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    Abstract     Dendrites play an important role in neuronal function and connectivity. 
This chapter introduces the fi rst section of the book focusing on the morphological 
features of dendritic tree structures and the role of dendritic trees in the circuit. We 
provide an overview of quantitative procedures for data collection, analysis, and 
modeling of dendrite shape. Our main focus lies on the description of morphologi-
cal complexity and how one can use this description to unravel neuronal function in 
dendritic trees and neural circuits.  

1.1         Introduction 

 Probably the most striking feature of a neuron is its characteristic morphology: 
dendritic and axonal processes sprout as intricate tree structures to enable connec-
tions with other neurons. Through their dendrites, neurons receive signals from 
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other neurons, and via their axons they transmit signals to other neurons. Historically, 
research on neuronal morphologies has focused more strongly on dendrites because 
the larger diameters of their branches make them more amenable experimentally and 
dendrites cover a more restricted space compared to axons. Only recently, full recon-
structions of long-ranging axons have become available (Oberlaender et al.  2011 ; 
Ropireddy et al.  2011 ). The increase in the quantity and quality of neuronal staining 
and microscopy methods sparked a revived interest in morphological analysis and 
anatomical circuits such as in the projects of the Blue Brain Project (Markram  2006 ), 
the cortical column in silico project by Bert Sakmann (Oberlaender et al.  2012 ), 
and the connectomics approach (Helmstaedter et al.  2011 ). In this  chapter we 
 summarize the methods of morphological analysis of dendritic tree structures and 
argue that knowledge obtained through these methods will be invaluable for resolv-
ing the circuitry and function of the nervous system. 

 Dendritic trees come in all shapes and sizes (Fig.  1.1 ). They range from a total 
length of a few tens of micrometers to a few millimeters. Some neurons have only 
one main dendritic branch, while others possess up to 15–20. Some branches mean-
der strongly, while others are approximately straight. Dendritic morphologies vary 
signifi cantly even within one neuronal class (Ramaswamy et al.  2012 ; Soltesz 
 2005 ). In addition to this morphological diversity, the molecular composition of ion 
channels in the membrane strongly differs along the stretch of one dendrite (Migliore 
and Shepherd  2002 ), and more pronounced differences even exist between neurons 
of different types. Why such a diversity?

   To answer this question it is necessary to consider the functions pertaining to the 
dendritic tree. Dendrites clearly serve two pivotal roles in the process of signal inte-
gration. First, neuronal morphology defi nes and is defi ned by the circuitry. The 
major element of neuronal connectivity is the synaptic contact between the output 
axon of one neuron and the input dendrite of another. As such, a precise morphol-
ogy is crucial to establish the connectivity required for the nervous system to oper-
ate normally. Secondly, the precise morphology of a dendrite and its membrane’s 
ion channel composition set the computation that a neuron performs on its inputs, 
i.e., the propagation and integration of synaptic input signals along the dendritic 
membrane up to the axon initial segment, the location where the neuronal output is 
typically generated (Van Elburg and Van Ooyen  2010 ; Mainen and Sejnowski  1996 ; 
Silver  2010 ; Torben-Nielsen and Stiefel  2010 ). 

 Studying dendritic trees thus reveals mechanisms of function in a neuron in 
terms of its connectivity and computation. Neurons of different types serving differ-
ent functions should therefore noticeably differ in the morphology and/or physiol-
ogy of their dendrites. Indeed, as Ramón y Cajal already illustrated more than 
100 years ago, dendritic morphology is a defi ning feature of neuronal classes upon 
which neurons can be categorized. Up to this day, dendrite morphology represents 
one of the main criteria for classifi cation of neurons into individual types (Cannon 
et al.  1999 ; Migliore and Shepherd  2005 ). At the same time, due to its wide implica-
tion in neuronal functioning, dendritic morphology plays a role in many pathologi-
cal cases. Neurodegenerative diseases, autism, epilepsy, Parkinson, Alzheimer, and 
many others have been linked to changes in dendritic and axonal morphology 
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(Kaufmann and Moser  2000 ; Moolman et al.  2004 ; Srivastava et al.  2012 ). Also, 
many genes and proteins involved in dendrite formation have recently been identi-
fi ed enabling the study of dendritic dysfunction in a more systematic manner (Jan 
and Jan  2010 ; Nagel et al.  2012 ). Different facets of neural function can therefore 
be studied directly taking advantage of knowledge of dendrite morphology: the role 
of different cell types, malfunctions in nervous tissue, development of neural func-
tion, and emergence of function in the single cell and in the circuitry. For all these 
reasons, neuronal morphology lies at the core of many studies in neuroscience. But 
are there really objective measures to quantify neuronal morphology per se?  

