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10.1           Introduction 

 Necrotic cell death is characterized by extensive organelle and cell swelling and 
rupture of the plasma membrane. These morphological changes are entirely distinct 
from those of apoptotic cell death, which show organelle and cell shrinking, nuclear 
chromatin condensation, and nuclear and cytoplasmic blebbing to form membrane- 
bound fragments known as apoptotic bodies (Kerr et al.  1972 ; Schweichel and 
Merker  1973 ). Necrosis was once considered to be an accidental and unregulated 
type of cell injury. However, emerging evidence shows that necrosis can be induced 
in a regulated manner like apoptosis. Regulated necrosis has been called 
 “programmed necrosis” or “necroptosis” to distinguish it from necrosis induced by 
physical trauma (Vandenabeele et al.  2010 ). Programmed necrosis can be induced 
by plasma membrane-associated death receptors in the TNF receptor (TNFR) 
superfamily (Laster et al.  1988 ; Vercammen et al.  1998a ,  b ; Holler et al.  2000 ), 
T cell receptor (TCR) (Ch’en et al.  2008 ,  2011 ; Cho et al.  2011 ), and toll-like recep-
tors (TLRs) (He et al.  2011 ; Fortes et al.  2012 ; McComb et al.  2012 ). Necrotic cell 
death is pro-infl ammatory because it releases intracellular contents or the so-called 
danger-associated molecular patterns (DAMPs) (Kono and Rock  2008 ). The 
released DAMPs from necrotic cells such as HMGB1 can activate TLRs on the 
surface of innate immune effector cells to promote infl ammatory cytokine expres-
sion (Lamkanfi  et al.  2010 ; Yang et al.  2010 ). These observations imply that pro-
grammed necrosis is an important cell death module in the immune system. In fact, 
recent studies show that the programmed necrosis is closely associated with 
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 infectious and noninfectious infl ammatory diseases. In this chapter, we discuss the 
emerging roles of programmed necrosis in biology with a specifi c emphasis on its 
role in immunity and infl ammation. For simplicity sake, we will use the term necro-
sis to refer to regulated programmed necrosis hereafter.  

10.2     Molecular Regulation of Necrosis 

 The most extensively characterized pathway leading to necrosis is initiated by liga-
tion of TNF receptor 1 (TNFR-1/TNFRSF1a/CD120a). We will therefore use the 
pathway regulated by TNFR-1 ligation to illustrate the salient principles that govern 
necrosis. When TNF binds to TNFR-1, the membrane-associated TNFR-1 signaling 
complex termed “Complex I” is formed. Complex I comprises multiple protein 
adaptors including TNFR-associated death domain (TRADD), receptor-interacting 
protein kinase 1 (RIPK1), cellular inhibitor of apoptosis 1 (cIAP1), cIAP2, TNFR- 
associated factor 2 (TRAF2), and linear ubiquitin chain assembly complex (LUBAC) 
(Micheau and Tschopp  2003 ) (Fig.  10.1 ). This complex primarily triggers the 
NF-κB signaling pathway. RIPK1 ubiquitination is an essential event that mediates 
NF-κB activation (Walczak  2011 ). Although early reports show that K63 ubiquiti-
nation of RIPK1 at K377 is essential for recruitment of NEMO and activation of the 
IKK complex (Ea et al.  2006 ; Li et al.  2006 ), recent studies indicate that ubiquitina-
tion at sites other than K377 as well as other types of ubiquitin linkages can also 
occur (Dynek et al.  2010 ; Gerlach et al.  2011 ). RIPK1 ubiquitination prevents 
assembly of the cytoplasmic death-inducing signaling complex, also known as 
“Complex II,” through NF-κB-dependent and -independent mechanisms (O’Donnell 
et al.  2007 ). Consistent with an inhibitory role for RIPK1 ubiquitination in cell 
death signaling, ubiquitin hydrolases such as cylindromatosis (CYLD) have been 
shown to facilitate apoptotic and necrotic responses (Hitomi et al.  2008 ; 
Vanlangenakker et al.  2011 ) (Fig.  10.1 ).

