Chapter 19

PyHasse Software for Partial Order Analysis:
Scientific Background and Description

of Selected Modules

Rainer Briiggemann, Lars Carlsen, Kristina Voigt, and Ralf Wieland

Abstract The software PyHasse is an elaborated “experimental” software for
ordinal analysis of data matrices. PyHasse is based on the interpreter programming
language Python. A brief introduction to the programming language Python is given
and the general principles behind PyHasse are outlined. An actual overview about
PyHasse (status, April 2013) is provided. Today PyHasse comprises 91 modules
covering 9 different categories, such as basic Partial Order Analysis, i.e., the draw-
ing Hasse diagrams and the calculation of some important quantities. A selection of
newer or rarely used modules are discussed in detail in order to explain some prin-
ciples of PyHasse. As a leading example the pollution by Lead, Cadmium, and Zinc
of regions of south-western Germany is discussed.

An outlook is given, where future projects are discussed. Such projects comprise
among others, Internet access to some of the more important modules, inclusion of
the Formal Concept Analysis tools, and of tools derived from POSAC and the
variance-based sensitivity.

R. Briiggemann (<)

Department of Ecohydrology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries,
Mueggelseedamm 310, Berlin, Germany

e-mail: brg_home@web.de

L. Carlsen
Awareness Center, Linkgpingvej 35, Trekroner, DK-4000 Roskilde, Denmark

Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh,
National University, 96A Tole Bi street, 050012 Almaty, Kazakhstan

K. Voigt
Institute of Computational Biology, Helmholtz Center, Munich, Neuherberg, Germany

R. Wieland
Leibniz Centre for Agricultural Landscape Research (ZALF), Institute of Landscape
Systems Analysis, Muencheberg, Germany

R. Briiggemann et al. (eds.), Multi-indicator Systems and Modelling in Partial Order, 389
DOI 10.1007/978-1-4614-8223-9_19, © Springer Science+Business Media New York 2014

390 R. Briiggemann et al.

19.1 Introduction

The analysis of multi-indicator systems (Briiggemann and Patil 2010, 2011), aiming
at a ranking of multiple characterized objects is of increasing interest in many
scientific fields, e.g., environmental health (Voigt et al. 2011, 2012) or sociology
and politics (Annoni 2007; Carlsen and Briiggemann 2013a, b). In this context,
partial order methodology appears to be increasingly applied (see Briiggemann and
Carlsen 2012 in their response to Huang et al. 2011). The tools of partial order are
not as ancient as those of general decision-making methods which started with the
scientific work of Condorcet, Borda, at the end of the eighteenth century (cf. Munda
2008). Partial order as a mathematical discipline seems to go back to the late nine-
teenth century, where Dedekind was exploring the Diedergroups. Strong impacts on
the theory of partially ordered sets can be related to Hasse (1927, 1952) and Birkhoff
(1984), two mathematicians who, as Dedekind, were mainly interested in algebraic
aspects. Within the context of data matrices, i.e., within a statistical point of view,
main contributions can be traced back to Patil on the one side (within the context of
biological diversity, see Patil and Taillie 1976), and, without knowing each other, to
the team Halfon and Reggiani (Halfon and Reggiani 1986), on the other side. The
work of Halfon and his coauthors gave the basis for the computerized Hasse diagram
technique (HDT), which is specifically related to partial order and their application
to the ranking of objects simultaneously described by several indicators, i.e., by data
matrices. A third line of development of the analysis of data matrices can be identi-
fied, which is the field of Formal Concept Analysis (FCA), developed in the 1980s
(Ganter and Wille 1996), which also finds increasing interest (see for instance Bartel
and Briiggemann 1998; Davey 2004; Carlsen 2009; Briiggemann and Patil 2011).

The application of many of the tools of partial order theory on data matrices is a
priori extremely simple, however, tedious if performed manually. Therefore, it is
understandable that together with development of computer programming, an
increasing and more and more detailed support in the ordinal analysis of data matri-
ces is ongoing.

In this book some chapters describe the application of selected modules of the
PyHasse package, whereas in Briiggemann and Patil (2011), a state-of-the-art over-
view (by 2010) of the software packages Rapid and PyHasse is given.

This chapter explains some background material on Python, the programming
language on which PyHasse is based, and renders some more and general informa-
tion about PyHasse.

19.2 HDT Software

An overview about software, a status by 2006, was given by Halfon (2006).

A complete overview about theory and applications of partial order on multi-
indicator systems is outside the scope of this chapter, which instead aims at a
description of PyHasse. For introductory texts we refer to papers by Briiggemann
et al. (2001) and Briiggemann and Voigt (2008).

19 PyHasse Software for Partial Order Analysis: Scientific Background... 391

Table 19.1 Software aiming at partial order analysis of data matrices

Software Authors Remark Reference
Hasse Halfon Drawing Hasse diagrams Halfon et al. (1986)
WHASSE Briiggemann Drawing Hasse diagrams Briiggemann et al. (1999)
and first attempts to
introduce tools
beyond the drawing
conimp4 Burmeister Analyzing data matrices Burmeister, CONIMP4,
on the basis of Formal Programm zur Formalen
Concepts Begriffsanalyse (1997)
conexp Yevtushenko Analyzing data matrices Yevtushenko (2003)
on the basis of Formal http://www.comp.dit.ie/pbrowne/
Concepts compfund2/UserGuide.pdf
(assessed 7 Nov 2012)
Download, see for instance:
http://sourceforge.net/
projects/conexp/files/
conexp/1.3/
(accessed Aug 2013)
DART Talente Drawing Hasse diagrams, =~ Manganaro et al. (2008)
(Manganaro utility functions
et al. 2008)
ProRank Pudenz Drawing Hasse diagrams Pudenz (2005)
with emphasis on
simple data
management
Rapid Joshi, Drawing Hasse diagrams, Briiggemann and Patil (2011)
Briiggemann some analysis tools
and Patil
PyHasse Briiggemann Analyzing partially Briiggemann and Patil (2011)
and Patil ordered sets, derived
from data matrices
Parsec Fattore Analysis on the basis of Fattore and Arcagni, Chap. 16

R; see also Myers and
Patil (2010, 2014)

In Table 19.1 a—-certainly not complete—overview of software is given. The

newest (so far the authors are aware), the PyHasse, will be explained in more detail
in this chapter.

19.3 Python as Programming Language for Contemporary
Software Generation

Clearly the first question often stated may be: Why Python, why not JAVA, PERL,
or traditional languages such as C++, Fortran, or VisualBasic? The most honest
answer is, simply because Python fulfills to a wide degree the personal taste of the
programmer, in this case of Rainer Briiggemann. This very personal way to find a

http://www.comp.dit.ie/pbrowne/compfund2/UserGuide.pdf
http://www.comp.dit.ie/pbrowne/compfund2/UserGuide.pdf
http://www.comp.dit.ie/pbrowne/compfund2/UserGuide.pdf
http://sourceforge.net/projects/conexp/files/conexp/1.3/
http://sourceforge.net/projects/conexp/files/conexp/1.3/
http://sourceforge.net/projects/conexp/files/conexp/1.3/
http://sourceforge.net/projects/conexp/files/conexp/1.3/
http://dx.doi.org/b978-1-4614-8223-9_16

392 R. Briiggemann et al.

decision about the suitable programming language may be unsatisfactory for many
readers. Hence, we discuss some objective points that in the view of the program-
mer favor Python (however, without arguing that other programming languages do
not have these features).

19.3.1 General Remarks

In the present context the arguments are following those of Lutz and Ascher (2003)
closely, although there is a book available, where specifically Python for scientific
uses is explained and which is recommended for further reading (Langtangen 2009).

When Python was developed by Guido von Rossum (cf. Venners 2003) it was
developed in one step. Hence, Python had a very homogenuous structure from the
very beginning. Clearly, Python has been further developed and will be further
developed in the future. Actually, currently Python is delivered in version 3, whereas
PyHasse is developed on the basis of Python 2.6, available since around 2007.

Python is—in contrast to C languages—comfortably readable and coherent.
Python supports consequently the object-oriented programming style.

It is of further interest that typically Python codes are “1/3 to 1/5 the size of
equivalent C++ or Java code” (Lutz and Ascher, page 3, 2003).

Briefly speaking there is a Python slogan which says that “In the Python way of
thinking, explicit is better than implicit, and simple is better than complex” (Lutz
and Ascher 2003, page 5).

Python is an interpreter language. That means, there is no need to compile and
link the software before it is applied. In the Web site python.org, we find “Python is
a programming language that lets you work more quickly and integrate your sys-
tems more effectively.” Clearly, it is to be expected that the linear reading of the
programming code may be time consuming. However, the personal experience is
that even the combinatorial algorithms, which are typical for the application field of
partially ordered sets do not need much time, i.e., even the impatient programmer
may await the result, sitting before his machine!

Technically spoken, Python belongs to the Very High-Level Languages (VHLL)
(Miiller and Schwarzer 2007). For the PyHasse author, the fact that developing new
modules and testing them does not need to first compile parts of the program makes
Python a very efficient and quick programming tool.

19.3.2 Portability

The portability of Python programs is high. For example, PyHasse programs run
without problems on different Windows operating systems as well as on different
UNIX or Linux machines. Although there is not much experience with Macintosh
operating systems, examples are known that PyHasse can be ported to the Macintosh
without major difficulties.

19 PyHasse Software for Partial Order Analysis: Scientific Background... 393
19.3.3 Libraries

As most other modern programming languages Python provides many freely down-
loadable libraries. All possible applications of “modern life” can be handled by such
libraries:

e NumPy and Matplotlib: powerful libraries for numerical calculations and visual-
ization which can replace MATLAB in many applications.

