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Abstract  In this “position paper” we discuss the potential role of partial order the-
ory in socio-economic statistics and social indicators construction. We maintain that 
the use of concepts and tools from poset theory is needed and urgent to improve 
currently adopted methodologies, which often prove ineffective for exploiting ordi-
nal data. We also point out that the difficulties in spreading partial order tools are 
cultural in nature, and that some open-mindedness is needed among social scien-
tists. We address these issues introducing some examples of open questions in 
socio-economic data analysis: (i) the problem of multidimensional poverty evalua-
tion, (ii) the problem of assessing inequality and societal polarization, and (iii) the 
problem of clustering in multidimensional ordinal datasets.

9.1  �Introduction

During a workshop held in Italy in 2010, a full professor in Statistics, presenting an 
evaluation study pertaining to service quality and based on ordinal data, made a 
statement like: “…here we’re dealing with ordinal data, so there is no room for 
mathematics and statistics.” The speaker was certainly aware of the number of 
methodologies in the statistical literature for dealing with ordinal variables. Yet the 
statement reveals something true and, somehow, interesting. Still today, when social 
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scientists address multidimensional complex1 problems involving qualitative data 
(like service quality evaluation studies) they feel basically uncomfortable and con-
sider such problems, in a sense, “ill-posed.” Unfortunately, this perception conflicts 
with the following evidences: (i) more and more crucial socio-economic issues may 
be meaningfully described only by involving ordinal information (e.g., material 
deprivation and multidimensional poverty, subjective well-being or quality-of-life, 
customer satisfaction and service quality perception, to mention a few) and (ii) de 
facto, more and more socio-economic datasets offer ordinal data to scholars and 
researchers. The question is therefore whether this means that we cannot adequately 
describe and understand socio-economic facts, or whether this is still possible, but 
requires some change of paradigms and tools. In this position paper, we address this 
issue. We try to identify the logical roots of the problem and to reveal the intercon-
nections between them and the need for new statistical tools, stressing the role of 
partial order theory and of a “partial order culture,” to overcome limitations of cur-
rent statistical practice. We will pursue this, identifying some questions that are still 
unsolved in applied socio-economic research and that could be (and are being) fruit-
fully addressed through partial order theory. The proposed open issues are in no way 
intended to be an exhaustive list. They have been chosen based on our research 
interests and experience; still, they are really urgent problems and are useful to 
explain our position. Given the aims of the paper, we will not go into technical 
details, which would lead us to a long and complicated exposition. Rather, we will 
focus on the essentials which better clarify the issues we are addressing.

9.2  �Old Paradigms and Open Questions

Among statisticians and social scientists, there is a widespread feeling that sound 
scientific knowledge may be achieved only when precise measurements may be 
attained. This idea comes from natural sciences, physics in particular, and was 
embodied in social sciences from the late nineteenth century to the first half of 
twentieth century. This is one of the root problems, often preventing ordinal data to 
be considered valuable. Clearly, we are not arguing against the relevance of measur-
ing socio-economic facts precisely, whenever possible. The question one should 
answer is in fact different: “How can we obtain faithful representations of socio-
economic facts?” Sometimes, faithful representations may be built using precise 
measurement models, as in physics, sometimes not. We may, at least ideally, mea-
sure with great precision prices and quantities of different goods to account for 

1 In this paper, we often use terms like “complex” or “complexity.” We use them informally, to 
mean problems or systems that cannot easily be solved, reduced or described, as they are made of 
many linked elements or facets. Perhaps the formal definition of complexity which is closest in 
spirit to the way we employ the term is that of “Kolmogorov complexity,” used in algorithmic 
information theory. However, we stress that this is only an analogy.
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inflation,2 but we cannot claim to faithfully represent in numerical terms ordinal 
issues like the democracy level of a country or subjective well-being or quality of 
services. Representing a physical, economic, or social phenomenon means identify-
ing its essential features and the interrelations among its components and sketching 
them in a suitable formalism, so that by performing formal computations one may 
get insights into it. Often, social scientists simply code qualitative information into 
numerical scores and proceed to analytical computations. Sometimes, prior to com-
putations they employ complex algorithms to turn qualitative variables into numeri-
cal scales. In any case, the basic questions one should answer are: “What do these 
numbers represent? May we assume the results are effective to understand what we 
are interested in? Do our computations convey valid information, reflecting ele-
ments of reality?” We admit that sometimes the answer may be positive, so one may 
fruitfully proceed this way. But it is important to pose the question.

The problem, in fact, is not just epistemological, but very practical. Today there 
is a great amount of ordinal information available to social scientists, and focus is 
shifting toward qualitative socio-economic issues, like assessing well-being, 
quality-of-life, or multidimensional poverty. Still, social scientists approach these 
topics with “numerical” paradigms, using methodologies and computational proce-
dures designed to deal with quantitative information. So the problem often becomes 
how to fit ordinal data into well-established and routinely used procedures, rather 
than how to build new appropriate methodologies. When ordinal data is used in this 
way, the risk is getting questionable and biased results, which affect our understand-
ing of social facts. This matter of fact is also due to the implicit assumption that 
ordinal data cannot be handled in a consistent and effective way, since no formal 
tools are available; so even those who are aware of the problem cannot easily see 
any way out. The use of partial order theory and other related tools from discrete 
mathematics and relational calculus have not spread into the “methodological imag-
ination” of social scientists’ community yet, and there is little awareness of the 
possibilities that they may open.

