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    Abstract     The rapid technological advances in the drug transporter fi eld have also 
greatly enhanced our knowledge on the expression, localization, function, and 
genetic variation of renal transporters. It is now widely acknowledged that carrier- 
mediated transport processes in the kidney proximal tubule are an important deter-
minant of drug disposition and the extent to which drugs are accumulated in renal 
tissue. The study of renal transport has traditionally benefi ted a lot from physiologi-
cal studies in isolated membrane vesicles, tubules, tissue slices, perfused kidneys, 
and intact animals. Together with molecular cloning and over-expression systems 
we now have a fairly good picture of the individual characteristics of the most 
important renal transporters. The next challenge will be to reconstruct the complex-
ity of the interplay between the various uptake and effl ux transporters of the proxi-
mal tubule in experimental and in silico models, in order to accurately predict renal 
drug clearance, drug–drug interactions, and the risk of nephrotoxicity in different 
populations. This chapter will give a critical review of current methods available for 
the exploration of renal drug transport.  

  Abbreviations 

   ABC    ATP-binding cassette   
  BBM    Brush border membrane   
  BLM    Basolateral membrane   
  CHO    Chinese hamster ovary cell line   
  ciPTEC    Human conditionally immortalized proximal tubule epithelial cell line   
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  COS-7    African green monkey cells   
  HEK293    Human embryonic kidney cells   
  HK-2    Human immortalized proximal tubule epithelial cell line   
  LLC_PK1    Pig kidney epithelial cells   
  MDCK    Madin-Darby canine kidney cells   
  PAH     para -Amino hippuric acid   
  pMEG    9-(2-phosphonylmethoxyethyl)guanine   
  Sf9    Spodeptera frugiperda (moth)   
  SLC    Solute carrier   

10.1           Introduction 

 The mechanisms that contribute to the renal excretion of drugs and their biotransfor-
mation products are closely related to the physiological processes that take place in 
the nephrons, i.e., glomerular fi ltration, passive back diffusion, and transporter- 
mediated secretion and reabsorption. The major transport proteins that are relevant 
for the renal handling of drugs are mainly located in the proximal tubular cells. The 
same transporter families that play critical roles in drug infl ux and effl ux in liver and 
intestine can also be found in the kidney (Degorter et al.  2012 ). From the solute car-
rier ( SLC ) gene superfamily, these are the oligopeptide transporters (PEPTs/ SLC15 ), 
the organic anion/cation/zwitter ion transporters (OATs/OCTs/OCTNs/ SLC22 ), the 
organic anion transporting polypeptides (OATPs/ SLCO ), and the multidrug and toxin 
extrusion transporters (MATE/ SLC47 ). Members belonging to the ATP- binding cas-
sette ( ABC ) superfamily important for renal drug effl ux include P-glycoprotein 
(MDR1/ ABCB1 ), the multidrug resistance-associated protein (MRP/ ABCC ) family, 
and breast cancer resistance protein (BCRP/ ABCG2 ). An overview of the transport-
ers currently considered to have a well-defi ned infl uence on renal drug clearance is 
given below and in Fig.  10.1 . It is important to recognize that the interplay between 
these transporters located on the basolateral and luminal membrane in proximal tubu-
lar cells is critical in determining the extent and net direction of drug movement. 
Transport across the proximal tubule could be impeded or facilitated by the asym-
metrical membrane distribution of infl ux and effl ux transporters, which ultimately 
infl uences the plasma clearance and urinary excretion of a drug substrate.

   The study of the mechanisms by which the kidney actively secretes compounds 
foreign to the body started with the pioneering paper in 1923 by Marshall and 
Vickers, who obtained the fi rst conclusive evidence for this process with the anionic 
dye phenolsulphonphtalein (Marshall and Vickers  1923 ). Ever since, our under-
standing of the molecular and cellular mechanisms of renal drug excretion has been 
evolving by the advent of increasingly advanced techniques in the transporter fi eld, 
including isolated renal cortical slices, isolated perfused tubules and kidneys, micro-
perfusion, membrane vesicles, cell cultures and over-expression cell systems, 

F.G.M. Russel and R. Masereeuw



237

knockout mouse models, double transfected cell lines, physiologically based 
 pharmacokinetic modeling, and simulation. 

