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2.1           Introduction 

 RIP1 was initially identifi ed through a yeast two-hybrid screening as a  Fas- interacting 
protein and an adaptor protein in the TNF receptor 1 (TNFR1) signaling complex 
(Stanger et al.  1995 ; Hsu et al.  1996 ). The human  rip1  gene is located on chromo-
some 6 and encodes a protein of 671 amino acids (aa) with a predicted molecular 
weight of 76 kDa    (Hsu et al.  1996 ). In the 300 aa N-terminus resides a serine/threo-
nine kinase domain (KD), while the C-terminal 112 aa contains a death domain 
(DD). The DD is homologous to the DD in the intracellular regions of Fas, TNFR1 
TRAILR1 (DR4), and TRAILR2 (DR5). Because RIP1 can bind to these death 
receptors, it is thus called a death domain kinase. The DD can also bind TRADD and 
FADD in the TNFR1 signaling complex. Between the KD and DD is an intermedi-
ate domain (ID) that harbors a RIP homotypic interaction motif (RHIM) (Fig.  2.1 ). 
Since the discovery of RIP1, six other RIP-like proteins (RIP2-7) with serine/threo-
nine kinase domain have been found which constitute the RIP family (Meylan and 
Tschopp  2005 ). It is noteworthy that other RIP family members cannot compensate 
RIP1defi ciency in cells, indicating a unique cellular role for RIP1.

   While RIP1 is a critical adaptor protein for TNFR1-mediated signaling to NF-κB 
activation, researches have determined RIP1 functions in diverse cell signaling 
pathways for either cell survival or death. These include death receptor (Fas, 
TNFR1, DR4, DR5, etc.)-mediated activation of MAPK (JNK, ERK, and p38) (Lin 
et al.  2000 ; Festjens et al.  2007 ), apoptosis and necrosis; Toll-like receptor (TLR)-
3- and (TLR)-4-mediated activation of NF-κB and MAPK (Han et al.  2004 ; Meylan 
et al.  2004 ; Kaiser and Offermann  2005 ), apoptosis and necrosis; and genotoxic 
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stress-induced activation of NF-κB, apoptosis and necrosis. Therefore, RIP1 is 
placed at a unique position to relay signals activated by diverse stimuli to different 
pathways (Fig.  2.2 ). It is apparent that RIP1 is a key player in regulating cells’ fate, 
survival, or death, in response to different stimulations (Meylan and Tschopp  2005 ; 
Festjens et al.  2007 ; O’Donnell and Ting  2011 ; Zhang et al.  2011 ).

2.2        RIP in Cell Survival Signaling 

2.2.1     RIP1 in Death Receptor-Mediated Survival Signaling 

2.2.1.1     RIP1 in Death Receptor-Mediated NF-κB Activation 

 The most well-studied NF-κB activation pathway involving RIP1 is that mediated 
by TNFR1 (Karin and Gallagher  2009 ) (Fig.  2.3 ). Ligation of TNFα to its receptor 
results in the trimerization of TNFR1, which recruits TRADD to form a platform 

  Fig. 2.1    Domain structure of RIP1. The kinase domain (KD), intermediate domain (ID), and the 
death domain (DD) are  highlighted . RHIM, RIP homotypic interaction motif. The known interaction 
proteins and functions of each domain are  listed        

  Fig. 2.2    RIP1-mediated cell 
survival pathways. Activation 
of receptors such as IGF-IR, 
TNFR1, DR4/5 (for TRAIL), 
TLR3 (for dsRNA), or TLR4 
(for LPS) and cellular 
stresses such as DNA damage 
activate cell survival 
pathways (NF-κB, Akt, and 
JNK) depending on cellular 
context. See text for details       
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for assembling a so-called complex I that consists of RIP1 and TNF receptor- 
associated factor 2 (TRAF2) in the lipid rafts on the plasma membrane (Hsu et al. 
 1996 ; Micheau and Tschopp  2003 ). RIP1 is then Lys63 polyubiquitinated on its 
Lys377 within minutes (Ea et al.  2006 ; Skaug et al.  2009 ). The Lys63 polyubiquitin 
chain serves as a platform for binding of NEMO in the IκB kinase (IKK) complex 
(Wu et al.  2006a ). Then IKK is activated by phosphorylation mediated by TAK1 or 
MEKK3 (Devin et al.  2000 ; Yang et al.  2001 ). The adaptor proteins, TAB2 and 
TAB3, bind to the Lys63 polyubiquitin chain to recruit TAK1 to the complex for 
IKK activation (Kanayama et al.  2004 ; Skaug et al.  2009 ). The activated IKK in turn 
phosphorylates the inhibitors of NF-κB (IκB), which retains NF-κB in the cytoplasm, 
to trigger their rapid polyubiquitination followed by degradation in the 26S protea-
some. This process allows NF-κB to migrate to the nucleus and bind to the promot-
ers of its target genes. Several of NF-κB’s target genes such as c-IAP1, c-IAP2, 
XIAP, and c-FLIP are found to have anti-apoptotic properties (Karin et al.  2004 ). 
Induction of the antioxidant manganese superoxide dismutase (MnSOD) by NF-κB 
is also suggested to be anti-apoptotic (Kamata et al.  2005 ). Therefore, the TNFR1- 
mediated NF-κB activation is generally believed to be for survival through anti- 
apoptosis. Interestingly, the cIAPs are E3 ubiquitin ligases that execute RIP1 Lys63 
polyubiquitination, which may be a positive feedback loop for NF-κB activation 
(Skaug et al.  2009 ; Xu et al.  2009 ). In contrast, A20 and CYLD, both NF-κB targets, 
remove the Lys63 polyubiquitin chains from RIP1 and promote binding of Lys48- 
linked ubiquitin chain to RIP1, resulting in proteasomal degradation of RIP1 
(Shembade et al.  2008 ; Skaug et al.  2009 ). In addition, RIP1 is cleaved at Asp324 