A paradigmatic example comes from the problem of extending classical socio-
economic indicators (e.g., inequality indices) to multidimensional ordinal datasets. 
This is one of the core issues in current research, since any attempt to represent 
modern societies and their complexity requires taking into account many different 
aspects jointly. Historically, there has been a great deal of research on giving sound 
mathematical and axiomatic foundations to the theory of statistical indices (con-
sider, e.g., the theories of price indices, poverty indices, or concentration indices). It 
is much more difficult to achieve multidimensional extensions of these axiomatic 
systems and, usually, results are less neat and general. In the case of ordinal vari-
ables the situation is even worse, since systematic theories of this kind are still lack-
ing, even if some attempts are being made. Unfortunately, the use of statistical 
indicators is the basis of many socio-economic studies and, in many cases, the 

2 Measuring inflation should involve also measuring services and it is quite debatable how to pre-
cisely define the concept of quantity in this case.

9  Partial Orders in Socio-economics: A Practical Challenge for Poset…



200

absence of effective tools for ordinal data forces social scientists to fall back on 
numerical representations.

On the whole, epistemological difficulties, lack of awareness about possible 
alternatives, and unsuitable statistical tools are major obstacles for the development 
of statistical methodologies capable of exploiting ordinal data and answering the 
information needs of researchers, policy-makers, and citizens. In the following para-
graphs, we illustrate these issues and give some ideas about the role of partial order 
theory, by means of three examples of open questions in applied socio-economic 
statistics: the evaluation of multidimensional poverty and well-being, the measure-
ment of inequality and polarization in a multidimensional ordinal setting, and the 
development of procedures to perform cluster analysis on ordered structures.

9.2.1  �Evaluating Multidimensional Poverty: A Matter  
of Multidimensional Comparison?

One of the most relevant examples in socio-economic analysis where the issue of 
multidimensional ordinal data is crucial is the wide field of evaluation studies per-
taining to quality-of-life, well-being, and multidimensional poverty. Following the 
Commission on the Measurement of Economic Performance and Social Progress 
(the “Stiglitz-Sen-Fitoussi Commission”), several attempts to assess well-being and 
to go beyond GDP (Gross Domestic Product) as a measure of societal wealth are 
being pursued in many countries. The authors of this paper are involved in the 
Italian project for the construction of official well-being indicators,3 promoted by 
CNEL (National Council of Economy and Work) and ISTAT (National Institute of 
Statistics). Twelve well-being dimensions have been identified (e.g., health, educa-
tion, work, social relations, and environment), each comprising different indicators, 
both numerical and ordinal (e.g., those pertaining to subjective well-being). One of 
the main issues under discussion is whether to produce synthetic indicators and 
how; perhaps computing composite indicators? The drawbacks of aggregative and 
compensative procedures of this kind are well known (see, e.g., Fattore et al. 2012), 
but often no alternatives are pursued. Given the impact of official well-being statis-
tics on public opinion and policy-makers, it is clear that any choice about how to 
produce final indicators requires great care. In social evaluation studies, the aggre-
gation problem is at least twofold:

	1.	 There is a technical issue when ordinal data are at hand, since in that case usual 
procedures designed for numerical variables break down and no aggregation can 
be performed directly. To overcome this problem, various procedures are often 
implemented to transform ordinal data into numerical figures,4 so as to apply 

3 http://www.misuredelbenessere.it.
4 These so-called scaling tools range from simply coding and using ordinal scores as integers, to 
running complex numerical algorithms, like in the Gifi homogeneity analysis (Michailides and de 
Leeuw 1998), or using various regression or model-based approaches.
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aggregation procedures. Unfortunately, the existence of latent numerical scales 
behind ordinal data may often be questioned. Moreover, scaling procedures often 
generate numerical figures minimizing some loss function, so in practice intro-
ducing into the analysis an optimization criterion that need not be intrinsic to the 
data, albeit mathematically appealing. Therefore, one may legitimately ask 
whether the final figures produced that way actually give a faithful representa-
tion of the underlying socio-economic facts or are just the output of numerical 
algorithms with a limited capability of enlightening data.

	2.	 There is also a general conceptual problem. The basic assumption behind the 
development of aggregated indicators is the existence of one main latent dimen-
sion accounting for most data variability, so that by exploiting variable interde-
pendencies one may hope to reduce data complexity. As a matter of fact, 
evaluation dimensions are often weakly interdependent and, even conceptually, 
one cannot accomplish any satisfactory synthesis, drawing on the principle of 
explaining joint variability. We remark that this problem does not depend upon 
the nature (cardinal or ordinal) of the variables to handle. It is intrinsic to the true 
multidimensionality of the concepts related to quality-of-life, which often pre-
vents the aggregative procedure from getting meaningful results. What makes 
social evaluation studies challenging is precisely this feature; the evaluation 
problem is not reducible to aggregation.