   Caspase activity is a critical parameter that controls necrosis. Early studies show 
that the broad caspase inhibitor zVAD-fmk can facilitate RIPK1-dependent necrosis 
in certain cell types (Vercammen et al.  1998a ; Holler et al.  2000 ). However, RIPK1 
does not act alone to drive necrosis. Another serine/threonine kinase, RIPK3, was 
identifi ed in several RNA interference screens to be a critical partner of RIPK1 in 
necrosis (Cho et al.  2009 ; He et al.  2009 ). Caspase 8 inhibits necrosis by cleaving 
and inactivating RIPK1, RIPK3, and CYLD (Lin et al.  1999 ; Chan et al.  2003 ; Feng 
et al.  2007 ; O’Donnell et al.  2011 ). When the activity of caspase 8 is inhibited or in 
caspase 8 −/−  or Fadd −/−  cells, the integrity of RIPK1 and RIPK3 is preserved. This 
allows the two kinases to form a tight and stable complex termed the “necrosome” 
(Cho et al.  2009 ; He et al.  2009 ). Necrosome formation requires the RIP homotypic 
interaction motif (RHIM) that is present in both RIPK1 and RIPK3 (Sun et al. 
 2002 ).  Trans -phosphorylation of RIPK1 and RIPK3 appears to be crucial for necro-
some assembly, as kinase-inactive RIPK1 or RIPK3, and the RIPK1-specifi c inhibi-
tor necrostatin-1 potently inhibits TNF-induced necrosis (Degterev et al.  2008 ). 
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Hence, necrosis is regulated by at least three distinct mechanisms: protein 
 ubiquitination, caspase cleavage, and phosphorylation. 

 The RHIM is an emerging protein–protein interaction domain found in several 
other adaptors including TIR domain-containing adaptor molecule 1 (TICAM1/
TRIF) and DNA-dependent activator of interferon regulatory transcription factors 
(DAI/ZBP1) (Moquin and Chan  2010 ). Thus, the RHIM-containing adaptors all 
have important functions in innate immune and cell death signaling. The RHIM is 
defi ned by a highly conserved tetra-peptide core sequence of mostly hydrophobic 
residues that are predicted to be β-sheet (IQIG for RIPK1 and VQVG for RIPK3). 
Recent biophysical studies show that the RHIMs of RIPK1 and RIPK3 assemble in 
an amyloid-like fi lamentous fi brillar complex (Li et al.  2012 ). Mutagenesis of the 
RHIM core sequences shows that this amyloidal assembly is crucial for activation 
of RIPK1 and RIPK3 kinase activity, necrosome cluster formation, and necrosis 
induction (Fig.  10.1 ). 

 Although amyloid fi brils are toxic to neurons, the RHIM amyloid fi bril appears 
to be an intermediary that does not directly elicit cell damage. Rather, it has a  crucial 
function in recruitment of downstream RIPK3 substrates. One such substrate is the 

  Fig. 10.1    The necrosis signaling pathway is regulated by protein ubiquitination, phosphorylation, 
and proteolytic cleavage. The TNFR-1-associated membrane complex (Complex I) is composed of 
many adaptors. Many of the molecular interactions within this complex require protein ubiquitina-
tion. RIPK1 ubiquitination through K63 linkage (U63), which is crucial for downstream NF-κB 
activation, is  highlighted . Removal of ubiquitin chains from RIPK1 by the de-ubiquitinase cylin-
dromatosis (CYLD) is important for transition of Complex I to the cytosol and assembly of 
Complex II. In the presence of active caspase 8, RIPK1, RIPK3, and CYLD are cleaved and inac-
tivated (only RIPK1 cleavage is shown for simplicity sake). Cleavage of RIPK1 removes the kinase 
domain, thereby preventing phosphorylation of downstream substrates (e.g., RIPK3) that are 
important for necrosis induction. When the integrity of RIPK1 and RIPK3 is preserved, they  trans - 
phosphorylate  each other. The resulting negative charge may be critical in “opening up” the RHIM 
domain to facilitate amyloid fi bril assembly and recruitment of downstream RIPK3 substrates       
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mixed lineage kinase domain-like (MLKL), which was identifi ed by biochemical 
purifi cation and by shRNA screen (Sun et al.  2012 ; Zhao et al.  2012 ). Phosphorylation 
of MLKL by RIPK3 is critical for necrosis induction. The signifi cance of MLKL in 
necrosis is further bolstered by identifi cation of a small-molecule inhibitor called 
“necrosulfonamide” (NSA). NSA inhibits TNF-induced necrosis by covalently 
modifying human MLKL. Surprisingly, NSA or siRNA knockdown of MLKL did 
not interfere with RIPK1–RIPK3 necrosome formation. Hence, MLKL is a key 
regulator of necrosis downstream of RIPK3 (Sun et al.  2012 ). 