  Fig. 2.3    RIP1 in TNFα-induced cell survival or death signaling. TNFα binding to TNFR1 induces 
formation of complex I containing TRADD, RIP1, TRAF2, and cIAP1/2. Ubiquitination of RIP1 
by cIAP1/2 leads to IKK activation to turn on the NF-κB activation pathway. Internalization of 
complex I, deubiquitination of RIP1, and recruitment of FADD and caspas-8 result in formation of 
complex II. When caspase-8 is suffi ciently activated, complex II mediates apoptosis. In contrast, if 
caspase-8 is suppressed by c-FLIP, complex II-mediates RIP3-dependent necrosis. See text for 
details       
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by caspase-8 at the early stage of TNFR1 signaling, which shuts off the NF-κB 
activation pathway and promotes apoptosis (Lin et al.  1999 ). Thus, RIP1 serves as 
an important checkpoint for TNFR1-mediated NF-κB activation, and regulation of 
RIP1 underlies one of the mechanisms for accurate induction of NF-κB activity in 
terms of extent and duration (Festjens et al.  2007 ; O’Donnell and Ting  2011 ).

   NF-κB is also activated by other death receptors through a similar mechanism 
involving RIP1, although the extent is generally weak. Hsp90 binds and stabilizes 
RIP1, consequently facilitating TNF- or TRAIL-induced NF-κB activation (Lewis 
et al.  2000 ; Wang et al.  2006 ). While NF-κB activation protects cancer cells from 
TNF- or TRAIL-induced apoptosis, blocking NF-κB sensitizes TNF- or TRAIL- 
induced cytotoxicity in cancer cells (Wang et al.  2006 ; Ju et al.  2007 ; Bai et al.  2009 , 
 2011 ; Lin et al.  2010 ).  

2.2.1.2     RIP1 in Death Receptor-Mediated MAP Kinase Activation 

 Residing in complex I during TNFR1 signaling, RIP1 also contributes to activation 
of MAP kinases (JNK, ERK, and p38) (Devin et al.  2003 ). The activation of MAPKs 
also requires TRAF2 and involves sequential activation of the MAPKKK/MAPKK/
MAPK cascade. The transient JNK activation appears to promote survival; how-
ever, sustained JNK activation leads to cell death (Lin and Dibling  2002 ; Ventura 
et al.  2004 ). Interestingly, NF-κB suppresses sustained JNK activation to maintain 
cell survival. How the signaling for NF-κB and JNK activation is balanced at RIP1 
is still elusive. The role of ERK and p38 in TNFR1-induced cell death is not well 
understood. Because ERK activation requires the kinase activity of RIP1 and this 
activity is important for necrosis, it remains to be determined if ERK activation is 
involved in TNF-induced necrosis. Transient activation of JNK by TRAIL is par-
tially dependent on RIP1 (Lin et al.  2000 ). In these settings, JNK functions as a cell 
survival signal to protect cells from death therefore could be a target for sensitizing 
anticancer chemotherapy (Lin et al.  2000 ; Wang et al.  2006 ; Bai et al.  2011 ).   

2.2.2     RIP1 in Genotoxic Stress-Mediated NF-κB Activation 

 The involvement of RIP1 in DNA damage-induced NF-κB activation was fi rst seen 
in RIP1−/− mouse embryonic fi broblasts (MEF). DNA topoisomerase inhibitors 
such as adriamycin and etoposide and ionizing radiation (IR), which cause double- 
strand DNA breaks (DSB), stimulated NF-κB in wild type but not RIP−/− MEF 
cells (Hur et al.  2003 ). Further studies revealed that when genomic DNA is insulted, 
distinct protein complexes are formed containing different isoforms of p53-induced 
protein with a death domain (PIDD) for mediating apoptosis, DNA repair, or NF- κ B 
activation (Janssens and Tschopp  2006 ; Wu et al.  2006b ). One complex, caspase-2 
PIDDosome   , consisting of PIDD, RIP-associated CH1/ECD3-homologous protein 
with death domain (RAIDD), and procaspase 2, initiates apoptosis in a mitochondria- 
dependent manner (Janssens et al.  2005 ; Janssens and Tschopp  2006 ). The complex 
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called NEMO PIDDosome, which contains PIDD, RIP1, and the NEMO/IKKγ sub-
unit of IKK, is responsible for NF- κ B activation. While PIDD and RIP1 interact 
directly through their DD, the interaction between NEMO and PIDD and activation 
of NEMO are mediated by RIP1, indicating the importance of RIP1 in genotoxic 
stress-induced NF-κB activation (Huang et al.  2003 ; Janssens et al.  2005 ; Wu et al. 
 2006b ). Upon the induction of genotoxic stress, two parallel signaling pathways are 
independently activated for starting the NF-κB activation pathway. The fi rst path-
way promotes the nuclear translocation of PIDD followed by recruitment of RIP1 
and NEMO to form a complex, where NEMO is rapidly sumoylated by protein 
inhibitor of activated STAT (PIAS) (Mabb et al.  2006 ). The second pathway acti-
vates the ATM kinase through phosphorylation. The two pathways merge at the 
point that the sumoylated NEMO and the active ATM kinase meet together. Then 
ATM phosphorylates NEMO to promote its ubiquitination. Activated NEMO is 
exported to the cytoplasm where it forms a complex with IKKα and IKKβ, resulting 
in an active IKK that phosphorylates IκB to trigger its degradation, thereby the 
downstream cascade for NF-κB activation is activated. The RIP1/NEMO and 
RAIDD/caspase-2 pathways are mutually exclusive, suggesting that the interaction 
between RIP1 and PIDD is solely for cell survival to counteract apoptosis mediated 
by the RAIDD/caspase-2 complex (Tinel et al.  2007 ; Janssens and Tinel  2012 ). 
Additionally, during DNA damage with DSB, RIP1 also interacts with arrest- 
defective 1 protein (ARD1). ARD1 migrates to the nucleus where the acetyltrans-
ferase activity of ARD1 is important for NF-κB activation (Park et al.  2012 ). It 
remains to be determined if RIP1 regulates ARD1 nuclear translocation and its acet-
yltransferase activity during genotoxic stress response. 