 To date, no single method or model can accurately predict the contribution of 
renal transporters to overall drug clearance and disposition in humans in vivo. The 
purpose of this chapter is to discuss key technologies, including their strengths and 
limitations, and to examine some of the current challenges and future perspectives 
in studying renal drug transporters.  

bloodurine
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  Fig. 10.1    Schematic model of the major drug transporters in human renal proximal tubular cells. 
SLC transporters are depicted by open circles and ABC transporters by shaded ovals. Solid arrows 
indicate the direction of drug transport. Dashed arrows depict the movement of driving ions. 
OCT2 is an electrogenic uniporter that transports organic cations (OC+) from blood into the cell 
driven by the inside-negative membrane potential. OCTN1 mediates luminal OC+ uptake as a H+/
OC+ antiporter or can operate like OCTN2 as a bidirectional cation exchanger, mediating infl ux 
or effl ux. MATE1 is a urinary OC+ effl ux transporter that operates as a H+ antiporter. 
Peptidomimetic drugs are taken up by the H+/peptide symporters PEPT1 and PEPT2. Organic 
anions (OA - ) are taken up by the antiporters OAT1, OAT2, and OAT3, which are driven by the 
exchange with dicarboxylates (dic 2- ), and released at the luminal side by OAT4 in exchange for 
Cl - . OAT4 can also operate as a reabsorptive transporter coupled to cellular dicarboxylates or 
hydroxyl ions. A few amphipathic drugs are transported into the cell by the organic anion anti-
porter OATP4C1, for which the driving ion is unknown. The primary active ABC transporters 
MDR1/P-gp, MRP2, MRP4, and BCRP drive the effl ux of a wide variety of amphipathic drugs 
and metabolites into urine       
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10.2     Important Human Transporters Involved 
in Renal Drug Handling 

 For most drugs that are handled by renal transporters elimination can be considered 
as a vectorial process, involving uptake from the blood across the basolateral mem-
brane into proximal tubular cells, followed by effl ux across the apical membrane 
into urine. At the basolateral membrane separate transporters are located for the 
infl ux of mainly hydrophilic, small molecular weight (MW < 400–500 Da) organic 
anions and cations (Masereeuw and Russel  2001 ). Because these systems are char-
acterized by a high clearance capacity and wide substrate specifi city, many drug 
substrates tend to accumulate in the cell sometimes causing kidney injury. To ensure 
the rapid effl ux of potentially toxic compounds into urine, the apical membrane is 
equipped with a large number of effl ux transporters belonging to different trans-
porter families (Fig.  10.1 , Table  10.1 ).

   The organic anion transporters OAT1, OAT2, and OAT3 regulate the uptake of 
anionic drugs at the basolateral membrane of renal proximal tubule (Burckhardt 
 2012 ; Burckhardt and Burckhardt  2011 ). They operate as antiporters, actively 
driven by the    inside>out concentration gradient of dicarboxylates. OAT1 and OAT3 
have long been considered as the major uptake transporters, because of limited evi-
dence for the expression of OAT2 and its unknown role in drug transport. OAT1 has 
highest affi nity for hydrophilic organic anions with small molecular weights, like 
p-aminohippuric acid (PAH), adefovir, cidofovir, and tenofovir (Table  10.1 ). OAT3 
also transports some larger amphipathic anions, including benzylpenicillin, pravas-
tatin, and olmesartan, and even some cationic drugs, such as cimetidine and raniti-
dine (Table  10.1 ). A recent study showed that OAT2 probably mediates the active 
tubular secretion of the cGMP-like antiviral drugs acyclovir, ganciclovir, and penci-
clovir (Cheng et al.  2012 ). Whereas human OAT2 is expressed at the basolateral 
membrane, the mouse and rat orthologs are localized to the apical membrane of the 
proximal tubule (Burckhardt and Burckhardt  2011 ). The broader specifi city of 
OAT3, as well as the relatively higher renal expression levels compared to OAT1 
and OAT2 suggests a more pronounced role of OAT3 in human renal organic anion 
transport (El-Sheikh et al.  2008a ; Masereeuw and Russel  2001 ,  2010 ). Serious 
drug–drug interactions have been reported between methotrexate and nonsteroidal 
anti-infl ammatory drugs due to competition for OAT1- and OAT3-mediated uptake, 
although an interaction at the level of the apical effl ux transporters MRP2 and 
MRP4 probably also contributes to this mechanism (El-Sheikh et al.  2007 ; 
Masereeuw and Russel  2010 ). 