 Another RIPK3 substrate is the mitochondrial protein phosphoglycerate mutase 
family member 5 (PGAM5). Both isoforms of PGAM5, PGAM5 S  and PGAM5 L , 
were reported to be downstream effectors involved in necrosis induction (Wang 
et al.  2012 ). NSA prevented the recruitment of PGAM5 S , but not MLKL, to the 
necrosome. MLKL therefore appears to function as a key adaptor that links the 
RIPK1–RIPK3 necrosome to downstream effectors. Interestingly, PGAM5 is a 
phosphatase (Takeda et al.  2009 ) that can dephosphorylate and activate the mito-
chondria fi ssion factor Drp-1 (Wang et al.  2012 ). This raises the interesting possibil-
ity that the necrosome can engage the mitochondria fi ssion machinery to execute 
necrosis. In addition to TNF-induced necrosis, PGAM5 also appears to have broader 
roles in mediating death receptor-independent necrosis, such as that induced by 
reactive oxygen species (ROS) or calcium ionophore (Wang et al.  2012 ). Whether 
MLKL and PGAM5 are physiologically relevant RIPK3 substrates in vivo will 
require examination in the relevant mutant animals.  

10.3     Role of Necrosis in Innate Infl ammatory Responses 

10.3.1     Viral Infections 

 Necrotic cells are characterized by organelle and cell swelling that eventually cumu-
late in plasma membrane leakage. The release of endogenous adjuvants from 
necrotic cells is known to be immuno-stimulatory. As we have alluded to in the 
previous section, many protein adaptors of innate immune signaling pathways con-
tain RHIM domains. This molecular signature suggests that the RIP kinases may 
have broad roles in innate immunity and infl ammation. Further evidence that sup-
ports this notion comes from the fact that interferons, which are critical cytokines 
against viral pathogens, can greatly sensitize cellular necrosis (Kalai et al.  2002 ). 

 The fi rst example that highlights this emerging paradigm comes from a study of 
host defense against vaccinia virus infection. Vaccinia virus, like other poxviruses, 
encodes many immune evasion genes (Moss and Shisler  2001 ), including those that 
inhibit infl ammatory cytokines and TLRs (Reading et al.  2002 ; Harte et al.  2003 ; 
Stack et al.  2005 ). Despite the inhibition of infl ammatory signaling, vaccinia virus 
elicits a strong infl ammatory response in infected mice. 
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 One of the immune evasion genes encoded by vaccinia virus is B13R or Spi2, 
which is a serpin that inhibits caspase 1 and caspase 8 and is functionally similar to 
the cytokine response modifi er A (CrmA) from cowpox virus (Zhou et al.  1997 ). 
Despite inhibition of caspase 8 by B13R/Spi2, vaccinia virus-infected cells are still 
sensitive to the cytotoxic effect of TNF (Li and Beg  2000 ). TNF-induced cell death 
of vaccinia virus-infected cells exhibits morphology that resembles necrosis and is 
dependent on intact RIPK1 and RIPK3 functions (Chan et al.  2003 ; Cho et al.  2009 ) 
(Fig.  10.2 ). Consistent with results from in vitro infections, RIPK3 −/−  mice exhibit 
reduced necrosis and infl ammation and greatly increased viral replication in multi-
ple tissues. Eventually, RIPK3 −/−  mice succumb to the infection 4–5 days post- 
infection (Cho et al.  2009 ). In wild-type mice, elevated TNF expression was detected 
by 24 h post-infection, which coincided with the appearance of RIPK1–RIPK3 
complex in the liver (Cho et al.  2009 ). Because these events occur prior to induction 
of adaptive T cell responses, which usually peaks at days 7–8 post-infection, we 
conclude that RIPK3 is critically important for innate immune protection against 
vaccinia virus. This early control of viral replication is likely to be crucial for host 
control of the viral factory before virus-specifi c T and B cells are mobilized in high 
enough number to fully eradicate the virus.