 Although NF-κB is well known as a transcriptional activator, it may function as 
a transcription repressor in certain circumstances as when cells are responding to 
DNA damage (Campbell et al.  2004 ). This may be through ARF-mediated and ATR- 
and CHK1-dependent phosphorylation of RelA at The505 or through defi ciency in 
Ser536 phosphorylation and acetylation (Ho et al.  2005 ; Rocha et al.  2005 ). It is 
likely that the activation of NF-κB target genes and the cellular outcome in response 
to DNA damage-induced NF-κB activation are dependent on the cellular context 
(Wang et al.  2002 ; Janssens and Tschopp  2006 ). Accordingly, a pro- apoptosis role 
of NF-κB has been proposed (Campbell et al.  2004 ). This may partly be due to dif-
ferences in cellular context, such as the genetic status of p53 and the current redox 
status, and the activity of other signaling pathways (Ganapathi et al.  2002 ; Wang 
et al.  2002 ; Lee et al.  2003 ; Janssens and Tschopp  2006 ; Chen et al.  2008 ). Thus, the 
role of RIP1-mediated NF-κB activation during DNA damage, particularly in cancer 
cells during chemo- or radiotherapy, requires careful evaluation.  

2.2.3     RIP1 in TLR3- and TLR4-Mediated Cell Survival 
Signaling 

 TLR are pathogen-associated molecular pattern (PAMP) recognition receptors 
sensing a wide range of pathogens including bacteria, viruses, fungi, and protozoa. 
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TLRs are also involved in a wide range of pathophysiological responses such as that 
in immunity and cancer (Barton and Kagan  2009 ; Klein Klouwenberg et al.  2009 ). 
In the absence of RIP1, TLR3-mediated NF-κB activation, but not the JNK or 
interferon-β, was abolished. Therefore, TLR 3-induced NF-κB activation is depen-
dent on RIP1 (Meylan et al.  2004 ). When the cognate ligands bind to TLR3 and 
TLR4, which are analogous to the dependence of TRADD in binding to the TNFR1 
signaling complex, RIP1 is recruited to the receptor mediated by TIR-related adap-
tor protein inducing INF (TRIF) through the RIP RHIM motif. RIP1 is then phos-
phorylated followed by polyubiquitination. As an E3 ubiquitin ligase, TRAF6 is 
suggested to be responsible for RIP1 polyubiquitination (Festjens et al.  2007 ). 
Another E3 ubiquitin ligase, Peli1, which was found to bind to and ubiquitinate 
RIP1 for IKK activation induced by TLR3 and TLR4, suggesting that Peli1 is a 
ubiquitin ligase for RIP1 in transmission of TRIF-dependent TLR signals (Chang 
et al.  2009 ). The E3 ubiquitin ligase Triad3A is also suggested to ubiquitinate RIP1 
for TLR signaling (Fearns et al.  2006 ). The modifi ed RIP1 recruits IKK activating 
proteins to form a complex consisting of TRIF, TRAF6, RIP1, TAK1, TAB1, and 
TAB2, which mediates activation of IKKβ and eventually NF-κB (Cusson-Hermance 
et al.  2005 ; Festjens et al.  2007 ). The Bruton’s tyrosine kinase (BTK) directly phos-
phorylates TLR3, leading to formation of the downstream TRIF/RIP1/TBK1 com-
plex (Lee et al.  2012 ). Whether BTK also modifi es TRIF and RIP1 for the signaling 
needs to be further determined. Interestingly, the RIP family member RIP2 is also 
involved in TLR3- and TLR4-mediated signaling (Kobayashi et al.  2002 ). Because 
TLR3 and TLR4 can induce both survival and death in cells, it remains to be deter-
mined if there is functional interaction between RIP1 and RIP2 in modulating cel-
lular outcomes of signaling in these receptors. In addition, recent studies reveal that, 
despite TRIF, TRADD is also involved in TLR3-mediated RIP1 ubiquitination and 
NF-κB activation in bone marrow macrophages (Ermolaeva et al.  2008 ; Pobezinskaya 
et al.  2008 ). Thus, it is of interest to determine if TRIF and TRADD contribute to 
determination of cellular fate during TLR3 signaling. 

 The evidence showing RIP1 is involved in TLR4-mediated signaling to phospha-
tidylinositol 3 kinase (PI3K)/Akt activation was from RIP1 (−/−) mouse spleno-
cytes that failed to proliferate and undergo isotype switching in response to LPS. 
These cells had impaired Akt phosphorylation and increased apoptosis, suggesting 
that RIP1 is essential for cell survival after TLR4 signaling through mediating the 
PI3K/Akt pathway (Vivarelli et al.  2004 ). How RIP1 mediates LPS-/TLR4-induced 
Akt activation remains to be elucidated.  