» Statistical libraries, drawing libraries are available, as well as libraries designed
to handle databases (MySQL, Oracle, ...).

e The Internet programming libraries are of increasing importance and many web
frameworks provide support for a quick construction of Web sites for example
Plone (with parts of ZOPE) or Django.

Also more exotic applications are supported like:

e PIL: (PhotolmageLibrary) a library for manipulating electronically photos
e PyGame: a library facilitating game programming

19.3.4 Programming Support

One important point is that Python supports the development of own written librar-
ies, which are specifically designed for the scientific purpose of any software
package.

Another important point is that Python supports the development process by a set
of tools: For example, Cython expands Python adding type information to a Python
program to make Python modules faster. Cython may further be used to include C/
C++ Code in a Python library. Alternatively SIP or SWIG can wrap existing C/C++
code to use it as a Python module. There are modules available that include the QT
library which allows to implement modern graphical user interfaces or another
module which includes the gnu scientific library (gsl).

For some applications like Monte-Carlo Simulations, Python as interpreter lan-
guage is too slow. Techniques, discussed above, may be used to accelerate Python
modules. It should further be noted that Python supports parallel programming.
Thus, modules like PyPar connects Python programs to the powerful Message
Passing Interface (MPI) and allow parallel processing even on a personal computer
with four or eight cores. This underlines that Python is not restricted to fast proto-
typing but Python is a modern programming toolbox, which can be used for chal-
lenging projects.

Some useful links are:

python: http://www.python.org/
numpy, scipy: http://numpy.scipy.org/
matplotlib: http://matplotlib.org/

http://www.python.org/
http://numpy.scipy.org/
http://matplotlib.org/

394 R. Briiggemann et al.

networkX: http://networkx.lanl.gov/

Cython: http://cython.org/

SWIG: http://www.swig.org/

QT: http://qt.digia.com/

PyQT: http://www.riverbankcomputing.co.uk/software/pyqt/intro
gsl: http://www.gnu.org/software/gsl/

PyPy: http://pypy.org/

Pypar: http://code.google.com/p/pypar/

19.4 A Practical Ranking Problem, i.e., a Test Set
for Explaining PyHasse

In order to have an illustrative example at hand we look at nine regions in Germany.
In order to measure the air quality, the concentrations of deposited Pb, Cd, and Zn
are monitored in epiphytic mosses (Briiggemann et al. 1998). The question arises:
Can we rank the regions simultaneously taking into account the concentrations of
all three metals? In Table 19.2 the data matrix is shown.

Partial order theory provides an answer as displayed as a Hasse diagram, i.e., a
transitively reduced acyclic, trianglefree digraph of order relations (as explained
in several chapters of this volume) (Fig. 19.1). The first observation is that the

Table 19.2 Data matrix, Region Pb(Lead) Cd(Cadmium) Zn (Zinc)
nine regior'ls, th'ree metals, 3 T 0.2 31
concentrations in mg/kg
dry weight (rounded) 8 20 0.4 >3
7 14 0.3 41
17 13 0.3 63
9 17 0.3 45
16 13 0.4 51
14 12 0.6 41
5 14 0.4 45
29 9 0.4 29

high

Fig. 19.1 Hasse diagram of
nine regions with three
attributes, namely the
(rounded) metal
concentrations in epiphytic
mosses of Pb, Cd, and Zn

low

http://networkx.lanl.gov/
http://cython.org/
http://www.swig.org/
http://qt.digia.com/
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://www.gnu.org/software/gsl/
http://pypy.org/
http://code.google.com/p/pypar/

19 PyHasse Software for Partial Order Analysis: Scientific Background... 395

Hasse diagram is not slim, i.e., it obviously deviates remarkably from a linear
order (Fig. 19.1).

Figure 19.1 shows the main characteristic of HDT: There are regions (generally
“objects”) which cannot be compared, as, e.g., region 8 and 17. The reason is that
region 8, with respect to one metal, has a higher concentration than region 17,
whereas region 17 on the other hand, has a higher concentration than region 8 with
respect to another metal. Thus, the two regions are “in conflict with each other.”
Technically we describe an incomparability by the symbol Il, i.e., here as 8 Il 17.
A set of objects which are mutually incomparable is called an antichain, in contrast
to a set of objects, which are mutually comparable, i.e., a chain. Hence, the set
{9, 16, 5} is an antichain, whereas the set {6, 7, 9, 8} is a chain.

19.5 The PyHasse Software

19.5.1 Intention Behind the Software

19.5.1.1 Modules

PyHasse is a software consisting of a series of mutually independent programs.
These programs are called “modules.” When programming tools, as well as inter-
faces and all the partial order analysis tools are counted, the complete number of
modules of PyHasse software is 91 (April 2013). However, this number is continu-
ously changing, as new modules may replace a couple of older modules or new
ideas to analyze partial orders derived from the ordinal analysis of data matrices
eventually result in new modules.

In total, PyHasse is a software package with more than 50,000 lines of program-
ming code (including comment lines, empty lines, which help to get a clear program
code). Obviously, parts of program codes often appear several times, due to the
intention that the modules should be mutually independent.

19.5.1.2 PyHasse as Experimental Software

PyHasse is intended to help solving daily problems applying partial order concepts
on data matrices. It does not intend to provide either perfect statistical or graphical
tools, especially it does not intend to include the vast number of applications, which
more or less routinely are performed by applying spreadsheet software, such as
Microsoft Excel®. The same kind of philosophy holds when a drawing of Hasse
diagrams is considered. Thus, virtually all PyHasse modules offer the drawing of
Hasse diagrams following the drawing convention, which has its origin in the work
of Halfon (Halfon and Reggiani 1986). Nevertheless, these PyHasse-generated
graphs are far from being perfect drawings. Hence in this context PyHasse cannot

396 R. Briiggemann et al.

compete with the powerful freely downloadable program Graphviz, see Gansner
and North (1999), which visualizes partially ordered sets in an almost perfect man-
ner (see Sect. 19.5.4.3).

In sum PyHasse tries to fill the gap between highly specialized programs often
developed in laboratories but not generally applicable and professionally written
software, which usually may not reflect the state of the art of the theoretical devel-
opment, even though updates are made available from time to time.

19.5.2 Basic Structure

19.5.2.1 Contextual Categories

PyHasse is structured in two ways: Contextually and from the programming point
of view. In Table 19.3, nine contextual categories are explained.

In Fig. 19.2 a bar diagram displays the distribution of the PyHasse modules over
the nine categories described in Table 19.3.

19.5.2.2 Programming Structure

The 91 modules are supported by four libraries (Table 19.4).

These four libraries are delivered together with the PyHasse modules (and some
additional files) and the user has to put them into the folder, where Python is
localized.

In order to facilitate the installation of PyHasse software, the programmer,
Briiggemann, did not extensively use other comfortable libraries, such as MatplotLib
or NumPy.

Together with the utility functions, the programming structure can be character-
ized by a scheme, as shown in Fig. 19.3.

19.5.2.3 Graphical User Interface

Most of the modules have similar graphical user interfaces (GUIs). In Python GUIs
can be programmed, applying the standard library Tkinter, which is derived from
Tcl/Tk. Thus, all user interfaces in the PyHasse package are built using Tkinter. The
location of the typos: buttons (which govern the user activity) are vertically arranged
following the most typical logical sequence of steps. A few modules are menu ori-
ented, such as pyhassemenue8_3.py, DAHP.py, and modelHD9.py. In almost every
user interface an “about” function is found, which informs briefly about the aim of
the module and the programmer and (sometimes) about the leading idea out of the
literature.

397

19 PyHasse Software for Partial Order Analysis: Scientific Background...

(panunuod)
Ad" [19peaIeioz Jrqerreae st ziaydess Ajdde o aoejrojur ue Afeury
Ad- 19010 pdixy 1pd- 4 ©°9°T ‘UOISURIXD AU} QARY JBULIOJ [RUIDIUI SIY) [JIM SI[I] “Jeulio] [eroads
Ad'zziaydei3d e Surk[dde 10130 yora PIM JeOTUNWITOD UBD SA[NPOW ASSEHAJ JUQIHI(
Ad{10pEa1A0D SOOLIJEW 9SAY} PEAI UBD SI[NPOU 9JBJIOIUI AU} JO QWOS UAY) ‘pasn dJe
AdgoanorIour 1400 SOOLIJBW JOA0D 1O BIOZ UAYAN "SAeM JUIJJIP Ul passaIdxa oq Aew 1opIo [enred 90rJ-Iaju]
Ad-z3urpepowr paseqiySrom
Ad gLiqers
Ad-yemo
Kd'g13Seury VADIA Topun paist ganuawasseyAd ur st purdwo))
Ad'9IDAH pordde st (€661 ‘8861 103ex) 1036 19)je Jdoouod Azznj ay) Ad emo uf
Ad-zjora3 Po3oNIIsu0d Aq
&d- 1301guoo 0] 9I€ JO UMOUY I SI0JedIpur 931sodwod uaym sjySom Jo 9[ox Y3 a1o[dxo
7 deyd Ad'zpu3-qg¢ysromuoued 0) A[oWeu ‘(17 1YSOf pue [neJ) . A10A00sIp a3pajmouy aAneredwos,,
£ pue 9 ‘sdeyD Ad 7~ eySromuoued JO UOIUAUI S [Ied Ul UISLIO)T Jurary 3doouod B 0) J8QU ST UONIUAUI Y], pur-dwo)
Kd-pamojoo~ g euedas
Kd ¢~ greuedes
Ad-¢gresdasaziugoooar
Ad-913py
Kd pyesdesowospury ydei3 ossef oY) UI SOUBISIP
Ad-gyasdasyooyd a1o01dxa 03 powrwer3oid are sydeouos [eonaroay—ydess swos Ad'913py uy
g1 "deyD Ady~ogureyonue P2109Uu09 A[2500] ATUO 1O JOU 9I8 WRISLIP 9SSBH B UI SAONIAA JO SIS
{1 "deyd Ad-zyordneos3eyue JuaIopIp Aym ‘osfe Inq ‘sureyonue ur eadde s30a[qo jo seniiqeredwoour Ay
81 "deyd Ad-z3ejue JSUQS JSOprOIq AY) UI SISA[BUER UTRYINIUY)%
300q SIy} Ul SO[NPOIN uoneue[dxg dnoip
pardde 10 paqrioseq

xipuaddy 9y ur punoj I8 sAJUIAJAI ‘dSSEHAJ JO SOLI03)ED [eNnIXa1u0d pajios Affeoneqeydly €61 dqeL

http://dx.doi.org/10.1007/978-1-4614-8223-9_18
http://dx.doi.org/10.1007/978-1-4614-8223-9_18
http://dx.doi.org/10.1007/978-1-4614-8223-9_18
http://dx.doi.org/10.1007/978-1-4614-8223-9_6
http://dx.doi.org/10.1007/978-1-4614-8223-9_7
http://dx.doi.org/10.1007/978-1-4614-8223-9_2