 The fi rst step in proximal tubular secretion of cationic drugs is mediated by 
OCT2, the predominant organic cation transporter in the basolateral membrane (Nies 
et al.  2011 ). OCT2 operates as a uniporter that facilitates the uptake of comparatively 
small monovalent cationic drugs by diffusion down the inside-negative electrochem-
ical gradient of the proximal tubular cell (Table  10.1 ). In rodents, Oct1 is also 
expressed in the kidney, in addition to Oct2 (Grundemann et al.  1994 ). A clinically 
important OCT2 substrate is metformin, which is among the most widely prescribed 
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drugs for the treatment of type 2 diabetes. Genetic polymorphisms of OCT2 have 
been associated with a decrease in renal metformin clearance (Song et al.  2008 ). 
Using metabolomics, tryptophan was recently identifi ed as a specifi c endogenous 
substrate of OCT2 related to metformin disposition, and consequently a potential 
biomarker of genetic variability in transporter activity (Song et al.  2012 ). 
Coadministration of cimetidine with metformin has been shown to reduce the renal 
clearance of metformin, leading to a clinically relevant increase in plasma concentra-
tions (Wang et al.  2008 ). It has been suggested from in vitro studies that cimetidine 
is an inhibitor of OCT2; however, because of its relatively low inhibitory constant 
this seems unlikely at therapeutic plasma concentrations (Lepist and Ray  2012 ). 

 OATP4C1 is the only OATP family member expressed in human proximal tubu-
lar cells (Obaidat et al.  2012 ). The transporter is located in the basolateral mem-
brane and substrate specifi city is restricted to a few drugs that are mainly excreted 
by the kidney, i.e., methotrexate, the cardiac glycosides, digoxin, and ouabain, as 
well as thyroid hormones (Table  10.1 ). The mechanism by which OATP4C1 trans-
locates drugs across the membrane and the counter ion it exchanges its substrates 
for are not yet identifi ed. OATP1A2 expression was identifi ed in the apical mem-
brane of distal nephrons, but its role in renal drug handling is unclear (Lee et al. 
 2005 ). The renal expression of OATPs is remarkably different in rodents. Except for 
the ortholog Oatp4c1 in the basolateral membrane, at least three different Oatps are 
located in the brush border membrane of rodent kidney, none of which are expressed 
in humans (Sekine et al.  2006 ). 

 At the apical membrane of the proximal tubule, the ABC transporters 
P-glycoprotein, MRP2, MRP4, and BCRP mediate the primary active effl ux of 
drugs. P-glycoprotein is likely involved in the urinary excretion of digoxin and a 
number of hydrophobic cationic drugs (Masereeuw and Russel  2001 ,  2012 ; Zhou 
 2008 ). The  ABCB1  gene encoding for P-glycoprotein is highly polymorphic, and a 
relationship has been suggested with calcineurin inhibitor effi cacy and toxicity in 
renal transplant patients. However, data on the clinical relevance of these polymor-
phisms are not unequivocal (Cascorbi  2011 ). Anionic drugs, including glucuronide, 
glutathione, and sulfate conjugates, formed in the proximal tubular cells or taken up 
from the circulation, are pumped into urine via MRP2 and MRP4 (van de Water 
et al.  2005 ). As compared to MRP2, MRP4 appears to have a higher affi nity for 
small organic anions and its protein expression is approximately fi vefold higher 
(Russel et al.  2008 ; Smeets et al.  2004 ). BCRP was only recently identifi ed in the 
apical membrane of the proximal tubule (Huls et al.  2008 ). The overlap in substrate 
specifi city with P-glycoprotein and the MRPs suggests its potential involvement in 
renal drug excretion (Masereeuw and Russel  2012 ). 