2.2.4     RIP1 in Other Cell Survival Pathways 

 RIP1 is also reported to contribute to other cell survival/proliferation pathways. 
For example, RIP1 was found in the signaling complex of insulin-like growth fac-
tor 1 receptor (IGF-1R) for JNK activation, which contributes to cell proliferation 
(Lin et al.  2006 ). Also, it was suggested that RIP1 is involved in epidermal growth 
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factor receptor (EGFR)-mediated signaling (Habib et al.  2001 ). In addition, RIP1 
is overexpressed in glioblastoma. In glioblastoma cells, RIP1 activates PI3K-Akt 
through dual mechanisms: activates PI3K-Akt by interrupting the mTOR negative 
feedback loop through negatively regulating mTOR transcription via a NF-κB-
dependent pathway and downregulates cellular PTEN levels independent of NF-κB 
activation. Furthermore, RIP1 suppresses p27 (Kip1) expression to facilitate cell 
proliferation through the PI3K-/Akt-forkhead pathway (Park et al.  2008 ,  2009 ). 
All these pathways need more attention to their roles in death/survival regulation 
in different cell types.   

2.3     RIP1 in Cell Death Signaling 

 Although RIP1 possesses a DD and artifi cial overexpression of RIP1 causes apop-
totic cell death that can be rescued by co-expression of the viral caspase-8 inhibiting 
protein CrmA, in early researches RIP1 was found not to be required for death 
receptor-mediated cell death under the conditions of transcriptional or translational 
inhibition (Ting et al.  1996 ; Kelliher et al.  1998 ; Lin et al.  1999 ,  2000 ; Festjens et al. 
 2007 ). Thus, for a long time, RIP1 was not thought to be a death mediator. However, 
later studies clearly demonstrate that RIP1 actively contributes to cell death, in both 
apoptosis and necroptosis. 

2.3.1     RIP1 in Mediating Apoptosis 

2.3.1.1     RIP1 in Death Receptor-Mediated Apoptosis 

 During TNFα-induced signaling, the TNFR1 complex I that contains TRADD, 
TRAF2, RIP1, cIAP1, and cIAP2 is internalized and converted into complex II with 
recruitment of FADD and caspase-8. Complex II mediates signaling to caspase-8 
activation and subsequent activation of executor caspases to initiate apoptosis 
(Fig.  2.3 ). It has been puzzling that although RIP1 resides in complex II, it appeared 
not to be involved in apoptosis signaling (Ting et al.  1996 ; Kelliher et al.  1998 ). 
These fi ndings were made in experiments that used RIP1 knockout mouse embry-
onic fi broblasts (MEF) or RIP1 mutated leukemia cell line Jurkat with addition of 
TNF or TRAIL in combination with transcription inhibitor or translation inhibitor 
to block gene expression (Ting et al.  1996 ; Kelliher et al.  1998 ; Lin et al.  1999 , 
 2000 ; Festjens et al.  2007 ). A later research using stable short-hairpin RNA (shRNA) 
knockdown (KD) in human tumor cells and immunoprecipitation demonstrated 
competitive binding of RIP1and TRADD to TNFR1. While FADD is necessary for 
FasL- or TRAIL- but not TNF-induced apoptosis, RIP1 is required for TNF-induced 
apoptosis. Furthermore, RIP1 KD abrogated complex II formation after TNF expo-
sure. These observations, although adding more complexity to the roles of death 
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receptor signaling, suggest that RIP1 contributes to apoptosis induced by TNFR1 in 
certain tumor cells (Jin and El-Deiry  2006 ). 

 Compelling evidence showing RIP1 is involved in TNFR1-mediated apoptosis is 
that different subtypes of apoptosis are induced by TNFα. With a comparison of 
apoptosis induced with TNFα combined with cycloheximide that inhibits protein 
synthesis or second mitochondria-derived activator of caspases (Smac) mimic that 
targets cIAP1 and cIAP2 for degradation, two distinct caspase-8 activation- mediated 
apoptosis pathways were identifi ed (Wang et al.  2008 ). The fi rst well-studied path-
way is negatively regulated by the endogenous caspase-8 inhibitor c-FLIP. 
Cycloheximide eliminates c-FLIP rapidly to promote caspase-8 activation. The sec-
ond pathway is uncovered with Smac mimetic, which triggers autodegradation of 
cIAP1 and cIAP2, resulting in the release of RIP1 from complex I to form a caspase-
8- activating complex consisting of RIP1, FADD, and caspase-8. While Lys63 poly-
ubiquitination of RIP1 is critical for NF-κB activation, deubiquitination of RIP1 by 
CYLD is crucial for RIP1/FADD/caspase-8 complex formation and caspase-8 acti-
vation (Wang et al.  2008 ). Thus, it is clear that RIP1 contributes to TNFR1-mediated 
apoptosis under the condition of cIAP1/2 suppression or CYLD activation. The 
recently identifi ed CLIP-170-related 59 kDa protein (CLIPR-59) is involved in the 
formation of complex II and downregulation of TNF α -induced ubiquitination of 
RIP1 through binding to CYLD, resulting in the formation of complex II and thus 
promoting caspase-8 activation and apoptosis (Fujikura et al.  2012 ). 

