
Chapter 4
Silicon Nanowire Field-Effect Transistor

Dae Mann Kim, Bomsoo Kim and Rock-Hyun Baek

Abstract The field effect transistor was conceived in 1930s and was demonstrated
in 1960s. Since then, MOSFET emerged as the mainstream driver for the digital
information technology. Because of the simplicity of structure and low cost of
fabrication, it lends to a large scale integration for the multifunctional system-on-
chip (SOC) applications. Moreover, the device has been relentlessly downsized for
higher performance and integration. The physical barriers involved in downscaling
the device have prompted the development of process technologies. There has also
been the development of device structures from 3D bulk to the gate-all-around
nanowire. This chapter is addressed to the discussion of the silicon nanowire field
effect transistor (SNWFET). The discussion is carried out in comparison and
correlation with the well known theory of MOSFET. The similarities and differ-
ences between the two FETs are highlighted, thereby bringing out features unique
to SNWFET. Also, an emphasis is placed upon the underlying device physics
rather than the device modeling per se. The goal of this chapter is to provide a
background by which to comprehend the theories being developed rapidly for
SNWFETs.

Abbreviation

SOC System-on-chip
SNWFET Silicon nanowire field-effect transistor
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4.1 MOSFET

Overview: In this section the theory of MOSFET is compactly summarized to be
used as the reference for discussing silicon nanowire field-effect transistor
(SNWFET). MOSFET is a three-terminal, unipolar and normally off device and
has been successfully scaled down to about 10 nm channel length. Also, the device
has provided convenient platforms for a number of applications e.g., memory cells,
sensors and solar cells, etc. Of the two types of MOSFETs, NMOS is singled out
for discussion. The results obtained can readily be applied to PMOS by replacing
the roles of electrons with those of holes.

NMOS I–V Behavior: Fig. 4.1 shows the cross section, consisting of the n+

source and drain and the n+ polysilicon gate, which is electrically insulated by
SiO2. The source and drain are separated by the p-type substrate, so that n+-p and
p-n+ junctions are formed back to back. With the gate voltage off VGS ¼ 0ð Þ and
the drain voltage on VDS [ 0ð Þ, the p-n+ junction at the drain end gets reverse
biased, cutting off the current (off state), as detailed in Chap. 3.

However, with VGS on at a value greater than the threshold voltage, i.e.,
VGS [ VTn, the channel is inverted. In which case, the n+-p junction barrier at the
source end is lowered and electrons are injected from the source into the channel
and contribute to the drain current, ID. Figure 4.2 shows the transistor I–V curves
and transfer characteristics. Each ID � VD curve divides into the triode and

Fig. 4.1 The cross-sectional view of NMOS, consisting of the p-substrate, n+ source, drain and
gate electrodes

Fig. 4.2 The transistor I–V curves (left) and transfer characteristics (right) of the n-channel
MOSFET

64 D. M. Kim et al.

http://dx.doi.org/10.1007/978-1-4614-8124-9_3


saturation regions. The ON-to-OFF current ratio, typically 106 or greater, is a
parameter gauging the device as a switch.

The standard long channel I–V behavior is described by the SPICE model, level 1:

IDS ¼
W

L
COXlnðVGS � VTn �

1
2

VDSÞVDS; 0 � VDS � VDSAT � VGS � VT

ð4:1Þ

Here, ln is the electron mobility, VTn the threshold voltage, VGS the gate-to-source
voltage and the ratio between width and length of the channel, W/L is called the
aspect ratio. The oxide capacitance per unit area is given in terms of the oxide
permittivity, eOX, and thickness, tOX, as COX ¼ eOX=tOX. The triode and saturation
regions of IDS are demarcated by VDSATð¼ VGS � VTnÞ, at which the channel is
pinched off.

Equivalently IDS can be compacted into a simpler form as

IDS ¼ QnLvD; QnL � WCOXðVGS � VTn � VDS=2Þ; vD ¼ lnðVD=LÞ ð4:2Þ

Here, vD ¼ lnðVD=LÞ is the drift velocity of the electron, and QnL is the average
line charge induced under the gate. In this representation, IDS is shown to be
contributed by QnL sweeping across the channel with vD. In device saturation,
where VDSAT ¼ VGS � VTn (4.2) is reduced to

IDSAT ¼ QnSATvD; QnSAT � WCOXðVGS � VTnÞ=2 ð4:3Þ

with QnSAT denoting the average line charge in saturation.

4.1.1 Channel Inversion in NMOS

Consider the NMOS system as shown in Fig. 4.3 together with respective work
functions. The work function of the semiconductor is the sum of the affinity factor,
qv and EC � EF with qv denoting the energy required to excite an electron from
EC to the vacuum level. When the three components are brought together in
equilibrium contact, the Fermi level should line up and be flat, which necessitates
the band bending, as discussed in Chap. 3.

Equilibrium Band Bending: The band bending occurs via the exchange of
electrons between the n+ gate and the p substrate. Specifically, the Fermi level, EF,
of the n+ gate electrode is higher than that of the substrate; hence, electrons spill
over from the gate to substrate. This leaves behind the positive charge sheet at the
surface of the gate electrode, which in turn pushes holes in the p substrate away
from the interface, thereby exposing acceptor ions uncompensated. Consequently,
a dipolar space charge is formed, and the band bends downward as shown in
Fig. 4.4. The total band bending is given by the work function difference between
the gate electrode and the p substrate, and the bending occurs in both substrate and
oxide.
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Flat Band Voltage: The band bending is flattened out with the application of the
flat band gate voltage, given by the difference between the work functions of the
gate electrode and the p substrate:

qVFBn � qvþ EC � EFn � ðqvþ EC � EFpÞ
¼EFp � EFn

ð4:4Þ

Since EFp \ EFn in this case VFBn \ 0 and with VFBn applied, the positive charge
sheet in the gate electrode is annulled, and the space charge disappears together
with the band bending.