   For vaccinia virus, host cell necrosis is an effective innate immune antiviral 
defense. Could viruses have developed strategies to inhibit necrosis as a means to 
escape elimination from the host? Murine cytomegalovirus (MCMV) encodes three 
different types of viral cell death inhibitors, vICA (inhibitor of caspase 8-induced 
apoptosis), vMIA (mitochondria inhibitor of apoptosis), and vIRA (inhibitor of RIP 
activation) (reviewed in Mocarski et al.  2012 ). Productive infection and replication 
of viral progenies require the action of all three inhibitors. Although no enzymatic 
activity can be detected (Lembo et al.  2004 ), vIRA or M45 exhibits homology to 
ribonucleotide reductase (Brune et al.  2001 ). Interestingly, M45 contains a RHIM at 
the amino terminus that is crucial for binding to RHIM-containing cellular adaptors 

  Fig. 10.2    RIP kinase-dependent necrosis is an important innate immune defense mechanism 
against vaccinia virus. Vaccinia virus is a large DNA virus that has been shown to activate multiple 
TLRs. Engagement of TLRs results in expression of infl ammatory cytokines including TNF. TNF 
can elicit the cell death program upon binding to the receptor on the cell surface of an infected cell. 
Because of the virus-encoded caspase inhibitor B13/Spi2, caspase 8 is inhibited and apoptosis is 
suppressed. This allows assembly of the RIPK1–RIPK3 necrosome. The induction of necrosis may 
be advantageous in two ways. First, it serves to limit the viral factory before adaptive immunity is 
launched. Secondly, the release of DAMPs from the necrotic cells may further promote the antivi-
ral infl ammatory reaction       
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including RIPK1, RIPK3, and DAI (Kaiser et al.  2008 ; Upton et al.  2008 ,  2012 ; 
Rebsamen et al.  2009 ). Recombinant virus that encodes a defective vIRA with tetra- 
alanine substitutions within the core RHIM sequence fails to establish productive 
infection in cells and in mice due to premature cell death by necrosis. Signifi cantly, 
productive infection is restored when the RHIM mutant MCMV infects RIPK3 −/−  
mice (Upton et al.  2010 ). Surprisingly, the necrotic cell death induced upon mutant 
MCMV infection is not driven by TNF or RIPK1. Instead, RIPK3 pairs with another 
RHIM-containing adaptor DAI to induce necrosis (Upton et al.  2012 ). Hence, simi-
lar to poxviruses, MCMV infection sensitizes cells to necrosis. However, unlike 
vaccinia virus, MCMV has developed an effective strategy to inhibit host cell necro-
sis to ensure productive viral replication within the infected host. It will be of great 
interest to determine if similar viral inhibition of necrosis also occurs in human 
CMV infection. The MCMV studies also reveal that other than RIPK1, other RHIM- 
containing adaptors can partner with RIPK3 to induce necrosis (Fig.  10.3 ). It is 
noteworthy that similar RHIM-mediated interactions between RIPK1–TRIF and 
RIPK1–DAI/ZBP1 have been shown to mediate NF-κB activation (Meylan et al. 
 2004 ; Kaiser and Offermann  2005 ; Rebsamen et al.  2009 ) (Fig.  10.3 ). It will be 
important to determine how the different types of RHIM complexes can mediate 
cell survival and cell death signaling under different conditions.

  Fig. 10.3    Different RHIM domain-containing adaptors can partner with RIPK3 to induce necrosis. 
The three known RHIM-mediated interactions that lead to necrosis are shown on the  left . In the 
case of TRIF–RIPK3, genetic and pharmacological evidence suggests that RIPK1 is also involved. 
However, biochemical evidence for RIPK1–RIPK3–TRIF complex is lacking at present. Hence, 
RIPK1 is not included in the necrotic TRIF–RIPK3 complex. On the  right , the different types of 
RHIM-mediated interactions that regulate NF-κB activation are shown. Note that RIPK3 has been 
shown to have positive and negative effects on NF-κB activation by different complexes (Kaiser 
et al.  2008 ; Rebsamen et al.  2009 )       
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10.3.2        Viral Necrosis Inhibitors 