R. Briiggemann et al.

398

Ad'z™ L yoreas” Ajre[ruus
Ad 1701 Areqrus
Ad' gqHTepOW

Kd 'z zp10oouod

L1 "deyd Ad- 7 Ayreraarsquiod
Kd-z[orreredioajow
Ad pqHI09)OW
Ad"ZONISIOMTH
Ad-/deo
Ad'71duwrssisdoy

Ad 'z guwoid
Ad-9gH3INo
Kd-g9aysalo
Ad'/ynnouad
Ad-gaouepIoosiq
Ad'1DIEP

ydyep

Adyrodoo

Kd g~ ziopuoo
ICREN®)
Ad-groAgAarqng
Kd-y1aeqoxdinu
Ad'130n0SINOJ'T
Kd-ZTHIXOINO'T
Ad-zAerdyxoury
Ad'13xouruo3

.S10s0d [opouwu,, Aq pezATeue

9q UBD PUB JSAIAIUI JO ST SYUBI 9FBIOAR UO SWRISLIP 9SSB UI SaINjoni)s

[eoneroay)—ydess jo aouangur Y ‘erowIay}In,] anbruyos) Suropowr

B SB UQ9S 9q UBD QU0 USAIS © 0) JR[IWIS }SOW FUIAq S)os pa1opio A[fened
Sunio[dxa se [[om se sisATeue (Kue[rurs) Ayrwarxold ‘Osuds jsoproliq ay) uf [PPOIN

pupdwo)) jo 11ed € se usss oq OS[e p[nood
MOALAIN “oapaoord asimdals e Aq s103d11osop of3urs ay) Jo s3unygrom
JO 9[01 Ay} 9ZATeUE 0] SI BOPI JISBQ A, ‘AI09Y) JOPIO Aq UOIEBN[BAD JO PO NOALAN

(110T ‘010¢ yeLreys-1y) pardde st xapur puejado) ayp jo UOHLALIOP oY)
‘ordwrexa 103 ‘wny)rIoS[e SUNYUBNNO U QIYM ‘Q[QR[IBAR SJUBLIBA [BIJAIS

QIe Q19 ‘STY) puOAg "SUOISIOA payI[dwIs A[oWwanxa Ul popn[our aIe
spoyiow 9sy) A[[eordA) ‘roaamoy “(Jpd -z 1deys/SHLON/LNYNO/SSSe[d
/nparnuderss yewy/:dny) VA pue SISdOL St [[om St ‘(661 Aees) dHY
‘(2861 108urzIny pue uezinyraddQ £007 HSMI[Z pue s19od) HYLOHTH
JO SISA[eUE 9OUBPIOISIP—AOUBPIOdU0D AY) (SRG[OUIA puE suerq)

AAHLANOU SB Yons SPOYIW YADIN [edISSE[0,, SWOS Surejuod asseHAd VAOIW

Ad-gyueiae A[reroadsa ‘suoneiruy

Azowawr 0 309dsar YIIm [BIONID JSOW TB YOIYM ‘S9[npout surejuod dnois siyJ,

T10T PUBUSIM ‘(T USSIED

pue uuewa33nig 7861 IRPMUIA (rY=>uel :x)qoid 1o (£ <x)qoid se
sanI[Iqeqoid se [[om St ‘pIALIOP 9q UBD SYULI 9FBIOAL SUOISUIXS JBAUI[WOL]

9 *dey)D Ad-gnunyiae SUOISUQ)Xa Jeaul| Jo J3s & Aq pajuasaid aq ued sjes pazopio Afented ‘(weiderp
9 dey) Ad-gyueaae asseH) s1es paropio A[renred Surkedsip ydeid orjoLoe pajoatrp ay) opiseg IXHUuI|
jooq sy} ut SO[NPOIA uoneuedxg dnoin
parjdde 10 paquoseq

(PoNUNUOd) €76 JIQEL

http://dx.doi.org/10.1007/978-1-4614-8223-9_6
http://dx.doi.org/10.1007/978-1-4614-8223-9_6
http://mat.gsia.cmu.edu/classes/QUANT/NOTES/chap12.pdf
http://mat.gsia.cmu.edu/classes/QUANT/NOTES/chap12.pdf
http://dx.doi.org/10.1007/978-1-4614-8223-9_17

399

19 PyHasse Software for Partial Order Analysis: Scientific Background...

(panunuod)

Ad'¢ovyIsyuerqord

Ad Tupo0d

Ad’ JuonejudLio

Ad'g" 13918 0Ad

Kd ps1sATeues100[qOo[3urs

Ad ¢~g1AmAnIsuas

Kd-gsisAreue1Od

Ad'goood

Ad 7z #3ed

Ad-1zuolew

ZONSLINAY[AA]

Ad-grearour

Ad-¢iody

Ad'1eendsw qH

Ad r1dusqH

Ad-zyorerosqH

Ad enpoaH

Ad'1"g1e@H

Ad'TqHzIAydead

Ad'/ sppAzzny

Ad'z ¢ 1aHAzzng

Ad-raHeoxg

Adzrspp

Ad 1™ ureyd

¢ deyd Ad L TiDaHw
01 "deyd (,.094sd,, InoyIIM)

81 pue [‘sdey) Ad'g"pzaHurew

g1 “dey) Ad-¢"pzaHurew

(T107) weydy pue uassary[, £q paysiqnd

‘eapr ue smof[oy Ad ¢y syueiqoid snpow oy, *Ad-¢iody ur pazifear st

(8007) uasre) Aq padofoaap s3deouod uo paseq uonegai3se [eorroWUNUUOU

Vv (€107) uuewo33nig pue pue[aIp Iayje ‘Ad-/ sppAzznj ‘uonenuis

DIA B SE [[oM SE ‘papn[oul ST 0ys0y Jojje 1opio [ented jo 1doouod Azzny v

syuer oeIoAe djewnse 0) yoeordde oyduurs

€ UQAD JO S[00) UONESIARU SE YoNS ‘UONBWLIOJUI [EUOHIPPE JURISJJIP YIIM
‘ydeas oy jo 10 sindur Jo suoneINIYUOd JUIIJJIP UT SWEISRIP ASSEH SUIMBI 10d

http://dx.doi.org/10.1007/978-1-4614-8223-9_18
http://dx.doi.org/10.1007/978-1-4614-8223-9_11
http://dx.doi.org/10.1007/978-1-4614-8223-9_18
http://dx.doi.org/10.1007/978-1-4614-8223-9_10
http://dx.doi.org/10.1007/978-1-4614-8223-9_2

R. Briiggemann et al.

400

SI0)OBIRYD P[OQ PUE JIL)T UT USPLIM dre 1)deyd SIY) Ul paqLIdSap SA[NPOIA

Ad'1TRAIO)UT 9sSeHAJ Amn
(NdN 1qqe) &d
“[eouIsmMau asseHA4d ™ ANmn
Ad'jojuresseHAg Aimn
Ad'13unooasseHAg™ Aynn
Ad-119peaIAreIqI Amn
Ad' 1 19pRaIATRIqI 00}
Ad-zwpwopuer
Ad-11301d"osseAd
Kd'~gonuawasseyAd
Ad-1ojuresseyAd
Ad-¢nd
Ad’ Juononmnsur
Ad'¢znaIosip

so[npour asseHAJ

) J10J d[qe[IeAR s)x9) d[oy oy [[e JO sueaw Aq JXx9) [eL10IN) Jo[dwod

€193 0] pasn 2q ued ‘Ad-¢1id ‘royjouy "Ad-gonuswasseyAd £q paqred

KTeuIayur o1e SA[npOW 2soy) Jo swog ‘SurwwerSord pue UOHEIUSWNOOP UL
[nydjoy ATurew are Ay, "s1osn oy} J0J JUBAJ[I JSe[SI s[opout Jo dnoi3 sy, Amn

3]00q sty ut SI[NpOJN
pardde Jo paquoseg

uoneue[dxg dnoin

(ponunuod) €61 AqeL

19 PyHasse Software for Partial Order Analysis: Scientific Background... 401

30

25

20

15

10

&

O & K
< Q\Q &((/O QO

&
Q(S/ <
oy <

N

A
&
NS

S

> S
¥

Fig. 19.2 Distribution of the 91 PyHasse modules within the nine contextual categories given in

Table 19.3

Table 19.4 Libraries, supporting the PyHasse modules

Name of library

Description

Remark

raioop2.py

rmod2.py

pstat.py

stats.py

A library of classes, i.e., on
procedures based on object
oriented programming

Mainly: user interfaces and
graphics

Library of procedures, mainly
of combinatorial character
and manipulating matrices

Statistics

Statistics

Written by Briiggemann
4,500 lines of programming code

Written by Briiggemann

More than 6,800 lines of programming
code

Free downloadable from Internet.
However, routinely delivered
together with the other two libraries
above as part of the PyHasse package

Free downloadable from Internet:
however routinely delivered together
with the other two libraries above as
part of the PyHasse package

In addition, there is a “help” function, which has the following structure:

e Aim

e Prerequisites

Usage or steps

Results (not in all cases)
Difficulties

Literature

Example data files

402 R. Briiggemann et al.

rmod2 raioop2 pstat stats

N‘/

+Working modules®, such as mHDCI2_7,

sensitivity18, etc.
modules
to organize
1 2 7 < programming:
LHutility
POT MCDA ¥|§EOR modules®

A

A4
Interfaces, for instance to run graphviz

Fig. 19.3 Programming structure of PyHasse

19.5.2.4 PyHasse Data Flow (Example: Windows® as Operating System)

Within the Windows® environment the majority of potential users will apply
Microsoft Excel®.