Surface Charge: By using VFBn, one can introduce the charging voltage, V 0G,
which is dropped in both the oxide and the substrate,

V 0G � VG � VFBn ¼ VOX þ uS ð4:5Þ

Fig. 4.3 NMOS system: n+ poly-Si, SiO2 and silicon p-substrate. Also shown are the affinity
factor, qv and Fermi levels

Fig. 4.4 NMOS system in equilibrium contact: The band bending (left) and space charge, field
and potential underlying the bending (middle) are shown. Also sketched is the flat band voltage at
which the band flattens out
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Here, uS is the surface potential, i.e., uðx ¼ 0Þ. With V 0G([0) on, the band bends
down, as indicated in Fig. 4.5. The resulting potential, u, is found by solving the
Poisson equation:

d2uðxÞ
dx2

¼ � qðxÞ
eS

; qðxÞ ¼ q½ðppðxÞ � N�A � npðxÞ� ð4:6aÞ

where the space charge, q, in the substrate is made up of the hole, acceptor ion and
electron charges. In the p bulk the charge neutrality holds true, i.e.,
pp0 ¼ N�A þ np0, but near the surface n, p become x-dependent and is given by

ppðxÞ ¼ pp0e�buðxÞ; npðxÞ ¼ np0ebuðxÞ; b � q=kBT ð4:6bÞ

(see Fig. 4.5). Hence, upon inserting (4.6b) into (4.6a) together with N�A ¼
pp0 � npo there results,

d2uðxÞ
dx2

¼ � qðxÞ
eS

; qðxÞ ¼ q pp0ðe�bu � 1Þ � np0ðebu � 1Þ
� �

ð4:7Þ

Note here that without the band bending, that is, for u = 0 q(x) = 0, as it should.
Also, Eq. (4.7) is strongly nonlinear and is difficult to solve. However, one can
perform the first integration by recasting (4.7) by multiplying both sides by du as

Z�E

0

EdE ¼ � 1
eS

Zu

0

qðuÞdu; E � � du
dx

ð4:8Þ

Fig. 4.5 The band bending, qu(x), in the n-channel MOSFET; quS and quFP denote the surface
and Fermi potentials, respectively
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(problem 4.1). Here the integrations start from edge of the bulk substrate. Hence,
upon inserting the expression for q in (4.7) into (4.8) and carrying out the inte-
gration, one finds

EðxÞ � � du
dx
¼

ffiffiffi
2
p kBT

q

1
LD

Fðbu; npo=pp0Þ; LD �
kBTeS

q2ppo

� �1=2

ð4:9aÞ

where LD thus defined is the Debye length and the F function is given by

FðbuÞ � ðe�bu þ bu� 1Þ þ e�2buFpðebu � bu� 1Þ
� �1=2

; e�2buFp ¼ np0=pp0

ð4:9bÞ

with uFp denoting the hole Fermi potential in the p substrate.
The surface field, ES at x = 0, can therefore be specified in terms of the surface

potential, uS. Once ES is found, the surface charge, QS is obtained from the well
known boundary condition at the oxide interface, i.e.,

QS � �eSESðusÞ ¼ �eS

ffiffiffi
2
p kBT

q

1
LD

FðbusÞ ð4:10Þ

Weak and Strong Inversion: Figure 4.6 shows QS as a function of uS and the
space charge associated. For VG ¼ VFB, there is no band bending, that is, uS ¼ 0,
hence QS ¼ 0. For uS \ 0, the band bends up and the first term in (4.9b) becomes
dominant, and holes as the majority carrier are accumulated at the surface. In the
depletion region, in which 0 \ uS \ uFp, the band bends down, supported mainly
by the acceptor ions and QS consists of the uncompensated ions. In the weak
inversion region, uFp \ uS \ 2uFp, electrons begin to populate the interface
region. For uS � 2uFp ns � pp0, and from this point on, the increase of QS with
increasing uS is primarily due to the electron charge induced, and the channel is
thus inverted. In this regime, the electrons are concentrated practically at the
surface and do not contribute significantly to the band bending, pinning uS

approximately at a constant level. Therefore, the condition

uS ¼ 2uFp

represents the onset of the strong inversion.
MOS capacitor: Naturally, the channel is inverted by the gate voltage, VG, and

is due essentially to the capacitive coupling. To analyze the channel inversion in
terms of the capacitive charging, consider the charging voltage divided in the gate
oxide and the p substrate:

V 0G � VG � VFB ¼ VOX þ uS; VOX �
QSj j

COX

ð4:11Þ

Since QS is a function of uS (see 4.10) uS is specified in terms of VG or vice versa.
The capacitor, C, connecting the gate electrode and the p substrate consists of the
oxide (COX) and surface (CS) capacitors connected in series, as shown in Fig. 4.7:
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Fig. 4.6 The surface charge, QS, is shown versus the surface potential, uS, in NMOS with doping
level and band gap as parameters. Also shown are the total surface charge, consisting of
uncompensated acceptor ions and electrons induced under the gate electrode in accumulation,
depletion and inversion regimes

Fig. 4.7 The total capacitor of NMOS, consisting of oxide (COX) and the surface (CS) capacitors
connected in series (left). Also shown is the total capacitance in accumulation, depletion and
inversion regions (right)
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1
C
¼ 1

COX

þ 1
CS
; CS �

o QSj j
ouS

ð4:12Þ

Here, CS accounts for the change in the surface charge, QS with uS. Since QS is a
function of uS and since uS in turn depends on VG (see 4.11), CS is a variable
capacitance, as shown in Fig. 4.7. In accumulation and inversion regions,
CS � COX, (see 4.9, 4.10), so that C � COX. In depletion and weak inversion
regions, on the other hand, CS 	 COX and C is mainly determined by CS. Also
indicated in the figure is the location of the threshold voltage, VT. Ideally, only the
mobile electron charge should be induced by VG, but the channel inversion
requires the surface band bending, which is supported by the ionic charge. Hence,
the ionic charge is inseparably coupled to the channel inversion.