 The vIRA/M45 story reveals that active suppression of host cell necrosis can be an 
important immune evasion mechanism for viruses. In fact, vIRA/M45 is not the fi rst 
viral necrosis inhibitor identifi ed. Viral FLICE-like inhibitor proteins (FLIPs) are 
orthologs of cellular caspase 8 and caspase 10. They contain tandem death effector 
domains but lack the enzymatic domains. Hence, they were fi rst recognized as cas-
pase and apoptosis inhibitors (Bertin et al.  1997 ; Hu et al.  1997 ; Thome et al.  1997 ). 
In 2003, a subset of vFLIPs, namely, MC159 from molluscum contagiosum virus 
and E8 from equine herpesvirus, were found to also inhibit TNF-induced necrosis 
(Chan et al.  2003 ). In contrast to M45, which inhibits necrosis through RHIM- 
mediated interaction with RIPK3 (Upton et al.  2010 ), the molecular basis by which 
vFLIPs inhibit necrosis is not fully understood. Because vFLIPs and vIRA/M45 are 
structurally unrelated, these results indicate that viral inhibitors of necrosis can 
come in different fl avors. It will be interesting to see if additional classes of viral 
necrosis inhibitors will be identifi ed in the future.  

10.3.3     Bacterial Infections 

 Macrophages are sentinels against bacterial infections. Recent studies indicate that 
in the presence of caspase inhibition, the TLR4 agonist bacterial lipopolysaccha-
rides (LPS) can induce RIPK3-dependent necrosis in macrophages (He et al.  2011 ). 
In addition, Smac mimetics, which target cIAP1, cIAP2, and XIAP for proteasomal 
degradation (Varfolomeev et al.  2007 ; Vince et al.  2007 ; Bertrand et al.  2008 ), can 
induce RIPK1- and RIPK3-dependent macrophage necrosis (McComb et al.  2012 ). 
Besides RIPK1 and RIPK3, another RHIM-containing adaptor TRIF also plays a 
crucial role in macrophage necrosis (He et al.  2011 ). TRIF is a TIR domain- 
containing adaptor that mediates type I interferon expression in response to TLR3 
and TLR4 signaling (Yamamoto et al.  2002 ; Oshiumi et al.  2003 ). Like RIPK1 and 
RIPK3, TRIF can induce apoptosis under certain conditions (Kaiser and Offermann 
 2005 ; Weber et al.  2010 ). Treatment with LPS and zVAD-fmk, which mimics bacte-
rial septic shock, causes an infl ammatory cytokine storm and extensive macrophage 
necrosis. These effects were greatly ameliorated in RIP3 −/−  and TRIF lps2/lps2  mutant 
mice (He et al.  2011 ). Moderately reduced infl ammatory cytokine production in 
response to LPS was also observed in RIP3 −/−  mice treated with LPS alone (Newton 
et al.  2004 ), suggesting that necrosis-induced infl ammation can occur in vivo with-
out pharmacologic inhibition of caspases. 

 TNF is a major infl ammatory cytokine that mediates the systemic effects of LPS- 
induced septic shock. Consistent with a role for TNF in bacterial sepsis, RIPK3 −/−  
mice are protected from TNF-induced systemic infl ammatory response syndrome 
(SIRS) (Duprez et al.  2011 ; Linkermann et al.  2012a ) and cecal ligation puncture- 
induced sepsis (Duprez et al.  2011 ). However, results obtained using the RIPK1 
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inhibitor necrostatin-1 (Nec-1) were less defi nitive than those obtained with 
RIPK3 −/−  mice. While one report shows protection by Nec-1, another report indi-
cates that Nec-1 exacerbates TNF-induced SIRS (Duprez et al.  2011 ; Linkermann 
et al.  2012a ). These opposing observations may be due to off-target effects of Nec-1 
(Cho et al.  2011 ). Unfortunately, genetic model to assess RIPK1 function in these 
infl ammatory diseases is currently not available because RIPK1 −/−  mice exhibit neo-
natal lethality (Kelliher et al.  1998 ). Conditional RIPK1 −/−  mice will be invaluable 
tools to dissect the in vivo role of RIPK1 in infl ammatory diseases.  