In order to fulfill the input requirement for the PyHasse module, it is important
that the rows as well as the columns have a short label (optimal are labels with up to
three characters) and that the (0,0) position of the data matrix (in Excel the A,1) is
not empty. Furthermore, none of the PyHasse modules accept data gaps. Hence, it is
in the responsibility of the users to provide a data sheet with all labels and no data
gaps. In contrast, software packages such as DART (see Manganaro et al. 2008) and
WHASSE (Briiggemann et al. 1999) provide some facilities to handle missing data.

Typically the PyHasse modules require the Excel sheet stored as a tab-separated
txt file. Only the module EXCELHD1.py can directly apply the data by copying the
appropriate field in the Excel sheet. Once the data matrix is read in, one may per-
form calculations and results can be stored in the internal format pdt. Some more
important modules therefore offer to read these intermediate results as *.pdt files.

19.5.3 Overview

19.5.3.1 Most Often Used Modules

The application of the following modules is well described (cf. Table 19.1 and the
appendix at the end. Further, specific references are available within the single
modules).

e mainHD20_5.py and mHDCI2.py, resp.: Beside the Hasse diagram, these mod-
ule provide navigation tools and much structural information, as well a variety of
other facilities. As “basic” modules these are the most important

19 PyHasse Software for Partial Order Analysis: Scientific Background... 403

e chain7_1.py: Search and analysis of chains

e dds12.py: Dominance and separability of disjoint subsets of objects on the basis
of the order relations among their elements

e LPOMext4_2.py: Average ranks calculated after two different approximations
based on the “local partial order concept”

e fuzzyHDI13.py: Instead of analyzing the “<” relation directly a subsethood is
defined (Kosko measure, cf. Van de Walle et al. 1995) and a fuzzy partial order
defined

e sensitivity19_1.py: A partially ordered set has a structure. This structure is char-
acterizable by chains and antichains. What is the impact of any single matrix
column (representing the indicator values for all the objects)? i.e., what is the
impact of any single indicator on the structure of a poset?

e similarity10_1.py: The same set of objects may be described by different multi-
indicator systems. What is the proximity between the two resulting posets?

19.5.4 Description of Some Modules of PyHasse Software

19.5.4.1 Module mHDCI2_7: The “New Main”

This module is one of the newest and is completely written in an object oriented
programming style. The reason, why mHDCI2_7.py was developed, was
threefold:

1. The similar module mainHD20_5.py runs into memory error when the data
matrices are too large

2. The GUI and the logical organization were no more adequat

3. After some years of practical applications some adaptions appeared appropriate

The purpose is, as with mainHD20_5.py, to provide a complete basical analysis
of a partially ordered set as derived from a data matrix. This includes as results:

e Level structure

* Information of each object about its successors, predecessors, and incomparable
objects in the Hasse diagram, in tabular form

* Hasse diagram

e Navigation tools: principal down- and upsets, interval graphs, local Hasse dia-
grams, the most simple approximation of average rank by the local partial order
(LPOMO) (Briiggemann et al. 2004)

The GUI and its subsequent windows are shown in Figs. 19.4 and 19.5.

In the following we describe each button given in Fig. 19.5, starting from the top
in Table 19.5.

In mHDCI2.py there are three other tools to overcome the difficulties of drawing
Hasse diagrams: (a) by rendering information in a tabular form (Table 19.6) and (b)
by the FOU plot, which is a realization of the concept of posetic coordinates (see
Chap. 8), see Fig. 19.6.

http://dx.doi.org/10.1007/978-1-4614-8223-9_8

404 R. Briiggemann et al.

Method-selection

|

Prepare calculation for Excelderived dm

Prepare calculation for pdt- dm
show dm

show equivalence classes

digraph of zeta-matrix

strucural info of the poset

components of the poset

details concerning levels

cover-matrix

covered-matrix
You may select an object >>> li Hasse diagram
Order-theoretical navigation
FOU-plot
Rkav based on LPOMO
Save the different results

Open the control board for graphics

navigation board =100 %]
Left side: Entry fields for the generating objects, right side: Buttons to start with
- downset
upset
localHD
| intervalHD
| from-to

Fig. 19.4 GUI of mHDCI2_7.py and the window opening after pressing “Order theoretical navi-
gation.” Note that the first three navigation buttons need the input of one single object, whereas the
buttons “intervalHD” and “from—to” need two objects as input

19 PyHasse Software for Partial Order Analysis: Scientific Background... 405

iaix]
from left to right: parameter, {recommended), entry field
a scaling factor for HDY 1.3)
= aling factor for d 1 (1.3
save files board I =10} x| scaling factor for downset (13) __|
= : 5 z scaling factor for upset {1.3)
Left side: result to be saved, right side: Buttons to start with ———
scaling factor for intervalHD {1.3)
save pdt-File save... scaling factor for localHD (1.3)
S —
diameter {all HDs) {1n
save cov-File save... —
—— diam:special object (only HD} (20)
save zeta-File save... fonts (all HDs) (10)
fonts for special abjectin HD (12)
save graphviz-File save... perturb the HD o
P—

Fig. 19.5 Windows popping up after pressing “Save the different results” (a) and “Open the con-
trol board for graphics” (b)

In Fig. 19.6, a FOU plot is shown. Myers and Patil (2014) are focusing on pos-
sibilities to represent partially ordered sets by scatter plots in order to avoid too
complex Hasse diagrams. Here our aim is similar. The basic idea is to describe
partially ordered sets by “posetic coordinates,” i.e., by numbers which are derived
from partial order theory, e.g., the contents of principal down- and upsets and of
U(x). When equivalence relations are possible, the number of equivalent elements
could be used too to obtain posetic coordinates. Here we characterize the poset by
two order theoretical coordinates for each object x, i.e., by the difference of the
contents of down (O(x)) and upsets (F(x)), OF and the content of the set of elements
incomparable with x: U.

OF := (|0 (x)|~1 F(x)1) and U:=1U(x) 1. (19.1)

* In contrast to the coordinates, the original data matrix may render (Pb, Cd, Zn)
now posetic coordinates, namely OF and U are used to characterize the objects.

e In contrast to the triangle coordinate representation (Briiggemann and Patil
2011), which is more detailled, the scatter plot, based on OF amd U is simple to
be interpreted.

Generally, it is a promising new task in partial order theory to find best “posetic
coordinates” allowing presentations of partial orders not so much depending on the
clarity of the relational graph, such as the Hasse diagram.

Figure 19.6 shows that

e There are two regions selected (namely 8 and 14) being maximal elements, how-
ever, they differ in their values of their posetic coordinates.

e There is one region being at most incomparable |U(x)l= 7. object, this is region
17, which also is a maximal element.

406

R. Briiggemann et al.

Table 19.5 Explanations of the buttons of the GUI of mHDCI2_7.py

Button

Explanation

Remark

Method selection

Prepare
calculation for
Excel-derived
dm

Prepare calculation
for data
matrices
in the pdt
Format

Show dm

Show equivalence
classes

Digraph of zeta
matrix

Structural info of
the poset

Components
of the poset

0 as input

A method to perform the transitive
reduction is performed, which
eliminates step by step the transivities

1 as input

A method is used, following Simon (1992),
which, however, leads to memory errors
when the adjacency matrix is to be
calculated and the number of objects is
too large (>200) and at the same time
the number of comparabilities is high

When this button is pressed, the module
expects a data matrix following the
principles explained in section
“PyHasse data flow (example Windows
as operating system)”

The module expects data matrices in the
internal format pdt. This facility is not
as often used as the Excel-derived dm

Attributes (indicators) as well as the labels
of the objects are shown. Furthermore,
the complete data matrix is displayed

If two rows, i.e., two objects have identical
values for all indicators then the two
objects are considered as equivalent, the
alphabetically first object is retained

A graphical as well as a tabular presentation
of equivalence classes can be obtained

The zeta matrix describes the order
relations among the objects. In contrast
to the representation in the Hasse
diagram, which is based on the cover
relations, the relations corresponding to
transitivity of the order relation are
shown too

Being aware that Hasse diagrams can be a
complex system of lines (see Carlsen
and Briiggemann 2013a) all needed
information are provided in tabular form

Graph theoretically the acyclic-directed
graph may have vertices which are not
connected (in former publications also
called “hierarchies”). Here an informa-
tion about the number of components
and the distribution of objects over these
components is available

Internally all calculations are
performed to get the
Hasse diagrams and other
combinatorial results

Internally all calculations are
performed to get the
Hasse diagrams and other
combinatorial results

‘When the button “Hasse
diagram” is pressed, the
exact label of the object
is needed

See Table 19.6

(continued)

19 PyHasse Software for Partial Order Analysis: Scientific Background...

Table 19.5 (continued)

407

Button

Explanation

Remark

Details concerning
levels

Cover matrix

Covered matrix

Hasse diagram

Order-theoretical
navigation
FOU plot

Rkav based on
LPOMO

Save the different
results

Open the control
board for
graphics

Exit

Levels are an important structure and a
mean to get the set of objects weakly
ordered (Briiggemann and Patil 2011)

Therefore there is a multitude of more
detailed information available

Even if the Hasse diagram is drawn, one
may want to get a list of cover relations

Here “Object x is covering ...” is given

Similar as above. However, here “Object x
is covered by...” is given

A Hasse diagram is drawn. When the entry
field at the left side is filled with the
correct label of an object, this object
will be marked in the graphic

It pops up an extra window, where it can be
specified which navigation is wanted

In order to analyze large data matrices, the
Hasse diagram is often not suitable
because of its complexity. Then other
representations must be selected, as is
pointed out in Myers et al., in several
papers and in this book (Myers and Patil
2008; Myers et al. 2006)

Here new coordinates are introduced for
each object x:

Abscissa: Difference of objects in downset
and upsets of x: (I0(x)I-IF(x)!)