4.1.2 I–V Modeling

ON Current: The lumped view of the drain current was discussed in Sect. 4.1 and
is now analyzed, based on the channel inversion. The total surface charge consists
of the electron (Qn) and fixed ionic (QDEP) charges, i.e.,

QS � �COXVOX ¼ Qn þ QDEP ð4:13Þ

and terminates the field lines emanating from the positive charge sheet on the gate
electrode (see Fig. 4.4). Thus, the key to modeling I–V is to untangle Qn from
QDEP.

Now, given the substrate doping level, NA, the depletion charge is given by
QDEP ¼ �qNAWD with WD denoting the depletion depth (see Fig. 4.4). Also, the
surface potential, uS, is supported by QDEP and is given by uS ¼ qNAW2

D=2eS, in
the completely depleted approximation. Therefore, QDEP can be expressed in terms
of uS as

QDEP ¼ �qNAWD ¼ �ð2eSqNAuSÞ1=2 ð4:14Þ

Hence, upon inserting (4.11) for VOX and (4.14) for QDEP into (4.13), there
results

Qn ¼ �COXðVG � VFB � uS � cu1=2
S Þ; cn � ð2eSqNAÞ1=2=COX ð4:15Þ

Here, the constant, cn, is known as the body effect coefficient. Hence, Qn at the
onset of the strong inversion is obtained by replacing uS by 2uFp as discussed:

Qn ¼ �COXðVGS � VTnÞ; VTn ¼ VFB þ 2uFp þ cnð2uFpÞ1=2 ð4:16Þ

In this manner, the capacitive charging of Qn is quantified.
When the drain voltage, VDS, is turned on, it is distributed in the channel. Thus,

at a channel position at y with the channel voltage, V(y) 0�VðyÞ�VDð Þ the
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condition of the channel inversion, uS ¼ 2uFP has to be generalized, incorporating
the splitting of EFn and EFp caused by V(y). However, for the simplicity of dis-
cussion, the role of V(y) is taken simply to reduce the effective gate voltage at
y and represent Qn(y) as

QnðyÞ ¼ �COXðVGS � V � VTnÞ ð4:17Þ

Transistor I–V: With the use of Qn(y) thus specified, the I–V behavior is derived
next. In the channel element from y to y ? dy, the channel voltage, V, drops by dV,
which is given by

dV � IDdR; dR � dy

Wln Qnj j
ð4:18Þ

where the resistivity has been expressed in terms of Qn. Therefore, one can recast
(4.18) into two integrations, one involving y and the other V, i.e.,

ZL

0

IDdy ¼
ZVD

0

dVlnW Qnj j ð4:19Þ

One can then perform the integrations in (4.19) by using (4.17) for Qn, and the fact
that ID is constant throughout the channel, obtaining

ID ¼
W

L
lnCOXðVGS � VTn �

1
2

VDSÞVDS; VDS�VGS � VTn ð4:20aÞ

When the channel is pinched off at the drain end, QnðLÞ � 0 and the I–V
relation given in (4.20a) ceases to be valid. The pinch-off voltage, VDSAT is found
by putting Qn to zero in (4.17), i.e., VDSAT ¼ VGS � VTn and the saturation current
at VDSAT is therefore pinned at

IDSAT ¼
W

2L
lnCOXðVGS � VTnÞ2; VDSAT � VG � VTn ð4:20bÞ

Equation (4.20) agrees with (1.1), and the parameters such as l, VTn can further be
refined to fit the measured data.

Subthreshold Current: The subthreshold current, ISUB, bridges IOFF and ION in
the VG range, 0 \ VG \ VT , or in uS range, 0 \ uS \ 2uFp. In this regime, the
second term of QS in (4.9b) is dominant and one can Taylor expand QS in (4.10)
centered around the second term, obtaining

QS � QDEP þ Qn � �ð2qNAeSuSÞ1=2 1þ 1
2

ebðuS�2uFpÞ

buS

� �
; b ¼ q=kBT ð4:21Þ

where the Debye length, LD, in (4.9a) has been spelled out (problem 4.2). Evi-
dently, the first term in (4.21) represents QDEP, while the second term denotes the
surface charge of electron, Qn.
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As clear from (4.21), Qn is exponentially enhanced with increasing uS in this
regime of the weak inversion. Also, in the presence of the substrate bias, VB and
channel voltages at the source and drain, VS and VDS and the expression of Qn

should incorporate the splitting of the quasi-Fermi levels. Thus, one can write

Qnð0Þ ¼ �qNALD
1

2buSS

� �1=2

ebðuSS�2uFpÞ; uSS � uS � ðVS � VBÞ ð4:22aÞ

at the source and

QnðLÞ ¼ �qNALD
1

2buSD

� �1=2

ebðuSD�2uFpÞ; uSD � uSS � VDS ð4:22bÞ

at the drain. It is therefore clear from (4.22) that Qn decreases exponentially from
the source to the drain. Hence, ISUB should be driven by diffusion, and one can
write

ISUBj j � WDn
Qnð0Þ � QnðLÞ

L

� W

L
DnqNALD

1
2buSS

� �1=2

ebðuSS�2uFpÞð1� e�bVDSÞ
ð4:23Þ

The subthreshold current thus derived bridges ION and IOFF.
PMOS I–V Behavior: Naturally, the PMOS I–V modeling can be similarly

carried out by interchanging the roles of electrons and holes. One can thus derive
the hole surface charge, obtaining

Qp ¼ COXð VGSj j � VTp � Vj jÞ ð4:24aÞ

where the hole threshold voltage is given by

VTp � VFB þ uFp þ cpu
1=2
Fp ; cp � ð2eSqNDÞ1=2=COX ð4:24bÞ

(problem 4.3). Here, VFB ([0) is the work function difference between the p+ poly
gate and n substrate, and the Fermi potential, uFn, of the n substrate and the body
coefficient, cp, are specified in terms of the donor concentration, ND. Once Qp is
obtained, the I–V relation can be derived in a manner similar to NMOS.

Quantum Modifications: The channel inversion necessitates the band bending,
downward in NMOS and upward in PMOS. As a result, the quantum wells are
formed for electrons and holes, respectively, as shown in Fig. 4.8. This means that
the inverted electrons and holes are 2D particles spatially confined in the direction
normal to the surface, but moving freely on the interface plane. The resulting
quantum mechanical modifications have to be taken into account.

