline; 
noradrenaline; tyramine (Grundemann et al.  1998 ), 
agmatine; MPP + ; tetraethylammonium (Hayer-Zillgen 
et al.  2002 ; Grundemann et al.  2003 ; Wu et al.  2000 ), 
atropine (Muller et al.  2005 ), histamine (Grundemann 
et al.  1999 ) 

 EMT 

 OCTN2   SLC22A5   Acetyl- l -carnitine;  d -carnitine; ipratropium;  l -carnitine; 
quinidine; verapamil [U], cephaloridine; tetraethylammo-
nium; choline; purilamine (Hagenbuch  2010 ) 

  [U] From UCSF-FDA TransPortal webpage (  http://bts.ucsf.edu/fdatransportal/    ); the information 
about transporter substrates is listed by transporters or compounds under the “Transporter Data 
Index” 
  BSP  bromosulphthalein,  BQ - 123  cyclo( d -Trp- d -Asp- l -Pro- d -Val- l -Leu),  CCK - 8  cholecystokinin 
8,  CGamF  cholyl-glycyl amido-fl uorescein,  DASPMI  4-(4-dimethylamino)styryl-N - 
methylpyridinium,  DHEAS  dehydroepiandrosterone,  DPDPE  [ d -penicillamine2,5]-enkephalin, 
 E1S  estrone 3-sulfate,  E   2   17G  estradiol-17β-D-glucuronide, GMP guanosine monophosphate,  LTC   4   
leukotriene C 4 ,  MPP  +  1-methyl-4- phenyl pyridinium,  PGE   2   prostaglandin E 2 ,  PGF   2α   prostaglandin F 2 , 
 T   3   triiodothyronine,  T   4   thyroxine  

Table 9.1 (continued)
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  OCTs (  SLC22A  ) . Organic cation transporters (OCTs) are electrogenic  uniporters 
that primarily mediate the transport of small cations (previously referred to as type 
I cations) in a sodium-independent fashion. Human OCT1 ( SLC22A1 ) is expressed 
exclusively at the basolateral membrane of the hepatocytes (Soroka et al.  2010 ). 
OCT1 is known to transport antiviral drugs such as acyclovir and ganciclovir, as 
well as the H 2 -receptor antagonists famotidine and ranitidine (Table  9.1 ). OCT3 
( SLC22A3 ) and OCTN2 ( SLC22A5 ) also are expressed in the liver, but expression 
levels are relatively low compared to OCT1 and the functional role of these proteins 
in hepatic drug transport remains to be elucidated (Hagenbuch  2010 ). 

  OSTα/β (  SLC51A  /  51B  ) . Organic solute transporter (OST) α/β is a heteromeric 
transporter that is expressed widely in the liver, small intestine, kidney, testis, and 
adrenal gland. In hepatocytes, OSTα/β is expressed in the basolateral membrane 
and is able to transport bile acids, E1S, and DHEAS. Since OSTα/β mediates sub-
strate transport by facilitated diffusion, OSTα/β-mediated transport is bidirectional 
depending on the substrate’s electrochemical gradient (Soroka et al.  2010 ). Gene 
expression levels of  SLC51A  and  SLC51B  are positively regulated by bile acids 
through farnesoid X receptor (FXR), and it has been shown that hepatic OSTα/β is 
up-regulated in patients with chronic cholestatic disease such as primary biliary 
 cirrhosis (PBC) (Boyer et al.  2006 ).  

9.2.2     Hepatic Canalicular Effl ux Transport Proteins 

 Biliary excretion is an important elimination pathway for many endogenous 
and exogenous substances. Canalicular transport proteins responsible for biliary 
excretion of substances primarily belong to the ATP-binding cassette (ABC) family 
of proteins that mediate ATP-dependent transport of solutes. 

  P - glycoprotein (MDR1,   ABCB1  ) . P-glycoprotein (P-gp) was fi rst identifi ed in 
multidrug-resistant (MDR) tumor cells (Juliano and Ling  1976 ) and is the most 
well-characterized ABC transport protein. P-gp is widely distributed in liver, intes-
tine, kidney, and brain. In hepatocytes, P-gp is expressed in the canalicular mem-
brane and is responsible for biliary excretion of bulky hydrophobic and cationic 
substrates including many chemotherapeutic agents (e.g., daunorubicin, doxorubi-
cin, etoposide, paclitaxel, vinblastine, vincristine), cardiac glycosides (e.g., 
digoxin), rhodamine 123, cyclosporine A, and protease inhibitors (e.g., amprenavir, 
indinavir, nelfi navir, ritonavir, saquinavir). Substrate specifi city of P-gp largely 
overlaps with that of CYP3A4, resulting in synergistic defense mechanisms against 
xenobiotics. The  ABCB1  gene is highly polymorphic, and hepatic expression levels 
of P-gp are highly variable between different individuals. 

  MDR3 (  ABCB4  ) . MDR3, a phospholipid fl ippase, is involved in the biliary 
 secretion of phospholipids and cholephilic compounds that form micelles with bile 
acids. Biliary excretion of phospholipids protects the lumen of the bile canaliculus 
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by solubilizing toxic bile acids (Oude Elferink and Paulusma  2007 ). A defi ciency in 
the  ABCB4  gene leads to progressive familial intrahepatic cholestasis type 3 
(PFIC3), a disease that is characterized by increased γ-glutamyltranspeptidase 
 levels, ductular proliferation, and infl ammatory infi ltrate that can progress to biliary 
cirrhosis. Individuals with decreased MDR3 activity are susceptible to cholesterol 
gallstone formation, which is known as low-phospholipid-associated cholelithiasis 
(Rosmorduc et al.  2003 ). Inhibition of MDR3-mediated biliary phospholipid excre-
tion is one proposed mechanism of hepatotoxicity induced by drugs such as 
itraconazole. 

  BSEP (  ABCB11  ) . The bile salt export pump (BSEP) is the major transport protein 
that mediates the biliary excretion of conjugated and unconjugated bile acids. Some 
drugs such as pravastatin may be substrates for BSEP based on membrane vesicle 
studies (Hirano et al.  2005 ); however, the relative role of BSEP vs. other canalicular 
transport proteins in the biliary excretion of pravastatin in hepatocytes or the intact 
liver remains to be determined (Kullak-Ublick et al.  2000 ). PFIC2 patients do not 
express BSEP protein due to a genetic polymorphism in the  ABCB11  gene; this 
leads to hepatocellular injury and necrosis caused by increased intracellular concen-
trations of detergent-like bile acids (Kullak-Ublick et al.  2004 ). Inhibition of BSEP-
mediated bile acid transport is purported to be one mechanism of drug-induced liver 
injury (DILI) associated with hepatotoxic drugs such as  troglitazone, bosentan, and 
cyclosporine. 