Ordinate, number of objects incomparable
with x, [U(x)I.

Because F(x) is used as symbol for upset(x),
O(x) as symbol for downset x, and U(x)
for the set of incomparable objects with
x, the name FOU plot was used

The local partial order model LPOMO will
be applied to get an approximation the
average ranks

See also Fig. 19.5

See also Fig. 19.5 to get an impression
about the multitude how graphics can be
manipulated. In parentheses the default
values are shown

It is important to exit the program in order
to avoid damages

See below

See also Fig. 19.1

See for instance Fig. 19.10

See also Fig. 19.11

In LPOMext4.py a more
sophisticated approxima-
tion is available, due the
extended LPOM

In avrank5.py the exact
average rank is available
when certain conditions
are fulfilled

408

R. Briiggemann et al.

Table 19.6 Structural information of the data matrix of Table 19.2,
related with the Hasse diagram of Fig. 19.1

One linear extension
6<29<7<5<16<9<14<17<8
Maximal elements

8, 14,17

Minimal elements

29,6

Isolated elements

Individual info:

First the object, then in parentheses: count of, then the list of elements
Sets of incomparable elements
6:(1):29

8:(2): 14,17

7:(4):29, 14,17, 16

17:(7): 14, 16,29, 5,7,9, 8
9:(5):29,5, 14,17, 16
16:(5):9,5,17,7, 14

14: (6): 17,16,5,7,9,8
5:(4):9,14,17, 16
29:(4):9,17,7,6

Downsets

6:(1):6
8:(7):16,29,5,7,6,9, 8
7:(2):7,6

17: (2): 17,6

9:(3):9,7,6

16: (3): 16,29, 6

14:(3): 14,29, 6
5:(4):5,29,7,6

29: (1): 29

Upsets
6:(8):14,17,16,5,7,6,9, 8
8:(1):8

7:(4):9,8,5,7

17: (1): 17

9:(2):9,8

16: (2): 8, 16

14: (1): 14

5:(2):8,5

29:(5): 8,5, 14,29, 16

Checking the data matrix one can see that indeed regions 8 and 14 are pretty dif-
ferent with respect to their data profile (for the sake of clarity, the min, and max
values over all regions for each of the three attributes are additionally given):

Pb Cd Zn
Max: 20 0.6 63
8: 20 0.4 55
14: 12 0.6 41

Min: 9 0.2 29

19 PyHasse Software for Partial Order Analysis: Scientific Background...

|upset| : (0):

409
Detail information Detail information
Selected object: 8 Selected object: 14
Incomparabilities of object8 : 2.0 Incomparabilities of object 14 : 6.0
|upset| : (0):
|downset] : (6):6,7,9, 16, 5, 29, |downset] : (2): 6, 29,
erplot U -IU'E'
Alt-Mouse-buttor\1 for further information on points in FOU-plot
10
TGN
NI
N
\\
L 4
N\
\L
N

-10

[O0CAI-IFG)l +10

Fig. 19.6 FOU plot (see text) based on Table 19.2, using posetic coordinates. The greater blue

circles are obtained by clicking with the mouse on them. The abscissa counts from —10 to +10 with
steps of 0.5, the ordinate, however, counts from 0 to 10 with steps of 1

Region 8 is dominantly polluted by Lead and Zinc, whereas the main contribution
of pollution of region 14 is Cadmium. The maximal and minimal values of Pb, Zn,
and Cd taken over all objects of the data matrix (Table 19.2) are added to facilitate

the interpretation.

410 R. Briiggemann et al.

The FOU plot is mainly useful for an interactive analysis and can be further
explored using the mouse. So the FOU plot fulfills similar tasks as those, explained
by Myers in this book (Myers and Patil 2014) There is an abscissa which describes
the relative position on a bad—good axis and the ordinate which quantifies the con-
flicts associated with each object.

Clicking with the left mouse button, pessing “ALT” a window pops up with more
information (Fig. 19.6, top, left side, and right side). Basically, depending on the
ranking aim, the points near the lines given by (19.2a) and (19.2b)

|U(x)|= n+1-0OF, OF =(|0(x)|-|F(x)]).| F(x)I=0 (19.2a)
and
U (x)|=n+1+0F. OF =(|0(x)| -1 F(x)1). |o(x)| =0 (19.2b)

are of most interest, as they are the extremal points.

In contrast to mainHD20_5.py, the module mHDCI2.py does no more contain
the Bubley—Dyer algorithm (Bubley and Dyer 1999) to get average ranks (see Patil
and Joshi 2014) and the statistics concerning chain length. The BubleyDyer algo-
rithm is now the central part of the module BubleyDyer8.py where also the algo-
rithm, proposed by Patil and Taillie (2004), the Cumulatice Rank Frequency (CRF)
iterative method is provided. The CRF algorithm can be applied to enrich the poset
until a weak order is obtained. See for details Chap. 6.

19.5.4.2 The Module to Check the Role of Single Indicator Values:
POOC6.py

As mentioned by Annoni et al. (2011, 2012) and explained in more detail by
Briiggemann and Patil (2011), there are two types of sensitivity analysis:

e Variation of the set of indicators, e.g., to elucidate the effect if one indicator is
eliminated from the data matrix
e Variation of the values of indicators

The first is referred to as attribute-related sensitivity (ARS), the second as attri-
bute value-related sensitivity (AVRS). The ARS is the task of sensitivity18_3.py
and is well described in the literature. Attribute value-related sensitivity is the task
of POOC6.py (perturbation on order characteristics). With the new concept of
variance-based sensitivity (Annoni et al. 2011, 2012; see also Chap. 13), the devel-
opment concerning POOC6.py was slowed down. Nevertheless, this module
appears mandatory, as long as the variance-based sensitivity is not programmed
within PyHasse.

The GUI of POOC®6.py is shown in Fig. 19.7.

After selecting the same data matrix as for Fig. 19.1, a posetic overview over the
data matrix (Fig. 19.8) is first obtained, whereby now four coordinates are used.

http://dx.doi.org/10.1007/978-1-4614-8223-9_6
http://dx.doi.org/10.1007/978-1-4614-8223-9_13

19 PyHasse Software for Partial Order Analysis: Scientific Background... 411

Fig 137 GULoTPOOCory o -lojx]

preview I

submittselectjopen fle |

HD standard case |

Enter perturb.val. >>> |

Enter which object is affected >>>
Enter which attribute {(q1,92 ... (name)> is affected >>>
perturb analysis I

| standardcase N (= .1

file = F: /Pythonprogramme|PyHassedatafiles/epiphyticmoss3_Skorr.txt: calc. is based on representants

Y{6: ¥{8B: }{7T: ¥{17: }{9: y{16: }{14: }{5: }{29: =
standard
equiv predec succ incomp

6 : o i o

8 : u] u] 6 2

- u] 3 o 4q

17 3 o u] 1 T

9 : o 1 2 5

16 o 1 2 5

14 0 0 2 6 ~|

Fig. 19.8 Posetic “coordinates” (equiv, predec, succ, and incomp) of the data matrix, describing
metal pollution of epiphytic mosses, in south-west of Germany (cf. Table 19.2)

The coordinates are:

* equiv (eq): number of equivalent elements with x

e predec (pred): number of elements above x, pred =10(x)-{x}|

¢ succ: number of elements below x, succ = 1F(x)-{x}|

* incomp (ic): number of elements incomparable with x, ic= 1U(x)|

412 R. Briiggemann et al.

perturbation

cell perturbed (9, Pb): Object: '17' : 0] 1 7

cell perturbed (9, Pb): Object: '9’ 1 0 1 2 5

;;II-;;;turbed (9, -;1-3] : Object: '1le' -_-: u] 1 2 5
graphic

Fig. 19.9 Posetic coordinates, after perturbing the value of attribute Pb of region 9 by changing
the attribute by adding the value of 1

Thus, as an example, select as element of interest region 9, one sees that there is
no element, equivalent with region 9, there is one element above 9, two elements
below region 9 and 5 regions which are not comparable to region 9.

The role of pooc6.py is now to check how a change in an attribute value will
change the set of posetic coordinates.

We enter a perturbing value 1, select object 9 and attribute “Pb,” i.e., pollution of
lead in the epiphytic moss. Note that clearly a perturbing value for one of the col-
umns of the data matrix is specific, for instance, 1 for Pb concentration is a small
value, 1 for Cd pollution would be larger than the whole span of Cd values! Here we
perturb Pb by 1/20 of the maximal value.