First, the electrons and holes reside in the quantized sublevels or subbands, as
sketched in Fig. 4.8. These sublevels are characterized by 2D density of states, as
detailed in Chap. 1. Therefore, the statistics of the channel inversion should differ
from what has been discussed for the 3D bulk MOSFET. Additionally, the
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probability density of the carrier wave function in each sublevel is peaked away
from the oxide interface. This suggests that electrons or holes are inverted away
from the interface, thereby increasing the effective oxide thickness and reducing
the capacitance of the gate dielectric. Also, due to the discrete sublevels formed in
the quantum well, the substrate band gap is in effect broadened. Consequently, the
quantum modification reduces in essence the efficiency of channel inversion.

4.2 Silicon Nanowire Field Effect Transistor

Overview: The SNWFET holds up a promising potential as a driver of the
nanoelectronics and is discussed in this section. In so doing, the well known theory
of MOSFET is utilized both as the reference and the general background. In
particular, the similarities and differences existing between SNWFET and MOS-
FET are highlighted, thereby bringing out the features unique to SNWFET. In
addition, the ballistic transport operative in short channel SNWFETs is considered.
For brevity, the discussion is confined to the n-channel SNWFETs. However, the
results obtained can be readily applied to the p-channel FET by interchanging the
roles of electrons and holes.

Also, the I–V modeling is focused on intrinsic SNWFET, for simplicity. An
interesting feature of such FETs is that both n- and p-channel FETs can be fab-
ricated with the use of the same nanowire by doping the source, drain and gate
with donors and acceptors, respectively, as shown in Fig. 4.9. As a consequence,
n+-i and i-n+ junctions and p+-i and i-p+ junctions are built in back to back,
respectively. Hence, both types of SNWFETs are unipolar and normally off
devices. Figure 4.10 shows a typical I–V and transfer characteristics from
SNWFET with the channel length approximately 100 nm long. Clearly, the I–V
behavior in such a long channel SNWFET is generally similar to that of MOSFET,
which indicates that the physical principles underlying the operation are sub-
stantially same in both kinds of long channel FETs.

Fig. 4.8 The quantum well and the subbands of electrons (left) and holes (right), induced at the
oxide interface by the respective gate voltages
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4.2.1 The n-channel SNWFET

Equilibrium Contact: The equilibrium contact of the n+ ploy-Si gate—SiO2—
intrinsic nanowire system is essentially the same as in NMOS, aside from the fact
that the p substrate in NMOS is replaced by the intrinsic nanowire, as shown in
Fig. 4.11. Nevertheless, the electrons are transferred from the gate electrode to the
nanowire, again due to the difference in the Fermi levels. Inside the nanowire, the
electrons reside in the sublevels therein and are not necessarily concentrated near
the oxide interface as in the case of NMOS. This is because of the wave nature of
electrons. Specifically, the probability density of electrons in each sublevel can be
taken approximately uniform across the cross section of the nanowire, as was
discussed in Chap. 1.

Fig. 4.9 The cross-sectional view of the n-type (top) and p-type (bottom) SNWFET

Fig. 4.10 The transistor I–V and transfer characteristics of silicon nanowire field-effect
transistor with 100 nm channel length
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Subband Spectra in Nanowire: The discussion of the channel inversion requires
the quantum treatment of the electron states by solving the Schrödinger equation,
coupled self-consistently with the Poisson equation in the effective mass
approximation. Such an analysis has been carried out in the literature, and the
electrons in the nanowire can be taken to move freely along the direction z of the
wire, while confined in the x, y plane. The energy eigenequation for bound states is
thus given by

� �h2

2mn

o2

ox2
þ o2

oy2

� �
þ V

� �
uðx; yÞ ¼ Euðx; yÞ ð4:25Þ

where V represents the two-dimensional quantum well with a finite barrier height.
The eigenequations and eigenvalues in the quantum wire with the rectangular cross
section have been analyzed in detail in Chap. 1. The general features of the
subbands are well represented by the simple analytical expression obtained for the
infinite barrier height:

En ¼
X

j
Ejn

2
j ; Ej ¼ �h2p2=2mnl2

j ; j ¼ x; y; nj ¼ 1; 2; . . . ð4:26Þ

Here, nj is the quantum number, lj the width of the rectangle in the j direction and
Ej the jth sublevel energy

One can likewise analyze the subbands in a cylindrical nanowire with radius
R by recasting (4.25) into the cylindrical coordinate frame, obtaining

� �h2

2mn

1
r

o

or
r

o

or
þ 1

r2

o2

ou2

� �
þ VðrÞ

� �
uðr;uÞ ¼ Euðr;uÞ ð4:27aÞ

Fig. 4.11 n+ poly-Si–SiO2—intrisic Si nanowire system. Also shown are the affinity factors and
the Fermi levels
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where

VðrÞ ¼ 0 for r � R
V for r [ R

	
ð4:27bÞ

As usual, one can look for the solution in the form

uðr;uÞ / einugðrÞ ð4:28Þ

in which case, (4.27a) reduces to the Bessel differential equation for g(r) inside the
well:

r2 d2gðrÞ
dr2

þ r
dgðrÞ

dr
þ ðk2r2 � n2ÞgðrÞ ¼ 0; k2 � 2mE

�h2 ð4:29aÞ

The solutions are therefore given in terms of the Bessel functions of the first (Jn)
and second (Yn) kinds. However, Yn diverges for r ? 0 and should be discarded.
Thus, the solution is given by

gðrÞ ¼ C1JnðkrÞ; r � R ð4:29bÞ

Outside the quantum well, there ensues the modified Bessel differential equation

r2 d2gðrÞ
dr2

þ r
dgðrÞ

dr
� ðj2r2 þ n2ÞgðrÞ ¼ 0; j2 � 2m

�h2 ðV � EÞ ð4:30aÞ

The solutions are therefore given by the modified Bessel functions of the first (In)
and second (Kn) kinds. However, In diverges for r ? ? and should be discarded
and one can write

gðrÞ ¼ C2KnðjrÞ; r [ R ð4:30bÞ

Once the energy eigenfunctions are found, the energy eigenvalues are obtained
as usual by imposing the boundary conditions, namely that the eigenfunctions and
its first derivatives be continuous at r = R. Here, again the general features of the
sublevels are well represented by the analytic expressions valid for the infinite
barrier height. In this limit, the eigenenergies are given by

En ¼ E0ð3=2þ nþ 2sÞ2; E0 ¼ �h2p2=8mnR2 ; n; s ¼ 0; 1; 2; � � � ð4:31Þ

Here, n, s denotes the quantum numbers and R the radius of the cylindrical
nanowire (problem 4.4).