 The organic cation transporters MATE1, MATE2-K, OCTN1, and OCTN2 medi-
ate the secondary active effl ux of cationic drugs across the luminal membrane. The 
steep outside>in transmembrane H +  gradient provides a powerful driving force for 
the MATE transporters. MATE1 is expressed throughout the body, but predomi-
nantly in liver and kidneys, whereas MATE2-K is exclusively located in kidney 
proximal tubules (Nies et al.  2011 ). Genetic polymorphisms of MATE1 and 
MATE2-K have been linked to the variability in renal handling of cationic drugs 
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like metformin and to accumulation of oxaliplatin, causing drug-induced 
 nephrotoxicity (Kajiwara et al.  2009 ). Cimetidine appears to be a potent inhibitor of 
both transporters and there is increasing evidence that the inhibition of MATEs 
rather than OCT2 is a likely mechanism underlying the renal drug–drug interaction 
of cimetidine with metformin and other cationic drugs (Ito et al.  2012 ; Lepist and 
Ray  2012 ). The carnitine/organic cation transporters, OCTN1 and OCTN2, are also 
driven by H + /organic cation antiport or organic cation/organic cation antiport. Their 
substrate specifi city is comparable to the MATEs, and because of their bidirectional 
mode, OCTNs could also be involved in organic cation reabsorption (Tamai  2013 ). 

 PEPT1 and PEPT2 are H + -coupled peptide symporters that mediate the active 
reabsorption of antiviral drugs, beta-lactam antibiotics, and angiotensin-converting 
enzyme inhibitors from the primary urine. They are both expressed in a sequential 
order along the renal proximal tubule (Brandsch et al.  2008 ). PEPT2 has the highest 
affi nity and appears to be the major player in the renal reabsorption of peptide-like 
drugs (Kamal et al.  2008 ). 

 OAT4 is only expressed in humans; there exists no ortholog in rodents or other 
species (Burckhardt and Burckhardt  2011 ). The transporter is able to operate as a 
bidirectional asymmetric antiporter mediating the infl ux and effl ux of organic 
anions. As an infl ux transporter, OAT4 couples the luminal uptake of endogenous 
substrates like urate and estrone sulfate to the release of dicarboxylates or hydroxyl 
ions from the proximal tubular cell. In the effl ux mode, anionic drugs are excreted 
into urine in exchange with luminal Cl - . The number of drugs accepted by OAT4 
seems somewhat smaller than for OAT1 and OAT3 (Burckhardt  2012 ; Rizwan and 
Burckhardt  2007 ).  

10.3     Methods to Analyze Renal Drug Transport 

 This paragraph discusses key methods and new technical developments to study 
renal drug transport, including discussion of their advantages and disadvantages, 
which are summarized in Table  10.2 .

10.3.1       Mechanistic Understanding Through Molecular Models 

 The need for robust in vitro assays in preclinical drug development to optimize the 
pharmacokinetic properties of drug candidates has led to numerous cell-based and 
membrane vesicle-based assays. Both approaches include transfection of yeast, 
insect, or mammalian cells with cDNA, using viral vectors, physical methods, or 
biochemical agents, leading to the functional over-expression of a specifi c transport 
protein. 

