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   Foreword   

 Dendrites have always been there—for hundreds of millions of years—but we 
became closely familiar with their anatomical esthetics only at the end of the nine-
teenth century, following the intellectual fascination and artistic capabilities of sev-
eral great anatomists, in particular Santiago Ramón y Cajal and Camillo Golgi. Like 
the naming of the trees in the forest based on the shape of their crown, many of the 
names given to neurons rely on the particular shape of the dendritic tree—retinal 
amacrine cells, cortical spiny stellate cells, and cerebellar Purkinje cells. Naming 
the trees makes the forest more familiar to us; classifying neurons into anatomical 
subclasses is a natural path towards “knowing your brain”. 

 Next came the understanding that dendrites serve as the major region of neurons 
to “accept” their (pre) synaptic partners and that neurons are polygamist, each inter-
acting with thousands of other neurons—forming large interactive networks. In 
1959, Wilfrid Rall realized that dendrites are electrically distributed devices (rather 
than an isopotential “point”); this ignited the need to understand how the synaptic 
current spreads from the synaptic input site to other dendritic regions, in particular 
to the soma-axon where the output is generated. Rall’s passive cable theory for den-
drites has provided the theoretical foundation for this biophysical understanding. 
The experimental fi nding that the dendritic membrane is endowed with a rich reper-
toire of nonlinear voltage- and ligand-gated ion channels, and that synaptic inputs 
(inhibitory and excitatory) from different input sources target specifi c dendritic sub-
domains, suggested that dendrites (and their synapses) may empower neurons with 
enhanced computational capabilities. 

 With this experimental and theoretical foundation, a new perspective has emerged 
regarding the possibility that dendrites might implement computational functions. 
McCulloch and Pitts (1943) inspired this conceptual jump, demonstrating that logi-
cal operation could be performed by neurons (with their “all or none” “0” and “1” 
spikes, and their excitatory and inhibitory synapses). In 1964 Rall showed in a com-
putational study that the soma voltage is sensitive to the temporal sequence of syn-
aptic activation “swiping” over the dendritic tree, and that this property could be 
used to perform a fundamental computation—sensitivity to the direction of motion. 
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This was the fi rst convincing demonstration that dendrites and their synapses could 
perform elementary computations; it marked the beginning of the 50-year search for 
“dendritic computation”. 

 Remarkable theoretical ideas were published regarding the role of dendrites in 
performing specifi c computations, including (1) the detection of motion direction; 
(2) their key role in collision avoidance; (3) storage and classifi cation of multiple 
input features; (4) calculation of position variables; (5) recovering input signals in 
the presence of strong noise; (6) enhancing temporal resolution for coincidence 
detection. But do dendrites really perform these computations in the behaving brain 
or are these ungrounded (but nevertheless intellectually valuable) theories? To 
answer this we need to connect the (e.g., sensory) information impinging on the 
dendritic tree via its synaptic inputs to the behaviorally relevant information repre-
sented by the neuron’s output. If supplemented with knowledge about synaptic loca-
tion on dendrites, then we could fully link dendritic structure, synaptic activity/
connectivity to the neuron’s function. 

 Finally with the development of new technological (e.g., new refi ned anatomy 
available in this age of “connectomics”) and with the inspiration of theories that 
suggested specifi c mechanisms that might underlie dendritic computation, we are 
now in a position to directly examine whether dendrites compute. Such direct dem-
onstration was fi rst provided by the in vivo study of Single and Borst (1998) and, 
very recently, additional concrete examples were offered as summarized in the 
present book. 

 This book is therefore a highly timely refl ection of “dendrites coming of age”; 
from an anatomical appreciation of dendritic structure (which started 130 years ago 
and are ongoing) via theoretical ideas about dendritic function(s) (which started 50 
years ago and are ongoing), to state-of-the art experimental approaches, enabling 
for the fi rst time to directly link dendritic electro-anatomical structure, synaptic loci 
and activity, to the computational functions of dendrites. 

 In his small insightful book (“An Advice to a Young Scientist”) Ramón y Cajal 
wrote very beautifully the following: “ Basically, the theorist is a lazy person mas-
querading as a diligent one. He unconsciously obeys the law of minimum effort 
because it is easier to fashion a theory than to discover a phenomenon ”. I am 
confi dent that after reading the present book Cajal would be both totally amazed 
and inspired by what we have learned about the anatomical, physiological, and 
molecular secrets that were hidden within the intricacies of  his dendrites . He might 
also admit that he himself was a theoretician. By proposing the “theory of dynamic 
polarization” (the direction of signal fl ow from axon-to-dendrites-to-soma-to-
axon), he laid the foundations for present-day (and future) theories about informa-
tion fl ow in dendrites and about how dendrites process this information—about 
dendritic computation. 

 On a personal note—it is enchanting for a dendritic person like myself to have 
such a fresh view on dendrites, as this book offers—a result of a collaborative efforts 
among an enthusiastic group of young “dendritic lovers” (perhaps inspired by 
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Cajal’s advices to the young). To learn about new developmental principles 
 underlying the unique structure of dendrites, to see experimental validation of ear-
lier theoretical ideas, and to realize as emphasized in this book what is still missing, 
in both theoretical and experimental realms, until dendrites (of both the researcher 
and those of the experimental system studied) are “forced” to fully expose their 
secrets.  

    Jerusalem ,  Israel       Idan     Segev      

Foreword
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  Pref ace   

 In the spring of 2011, two workshop proposals landed on Idan Segev’s desk: both 
were virtually identical, suggesting a workshop for the computational neuroscience 
conference (CNS) in Stockholm later that year. They both proposed a workshop on 
computational approaches to study dendrites and both asked him, Idan, to give a 
keynote presentation. Idan brought us together in what was to become the beginning 
of an ongoing, fruitful collaboration between the three of us, which has presently 
resulted in the book that lies before you. 

 Our goal with this book was to provide a résumé of the state of the art in experi-
mental and theoretical investigations into the functions of dendrites in a variety of 
neural systems. We are happy that so many authors enthusiastically contributed to 
this endeavor, resulting in a total of 29 chapters. The book is divided into two parts, 
each starting with an introductory chapter. 