  MRP2 (  ABCC2  ) . Multidrug resistance-associated protein (MRP) 2 plays an impor-
tant role in the biliary excretion of organic anions, including bilirubin- diglucuronide, 
glutathione conjugates, sulfated bile acids, and divalent bile acid conjugates, as well 
as numerous drugs such as sulfopyrazone, indomethacin, penicillin, vinblastine, 
methotrexate, and telmisartan (Table  9.2 ). The absence of functional MRP2 due to 
genetic mutations in  ABCC2  results in Dubin–Johnson syndrome (DJS), which is 
characterized by decreased biliary excretion of bilirubin conjugates and hyperbili-
rubinemia (Tsujii et al.  1999 ). 

  BCRP (  ABCG2  ) . Breast cancer resistance protein (BCRP) is highly expressed in 
the canalicular membrane of hepatocytes as well as in the intestine, breast, and pla-
centa. BCRP is a half-transport protein that forms a functional homodimer and is 
responsible for transport of glucuronide and sulfate conjugates (e.g., E1S, estradiol-
17β-D-glucuronide (E 2 17G), SN38-glucuronide), anticancer drugs (e.g., irinotecan, 
SN-38, methotrexate, daunorubicin, doxorubicin), and some statins (e.g., pitavas-
tatin, rosuvastatin) (Table  9.2 ). 

  MATE1 (  SLC47A1  ) . Human MATE1 is expressed predominantly in the canalicular 
membrane of hepatocytes and the luminal membrane of renal tubular cells. MATE1 
has been shown to transport organic cations across the membrane in a bidirectional 
manner dependent on the proton gradient. Substrate specifi city of MATE1 primarily 
overlaps with the OCTs; MATE1 substrates include acyclovir,  N -methylpyridinium, 
and tetraethylammonium (Table  9.2 ).  
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      Table 9.2    Human hepatic effl ux transporter proteins   

 Protein/trivial names  Gene  Substrates/references 

  Hepatic canalicular effl ux transport proteins  
 MDR1   ABCB1   Berberine; biotin; colchicine; dexamethasone; digoxin; 

doxorubicin; etoposide; fexofenadine; indinavir; 
irinotecan; loperamide; nicardipine; paclitaxel; 
rhodamine 123; ritonavir; saquinavir; topotecan; 
valinomycin; verapamil; vinblastine; vincristine 
[U], amprenavir; nelfi navir (Kim et al.  1998 ; Polli 
et al.  1999 ), aldosterone; corticosterone (Ueda et al. 
 1992 ), cyclosporin A; mitoxanthrone (Marie et al. 
 1992 ), debrisoquine; erythromycin; lovastatin; 
terfenadine (Cvetkovic et al.  1999 ), quinidine 
(Fromm et al.  1999 ), levofl oxacin; grepafl oxacin 
(Yamaguchi et al.  2000 ), losartan (Soldner et al. 
 1999 ), tacrolimus (Floren et al.  1997 ), talinolol 
(Spahn-Langguth et al.  1998 ), norverapamil 
(Pauli-Magnus et al.  2000 ) 

 P-gp 

 MDR3   ABCB4   Digoxin; paclitaxel; verapamil; vinblastine [U], 
phospholipids (Smith et al.  2000 )    

 Phospholipid fl ippase 
 MDR2/3 

 BSEP   ABCB11   Glycochenodeoxycholate; glycocholate; pravastatin; 
taurochenodeoxycholate; taurocholate [U]  Sister P-gp 

 MRP2   ABCC2   DHEAS; E 2 17G; etoposide; irinotecan; methotrexate; 
olmesartan;  para -aminohippurate; SN-38; SN-38 
glucuronide; valsartan; vinblastine [U], LTC 4 ; 
bisglucuronosyl bilirubin; monoglucuronosyl 
bilirubin; ochratoxin A; cholecystokinin peptide; 
E1S; cholyl- l -lysyl-fl uorescein (Keppler  2011 ) 
acetaminophen glucuronide; carboxydichlorofl uo-
rescein (Xiong et al.  2000 ), camptothecin; 
doxorubicin (Koike et al.  1997 ), cerivastatin 
(Matsushima et al.  2005 ), cisplatin; vincristine 
(Kawabe et al.  1999 ), glibenclamide; indomethacin; 
rifampin (Payen et al.  2000 ), pravastatin (Sasaki 
et al.  2002 ) 

 cMOAT 
 cMRP 

 BCRP   ABCG2   4-Methylumbelliferone sulfate; daunorubicin; 
doxorubicin; E 2 17G; E1S; hematoporphyrin; 
imatinib; methotrexate; mitoxantrone; pitavastatin; 
rosuvastatin, SN-38; SN-38 glucuronide; sulfasala-
zine; topotecan [U], mitoxanthrone glucuronide and 
sulfate conjugates (Kawabata et al.  2001 ), 
irinotecan (Maliepaard et al.  1999 ), prazosin; 
rhodamine 123 (Ozvegy et al.  2001 ), testosterone; 
tamoxifen; estradiol (Janvilisri et al.  2003 ) 

 MXR 
 ABCP 

 MATE1   SLC47A1   Acyclovir; cimetidine; E1S; ganciclovir; guanidine; 
metformin;  N -methylpyridinium; paraquat; 
procainamide; tetraethylammonium; topotecan [U] 

(continued)
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9.2.3     Hepatic Basolateral Effl ux Transport Proteins 

 Xenobiotics in the liver also may be excreted across the basolateral membrane into 
sinusoidal blood. MRP1, 3, 4, 5, and 6 are involved in cellular transport of both 
hydrophobic uncharged molecules and hydrophilic anionic compounds. OATPs 
also may function as basolateral effl ux transport proteins under certain conditions, 
although the in vivo role of OATPs in basolateral effl ux remains to be elucidated (Li 
et al.  2000 ). 

  MRP3 (  ABCC3  ) . MRP3 was fi rst localized in human and rat hepatocytes and is 
also expressed widely in kidney, pancreas, enterocytes, cholangiocytes, and the 
gallbladder (Keppler  2011 ). The expression level of MRP3 in hepatocytes is low in 
normal liver, but markedly increased in patients with DJS who lack functional 
MRP2, and in patients with cholestatic liver disease, consistent with the important 
compensatory role of MRP3 when the function of biliary transport proteins is 
impaired (Konig et al.  1999 ; Wagner et al.  2009 ; Hirohashi et al.  1999 ). MRP3 is 
responsible for the basolateral effl ux of glutathione and glucuronide conjugates 
(e.g., acetaminophen glucuronide), methotrexate, and E 2 17G. 