In practice, and more and more often, the two problems combine together, mak-
ing the development of synthetic indicators more demanding for statisticians, who 
must find new technical tools to build them, and more urgent for policy-makers, 
who need them to interpret even more complex societies. The current debate on 
these problems is quite heated. An interesting issue of the Journal of Economic 
Inequality published in 2011, hosting a forum on the topic, is particularly enlighten-
ing of the state-of-the-art. The main debate is polarized around two different posi-
tions: that of Alkire and Foster, who propose their aggregative counting approach to 
the measurement of multidimensional poverty (see Alkire and Foster  2011a and 
Alkire and Foster  2011b), and that of Ravaillon Ravaillon  [2011], who suggests 
avoiding any synthetic procedures, in favor of using dashboards (panels of indica-
tors). The Alkire–Foster procedure is perhaps the most consistent framework to 
assess multidimensional poverty based on both ordinal and cardinal indicators, and 
its use is spreading. The structure of the procedure is very simple and can be 
described as follows.

Let Tn ×k be the data matrix, comprising the scores of n statistical units on k evalu-
ation dimensions v1, …, vk (i.e., each row of the data matrix contains the profile of 
the corresponding statistical unit). Then the following steps are implemented:

	1.	 a set of c1, …, ck cutoffs is exogenously chosen, one for each evaluation 
dimension;

	2.	 each individual is assessed against the cutoffs and is declared deprived on vi if 
his/her score on that dimension is less than ci;
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	3.	 matrix Tn ×k is transformed into a binary matrix Gn ×k, where Gi j = 1 if individual i 
is deprived on dimension j and Gi j = 0 otherwise;

	4.	 the rows of G are then summed up, possibly weighting each column with weights 
expressing the relative importance of being deprived on the various 
dimensions;

	5.	 finally, an individual is declared definitely deprived if his/her overall score is 
equal to or greater than an overall cutoff c, exogenously chosen.

In practice, this procedure leads to the definition of an identification function 
which classifies individuals as deprived or not in a binary way. Once individuals 
have been classified, several poverty indicators may be computed (for a complete 
discussion see Alkire and Foster 2011a). Notice that irrespective of dealing with 
cardinal or ordinal variables, the Alkire–Foster procedure turns the original data 
matrix into binary matrix G and applies a weighted aggregation function (i.e., a 
weighted sum) to its rows. If all of the weights are set to 1, the methodology simply 
counts individual deprivations.

The debated point is essentially on the meaningfulness and utility of aggregating 
indices using weights. It is instructive to quote the final comment of the Forum 
Editor (Lustig 2011):

At the bottom of the discussion is a fundamental disagreement on the “legitimacy” of the 
weights used to aggregate dimensions of wellbeing […] Ravallion and those who agree 
with him consider that the alternative weights used in the MPI (or similar indices) are not a 
good solution as they may imply unappealing trade-offs and that these aggregate poverty 
measures are generally not consistent with consumer welfare theory.[…] Thus, given this 
problem and the fact that for policy purposes disaggregation will be required, Ravallion 
asks: what is the advantage of using composite indices […] instead of a “dashboard” of 
multiple indices? One key unresolved issue in the “dashboard approach”, however, is that if 
we agree that welfare depends on a series of dimensions, how do we address the fact that 
the marginal effect of increasing an individual’s access to one of the dimensions (e.g., 
health services) depends not only on that individual’s access to the dimension in question, 
but also on the individual’s level of all the other indicators of welfare?

Future research will need to focus on how to identify weights in ways that are consistent 
(1) with welfare economics and (2) with theories of justice. Will we have to choose between 
the two?

From the last sentence we see that the weighting problem is considered as the 
central issue. But weighting is a consistent operation only in a numerical setting, so 
what about ordinal data? Basically, we are left with two alternatives: (i) scaling 
ordinal scores to cardinals and proceeding to usual computations, getting arguable 
results or (ii) sticking to the Alkire–Foster procedure, turning ordinal scores into 
binary scores and counting, possibly with weights, losing a great deal of informa-
tion on the degree of individual and societal poverty (Fattore et al. 2011b). Both 
cases seem to be driven by the (presumed) impossibility of exploiting ordinal data 
on their own. The debate goes on trapped within the “weight and aggregate” frame-
work, the problem being to search for more sophisticated weighting procedures or, 
as a radical alternative, to abandon synthetic indicators.

M. Fattore and F. Maggino



203

In our view, the way out of this trap is via some change of paradigm:

	1.	 no longer considering “synthetic indicator” and “aggregated indicator” as equiv-
alent concepts;

	2.	 considering that evaluation processes could be better addressed as problems of 
multidimensional comparisons against suitable benchmarks, rather than prob-
lems of aggregation;

	3.	 realizing that ordinal data may be consistently handled, with appropriate math-
ematical tools.