 The fi rst part of this book focuses on the morphological properties of dendrites 
and summarizes the approaches to measure dendrite morphology quantitatively and 
to actually generate synthetic dendrite morphologies in computer models. This mor-
phological characterization ranges from studying fractal principles to describe den-
drite topologies, to the consequences of optimization principles for dendrite shape. 
We collected individual approaches to study which aspects of dendrite shape can be 
related directly to underlying circuit constraints and computation. 

 The second part of this book focuses on how dendrites contribute to the computa-
tions that neurons perform. What role do dendritic morphology and the distributions 
of synapses and membrane properties over the dendritic tree have in determining the 
output of a neuron in response to its input? We brought together representative stud-
ies, with topics ranging from general to system-specifi c phenomena, some having a 
strong experimental component, and others being completely theoretical. The stud-
ies come from many different neural systems and animal species ranging from 
invertebrates to mammals. With this broad focus we aim to give an overview of the 
diversity of mechanisms that dendrites can employ to shape neural computations. 

 We would like to emphasize that in all our projects together, our contributions 
were exactly equal, in fact, we drew straws to decide on the editor order on the cover 
of this book (which turned out to be alphabetical). We would like to thank all the 
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authors and anonymous reviewers who helped to make this book the fantastic work 
that it is. We would also like to give special thanks to Idan Segev for writing the 
foreword and Alain Destexhe for supporting this volume. Finally, we are particu-
larly grateful to Ann Avouris from Springer who invited us to put this book together 
and who has continuously helped us throughout its preparation. 

 Dear dendritic lovers, enjoy!!  

    Frankfurt, Germany Hermann     Cuntz 
     Berlin, Germany Michiel     W.H.     Remme 
     Lausanne, Switzerland Benjamin     Torben-Nielsen                      

Preface
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   Dendritic Morphology        



3H. Cuntz et al. (eds.), The Computing Dendrite: From Structure to Function, 
Springer Series in Computational Neuroscience 11, DOI 10.1007/978-1-4614-8094-5_1, 
© Springer Science+Business Media New York 2014

    Abstract     Dendrites play an important role in neuronal function and connectivity. 
This chapter introduces the fi rst section of the book focusing on the morphological 
features of dendritic tree structures and the role of dendritic trees in the circuit. We 
provide an overview of quantitative procedures for data collection, analysis, and 
modeling of dendrite shape. Our main focus lies on the description of morphologi-
cal complexity and how one can use this description to unravel neuronal function in 
dendritic trees and neural circuits.  

1.1         Introduction 

 Probably the most striking feature of a neuron is its characteristic morphology: 
dendritic and axonal processes sprout as intricate tree structures to enable connec-
tions with other neurons. Through their dendrites, neurons receive signals from 

      Chapter 1
Introduction to Dendritic Morphology 

             Benjamin     Torben-Nielsen     and        Hermann     Cuntz    

        B.   Torben-Nielsen (*)    
  Department of Neurobiology, Hebrew University of Jerusalem, 
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 e-mail: hermann.neuro@gmail.com  
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other neurons, and via their axons they transmit signals to other neurons. Historically, 
research on neuronal morphologies has focused more strongly on dendrites because 
the larger diameters of their branches make them more amenable experimentally and 
dendrites cover a more restricted space compared to axons. Only recently, full recon-
structions of long-ranging axons have become available (Oberlaender et al.  2011 ; 
Ropireddy et al.  2011 ). The increase in the quantity and quality of neuronal staining 
and microscopy methods sparked a revived interest in morphological analysis and 
anatomical circuits such as in the projects of the Blue Brain Project (Markram  2006 ), 
the cortical column in silico project by Bert Sakmann (Oberlaender et al.  2012 ), 
and the connectomics approach (Helmstaedter et al.  2011 ). In this  chapter we 
 summarize the methods of morphological analysis of dendritic tree structures and 
argue that knowledge obtained through these methods will be invaluable for resolv-
ing the circuitry and function of the nervous system. 

 Dendritic trees come in all shapes and sizes (Fig.  1.1 ). They range from a total 
length of a few tens of micrometers to a few millimeters. Some neurons have only 
one main dendritic branch, while others possess up to 15–20. Some branches mean-
der strongly, while others are approximately straight. Dendritic morphologies vary 
signifi cantly even within one neuronal class (Ramaswamy et al.  2012 ; Soltesz 
 2005 ). In addition to this morphological diversity, the molecular composition of ion 
channels in the membrane strongly differs along the stretch of one dendrite (Migliore 
and Shepherd  2002 ), and more pronounced differences even exist between neurons 
of different types. Why such a diversity?

   To answer this question it is necessary to consider the functions pertaining to the 
dendritic tree. Dendrites clearly serve two pivotal roles in the process of signal inte-
gration. First, neuronal morphology defi nes and is defi ned by the circuitry. The 
major element of neuronal connectivity is the synaptic contact between the output 
axon of one neuron and the input dendrite of another. As such, a precise morphol-
ogy is crucial to establish the connectivity required for the nervous system to oper-
ate normally. Secondly, the precise morphology of a dendrite and its membrane’s 
ion channel composition set the computation that a neuron performs on its inputs, 
i.e., the propagation and integration of synaptic input signals along the dendritic 
membrane up to the axon initial segment, the location where the neuronal output is 
typically generated (Van Elburg and Van Ooyen  2010 ; Mainen and Sejnowski  1996 ; 
Silver  2010 ; Torben-Nielsen and Stiefel  2010 ). 

