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    Abstract     Dendrites are the cellular protrusions of neurons receiving the majority 
of synaptic inputs. We investigated the structure–function relationship of the den-
drites of model neurons optimized for input order detection of stochastic inputs. For 
this purpose, we used an inverse method based on a genetic algorithm. In this 
method, via iterative test and selection steps, the genetic algorithm fi nds a dendritic 
structure as good as possible for a user-selected neural computation. In a previous 
study, we generated model neurons optimized for reacting strongly to two groups of 
synaptic inputs occurring in one but not the reverse temporal order. In the current 
study, we added both temporal noise (synapse activation times) and spatial noise 
(synapse placement) to this computational task. We observed that the model neu-
rons which were exposed to a more noisy input generally had smaller dendritic 
trees. We explain this fi nding by the fact that for input–order detection, sampling 
from more varied responses is advantageous and that positive outliers in a popula-
tion are selected for. We conclude with a general discussion of signal integration in 
neurons, dendrites, and noise.  
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9.1         Introduction 

 Most neurons in the brains of animals possess dendrites, elongated and branched 
protrusions which are receiving synaptic contacts from other neurons. The shapes of 
these dendrites are highly varied between different animals, different brain areas, 
and different neuronal types in one brain area. The branching patterns of these den-
drites vary between highly elaborate trees many 100 μm long with several separate 
regions to short, simple extensions with no more than one degree of branching. Both 
the amount and the exact pattern of dendritic branches vary widely, with some neu-
rons’ dendrites entirely confi ned to a 2-dimensional plane while others sample a 
volume of brain tissue and with signifi cantly different degree of sampling of the 
area the dendrites pass through (Segev and London  2000 ; Stuart et al.  2007 ). 

 Besides these morphological differences, dendrites are also equipped with vastly 
different sets of ionic conductances. Ion channels conducting Na + , K + , Ca 2+ , and K +  
ions are distributed spatially heterogeneously over the dendrites of neurons (Migliore 
and Shepherd  2002 ). The exact sets of conductances, their densities, and spatial 
distribution further add to the diversity of dendrites. The different conductance dis-
tributions can make dendritic trees essentially passive or dampened or excitable and 
allow no, weak, or completely regenerative action potential back-propagation into 
the dendrites (Stuart et al.  1997 ). The difference between different neurons’ den-
drites is well demonstrated when looking at mammalian cortical layer V pyramidal 
neurons and cerebellar Purkinje neurons, two of the most thoroughly studied neuro-
nal cell types. To illustrate how dendrites are diverse on several levels of biological 
organization (ion channels, excitability, morphology, synaptic connections), we use 
the occasion of this book chapter to briefl y review the dendrites of these two neuron 
types. With this, we hope to illustrate to the reader the complexities found in the 
dendrites of neurons. 

 In layer V pyramidal neurons, the dendrites are divided into several subgroups. 
Close to the soma, in layer V of the cortex, are the basal dendrites. Typically between 
two and fi ve thin (<2 μm) basal dendrites grow horizontally from the soma, remain-
ing in layer V, and branch several times. Also growing from the soma is the main 
apical trunk that grows vertically towards the pia. In the region immediately above 
the soma, the oblique dendrites branch off from the apical dendrite. From there, the 
apical dendrite projects further upwards to cortical layer I, where it branches out 
into the apical tuft. The dendrites of a cortical layer V pyramidal neuron are covered 
in spines, tiny (several microns long) protrusions, which are the target of excitatory 
synapses from a variety of cortical and subcortical sources. Inhibitory synapses tar-
get both spines and dendritic stems. There are several types of spines, and their 
density is about 0.2/μm. Cortical layer V pyramidal neurons fi re fast Na +  action 
potentials, which are initiated in the somato-proximal parts of the axon and back-
propagate into the axon and dendrites. Due to a moderate density of Na +  conduc-
tance in the dendrites, the action potentials are not completely regenerated during 
this back-propagation. They lose amplitude and widen by the time they reach the 
distal parts of the dendrites (Hay et al.  2013 ). Layer V pyramidal dendrites also 
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show very interesting Ca 2+  electrogenesis. In the basal dendrites, NMDA-type 
 glutamate receptors can cause Ca 2+  spikes (Major et al.  2008 ). In the distal den-
drites, voltage-gated Ca 2+  conductances can cause such Ca 2+  spikes (Schiller et al. 
 2000 ). Back-propagating action potentials can evoke Ca 2+  spikes in the distal apical 
dendrites when they coincide with synaptic depolarizations at these locations. These 
Ca 2+  spikes can then propagate to the soma and axon, where they evoke more action 
potentials in a ping-pong-like manner of interaction between the distal dendrites 
and the soma/axon (Larkum et al.  1999 ). A diverse set of K +  and mixed cation con-
ductances, several of them increasing in density with path distance from the soma 
(Stuart et al.  1997 ), hold this dendritic excitability in check and alter the integration 
of synaptic inputs. 