  Fig. 1.1    Diversity of dendrite morphology. Different dendritic morphologies illustrating their wide 
diversity in neural systems. Dendrites are laid out on the same scale: ( red ) rat cortical pyramidal cell 
(Wang et al.  2002 ); ( cyan ) fl y lobula plate HSN cell (Cuntz et al.,  2008 ); ( orange ) rat thalamic relay 
neuron (Destexhe et al.  1998 ); ( yellow ) rat hippocampal pyramidal cell (Ishizuka et al.  1995 ); ( green ) 
rat cerebellar Purkinje cell (Vetter et al.  2001 ); ( pink ) rat neocortical neurogliaform cell (Furtak et al. 
 2007 ). Note the differences in size, overall shape, and diameters. Data downloaded from Neuromorpho.
org (Ascoli et al.  2007 ) with reference to the works in which they originally appeared       
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1.2     Dendrite Reconstruction, the Data Collection Process 

 Ultimately, all quantitative measures of neurite morphology are extracted from 
microscopy data. After an initial stage in which neuronal tissue is prepared and 
neurons are stained or labeled, a neuron’s most prominent features are accessible 
by visually inspecting it under the microscope. Some general features such as over-
all size, spatial embedding, and branching complexity can already be resolved at 
this stage. 

 However, for a thorough quantifi cation of the dendrite structure, a reconstruc-
tion, i.e., a digital representation, of the morphology is required. Reconstructions 
can then be used in detailed multi-compartmental simulations to calculate the 
current fl ow within the tree structure (see chapter “Dendritic Computation”) or, as 
discussed in this chapter, be used for detailed morphological analysis. Because 
the choice of method used for digitizing a neuronal morphology has consequences 
for the further analysis, we briefl y describe the most common procedures. The 
very fi rst digital reconstructions were obtained by controlling the microscope’s 
focus with the  computer using an electrical stepper (Capowski  1989 ; Glaser and 
Glaser  1990 ). Nowadays, three-dimensional image stacks obtained from confocal 
and multiphoton microscopes are standard to resolve the z-dimension in the tis-
sue. Advances in staining methods, in particular using genetic tools, allow for 
staining distinct neurons or neural populations in different fl uorescent colors (Lee 
and Luo  1999 ; Livet et al.  2007 ). In addition, novel algorithms and software pack-
ages have recently been developed to facilitate the reconstruction process of mor-
phologies. These include the most popular commercial one called Neurolucida 
(Microbrightfi eld) and many freely available tools such as VAA3D (Peng et al. 
 2010 ), the Trees Toolbox (Cuntz et al.  2010 ), Neuromantic (Myatt et al.  2012 ), 
and the FIJI neurite tracer (Longair et al.  2011 ) amongst others. In principle, auto-
matic reconstructions of morphologies from neural tissue preparations could pro-
vide objective criteria and relieve the human labor associated with manual 
reconstruction. However, none of the software packages available at present pro-
vide tools to fl awlessly reconstruct the entire cell, and manual intervention is still 
required in most cases. 

 A recent technical development has led the connectome (i.e., the complete recon-
struction of all neurons and their connections within a small chunk of neural tissue) 
to become experimentally accessible at histological scales. This is being made pos-
sible for example by combining the resolution of electron microscopy with ion 
beam or microtome sectioning (Denk and Horstmann  2004 ; Knott et al.  2008 ). It is 
important to note the different resolution of the current reconstruction techniques: 
while confocal and light microscopes achieve spatial resolutions of a fraction of a 
micrometer, electron microscopes reach a level of detail in the nanometer range. 
Dendritic spines or synaptic puncta can therefore hardly be resolved with a light 
microscope. Electron microscopes have a much higher spatial resolution, but the 
resulting amounts of data are huge. Obviously, the more detailed the analysis, the 
fi ner grained the reconstructions need to be.  
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1.3     Digital Storage of Neuronal Morphologies 

 The de facto standard to describe neuronal morphologies is the SWC format 
(Cannon et al.  1998 ), where a neuronal morphology (be it dendrite or axon) is a set 
of connected nodes directed away from a root node. Since each node is attributed 
one diameter value, the segments in the graph each describes a frustum, i.e., a trun-
cated cone, where the starting diameter of one frustum is the ending diameter of the 
parent frustum. The morphologies are encoded as plain ASCII text fi les that contain 
seven values to describe each node: (1) the node index starting at the value “1”; (2) 
a region code (or “type”) describing whether a node belongs to the soma, the den-
drite, or any other region of the neuron; (3–5)  x -,  y -, and  z -coordinates; (6) the 
diameter at the node location; and (7) the index of the parent node where the root 
parent index is “−1.” In principle, most neuronal structures (dendrites and axons) 
can be represented in suffi cient detail although an accurate description of the soma 
and spines is hard to represent by connected frusta. Apart from the SWC format, 
digital reconstructions obtained by (recent) commercial software programs such as 
NeuroLucida (Microbrightfi eld) are provided in the software’s internal proprietary 
fi le types, and they contain additional options to describe a morphology including 
metadata. For instance, the network context, e.g., laminar structures and tissue 
boundaries, can be annotated separately.

   An entirely different way to represent neurons is to describe their shape as a 
mesh. A mesh is a detailed description of the surface of a body by means of a list of 
vertices that are connected to polygons (usually triangles). The level of detail can be 
adjusted by the number of vertices used to cover the surface and is generally much 
higher compared to the SWC description mentioned above. Consequentially, mesh 
representations of neurites are often used in simulations that require high spatial 
accuracy such as reaction–diffusion of molecules along and across membranes 
(Hepburn et al.  2012 ; Kerr et al.  2008 ). 