 Protein/trivial names  Gene  Substrates/references 

  Hepatic basolateral effl ux transport proteins  
 MRP3   ABCC3   E 2 17G; ethinylestradiol-glucuronide; fexofenadine; 

folic acid; glycoholate; hyocholate-glucuronide; 
hyodeoxycholate- glucuronide; leucovorin; LTC 4 ; 
methotrexate;  S -(2,4- dinitrophenyl)-glutathione; 
taurocholate [U], bisglucuronosyl bilirubin; 
monoglucuronosyl bilirubin; DHEAS (Keppler 
 2011 ), acetaminophen glucuronide (Tsujii et al. 
 1999 ), monovalent and sulfated bile salts (Hirohashi 
et al.  1999 ), etoposide (Stieger et al.  2000 ) 

 MOAT-D 
 MLP1 
 cMOAT1 

 MRP4   ABCC4   Adefovir; chenodeoxycholylglycine; chenodeoxycholyl-
taurine; cholate; taurocholate; cyclic AMP; cyclic 
GMP; DHEAS; deoxycholylglycine; E 2 17G; folic 
acid; methotrexate; olmesartan;  para -aminohippu-
rate; PGE1; PGE2; tenofovir; topotecan [U], 
cholylglycine; ursodeoxycholylglycine; ursodeoxy-
cholyltaurine; urate; ADP; PMEA; fl uo-cAMP 
(Keppler  2011 ), azidothymidine (Schuetz et al.  1999 ) 

 MOAT-B 

  [U] From UCSF-FDA TransPortal webpage (  http://bts.ucsf.edu/fdatransportal/    ); the information 
about transporter substrates is listed by transporters or compounds under the “Transporter Data 
Index” 
  BQ - 123  cyclo( d -Trp- d -Asp- l -Pro- d -Val- l -Leu),  CCK - 8  cholecystokinin 8,  DHEAS  dehydroepiand-
osterone,  E1S  estrone 3-sulfate,  E   2   17G  estradiol-17β-D-glucuronide,  LTC   4   leukotriene C 4 ,  LTD   4   leu-
kotriene D 4 ,  PGE   1   prostaglandin E 1 ,  PGE   2   prostaglandin E 2 ,  PMEA  9-(2- phosphonomethoxyethyl)
adenine  

Table 9.2 (continued)
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  MRP4 (  ABCC4  ) . MRP4 is localized in many different tissues including liver, 
 kidney, brain, and prostate (Keppler  2011 ). The expression level of MPR4 in normal 
hepatocytes is low, but is markedly induced under cholestatic conditions. MRP4 is 
responsible for the basolateral effl ux of bile acids when the normal vectorial trans-
port of bile acids from the hepatocyte into bile is compromised (Wang et al.  2011 ). 
MRP4-mediated bile acid transport requires glutathione, because bile acids and glu-
tathione are co-transported by MRP4 (Rius et al.  2003 ). MRP4 also transports cyclic 
nucleotides (e.g., cAMP and cGMP), nucleoside analogs (e.g., zidovudine, lamivu-
dine, and stavudine), purine analogs (e.g., 6-mercaptopurine and 6-thioguanine), 
and non-nucleotide substrates such as methotrexate (Sampath et al.  2002 ). 

  Other MRPs . MRP1 ( ABCC1 ) is expressed in several tissues including liver, lung, 
testis, kidney, skeletal and cardiac muscle, placenta, and macrophages (Keppler 
 2011 ). MRP1 is responsible for the effl ux of various organic anions, such as 
 glucuronide, glutathione, and sulfate conjugates of drugs. MRP5 ( ABCC5 ) trans-
ports cyclic nucleotides (e.g., cAMP and cGMP) and purine analogs (e.g., 
6- mercaptopurine and 6-thioguanine). The expression levels of MRP1 and MRP5 in 
healthy liver are relatively low, but protein levels of hepatic MRP1 and MRP5 were 
signifi cantly increased in patients with PBC (Barnes et al.  2007 ). Protein expression 
of hepatic MRP5 also was increased in acetaminophen-induced liver failure, sug-
gesting a protective role for this protein in hepatic injury (Barnes et al.  2007 ). MRP6 
( ABCC6 ) is localized in the basolateral membrane of hepatocytes and transports 
glutathione conjugates and the endothelin receptor antagonist BQ-123. Expression 
of MRP6 was not altered in patients with PBC or acetaminophen- induced liver 
failure, and the functional roles of MRP6 remain to be explored (Barnes et al.  2007 ).   

9.3     In Vitro Models and Methods to Study Hepatobiliary 
Drug Transport 

9.3.1     Membrane Vesicle System 

 With the development of membrane vesicle assays, it became possible to perform 
functional studies to identify and characterize distinct effl ux transport systems. 
Historically, vesicle transport assays were performed using membranes isolated 
from hepatic tissue from the relevant species. Functional studies of hepatic effl ux 
transporters in either canalicular liver plasma membrane (cLPM) or basolateral liver 
plasma membrane (bLPM) vesicles were enabled by the development of a method 
to separate these two membrane leafl ets in the early 1980s (Meier et al.  1984 ; Blitzer 
and Donovan  1984 ). This assay system was used to identify and characterize bile 
acid and bilirubin glucuronide transport across the canalicular membrane and led 
to the discovery of BSEP and MRP2 (Jedlitschky et al.  1997 ; Gerloff et al.  1999 ). 
The isolation of high-purity apical and basolateral membranes from tissue is labor- 
intensive and technically challenging. Since inside-out and right-side-out vesicles 
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coexist, ATP-dependent basolateral effl ux data generated with bLPMs may be con-
founded by infl ux transporters. Naturally, these membranes contain multiple trans-
port proteins; therefore, it is impossible to identify specifi c substrates for ABC 
effl ux proteins. 

 Due to evolving molecular biology techniques and identifi cation of individual 
transport proteins, this tissue-based assay system has been replaced by vector- 
transfected and virus-infected cell lines expressing a single ABC-transporter. In the 
early 1990s, baculovirus-infected insect cells ( Spodoptera frugiperda , Sf9) were 
used widely to generate membrane vesicles containing the transport protein of inter-
est because this system allowed high expression of transport proteins (Germann 
et al.  1990 ). Disadvantages of these membrane vesicles are the different glycosyl-
ation pattern and a lower cholesterol content in Sf9 cells compared to mammalian 
cell lines (Pal et al.  2007 ), which may affect the localization and function of trans-
porters. For example, MRP2-mediated transport and ATPase activity were altered 
by membrane cholesterol content (Pal et al.  2007 ). Therefore, either transiently or 
stably transfected mammalian cell lines from human embryonic kidney (HEK) 293, 
Madin–Darby canine kidney (MDCK) II, or porcine kidney epithelial (LLC-PK1) 
cells are now used more frequently for preparation of membrane vesicles for trans-
porter studies. These systems are suitable for high-throughput screening of sub-
strates and inhibitors for a single transport protein. 