 The dendrites of cerebellar Purkinje neurons are organized in one large, 
2- dimensional fan. Emerging from the soma is a thick primary dendrite which then 
branches out evenly into a large array of higher order dendrites densely covering the 
plane of the Purkinje neuron. The dendrites of Purkinje neurons are densely covered 
by spines (>3/μm). The spines are the target of excitatory synapses from the parallel 
fi bers, one of the two main groups of inputs to Purkinje neurons. The other main 
inputs are the climbing fi bers. These inputs synapse on the main dendrite and via 
multiple synaptic connections cause a massive Ca 2+  spike-mediated depolarization 
of the whole Purkinje neuron, a complex spike. In such a complex spike, several Na +  
action potentials ride on a Ca 2+  spike envelope. In contrast, the simple spikes fi red 
by Purkinje neurons are single Na +  action potentials. They do not back-propagate 
into the dendritic trees due to the low Na +  conductance density of the Purkinje neu-
ron dendrites and the large current sink the multiple dendritic branches constitute. 
Besides Na +  and Ca 2+  conductances, the dendrites of Purkinje neurons contain a 
diverse set of K +  and mixed cation conductances which regulate spiking and excit-
ability (Martina et al.  2003 ). 

 The function of the dendrites of central neurons is not completely clear. While a 
general understanding of the function of most brain regions exists, the exact nature of 
the input–output transformations of individual neurons in vivo is not known with 
certainty. Hence, we know that primary visual cortical neurons fi re in response to the 
presence of a properly oriented stimulus in their receptive fi eld (DeAngelis et al. 
 1993 ; Henry et al.  1974 ). But we do not know how exactly the individual neurons 
integrate all their synaptic inputs to arrive at this specifi c response. This issue is 
aggravated by the fact that in an area like the cortex the synaptic input to any neuron 
is many synapses removed from any sensory input or motor output. Furthermore, 
activity reaching cortical pyramidal neurons has often traveled trough recursive corti-
cal connections: the representational meaning of input spike trains is simply not clear. 
Due to the lack of understanding of the coding function (what aspect of the external 
world does neuronal/dendritic activity code for?), discussion has often centered on 
the underlying computational function (what is the signal transformation performed 
by dendrites). One proposal is that dendrites are merely collecting synaptic inputs in 
the regions they are traversing. According to this view, it is the function of different 
branching patterns to sample inputs from different regions (Cuntz et al.  2008 ; Cuntz 
 2012 ). Another proposal is that dendrites are involved in purposely modifying the 
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incoming synaptic signals. Dendrites have been shown to boost synaptic inputs, 
 normalize its waveform, and locally integrate a subset of inputs before passing the 
result on to the soma (Berger et al.  2003 ; Polsky et al.  2004 ). Both the passive electro-
tonic properties of dendritic trees as well as their ionic conductances contribute to the 
modifi cation of synaptic potentials. While we agree that dendrites serve both input 
sampling and input modifi cation, the current study is only  concerned with the latter. 

 So what are the signals dendrites have to process in the functioning brain? One 
class of signals are obviously specifi c sensory information, retrieved memory con-
tents, and motor programs. But, noise and background fl uctuations are also ubiqui-
tously present in the brain. Ion channel noise, spontaneous synaptic release, and 
background network activity are some examples. Some neurobiological processes 
which generate membrane potential fl uctuations most likely do not represent rele-
vant information, such as the stochastic opening and closing of ion channels caused 
by thermal protein structure fl uctuations (ion channel fl icker, Hille  2001 ). However, 
even though the ion channel fl icker is not thought to represent information about the 
external environment, this stochastic process is still important in setting the opera-
tion regimes for neurons (Schneidman et al.  1998 ; Cannon et al.  1998 ). 