10.3.4     Necrosis in Sterile Infl ammation 

 Besides its role in pathogen-induced infl ammation, necrosis can also promote ster-
ile infl ammation. For example, retinal detachment-induced photoreceptor necrosis 
is blocked in RIPK3 −/−  cells (Trichonas et al.  2010 ). Because caspase inhibition 
greatly sensitizes cells to necrosis, it is no surprise that a large number of studies on 
necrosis-induced sterile infl ammation have been performed using caspase 8 −/−  or 
mice defi cient in FADD, an upstream adaptor that is essential for caspase 8 recruit-
ment and activation. Similar to caspase inhibition in tissue culture, caspase 8 −/−  or 
FADD −/−  mice are highly sensitive to necrosis induction. Most remarkably, germline 
inactivation of these genes results in extensive necrosis during embryogenesis, 
which results in lethality on E9.5. Embryonic lethality of caspase 8 −/−  or FADD −/−  
mice is rescued by deletion of RIPK1 or RIPK3 (Kaiser et al.  2011 ; Oberst et al. 
 2011 ; Zhang et al.  2011 ; Dillon et al.  2012 ). Keratinocyte- or intestinal epithelium- 
specifi c deletion of FADD or caspase 8 causes severe spontaneous infl ammation in 
the respective tissues that can be corrected by deletion of RIPK3 (Kovalenko et al. 
 2009 ; Bonnet et al.  2011 ; Gunther et al.  2011 ; Welz et al.  2011 ). While the more 
popular view is that the infl ammatory disease is caused by increased necrosis, the 
possibility that FADD, caspase 8, RIPK1, and RIPK3 can directly regulate innate 
infl ammatory signaling cannot be overlooked (see below) (Rajput et al.  2011a ; 
Wallach et al.  2011 ). 

 In addition to caspase 8 −/−  or FADD −/−  mice, necrosis-induced sterile injury and 
infl ammation have also been detected in wild-type animals with normal FADD and 
caspase 8 functions. For instance, repeated doses of cerulein can cause RIPK3- 
dependent acinar cell necrosis and acute pancreatitis in wild-type mice (He et al. 
 2009 ; Zhang et al.  2009 ). Administration of the RIPK1 inhibitor Nec-1 signifi cantly 
ameliorates tissue damage in animal models of myocardial infarction, ischemia- 
induced brain injury, and renal ischemia/reperfusion injury (Degterev et al.  2005 ; 
Lim et al.  2007 ; Smith et al.  2007 ; Northington et al.  2011 ; Linkermann et al.  2012b ), 
indicating that RIPK1-dependent necrosis is activated under these conditions in wild-
type animals. Although TNF and other infl ammatory cytokines are often elevated in 
ischemia/reperfusion-induced injury (Watters and O’Connor  2011 ; Lambertsen et al. 
 2012 ), it is not clear if they are the direct triggers for necrosis in these diseases. If 
necrosis is induced without death receptor engagement in these situations, it will be 
analogous to “intrinsic” apoptosis induced in response to genotoxic stress.   
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10.4     Direct Roles for RIPK1 and RIPK3 
in Infl ammation Signaling 

 As we have discussed in previous sections, promoting infl ammation via NF-κB was 
the fi rst function ascribed to RIPK1. In addition to TNFR, RIPK1 also mediates 
NF-κB activation by certain innate immune receptors such as TLR3 (Meylan et al. 
 2004 ), TLR4 (Cusson-Hermance et al.  2005 ; Ermolaeva et al.  2008 ) and RIG-I 
(Michallet et al.  2008 ; Rajput et al.  2011b ). In contrast to RIPK1, RIPK3 −/−  cells 
exhibit normal NF-κB induction in response to TNFR-1 and several TLR agonists 
(Newton et al.  2004 ). However, early reports show that over-expression of RIPK3 
can often inhibit or promote NF-κB activation (Sun et al.  1999 ; Kasof et al.  2000 ; 
Meylan et al.  2004 ; Kaiser and Offermann  2005 ). Hence, it remains possible that 
RIPK3 can modulate NF-κB responses in specifi c scenarios. 