Technically a perturbation by 1 means that we change the original entry ¢/(9) by
adding 1, i.e., changing the value from 17 to 18, and thus observe the possible
effects (Fig. 19.9).

To the most left side: the site of perturbation and the perturbed indicator are
explained, then information is given how the different elements of the poset are
reacting.

A perturbation by adding 4 to the original value, i.e., 20 % of the maximum of
lead concentrations with the regions considered, changes the coordinates.

eq predec succ incomp
(Perturbed) (9, Pb): Obj: 9: 0 0 2 6

The number of predecessors of region 9 would in this case be reduced and the
number of incomparable elements with region 9 increased.

We could conclude that the posetic information concerning region 9 is rather
stable with respect to increasing the value of Pb. Clearly this procedure can be
repeated for every element of interest, every attribute, and with every perturbing
value.

In Fig. 19.10 a graphical display on what happens after perturbing the value of
Pb for region 9 by 4 is given (in terms of region 9 less than (It), greater then (gt),
incomparable with (ic), and equivalent with (eq)).

19 PyHasse Software for Partial Order Analysis: Scientific Background... 413

®

T

original: 1
perturb: 0

obj=9 attr =FPb
perturb = 4.0

iginal: O
@*_ origmab

original: 5 »
perturb: 0 . b @

perturb: 6

original: 2
perturb: 2
¥

Control-sum (orig) § should be equal: Control-sum (perturbed) &
should be equal 8

Fig. 19.10 Schematic overview about the four posetic coordinates: eq: number of equivalences,
ic: number of incomparabilities, gt: number of predecessors (greater), and It: number of successors
(less than) after changing the attribute Pb of region 9 by four units

Figure 19.10 deserves some further explanations: The large yellow circle informs
about the perturbation itself.

The affected object (obj) is region 9, the attribute (attr) perturbed is Pb, and the
amount of perturbation (perturb) is 4.0. In the little white circle the four posetic
coordinates are indicated and in the rectangular box an information is given, what
happens with respect to this specific coordinate: For example, the value of “It” does
not changed, i.e., it is not perturbed (perturbed value of 1t:=0). In contrast, the coor-
dinate “ic” changes by perturbation. The original value is 5, after perturbation this
value changed to 6. (perturb (of ic)): 6.

Figures 19.8, 19.9, and 19.10 are the result of POOC6.py, which in turn is
designed to help to find answers concerning the Hasse diagram in Sect. 19.4, namely
the effect of data uncertainty. Additionally, however not shown, any perturbed data
matrix can be visualized by a Hasse diagram.

414 R. Briiggemann et al.

Fig. 19.11 GUI of , .
graphvizHD1 Poset/graphviz -0O] x|

select and open a file I

insert bwo representants

order between any two repres,

19.5.4.3 Module graphvizHD1.py
Introduction

This module serves as a nice example for the general philosophy in the context of
PyHasse, i.e., not to compete with professional software, if available. In the module
graphvizHD1.py, some information on the partially ordered set is given. However,
the graph drawing is a matter of the well-known graph—theoretical program Graphviz
(Gansner and North 1999), which is explained below. In Fig. 19.11 the GUI is
shown.

As for other modules, about and help functions are found. Behind the button
“select and open a file,” the facilities of the Tkinter library are applied.

After the selection of the data file, a window pops up with more information (see
Table 19.7).

It is seen that local information (i.e., information not related to the complete
object set, but to a user selected pair of objects) is available by inserting objects into
the two open entry fields. Inserting for example “9” and “17,” two objects of the
data matrix of the selected example file, an information is obtained: a) comparable
or not and b) in which orientation the two regions are comparable. Here it is found:
91117, see also Fig. 19.12.

For a deeper analysis procedure, the concept of “distance due to incomparabil-
ity” (Bartel and Mucha, Chap. 3) may be applied.

Further, a window is opened to select name and site of the file, subsequently to
be analyzed by graphviz.

http://dx.doi.org/10.1007/978-1-4614-8223-9_3

19 PyHasse Software for Partial Order Analysis: Scientific Background... 415

Table 19.7 Content of the window, popping up after selecting and opening the file (containing the
data matrix about pollution in epiphytic mosses) (and doing subsequently all needed calculations
to obtain the partial order)

Info about poset of F:/Pythonprogramme/PyHassedatafiles/epiphyticmoss3_9korr.txt

1. General info

Objects (representants)

6,8,7,17,9, 16, 14,5, 29

Properties (indicators, attributes)

Pb, Cd, Zn

2. Posetic info

Number of levels (= length of maxim. chains)=4
Number of elements in largest level =3
Comparabilities=17
Incomparabilities=19.0

Count of maximal elements=3
Maximal elements

8,17, 14

Count of minimal elements=2
Minimal elements

6,29

Count of isolated objects=0

Isolated objects

[_localorderinfos =i0ix|
Local order information ;]
9, 17

9 || 17

1 atcributes: 9 > 17
|1 attributes: 9 = 17
1 attributes: 9 < 17

Fig. 19.12 Local information about a pair of objects, here about a pair of regions

Graphviz

Graphviz is a professional program to draw graphs, i.e., visualize binary relations
on a ground set. Graphviz draws binary relations of the object set, or more exactly,
of the set of representatives. The software Graphviz is freely downloadable from
the Internet and is described by Gansner et al. (1993) and Gansner and North
(1999).

The version used here is 2.26.3, and among the programs available in Graphviz,
the program Gvedit, v: 1.01 is used.

416 R. Briiggemann et al.

Fig. 19.13 Result after
running Gvedit: a gif File

By successful running Gvedit, for instance, a gif File is obtained (see Fig. 19.13),
many other formats are available too. It represents the same order relation as in
Fig. 19.1. However, the drawing rules in Graphviz are dominated by minimizing the
crossings of lines. Gvedit allows many controlling interactions by the user: However,
for most purposes those specifications are not needed. A more detailed description
of the graphviz option is outside the scope of the present chapter.

19.6 Summary and Conclusions

19.6.1 Summary

When a data matrix is to be analyzed with respect to some ranking or evaluation,
then usually one has to select a software. Whereas the construction of a composite
indicator is simple and can be done with spreadsheet facilities, like MS Excel, the
analysis within partial order methodology can in general not be done by spreadsheet
software.

With the example of a small real-life data matrix, where the regional pollution is
measured in the special target of epiphytic the technical performance by some mod-
ules of PyHasse are demonstrated. There are PyHasse modules available, which
unequivocallly are important and often used, for example, mainHD20_5.py,

19 PyHasse Software for Partial Order Analysis: Scientific Background... 417

mHDCL2.py, similarityl0_1, or sensitivity18_3, LPOM4ext.py, and ddsl2.py.
Some others are described and follow crudely the logical line:

1. Whatinformation s provided by the Hasse diagram? (mHDCI2_7.py, Sect. 19.5.4.1)?

2. What happens when data entries are changed? (POOCG6.py, Sect. 19.5.4.2)

3. Graphical display in the form of Hasse diagrams is appealing. However, the
display of partial orders allows many freedoms. In PyHasse firstly a conservative
point of view is taken, i.e., to locate the objects in the highest position, which is
order theoretically possible. Secondly the objects are arranged in levels. These
two principles often lead, in the graphical presentation of the results (the Hasse
diagram), to crossing of lines, which may be rather confusing. Thus, an alterna-
tive is discussed, and the use of the freely downloadable software Graphviz is
suggested (Sect. 19.5.4.3).

19.6.2 Conclusions

PyHasse is today applied by many teams around the world. It is clear that corre-
spondingly many ideas are expressed how PyHasse can be improved

* Inits technical handling
e Contextually, in its tools to ordinally analyze data matrices

PyHasse is not claimed as a user-friendly software with a good guidance of the
users. However, it should be clear that PyHasse does not want to (and cannot) com-
pete with, for instance, DART (Manganaro et al. 2008), which provides a very con-
venient tool to get Hasse diagrams as well as some basic information derived from
a data matrix—even with missing data. The application of PyHasse needs some
preparatory steps in data handling before it can be run. It also most often needs an a
posteriori activity by the user. This is the consequence of the conception behind
PyHasse, to help specifically in studies of partial ordering, i.e., in all consequences
which arise from the ordinal analysis of multi indicator systems. PyHasse provides
copy-and-paste texts to support the documentation of results.

When graphical representations are available (bar diagrams, Hasse diagrams,
scatter plots, etc.), their purpose is to give the user a first impression, and when the
user wants a professional graphic software, such as Excel, then some few steps of
data handling are necessary.

PyHasse is rapidly developing as ideas from users as well as concepts from the
literature relatively easily may be programmed leading to new modules. The price
is that the total absence of bugs cannot be guaranteed, albeit most modules are
tested rather carefully. Futher the user interfaces may not always be as comfortable
as possibly desirable and philosophies how to guide the user are only rudimen-
tarily realized. PyHasse is an “experimental” software under constant develop-
ment and suggestions, comments, and wishes from users are always welcome and
appreciated.

418 R. Briiggemann et al.

19.7 Outlook

For the time being, eight major objectives are still on the agenda. However, obvi-
ously time is required and the development further constantly compete with other
more rapidly realizable ideas. The eight future objective can be summarized as:

1. PyHasse being made available in an Internet version. Some preliminary attempts
have been made. However, the cooperation with web designers, etc., appears
crucial.

2. Although the powerful conexp3, written in Java is available for analysis of
Formal Concepts (Yevtushenko 2003; Ganter and Wille 1996, Burmeister 2003)
a Formal-Concept-Analysis-module within PyHasse would facilitate many
applications.

3. POSAC is a program performing a reduction of the attributes of the data matrix
to two coordinates. The underlying idea is to maintain the typical outcome of
partial order theory, i.e., the appearance of incomparabilities but at the same time
simplifiying the analysis. POSAC is an approximation. Nevertheless a, possibly
simplified version in PyHasse would be helpful (see Briiggemann and Patil 2011
and references therein).