 The most commonly used membrane system for effl ux transporters is the vesicu-
lar transport system that detects direct translocation of substrates into inside-out 
vesicles (Fig.  9.2 ). Substrates taken up into inside-out vesicles are separated from 
the incubation solution using rapid fi ltration and quantifi ed by high-performance 
liquid chromatography (HPLC), liquid chromatography mass spectrometry (LC/
MS), scintillation counting, or fl uorescence detection. ATP-dependent transport is 
calculated by subtracting the transport of substrate in the presence of AMP from 
that in the presence of ATP; endogenous transporter-mediated transport is excluded 
by subtracting ATP-dependent transport of substrate in control vesicles from that in 
transporter-expressing vesicles. This method detects direct transport of substrate, 
and kinetic parameters such as the Michaelis–Menten constant ( K  m ) and the maxi-
mal transport velocity ( V  max ) can be calculated. This method is ideal for the detec-
tion of drug–drug interactions (DDIs) or drug–endogenous compound interactions 
using a probe substrate. However, it is diffi cult to detect the transport of highly 
permeable compounds due to passive diffusion out of the membrane vesicles.

   The ATPase method, which detects the hydrolysis of ATP in the presence of an 
interacting compound, is more suitable for determining the transport of highly per-
meable compounds. The ATPase method is based on the principle that ABC trans-
porters utilize the chemical energy of ATP cleavage to mediate the transport of 
substrates across membranes. The inorganic phosphate produced during this pro-
cess is directly proportional to the activity of the transporter and can, for example, 
be monitored by colorimetric detection. This method is most commonly used for 
high-throughput screening for P-gp and BCRP, although it also is available com-
mercially for other ABC effl ux transporters. However, ATPase systems are indirect 
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  Fig. 9.2    In vitro models and the related methods to study hepatobiliary drug transport       

measures of transport, and are not always suitable for distinguishing between poten-
tial substrates, inhibitors or modulators. Major applications of the membrane vesi-
cle systems as well as their advantages and disadvantages when used to study 
hepatobiliary drug transport are summarized in Table  9.3 .
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9.3.2        Transfected Cells 

 Bacterial, insect, and mammalian cells have been transfected with vector constructs 
allowing over-expression of transport proteins for identifi cation of transport pro-
cesses. The transfected cell model is illustrated in Fig.  9.2 . Nonpolarized cells such 
as Sf9 and HEK293 cells have been used for over-expression of a single transport 
protein, while polarized cells have been employed for the over-expression of one or 
more basolateral proteins in concert with apical protein(s). Transfected cell models 
can be used for high-throughput screening of substrates and inhibitors of a specifi c 
over-expressed transport protein. The major limitation of this model is that gener-
ally it is not suitable for the study of effl ux transporters. Hypothetically, in trans-
fected cells expressing a single effl ux protein, transported substrates should 
demonstrate lower cellular accumulation, and inhibitors should increase drug accu-
mulation compared to the parental cell line. However, substrates of drug effl ux 
transporters are usually organic anions that do not easily penetrate into the cell in 
the absence of infl ux transport proteins. To overcome this limitation, polarized 
mammalian cells (e.g., MDCKII, LLC-PK1) have been used for transfection of one 
or more infl ux and/or effl ux transport proteins. Depending on the transporter, the 
protein will be routed to the apical or basolateral membrane in polarized cells; 
expression of infl ux transporters allows import of the substrates transported by the 
ABC effl ux transporters. Furthermore, the combined expression of infl ux and effl ux 
proteins enabled the analysis of vectorial transport, which is a key step in hepatobi-
liary elimination (Sasaki et al.  2002 ; Cui et al.  2001 ). These double- transfected 
polarized cell lines were fi rst developed by Cui et al. in the early 2000s (Cui et al. 
 2001 ) and are now valuable tools to study transcellular transport. Using MDCKII 
cells expressing both Oatp1b2 and Mrp2, Sasaki et al. demonstrated a good correla-
tion between the clearance values obtained from in vitro transcellular transport and 
in vivo biliary clearance (Sasaki et al.  2004 ). Triple and quadruple transfected cell 
lines OATP1B1/MRP2/MRP3 or MRP4, as well as OATP1B1/OATP1B3/
OATP2B1/MRP2 have been developed to better predict hepatobiliary processes 
(Kopplow et al.  2005 ; Hirouchi et al.  2009 ). Recently, a triple-transfected cell line 
expressing infl ux and effl ux transporters as well as the drug-metabolizing enzyme 
uridine diphosphate glucuronosyl transferase (UGT) 1A1 has been described to 
study transporter-metabolism interplay (Fahrmayr et al.  2012 ). As our understand-
ing of the role of infl ux and effl ux transporters in facilitating the vectorial transport 
of xenobiotics across the hepatocyte has evolved, the use of polarized mammalian 
cells has become more popular to identify substrates and inhibitors of hepatic trans-
port proteins. However, protein traffi cking or localization in transfected cells may 
differ from human hepatocytes, depending on the species or type of transfected 
cells. Also, it is diffi cult to standardize the relative expression levels of transporters, 
and the relative contribution of a particular transport protein to overall transport of 
the substrate cannot be determined. The major applications of transfected cells 
together with their advantages and disadvantages when used to study hepatobiliary 
drug transport are summarized in Table  9.3 .  
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9.3.3     Hepatocytes 

 Freshly isolated hepatocytes are the most comprehensive cell-based model to study 
hepatic drug transport and remain the gold standard. However, the scarcity of fresh, 
healthy human liver tissue suitable for hepatocyte isolation is a signifi cant limita-
tion, and isolation of human hepatocytes is technically challenging. Recent advances 
in technology have made good-quality cryopreserved human hepatocytes commer-
cially available at the user’s convenience. Cryopreserved human hepatocytes have 
been used widely to study drug metabolism (Lau et al.  2002 ) and substrate infl ux in 
suspension (Houle et al.  2003 ; Shitara et al.  2003a ; De Bruyn et al.  2011 ); cryopre-
served hepatocytes cultured in a sandwich confi guration repolarize and form bile 
canalicular networks (Bi et al.  2006 ). Both the suspended and sandwich-cultured 
hepatocyte models are illustrated in Fig.  9.2 . However, not all batches of cryopre-
served hepatocytes are qualifi ed for sandwich-culture due to limitations in cell 
attachment and the loss of expression, localization, and/or function of transport pro-
teins and metabolizing enzymes. Thus, further research is needed to improve the 
cryopreservation process. 