 In an effort to standardize neuroscientifi c models that span single neurons to 
entire networks the NeuroML initiative in the fi eld of neuroinformatics has intro-
duced its own formalism describing neuronal morphology, MorphML (Gleeson 
et al.  2010 ). The latest version, NeuroML 2.0, includes the possibility to describe 
functional characteristics of a model (e.g., the Hodgkin–Huxley equation), thereby 
making it possible to link morphological attributes with ion channel features and 
dynamics in one unifi ed format. 

 Another development in the fi eld of neuroinformatics is the advent of databases 
containing neuronal data and models that are open to the public. Thanks to this 
trend, reconstructed morphologies from different labs are widely shared in the sci-
entifi c community. Several labs host their own databases that can be accessed 
through the Internet. The most complete database, NeuroMorpho.org (Ascoli et al. 
 2007 ), shares morphology fi les from a large number of different labs, standardizes 
them, and makes them available freely in the public domain. At the time of writing, 
the database contains almost 9,000 reconstructed morphologies in a standardized 
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SWC format. Among the available databases some also combine morphologies of 
single neurons with contextual circuit information, e.g., the standard brain data-
bases for a large variety of insects (  http://www.neurobiologie.fu-berlin.de/beebrain/
Links.html    ). Some morphological reconstructions are also made available in 
 combination with their electrical models, e.g., ModelDB (Migliore et al.  2003 ), 
allowing the morphology/function relations to be studied in detail.  

1.4     Single-Neuron Morphometry and Quantifi cation 

 Once digital reconstructions are obtained and stored, they can be used for further 
analysis and quantifi cation. Quantitative analysis of neuronal morphologies can be 
used to address distinct research questions. One such question addresses the cat-
egorization of neurons into types. For this purpose, one discriminative measure 
can be suffi cient. Another analysis strategy, however, is needed when investigating 
the differences in neuronal phenotype after genetic manipulation of a neuron. The 
latter might require a far more sensitive analysis likely involving multiple mor-
phometric measures. Due to this diversity of scientifi c questions relying on mor-
phometric analysis, not a single standard approach has yet emerged to quantify 
neuronal morphologies. In this section we discuss the possible methods to quan-
tify morphologies. 

 However, before describing quantitative morphometric analyses in detail, 
we fi rst introduce some terminology pertaining to morphometrics. The Petilla 
 convention (   Ascoli et al.  2008 ), a nomenclature specifi cally designed to describe the 
features of interneurons, sets a standard for some morphological features. However, 
a complete convention is still missing to our knowledge. As mentioned above, a 
neuron’s morphology is described as a mathematical tree that is generally rooted at 
the cell body or the soma (Fig.  1.2 ). A tree is formally defi ned as a noncyclic graph. 
The dendritic stem segments (also know as “trunks” or “initial segments”) sprout 
from this root, and each give rise to a branch. Branches in turn are composed of 
dendritic segments and branch points. Branch points are physical bifurcations at 
which a parent segment divides into two daughter segments. A branch has at least 
one termination point, the point at which the branch ends. In the terminology from 
graph theory, the root, branch, and termination points constitute the set of nodes in 
the tree, while the dendritic segments are the edges. 

 Morphometric measures can be divided into two main categories: topological 
and geometric morphometrics (Uylings et al.  1986 ; Verwer and van Pelt  1983 ). We 
further discuss functional measures that connect morphology directly to its function 
and measures to quantify similarity between neurons. The topological morphomet-
rics deal with the branching structure of the tree independently of metric units (e.g., 
number of branch points and branch order). For geometric analyses, the topology is 
embedded in real space, thereby giving a shape to the topology. Associated  measures 
consequently have metric or angular units. The functional measures refer to a 
 morphology's function in the circuit and its ability to connect to other neurons and 
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to integrate inputs. Many other distinctions between types of morphometrics exist, 
such as the distinction between global/scalar and local/vector morphometric 
 features. An example for the latter is the distinction between total length of a neuron 
and the individual lengths of all segments in a neuron. The total length is a global, 
scalar value while the individual lengths are local values. Table  1.1  summarizes the 
geometric and topological measures presented below.

1.4.1        Topological Measures 

 Intuitive topological measures are the  number of stems  defi ned as the number of 
edges leaving the dendritic root, the  number of branch points , and the  number of 
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  Fig. 1.2    Morphometric analysis of dendrite morphology. ( a ) Topological analyses disregard the 
metric features and describe the connections in the graph underlying the dendritic tree structure. 
Terminology shown for an idealized representation of a neuronal tree. ( b ) For a geometrical analysis, 
the tree is embedded in space and length values, as well as angles play a role.  Inset  shows the 
frustum-based representation of the dendritic structure in space. ( c ) An important geometric mor-
phometric is the path length in a tree. Path lengths are always longer than the Euclidean distances, 
and many other morphometrics are calculated as a function of one of these two measures       
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termination points . For the sake of correctness, we use the term “dendritic root” 
rather than “cell body” or “soma” because in certain neuronal types (for instance 
many insect neurons) the dendrites do not sprout from the soma. However, in most 
cases, the soma is the root of the dendritic tree. The number of stems is sometimes 

   Table 1.1    List of frequently used morphometric measures to quantify neuronal morphologies      