 In addition to TNFR1 signaling to apoptosis, other non-death receptor members 
of the TNFR superfamily also utilize RIP1 for apoptosis. CD40, a cytokine with a 
prominent role in antitumor immune response, induces apoptosis in cancer cells 
when its survival signals are blocked. Apoptosis is initiated within a cytosolic death- 
inducing signaling complex containing RIP1, which is required for CD40 ligand- 
induced caspase-8 activation and tumor cell killing. Degradation of cIAP1/2 
amplifi es, whereas inhibition of CYLD reduces the CD40-mediated cytotoxic effect 
through impacting the ubiquitination on RIP1 (Knox et al.  2011 ). TNF-like weak 
inducer of apoptosis (TWEAK, TNFSF12, CD255) induces apoptosis in certain 
cancer cells via autocrine TNFα. During TWEAK-induced apoptosis, a RIP1-
FADD- caspse-8 complex is assembled. Knockdown of RIP1 by siRNA prevented 
TWEAK-induced association of FADD and caspase-8, suggesting a crucial role of 
RIP1 in the proapoptotic activity of TWEAK in cancer cells (Ikner and Ashkenazi 
 2011 ). A synergy in inducing apoptosis in pediatric acute lymphoblastic leukemia 
(ALL) occurs with combination of inhibitors of IAPs and various anticancer drugs 
such as AraC, gemcitabine, doxorubicin, etoposide, vincristine, and Taxol that 
depends on the formation of a RIP1/FADD/caspase-8 complex via an autocrine/
paracrine loop of TNFα. RIP1 is essential for the formation of this complex and 
subsequent activation of caspase-8 and caspase-3, mitochondrial perturbations, and 
apoptosis. These fi ndings substantiate the role of RIP1 in cancer therapy that 
involves death receptor-mediated apoptosis activation with IAP inhibitors and con-
ventional chemotherapy (Loder et al.  2012 ). Similarly, the Smac mimetic BV6 sen-
sitizes the fi rst-line chemotherapeutic agent in the treatment of glioblastoma 
temozolomide (TMZ) through apoptosis activation mediated by a RIP1/caspase-8/
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FADD complex. Knockdown of RIP1 signifi cantly reduces BV6- and TMZ-induced 
caspase-8 activation and apoptosis, substantiating that RIP1 is necessary for apop-
tosis induction and antitumor activity of this therapy regimen (Wagner et al.  2012 ).  

2.3.1.2     RIP1 in DNA Damage-Induced Apoptosis 

 When DNA damage occurs, PIDDosome is formed for either NF-κB activation- 
mediated cell survival or caspase-2 activation-mediated apoptosis. While the RIP1 
and NEMO containing PIDDosome negatively regulates DNA damage-induced 
apoptosis through NF-κB activation (Tinel et al.  2007 ), recent reports show that 
RIP1 plays a role in facilitating apoptosis when cells acquire DNA damage. Upon 
excessive DNA damage, ATM is activated to stimulate cytokine secretion, which 
alerts neighbor cells and induces apoptosis to eliminate the affl icted cell. Extensive 
DNA lesions stimulate two sequential NF-κB activation phases that induce TNFα- 
TNFR1 feedforward signaling and drive RIP1 phosphorylation-mediated JNK3 
activation, resulting in FADD-mediated pro-apoptotic caspase-8 activation. Thus, in 
the context of excessive DNA damage, RIP1 kinase participates in TNFα autocrine- 
mediated apoptosis (Biton and Ashkenazi  2011 ). Additionally, RIP1-mediated JNK 
activation has been suggested to be one of the critical components involved in medi-
ating DNA damage-induced and p53-independent cell death (Hur et al.  2006 ). 

 A more recent study shed lights on the mechanism of RIP1 in DNA damage- 
induced apoptotic cell death. Upon genotoxic stress, a large protein complex about 
2 MDa called the Ripoptosome is formed to serve as a cell death-inducing platform 
that can stimulate caspase-8-mediated apoptosis as well as caspase-independent 
necrosis. Containing RIP1, FADD, and caspase-8, this complex is assembled in 
response to genotoxic stress-induced depletion of the IAPs (XIAP, cIAP1, and 
cIAP2). Ripoptosome formation is independent of either death receptors or mito-
chondria but requires RIP1’s kinase activity. The formation and activity of the 
Ripoptosome are negatively regulated by IAPs. Mechanistically, IAPs serve as a 
brake for Ripoptosome through mediating RIP1 ubiquitination to keep caspase-8 
inactive. These observations shed light on fundamental mechanisms by which RIP1 
contributes to chemotherapeutic-induced apoptosis in cancer cells (Tenev et al. 
 2011 ). c-FLIP L  prevents, while c-FLIP S  promotes Ripoptosome formation. When 
cIAPs are absent, caspase activity controlled by c-FLIP isoforms in the Ripoptosome 
functions as determinants for a cell’s fate: RIP3-dependent necroptosis or caspase- 
dependent apoptosis. While RIP1 is the core component of the complex and the 
Ripoptosome critically infl uences the outcome of genotoxic stress, the differential 
quality of cell death mediated by the Ripoptosome may cause important patho-
physiological consequences (Feoktistova et al.  2011 ). 

 It should be noted that although RIP1 mediates a cell death pathway in response 
to DNA damage, it also transduces cell survival signals such as NF-κB. When RIP1 
expression is suppressed by gene knockout in MEFs or knockdown in cancer cells, 
DNA damage-induced cytotoxicity is signifi cantly increased (Yang et al.  2011 ; 
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Wang et al.  2014 ), suggesting that cell survival signaling is predominant in RIP1- 
mediated genotoxic stress signaling and other cell death pathways independent of 
RIP1 are suffi cient to kill the cells.  