 Other forms of background activity, such as the synaptic background activity 
prevalent in several brain regions, do likely carry information (Destexhe and Paré 
 1999 —but see    Waters and Helmchen  2006  for a differing view). Since this informa-
tion is probably contextual and not directly correlated to a stimulus presented by an 
experimenter, the exact nature of this information is diffi cult to elucidate, and the 
distinction between noise and contextual fl uctuations is diffi cult to make. 
Furthermore, the statistical properties of these background fl uctuations (amplitude, 
power spectrum) could be of relevance, while the precise instance of the signal 
could be irrelevant. In any case, neurons are not existing in a quiescent resting state 
but are exposed to ongoing noise and background fl uctuations (used interchange-
ably here) from diverse sources. Background activity in the cortex is signifi cant and 
state dependent. During wakefulness, rapid-eye-movement sleep, and ketamine 
anesthesia, cortical neurons experience a high-conductance state. A constant bar-
rage of partially synchronized excitatory and inhibitory synaptic potentials causes 
signifi cant (standard deviation > 2 mV) membrane potential fl uctuations which can 
be approximated as self-correlated noise (Destexhe et al.  2001 ). Background activ-
ity in the cerebellum is equally important, with constant (>1 Hz) synaptic input 
from 10 6  parallel fi bers depolarizing the Purkinje neurons (Rapp et al.  1992 ). 
Mechanistically, this background activity depends more on the single cells than on 
networks of neurons. This is the case since Purkinje neurons fi re tonically in the 
absence of synaptic input. 

 Naturally, signal processing and transmission work best in low-noise environ-
ments. The nervous system is no such low-noise environment, and the background 
noise could interfere with nervous system function. Hence, likely processes evolved 
which compensate for the noise or even take advantage of it. But little is known how 
dendrites cope with the brain’s background activity. A number of studies by 
Destexhe and colleagues (Hô and Destexhe  2000 ; Destexhe and Paré  1999 ;    Destexhe 
et al.  2002 ) have shown how the cortical synaptic background activity infl uences the 
membrane properties of cortical pyramidal neurons. They found that neurons 
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became depolarized and had shortened passive integration time constants and action 
potential back-propagation was enhanced (Hô and Destexhe  2000 ). The effect of 
cerebellar background activity is equally believed to be a depolarization of neurons 
and a shortening of passive time constants (Jaeger and Bower  1994 ; Rapp et al. 
 1992 ). While these results are intriguing, general principles of how dendrites cope 
with noisy inputs are not understood. 

 We have recently developed an inverse method for relating dendritic function to 
structure (Stiefel and Sejnowski  2007 ; Torben-Nielsen and Stiefel  2009 ,  2010a ,  b ). 
This method is based on applying a genetic algorithm to morphologies generated by 
a morphogenetic algorithm (Fig.  9.1 ). The genetic algorithm tests for a user-selected 
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  Fig. 9.1    Inverse approach and the simulation protocol. ( a ) Schematic of the inverse approach. 
A pool of parametrized model specifi cations is translated to a model neuron. Then, the perfor-
mance of each model at the task at hand is assessed. Based on this performance, a genetic algo-
rithm selects and slightly mutates the model specifi cation. The algorithm iteratively increases the 
performance of the model neurons at the predefi ned computation. ( b ) Simulation protocol used to 
assess the model’s performance.  Left : Initial setup defi ning the soma position and the locations 
where synapses can be added. In the noiseless case, synapses are inserted when a dendrite is inside 
the “target location” ( green dots ). In case of spatial noise, a stochastic distribution defi nes whether 
a synapse is actually added ( green dots ) or not ( gray dot ). In case of temporal noise, a uniform 
distribution jitters the exact activation time of each synapse. ( Panel a  reproduced from Torben-
Nielsen and Stiefel ( 2010a ,  b ))       
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function and selects the top-performing morphologies for inclusion in the next 
 generation. Genetic operations are performed on the parameter strings encoding the 
neural morphologies.