 Studying dendritic trees thus reveals mechanisms of function in a neuron in 
terms of its connectivity and computation. Neurons of different types serving differ-
ent functions should therefore noticeably differ in the morphology and/or physiol-
ogy of their dendrites. Indeed, as Ramón y Cajal already illustrated more than 
100 years ago, dendritic morphology is a defi ning feature of neuronal classes upon 
which neurons can be categorized. Up to this day, dendrite morphology represents 
one of the main criteria for classifi cation of neurons into individual types (Cannon 
et al.  1999 ; Migliore and Shepherd  2005 ). At the same time, due to its wide implica-
tion in neuronal functioning, dendritic morphology plays a role in many pathologi-
cal cases. Neurodegenerative diseases, autism, epilepsy, Parkinson, Alzheimer, and 
many others have been linked to changes in dendritic and axonal morphology 
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(Kaufmann and Moser  2000 ; Moolman et al.  2004 ; Srivastava et al.  2012 ). Also, 
many genes and proteins involved in dendrite formation have recently been identi-
fi ed enabling the study of dendritic dysfunction in a more systematic manner (Jan 
and Jan  2010 ; Nagel et al.  2012 ). Different facets of neural function can therefore 
be studied directly taking advantage of knowledge of dendrite morphology: the role 
of different cell types, malfunctions in nervous tissue, development of neural func-
tion, and emergence of function in the single cell and in the circuitry. For all these 
reasons, neuronal morphology lies at the core of many studies in neuroscience. But 
are there really objective measures to quantify neuronal morphology per se?  

  Fig. 1.1    Diversity of dendrite morphology. Different dendritic morphologies illustrating their wide 
diversity in neural systems. Dendrites are laid out on the same scale: ( red ) rat cortical pyramidal cell 
(Wang et al.  2002 ); ( cyan ) fl y lobula plate HSN cell (Cuntz et al.,  2008 ); ( orange ) rat thalamic relay 
neuron (Destexhe et al.  1998 ); ( yellow ) rat hippocampal pyramidal cell (Ishizuka et al.  1995 ); ( green ) 
rat cerebellar Purkinje cell (Vetter et al.  2001 ); ( pink ) rat neocortical neurogliaform cell (Furtak et al. 
 2007 ). Note the differences in size, overall shape, and diameters. Data downloaded from Neuromorpho.
org (Ascoli et al.  2007 ) with reference to the works in which they originally appeared       
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1.2     Dendrite Reconstruction, the Data Collection Process 

 Ultimately, all quantitative measures of neurite morphology are extracted from 
microscopy data. After an initial stage in which neuronal tissue is prepared and 
neurons are stained or labeled, a neuron’s most prominent features are accessible 
by visually inspecting it under the microscope. Some general features such as over-
all size, spatial embedding, and branching complexity can already be resolved at 
this stage. 

 However, for a thorough quantifi cation of the dendrite structure, a reconstruc-
tion, i.e., a digital representation, of the morphology is required. Reconstructions 
can then be used in detailed multi-compartmental simulations to calculate the 
current fl ow within the tree structure (see chapter “Dendritic Computation”) or, as 
discussed in this chapter, be used for detailed morphological analysis. Because 
the choice of method used for digitizing a neuronal morphology has consequences 
for the further analysis, we briefl y describe the most common procedures. The 
very fi rst digital reconstructions were obtained by controlling the microscope’s 
focus with the  computer using an electrical stepper (Capowski  1989 ; Glaser and 
Glaser  1990 ). Nowadays, three-dimensional image stacks obtained from confocal 
and multiphoton microscopes are standard to resolve the z-dimension in the tis-
sue. Advances in staining methods, in particular using genetic tools, allow for 
staining distinct neurons or neural populations in different fl uorescent colors (Lee 
and Luo  1999 ; Livet et al.  2007 ). In addition, novel algorithms and software pack-
ages have recently been developed to facilitate the reconstruction process of mor-
phologies. These include the most popular commercial one called Neurolucida 
(Microbrightfi eld) and many freely available tools such as VAA3D (Peng et al. 
 2010 ), the Trees Toolbox (Cuntz et al.  2010 ), Neuromantic (Myatt et al.  2012 ), 
and the FIJI neurite tracer (Longair et al.  2011 ) amongst others. In principle, auto-
matic reconstructions of morphologies from neural tissue preparations could pro-
vide objective criteria and relieve the human labor associated with manual 
reconstruction. However, none of the software packages available at present pro-
vide tools to fl awlessly reconstruct the entire cell, and manual intervention is still 
required in most cases. 

 A recent technical development has led the connectome (i.e., the complete recon-
struction of all neurons and their connections within a small chunk of neural tissue) 
to become experimentally accessible at histological scales. This is being made pos-
sible for example by combining the resolution of electron microscopy with ion 
beam or microtome sectioning (Denk and Horstmann  2004 ; Knott et al.  2008 ). It is 
important to note the different resolution of the current reconstruction techniques: 
while confocal and light microscopes achieve spatial resolutions of a fraction of a 
micrometer, electron microscopes reach a level of detail in the nanometer range. 
Dendritic spines or synaptic puncta can therefore hardly be resolved with a light 
microscope. Electron microscopes have a much higher spatial resolution, but the 
resulting amounts of data are huge. Obviously, the more detailed the analysis, the 
fi ner grained the reconstructions need to be.  
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1.3     Digital Storage of Neuronal Morphologies 

 The de facto standard to describe neuronal morphologies is the SWC format 
(Cannon et al.  1998 ), where a neuronal morphology (be it dendrite or axon) is a set 
of connected nodes directed away from a root node. Since each node is attributed 
one diameter value, the segments in the graph each describes a frustum, i.e., a trun-
cated cone, where the starting diameter of one frustum is the ending diameter of the 
parent frustum. The morphologies are encoded as plain ASCII text fi les that contain 
seven values to describe each node: (1) the node index starting at the value “1”; (2) 
a region code (or “type”) describing whether a node belongs to the soma, the den-
drite, or any other region of the neuron; (3–5)  x -,  y -, and  z -coordinates; (6) the 
diameter at the node location; and (7) the index of the parent node where the root 
parent index is “−1.” In principle, most neuronal structures (dendrites and axons) 
can be represented in suffi cient detail although an accurate description of the soma 
and spines is hard to represent by connected frusta. Apart from the SWC format, 
digital reconstructions obtained by (recent) commercial software programs such as 
NeuroLucida (Microbrightfi eld) are provided in the software’s internal proprietary 
fi le types, and they contain additional options to describe a morphology including 
metadata. For instance, the network context, e.g., laminar structures and tissue 
boundaries, can be annotated separately.