  Suspended hepatocytes . Fresh or cryopreserved suspended hepatocytes are a use-
ful tool to characterize hepatic infl ux and metabolism processes, and inhibition 
studies can be performed with this system. However, suspended hepatocytes cannot 
be used for induction studies because the viability of hepatocytes in suspension can-
not be maintained longer than several hours. Additionally, hepatocytes lose their 
cellular polarity during isolation and internalization of canalicular transport pro-
teins has been demonstrated, which precludes the use of suspended hepatocytes to 
predict biliary clearance (Bow et al.  2008 ). 

  Sandwich - cultured hepatocytes . In contrast to conventionally plated hepatocytes, 
hepatocytes cultured between two layers of gelled collagen (“sandwich-confi guration”) 
develop functional canalicular domains with proper localization of transport proteins 
and metabolic enzyme expression (Swift et al.  2010 ). Liu et al. demonstrated that rat 
sandwich-cultured hepatocytes (SCH) could be used to investigate the hepatobiliary 
disposition of substrates using Ca 2+  depletion methods (Liu et al.  1999a ,  b ). This 
method involves pre-incubation of SCH with Hanks’ balanced salt solution (HBSS) 
containing Ca 2+  (standard HBSS) or Ca 2+ -free HBSS for 10 min. Ca 2+ -free HBSS dis-
rupts tight junctions and opens the bile canalicular networks, while incubation with 
standard HBSS maintains tight junction integrity. Subsequently, cells are rinsed and 
incubated with substrate in standard HBSS for a predetermined period of time. 
Accumulation of substrate in cells + bile vs. cells can be determined in standard and 
Ca 2+ -free HBSS buffers, respectively. The amount of substrate excreted into the bile 
canaliculi can be estimated as the difference in accumulation in standard and Ca 2+ -free 
HBSS buffers, and in vitro biliary clearance may be obtained by dividing the amount 
of drug in the bile compartment by the area under the concentration–time curve (AUC) 
in the dosing medium. This system has been applied to hepatocytes from many species 
and has been used extensively to assess biliary clearance as a measure to improve 
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hepatic clearance predictions (Swift et al.  2010 ). Biliary clearance values scaled from 
in vitro intrinsic biliary clearance measurements obtained in SCH have been shown to 
correlate well with in vivo biliary clearance data in rats (Abe et al.  2008 ; Fukuda et al. 
 2008 ; Liu et al.  1999c ; Li et al.  2010 , Nakakariya et al.  2012 ) and humans (Abe et al. 
 2009 ; Ghibellini et al.  2007 ). 

 To determine the contribution of a specifi c transport protein to the disposition of 
a substrate, a transporter-specifi c reference compound can be employed in hepato-
cytes as well as transport protein over-expressing cells (Kouzuki et al.  1999 ). 
Basically, this method compares the ratio of infl ux clearances of the test and the 
reference compound in both systems. However, the results are based on the assump-
tion that the reference compound is specifi c for the respective transport protein, 
which—due to the overlapping substrate spectrum of transport proteins—is hardly 
ever the case. 

 SCH from naturally occurring, genetically defi cient rodents lacking a specifi c 
transport protein, such as the Mrp2-defi cient Wistar (TR − ) and Eisai- 
hyperbilirubinemic Sprague–Dawley (SD) rats (EHBR), and the Mdr1a-defi cient 
CF-1 mice, have been useful tools to evaluate the role of a transporter in the disposi-
tion of substrates (Abe et al.  2008 ). Also, genetically modifi ed animals that lack 
specifi c transporter(s) can be used to assess the potential involvement of specifi c 
transport protein(s) in DDIs or polymorphisms that impair the function of drug 
transport proteins. However, care must be taken in interpreting the results of these 
studies because compensatory changes in drug-metabolizing enzymes and/or other 
transport proteins may exist. Also, species difference in the expression, localization, 
and function of transport proteins between humans and genetically modifi ed ani-
mals may limit clinical applicability of the data. 

 RNA interference (RNAi) of single or multiple transport proteins is a powerful 
tool to explore the consequences of loss of transport protein function. Synthetic 
small interfering RNA (siRNA) was transfected into rat SCH to specifi cally knock 
down Mrp2 and Mrp3 (Tian et al.  2004 ). Infection of rat SCH with adenoviral vec-
tors expressing short hairpin RNA (shRNA) targeting Bcrp showed a signifi cant 
decrease in protein expression and activity of this canalicular transport protein (Yue 
et al.  2009 ). Recently, Liao et al. successfully knocked down OATP1B1, 1B3, and 
2B1 in sandwich-cultured human hepatocytes using special delivery media contain-
ing siRNA (Liao et al.  2010 ). These studies have demonstrated the utility of knock 
down of specifi c transport proteins in SCH. However, careful optimization is 
required because knock down of one transport protein may alter the expression/
function of metabolic enzymes and other transport proteins. 

  Other hepatocyte models . Limited exposure of liver tissue to collagenase results in 
 hepatocyte couplets  preserving closed canalicular vacuoles and hepatocyte polar-
ity (Milkiewicz et al.  2002 ). Hepatocyte couplets have been used to study hepatobi-
liary transport mechanisms underlying bile secretion (Boyer  1997 ; Coleman et al. 
 1995 ).  HepaRG  cells, a human hepatoma cell line, maintain specifi c liver functions 
such as drug-metabolizing enzymes and transport proteins. In HepaRG cells, mRNA 
expression levels and functional activity of basolateral and canalicular transport 
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proteins were comparable to those of human hepatocytes (Le Vee et al.  2006 ). Also, 
expression levels of transport proteins were up-regulated by known inducers, indi-
cating that HepaRG cells maintain transactivation pathways that regulate expres-
sion of transport proteins (Le Vee et al.  2006 ). Since HepaRG cells are readily 
available compared to human hepatocytes, they may be a useful system to study 
hepatobiliary transport of compounds. However, HepaRG cells differentiate into 
biliary epithelial cells as well as hepatocytes, and the fraction of cells that differenti-
ate into hepatocytes varies among different cultures and plates. In addition, more 
characterization is warranted including cell polarity and polarized expression of 
relevant transport proteins. Human  inducible pluripotent stem (iPS) cells  have 
been successfully differentiated into hepatocyte-like cells that exhibit human hepa-
tocyte function such as inducible CYP450 activity (Song et al.  2009 ). Although the 
expression and function of transport proteins still needs to be characterized, hepato-
cytes derived from individual-specifi c iPS cells may serve as a novel tool to study 
hepatobiliary transport of compounds in specifi c individuals. Newer three-dimen-
sional microfl uidic models (e.g., liverchip, Hμrel) that more closely resemble in 
vivo liver physiology are currently under development. Further investigations are 
needed to explore the utility of these more complex models. The major applications 
of hepatocytes as well as their advantages and disadvantages when used to study 
hepatobiliary drug transport are summarized in Table  9.3 .  