In the wider literature about evaluation, the terms “synthetic” and “aggregated” 
are used interchangeably and it is taken for granted that to get synthetic information, 
some aggregation procedure is needed. Since aggregating basically requires sum-
ming up scores, we are inevitably led back to the problem of incompatibility 
between analytical tools and ordinal data. The problem would be solved if we could 
get synthetic indicators from ordinal data without aggregating variables. This is 
indeed possible, provided we reconsider the evaluation process as a multidimen-
sional comparison problem and employ partial order theory to address it. In assess-
ing multidimensional poverty and similar issues, no natural measuring scale exists 
and, implicitly or explicitly, assessments are often based on the selection of some 
“reference points” or of some “prototypes,” to be used as benchmarks.5 In the uni-
dimensional case, e.g., monetary thresholds are adopted and individuals’ income is 
compared against them. In a multidimensional setting the concept of benchmark is 
more complex. First, multidimensional poverty may assume different shapes, i.e., 
there are “several ways” to be poor and so more benchmarks are needed; second, 
being poor or not depends upon the individual’s scores on all the dimensions of 
concern (i.e., his/her profile), so benchmarks should be identified in terms of proto-
typical score configurations. Assessing the poverty state of an individual therefore 
means comparing his score configuration to those constituting the benchmarks. 
Being a problem of multidimensional comparison, partial ordered theory naturally 
comes into play.

This idea is currently being pursued by the authors and other colleagues, e.g., in 
Fattore et al. [2011a,b], and Fattore et al. [2012]. Without entering into technical 
details, the basic idea is quite simple. Let v1, …, vk be k ordinal evaluation dimen-
sions. To each individual in the population, a profile p = (p1, …, pk) is associated, 
whose components are the scores of the statistical unit on the evaluation dimen-
sions. The set P of profiles is turned into a partially ordered set (P, ⊲ ) defining 

	 p q� Û £ " = ¼p q i ki i 1, , . 	 (9.1)

In this framework, a multidimensional poverty threshold τ is a minimal set of 
profiles6 such that any profile below7 one of its elements is classified as poor. Given 

5 Whenever cutoffs or thresholds are involved in the assessment, benchmarks are de facto 
introduced.
6 That is, the smallest set of profiles with the cited property.
7 Here, we assume that the lower the scores, the worse off the individual.
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the threshold, any other profile may be assessed in terms of poverty, based on its 
position with respect to τ, in the Hasse diagram of the profile poset. The multidi-
mensional comparisons involving the profiles and the threshold are performed 
counting over linear extensions of (P, ⊲ ) how frequently a profile is classified below 
an element of the threshold (see Fattore et al. 2011a for details). The resulting eval-
uation function assigns to each profile (and thus to any individual sharing it) a score 
in [0, 1], representing the degree of poverty, given τ. In practice, the procedure 
quantifies the degree of ambiguity in the classification of a profile into the set of 
poor profiles and may be better interpreted as a way to compute a fuzzy membership 
function. What is relevant here, is that such a quantification does not involve any 
ordinal variable scaling; the focus is on profiles and information is extracted out of 
the mathematical structure representing the basic relation existing among them, i.e., 
the partial order relation. The resulting evaluation procedure, even if heavier from a 
computational point of view, is more effective and general than the Alkire–Foster 
counting approach, which in fact may be seen as a special case of the former (for a 
complete comparison, see Fattore et al. 2011b). Apart from these technicalities, the 
interesting feature of poset-based evaluation procedures is that they show how to 
exploit ordinal data, implementing the same logical structure of classical unidimen-
sional evaluation studies.8

To provide some insights into the poset approach to evaluation, we briefly out-
line the example reported in Fattore et al. [2011a]. Five deprivation variables have 
been considered, from the EU-SILC survey pertaining to Italy, for year 2004:

	1.	 HS040—Capacity to afford paying for one week annual holiday away from 
home;

	2.	 HS050—Capacity to afford a meal with meat, chicken, fish (or vegetarian equiv-
alent) every second day;

	3.	 HS070—Owning a phone (or mobile phone);
	4.	 HS080—Owning a color TV;
	5.	 HS100—Owning a washing machine.

All of the variables are expressed on a yes/no scale, so that deprivation profiles 
are sequences of five 0 ∕ 1 digits (1: non-deprivation; 0: deprivation). Clearly, there 
are 25 = 32 different profiles. The threshold has been chosen as τ = (01011, 00111), 
i.e., deprivation on HS040 and HS070, or deprivation on HS040 and HS050.9 
Figure 9.1 reports the Hasse diagram of the profile poset, with the threshold ele-
ments in black. The top element corresponds to profile 11111, the bottom to profile 
00000. Profiles with the same number of 1s have the same distance from the bottom 
element (the distance is measured as the number of edges in a downward path from 
the profile to the bottom). All of the elements of the threshold and all of the profiles 
below one of them are scored 1 (i.e. unambiguously deprived) by the evaluation 

8 In Fattore et al. [2012], e.g., it is also suggested how the classical notion of “weighting” variables 
may be translated into purely poset terms.
9 This threshold has been chosen for exemplification purposes only.