4. When a reduction to two new attributes as in POSAC is intended, a calculation
of the poset dimension would be useful. However, the calculation of the dimen-
sion of a poset is computationally extremely difficult. Nevertheless, it is impor-
tant to get ideas about the dimension of posets.

5. The variance-based sensitivity analysis is most urgently needed as an implemen-
tation in PyHasse. So far, the needed calculations are performed using Matlab.
Consequently, the extensive numerical part should be programmed in C++ or at
least by including the library NumPy.

6. In multivariate statistics, cluster analysis plays an important role. A straight-
forward application of cluster analysis is suitable in order to get clear Hasse
diagrams by reducing the number of vertices. This reduction can be done in
the form of deriving a poset on cluster centers instead on the single objects.
This reduction is the main feature of the PyHasse module pyclusterl_2.py.
However, an order theoretical approach would be helpful too: Instead of
defining equivalence relations such as “belonging to the same cluster,” one
could appropriately define equivalence relations among the elements of a
poset, also called “blocks” (Davey and Priestley 1990) and analyze the result-
ing posets based on the representative elements, which clearly is simpler than
the original poset.

7. Finally, a project aiming at extending PyHasse by an additional fuzzy-poset
analysis is in progress. A first variant is provided in fuzzydds7.py. Now an inten-
sive testing phase is needed.

8. The further analysis of the two approximations of average ranks based on local
partial order model is a task for the future. It is hoped to give improved state-
ments about the accuracy of the LPOM model.

19 PyHasse Software for Partial Order Analysis: Scientific Background... 419

19.8 (a) List of Abbreviations (Alphabetically Sorted)

Abbreviation Meaning

AC, ac Antichain

ACM Antichain matrix

ARS Attribute-related sensitivity

AVRS Attribute value-related sensitivity

ComplInd Composite indicators

DART Decision analysis by ranking techniques

dm Data matrix

equiv(eq) Number of equivalent elements of a certain object

FCA Formal concept analysis

FOU Plot derived from |F(x)l, lO(x)I, IU(x)l (contents of upset of x, downset of x,
incomparables with x)

GUI Graphical user interface

HD, hd Hasse diagram

HDT Hasse diagram technique

1B Information base (set of attributes of a certain ranking study)

incomp(ic) Number of incomparable elements of an object x

LinExt Linear extensions

LPOM Local partial order model

LPOMO LPOM, based on the simplest approximation

LPOMext LPOM, based on an extended method

MAC Macintosh

MCDA Multicriteria decision analysis

METEOR Method of evaluation by order theory

(0N Operating system

Parsec Partial orders in Socioeconomics

POSAC Partial order scalogram with coordinates

poset Partially ordered set

POT Partial order theory

predec(pred) Number of predecessors of a certain object

Rapid Ranking and prioritization information delivery

Rkav Average height, commonly called average rank

succ Number of successors of a certain object

VHLL Very high-level language

19.9 (b) Further Recommended References
Within the Context of PyHasse and HDT

Briiggemann R, Pudenz S, Voigt K, Kaune A, Kreimes K (1999) An algebraic/
graphical tool to compare ecosystems with respect to their pollution. IV: com-
parative regional analysis by Boolean arithmetics. Chemosphere 38:2263-2279

420 R. Briiggemann et al.

Briiggemann R, Voigt K, Restrepo G, Simon U (2008) The concept of stability
fields and hot spots in ranking of environmental chemicals. Environ Model
Softw 23:1000-1012

Briiggemann R, Kerber A, Restrepo G (2011) Ranking objects using fuzzy orders,
with an application to refrigerants. Match Commun Math Comput Chem
66(2):581-603

Carlsen L, Briiggemann R (2009) Partial order ranking as a tool in environmental
impact assessment. In: Halley GT, Fridian YT (eds) PAH and PCB pollution of
the River Main as an illustrative example. . environmental impact assessment.
Nova Science Publishers, pp 335-354

Carlsen L, Briiggemann R (2011) Risk assessment of chemicals in the River Main
(Germany): application of selected partial order ranking tools. Statistica and
Applicazioni, special issue 125-140

De Loof K, De Meyer H, De Baets B (2006) Exploiting the lattice of ideals repre-
sentation of a poset. Fundamenta Informaticae 71:309-321

De Loof K, De Baets B, De Meyer H, Briiggemann R (2008) A Hitchhiker’s guide
to poset ranking. Comb Chem High Throughput Screen 11:734-744 (3-3)

De Loof K, De Baets B, De Meyer H (2011) Approximation of average ranks in
posets. Match Commun Math Comput Chem 66:219-229

Restrepo G, Briiggemann R (2008) Dominance and separability in posets, their
application to isoelectronic species with equal total charge. J] Math Chem 44:
577-602

Restrepo G, Weckert M, Briiggemann R, Gerstmann S, Frank H (2008) Ranking of
refrigerants. Environ Sci Technol 42:2925-2930 (3-8)

Sailaukhanuly Y, Zhakupbekova A, Amutova F, Carlsen L (2013) On the ranking of
chemicals based on their PBT characteristics: comparison of different ranking
methodologies using selected POPs as an illustrative example. Chemosphere
90:112-117

Simon U, Briiggemann R, Mey S, Pudenz S (2005) METEOR - application of a
decision support tool based on discrete mathematics. Match Commun Math
Comput Chem 54:623-642

Simon U, Briiggemann R, Behrendt H, Shulenberger E, Pudenz S (2006) METEOR:
a step-by-step procedure to explore effects of indicator aggregation in multi cri-
teria decision aiding — application to water management in Berlin, Germany.
Acta Hydrochim Hydrobiol 34:126-136

Tsakovski S, Simeonov V (2011) Hasse diagram technique as exploratory tool in
sediment pollution assessment.] Chemometrics. doi:10.1002/cem.1381:1-8

Tsakovski S, Kudlak B, Simeonov V, Wolska L, Garcia G, Namiesnik J (2012)
Relationship between heavy metal distribution in sediment samples and their
ecotoxicity by the use of the Hasse diagram technique. Analytica Chimica Acta.
doi: http:///10.1016/j.aca.2011.12.052

Voigt K, Briiggemann R, Scherb H, Shen H, Schramm K-H (2010a) Evaluating the
relationship between chemical exposure and cryptorchidism by discrete mathe-
matical method using PyHasse software. Environ Model Softw 25:1801-1812

http://dx.doi.org/10.1002/cem.1381:1-8
http://dx.doi.org/10.1016/j.aca.2011.12.052

19 PyHasse Software for Partial Order Analysis: Scientific Background... 421

Voigt K, Briiggemann R, Kirchner M, Schramm K-W (2010b) Influence of altitude
concerning the contamination of humus soils in the German Alps: a data evalua-
tion approach using PyHasse. Environ Sci Pollut Res 17:429-440

References

Al-Sharrah G (2010) Ranking using the Copeland score: a comparsion with the Hasse diagram. J
Chem Inf Model 50:785-791

Al-Sharrah G (2011) The Copeland method as a relative and categorized ranking tool. Stastidtica
et Applicazioni, special issue, 81-95

Annoni P (2007) Different ranking methods: potentialities and pitfalls for the case of European
opinion poll. Environ Ecol Stat 14:453-471

Annoni P, Briiggemann R, Saltelli A (2011) Partial order investigation of multiple indicator sys-
tems using variance — based sensitivity analysis. Environ Model Softw 26:950-958

Annoni P, Briiggemann R, Saltelli A (2012) Random and quasi-random designs in variance-based
sensitivity analysis for partially ordered sets. Reliab Eng Syst Saf 107:184-189

Bartel H-G, Briiggemann R (1998) Application of formal concept analysis to structure-activity
relationships. Fresenius J Anal Chem 361:23-28

Birkhoff G (1984) Lattice theory, vol XXV. American Mathematical Society, Providence, RI

Brans JP, Vincke PH (1985) A preference ranking organisation method (The PROMETHEE
method for multiple criteria decision — making). Manag Sci 31:647-656

Briiggemann R, Carlsen L (2011) An improved estimation of averaged ranks of partial orders.
Match Commun Math Comput Chem 65(2):383-414

Briiggemann R, Carlsen L (2012) Multi-criteria decision analyses. Viewing MCDA in terms of
both process and aggregation methods: Some thoughts, motivated by the paper of Huang,
Keisler and Linkov. Sci Total Environ 425:293-295

Briiggemann R, Patil GP (2010) Multicriteria prioritization and partial order in environmental sci-
ences. Environ Ecol Stat 17:383—410

Briiggemann R, Patil GP (2011) Ranking and prioritization for multi-indicator systems — introduc-
tion to partial order applications. Springer, New York, NY

Briiggemann R, Voigt K (2008) Basic principles of Hasse diagram technique in chemistry. Comb
Chem High Throughput Screen 11:756-769

Briiggemann R, Sgrensen PB, Lerche D, Carlsen L (2004) Estimation of averaged ranks by a local
partial order model. J Chem Inf Comput Sci 44:618-625

Briiggemann R, Voigt K, Kaune A, Pudenz S, Komossa D, Friedrich J (1998) Vergleichende 6kol-
ogische Bewertung von Regionen in Baden- Wiirttemberg GSF-Bericht 20/98. GSF, Neuherberg

Briiggemann R, Biicherl C, Pudenz S, Steinberg C (1999) Application of the concept of partial
order on comparative evaluation of environmental chemicals. Acta Hydrochim Hydrobiol
27:170-178

Briiggemann R, Halfon E, Welzl G, Voigt K, Steinberg C (2001) Applying the concept of partially
ordered sets on the ranking of near-shore sediments by a battery of tests. J] Chem Inf Comput
Sci 41:918-925