 For SLC transporters, uptake assays have been developed by incubating trans-
porter-transfected cells in Petri dishes or multi-well plates with potential substrates. 
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After termination of cellular uptake, cells should be washed to remove the substrate 
and after cell lysation the intracellular content can be analyzed. The mammalian 
vector technology by Invitrogen is often used to over-express SLC proteins for this 
purpose in nonpolarized cell lines, including African green monkey cells (COS-7) 
or the Chinese Hamster overay cell line (CHO) (e.g. Astorga et al.  2011 ; Cihlar and 
Ho  2000 ; Kuze et al.  1999 ). Furthermore, human embryonal kidney cells (HEK293) 
have proven validity in studying SLC transporters (Han et al.  2010 ), even in high-
throughput optimization assays (Lohmann et al.  2007 ). However, cell lines will 
remain heterogeneous after transfection, and to obtain lines stably expressing the 
transporter of interest, clonal selection has to be performed usually by serial dilution 
of the clone mixes and followed by propagation of clonal cell lines. These cell lines 
are also widely commercially available. In addition, expression of SLC transporters 
in oocytes of  Xenopus laevis  by cRNA injection has shown to be a promising 
method to elucidate the molecular characteristics of transporters. Important require-
ments for this technique are that the endogenous transport activity of the oocytes 
must be low and the assay used to assess transport activity must be sensitive enough 
to monitor in a few oocytes at least a twofold increase in transport signal above 
background (Soreq and Seidman  1992 ). Oocyte systems expressing some transport-
ers are commercially available as well. 

 Baculovirus-transduced cell lines have proven their suitability, especially for 
expression of ABC transporters in insect cells or in mammalian cells. Expression in 
insect cells, such as cells from the moth  Spodoptera frugiperda  (Sf9), is valuable for 
structural studies as large quantities of purifi ed proteins can be obtained (e.g., 
Ishikawa et al.  2004 ; Radanovic et al.  2003 ). ABC transporter expression in mam-
malian cells, on the other hand, allows for functional characterization of the trans-
porters (e.g., Hagmann et al.  1999 ), and evaluating drug interactions (e.g., in 
studying the effect of nonsteroidal anti-infl ammatory drugs with MRP2 and MRP4- 
mediated methotrexate transport (El-Sheikh et al.  2007 ) or interactions of uremic 
toxins on MRP4 and BCRP-mediated transport (Mutsaers et al.  2011a ), and for 
mutational analysis (e.g., of MRP4 El-Sheikh et al.  2008c ; Wittgen et al.  2012b ). 
Functional studies with these transporters are particularly well performed in vesicu-
lar assays using isolated inside-out crude membrane fractions or membrane vesicles 
derived from transduced cells. Major advantages of this method are that metabolism 
is eliminated and that the composition of solutions on both sides of the membrane 
can be controlled. But the transporter over-expressing cell lines can also be used in 
whole cell-based studies (Robey et al.  2011 ). These cell lines can be used for effl ux 
assays as well as for drug accumulation assays in which the difference in absence 
and presence of a specifi c inhibitor of the ABC transporter refl ects the activity of the 
effl ux pump (Wittgen et al.  2012a ). This approach is also valuable for studying 
kinetics and interactions of lipophilic substrates for which the vesicular transport 
assays are hampered by technological diffi culties. The baculovirus system also 
proved to be suitable for studying SLC transporter function and interactions in cell- 
based systems (El-Sheikh et al.  2008b ), although these transporters are generally 
more diffi cult to over-express and often stable transfections (as described earlier) 
are necessary to detect signifi cant transport. Despite high transduction effi ciencies 
and controllable batch-to-batch variations by applying the histone deacetylase 
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inhibitor butyrate to increase protein expression (Shukla et al.  2012 ), a drawback of 
the baculovirus system is that expression is transient which hampers studying regu-
latory aspects of the transporters and their function in disease models.  

10.3.2     Proximal Tubule Cell Systems for Transepithelial 
Transport Determinations 

 Freshly isolated renal proximal tubule cells are useful in studying overall cellular 
uptake kinetics and accumulation, but uptake is a hybrid parameter determined by 
both infl ux and effl ux rates. Overall transport characteristics of isolated cells in 
suspension seem to resemble basolateral to luminal fl ux as compared to cells on 
fi lters or isolated perfused kidneys, although primary active transporters, like 
MRP2, were found to be retracted from the plasma membrane (Terlouw et al.  2001 ). 