   In this study, we apply this method to study the morphologies of dendrites opti-
mized for increasingly stochastic inputs. This should give us a series of artifi cial 
model neurons which allow us to investigate the integration of noisy inputs.  

9.2     Methods 

 For the details of our optimization method we refer to Torben-Nielsen and Stiefel 
( 2009 ,     2010a ,  b ). The computational tasks we optimized for in this study were a 
stochastic variation of the input-order detection task investigated in Torben-Nielsen 
and Stiefel ( 2009 ). The original, deterministic task is designed so that neurons 
receive two distinct groups of inputs at different predefi ned locations in space and 
that these synapses are activated at a predefi ned time with a delay (Δ t ) between the 
two groups. The goal we defi ne for the neuron is to respond as strongly as possible 
to one temporal order of activation of the two groups and as weak as possible to the 
inverse temporal order. 

 This differential response (= performance,  P ) is defi ned as the ratio between the 
amplitudes of the compound EPSP, in the non-preferred direction, divided by the 
response in the preferred direction:

  

p =
A
A

null

pref

,

   

with  A  being the EPSP amplitude at the soma. 
 The soma is located at the center, and two synaptic target zones are defi ned in 

opposing directions at 200 μm away from the soma. The synaptic zones are spheri-
cal and have a radius of 50 μm. 

 In this work we introduce both spatial and temporal noise (but never both simul-
taneously) as sketched in Fig.  9.1b . In the deterministic task, the model neuron 
receives one synapse per 5 μm of dendrite that grows through the synaptic zones. In 
the spatial noise case, the synapses are added with some level of stochasticity: not 
every 5 μm a synapse is necessarily inserted. Higher spatial noise levels mean that 
less and less synapses get inserted into the model neuron. Thus, the actual location 
is not modifi ed, but the probability ( P ) that a synapse will be inserted at that location 
is. Because we want to exclude neurons that are “optimized” for one noise level, we 
assess the performance of each model neuron at fi ve noise levels: once for fi ve noise 
levels between 0 and 25 % of noise and once with fi ve noise levels between 0 and 
50 % noise. In the deterministic case, all synapses belonging to a group are activated 
at either time t or at  t  + Δ t  (Δ t  = 30 ms, because 30 ms proved to illicit strongest 
responses in passive model neurons (Torben-Nielsen and Stiefel  2009 ). Temporal 
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noise assigns to each synapse a uniformly distributed activation time on [ T  −  ε ,  T  +  ε ] 
where  T  stands for the appropriate time (either  T  =  t  or  T  =  t  + Δ t ) and  ε  is the magni-
tude of the temporal jitter, which is here set to 5 ms (Fig.  9.1b ). All optimization 
parameters and electrical defaults are described in Tables 1 and 2 from Torben- 
Nielsen and Stiefel ( 2009 ). 

 In contrast to the original study, where the optimization goal was a linear combi-
nation of multiple objectives, we used a multi-objective optimization algorithm. 
The two objectives are (1) the performance in the task as outlined above and (2) 
minimization of the total length. The latter objective is inspired by the parsimony 
principle generally found in nature. In multi-objective optimization, selection of 
good performing solutions is based on the ranking “performs equally,” “performs 
worse,” or “performs better.” More specifi cally, in theory, the algorithm fi nds a set 
of solutions which “perform equally”; this set is called the Pareto front. All indi-
viduals on the Pareto front are equally good solutions, which means that increasing 
the performance on one of the objectives will result in a decrease in the other objec-
tives. Thus, while there can be a large variation in the solutions, they are said to be 
not worse than one another as the objectives are often confl icting. In the simulations 
performed here, we used an initial population size of 250 individuals and ran the 
optimization for 5,000 generations. To avoid overfi tting a particular instance gener-
ated by one random seed, we tested each model with fi ve random seeds and used the 
average outcome to measure the performance. We have no way of knowing if the 
genetic algorithm converged to an optimum and how close the optimization prod-
ucts are to a true optimum. Nevertheless, we argue that they are reasonably close 
because (1) in previous work the solution found by the genetic algorithm was essen-
tially at the analytically computed optimum (Torben-Nielsen and Stiefel  2009 ) and 
(2) when distinct runs (starting at different locations in the fi tness landscape due to 
different starting random seeds) converge to a similar output, we can interpret that 
phenomenon as the algorithm having found a global optimum.  