 Property  Brief description    

 Number of stems a   Total number of segments leaving from the dendritic root 
 Number of branch 

points a  
 Total number of branch points in the tree 

 Branch order  Topological distance from the dendritic root. The root has order 0, 
and the order of a segment in the tree equals the number of branch 
points along the path to the root + 1 

 Maximum branch 
order a  

 Maximum branch order in a neuron 

 Degree  Number of termination points downstream of the node under 
investigation 

 Maximum degree a   Maximum degree in a tree. By defi nition the degree at the dendritic root 
 Total length a   Summed segment lengths of all segments in a tree (see next) 
 Segment length  Path length of the incoming segment toward a node 
 Stem length  Path length between a branch point with order = 1 and the dendritic root 
 Interbranch length  Path length between branch points 
 Terminal segment 

length 
 Path length between the termination point and the last branch point 

 Euclidean distance  Can be applied in a similar fashion as the path length. Often used to 
measure the distance between the soma and the termination points 

 Dimension a   Width, height, and depth of the bounding box 
 Taper rate a   The uniform decrease in diameter across a dendritic branch 
 Somatofugal 

tropism a  
 Quantifi cation of the preference of a neurite to grow away from the 

soma. Defi ned as the ratio of a segment’s path length and the 
Euclidean distance between its starting and end point 

 Fractal dimension a   Fractal dimension used as a measure of space-fi lling 
 Contraction  Quick proxy of the fractal dimension: the Euclidean length of a branch 

divided by the path length 
 Partition 

asymmetry a  
 Topological complexity of a tree. A completely asymmetric tree has 

PA = 1, symmetric has PA = 0 
 Lacunarity a   A measure of “holes” in a volume spanned by a tree. See Sect.  1.4.2  
 Horton–Strahler 

index 
 Measure of topological complexity of a tree relating the order and 

asymmetry in that tree. Computed for each branch point. See 
Sect.  1.4.1  

 Strahler number a   The Horton–Strahler index associated with the root of the tree 

   Light shading —topological measures 
  Medium shading —geometrical measures 
  Dark shading —compound measures 
  a Global measure as opposed to distribution of local measures. However, often derived features are 
used as global feature. For instance, to describe the branch order in a tree, a distribution of all 
orders can be given, or the distribution can be characterized by considering the maximum branch 
order, the average branch order, etc. This holds for all local measures  
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used to classify cell types (e.g., bipolar cells in the retina), while the number of 
branch and termination points represent the extent of branching in a tree. Since 
branch points typically are bifurcations in all neurons, the number of termination 
points is the number of branch points plus one. Furthermore, the  branch order  
(or “centrifugal order”) for each node is computed as follows: the dendritic root has 
by convention an order of zero so that the order of a node becomes one plus the 
number of branch points encountered on the path between the inspected node and 
the dendritic root (Fig.  1.2a ). The reciprocal property is the  degree , which is defi ned 
as the number of termination points in the sub-tree rooted at the node under investi-
gation. The distribution (count) of the order and degree of branch points in a tree can 
be used for classifi cation and description of morphologies (Verwer and van Pelt 
 1983 ). Order and degree are often used as auxiliary properties in combination with 
other morphometric features. For instance, any local morphometric measure can be 
plotted against order or degree to create a conditional distribution (see Sect.  1.4.4 ). 
The order and degree are also used in composite morphometrics. One such compos-
ite, topological measure is the  partition asymmetry  that assesses the topological 
complexity of a neuronal tree based on the normalized difference between the 
degree of two daughter branches at a branch point. The partition asymmetry index 
ranges from 0 (completely symmetric) to 1 (completely asymmetric) (van Pelt et al. 
 1992 ; van Pelt and Schierwagen  2004 ). Another composite morphometric based on 
order and degree is the  Horton–Strahler (HS) index  that relates the asymmetry in a 
tree with the depth of the tree (Binzegger et al.  2004 ; Toroczkai  2001 ). The HS 
index is computed at each branch point and equals k + 1 when both daughter branch 
points have equal HS index of k or as max(k 1 ,k 2 ) when the HS indexes of its daugh-
ters k 1  and k 2 , respectively, are not equal. The  Strahler number  is defi ned as the 
Horton–Strahler index associated with the root of the tree.  

1.4.2      Geometric Measures 

 In contrast to topological properties that have no metric interpretation, geometric 
properties consider the spatial embedding of a tree. The segment length values and 
diameters are among the main properties in this category and give rise to a multitude 
of related morphometric properties. The most basic one is the  total dendritic length . 
Distinct parts of the tree can be described in terms of their length as well, e.g.,  stem 
length, interbranch point length,  and  terminal segment length  (Fig.  1.2b ). Also, 
relations between any location in the tree can be described by a length metric in 
terms of the Euclidean distance or the path length between those locations (Fig.  1.2c ). 