 Primary cultures of cells grown as monolayers on permeable supports (fi lters) 
have several technically important advantages and allow studying cellular kinetics 
(Brown et al.  2008 ; Windass et al.  2007 ), but a major obstacle is dedifferentiation 
resulting in a selective loss of transporter systems, as is shown for renal organic 
anion uptake (Miller  1992 ). To overcome these problems, carcinoma cell lines have 
been characterized and proven to be suitable for studying drug transport, such as the 
human conditionally immortalized proximal tubule epithelial cell line (ciPTEC) 
(Wilmer et al.  2010 ) and HK-2 (Ryan et al.  1994 ), although the use of the latter cell 
line in studying drug transport seems rather limited (Jenkinson et al.  2012 ; Mutsaers 
et al.  2011b ). Furthermore, cell lines have been developed that over-express one or 
more transport proteins. Polarized cells used for transporter transfection are, among 
others, Madin-Darby Canine Kindey cells (MDCK) or pig kidney cells (LLC-PK1). 
For example the double transfected MDCK II cell line, which expresses both 
hOCT2 and hMATE1, provides a useful model for studying renal vectorial transport 
(Konig et al.  2011 ; Sato et al.  2008 ). Important advantages are that transport mecha-
nisms remain functional upon culturing, allowing the study of vectorial transport 
and regulation of transport proteins, and the preparation can be maintained for long 
term use. A major disadvantage of all cell cultures described is that transport rates 
are rather low as compared to in vivo kinetics.  

10.3.3     An Optimal Microenvironment Allows 
Functional Transport 

 As proximal tubule cells are highly polarized, maintenance of this polarity is 
critical for optimal functioning and responsiveness to environmental signals. This 
is dependent on communication between cells, which include features such as 
paracrine and autocrine signals but also biomechanic, haptotactic, and chemotac-
tic processes, all infl uencing cell proliferation, migration, and differentiation. 
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With respect to transporter activities in more physiological models, signaling 
information can be important in transepithelial fl uxes under normal but also under 
pathological circumstances. When cultured in 2-D, the functional polarity is only 
partially retained. Advances in 3-D platforms showed a benefi t for tubular epithe-
lial cells to grow in spheroids or tubule-like structures (Asthana and Kisaalita 
 2012 ). These platforms contain polymeric scaffolds or hydrogels, both without 
and with scaffolds to put some restraints on the size of the microtissue formed. 
One concern is, however, the threshold for oxygen diffusion into the tissue, as 
hypoxia can result in gene expression perturbation leading to a wide variety of 
changes in protein levels (Brooks et al.  2007 ). Most likely also drug transporters 
will be affected, as differences in expression levels were found in ischemic mouse 
kidneys (Huls et al.  2006 ). 

 More recently, bioreactors have been developed that allow proximal tubule cells 
to grow on hollow fi bers in 3-D confi guration under fl ow and oxygen-rich condi-
tions. With these reactors, both uptake and secretion can be studied in one system. 
Although drug transport studies have, as yet, not been reported for hollow fi ber 
cultures, clearly different transporter expression levels were determined when cells 
were cultured in a bioreactor under fl ow conditions as compared to static cultures 
(Oo et al.  2011 ). This emphasizes that the microenvironment indeed might infl uence 
proximal tubule cell transport function. The hollow fi bers clearly have advantages 
over isolated renal tubules from different animal species, as these cell cultures are 
less fragile, can be of human origin, and potentially reduce the number of animals 
needed for drug testing. Moreover, in mammalian tubules the lumens collapse 
quickly after isolation, which makes this preparation unsuitable for investigating 
tubular secretion. Hence, techniques for perfusion of single, isolated tubules have 
been developed, exhibiting a high viability and allowing determining cellular uptake 
and tubular secretion rates with high accuracy (Wright and Dantzler  2004 ), pro-
cesses which are in general faster in primary tissue as compared to cell cultures. 
Furthermore, nonmammalian vertebrates such as killifi sh ( Fundulus heteroclitus ) 
and zebrafi sh ( Danio rerio ) proximal tubules as a comparative models are very suit-
able for studying both uptake and effl ux steps of renal tubular excretion (Long et al. 
 2011 ; Wever et al.  2007 ). By using fl uorescent substrates and confocal microscopy 
it was shown that multiple drug transport mechanisms identifi ed in mammalian 
models are present. With this transporter-based assay system not only substrate 
characteristics but also (hormonal) regulation of transporter proteins could be inves-
tigated (Miller  2002 ).  