M. Fattore and F. Maggino



205

function, since they represent profiles that are deprived as much as or more than 
threshold profiles. Profiles above both threshold elements are instead scored 0 by 
the evaluation function (a direct inspection of the Hasse diagram shows that there 
are only two such elements, namely 01111 and 11111). All of the other elements of 
the poset are scored in [0, 1] by the evaluation function. The choice of the threshold 
breaks the symmetry of the profile poset, so that profiles with the same number of 
1s may be scored differently. For the sake of completeness, Table 9.1 reports the 
evaluation function, estimated extracting a sample of 108 linear extensions out of the 
profile poset. For more comments on the results, see Fattore et al. [2011a].

Remark. We conclude this paragraph with a brief discussion on the possible use of 
partial order theory in evaluation problems involving continuous variables. When 
truly numerical variables are at hand, there is apparently no need for partial order 
theory to be employed. At least in principle, composite indicators might be com-
puted and metric information preserved. However, a closer look at the problem 
shows that things are not so neat. Composite indicators often mix up variables 
expressed on different scales, producing almost uninterpretable results. Even the 

Fig. 9.1  Profile poset on a 
set of five binary variables 
(threshold elements in black)

Table 9.1  Evaluation function for the elements of the profile poset depicted in Fig. 9.1, given the 
threshold τ = (01011, 00111)

Profile 11111 11110 11101 11100 11011 11010 11001 11000
Evaluation 0.00 0.11 0.11 0.65 0.06 0.66 0.66 0.98
Profile 10111 10110 10101 10100 10011 10010 10001 10000
Evaluation 0.6 0.66 0.66 0.98 0.67 0.98 0.98 1.00
Profile 01111 01110 01101 01100 01011 01010 01001 01000
Evaluation 0.00 0.67 0.67 0.98 1.00 1.00 1.00 1.00
Profile 00111 00110 00101 00100 00011 00010 00001 00000
Evaluation 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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trick of scaling variables to unit variance does not solve the problem and could be 
justified only by assuming a latent variable model behind observed data. 
Unfortunately, involving latent constructs leads to other subtle issues, such as the 
indeterminacy of factor scores (Vittadini 1989, 2007), which raise doubts on the 
validity of the approach. Moreover, as previously noticed, interdependencies among 
poverty variables are often not very strong, reducing the effectiveness of correla-
tion-based procedures. In addition to these technical problems, other (perhaps more 
fundamental) considerations may be given in favor of partial order theory. As 
already discussed, evaluation is primarily a problem of comparison against bench-
marks, rather than against an absolute scale. In the composite indicator approach 
(with or without latent variables), benchmarking is performed through variable 
aggregation, i.e., achieving unidimensionality to eliminate incomparabilities. 
Aggregation introduces compensations and trade-offs between evaluation dimen-
sions, which are often debatable, but usually accepted as the only way to get full 
comparability among statistical units. However, if one addresses multidimensional 
evaluation through partial order theory, i.e., as a problem of “comparability quanti-
fication,” the existence of incomparabilities stops being a problem and aggregation 
is no longer needed, even conceptually. Up to now, this point of view has been 
pursued only for ordinal data, but one may hold it also about continuous variables. 
There are indeed some technical problems to face. For example, the trick of consid-
ering linear extensions may not be directly applied to continuous partial orders and 
its implementation must be reconsidered (we are currently working on that and a 
possible solution has been already identified). Apart from these technical issues, 
however, we see that poset theory is a general tool for multidimensional evaluation 
problems, since its conceptual and formal structure is fully consistent with the very 
nature of evaluation processes. This is one of the main reasons why poset theory 
should be part of the “encyclopedia” of social scientists.

9.2.2  �Inequality and Polarization in Multidimensional  
Ordinal Datasets: How to Assess Them?