 The (somatofugal) tropism factor relates the segment length to the Euclidean 
distance from the dendritic root (Marks and Burke  2007 ; Samsonovich and Ascoli 
 2003 ). The ratio between length and distance is 1 for a segment that grows radially 
away from the dendritic root and 0 for a segment growing concentrically in relation 
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to the dendritic root. Spatial extent and its associated spatial embedding can be 
quantifi ed in a number of ways. Most straightforward is the  dimension : the raw 
bounding box in three dimensions. The  fractal dimension  is a measure of self- 
similarity and is often used as a measurement of space-fi lling (Smith et al.  1996 ). 
By defi nition, a straight line has a dimension of 1, a square has 2, and a cube has 3, 
but dendrites can be associated with fractional dimensions since the space that they 
cover is not fully fi lled. However, the interpretation of the fractal dimension is arbi-
trary and strongly depends on the method used to calculate it. In the “calliper 
method” (Fernández and Jelinek  2001 ), the fractal dimension represents the level of 
meandering of a dendrite, where a straight line has a dimension of 1 and more 
meandering dendrites receive slightly higher values. Since the validity of the fractal 
dimension is disputed in the analysis of neuronal morphologies (Cannon et al.  1999 ; 
Jelinek and Fernández  1998 ),  contraction  of a dendrite might be used as a proxy of 
the fractal dimension (when the fractal dimension is computed using the calliper 
method). Contraction is defi ned for a stretch of dendrite between two points as the 
ratio of the Euclidean distance and the associated path length between those points. 
A straight line has a contraction of 1, while a meandering dendrite has a slightly 
lower value. Intuitively, the relation between contraction and the fractal dimension 
can thus be approximated as fractal dimension ≈ (2 − contraction) for planar den-
drites. Both contraction and fractal dimension quantify space-fi lling. The reciprocal 
morphometric is a measure of “holes” in a morphology and is defi ned by the  lacu-
narity  (Smith et al.  1996 ). Apart from the overall dimension, locally the spatial 
embedding can be assessed by the angles in three dimensions between parent and 
daughter branches. Different variants are in use: the amplitude of the angle between 
the daughters can be measured as well as the angle between the parent segment and 
the daughters (Scorcioni et al.  2008 ). Recently, the perceived planarity of dendritic 
branch points (Kim et al.  2012 ; Uylings and Smit  1975 ) has received renewed atten-
tion as it was linked to optimal wiring principles and led to the development of 
detailed morphometrics quantifying the angles of branch points (van Pelt and 
Uylings  2011 ). 

 The diameter can be specifi ed in relation to its change along the neuronal pro-
cesses, i.e., tapering. Typically diameters reduce along a dendritic cable and can 
thus be approximated by a  tapering rate:  the linear or the nonlinear rate at which the 
diameter decreases per unit of length. Discontinuities in the tapering rate occur at 
branch points and can be referred to by the  child–parent ratio , the ratio between the 
diameters of the parent and the child segments.  

1.4.3     Functional Measures 

 Most morphometric properties inherently have some infl uence on the function and 
electrotonic structure of that neuron: with longer and/or thinner dendritic segments, 
input signals are more attenuated than with shorter and/or thicker segments. Hence, 
distal inputs, all things being equal, contribute less to the electrical activity at the 
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site of action potential initiation compared to proximal inputs. On the other hand, 
some morphological features do not impact on certain aspects of neural computa-
tion: angles in the dendrite do not matter for a current traveling through a dendrite. 
In some cases, morphometric measures are directly inspired by the function of 
 neurons. An exemplary measure for this is  Rall's power , a measure relating the 
diameters of a parent branch and its daughters at the branch point. Wilfrid Rall 
studied the power relation between parent (D) and daughter branch diameters 
( d  1  and  d  2 ),  D   r   =  d   1   r    +  d   2   r   , with “ r ” now coined Rall’s power (Scorcioni et al.  2008 ). 
Rall calculated that for the specifi c power  r  = 3/2, there is continuity in the imped-
ance sensed by centrifugal signal fl ow at branch points such that a dendritic tree can 
be collapsed to a non-tapering, non-branching cable piece useful for applying ana-
lytical solutions of the cable equation to more complex dendrites (Rall  1959 ). 

 The other main function of neurons is to connect to other neurons in order to 
receive input. Specifi c measures directly relate a morphology to connectivity. 
The  critical percolation density  relates the dendritic morphology to the ability to 
connect to other neurons in the network (Costa and Manoel  2003 ). To calculate this 
property one populates a volume with instances of one particular morphology. 
Then, the percolation density is the average density at which a path suddenly 
emerges that leads from one side of the volume to the other along dendritic branches. 
The  excluded volume  (Costa et al.  2005 ; Wassle et al.  1981 ) is a related measure that 
quantifi es the part of a dendritic tree’s spanning volume that is not easily reachable 
for axons to make contacts with. The excluded volume is likely at the center of a 
dendritic structure when surrounded by dense branching. 

 An overarching metric and fi rst approximation of connectivity can be derived 
from Peter’s rule, which states that the number of synapses is proportional to the 
overlap between an axon and a dendrite (Binzegger et al.  2004 ; Peters and Payne 
 1993 ). Therefore, the allowed distance between dendrite and axon at which struc-
tural appositions are thought to occur can be used as a fi rst approximation of con-
nectivity. Note that Peter’s rule associates two morphologies, a dendritic and an 
axonal one, while the percolation density and the excluded volume are single- 
neuron metrics.  