 Recent evidence suggests that RIPK3 has a surprising function in driving matu-
ration of the pro-infl ammatory cytokine IL-1β (Vince et al.  2012 ). Production of 
IL-1β requires two signals. The fi rst signal, which can be provided by activation of 
innate immune receptors such as TNFR-1 or TLR4, activates de novo synthesis of 
pro-IL-1β in an NF-κB-dependent manner. Release of mature IL-1β requires a sec-
ond signal that involves activation of the infl ammasome and caspase-mediated pro-
cessing of pro-IL-1β (reviewed in Rathinam et al.  2012a ). In most cases, caspase 1 
is the enzyme responsible for processing of pro-IL-1β and related cytokines such as 
pro-IL-18. However, noncanonical activation of the infl ammasome can result in 
activation of caspase 8 or caspase 11 (Kayagaki et al.  2011 ; Gringhuis et al.  2012 ; 
Pierini et al.  2012 ; Rathinam et al.  2012b ). Vince and colleagues show that in LPS- 
primed macrophages, Smac mimetics induces IL-1β processing and maturation 
through canonical NLRP3–caspase 1 and noncanonical NLRP3–caspase 8 infl am-
masome activation. Surprisingly, RIPK3 and ROS production are also required for 
Smac mimetic-induced IL-1β maturation. Consistent with the effects of Smac 
mimetics, LPS-primed cIAP1 −/− cIAP2 −/− XIAP −/−  macrophages exhibit spontaneous 
IL-1β processing (Vince et al.  2012 ). These results suggest the tantalizing possibil-
ity that RIPK3 can promote infl ammation through multiple means. On one hand, 
release of DAMPs from necrotic cells can activate TLRs to promote infl ammatory 
gene expression. On the other hand, RIPK3 can directly engage the infl ammasome 
to promote the expression of IL-1-like infl ammatory cytokines.  

10.5     Necrosis in Adaptive Immunity 

10.5.1     T Cell Tolerance 

 The maintenance of immune homeostasis is critically dependent on proper cell 
death regulation. T cells recognize antigenic peptides bound to self major histocom-
patibility complex (MHC) through their TCRs. Because antigen receptors on T and 
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B cells are generated by random gene rearrangement, T cells that express TCRs of 
different affi nities to MHC are generated. Lymphocytes that express TCR with little 
affi nity for MHC are eliminated through “death by neglect” in a process termed 
“positive selection.” T cells that survive positive selection are further subjected to 
“negative selection,” a process that eliminates potentially autoreactive T cells with 
TCR that bind too strongly to self peptide–MHC complexes. The cumulative effect 
of positive and negative selection is a TCR repertoire that is largely devoid of auto-
reactive cells (reviewed in Stritesky et al.  2012 ). Death receptors in the TNFR 
superfamily do not appear to play signifi cant roles in the thymic selection processes, 
since animals defi cient in these receptors undergo normal thymic selection. 

 Once T cells leave the thymus to populate the peripheral organs, additional 
mechanisms, collectively termed “peripheral tolerance,” are required to prevent 
activation of any autoreactive T cells that managed to escape thymic negative selec-
tion. In contrast to thymic selection, the death receptors Fas/CD95/APO-1 and, to a 
lesser extent, TNFR-1 and TNFR-2 play key roles in peripheral tolerance (Zheng 
et al.  1995 ; Lenardo et al.  1999 ). Naïve T cells undergo clonal expansion upon TCR 
engagement. However, repeated TCR stimulation can result in death of the activated 
T cells (Zheng et al.  1998 ). This phenomenon is often referred to as “activation- 
induced cell death” (AICD) or more appropriately as “restimulation-induced cell 
death” (RICD) (Snow et al.  2009 ). Both TCR restimulation and T cell trophic factor 
IL-2 can greatly enhance Fas and Fas ligand (FasL) expression in activated T cells 
(Zheng et al.  1998 ). As a result, activated T cells are eliminated through FasL–Fas 
interaction in a paracrine fashion. As such, defi ciency in the receptor or the ligand 
leads to defective RICD and lymphoproliferative diseases. The well-known mouse 
models for autoimmunity  lpr  and  gld  are caused by mutations in Fas and FasL, 
respectively (Watanabe-Fukunaga et al.  1992 ; Lynch et al.  1994 ). In human, similar 
mutations lead to similar systemic autoimmune disease termed the autoimmune 
lymphoproliferation syndromes (ALPS) (Puck and Sneller  1997 ). 