9.3.4     Isolated Perfused Liver Models 

 For decades, in situ or isolated perfused liver (IPL) studies have been used to inves-
tigate the physiology and pathophysiology of the liver. The model is illustrated in 
Fig.  9.2 . Publications regarding the use of IPLs date back to the 1950s, when the 
metabolism of drugs and endogenous compounds was fi rst studied using this 
approach. In contrast to in vitro models such as isolated hepatocytes and liver slices, 
the IPL preserves hepatic architecture, cell polarity, and bile fl ow. Furthermore, this 
model enables simultaneous sampling of bile as well as infl ow and outfl ow perfus-
ate; liver tissue may be obtained at the end of the study. Thus, the IPL provides a 
rich dataset amenable to pharmacokinetic modeling and makes this system useful 
for mechanistic studies of hepatobiliary transport. 

 In IPL studies, the liver may be perfused in a single-pass or recirculating mode. 
A single-pass perfusion system is used to determine directly the steady-state hepatic 
extraction ratio of a compound. In the single-pass system, outfl ow perfusate from 
the liver does not re-enter the system, and the perfusion medium is pumped into the 
liver at a constant rate. Thus, steady-state conditions can be achieved readily, and 
drug and metabolite disposition can be examined at different dose levels in a single 
preparation. Also, experiments can be designed so that each liver serves as its own 
control. Hemoglobin-free oxygenated perfusate often is used in the single-pass per-
fusion system because a large volume of perfusate is required. Furthermore, fl ow 
rates that are 2–3 times higher than physiologic blood fl ow are required to maintain 
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adequate oxygen delivery. In recirculating systems, blood-containing perfusate is 
oxygenated and recirculated through the liver at a constant fl ow rate that is similar 
to liver blood fl ow in vivo. The hepatic clearance of the drug can be determined 
from the dose introduced into the reservoir and the AUC in the reservoir. In recircu-
lating systems, the only route of metabolite elimination is via biliary excretion, and 
metabolites usually accumulate in hepatocytes or in the perfusate, if they are able to 
fl ux across the hepatic basolateral membrane. Accumulation of metabolites may be 
advantageous in mass-balance determination of metabolite formation and kinetic 
evaluation of hepatic infl ux of metabolites. However, potential drug–metabolite 
interactions may be magnifi ed in the recirculating system compared with the single- 
pass IPL. 

 The IPL model can be applied to transporter knock-out animals in combination 
with chemical inhibitors to investigate the contribution of specifi c hepatic drug 
effl ux transporters (Hoffmaster et al.  2004 ; Zamek-Gliszczynski et al.  2005 ). 
However, these experiments are relatively expensive and low throughput. 
Furthermore, species-specifi c differences between human and rodent transport pro-
teins may signifi cantly limit the clinical applicability of information generated 
using this approach. Whether or not the results obtained from IPL analyses can be 
extrapolated to in vivo fi ndings in humans remains compound-dependent. The 
major applications of the IPL model, as well as advantages and disadvantages when 
applied to studying hepatobiliary drug transport, are summarized in Table  9.3 .   

9.4     In Vivo Models and Methods to Study Hepatobiliary 
Drug Transport 

 In vivo pharmacokinetic/pharmacodynamic studies in humans are the gold standard 
for investigating the role of hepatic transporters. However, the complexity of the 
hepatobiliary system, and considerable substrate overlap for many of the  transporters, 
makes it diffi cult to identify the function of specifi c transport proteins based on in 
vivo studies. Genetically modifi ed animals and patients with polymorphisms in 
transporter genes are valuable in evaluating the function of transport proteins, but 
species differences in transport protein function, and compensatory up-regulation of 
other transport proteins, may confound the translation of in vivo data generated in 
preclinical species to humans. 

9.4.1     In Vivo Biliary Excretion Studies 

 Biliary excretion is an important route of elimination for some drugs and a potential 
site of drug interactions that may alter hepatic and/or systemic drug exposure. 
Accurate measurement of biliary clearance and understanding the mechanism(s) of 
biliary excretion are very important in evaluating the contribution of biliary 
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clearance to total systemic clearance, predicting DDIs, identifying the contribution 
of enterohepatic recirculation to overall systemic and intestinal exposure, and eluci-
dating potential mechanisms of hepatobiliary toxicity. 

  Bile duct - cannulation . Animals, primarily rodents, often are used to determine the 
extent and the mechanisms of biliary excretion in vivo. Complete collection of bile 
is possible in bile duct-cannulated animals, which generates information about the 
extent of biliary excretion and the potential involvement of enterohepatic recircula-
tion in overall systemic exposure. Proper study design is critical to obtain useful 
information from bile duct-cannulated animals. For example, if bile fl ow is exterior-
ized for extended periods of time to obtain complete bile collection, intravenous or 
intestinal supplementation with bile acids should be considered to replenish the bile 
acid pool. In vivo biliary clearance data has been used to assess the accuracy of in 
vitro methods of estimating biliary clearance; reasonable in vitro-in vivo correla-
tions have been obtained (Fukuda et al.  2008 ; Li et al.  2010 ; Abe et al.  2009 ; 
Nakakariya et al.  2012 ). Genetically modifi ed animals that are defi cient in specifi c 
transport proteins has improved our understanding of the complex molecular pro-
cesses involved in excretion of endogenous and exogenous compounds into bile. 
However, signifi cant interspecies differences in substrate specifi city and regulation 
of transport proteins have been reported, which complicates the direct extrapolation 
of animal data to humans (Ishizuka et al.  1999 ). 

  Aspiration of duodenal fl uids . Determining the biliary clearance of drugs in vivo 
in humans is challenging because it is diffi cult to access bile for sample collection 
from healthy human subjects. Bile samples can be collected in postsurgical patients 
with underlying hepatobiliary disease via a T-tube or nasobiliary tube (Brune et al. 
 1993 ; Verho et al.  1995 ). However, it is diffi cult to rule out the effects of underlying 
hepatobiliary disease (e.g., altered protein expression, function, localization, and/or 
bile fl ow) in these patients. In healthy subjects, feces often are used as a surrogate 
to quantify the amount of drug excreted via non-renal pathways. However, this 
method cannot distinguish between biliary excretion, intestinal secretion, and unab-
sorbed drug following oral administration. Moreover, unstable drugs may not be 
recovered in feces due to the long exposure to the intestinal contents and colonic 
fl ora. Furthermore, drugs that are reabsorbed in the intestine and undergo enterohe-
patic recycling will not be recovered completely in the feces. 