9.3     Results 

 The optimization runs yielded model neurons that performed well as input-order 
detectors. By adopting a multi-objective optimization strategy, a set of model neu-
rons is obtained after the optimization. These models are performing “not worse” 
than one another and reside on the Pareto front: the location that represents their 
performance on both optimization objectives. Smaller values are better. A relevant 
part of the set of solutions (input-order detection ratio  P  < 0.8 and total 
length < 2,100 μm) is shown in Fig.  9.2  (left). Clearly, a trade-off can be seen 
between both objectives. We consider better models to be aligned with the dotted 
arrow as these models score well on both objectives (rather than standing out in one 
of the objectives while neglecting the other objective). For fairness model compari-
son, we compared the different noise-affected models when they perform input-
order detection at  P  = 0.7. One important observation is that the noiseless models 
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perform worse than the models in which spatial or temporal noise is introduced 
(Fig.  9.2a , black triangles). Additionally, the models subjected to higher noise levels 
(50 % spatial noise or uniform jitter of 5 ms) perform best. The model neuron per-
forming input-order detection nearest to  P  = 0.7 is plotted in Fig.  9.2b . In case of the 
spatial noise, we plotted the synapses at the highest noise levels (either 25 or 50 %). 
A second important observation is that at the same performance of input-order 
detection (say at  P  = 0.7), the model neurons subject to noise are smaller compared 
to the noiseless model neurons. Consequently, the model neurons subject to higher 
noise levels also contain less synapses.

   In order to further elucidate how smaller dendritic trees would be benefi cial for 
performing input-order detection on noisy inputs, we used a simplifi ed ball-and- 
stick model neuron. This model neuron is composed of only a soma and two 
unbranched dendrites, bearing groups of four or less synapses each; electrical prop-
erties were the same as in the morphologically elaborate models. 

 We tested how the ball-and-stick model integrated stochastic and deterministic 
synaptic inputs. For this, we tested these ball-and-stick models for input-order 
detection over a range of time intervals (Δ t ) in both temporal orders between the two 
groups of synapses. We then calculated the ratio between the maximum compound 
EPSP amplitudes in the preferred and non-preferred direction as a function of Δ t  
(Fig.  9.3 ). In the deterministic case, the inputs arrived exactly Δ t  apart, whereas in 
the stochastic case (as in the optimization runs), they were jittered around that time.
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  Fig. 9.2    Optimization results. ( a ) Relevant portion of the optimized models displayed in terms of 
their performance on both objectives. The  dotted arrow  indicates the axis along which we consider 
models “better” as they perform well on both objectives simultaneously. The noiseless models 
perform worse than model subjected to noise. Models achieving the same performance in input- 
order detection ( y -axis) are smaller when subjected to noise during optimization. Higher noise 
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Representative model morphologies after optimization under different noise levels: spatial noise of 
25 % (S-25 %) or 50 % (S-50 %) and temporal noise with 2 (T-2 ms) and 5 (T-5 ms) ms jitter. The 
models are chosen to have similar input-order detection performance  P  = 0.7.  Red dots  indicate the 
synapses. In case of spatial noise, the synapses at the highest noise level are shown       
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   While we took measures in the optimization procedure against unrealistically 
small compound EPSPs (that lead to trivial solutions), we employed no such mea-
sures for EPSP size in the ball-and-stick model simulations. In these neurons, 
smaller EPSPs performed better due to a more linear addition of small voltage dele-
tions. The relevant comparison here, however, is between models with the same 
number of unitary synapses at different noise levels. 

 We found that on average, all models performed the same with and without tem-
poral input noise. Independently of the number of synapses, the input-order detec-
tion performance did not increase or decrease with increasing stochasticity. What 
did change, however, was the variance around the mean performance, which was 
higher (better), the fewer synapses a neuron contained. The maximum input-order 
detection performance increased with fewer synapses with respect to the case in 
which all synapses were activated simultaneously (Fig.  9.3 ). 

 Our interpretation of the prevalence of smaller neurons with fewer synapses in 
the optimizations hence is as follows:

    1.    The mean input-order detection performance of neurons (independently of the 
number of synapses) does not change with increased noise.   