1.4.4      Similarity 

 The aforementioned morphometric measures can be used to categorize morpholo-
gies and rank them on their similarity. Morphometrics can thus be used as a metric 
to quantify similarity between morphologies. In a straightforward fashion, the 
Euclidean distance between scalar morphometrics provides a measure of (dis)simi-
larity. Vector morphometrics comprise a one-dimensional distribution, and hence 
the similarity between two such distributions can be quantifi ed using hypothesis 
tests, of which the Student’s test ( t -test) is the most popular parametric test and the 
Kolmogorov–Smirnov test and ranksum tests are well-known nonparametric 
alternatives. 
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 An issue is that morphometric measures are often not independent from each 
other. Thus, morphometric measures can be seen independent from each other 
(= univariate) or conditioned on other measures (= multivariate). For instance, the 
segment length might be independent of any other feature of the neurite tree 
 (univariate description), or, might be dependent on the topological order of the seg-
ment (conditional, bivariate description), and so forth. Sholl was the fi rst to perform 
such a two-dimensional analysis as he counted the number of intersections between 
the dendritic segments and imaginary concentric circles at increasing Euclidean 
distance from the cell body (Sholl  1953 ). As briefl y mentioned before, any bivariate 
morphometric can be plotted against another, and this is generally referred to as a 
Sholl-like analysis. As an example, one can argue that the segment length changes 
depending on the branch order (Burke et al.  1992 ; Nowakowski et al.  1992 ). Such 
higher order relations surely exist in neurons, but the application of multivariate 
measurements remains restricted due to limited amount of data (a large sample size 
is needed to uncover higher order relations). 

 In addition to comparisons of morphometrics there are dedicated measurements 
to quantify similarity. A fi rst similarity measure is the  tree edit distance  and formal-
izes how many operations (“tree edits”) have to be made to morph one tree into 
another (Heumann and Wittum  2009 ). Another measure of similarity between neu-
rite morphologies is the  shape diffusion index  (Luczak  2010 ). While technically a 
bit more complex, intuitively it can be seen as a measure of how easily a morphol-
ogy can be synthesized using the diffusion-limited aggregation approach (see next 
section and Chap.   5    ). Luczak found that some classes of neurons were “easy” to 
approximate, while others were “harder.” This difference can then be used to express 
similarity.  

1.4.5     Further Quantifi cation 

 The review we presented here is by no means exhaustive; it rather refl ects a choice 
of morphometric measures most commonly used to quantify morphology and link 
morphology to connectivity. Graph theory itself has many ways to describe tree 
structures and network topologies. These descriptions, however, often have little or 
no biological interpretation. A good introduction into more exotic measures to 
quantify neuronal morphologies is provided by Rocchi et al. ( 2007 ). Also, a lot of 
ad hoc measures are in use. These measures are often proposed to study a particular 
trait in a particular neuronal type. For instance, somatofugal tropism was fi rst used 
to quantify the preference of a dendritic tree to direct away from its soma in pyra-
midal cells. Ad hoc measures have the intrinsic drawback that there is no standard 
defi nition of how to compute them, which makes their evaluation and their com-
parison to well-defi ned morphometrics harder. Nevertheless, when picked up by 
others, as in the case of the measure for tropism, these ad hoc measures can make it 
into the standard repertoire of measures and extend the standard battery of useful 
measures.   
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1.5     Algorithms to Synthesize Dendrites 

 Since morphometric measures are so numerous, variable, and dependent on many 
factors like context and age, it is diffi cult to extract principles of dendritic structure 
directly from these measures. In the last two decades, generative approaches were 
developed to study dendritic morphologies by synthesizing (parts of) dendritic 
 morphologies in the computer. The rationale behind this approach is that by gener-
ating dendrites according to a particular principle, resulting synthetic morphologies 
may share morphological traits with real dendrites. This fi nding then can corrobo-
rate the initial hypothesis about the underlying principle. In a sense, it is the compu-
tational neuroanatomy interpretation of Lord Kelvin’s maxim: “I am never content 
until I have constructed a mechanical model of what I am studying. If I succeed in 
making one, I understand; otherwise I do not.” 

 One of the ideas that kick-started the generative approach stems from the seminal 
work of Hillman who described a set of  fundamental parameters  suffi cient to gener-
ate dendritic morphology (Ascoli and Krichmar  2000 ; Hillman  1979 ). Many gen-
erative algorithms are based on this idea by iteratively constructing a dendritic tree 
while sampling from statistical descriptors (Burke et al.  1992 ; Tamori  1993 ). One of 
the fi rst publicly available tools is L-Neuron (Ascoli and Krichmar  2000 ), which 
relies on an L-system in combination with stochastic sampling to generate synthetic 
dendrites. An L-system or a Lindenmayer system (Prusinkiewicz and Lindenmayer 
 1990 ) is a formalism that can recursively generate branched structures, such as 
plants and neurons, from a parsimonious representation. The geometry, however, is 
sampled from statistical descriptors based on morphometric measures. The differ-
ences between existing sampling algorithms mostly lie in the statistical descriptors 
used: the number and selection of parameters as well as their statistical descriptions 
as a parametric model (Ascoli and Krichmar  2000 ; Eberhard et al.  2006 ) or a non-
parametric model (Lindsay et al.  2007 ; Torben-Nielsen et al.  2008 ). 