2.3.1.3     RIP1 in TLR3- and TLR4-Mediated Apoptotic Death 

 TLR activation by viral infection can result in apoptosis that is dependent on RIP1, 
FADD, and caspase. Interestingly, contrasted to TNFR1 signaling, RIP1 functions 
upstream of FADD in TLR3- and TLR4-induced apoptosis (Ruckdeschel et al. 
 2004 ). TRIF physically interacts with the RHIM motif in RIP1. RIP1 recruits FADD 
and caspase-8 that are essential for apoptosis (Kaiser and Offermann  2005 ). 
Engagement of TLR3 by dsRNA in lung cancer cells induces the formation of an 
atypical caspase-8-containing complex that is devoid of death receptors of the 
TNFR superfamily. The recruitment of caspase-8 to TLR3 is dependent on RIP1- 
mediated recruitment of FADD. The TLR3/RIP1/caspase-8 complex is negatively 
modulated by RIP1 ubiquitination by a ubiquitin ligase complex containing cIAP2-
TRAF2- TRADD. These observations uncover the molecular mechanisms underly-
ing TLR3-induced apoptosis (Estornes et al.  2012 ). Viruses encode proteins 
suppressing TLR-mediated apoptosis. The murine cytomegalovirus M45 protein 
directly interacts with RIP 1 and RIP3 via RHIM to suppress cell death. The interac-
tion between M45 and RIP1 underlies the cell tropism role of M45 in preventing 
premature death of endothelial cells during murine cytomegalovirus infection. 
Thus, suppressing RIP1 provides a direct cell type-dependent replication benefi t to 
the virus (Mack et al.  2008 ; Upton et al.  2008 ). Ribonucleotide reductase R1 sub-
units of herpes simplex virus type 1 protect cells against TLR3-induced apoptosis 
by interacting with RIP1 and caspase-8. Collectively, RIP1 is the molecular target 
for certain viruses to impair the host defense apoptotic mechanism prompted by 
dsRNA (Dufour et al.  2011 ).   

2.3.2     RIP1 in Programmed Necrosis (Necroptosis) 

 Necrosis has long been regarded as an uncontrolled, passive, and accidental pro-
cess where cells experience extreme physicochemical stress conditions. Only in the 
last decade is it becoming clear that necrotic cell death is an active programmed 
cellular event and the term necroptosis was coined. Necrotic cell death may be an 
important cell death mode that is both pathologically and physiologically relevant 
(Festjens et al.  2006 ; Vandenabeele et al.  2010 ). It appears that necrotic cell death 
is not simply a result of one well-described signaling cascade but is the conse-
quence of extensive cross talk between several biochemical and molecular events 
at different cellular levels (Festjens et al.  2006 ; Vandenabeele et al.  2010 ). Necrotic 
cell death initiates proinfl ammatory signaling by actively releasing infl ammatory 
cytokines and releasing cellular contents that can stimulate infl ammatory responses. 
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Necrosis is capable of killing tumor cells that have developed strategies to evade 
apoptosis. Thus, detailed knowledge of necrosis may be exploited in cancer thera-
peutic strategies (Festjens et al.  2006 ). 

2.3.2.1     RIP1 in TNFα-Induced Necrosis 

 Although it was noticed that TNFα induces necrotic cell death long ago, uncovering 
the fi rst piece of the puzzle of the underlying mechanism was not made until the 
discovery that RIP1 plays a key role in this pathway. In primary T cells, TNFα-, 
TRAIL-, or FasL-induced caspase-independent necrotic death is absent when 
FADD or RIP1 is defi cient. In contrast to RIP1’s role in NF-κB activation, RIP1 
kinase activity is required for necrotic death signaling (Holler et al.  2000 ). With use 
of RIP1 knockout MEF cells, it was determined that RIP1-mediated cellular ROS, 
mainly superoxide, accumulation is crucial for TNF-induced nonapoptotic cell 
death (Lin et al.  2004 ). RIP1 is essential for Nox1 recruitment to form a signaling 
complex for activation of Nox1 which plays a key role in TNF-induced necrotic cell 
death (Kim et al.  2007 ). 