  Oroenteric tube . Sampling duodenal fl uids in healthy volunteers using an oroen-
teric tube alleviates some of the above-mentioned problems. Duodenal bile is repre-
sentative of gallbladder bile in terms of bile composition, and collecting bile upon 
discharge from the biliary tract into the small intestines excludes the contribution of 
intestinal excretion and minimizes loss associated with metabolism and/or reab-
sorption. Oroenteric tubes have been used commonly to withdraw pancreatico- 
biliary secretions from the duodenum in medical practice and have been used to 
study the biliary excretion of drugs (Galatola et al.  1991 ; Northfi eld and Hofmann 
 1975 ). Use of an occlusive balloon can facilitate more complete bile collection, and 
incomplete bile collection can be corrected by perfusing nonabsorbable markers. 
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The most challenging part of this method is incomplete and highly variable recovery 
of compounds excreted into bile. Cholecystokinin 8 (CCK-8) may be administered 
intravenously to pharmacologically stimulate gall bladder empting, but interindi-
vidual response is variable. Ghibellini et al. introduced a novel method to evaluate 
the degree of gallbladder contraction and to detect any leakage of bile due to partial 
occlusion of the intestine (Ghibellini et al.  2004 ). Subjects were administered a 
hepatobiliary imaging agent (e.g.,  99m Tc-mebrofenin), and the gall bladder ejection 
fraction was calculated from the abdominal gamma images of the study partici-
pants during gallbladder contraction. Incorporation of the ejection fraction as a 
correction factor in the calculation of the amount of drug excreted into the duode-
num accounted for the variability in biliary excretion of the drug (Ghibellini et al. 
 2006 ). This type of study provides direct evidence for biliary excretion and more 
precise quantifi cation of biliary clearance, but is not used widely due to require-
ments for a gamma camera and personnel with expertise in gamma scintigraphy. 
The major applications of the in vivo biliary excretion models, as well as advan-
tages and disadvantages when used to study hepatobiliary drug transport, are 
 summarized in Table  9.4 .

9.4.2        Hepatobiliary Imaging Techniques 

 Although techniques are available to study genetic polymorphisms and the expres-
sion of drug transporters at the mRNA and protein level, these data do not necessar-
ily correlate with transporter function. Thus, there continues to be considerable 
interest in studying transporter function noninvasively. Pharmacokinetic analyses 
based on plasma concentrations in clinical studies provide information on overall 
hepatic clearance; however, differentiation between infl ux and canalicular effl ux is 
not possible. While variations in infl ux activity of transporters might have a pro-
found infl uence on systemic concentrations, altered canalicular effl ux might signifi -
cantly affect liver concentrations without having measureable effects upon systemic 
exposure. This is especially relevant for drugs where the target site for effect or 
toxicity is within the hepatocyte. Therefore, quantitative estimations of tissue con-
centrations in vivo are necessary to investigate variations in effl ux caused by DDIs 
or transporter polymorphisms. Furthermore, assessing the functional transport 
activity of P-gp, MRP2, or BCRP in the human liver might benefi t the diagnosis of 
transporter defi ciency-related diseases (e.g., PFIC3 and DJS). Several noninvasive 
imaging techniques such as magnetic-resonance imaging (MRI), single-photon 
emission computed tomography (SPECT) using  99m Tc-labeled compounds, and pos-
itron emission tomography (PET) using short-lived  11 C,  13 N,  15 O or  18 F isotopes 
have been employed to visualize and measure hepatic transporter activity in vivo. 

  Magnetic - resonance imaging . The fi rst MRI contrast agents were developed in the 
early 1980s (e.g., gadopentetate dimeglumine, gadodiamide, gadoteridol). These 
extremely hydrophilic compounds distributed primarily into the extracellular fl uid 
and were excreted predominantly via the kidney. Because of this distribution 
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 pattern, these contrast agents have been used primarily for angiography and to 
detect lesions in the brain. The development of gadobenate dimeglumine 
(Gd-BOPTA) and gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid 
(GD-EOB-DPTA, gadoxetic acid) allowed liver imaging and facilitated the distinc-
tion between normal and pathological tissue. Using these imaging agents, most 
hepatic tumors appear as hypointense lesions because they do not possess func-
tional hepatocytes, while positive hepatocyte-enhancement may be observed in 
patients with tumors of hepatocellular origin (e.g., hepatocellular carcinoma, HCC). 
Hepatocyte infl ux of gadolinium compounds is thought to be mediated by OATPs 
(Narita et al.  2009 ; Leonhardt et al.  2010 ), while MRP2 mediates biliary excretion 
(Pascolo et al.  2001 ). Indeed, studies indicated that the degree of expression and 
localization of OATP1B1/1B3 and MRP2 affect the degree of hepatocyte-specifi c 
enhancement in HCC (Narita et al.  2009 ; Tsuboyama et al.  2010 ). 

  SPECT and PET imaging . For quantitative determination of drug transporters, the 
radionucleotide-based molecular imaging techniques SPECT and PET hold great 

    Table 9.4    Summary of advantages and disadvantages of in vivo models used to study hepatobiliary 
drug transport   

 In vivo model  Major applications  Advantages  Disadvantages 

  In vivo biliary excretion  
 Bile duct-cannulation  –  Direct measure of 

biliary excretion in 
animals 

 –  Studies may be 
conducted in freely 
moving animals 

 –  Low throughput 

 –  Most physiologi-
cally relevant 
model 

 Oroenteric tube  –  Direct measure of 
biliary excretion in 
humans 

 –  Direct measure of 
biliary excretion 

 –  Most physiologi-
cally relevant 
model 

 –  Low throughput 
 –  Requires 

specialized 
personnel and 
equipment 

 –  DDI study using 
probe drug 

 –  Correction for 
gallbladder 
ejection fraction 
is required to 
accurately 
quantify biliary 
excretion 

  In vivo imaging  
 MRI  –  Anatomical imaging  –  Safer compared 

to radiation-based 
imaging 

 –  Parent drug and 
metabolites not 
differentiated 

 SPECT, PET  –  Investigate the 
function of 
transporters or drug 
interactions at 
transporter level 

 –  3D image
 – Noninvasive, 

real-time quantita-
tive estimation of 
tissue concentration 
of drugs in vivo 

 –  Radionuclide-
labeled probe 

 –  Parent drug and 
metabolites not 
differentiated 
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promise. Initially, PET was used to quantify P-gp function in the blood–brain- 
barrier; several  11 C-labeled tracers have been developed for this purpose (verapamil, 
carvedilol,  N -desmethyl-loperamide, daunorubicin, paclitaxel). However, PET 
imaging also can be employed to study infl ux and excretion in other tissues. In 
1995, Guhlmann et al. determined the hepatobiliary and renal excretion of  N -[ 11 C] 
acetyl-leukotriene E4 in rats and monkeys by PET analysis. In rats, cholestasis due 
to bile duct obstruction as well as Mrp2 defi ciency (TR −  rats) led to prolonged organ 
storage, metabolism, transport back into the blood, and subsequently enhanced 
renal elimination compared to wild-type rats (Guhlmann et al.  1995 ). Currently, 
compounds are being developed to evaluate hepatobiliary transport (Takashima 
et al.  2010 ). In order to be useful clinically, such probes will need to be metaboli-
cally stable in humans, and ideally, the probes should be a substrate for a specifi c 
hepatic infl ux and/or effl ux transport protein. 