 A different approach, inspired by principles of neuronal development, has been 
developed over the years by van Pelt and colleagues (van Pelt et al.  1992 ; van Pelt 
and Schierwagen  2004 ). They followed a generative approach that could be used to 
synthesize dendritic topology constrained by the branch order and the number of 
simultaneously developing segments. By adjusting the rate of growth to the num-
ber of developing growth cones, a basic interpretation of competition over resources 
is included. Their work led to the development of a tool, NETMORPH (Koene 
et al.  2009 ), that can generate large networks of interconnected synthetic mor-
phologies by addition of a geometric component to the developing branched struc-
tures (see Chap.   4    ). 

 Note that the aforementioned tools synthesize morphologies without (or to a 
limited extent) considering the interactions with other parts of the tree, with other 
neurons, or with physical boundaries within the circuit. Because neurons do not 
grow in isolation, it can be assumed that not all natural factors are captured by these 
algorithms. A number of recently developed approaches overcome these limitations 
in various ways. 
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 One approach that explicitly takes other neurons into account during the genera-
tion process is proposed by Luczak ( 2006 ) (see Chap.   5    ) and is based on diffusion-
limited aggregation (Hentschel and Fine  1996 ; Witten and Sander  1981 ): 
“neurotrophic particles” are distributed into a bounded space where they randomly 
move. Then, upon colliding with an  n -particle aggregate, the moving particle will 
stick and form an  n  + 1- particle aggregate. Some extra rules are needed to constrain 
the aggregates to biologically relevant structures, but such an aggregation process 
yields realistic synthetic dendritic structures. By using several seeds, i.e., initial 
1-particle aggregates, at the same time within the same bounded space, virtual mor-
phologies under construction effectively compete over resources and hence a bio-
logically plausible form of interaction is captured in the algorithm. 

 Recently another approach was proposed by Memelli et al. ( 2013 ) where a  virtual 
morphology is grown under the presence of environmental infl uences. A branching 
rule determines when a dendritic tree branches, but the direction of growth is solely 
determined by environmental cues. Cues act as biases on the direction of growth. 
Additionally, the virtual morphologies are constrained to a bounded space. As a 
proof of principle, highly realistic morphologies were synthesized by solely taking 
self-referential (i.e., stiffness, soma tropism, and self-avoidance) cues into account. 
So far the environmental interaction is thus limited to the neuron’s own guidance 
cues. However, a cue coming from another neuron is conceptually identical to a cue 
coming from the neuron itself: it is a bias on the direction of growth. Therefore, this 
approach can be directly used to investigate hypotheses about various environmen-
tal cues shaping the fi nal dendrite morphology. 

 A different approach to generate dendritic morphologies is based on the func-
tional implication of the structure of neural trees, the infl uence of diameter values 
on voltage propagation, and circuit connectivity (Cuntz et al.  2007 ,  2008 ,  2010 ; see 
Chap.   6    ). Target points are distributed in a volume of interest and connected itera-
tively to a growing tree in a competitive manner to minimize total wiring cost and 
conduction times. In a post- processing step, diameters are assigned according to the 
propagation dynamics, and a synthetic morphology is created. One advantage of 
using this approach is that it is far less data intensive compared to standard sampling 
methods: the only statistical descriptor in use is a two- or a three-dimensional den-
sity function of the target points. Indeed, no detailed statistics about branching 
angles, segment length, etc. are used, and hence the algorithm is less prone to 
researcher-induced biases. It also permits to draw direct conclusions about the con-
nectivity principles in the circuit. Optimization principles of wiring constraints such 
as the ones used for these models have traditionally been successful at directly pre-
dicting scaling relationships in branching statistics (Chklovskii and Koulakov  2004 ; 
Klyachko and Stevens  2003 ; Wen et al.  2009 ; Wen and Chklovskii  2008 ). This is 
described in great detail in Chap.   7    . 

 Beyond the constraint of connectivity, the hypothetical computational function 
of a neuron can also constrain the morphology. This idea is explored by Torben- 
Nielsen and Stiefel ( 2010 ) and is coined the “inverse approach” (see Chap.   9    ). In the 
inverse approach, morphologies are synthesized with a straightforward sampling 
algorithm. However, the parameters defi ning the statistical distributions from which 
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they are sampled are not based on biological    data. Rather, the parametric distribu-
tions are optimized using evolutionary algorithms so that a model neuron endowed 
with the optimized morphology successfully performs a predefi ned neuronal compu-
tation. The inverse approach can be used in a twofold manner: as a hypothesis tester 
and a hypothesis generator. In case it is hypothesized that a neuron performs a com-
putation, a synthetic morphology can be optimized to perform the same function. 
When the resulting morphology resembles the real counterpart, this result can 
 corroborate the  hypothesis. On the other hand, morphologies can be optimized to 
perform a computation of interest. If neurons in the brain then resemble the synthe-
sized morphology, a hypothesis about the function of these neurons can be proposed. 