A major concern in current socio-economic research is assessing inequality pat-
terns among individuals and polarization within societies. Historically, the mea-
sure of inequality is one of the most studied and developed research fields in 
socio-economic statistics and the amount of literature about it is huge. Inequality 
measurement focused primarily on income distribution and monetary well-being. 
This led to classical axiomatic systems for inequality and concentration indices. As 
social scientists’ and policy-makers’ focus is shifting from a monetary analysis to 
well-being, questions about inequality are moving toward a multidimensional set-
ting, often comprising ordinal information. A similar process is occurring with 
respect to another crucial phenomenon affecting modern societies and which is 
attracting more and more interest by social scientists: social polarization. The first 
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aspect of polarization, technically referred to as bi-polarization, pertains primarily 
to the well-known phenomenon of the disappearing middle class. The existence of 
the middle class is one of the most relevant consequences of the development of 
modern societies as an effect of the diffusion of well-being, both in monetary and 
non-monetary forms. However, in the last two decades, in many countries there are 
evidences that “the rich get richer and the poor get poorer.” That is, societies are 
becoming polarized and the middle class is partly disappearing. A broader concept 
of polarization, closely linked to existence of different social and ethnic groups in 
modern democracies, is related to the “alienation that individuals and groups feel 
from one another […] fuelled by notions of within-group identity.” Here, the inter-
est lies primarily on “the correlates of organized, large-scale social unrest-strikes, 
demonstrations, processions, widespread violence, and revolt or rebellion. Such 
phenomena thrive on differences, to be sure. But they cannot exist without notions 
of group identity either.” (see Duclos et al. 2004, pp. 1737–1738). From a concep-
tual, and then statistical, point of view, it is interesting to notice that inequality and 
polarization (both in the bi-polarization and in the broader sense) are two distinct 
concepts. A first evidence of this dates back to the paper of Wolfson [1994], where 
it is unequivocally shown how a sequence of income distributions may be built 
with decreasing inequality and increasing bi-polarization. Inequality does not cap-
ture either the notion of identification-alienation polarization, as discussed in 
Duclos et  al.  [2004]. The interest in polarization led to many statistical studies 
devoted to measuring it and to developing related axiomatic systems, primarily in 
the unidimensional case (Duclos et al. 2004, Fusco and Silber 2011, Permanyer 20
12, Zhang and Kanbur 2001). While the concept of polarization is being carefully 
analyzed and theoretical and empirical differences or interconnections with 
inequality are being investigated, a new issue is emerging as relevant and urgent. 
Inequality and polarization do not only concern the monetary perspective; instead 
they involve the whole well-being concept, comprising health, work, education, 
culture, environment, material deprivation, and so on. Some interesting studies 
address the issue of labor market segmentation and the link between job polariza-
tion and wage polarization (Ercolani and Jenkins 1998, Gregg and Wadsworth 2004). 
A great deal of research is also being done on how to measure inequality and polar-
ization in health services and, in particular, in the subjective assessment of health 
responsiveness (Apouey 2007, Lones 2010). Involving well-being raises two issues 
in the theory of inequality/polarization measurement: (i) building multidimen-
sional indices and (ii) defining formulas suitable to ordinal data. Multidimensional 
inequality measures have been already extensively studied (see, e.g. 
Maasoumi  1999,  Tsui  1986), while multidimensional extensions of polarization 
measures are still at an initial stage (see, e.g. Gigliarano and Mosler 2009). The 
problem of ordinal data is instead urgent for both inequality and polarization mea-
surements. There are indeed several formulas to treat ordinal information (con-
sider, e.g., Abul Naga and Yalcin 2008, Allison and Foster 2004), but at the same 
time, and this is the point of interest for our aims, their use still meets some “resis-
tance.” For example, in Doorslaer van and Jones [2003] the issues of using ordinal 
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data are clearly addressed and overcome in favor of transforming ordinal scores 
into numerical figures. Quoting from the Introduction:

One of the challenges in investigating inequalities in health is that, very often, health infor-
mation is only available at an ordinal level. One of the most commonly used indicators of 
overall individual health in general population surveys is the simple question, “how is your 
health in general?”, with response categories ranging from “very good” or “excellent” to 
“poor” or “very poor”. This categorical variable has been shown to be a very good predictor 
variable of other outcomes, such as subsequent use of medical care or of mortality […]. 
However, it does not provide a cardinal health (utility) scale that can be used, for instance, 
for quality adjustments of life expectancy. Categorical measures of health create a problem 
for the measurement of inequalities in health. The health concentration index, and the 
related slope index of inequality, require information on health in the form of either a con-
tinuous variable or a dichotomous variable. (Doorslaer van and Jones 2003, pp. 61–62).

Ordinal data are thus a problem since the computational and interpretative pro-
cesses are designed for numerical figures. To be clear, we are not lessening the rel-
evance of jointly considering life expectancy and health status. We simply remark 
that, according to the quoted text, the whole conceptual framework is not compati-
ble with ordinal data. Whether this is a problem of the data generation process or a 
limit of the conceptual framework, we leave to the reader. The way out from this 
incompatibility is usually the application of scaling tools to transform ordinal data 
into numerical figures, by means of latent variable models, probit models, or other 
form of regressions, together with all the burden of hypotheses and assumptions that 
they carry (Doorslaer van and Jones 2003), affecting in some way the final compu-
tations. An interesting example showing possible effects of scaling is provided by 
the study reported in Madden [2010], which concerns health status in Ireland for 
years 2003–2006. Inequality in self-reported health status is analyzed and compared 
using the Abul Naga and Yalcin indices (designed for ordinal data) and, after trans-
forming original ordinal data into cardinal figures by means of interval regression, 
through the Generalized Entropy indices. Before commenting on the results of the 
study, it is interesting to quote its motivations:

As the vast majority of summary inequality indices are mean-based they require a cardinal 
measure of the outcome variable in question. While there are some health measures that are 
cardinal (e.g. body mass index) they are typically not comprehensive. More general health 
measures are nearly always categorical and ordinal rather than cardinal. Thus, to obtain a 
summary measure of inequality it is necessary to either (a) employ an inequality measure 
that is specifically designed to deal with ordinal data or (b) to transform the ordinal measure 
into a cardinal measure and then employ a standard inequality index. […] It could be argued 
that since inequality measures specifically designed to deal with ordinal data are now avail-
able, analysts should always use such indices. However, it also seems fair to suggest that 
such measures are less well developed than their cardinal counterparts.