Figure 4.12 shows the typical sublevel spectra which have been found
numerically for the oxide barrier of 3.1 eV in intrinsic silicon nanowires with cross
sections different in area and shape. Clearly, a few general trends of the sublevel
spectra emerge from the figure. First, the spectra are different between the rect-
angular and square cross sections, particularly in lower lying sublevels, although
the cross-sectional area is the same. This is due to the subband energy levels
depending sensitively on the width in each direction of the rectangle see (4.26).
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Also, the spectra in the square and circular cross sections with the same area are
about the same, in general agreement with the results obtained in (4.26) and (4.31).
More important, there is a significant difference in the sublevel spectra between the
small- and large-area cross sections, as expected.

Surface Charge and 1D Density: Now that the sublevel spectra have been found,
the surface charge of electrons induced is considered next. The first step for obtaining
Qn consists of finding the 1D density of electrons, n1D, which is specified by

n1DðuÞ ¼
XN

n¼1

ZECþDEC

ECþEn

de g1DðeÞFnðeÞ ; g1DðeÞ ¼ ð
ffiffiffiffiffiffiffiffi
2mn

p
=p�hÞ=e1=2 ð4:32aÞ

Here, g1D is the 1D density of states [see (1.48)], N the total number of subbands in
the quantum well and DEC the conduction band width. The Fermi occupation
factor for the electrons in the nth sublevel with energy, En is given by

FnðEÞ ¼
1

1þ exp½ðE � EFi � quÞ=kBT� ; E ¼ eþ EC þ En ð4:32bÞ

Here, EFi is the intrinsic Fermi level of the nanowire, and qu is the bulk band
bending. The electron energy, e, in the nth subband ranges from EC ? En to
EC ? DEC, and the difference, E - EFi is reduced by the band bending, qu.

The integration of (4.32a) can be carried out either numerically or analytically
by expanding the Fermi function. Once n1DðuÞ is found, the 3D density, n3D, is
obtained by dividing n1DðuÞ with the cross-sectional area, A of the nanowire. The
surface field can then be obtained by using the well known relation used in (4.10):

EðuÞ ¼
ffiffiffi
2
p
ðq=eSÞ1=2½NðuÞ�1=2 ð4:33aÞ

Fig. 4.12 The subband
spectra in intrinsic silicon
nanowire surrounded by the
gate oxide for rectangular,
square and circular cross
sections
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where the integration over the space charge density in (4.8) for obtaining E in the
analysis of MOSFET is equivalent to finding the excess electron density induced
by the bulk band bending:

NðuÞ ¼
Zu

0

½n3DðuÞ � n3Dð0Þ�du; n3DðuÞ ¼ n1DðuÞ=A ð4:33bÞ

The surface charge, Qn, can therefore be found in terms EðuÞ by again using the
well-known boundary condition, (4.10), i.e.,

QnðuÞ � �eSEðuÞ ð4:34Þ

In this manner, Qn(u) is found in terms of the bulk band bending qu and the
properties of the nanowire such as the shape and size of the cross section. Note that
Qn attained in the p substrate of NMOS is specified by the surface potential,
uðx ¼ 0Þ. Whereas, Qn in the nanowire is given in terms of the bulk band bending
u for the reasons discussed.

4.2.1.1 Channel Inversion

Capacitive Coupling: The channel inversion is next addressed to by using Qn thus
found. Consider the charging voltage divided into the gate oxide and the nanowire

V 0G � VG � VFB ¼ VOX þ u; VOX �
QnðuÞj j
COX

ð4:35Þ

where VFB is the flat band voltage associated with the n+ gate and intrinsic
nanowire, as depicted in Fig. 4.11. In intrinsic nanowire, there is no fixed ionic
charge and therefore the surface charge, QS, consists solely of Qn. Hence, the
surface capacitance, CS, should differ appreciably from that of NMOS. Never-
theless, the channel inversion via the capacitive coupling can be analyzed by using
(4.35) with Qn given in (4.34).

As in the case of NMOS, Qn can be found explicitly as a function of VG from
(4.35). Figure 4.13 shows Qn thus found plotted versus VG for various kinds of the
nanowire cross sections. Also shown in the figure is the Qn - VG curve of an
NMOS, for comparison. As expected, Qn - VG curves in intrinsic nanowire do not
exhibit the transition region demarcating the strong and weak inversion. Instead,
Qn in the nanowire increases exponentially in the small VG regime. In this regime,
the electron concentration is low, so that it requires relatively large bulk band
bending, qu, for the induced electrons to terminate the gate field lines. However,
when VG exceeds a certain value, the electron concentration attains such a level
that any further increase in VG and concomitant increase in the gate field lines can
be compensated by electrons with relatively small changes in qu. That is to say,
qu is approximately pinned while supplying electrons sufficient to terminate the
gate field lines. Hence, in this VG range, Qn should increase approximately in
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linear fashion with VG just as in the case of NMOS after the onset of the strong
inversion. Consequently, Qn versus VG curves naturally divide into the sub-
threshold and linear regimes as in the case of NMOS.