 A genome-wide siRNA screen revealed that another member of the RIP kinase 
family, RIP3, is required for mediating RIP1-dependent necrosis. Upon induction of 
necrosis, RIP3 is recruited to RIP1 to form a necrosis-inducing complex and the 
kinase activity of RIP3 is essential for necrosis execution (He et al.  2009 ). RIP3 
regulates necrosis-specifi c RIP1 phosphorylation. The phosphorylation of RIP1 and 
RIP3 stabilizes their association within the pronecrotic complex, activates prone-
crotic kinase activity, and triggers downstream ROS production. Furthermore, the 
pronecrotic RIP1–RIP3 complex is induced during vaccinia virus infection, result-
ing in tissue necrosis, infl ammation, and viral replication suppression (Cho et al. 
 2009 ). By activating key enzymes of metabolic pathways, RIP3 regulates TNF- 
induced ROS production and necrosis, substantiating that modulation of energy 
metabolism in response to death stimuli has an important role in the choice between 
apoptosis and necrosis (Zhang et al.  2009 ). With the RIP3 kinase inhibitor necrosul-
fonamide, the mixed lineage kinase domain-like protein (MLKL) was identifi ed as 
the RIP3 interacting target. RIP3 phosphorylates MLKL at the threonine 357 and 
serine 358 residues for executing necrosis, implicating MLKL as a key mediator of 
necrosis signaling downstream of the kinase RIP3 (Sun et al.  2012 ). An independent 
study with screening a kinase/phosphatase shRNA library also identifi ed MLKL as 
a key RIP3 downstream component of TNFα-induced necrosis. MLKL functions 
downstream of RIP1 and RIP3 and is recruited to the necrosome through its interac-
tion with RIP3 for the generation of ROS and the late-phase activation of JNK dur-
ing TNF-induced necrosis (Zhao et al.  2012 ). In the RIP1- and RIP3-containing 
protein complexes resides the mitochondrial protein phosphatase PGAM5. Both 
two splice variants, PGAM5L (long form) and PGAM5S (short form), are involved 
in necrosis signaling through ROS production in mitochondria. Upon necrosis 
induction, PGAM5S binds to the mitochondrial fi ssion factor Drp1 to activate its 
GTPase activity through dephosphorylation of Drp1, resulting in mitochondrial 
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fragmentation, an early and obligatory step for necrosis execution (Wang et al. 
 2012 ). These observations establish a pathway consisting of RIP1, RIP3, MLKL, 
and PGAM5 for mitochondria-mediated necrosis in response to TNFα and other 
stimulations. 

 Necroptosis could be a target for overcoming cancer’s chemoresistance 
(Kreuzaler and Watson  2012 ; He et al.  2013 ). For example, in addition to sensitizing 
apoptosis- profi cient cells to TNFα-mediated and caspase-dependent apoptosis, 
Smac mimetic primes apoptosis-resistant cells lacking FADD or caspase-8 to 
TNFα-induced, RIP1-dependent, and caspase-independent necroptosis, highlight-
ing the importance of therapeutic exploitation of necroptosis as an alternative cell 
death program to overcome chemoresistance (Laukens et al.  2011 ). Through sup-
pressing RIP1 kinase activity, cIAP1 protects cells from TNFα-induced necrosis by 
preventing RIP1-/RIP3-dependent ROS production, indicating that cIAPs are key in 
regulating necrosis and thus appear to be a main target for sensitizing cancer cells 
to necrosis (Vanlangenakker et al.  2011b ). By inhibiting RIP1 recruitment to the 
death receptor signaling complex, PKC activation suppresses the death receptor-
mediated necrotic cell death pathway (Byun et al.  2006 ).  

2.3.2.2     RIP1 in ROS- and PARP-Mediated Necrotic Cell Death 

 ROS are the main players for propagation and execution of necrotic cell death 
through directly or indirectly provoking protein, lipid, and DNA damages, culmi-
nating in disruption of organelle and cell integrity (Festjens et al.  2006 ). Oxidative 
stress and ROS elicit and modulate necrotic cell death. RIP1−/− MEF cells are 
resistant to ROS-induced cell death. Upon H 2 O 2  exposure, RIP1 and TRAF2 form a 
complex in lipid rafts, which is independent of TNFR1. RIP1 and TRAF2 mediate 
ROS-induced cell death through JNK activation (Shen et al.  2004 ). JNK1 subse-
quently phosphorylates the key DNA repair protein poly(ADP-ribose) polymerase-1 
(PARP-1), resulting in sustained activation of PARP-1 (Zhang et al.  2007 ). Activated 
PARP1 catalyzes NAD+ into nicotinamide and poly-ADP ribose, resulting in deple-
tion of NAD+ and cellular energy failure that leads to necrotic cell death (Festjens 
et al.  2006 ). However, with using the DNA alkylating agent  N -methyl- N ′-nitro-N - 
nitrosoguanidine, a potent PARP-1 activator, JNK was shown to be required for 
PARP-1-induced mitochondrial dysfunction and subsequent cell death. In this 
necrosis model, RIP1 is upstream of JNK but downstream of PARP-1 (Xu et al. 
 2006a ). Thus, although RIP1 is clearly involved in ROS- and PARP1-mediated 
necrosis, the defi ned mechanisms need further study.  

2.3.2.3    RIP1 in Necrotic Cell Death Induced by Other Stimulations 

 RIP1 is involved in necrosis induced by other cellular stresses. For example, follow-
ing TLR4 ligation by LPS, when NF-κB and caspase-8 are suppressed, cells 
undergo necrosis depending on RIP1 (Ma et al.  2005 ). The interaction between 
viral proteins and RIP1 prevents necrotic cell death during infection (Mack et al.  2008 ; 
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Upton et al.  2008 ). Thus, RIP1 is the molecular target for certain viruses to modu-
late necrotic cell death (Dufour et al.  2011 ). 

 5-Aminolevulinic acid (5-ALA) for glioblastoma therapy mainly activates a 
necrotic type of cell death depending on a pronecrotic complex containing RIP3 and 
RIP1 that mediates singlet oxygen production. Interestingly, the pronecrotic com-
plex is devoid of caspase-8 and FADD, two proteins usually part of the necrosome 
or Ripoptosome, suggesting different complexes consisting of RIP1 or RIP3 are 
formed for necrosis under different conditions (Coupienne et al.  2011 ). Heme 
leaked from hemolysis or myonecrosis has proinfl ammatory and cytotoxic effects 
partly through TLR4-dependent production of TNFα and subsequent necrosis that 
requires RIP1- and RIP3-mediated ROS production (Fortes et al.  2012 ). Thus, RIP1 
functions as a central player in programmed necrosis. However, TCR-induced 
necroptosis does not require RIP3 (Osborn et al.  2010 ). In contrast, RIP1- 
independent but RIP3-mediated necroptosis in the context of TNFα signaling in 
particular conditions was also reported (Vanlangenakker et al.  2011a ). Therefore, 
necrosis signaling may be more complex and the role of RIP1 in this context needs 
further study.   