 SPECT tracers directly emit gamma radiation, whereas PET tracers emit posi-
trons, which annihilate on contact with electrons, resulting in emission of gamma 
photons. Cholescintigraphy studies with  99m Tc- N (2,6-dimethylphenyl carbamoyl-
methyl) iminodiacetic acid ( 99m Tc-HIDA) were performed in patients with liver dis-
ease in the late 1970s/early 1980s for diagnostic imaging of hepatobiliary disorders 
(Stadalnik et al.  1981 ). Furthermore,  99m Tc-mebrofenin has been used widely to diag-
nose cholestasis, gallbladder function, and bile duct leakage. In 2004, Hendrikse 
et al. proposed that both compounds were useful tools to evaluate the function of 
Mrp1, Mrp2, and P-gp in vivo (Hendrikse et al.  2004 ). Another compound,  99m   Tc- 
sestamibi, has been suggested to be a probe for P-gp function (Luker et al.  1997 ). 
This compound originally was developed for imaging of myocardial ischemia and is 
a positively charged, lipophilic compound that readily enters cells and accumulates 
in mitochondria. In vivo studies with  99m Tc-sestamibi showed that this substance is 
retained in the liver and kidneys after P-gp inhibition with PSC833, suggesting that 
inhibition of P-gp transport in these organs can be imaged with  99m Tc-sestamibi 
(Luker et al.  1997 ). However,  99m Tc-sestamibi is also a substrate for MRP1 (Gomes 
et al.  2009 ). In vivo biliary clearance values for 99mTc-sestamibi and 99mTc-mebrofenin 
were determined in healthy volunteers using an oroenteric catheter, which was designed 
to aspirate pancreatico-biliary secretions from the duodenum (Ghibellini et al.  2004 , 
Ghibellini et al.  2007 ). The DDI between ritonavir and 99mTc-mebrofenin was evalu-
ated in humans using this technique combined with a semi-physiologically-based 
pharmacokinetic modeling approach (Pfeifer et al.  2013 ). The major applications of 
in vivo imaging together with advantages and disadvantages when used to study 
hepatobiliary drug transport are summarized in Table  9.4 .   

9.5     Conclusions 

 Hepatic transport proteins play important roles in the hepatic infl ux and biliary 
excretion of drugs and metabolites, thus affecting the therapeutic effi cacy and 
 toxicity of many drugs. Therefore, it is important to understand the roles of hepatic 
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transport proteins in the disposition of drugs and metabolites during the drug devel-
opment process. Table  9.5  summarizes preferred approaches that can be used 
to answer specifi c questions regarding hepatobiliary drug transport. It is relatively 
straightforward to determine which transport proteins are capable of transporting 
drugs and metabolites by using membrane vesicle systems or cell lines expressing a 
single transport protein. However, determining the contribution of each transport 
protein to the hepatic infl ux or effl ux of a specifi c compound in the whole cell/intact 
organ is not as straightforward and may require the use of several model systems 
(e.g., transfected cell lines and SCH) and scaling factors (e.g., relative activity fac-
tor) (Hirano et al.  2004 ). Moreover, reference compounds used to obtain the scaling 
 factor between different systems are often not specifi c to a single transporter, which 
makes it diffi cult to determine the precise contribution of a single transporter to 
overall disposition.

   Accurate predictions of clinically relevant drug interactions in hepatobiliary 
transport [either DDIs, drug–endogenous compound interactions (e.g., competition 
with bilirubin for infl ux or excretion) or drug–transporter interactions] are critical in 
drug development. Direct competitive interactions with a single protein can be pre-
dicted from membrane vesicle or transfected cell assays; however, accurate extrapo-
lation to the in vivo setting requires an understanding of the unbound concentration 
at the site of transport. The ability of other transport proteins or drug-metabolizing 
enzymes to compensate for drug interactions cannot be predicted accurately from 
these simplistic systems, and intact hepatocytes (suspended for infl ux studies; 
sandwich- cultured for hepatic effl ux and overall hepatobiliary disposition) or whole 
organ and/or in vivo studies are required. More complex drug-transporter interac-
tions involving signaling cascades and/or regulatory mechanisms or interactions that 
involve generated drug metabolites require the complex machinery of the intact cell. 

 DILI is one of the most common reasons for withdrawal of drugs from the mar-
ket, or failure of new drugs in clinical trials. Inhibition of canalicular BSEP, which 
leads to elevated hepatic exposure of detergent-like bile acids, has been reported as 
one mechanism of DILI. Some hepatotoxic drugs also are potent inhibitors of NTCP 
and/or MRPs. Thus, determining whether the drug and/or generated metabolite(s) 
inhibit(s) bile acid transport would provide key information about the drug’s poten-
tial for DILI. High-throughput screening is possible to determine the inhibitory 
effects of a specifi c compound on bile acid transport in membrane vesicles express-
ing a single transporter. However, model systems that enable the generation of 
metabolites and allow for direct measurement of bile acids accumulated in hepato-
cytes (e.g., SCH or IPL) provide more information to determine the potential for 
DILI. Hepatic exposure of the drug is important in predicting effi cacy and toxicity, 
but this cannot be measured directly in vivo in humans nor predicted based on sys-
temic exposure. Human SCH will provide invaluable information about the hepatic 
accumulation potential of drugs and generated metabolites, and how hepatic expo-
sure changes when the function of transport proteins is altered due to disease states, 
drug interactions, or changes associated with genetic polymorphisms in transport 
proteins. Because only unbound drugs are available to interact with transporters, it 
is important to determine the intracellular unbound concentration. However, our 
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current knowledge about intracellular unbound concentrations is limited, and devel-
opment of in vitro systems to characterize hepatocellular binding/sequestration and 
the unbound concentration in the intact cell is needed. 

 Many tools and model systems are available to analyze the role of hepatic 
 transport proteins in drug development. Current efforts are focused on assessing 
which tools should be appropriately used at defi ned steps in the drug development 
process, as well as how the resulting information can be used most effi ciently to 
answer the key questions before the compound reaches the clinic. Important work 
continues to focus on mathematical modeling and simulation based on data gener-
ated from the various in vitro and in vivo models to accurately predict the role of 
hepatic transport proteins in drug disposition, and how alterations in hepatic trans-
port could alter effi cacy and/or toxicity.     
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