   An entirely different way to represent neurons is to describe their shape as a 
mesh. A mesh is a detailed description of the surface of a body by means of a list of 
vertices that are connected to polygons (usually triangles). The level of detail can be 
adjusted by the number of vertices used to cover the surface and is generally much 
higher compared to the SWC description mentioned above. Consequentially, mesh 
representations of neurites are often used in simulations that require high spatial 
accuracy such as reaction–diffusion of molecules along and across membranes 
(Hepburn et al.  2012 ; Kerr et al.  2008 ). 

 In an effort to standardize neuroscientifi c models that span single neurons to 
entire networks the NeuroML initiative in the fi eld of neuroinformatics has intro-
duced its own formalism describing neuronal morphology, MorphML (Gleeson 
et al.  2010 ). The latest version, NeuroML 2.0, includes the possibility to describe 
functional characteristics of a model (e.g., the Hodgkin–Huxley equation), thereby 
making it possible to link morphological attributes with ion channel features and 
dynamics in one unifi ed format. 

 Another development in the fi eld of neuroinformatics is the advent of databases 
containing neuronal data and models that are open to the public. Thanks to this 
trend, reconstructed morphologies from different labs are widely shared in the sci-
entifi c community. Several labs host their own databases that can be accessed 
through the Internet. The most complete database, NeuroMorpho.org (Ascoli et al. 
 2007 ), shares morphology fi les from a large number of different labs, standardizes 
them, and makes them available freely in the public domain. At the time of writing, 
the database contains almost 9,000 reconstructed morphologies in a standardized 
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SWC format. Among the available databases some also combine morphologies of 
single neurons with contextual circuit information, e.g., the standard brain data-
bases for a large variety of insects (  http://www.neurobiologie.fu-berlin.de/beebrain/
Links.html    ). Some morphological reconstructions are also made available in 
 combination with their electrical models, e.g., ModelDB (Migliore et al.  2003 ), 
allowing the morphology/function relations to be studied in detail.  

1.4     Single-Neuron Morphometry and Quantifi cation 

 Once digital reconstructions are obtained and stored, they can be used for further 
analysis and quantifi cation. Quantitative analysis of neuronal morphologies can be 
used to address distinct research questions. One such question addresses the cat-
egorization of neurons into types. For this purpose, one discriminative measure 
can be suffi cient. Another analysis strategy, however, is needed when investigating 
the differences in neuronal phenotype after genetic manipulation of a neuron. The 
latter might require a far more sensitive analysis likely involving multiple mor-
phometric measures. Due to this diversity of scientifi c questions relying on mor-
phometric analysis, not a single standard approach has yet emerged to quantify 
neuronal morphologies. In this section we discuss the possible methods to quan-
tify morphologies. 

 However, before describing quantitative morphometric analyses in detail, 
we fi rst introduce some terminology pertaining to morphometrics. The Petilla 
 convention (   Ascoli et al.  2008 ), a nomenclature specifi cally designed to describe the 
features of interneurons, sets a standard for some morphological features. However, 
a complete convention is still missing to our knowledge. As mentioned above, a 
neuron’s morphology is described as a mathematical tree that is generally rooted at 
the cell body or the soma (Fig.  1.2 ). A tree is formally defi ned as a noncyclic graph. 
The dendritic stem segments (also know as “trunks” or “initial segments”) sprout 
from this root, and each give rise to a branch. Branches in turn are composed of 
dendritic segments and branch points. Branch points are physical bifurcations at 
which a parent segment divides into two daughter segments. A branch has at least 
one termination point, the point at which the branch ends. In the terminology from 
graph theory, the root, branch, and termination points constitute the set of nodes in 
the tree, while the dendritic segments are the edges. 

 Morphometric measures can be divided into two main categories: topological 
and geometric morphometrics (Uylings et al.  1986 ; Verwer and van Pelt  1983 ). We 
further discuss functional measures that connect morphology directly to its function 
and measures to quantify similarity between neurons. The topological morphomet-
rics deal with the branching structure of the tree independently of metric units (e.g., 
number of branch points and branch order). For geometric analyses, the topology is 
embedded in real space, thereby giving a shape to the topology. Associated  measures 
consequently have metric or angular units. The functional measures refer to a 
 morphology's function in the circuit and its ability to connect to other neurons and 
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to integrate inputs. Many other distinctions between types of morphometrics exist, 
such as the distinction between global/scalar and local/vector morphometric 
 features. An example for the latter is the distinction between total length of a neuron 
and the individual lengths of all segments in a neuron. The total length is a global, 
scalar value while the individual lengths are local values. Table  1.1  summarizes the 
geometric and topological measures presented below.

1.4.1        Topological Measures 

 Intuitive topological measures are the  number of stems  defi ned as the number of 
edges leaving the dendritic root, the  number of branch points , and the  number of 
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  Fig. 1.2    Morphometric analysis of dendrite morphology. ( a ) Topological analyses disregard the 
metric features and describe the connections in the graph underlying the dendritic tree structure. 
Terminology shown for an idealized representation of a neuronal tree. ( b ) For a geometrical analysis, 
the tree is embedded in space and length values, as well as angles play a role.  Inset  shows the 
frustum-based representation of the dendritic structure in space. ( c ) An important geometric mor-
phometric is the path length in a tree. Path lengths are always longer than the Euclidean distances, 
and many other morphometrics are calculated as a function of one of these two measures       
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termination points . For the sake of correctness, we use the term “dendritic root” 
rather than “cell body” or “soma” because in certain neuronal types (for instance 
many insect neurons) the dendrites do not sprout from the soma. However, in most 
cases, the soma is the root of the dendritic tree. The number of stems is sometimes 

   Table 1.1    List of frequently used morphometric measures to quantify neuronal morphologies      

 Property  Brief description    

 Number of stems a   Total number of segments leaving from the dendritic root 
 Number of branch 

points a  
 Total number of branch points in the tree 

 Branch order  Topological distance from the dendritic root. The root has order 0, 
and the order of a segment in the tree equals the number of branch 
points along the path to the root + 1 