Bubley R, Dyer M (1999) Faster random generation of linear extensions. Discrete Math 201:
81-88

Burmeister P, CONIMP4, Programm zur Formalen Begriffsanalyse (1997) Technische Hochschule
Darmstadt, Arbeitsgruppe 1, Fachbereich 4 (Mathematik) WWW-Adresse: http://www.math-
ematik.tu-darmstadt.de/~burmeister/ConlmplIntro.pdf (last access August, 2013)

Carlsen L (2008) Hierarchical partial order ranking. Environ Pollut 155:247-253

http://www.mathematik.tu-darmstadt.de/~burmeister/ConImpIntro.pdf
http://www.mathematik.tu-darmstadt.de/~burmeister/ConImpIntro.pdf

422 R. Briiggemann et al.

Carlsen L (2009) The interplay between QSAR/QSPR studies and partial order ranking and formal
concept analyses. Int J Mol Sci 10:1628-1657

Carlsen L, Briiggemann R (2013a) Indicator analyses, what is important: and for what? In:
Briiggemann R, Carlsen L, Wittmann J (eds) Multi-indicator systems and modelling in partial
order, Chap 18. Springer, New York, NY

Carlsen L, Briiggemann R (2013b) The ‘Failed Nations Index’ offers more than just a simple
Ranking. Soc Indic Res. doi:10.1007/s11205-012-9999-6

Davey BA (2004) Formal concept analysis. In: Eklund P (ed) ICFCA 2004, LNAI 2961. Springer,
Berlin, pp 55-56

Davey BA, Priestley HA (1990) Introduction to lattices and order. Cambridge University Press,
Cambridge

DEA. http://mat.gsia.cmu.edu/classes/QUANT/NOTES/chap12.pdf. Assessed 16 Oct 2012

Gansner ER, North SC (1999) An open graph visualization system and its applications to software
engineering. Softw Pract Exp 30(11):1203-1233

Gansner ER, Koutsofios E, North SC, Vo K-P (1993) A technique for drawing directed graphs.
IEEE Trans Softw Eng 19:214-230

Ganter B, Wille R (1996) Formale Begriffsanalyse Mathematische Grundlagen. Springer, Berlin

Halfon E (2006) Hasse diagrams and software development. In: Briiggemann R, Carlsen L (eds)
Partial order in environmental sciences and chemistry. Springer, Berlin, pp 385-392

Halfon E, Reggiani MG (1986) On ranking chemicals for environmental hazard. Environ Sci
Technol 20:1173-1179

Halfon E, Hodson J, Miles K (1986) An algorithm to plot Hasse diagrams on microcomputers and
Calcomp plotters. Ecol Model 47:189-197

Hans Petter Langtangen (2009) A primer on scientific programming with Python (Texts in
Computational Science and Engineering). Springer, Auflage: 1 (4 Aug 2009)

Hasse H (1927) Hohere Algebra II Gleichungen hoheren Grades. Walter De Gruyter, vormals G.J.
Goschen'sche Vetrlagshandlung, Berlin und Leipzig

Hasse H (1952) Uber die Klassenzahl abelscher Zahlkorper. Akademie Verlag, Berlin

Huang IB, Keisler J, Linkov I (2011) Multi-criteria decision analysis in environmental sciences:
ten years of applications and trends. Sci Total Environ 409:3578-3594

Lutz M, Ascher D (2003) Learning Python. O’Reilly, Beijing

Manganaro A, Ballabio D, Consonni V, Mauri A, Pavan M, Todeschini R (2008) The DART
(Decision Analysis by Ranking Techniques) software. In: Pavan M, Todeschini R (eds)
Scientific data ranking methods: theory and applications. Elsevier, Amsterdam, pp 193-207

Miiller M, St. Schwarzer (2007) Python im deutschsprachigen Raum, Tagungsband zum Workshop
am 8 September 2006 in Leipzig. Lehmanns Media, Berlin

Munda G (2008) Social multi-criteria evaluation for a sustainable economy. Springer, Berlin

Myers WL, Patil GP (2008) Semi-subordination sequences in multi-measure prioritization prob-
lems. In: Todeschini R, Pavan M (eds) Data handling in science and technology, vol 27.
Elsevier, New York, NY, pp 161-170

Myers WL, Patil GP (2010) Preliminary prioritization based on partial order theory and R software
for compositional complexes in landscape ecology, with applications to restoration, remedia-
tion, and enhancement. Environ Ecol Stat 17:411-436

Myers WL, Patil GP (2014) Higher-order indicator with rank-related clustering in multi-indicator
systems. In: Briiggemann R, Carlsen L, Wittmann J (eds) Multi-indicator systems and model-
ling in partial order. Springer, New York, NY

Myers WL, Patil GP, Cai Y (2006) Exploring patterns of habitat diversity across landscapes using
partial ordering. In: Briiggemann R, Carlsen L (eds) Partial order in environmental sciences
and chemistry. Springer, Berlin, pp 309-325

Opperhuizen A, Hutzinger O (1982) Multi-criteria analysis and risk assessment. Chemosphere
11:675-678

Patil GP, Joshi S (2014) Comparative knowledge discovery with partial order and composite indi-
cator. In: Briiggemann R, Carlsen L, Wittmann J (eds) Multi-indicator systems and modelling
in partial order. Springer, New York, NY

http://dx.doi.org/10.1007/s11205-012-9999-6
http://mat.gsia.cmu.edu/classes/QUANT/NOTES/chap12.pdf

19 PyHasse Software for Partial Order Analysis: Scientific Background... 423

Patil GP, Taillie C (1976) Ecological diversity: concepts, indices and applications. In: The
Biometric Society (ed) Proceedings of the 9th biometric conference, vol II, Boston, The
Biometric Society, Boston, MA, pp 383-411, 22-27 Aug 1976

Patil GP, Taillie C (2004) Multiple indicators, partially ordered sets, and linear extensions:
multi-criterion ranking and prioritization. Environ Ecol Stat 11:199-228

Peters ML, Zelewski S (2007) TOPSIS als Technik zur Effizienzanalyse. WiSt January
2007:9-15

Pudenz S (2005) ProRank — software for partial order ranking. Match Commun Math Comput
Chem 54:611-622

Saaty TL (1994) How to make a decision: the analytical hierarchy process. Interfaces 24:19—43

Thiessen RJ, Achari G (2012) Can the national classification system for contaminated sites be used
to rank sites. Can J Civ Eng 39:415-431

Van de Walle B, De Baets B, Kersebaum KC (1995) Fuzzy multi-criteria analysis of cutting
techniques in a nuclear dismantling project. Fuzzy Set Syst 74:115-126

Venners B (2003) The making of, Python, a conversation with Guido van Rossum, Part I. http://
www.artima.com/intv/python.html. Assessed 20 Sept 2012

Voigt K, Scherb H, Briiggemann R, Schramm K-W (2011) Application of the PyHasse program
features: sensitivity, similarity, and separability for environmental health data. Statistica and
Applicazioni, special issue 155-168

Voigt K, Briiggemann R, Scherb H, Cok I, Mazmanci B, Mazmanci MA, Turgut C, Schramm K-W
(2012) Evaluation of organochlorine pesticides in breast milk samples in Turkey applying fea-
tures of the partial order technique. Int J Environ Health Res. doi: 10.1080/09603123.2012.71915

Wieland R, Briiggemann R (2013) Hasse Diagram technique and Monte Carlo simulations. Match
Commun Math Comput Chem 70:45-59

Wienand O (2012) http://bio.math.berkeley.edu/ranktests/Icell/. Assessed 6 Nov 6

Winkler P (1982) Average height in a partially ordered set. Discrete Math 39:337-341

Yager RR (1988) On ordered weighted averaging aggregation operators in multicriteria decision
making. IEEE Trans Syst Man Cybern 18:183-190

Yager RR (1993) Families of OWA operators. Fuzzy Set Syst 59:125-148

Yevtushenko SA (2003) Concept explorer the user guide: system of data analysis. Concept
Explorer 127-134

http://www.artima.com/intv/python.html
http://www.artima.com/intv/python.html
http://dx.doi.org/10.1080/09603123.2012.71915
http://bio.math.berkeley.edu/ranktests/lcell/

	Chapter 19: PyHasse Software for Partial Order Analysis: Scientific Background and Description of Selected Modules
	19.1 Introduction
	19.2 HDT Software
	19.3 Python as Programming Language for Contemporary Software Generation
	19.3.1 General Remarks
	19.3.2 Portability
	19.3.3 Libraries
	19.3.4 Programming Support

	19.4 A Practical Ranking Problem, i.e., a Test Set for Explaining PyHasse
	19.5 The PyHasse Software
	19.5.1 Intention Behind the Software
	19.5.1.1 Modules
	19.5.1.2 PyHasse as Experimental Software

	19.5.2 Basic Structure
	19.5.2.1 Contextual Categories
	19.5.2.2 Programming Structure
	19.5.2.3 Graphical User Interface
	19.5.2.4 PyHasse Data Flow (Example: Windows ® as Operating System)

	19.5.3 Overview
	19.5.3.1 Most Often Used Modules

	19.5.4 Description of Some Modules of PyHasse Software
	19.5.4.1 Module mHDCl2_7: The “New Main”
	19.5.4.2 The Module to Check the Role of Single Indicator Values: POOC6.py
	19.5.4.3 Module graphvizHD1.py
	Introduction
	Graphviz

	19.6 Summary and Conclusions
	19.6.1 Summary
	19.6.2 Conclusions

	19.7 Outlook
	19.8 (a) List of Abbreviations (Alphabetically Sorted)
	19.9 (b) Further Recommended References Within the Context of PyHasse and HDT
	References