 Because Fas–FasL-induced lymphocyte cell death exhibits classical features of 
apoptosis (e.g., chromatin condensation, caspase activation), it is widely believed 
that apoptosis is the cell death module that controls peripheral tolerance. However, 
this notion was challenged when mice with T cell-specifi c deletion of FADD or 
caspase 8 were found to be immunodefi cient rather than developing  lpr -like autoim-
mune disease (Zhang et al.  1998 ,  2005 ; Ch’en et al.  2008 ). Similarly, human patients 
with caspase 8 mutations also exhibit immunodefi ciency rather than ALPS-like sys-
temic autoimmunity (Chun et al.  2002 ). Although these defects were originally 
attributed to defective TCR-induced NF-κB activation (Su et al.  2005 ), subsequent 
experiments show that TCR-induced NF-κB activation was normal in caspase 8 −/−  T 
cells (Ch’en et al.  2008 ). Further examination revealed that FADD −/−  or caspase 8 −/−  
T cells undergo extensive necrosis-like cell death upon stimulation through the TCR 
(Walsh et al.  1998 ; Kennedy et al.  1999 ; Hueber et al.  2000 ). Consistent with the 
notion that necrosis underlies the proliferative defect, treatment with Nec-1 restored 
normal T cell proliferation (Osborn et al.  2010 ). Moreover, FADD −/− RIPK1 −/−  and 
caspase 8 −/− RIPK3 −/−  T cells show normal TCR-induced proliferation in vitro, virus- 
induced clonal expansion in vivo, and cytokine expression (Kaiser et al.  2011 ; 
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Zhang et al.  2011 ). Results obtained from RIPK3 −/−  mice expressing a dominant 
negative FADD also show similar phenotypes (Lu et al.  2011 ). Most remarkably, 
mice defi cient in FADD/caspase 8 and RIPK3 developed lpr-like autoimmune dis-
ease that is more aggressive than lpr itself (Ch’en et al.  2011 ; Kaiser et al.  2011 ; 
Oberst et al.  2011 ), possibly because both Fas- and TNFR-1-induced cell deaths are 
inhibited. These results revealed an unexpected pro-survival function for FADD and 
caspase 8 during T cell clonal expansion. They also highlight the fact that caspase- 
dependent apoptosis and RIP kinase-dependent necrosis are both required to enforce 
T cell tolerance and homeostasis.  

10.5.2     B Cell Responses 

 In contrast to T cells, B cell proliferation through the antigen receptor or CD40 is 
unaffected in FADD −/−  and caspase 8 −/−  B cells (Beisner et al.  2005 ; Imtiyaz et al. 
 2006 ). By contrast, TLR3- and TLR4-induced B cell proliferation, but not B cell 
proliferation induced by the TLR9 agonist CpG DNA, is impaired in FADD −/−  and 
caspase 8 −/−  B cells (Beisner et al.  2005 ; Imtiyaz et al.  2006 ). Unlike TCR-induced 
proliferation, defective FADD −/−  B cell proliferation was not restored in 
FADD −/− RIPK1 −/−  B cells (Zhang et al.  2011 ). Because TLR3 and TLR4 share the 
unique signaling adaptor TRIF and that TRIF has been shown to interact with 
RIPK1 to mediate NF-κB activation (Meylan et al.  2004 ; Vivarelli et al.  2004 ), the 
defective TLR3/4-induced proliferation in FADD −/− RIPK1 −/−  B cells can be attrib-
uted to defective NF-κB signaling. Taken together, these results illustrate that 
RIPK1 and RIPK3 have differential roles in regulating antigen receptor-induced 
proliferation in T and B cells.   

10.6     Concluding Remarks 

 Genetic experiments have clearly demonstrated that the RIP kinase-driven necrosis 
is a biologically relevant cell death module. However, key questions remained to be 
answered. For example, why are RIPK1 and RIPK3 expression highly induced dur-
ing T cell activation (Cho et al.  2009 ,  2011 )? It seems counterintuitive that death- 
promoting molecules are upregulated at a time when lymphocyte expansion is a 
priority. Similarly, expression of RIPK3 was highly induced during embryogenesis 
(Zhang et al.  2011 ). The potential infl ammation and damage that necrosis can lead 
to, such as that seen in FADD −/−  and caspase 8 −/−  animals, is unlikely to be a desired 
outcome during embryogenesis. In light of these observations, one can envision that 
RIPK1 and RIPK3 have important biological functions other than necrosis. 
Discovering and deciphering the non-necrotic or normal physiological functions of 
the RIP kinases will be of critical relevance as the scientifi c community ponders the 
therapeutic potential of manipulating necrosis in the clinics.     
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