Table 9.2 reproduces a part of the results reported in Madden [2010]; it compares 
the inequality measures obtained by the Abul Naga and Yalcin index and those 
obtained by the Generalized Entropy index for each year.10

10 The Abul Naga and Yalcin index is computed setting a b= = 1 , while the Generalized Entropy 
is computed setting a = 0.
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In Madden [2010], it is emphasized that an absolute comparison between the two 
indices is not meaningful and so the author focuses on the orderings induced by 
them on the four years considered. As it can be directly checked, the orderings are 
very different: according to the Abul Naga and Yalcin Index we get 
2006 < 2005 < 2004 < 2003, while according to Generalized Entropy we have 
2003 < 2006 < 2004 < 2005. It is particularly noticeable that year 2003 is ranked as 
the most unequal year by the first ordering and as the least by the second. Thus we 
see that the judgment on the temporal evolution of self-reported health status would 
be almost reversed, if one chooses the ordinal or the cardinal way of measuring 
inequality.

This example is quite instructive and shows the consequences of assuming latent 
cardinal variables behind ordinal data (not to mention the problems concerning the 
numerical results of the scaling procedure: are the differences in the Generalized 
Entropy measures really significant?).

When the issues of multidimensionality and of using ordinal data combine 
together, the situation becomes much more complex and challenging. The problem 
is to build a multidimensional index of inequality or polarization for ordinal data 
and this seems to be an almost completely unexplored field. As far as we know, the 
only attempt in this direction is Kobus [2011]. In general terms, the extension of 
unidimensional indices to multidimensional settings is pursued building axiomatic 
systems that generalize unidimensional axioms to sets of many variables. The prob-
lem with this approach is that inequality, polarization, or other similar issues in a 
multidimensional framework may assume so many different forms and may show 
such a great number of shapes that it is often extremely difficult to identify neatly 
natural properties to be turned into axioms. The result is quite complicated and 
debatable axiomatic systems. Without entering into technical details, it seems to us 
that one of the problems is that axiomatization attempts tend to focus directly on the 
ordinal variables at hand, instead of focusing on the partial order induced by them 
on the (equivalence classes of) statistical units. Basically, the approach is to define 
a partial order on the set of joint ordinal frequency distributions that should reflect 
a partial ordering of (say) inequalities and then to impose inequality indices to be 
consistent with it. The idea is in itself quite appealing and resembles classical 
approaches to multidimensional inequality and concentration indices, but putting it 

Table  9.2  Comparison between inequality 
measures computed using the Abul Naga and 
Yalcin (AN–Y) index and the Generalized 
Entropy (GE) index, extracted from Table 2 of 
Madden [2010]

Year AN–Y GE

2003 0,3563 0.0039
2004 0.3455 0.0043
2005 0.3427 0.0045
2006 0.3330 0.0040
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into practice leads to quite complicated axiomatics and non-neat results, also 
depending on some arbitrary choices that lessen the generality of the arguments. It 
is our personal feeling that in applied statistics, axiomatic systems should be kept as 
simple and natural as possible. In this effort, one should be driven by a clear idea of 
what is to be measured, by suitable formal representations of the problem and by 
appropriate mathematical tools. While the concepts of inequality and polarization 
are quite clear, the formal tools usually employed, borrowed from classical mathe-
matical analysis, are not so effective. A possible alternative is to cast the whole 
problem in partial order terms, representing (equivalence classes of) statistical units 
through Hasse diagrams, linking inequality/polarization axioms to the structure of 
the partial order and to the distribution of the population on it. Focusing on statisti-
cal units instead of variables (i.e., considering data matrix rows instead of columns) 
has many advantages: it (i) makes the structure of the data explicit, (ii) helps iden-
tify alternative properties that indices may fulfill and that may be turned into axi-
oms, (iii) is completely consistent with the ordinal nature of the data, and (iv) 
generalizes also to posets not explicitly built upon a set of variables. Basically, the 
idea could be to build a system of axioms which is more algebraic in nature than 
analytical, requiring the indices to be “well behaved” both when the frequency dis-
tributions change and when the partial order structure changes. We are currently 
working on this, with promising results.

9.2.3  �Searching for Patterns: Clustering over Posets  
and Lattices?