Moreover, it is clear from Fig. 4.13 that more surface charge, Qn, is induced at
given VG in the larger cross section, and the threshold voltage therein is reduced.
Here, VT is defined as the value of VG inducing a specified level of the drain current
at given VD, a procedure often used in the I–V characterization. According to this
definition, VT is simply the value of VG which inverts a specified level of Qn. The
larger Qn and smaller VT with increasing cross-sectional area are consistent with the
sublevel spectra shown in Fig. 4.12. As pointed out, the sublevels in larger cross
section are more densely distributed at the energy level lower than those in smaller
cross sections. Hence, more electrons should be induced for given VG.

4.2.1.2 I–V Behavior in Long Channel n-type SNWFET

Overview: The modeling of I–V behavior in SNWFET has been extensively
investigated from various standpoints. Understandably, the emphasis has been
placed on the carrier scattering and transport. The carriers in the long channel are
transported mainly by the drift-diffusion, while the ballistic transport is prevalent
in the short channel. Thus, the carrier transport in FETs consists in general of the
mixture of the drift–diffusion and ballistic transports. The I–V behavior in
SNWFET is discussed from various standpoints in a few sections to follow, fusing
together the two modes of the transport. In addition, the Landauer formulation of
the ballistic transistor as applied to SNWFET is briefly touched upon. The dis-
cussion starts out with the long channel FET.

Naturally, a key quantity involved in the I–V modeling is the surface charge,
Qn, which is induced by VG. As detailed in the preceding section, Qn can be taken
to increase linearly with the gate overdrive, and one can thus write

Qn ¼ Ceff ½VG � VTn � V� ð4:36Þ

Fig. 4.13 The electron
surface charge density is
shown versus the gate voltage
in nanowire with rectangular
ð3
 12 nmÞ and square
3
 3 nm; 12
 12 nmð Þ cross

sections. Also plotted for
comparison is the electron
surface charge in NMOS with
the substrate doping of
NA = 1017 cm-3
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where V is the channel voltage at y and Ceff the total capacitance of the nanowire.
The capacitance, Ceff, is somewhat smaller than COX above VT for the reasons as
follows. As well known, Ceff consists of the oxide (COX) and surface (CS)
capacitances, connected in series, i.e., 1=Ceff ¼ 1=COX þ 1=CS. In NMOS, the
electrons are induced practically at the oxide interface. Consequently, CS is much
larger than COX, and therefore CT is practically identical to COX above VT. In
nanowire FET, however, the distribution of the induced electrons is nearly uniform
across the cross section of the nanowire. This is due to the wave nature of electrons
as pointed out earlier. Hence, the ratio of CS with respect to COX is not as large as
in NMOS; hence, Ceff is somewhat smaller than COX. However, the ratio CS/COX is
still large enough to keep Ceff practically constant at a level slightly below COX.

In addition, VT in nanowire depends primarily on the geometry of the cross
section, while in NMOS, VT is determined mainly by the doping level of the substrate
and the bandgap of the substrate. Obviously, this difference arises from the fact that
in nanowire Qn sensitively depends on the shape and size of the cross section, while
in NMOS, Qn is dictated by the doping level of the donor atoms and the band gap of
the substrate. Moreover, in long channel nanowire FETs, the carriers are generally
transported via the drift and diffusion. Hence, for modeling the I–V behavior in
SNWFET, one can follow the same steps as used in NMOS, obtaining (4.20). In this
case, the tools developed for SPICE model for fitting the I–V data can also be used.

4.2.1.3 I–V Behavior in Short Channel n-type SNWFET

Overview: An attractive feature of FETs is its scalability down to nano regimes. In
such short channel FETs, the ballistic transport is prevalent. In ultrascaled
MOSFETs, for example, the carrier transport has been taken up by the ballistic
component by as much as 50 %. The ballistic efficiency in SNWFETs is believed
to be comparable to or even higher than that of MOSFET. It is therefore important
to consider the ballistic nanowire FETs.

Figure 4.14 shows the typical band diagram along the channel under bias. The
maximum point of the band is located near the source end, the height of which is

Fig. 4.14 The schematic
view of the band bending in
FETs is shown under the
drain bias
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determined by the n+-i band bending at the source junction and also the voltages
applied at the gate and the drain. The band diagram points specifically to the fact
that the drain current is contributed by electrons injected from the n+ source
electrode and transported down the channel, subject, however, to the backscat-
tering. Naturally, the height of the band maximum is reduced with increasing VGS,
so that more electrons are injected into the channel. In the following, the I–V
behavior in short channel FETs is discussed from various standpoints, using the
theories developed recently.

1. One-Flux Scattering Theory:

To facilitate the discussion, the one-flux scattering theory by Lundstrom is
introduced first, in which the saturated drain current is given by

IDSAT ¼ QnLSveff ð4:37aÞ

Here, QnLS is the line charge induced at the source end and is given in terms of the
total capacitance Ceff per unit area and the channel width, Weff, of the nanowire as

QnLS ¼ CeffWeffðVG � VTnÞ ð4:37bÞ

And veff is the effective velocity with which the electrons are transported down the
channel subject to the backscattering and is given by

veff ¼ vinjg; g � 1� rc

1þ rc

� �
ð4:37cÞ

where rc is the backscattering coefficient and vinj is the injection velocity of
electrons.

Evidently, the two representations of IDSAT given in (4.37) for SNWFET and
(4.3), for MOSFET, respectively, are of the same format and characterize IDSAT in
similar contexts. However, there are a few differences existing between the two.
Note that QnLS in (4.3) is the average line charge under the gate electrode, given by
the average gate overdrive, ðVGS � VTnÞ=2. Whereas QnLS in (4.37b) is the line
charge induced specifically at the source end of the channel. In ballistic FETs, the
line charge at the source end is a key parameter dictating the drain current. Addi-
tionally, the velocity, vD, appearing in (4.3) is the drift velocity as characterized by
the small field mobility, ln, while veff in (4.37c) is dictated primarily by vinj.