10.3.4     Multiple Cell Types for Overall Renal Drug 
Handling Assessments 

 The latest developments in 3-D culture technologies concern the microchips and 
microfl uidics approaches to create cell-culture microenvironments for tissue dif-
ferentiation and reconstitution of the microenvironments of living kidneys by using 
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two or more cell types (Jung et al.  2011 ). With these “organs-on-chips,” human 
physiology can be studied in a tissue-specifi c context and potentially might replace 
animal studies in drug development (Huh et al.  2012 ), although a large number of 
(technical) hurdles need to be taken until a prototype kidney with its multiple cell 
systems can be mimicked on a chip. 

 Traditionally, tissue models used for drug transport studies or drug–drug interac-
tion determinations include kidney slices (isolated) perfused kidneys. Kidney slices 
in studying drug transport was reintroduced in the last decade with new cryopreser-
vation methods that allow an accurate in vitro tool for prediction of in vivo renal 
drug uptake and metabolism (De Kanter et al.  2002 ). Disadvantages are that rates of 
uptake are much lower than those observed in vivo and this tissue appeared to be 
unsuitable for studying drug effl ux. In the 1980s, Ullrich and coworkers contributed 
signifi cantly to the knowledge on structure-transport relation of renal organic anion 
and organic cation transport by using in vivo stopped-fl ow capillary microperfusion 
studies of rat kidney (Ullrich et al.  1984 ). The ex vivo isolated perfused kidney 
allows accurate determination of drug clearance under controlled conditions and in 
the absence of non-renal effects (Maack  1980 ). The viability of 3–4 h for both 
preparations is acceptable and the model is also suitable for studying transport 
under disease conditions (Heemskerk et al.  2007 ,  2008 ). A nonfi ltering isolated 
perfused rat kidney model, with preserved renal perfusate fl ow and cellular integ-
rity, also permits the study of proximal tubular transport independent of luminal 
events (Maack  1980 ). Furthermore, by using a single-pass perfusion system, the 
different membrane transport rates involved in excretion, viz. passive or facilitated 
diffusion, carrier-mediated uptake, intracellular accumulation, and secretion, can be 
determined by indicator dilution (Hori et al.  1988 ). Perfused kidney has shown its 
use in studying pharmacokinetics in transporter mutant animals as well (Masereeuw 
et al.  2003 ). In addition, an in situ mouse kidney perfusion model has been described, 
with a carotid artery cannula for measurement of blood pressure and for blood sam-
pling, and cannulated bladder for urine sampling. In this way, blood pressure, renal 
plasma fl ow, and renal clearance of drugs can be determined in anesthetized mice 
(Tsuruoka et al.  2001 ). While technically challenging, the mouse perfusion model 
offers the great advantage of using the single and multiple transporter knockout 
models currently available.  

10.3.5     Translational Models 

 In man, pharmacokinetic studies are usually limited to analysis of plasma disap-
pearance curves and urinary excretion data due to obvious ethical reasons. 
Therefore, the majority of in vivo transport studies are performed in laboratory 
animals, such as rats and mice, but larger animals are used as well especially 
when metabolism has to be taken into account. Various animal models have been 
developed and/or evaluated to study drug transport in absence or malfunction of a 
transporter protein. These may be provided by spontaneous mutation of a gene 
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resulting in disturbances, but also transgenic and gene-knockout manipulations 
have provided new and potentially powerful approaches for studying the func-
tional and pathologic roles of transporter proteins, as described for example in 
 Bcrp  knockout mice (Jonker et al.  2002 ). 