   2.    In contrast, the variance of the input-order detection performance is higher in 
neurons with few synapses   , and positive outliers (very high performance) are 
more likely.   

   3.    When such cases of very high performance occur, the corresponding neurons are 
always rewarded by the genetic algorithm and selected for inclusion in the next 
generation.   

   4.    Over time, this enriches the population in neurons with fewer synapses.     

 The genetic algorithm acts on a population of neurons, in which it enriches high- 
performing neurons. This is also the case if the high performances are not consistent 
but just more likely, as in the case of neurons with fewer synapses. 
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 The biological interpretation of this fi nding is that a  population  of neurons with 
fewer synapses per neuron can perform better than a population in which all input 
is relayed to all neurons. This originates from the fact that some neurons with less 
input will perform better than the average neuron that receives more but stochastic 
inputs. Such populations will be more likely to have at least one neuron reacting 
very strongly. In neurons with more synapses, the stochasticity will average out, 
and the response of the different neurons will be more similar to each other. A popu-
lation with such many-synapsed neurons will be more likely to miss positive outli-
ers. Therefore, we hypothesize that any network which aims to detect surprisingly 
large events in heterogeneous input streams should be composed of neurons with 
few synapses.  

9.4     Discussion 

 Our fi ndings show a surprising decrease in dendritic size when optimizing neural 
morphologies for optimal response to increasingly noisy inputs. A standard way to 
overcome the stochasticity to individual elements of a system is to use a large num-
ber of them. In this way, the fl uctuations of the individual elements will cancel out. 
However, this was not the solution found by the genetic algorithm we employed to 
fi nd optimized dendritic trees for input-order detection on stochastic inputs. 
Surprisingly, the genetic algorithm found smaller neurons receiving less synapses 
with increasing stochasticity of the input streams. 

 This fi nding suggested to us that for input-order detection it is  not  crucial to 
cancel out noise. In fact, variation between different instances of stimulus presenta-
tions might be benefi cial as is getting different opinions on one question. Simulations 
with a simplifi ed ball-and-stick model demonstrated this mechanism and supported 
this proposal. Neurons with fewer synapses will be more likely to pick up positive 
outliers when performing input-order detection. This is because that the selection 
algorithm picked neurons from a population which, by chance, picked up a positive 
outlier. This selection mechanism favored small neurons, which will also respond 
well to positive outliers in a population of neurons in a brain area or ganglion. 
However, the population of neurons in the genetic algorithm is not meant as a model 
for a population of neurons in such a brain area or ganglion. 

 The computational task we investigated here, stochastic input-order detection, is 
an interesting and time-critical task most likely performed by a number of neural 
systems (Stiefel et al.  2012 ). However, neurons will certainly perform a large num-
ber of other computational functions as well, some of which will not be enhanced 
by noise. Additionally, while we did study the infl uence of active conductance in the 
deterministic input-order detection task (Torben-Nielsen and Stiefel  2009 ), we have 
not investigated the role of active conductances in the stochastic version nor did we 
investigate spike initiation in the soma/axon, which could further infl uence neuronal 
morphologies. 
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 We speculate that in contrast, neurons which are mainly concerned with carrying 
out computational functions harmed or at least not benefi ted by noise will be large. 
The cortical layer V pyramidal and cerebellar Purkinje neurons described in the 
introduction are unlikely to execute such noise-benefi ted computational functions on 
a whole-cell level. Smaller neurons, such as cerebellar granule cells or cortical inhib-
itory interneurons, are more likely to execute computational functions aided by noise. 
Large neurons could still compute such functions on a smaller scale of neural organi-
zation, such as the level of individual spines (Branco et al.  2010 ; Stiefel et al.  2012 ). 

 This study also demonstrates the usefulness of our inverse method for mapping 
computational functions on dendritic morphologies. Human intuition often fails at 
complex issues, such as relating a neural morphology to its response to noise. In 
essence, our approach fi nds the approximate inverse solution to the stochastic 
nonlinear partial differential equation describing the multi-compartmental model of 
a neuron. This is no trivial task, and surprises about function–structure relationships 
are inevitable. We hope to employ this approach in the future to probe a variety of 
computational functions of neurons.     
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