It is interesting that g appearing in (4.37c) also represents the ballistic effi-
ciency. In the limit of small rc at which g ffi 1, nearly all of the injected electrons
traverse the channel via the ballistic transport with vinj. By the same token, in the
opposite limit of g ffi 0, the transport is dominated by the drift–diffusion instead.
For the general case of rc ranging from 0 to 1, g is essentially an indicator showing
the degree of mixing between the two modes of transport.
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Obviously rc depends on the channel length, L, and therefore g is also depen-
dent on L. The dependency is taken into account in the one-flux scattering theory
as follows. In thermal equilibrium or in the limit of small longitudinal channel field
the backscattering coefficient as a function of L is given by

rc0 ¼
L

Lþ k
ð4:38Þ

where k is the mean free path. With k thus introduced, it follows from (4.37) and
(4.38) that g gauges the mode of carrier transport at a given channel length, L. For
k	 L, for example, g ffi 0; hence, carriers are driven by the drift and diffusion, as
it should. For k� L, on the other hand, g ffi 1 and the ballistic transport becomes
prevalent, as expected.

Under the bias, the backscattering coefficient, rc, can be treated in such a way
that the two competing modes of transport are naturally fused to represent the
effective carrier transport. Now, the coefficient, rc, is given by

rc ¼
l

lþ k
ð4:39Þ

In this representation, L has been replaced by the critical length, l, over which the
electron gains the kinetic energy equal to the thermal energy, kBT.

With the use of l introduced in this manner, the expression of IDSAT given in
(4.37a) is naturally generalized to incorporate both the drift–diffusion and ballistic
transport and that as a function of L. This can be shown as follows. When VDS is
applied, the band bends down from the source to the drain, as sketched in
Fig. 4.14, and the injected electrons roll down the potential hill in the channel.
Once the electron surpasses the distance l, Price observation assures that the
electron can be taken to proceed to the drain, irrespective of the backscattering.
This is equivalent to the electron traversing the channel essentially via the ballistic
transport.

Next, to be specific, the critical distance, l, is to be expressed in terms of the
thermal energy, kBT, and the longitudinal channel field, Eð0þÞ, at the band
maximum:

qEð0þÞl � kBT ð4:40aÞ

Also the mean free path, k, is specified approximately via the thermal velocity, vT,
and the mean collision time, sn, or equivalently the low field mobility, ln:

k ¼ vTsn ¼ vTðmnln=qÞ ð4:40bÞ

where (2.25) has been used to replace sn by ln.
By inserting (4.40) and (4.39) into (4.37) one can easily obtain (problem 4.5),

IDSAT ¼ QnLS

1
1
vT
þ 1

lnEð0þÞ
ð4:41Þ
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In this representation of IDSAT, both the drift–diffusion and ballistic transports are
naturally fused in. Additionally, the relative importance of two competing modes of
transport versus the channel length, L, is also accounted for. Thus, IDSAT derived in
(4.41) is applicable to a variety of short-channel FETs. It should be noted that since
the longitudinal channel field scales with L, i.e., Eð0þÞ / 1=L, lnEð0þÞ � vT in
short channel FETs, and therefore the FET operates in ballistic mode with vT serving
as the saturation velocity. By the same token, in a long channel FET, lnEð0þÞ 	 vT ,
in which case the electrons traverse the channel via the usual drift velocity, vD. In
this latter limit, (4.41) converges to the SPICE I–V model given in (4.3).

However, the two line charges in (4.37b) and (4.3) are different in contents, as
pointed out. In Eq. (4.3), QnL is the line charge averaged over the channel. The
averaging procedure is required in the drift–diffusion formulation, since the transit
time of electrons across the channel is long, so that the quasi-equilibrium settles in
under the gate electrode. In this case, Qn at the channel position, y, should be
governed by the local gate overdrive. In the scattering theory formulation, on the
other hand, IDS is primarily determined by QnLS at the source end, sweeping across
channel with a high ballistic efficiency. The two differing approaches should be duly
taken into account for characterizing IDS in SNWFETs with varying channel lengths.

2. Apparent Mobility Model:

The discussion of the apparent mobility model by Shur is in order at this point.
According to the model, the total mobility consists of the usual low field mobility,
ln, and the ballistic mobility, lball, connected in series

1
l
¼ 1

ln
þ 1

lball

; lball ¼ jL ð4:42Þ

where lball is taken commensurate with the channel length, L. The total mobility,
l, thus introduced is called the apparent mobility. One can then express IDSAT with
the use of l as,

IDSAT ¼ QnLSlEð0þÞ; l ¼ lnlball

ln þ lball

ð4:43Þ

In the limit of short channel length, lball 	 ln, and l is reduced to lball. In this
case, the ballistic transport prevails with lballEð0þÞ providing the saturation
velocity. In the other limit, l is reduced to ln, and IDSAT is therefore driven by the
drift–diffusion. It is therefore clear that the one-flux scattering theory and the
apparent mobility model lead essentially to the same representation of IDSAT.

3. Landauer Formulation of Ballistic FET:

The continued scaling down of the semiconductor devices has pushed the
device dimensions into the mesoscopic regime in between the atomic and the
microscopic regimes. In such short channel devices, the mean free path, typically
50 nm long, cannot be taken much shorter than the channel length. By the same
token, the carrier relaxation and the coherence lengths that are closely linked to the
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mean free path cannot be regarded much smaller than the channel length as well.
Therefore, the wave nature of electrons and the mesoscopic scattering must be
taken into consideration in modeling the I–V behavior. It thus behooves to con-
sider the Landauer formulation for treating the ballistic FETs.

In the Landauer formulation, the drain current is taken due primarily to the net
flux of electrons from the source to the drain via the ballistic transport. The drain
current is thus given by

IDS ¼
2q

h

X

i

ZEu

Ei

dE½FðE;EFSÞ � FðE;EFDÞ�TiðEÞ ð4:44aÞ

Here the first term represents the electron flux from the source to the drain, while
the second term denotes the flux in the reverse direction. Also, i is the summation
index of the subbands with the energy level, Ei, in the well, and Eu is the upper
limit of the integration given by the conduction band width, i.e., Eu ¼ EC þ DEC.
Naturally, the Fermi functions

FðE;EFjÞ ¼
1

1þ exp
E�EFj

kBT


 � ; j ¼ S; D ð4:44bÞ

are characterized by the Fermi levels at the source and drain ends, respectively.
Under a drain bias, the two quasi-Fermi levels should split by the amount, qVDS,
i.e., EFD ¼ EFS � qVDS, as detailed in Chap. 3. The factor Ti denotes the transport
coefficient of electrons in the ith subband, and IDS is thus contributed separately by
electrons in each subband. In short channel FETs, one can put TiðEÞ � 1 since the
band bending in the channel is usually gradual, so that the backscattering therein is
to be neglected.