 Drug excretion in vivo is described best by a physiologically based pharmacoki-
netic model, which includes all functional characteristics of the kidney that deter-
mine the excretion of drugs. These include protein binding, renal plasma fl ow, urine 
fl ow, glomerular fi ltration, tubular secretion, and cellular retention (Russel et al. 
 1987 ). Integration of in vitro fi ndings are required for a better insight in renal drug 
handling, drug interactions, (hormonal) regulation of drug transport, and interindi-
vidual variability. In addition, all individual compartments of biological systems 
can be incorporated into multi-compartment models by using data empirically 
obtained from in vitro and animal studies (Zhao et al.  2011 ). 

 Novel systems models such as the Simcyp simulator (  www.simcyp.com    ) have 
been developed to simulate drug pharmacokinetics and pharmacodynamics in vir-
tual populations, with which drug–drug interactions and pharmacokinetic outcomes 
in clinical populations can be predicted. This platform uses databases that contain 
human physiological, genetic, and epidemiological information, which can be inte-
grated with in vitro and clinical data to allow predictions (Johnson et al.  2010 ; 
Rowland et al.  2011 ).   

10.4     Conclusion 

 The last decade has witnessed rapid technological progress in the fi eld of trans-
porter research, which has also greatly accelerated the gain of knowledge on renal 
drug transporters. A wealth of information has been generated about individual 
transporters by using molecular cloning techniques and functional characterization 
in over-expression systems, but much remains to be resolved regarding the coordi-
nated action and regulation of the infl ux and effl ux transporters in a proximal tubu-
lar cell as an integrated system. Although knockout mice have provided valuable 
insight into the in vivo role of different renal transporters, these studies need to be 
interpreted with some caution because of compensatory mechanisms and species- 
related differences in transporter expression and substrate specifi city. 

 There is still a long way to go before we will be able to make accurate predictions 
of the renal clearance and exposure of drugs on the basis of the kinetic characteris-
tics of individual transport proteins. Quantitative information on activity, substrate 
specifi city, interindividual variation and abundance of transport proteins, as already 
available for many drug metabolizing enzymes, is required for physiologically 
based pharmacokinetic modeling and simulation of drug handling by the kidney. An 
important step has been made by the recent development of proteomics-based 
LC-MS/MS methods that enable the successful determination of absolute protein 
concentration levels of transporters in over-expression systems, proximal tubular 
cells, and human kidney tissue, which are useful to feed into the computer models 
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as in vitro-in vivo scaling factors (Ohtsuki et al.  2011 ). Currently, the lack of 
 availability of a comprehensive in vitro model system of the proximal tubule, as 
predictive as for example Caco-2 cells are for intestinal transport, is a major limita-
tion. While technically challenging, there is a great deal of promise in 3-D renal 
proximal tubular cell-culture systems with the potential of reconstructing the com-
plex dynamic interplay among all the different transporters. 

 Personalized medicine through individualization of drug therapy is an important 
challenge for the future. The activity of transporter proteins may be infl uenced by 
genetic variation, which can be investigated by over-expression of the variants in a 
cellular system. But to get a picture of the actual impact on renal drug clearance, in 
vivo studies are required in human subjects with genetic polymorphisms to defi ne 
the clinical relevance of certain transporters and to refi ne and validate the in silico 
models. As compared to the redundancy in renal organic anion transporters, the 
transporter-mediated renal excretion of cationic drugs seems to be more susceptible 
to drug–drug interactions and genetic variation. Based on current insights, it is 
expected that combined genetic polymorphisms in OCT2 and MATE1/MATE2-K 
variants could have important implications for cationic drug clearance and renal 
toxicity (Nies et al.  2011 ). 

 In summary, important advances have been made in the study of renal drug trans-
porters. Whereas the functional characteristics of individual transporters have been 
relatively well-defi ned, there is a great need for comprehensive proximal tubular 
cell models and improved extrapolation of in vitro data to the clinical situation. 
Technical developments in molecular biology, tissue engineering, and systems 
pharmacology will provide new approaches to reach the ultimate goal of accurately 
predicting renal drug clearance, toxicity, and drug–drug interactions in an individ-
ual patient before the drug is actually administered.     
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