 Maximum branch 
order a  

 Maximum branch order in a neuron 

 Degree  Number of termination points downstream of the node under 
investigation 

 Maximum degree a   Maximum degree in a tree. By defi nition the degree at the dendritic root 
 Total length a   Summed segment lengths of all segments in a tree (see next) 
 Segment length  Path length of the incoming segment toward a node 
 Stem length  Path length between a branch point with order = 1 and the dendritic root 
 Interbranch length  Path length between branch points 
 Terminal segment 

length 
 Path length between the termination point and the last branch point 

 Euclidean distance  Can be applied in a similar fashion as the path length. Often used to 
measure the distance between the soma and the termination points 

 Dimension a   Width, height, and depth of the bounding box 
 Taper rate a   The uniform decrease in diameter across a dendritic branch 
 Somatofugal 

tropism a  
 Quantifi cation of the preference of a neurite to grow away from the 

soma. Defi ned as the ratio of a segment’s path length and the 
Euclidean distance between its starting and end point 

 Fractal dimension a   Fractal dimension used as a measure of space-fi lling 
 Contraction  Quick proxy of the fractal dimension: the Euclidean length of a branch 

divided by the path length 
 Partition 

asymmetry a  
 Topological complexity of a tree. A completely asymmetric tree has 

PA = 1, symmetric has PA = 0 
 Lacunarity a   A measure of “holes” in a volume spanned by a tree. See Sect.  1.4.2  
 Horton–Strahler 

index 
 Measure of topological complexity of a tree relating the order and 

asymmetry in that tree. Computed for each branch point. See 
Sect.  1.4.1  

 Strahler number a   The Horton–Strahler index associated with the root of the tree 

   Light shading —topological measures 
  Medium shading —geometrical measures 
  Dark shading —compound measures 
  a Global measure as opposed to distribution of local measures. However, often derived features are 
used as global feature. For instance, to describe the branch order in a tree, a distribution of all 
orders can be given, or the distribution can be characterized by considering the maximum branch 
order, the average branch order, etc. This holds for all local measures  
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used to classify cell types (e.g., bipolar cells in the retina), while the number of 
branch and termination points represent the extent of branching in a tree. Since 
branch points typically are bifurcations in all neurons, the number of termination 
points is the number of branch points plus one. Furthermore, the  branch order  
(or “centrifugal order”) for each node is computed as follows: the dendritic root has 
by convention an order of zero so that the order of a node becomes one plus the 
number of branch points encountered on the path between the inspected node and 
the dendritic root (Fig.  1.2a ). The reciprocal property is the  degree , which is defi ned 
as the number of termination points in the sub-tree rooted at the node under investi-
gation. The distribution (count) of the order and degree of branch points in a tree can 
be used for classifi cation and description of morphologies (Verwer and van Pelt 
 1983 ). Order and degree are often used as auxiliary properties in combination with 
other morphometric features. For instance, any local morphometric measure can be 
plotted against order or degree to create a conditional distribution (see Sect.  1.4.4 ). 
The order and degree are also used in composite morphometrics. One such compos-
ite, topological measure is the  partition asymmetry  that assesses the topological 
complexity of a neuronal tree based on the normalized difference between the 
degree of two daughter branches at a branch point. The partition asymmetry index 
ranges from 0 (completely symmetric) to 1 (completely asymmetric) (van Pelt et al. 
 1992 ; van Pelt and Schierwagen  2004 ). Another composite morphometric based on 
order and degree is the  Horton–Strahler (HS) index  that relates the asymmetry in a 
tree with the depth of the tree (Binzegger et al.  2004 ; Toroczkai  2001 ). The HS 
index is computed at each branch point and equals k + 1 when both daughter branch 
points have equal HS index of k or as max(k 1 ,k 2 ) when the HS indexes of its daugh-
ters k 1  and k 2 , respectively, are not equal. The  Strahler number  is defi ned as the 
Horton–Strahler index associated with the root of the tree.  

1.4.2      Geometric Measures 

 In contrast to topological properties that have no metric interpretation, geometric 
properties consider the spatial embedding of a tree. The segment length values and 
diameters are among the main properties in this category and give rise to a multitude 
of related morphometric properties. The most basic one is the  total dendritic length . 
Distinct parts of the tree can be described in terms of their length as well, e.g.,  stem 
length, interbranch point length,  and  terminal segment length  (Fig.  1.2b ). Also, 
relations between any location in the tree can be described by a length metric in 
terms of the Euclidean distance or the path length between those locations (Fig.  1.2c ). 

 The (somatofugal) tropism factor relates the segment length to the Euclidean 
distance from the dendritic root (Marks and Burke  2007 ; Samsonovich and Ascoli 
 2003 ). The ratio between length and distance is 1 for a segment that grows radially 
away from the dendritic root and 0 for a segment growing concentrically in relation 
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to the dendritic root. Spatial extent and its associated spatial embedding can be 
quantifi ed in a number of ways. Most straightforward is the  dimension : the raw 
bounding box in three dimensions. The  fractal dimension  is a measure of self- 
similarity and is often used as a measurement of space-fi lling (Smith et al.  1996 ). 
By defi nition, a straight line has a dimension of 1, a square has 2, and a cube has 3, 
but dendrites can be associated with fractional dimensions since the space that they 
cover is not fully fi lled. However, the interpretation of the fractal dimension is arbi-
trary and strongly depends on the method used to calculate it. In the “calliper 
method” (Fernández and Jelinek  2001 ), the fractal dimension represents the level of 
meandering of a dendrite, where a straight line has a dimension of 1 and more 
meandering dendrites receive slightly higher values. Since the validity of the fractal 
dimension is disputed in the analysis of neuronal morphologies (Cannon et al.  1999 ; 
Jelinek and Fernández  1998 ),  contraction  of a dendrite might be used as a proxy of 
the fractal dimension (when the fractal dimension is computed using the calliper 
method). Contraction is defi ned for a stretch of dendrite between two points as the 
ratio of the Euclidean distance and the associated path length between those points. 
A straight line has a contraction of 1, while a meandering dendrite has a slightly 
lower value. Intuitively, the relation between contraction and the fractal dimension 
can thus be approximated as fractal dimension ≈ (2 − contraction) for planar den-
drites. Both contraction and fractal dimension quantify space-fi lling. The reciprocal 
morphometric is a measure of “holes” in a morphology and is defi ned by the  lacu-
narity  (Smith et al.  1996 ). Apart from the overall dimension, locally the spatial 
embedding can be assessed by the angles in three dimensions between parent and 
daughter branches. Different variants are in use: the amplitude of the angle between 
the daughters can be measured as well as the angle between the parent segment and 
the daughters (Scorcioni et al.  2008 ). Recently, the perceived planarity of dendritic 
branch points (Kim et al.  2012 ; Uylings and Smit  1975 ) has received renewed atten-
tion as it was linked to optimal wiring principles and led to the development of 
detailed morphometrics quantifying the angles of branch points (van Pelt and 
Uylings  2011 ). 