The gist of (4.44) can be seen by considering the case of small drain voltage.
One can then Taylor expand the Fermi function at the drain, retaining only the first
expansion term and write

FðE;EFSÞ � FðE;EFS � qVDSÞ � �
oFðE;EFSÞ

oE
qVDS ð4:45aÞ

Thus, the difference between the two fluxes is shown to be commensurate to the
first derivative of F, which is well approximated by the delta function,

oFðE;EFSÞ
oE

� dðE � EFSÞ ð4:45bÞ

Upon inserting (4.45) into (4.44) there results

IDS ¼ G
X

i

giVDS; G � 2q2

h
ð4:46Þ
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In this manner, IDS is naturally shown to be specified by the quantum conductance,
G, and the sum of the separate contributions from all subbands, including the
degeneracy, gi, therein.

For an arbitrary VDS, IDS can also be specified as follows. For this purpose, one
may first introduce a new variable of integration

g ¼ E=kBT

and compact the expression of IDS in (4.44a) as

IDS ¼ G
kBT

q

� �
~M ð4:47aÞ

where the form factor, ~M, reads as

~M ¼
X

i

Zgmax

gi

dg½ 1

1þ eðg�gFSÞ
� 1

1þ eðg�gFSþqVDS=kBTÞ�; gFS ¼ EFS=kBT ð4:47bÞ

where, gi ¼ Ei=kBT and gmax ¼ ðEC þ DECÞ=kBT . Obviously, to evaluate ~M, it is
essential to find the relative location of EFS with respect to say EC under a given
VGS.

The difference, EC - EFS, varying as a function of VGS is clearly illustrated in
Fig. 4.15. In the figure are shown the band diagrams of the n+ gate, gate oxide and
intrinsic nanowire both in equilibrium and under a bias. In equilibrium, the band

Fig. 4.15 The energy band diagram of n+ poly gate, silicon dioxide and intrinsic silicon
nanowire, in equilibrium (left) and under a positive gate bias (right). Here, qu denotes the bulk
band bending induced by the gate voltage
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bending should occur mainly in the gate oxide by an amount EFn - EFi so that the
Fermi level lines up and be flat (Fig. 4.15a). Under a gate bias, VGS, the band in the
n+ gate electrode is further lowered and the two Fermi levels split (Fig. 4.15b).
Then, VGS is dropped in the gate oxide and also in the nanowire, inducing the bulk
band bending, qu, therein. As a result, EFn - EFi is reduced from its equilibrium
value by the amount qu, and one can therefore write

EC � EFS ¼ EC � EFi � qu ð4:48Þ

Now, qu is in turn specified in terms of VGS by means of (4.35), as discussed in
detail already. Thus, the difference, EC - EFS can be found explicitly as a function
of VGS, and one can therefore evaluate ~M and find IDS as a function of VGS and
VDS. It has therefore become clear that the I–V modeling in Landauer formulation
consists of solving the coupled equations, (4.47) and (4.35).

The resulting features of I–V curves in ballistic FETs can also be surmised on a
general ground with the use of (4.35) and Fig. 4.13. For small VGS, hence small u,
Qn is at the low level, and most of the charging voltage is taken up by u, the
reasons of which have already been detailed in connection with Fig. 4.13. As a
consequence, EC - EFS shrinks rapidly, enhancing IDS exponentially. This small
VGS regime should therefore correspond to the subthreshold regime. Once u
exceeds a certain value, the growth of u slows down, but IDS still increases with
VDS for given VGS, reproducing thereby the triode regime. Beyond a certain value
of VDS, the flux of electrons from the drain to the source becomes negligible,
rendering IDS insensitive to further increase of VDS and the device enters the
saturation mode.

In this chapter, the I–V behavior of SNWFET has been discussed in comparison
with theory of MOSFET, thereby bringing out the features unique to SNWFET.
The I–V behavior has also been discussed in long- and short-channel SNWFETs.
The I–V modeling in short-channel FETs have been discussed from various
standpoints by using the one-flux scattering theory, the apparent mobility model
and the Landauer formulation.

Problems

4.1 (a) Multiply both side of the Poissson equation given in (4.7) and prove that
the left hand side of (4.7) reduces to the left hand side of (4.8).

(b) Perform the integrations in (4.8) and derive (4.9).
(c) Use the result obtained for discussing the threshold voltages as a function

of the doping level and the band gap.
(d) Repeat the corresponding analysis for PMOS.

4.2 Derive (4.21) by Taylor expanding QS given in (4.10).

4.3 The I–V modeling in p-type FETs can be done by following the similar steps
as used in n-type FETs and also by replacing the roles of electrons with those
of holes.
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(a) Derive the surface charge and the threshold voltage of the PMOS given in
(4.24).

(b) Derive I–V relation and compare the results with that of NMOS.

4.4 Starting from the energy eigenequation in the cylindrical nanowire given in
(4.27) derive (4.29a) and (4.29b). Also derive the expression of the energy
eigenvalue given in (4.31), which is valid for the infinite barrier potential.

4.5 (a) Derive the saturated drain current given in (4.41) by inserting the
expressions of the critical distance, l and the mean free path, k given in
(4.40).

(b) Discuss the mode of carrier transport as a function of the channel length, L,
in the silicon nanowire FET with the cross-sectional areas of 5
 5 nm and
10
 10 nm and for L ranging from 10 to 100 nm. You can use the results
obtained for the case of the infinite barrier height for the simplicity of
discussion.
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