It is not unusual that social surveys collect ordinal information by asking respon-
dents to score their judgments using scales with up to ten degrees. The resulting set 
of profiles (i.e., sequence of scores on the investigated dimensions) may comprise 
even thousands of different elements. The need to reduce complexity and identify 
groups and clusters of respondents naturally arises. Similarly, many economic stud-
ies comparing countries’ features lead to systems of multidimensional comparisons 
on ordinal data; also in such cases one may be interested to group similar statistical 
units. The study of clustering techniques is one of the most developed branches of 
data analysis. Many different methodologies are available, ranging from simple 
hierarchical procedures (Rencher  2002), to neural networks algorithms 
(Kohonen  2001,  Ripley  2005) or to model-based techniques (Vermunt and 
Magidson 2002). Most of the clustering tools are designed to work with cardinal 
variables, but there are also procedures for ordinal data. In practice, however, the 
partial ordinal nature of the data is seldom taken into account explicitly. Recently, 
an interesting book about clustering on ordinal data came out, where also general-
izations of dissimilarity measures taking values in posets are considered 
(Janowitz 1978, 2010), but most of the techniques applied in daily research are of a 
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classical kind and treat ordinal scores as cardinal (e.g., considering scores directly 
as numbers). The question we pose is whether it is possible to develop clustering 
methods that take full account of the partial order structure of the dataset, that is to 
build procedures which extract clustering information not only from some metric 
structure, but also from the underlying partial order. To be more explicit, let us con-
sider the following simple problem. Suppose we record data on k ordinal variables, 
each on two-degree scales (e.g., pertaining to the ownership of k different goods). 
The set of 2k k-dimensional profiles is naturally turned into a lattice L, under the 
product order. Suppose also that a frequency distribution is assigned on L. We now 
want to cluster individuals, i.e., profiles using some hierarchical procedure, based 
on the choice of a metric. If we perform this task in the usual way, at each step of 
the procedure we do obtain groups, but we lose information on the underlying lat-
tice structure. In other words, we merge profiles into groups, but we do not know 
how to partially order them and we cannot embed them into a lattice structure. This 
is a critical problem, since the lattice structure of the profiles conveys a lot of infor-
mation on the data. This information should be used when clustering and should be 
preserved, as much as possible, at each step of the procedure. A possible way to 
achieve this relies on the concept of lattice congruence. Any partition of the ele-
ments of L defines an equivalence relation on the lattice, which, however, may or 
may not be compatible with the join and meet operations defined on it, that is which 
may or may not be a congruence. Forcing, at any step of the clustering procedure, 
the obtained partition to be a congruence, the clustering process would naturally 
partially order the clusters, in a way compatible with the original lattice. A proce-
dure might be designed where, at any step, (i) some profiles are merged (i.e., they 
are declared as equivalent) based on some metric (or dissimilarity) criterion and (ii) 
the smallest congruence comprising that equivalence is computed. In this way, the 
information comprised in the relational structure of L would be employed in the 
clustering process, making the local metric information spread across the lattice, 
through the congruence constraint. A trivial example is given in Fig. 2 (see Davey 
and Priestley 2002). When the selected elements of the lattice are merged in cluster 
“a,” other clusters must be formed (“b,” “c,” “d,” “e”) for the partition to be consis-
tent with the order relation. The resulting set of clusters is again a lattice, whose 
Hasse diagram is depicted in Fig. 9.2, with black nodes representing groups. The 
equivalence relation induced by the final partition is the smallest congruence com-
prising the equivalence class “a.” Similar approaches might be also followed when 
dealing with posets which are not lattices, possibly drawing upon poset generaliza-
tions of the notion of a lattice congruence. We notice that also the choice of the 
metric might be made taking into account that profiles are partially ordered 
(Monjardet 1981) and this could improve the coherence and the effectiveness of 
clustering algorithms on partially ordered structures. Clustering procedures are not 
our own research field, so we limit ourselves to the above hints. However, we invite 
lattice experts to address this problem, the solution to which would be very useful 
to social scientists.
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9.3  �Conclusion

In this paper we have commented on the possible role of partial order theory in 
socio-economic analysis, from the (certainly narrow) point of view of our main 
research interests. Here we simply want to stress some of the key concepts addressed. 
The study of social facts is asking for new tools and new languages, more oriented 
to complexity and more capable of reproducing the reality, in modern societies, of 
“patterns,” “shapes,” and “nuances” which are relevant for policy-making. The issue 
of multidimensionality combined with the increasing availability of ordinal data is 
particularly challenging for socio-economic scientists, who need new tools to 
address social issues, but also tend to stick to “old” paradigms. So the problem is 
both technical, in that new statistical procedures must be developed, and cultural, in 
that some open-mindedness is necessary for scholars to modify, at least partly, their 
methodological habits. Partial order theory may play a key role in this challenge, as 
we have suggested through examples pertaining to real issues, crucial for our com-
prehension of societal dynamics and for policy definition. Proving that ordinal data 
may be effectively and consistently treated and exploited, partial order theory opens 
new possibilities to socio-economic statistics. Certainly, the technical and the cul-
tural sides of the challenge go together. As concrete applications of partial order 
tools begin to prove their usefulness to social science, it will become easier for the 
wider scientific community to accept and employ them successfully. This challenge 

Fig. 9.2  An example of clustering on a small lattice
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involves both partial order theorists and social scientists, since only by joining 
different points of view and complementary competencies it is possible to advance 
in this research field. We hope that this paper, raising questions and soliciting 
answers, may contribute to fruitful developments.
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