 The diameter can be specifi ed in relation to its change along the neuronal pro-
cesses, i.e., tapering. Typically diameters reduce along a dendritic cable and can 
thus be approximated by a  tapering rate:  the linear or the nonlinear rate at which the 
diameter decreases per unit of length. Discontinuities in the tapering rate occur at 
branch points and can be referred to by the  child–parent ratio , the ratio between the 
diameters of the parent and the child segments.  

1.4.3     Functional Measures 

 Most morphometric properties inherently have some infl uence on the function and 
electrotonic structure of that neuron: with longer and/or thinner dendritic segments, 
input signals are more attenuated than with shorter and/or thicker segments. Hence, 
distal inputs, all things being equal, contribute less to the electrical activity at the 
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site of action potential initiation compared to proximal inputs. On the other hand, 
some morphological features do not impact on certain aspects of neural computa-
tion: angles in the dendrite do not matter for a current traveling through a dendrite. 
In some cases, morphometric measures are directly inspired by the function of 
 neurons. An exemplary measure for this is  Rall's power , a measure relating the 
diameters of a parent branch and its daughters at the branch point. Wilfrid Rall 
studied the power relation between parent (D) and daughter branch diameters 
( d  1  and  d  2 ),  D   r   =  d   1   r    +  d   2   r   , with “ r ” now coined Rall’s power (Scorcioni et al.  2008 ). 
Rall calculated that for the specifi c power  r  = 3/2, there is continuity in the imped-
ance sensed by centrifugal signal fl ow at branch points such that a dendritic tree can 
be collapsed to a non-tapering, non-branching cable piece useful for applying ana-
lytical solutions of the cable equation to more complex dendrites (Rall  1959 ). 

 The other main function of neurons is to connect to other neurons in order to 
receive input. Specifi c measures directly relate a morphology to connectivity. 
The  critical percolation density  relates the dendritic morphology to the ability to 
connect to other neurons in the network (Costa and Manoel  2003 ). To calculate this 
property one populates a volume with instances of one particular morphology. 
Then, the percolation density is the average density at which a path suddenly 
emerges that leads from one side of the volume to the other along dendritic branches. 
The  excluded volume  (Costa et al.  2005 ; Wassle et al.  1981 ) is a related measure that 
quantifi es the part of a dendritic tree’s spanning volume that is not easily reachable 
for axons to make contacts with. The excluded volume is likely at the center of a 
dendritic structure when surrounded by dense branching. 

 An overarching metric and fi rst approximation of connectivity can be derived 
from Peter’s rule, which states that the number of synapses is proportional to the 
overlap between an axon and a dendrite (Binzegger et al.  2004 ; Peters and Payne 
 1993 ). Therefore, the allowed distance between dendrite and axon at which struc-
tural appositions are thought to occur can be used as a fi rst approximation of con-
nectivity. Note that Peter’s rule associates two morphologies, a dendritic and an 
axonal one, while the percolation density and the excluded volume are single- 
neuron metrics.  

1.4.4      Similarity 

 The aforementioned morphometric measures can be used to categorize morpholo-
gies and rank them on their similarity. Morphometrics can thus be used as a metric 
to quantify similarity between morphologies. In a straightforward fashion, the 
Euclidean distance between scalar morphometrics provides a measure of (dis)simi-
larity. Vector morphometrics comprise a one-dimensional distribution, and hence 
the similarity between two such distributions can be quantifi ed using hypothesis 
tests, of which the Student’s test ( t -test) is the most popular parametric test and the 
Kolmogorov–Smirnov test and ranksum tests are well-known nonparametric 
alternatives. 
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 An issue is that morphometric measures are often not independent from each 
other. Thus, morphometric measures can be seen independent from each other 
(= univariate) or conditioned on other measures (= multivariate). For instance, the 
segment length might be independent of any other feature of the neurite tree 
 (univariate description), or, might be dependent on the topological order of the seg-
ment (conditional, bivariate description), and so forth. Sholl was the fi rst to perform 
such a two-dimensional analysis as he counted the number of intersections between 
the dendritic segments and imaginary concentric circles at increasing Euclidean 
distance from the cell body (Sholl  1953 ). As briefl y mentioned before, any bivariate 
morphometric can be plotted against another, and this is generally referred to as a 
Sholl-like analysis. As an example, one can argue that the segment length changes 
depending on the branch order (Burke et al.  1992 ; Nowakowski et al.  1992 ). Such 
higher order relations surely exist in neurons, but the application of multivariate 
measurements remains restricted due to limited amount of data (a large sample size 
is needed to uncover higher order relations). 

 In addition to comparisons of morphometrics there are dedicated measurements 
to quantify similarity. A fi rst similarity measure is the  tree edit distance  and formal-
izes how many operations (“tree edits”) have to be made to morph one tree into 
another (Heumann and Wittum  2009 ). Another measure of similarity between neu-
rite morphologies is the  shape diffusion index  (Luczak  2010 ). While technically a 
bit more complex, intuitively it can be seen as a measure of how easily a morphol-
ogy can be synthesized using the diffusion-limited aggregation approach (see next 
section and Chap.   5    ). Luczak found that some classes of neurons were “easy” to 
approximate, while others were “harder.” This difference can then be used to express 
similarity.  