2.3.3     RIP1 in Autophagic Cell Death 

 Autophagy is a cellular process for degradation and recycling of long-lived proteins 
and organelles, which is important for cell survival under nutrient starvation condi-
tions and for housekeeping through removal of exhausted, redundant, and unwanted 
cellular components. However, in certain circumstances autophagy leads to cell 
death (Todde et al.  2009 ; Mizushima and Komatsu  2011 ). LPS induces autophagy 
in macrophages through a pathway regulated by TRIF-dependent and MyD88-
independent TLR4 signaling. RIP1 is downstream of TRIF and MyD88 for induc-
ing autophagy, which contributes to caspase-independent macrophage necrotic cell 
death (Xu et al.  2006b ,  2008 ). In TRAIL-induced cytoprotective autophagy, RIP1 
and TRAF2 mediate JNK activation to blunt apoptosis in cancer cells. Thus, sup-
pression of this RIP1-involved pathway could be utilized for sensitizing cancer cells 
to therapy with TRAIL (He et al.  2012 ). On the other hand, in acute lymphoblastic 
leukemia (ALL), RIP1 is not involved in induction of autophagy but is required for 
autophagy-mediated necroptosis (Bonapace et al.  2010 ). These studies reveal a role 
for RIP1 in autophagic cell death.   

2.4     Convergence and Interplay Between RIP1-Mediated 
Cell Survival and Death Pathways 

 While RIP1 is involved in both cell survival and death signaling, strict and accurate 
regulations must be installed to maintain tissue homeostasis and for response to 
physiological and pathological stimuli. For example, in TNFα-induced signaling to 
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NF-κB, apoptosis, and necroptosis, multiple shared proteins residing in the TNFR1 
complex I and II are involved (Vanlangenakker et al.  2011a ). There are two levels of 
regulation during TNFR1 signaling. The fi rst one is the decision to proceed to sur-
vival or death, mainly through regulation of NF-κB. Two cell death checkpoints 
following TNF stimulation may be involved: an early transcription-independent 
checkpoint where NEMO restrains RIP1 from activating the caspase cascade, fol-
lowed by a later checkpoint dependent on NF-κB-mediated transcription of pro- 
survival genes (Legarda-Addison et al.  2009 ). Rapid activating expression of NF-κB 
target anti-apoptosis factors cIAPs that activate RIP1 through ubiquitination and 
c-FLIP that suppresses caspase-8 is critical for cell survival (Bertrand et al.  2008 ). 
In contrast, shutting off cell survival signaling shifts cells’ fate to death. In this 
regard, cleavage of RIP1 by caspase-8 at early time points plays an important role, 
which blocks NF-κB and enhances apoptosis (Lin et al.  1999 ). Also, deubiquitina-
tion of RIP1 through suppressing cIAPs and activating CYLD shifts RIP1-mediated 
signaling to death. The second-level regulation is for the modes of cell death. The 
suppression of caspase-8 by c-FLIP plays a pivotal role for ensuring RIP1-mediated 
necrosis (Arslan and Scheidereit  2011 ). Cleavage of RIP1 may also help to suppress 
necrosis to ensure apoptosis (Sato et al.  2008 ). In addition, competitive binding of 
RIP1 and TRADD to TNFR1 may also play a role in determining cells’ fate by 
modulating NF-κB, apoptosis, and nonapoptotic death signals (Zheng et al.  2006 ). 

 Analogous to TNFR1 complex II, the main determinant in the Ripoptosome for 
the mode of cell death is likely the activity of caspase-8. In this regard, c-FLIP plays 
an important role (Feoktistova et al.  2011 ). Other mechanisms such as modulation 
of FADD may exist. In response to Taxol, the mitotic kinase Aurora A and the polo- 
like kinase Plk1 cooperatively phosphorylate FADD to enhance recruitment of cas-
pase- 8 for apoptosis, while dissociation of RIP1 from FADD for necrotic cell death 
(Jang et al.  2011 ). Certainly, more defi ned mechanisms for cell death control need 
further studies.  

2.5     Summary and Perspective 

 Current research places RIP1 at an important position in mediating cell signaling to 
cell survival or death. Because cell survival and death control is vital for a variety of 
cellular functions as well as in disease pathophysiology, further research on RIP1 
biology will undoubtedly contribute to elucidation of the mechanisms of pathogen-
esis in important diseases such as cancer. RIP1 is overexpressed in a portion of 
human caners without induction of apoptosis as seen in in vitro RIP1 overexpres-
sion experiments. Understanding the mechanisms by which the RIP1-mediated 
apoptosis pathway is attenuated in cancer cells would help to elucidate the role of 
RIP1 in carcinogenesis and develop new anticancer therapy. Realizing the complex-
ity of RIP1 signaling, one should keep in mind that the role of RIP1 in cell survival 
and death regulation might be cell context- and stimulus-specifi c (Wang et al.  2002 ; 
Janssens and Tschopp  2006 ). For example, in some circumstances, RIP1 is 
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dispensable for TNFR1-mediated NF-κB activation (Wong et al.  2010 ). With 
 tremendous efforts devoted to researches on cell survival and death signaling involv-
ing RIP1, it would be expected that approaches targeting RIP1-mediated pathways 
will be developed and applied clinically in the near future.     
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