 The last approach to be mentioned here is the most elaborate one and is proposed 
by Zubler and colleagues (Zubler et al.  2011 ; Zubler and Douglas  2009 ). They 
developed a phenomenological growth simulator in which growing neurons can 
migrate and interact with structural boundaries as well as other cells within the 
simulated environment. Each growth cone contains the growth rules for this neuron 
encoded in a gene-like format (Zubler et al.  2011 ). The growth rules can use envi-
ronmental cues such as secreted substances or laminar information. In addition a 
growing neurite can also secrete substances and switch on or off growth rules 
depending on its environment. With this setup, many of the environmental com-
plexities of cortical circuitry can be modeled (at least in a phenomenological way).  

1.6     Future Perspectives 

 A major problem with studying dendritic morphology is that the shape of a neuron 
is not a perfect instance of a general blueprint. In the nervous system, individual 
cells have to compete with others as well as with different structures such as glia 
cells and blood vessels. Reconstructed morphologies are always mere snapshots of 
a particular neuron in time and contain the combined effects of development and 
learning. As a result, large variation exists in their morphology. Variation is com-
monly seen as the difference in morphology between members of the same type, 
while diversity is the distinction between different classes (Soltesz  2005 ). In gen-
eral, the description of diversity is easier than the description of variation. For 
instance, it is straightforward to differentiate a motor neuron from a pyramidal neu-
ron. Sometimes, however, the variation within a class is larger than the diversity 
between classes. Purely based on the morphology it is fairly hard to tell apart a layer 
fi ve (L5) pyramidal neuron from a layer six (L6) one. It is even harder to tell the 
difference between L5 pyramidal neurons at different ages. In general, the more 
detailed the research question becomes, the more sophisticated the quantitative 
analysis needs to be. The presented morphometric quantifi cation helps consider-
ably: it provides hard numbers to describe neuronal morphologies. But, how to cope 
with the variance? 

 Here, we sketch three future strategies that will be useful to quantify and under-
stand variation. Let us for example consider the rat sensorimotor cortex that is 
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roughly 2,000 μm thick and layer 5 (in 2-week-old animals) is 650–700 μm thick. 
L5 pyramidal cells have an apical dendrite growing to the pia where it branches 
extensively. A large variation in total length occurs when a neuron’s cell body is 
located deeper in layer 5 and has to extend further to reach the pia (Oberlaender 
et al.  2012 ; Ramaswamy et al.  2012 ). Because the current standard to represent 
morphological reconstructions (e.g., the aforementioned SWC format) only includes 
the geometry of a single morphology, there is no direct way of taking the location of 
the cell body into account. Hence, no statistical model will capture the fact that L5 
pyramidal cells closer to the pia have a shorter apical dendrite. This example illus-
trates a pitfall in the quantifi cation of morphologies: as long as they are considered 
in isolation, simple biophysical explanations for morphometric variation will be 
overlooked. 

 The fi rst strategy to overcome the outlined issue is to include metadata such as 
laminar position and 3D spatial context in the description of a neuron. This strategy 
is adopted in the cortical column model by the group of Oberlaender and colleagues. 
This is summarized in Chap.   8    , where the 3D context is stressed in the reconstruc-
tion of the rat vibrissal cortex. 

 A second strategy is a pragmatic approach to investigate the natural variation in 
neuronal types and relies on the fact that a good statistical model should be able to 
generalize and infer morphometrics as long as the sample size is large enough. By 
using larger samples, the statistical models can better generalize. This strategy is 
adopted by Costa and his colleagues. They analyze morphologies from the complete 
NeuroMorpho.org database to investigate morphological outliers and archetypes 
(Costa et al.  2010 ; see Chap.   3    ). 

 A fi nal strategy we discuss here to alleviate the issue of variance and the lack of 
metadata is to actually study the biophysical mechanisms that underlie neurite mor-
phologies. Our understanding of cell biological mechanisms resulting from genetics 
is increasing rapidly. In Chap.   2    , Tavosanis concisely summarizes some of the 
prominent molecular mechanisms of morphological differentiation that underlie not 
only basic properties as branching and elongation but also more complex behaviors 
requiring interaction between developing dendrites as required for tiling and self-
avoidance. If the underlying mechanisms can be expressed as phenomenological 
rules, morphometrics do not need to be used to deduce morphological traits, because 
the traits and associated hypothesized rules can be studied using the generative 
approach. First attempts to generate morphologies according to developmental rules 
include reports by Memelli et al. ( 2013 ) and Zubler and Douglas ( 2009 ). In the 
future, generative approaches in general coupled with better molecular understand-
ing of morphological differentiation will allow us to explain differences in sizes as 
in the example of the L5 pyramidal cell. Combined with rigorous morphometric 
analysis, it would then be possible to attribute highly varying morphometric fea-
tures not to diversity or variation but to, for instance, avoidance of capillaries or the 
repulsion away from another neuron of a specifi c class. 

 In conclusion, morphology of neurons plays a fundamental role in brain 
 functioning. Using morphometric quantifi cation we are currently able to classify 
some types of neurons. Moreover, rigorous quantifi cation allows us to study mor-
phological traits and their connection to the brain circuit at large. In the future, we 
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expect a synergy between the big data projects generating detailed statistics of 
neurite morphology and their connections (e.g., connectomics), genetic studies 
revealing local interaction rules governing dendritic growth, and generative 
approaches to link  large-scale data and local interactions. Please enjoy the follow-
ing chapters covering the state of the art in the quantitative studies of dendritic 
morphology.     
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