1.4.5     Further Quantifi cation 

 The review we presented here is by no means exhaustive; it rather refl ects a choice 
of morphometric measures most commonly used to quantify morphology and link 
morphology to connectivity. Graph theory itself has many ways to describe tree 
structures and network topologies. These descriptions, however, often have little or 
no biological interpretation. A good introduction into more exotic measures to 
quantify neuronal morphologies is provided by Rocchi et al. ( 2007 ). Also, a lot of 
ad hoc measures are in use. These measures are often proposed to study a particular 
trait in a particular neuronal type. For instance, somatofugal tropism was fi rst used 
to quantify the preference of a dendritic tree to direct away from its soma in pyra-
midal cells. Ad hoc measures have the intrinsic drawback that there is no standard 
defi nition of how to compute them, which makes their evaluation and their com-
parison to well-defi ned morphometrics harder. Nevertheless, when picked up by 
others, as in the case of the measure for tropism, these ad hoc measures can make it 
into the standard repertoire of measures and extend the standard battery of useful 
measures.   
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1.5     Algorithms to Synthesize Dendrites 

 Since morphometric measures are so numerous, variable, and dependent on many 
factors like context and age, it is diffi cult to extract principles of dendritic structure 
directly from these measures. In the last two decades, generative approaches were 
developed to study dendritic morphologies by synthesizing (parts of) dendritic 
 morphologies in the computer. The rationale behind this approach is that by gener-
ating dendrites according to a particular principle, resulting synthetic morphologies 
may share morphological traits with real dendrites. This fi nding then can corrobo-
rate the initial hypothesis about the underlying principle. In a sense, it is the compu-
tational neuroanatomy interpretation of Lord Kelvin’s maxim: “I am never content 
until I have constructed a mechanical model of what I am studying. If I succeed in 
making one, I understand; otherwise I do not.” 

 One of the ideas that kick-started the generative approach stems from the seminal 
work of Hillman who described a set of  fundamental parameters  suffi cient to gener-
ate dendritic morphology (Ascoli and Krichmar  2000 ; Hillman  1979 ). Many gen-
erative algorithms are based on this idea by iteratively constructing a dendritic tree 
while sampling from statistical descriptors (Burke et al.  1992 ; Tamori  1993 ). One of 
the fi rst publicly available tools is L-Neuron (Ascoli and Krichmar  2000 ), which 
relies on an L-system in combination with stochastic sampling to generate synthetic 
dendrites. An L-system or a Lindenmayer system (Prusinkiewicz and Lindenmayer 
 1990 ) is a formalism that can recursively generate branched structures, such as 
plants and neurons, from a parsimonious representation. The geometry, however, is 
sampled from statistical descriptors based on morphometric measures. The differ-
ences between existing sampling algorithms mostly lie in the statistical descriptors 
used: the number and selection of parameters as well as their statistical descriptions 
as a parametric model (Ascoli and Krichmar  2000 ; Eberhard et al.  2006 ) or a non-
parametric model (Lindsay et al.  2007 ; Torben-Nielsen et al.  2008 ). 

 A different approach, inspired by principles of neuronal development, has been 
developed over the years by van Pelt and colleagues (van Pelt et al.  1992 ; van Pelt 
and Schierwagen  2004 ). They followed a generative approach that could be used to 
synthesize dendritic topology constrained by the branch order and the number of 
simultaneously developing segments. By adjusting the rate of growth to the num-
ber of developing growth cones, a basic interpretation of competition over resources 
is included. Their work led to the development of a tool, NETMORPH (Koene 
et al.  2009 ), that can generate large networks of interconnected synthetic mor-
phologies by addition of a geometric component to the developing branched struc-
tures (see Chap.   4    ). 

 Note that the aforementioned tools synthesize morphologies without (or to a 
limited extent) considering the interactions with other parts of the tree, with other 
neurons, or with physical boundaries within the circuit. Because neurons do not 
grow in isolation, it can be assumed that not all natural factors are captured by these 
algorithms. A number of recently developed approaches overcome these limitations 
in various ways. 
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 One approach that explicitly takes other neurons into account during the genera-
tion process is proposed by Luczak ( 2006 ) (see Chap.   5    ) and is based on diffusion-
limited aggregation (Hentschel and Fine  1996 ; Witten and Sander  1981 ): 
“neurotrophic particles” are distributed into a bounded space where they randomly 
move. Then, upon colliding with an  n -particle aggregate, the moving particle will 
stick and form an  n  + 1- particle aggregate. Some extra rules are needed to constrain 
the aggregates to biologically relevant structures, but such an aggregation process 
yields realistic synthetic dendritic structures. By using several seeds, i.e., initial 
1-particle aggregates, at the same time within the same bounded space, virtual mor-
phologies under construction effectively compete over resources and hence a bio-
logically plausible form of interaction is captured in the algorithm. 

 Recently another approach was proposed by Memelli et al. ( 2013 ) where a  virtual 
morphology is grown under the presence of environmental infl uences. A branching 
rule determines when a dendritic tree branches, but the direction of growth is solely 
determined by environmental cues. Cues act as biases on the direction of growth. 
Additionally, the virtual morphologies are constrained to a bounded space. As a 
proof of principle, highly realistic morphologies were synthesized by solely taking 
self-referential (i.e., stiffness, soma tropism, and self-avoidance) cues into account. 
So far the environmental interaction is thus limited to the neuron’s own guidance 
cues. However, a cue coming from another neuron is conceptually identical to a cue 
coming from the neuron itself: it is a bias on the direction of growth. Therefore, this 
approach can be directly used to investigate hypotheses about various environmen-
tal cues shaping the fi nal dendrite morphology. 

 A different approach to generate dendritic morphologies is based on the func-
tional implication of the structure of neural trees, the infl uence of diameter values 
on voltage propagation, and circuit connectivity (Cuntz et al.  2007 ,  2008 ,  2010 ; see 
Chap.   6    ). Target points are distributed in a volume of interest and connected itera-
tively to a growing tree in a competitive manner to minimize total wiring cost and 
conduction times. In a post- processing step, diameters are assigned according to the 
propagation dynamics, and a synthetic morphology is created. One advantage of 
using this approach is that it is far less data intensive compared to standard sampling 
methods: the only statistical descriptor in use is a two- or a three-dimensional den-
sity function of the target points. Indeed, no detailed statistics about branching 
angles, segment length, etc. are used, and hence the algorithm is less prone to 
researcher-induced biases. It also permits to draw direct conclusions about the con-
nectivity principles in the circuit. Optimization principles of wiring constraints such 
as the ones used for these models have traditionally been successful at directly pre-
dicting scaling relationships in branching statistics (Chklovskii and Koulakov  2004 ; 
Klyachko and Stevens  2003 ; Wen et al.  2009 ; Wen and Chklovskii  2008 ). This is 
described in great detail in Chap.   7    . 

 Beyond the constraint of connectivity, the hypothetical computational function 
of a neuron can also constrain the morphology. This idea is explored by Torben- 
Nielsen and Stiefel ( 2010 ) and is coined the “inverse approach” (see Chap.   9    ). In the 
inverse approach, morphologies are synthesized with a straightforward sampling 
algorithm. However, the parameters defi ning the statistical distributions from which 
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they are sampled are not based on biological    data. Rather, the parametric distribu-
tions are optimized using evolutionary algorithms so that a model neuron endowed 
with the optimized morphology successfully performs a predefi ned neuronal compu-
tation. The inverse approach can be used in a twofold manner: as a hypothesis tester 
and a hypothesis generator. In case it is hypothesized that a neuron performs a com-
putation, a synthetic morphology can be optimized to perform the same function. 
When the resulting morphology resembles the real counterpart, this result can 
 corroborate the  hypothesis. On the other hand, morphologies can be optimized to 
perform a computation of interest. If neurons in the brain then resemble the synthe-
sized morphology, a hypothesis about the function of these neurons can be proposed. 

 The last approach to be mentioned here is the most elaborate one and is proposed 
by Zubler and colleagues (Zubler et al.  2011 ; Zubler and Douglas  2009 ). They 
developed a phenomenological growth simulator in which growing neurons can 
migrate and interact with structural boundaries as well as other cells within the 
simulated environment. Each growth cone contains the growth rules for this neuron 
encoded in a gene-like format (Zubler et al.  2011 ). The growth rules can use envi-
ronmental cues such as secreted substances or laminar information. In addition a 
growing neurite can also secrete substances and switch on or off growth rules 
depending on its environment. With this setup, many of the environmental com-
plexities of cortical circuitry can be modeled (at least in a phenomenological way).  

1.6     Future Perspectives 

 A major problem with studying dendritic morphology is that the shape of a neuron 
is not a perfect instance of a general blueprint. In the nervous system, individual 
cells have to compete with others as well as with different structures such as glia 
cells and blood vessels. Reconstructed morphologies are always mere snapshots of 
a particular neuron in time and contain the combined effects of development and 
learning. As a result, large variation exists in their morphology. Variation is com-
monly seen as the difference in morphology between members of the same type, 
while diversity is the distinction between different classes (Soltesz  2005 ). In gen-
eral, the description of diversity is easier than the description of variation. For 
instance, it is straightforward to differentiate a motor neuron from a pyramidal neu-
ron. Sometimes, however, the variation within a class is larger than the diversity 
between classes. Purely based on the morphology it is fairly hard to tell apart a layer 
fi ve (L5) pyramidal neuron from a layer six (L6) one. It is even harder to tell the 
difference between L5 pyramidal neurons at different ages. In general, the more 
detailed the research question becomes, the more sophisticated the quantitative 
analysis needs to be. The presented morphometric quantifi cation helps consider-
ably: it provides hard numbers to describe neuronal morphologies. But, how to cope 
with the variance? 

 Here, we sketch three future strategies that will be useful to quantify and under-
stand variation. Let us for example consider the rat sensorimotor cortex that is 
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roughly 2,000 μm thick and layer 5 (in 2-week-old animals) is 650–700 μm thick. 
L5 pyramidal cells have an apical dendrite growing to the pia where it branches 
extensively. A large variation in total length occurs when a neuron’s cell body is 
located deeper in layer 5 and has to extend further to reach the pia (Oberlaender 
et al.  2012 ; Ramaswamy et al.  2012 ). Because the current standard to represent 
morphological reconstructions (e.g., the aforementioned SWC format) only includes 
the geometry of a single morphology, there is no direct way of taking the location of 
the cell body into account. Hence, no statistical model will capture the fact that L5 
pyramidal cells closer to the pia have a shorter apical dendrite. This example illus-
trates a pitfall in the quantifi cation of morphologies: as long as they are considered 
in isolation, simple biophysical explanations for morphometric variation will be 
overlooked. 

 The fi rst strategy to overcome the outlined issue is to include metadata such as 
laminar position and 3D spatial context in the description of a neuron. This strategy 
is adopted in the cortical column model by the group of Oberlaender and colleagues. 
This is summarized in Chap.   8    , where the 3D context is stressed in the reconstruc-
tion of the rat vibrissal cortex. 

 A second strategy is a pragmatic approach to investigate the natural variation in 
neuronal types and relies on the fact that a good statistical model should be able to 
generalize and infer morphometrics as long as the sample size is large enough. By 
using larger samples, the statistical models can better generalize. This strategy is 
adopted by Costa and his colleagues. They analyze morphologies from the complete 
NeuroMorpho.org database to investigate morphological outliers and archetypes 
(Costa et al.  2010 ; see Chap.   3    ). 

 A fi nal strategy we discuss here to alleviate the issue of variance and the lack of 
metadata is to actually study the biophysical mechanisms that underlie neurite mor-
phologies. Our understanding of cell biological mechanisms resulting from genetics 
is increasing rapidly. In Chap.   2    , Tavosanis concisely summarizes some of the 
prominent molecular mechanisms of morphological differentiation that underlie not 
only basic properties as branching and elongation but also more complex behaviors 
requiring interaction between developing dendrites as required for tiling and self-
avoidance. If the underlying mechanisms can be expressed as phenomenological 
rules, morphometrics do not need to be used to deduce morphological traits, because 
the traits and associated hypothesized rules can be studied using the generative 
approach. First attempts to generate morphologies according to developmental rules 
include reports by Memelli et al. ( 2013 ) and Zubler and Douglas ( 2009 ). In the 
future, generative approaches in general coupled with better molecular understand-
ing of morphological differentiation will allow us to explain differences in sizes as 
in the example of the L5 pyramidal cell. Combined with rigorous morphometric 
analysis, it would then be possible to attribute highly varying morphometric fea-
tures not to diversity or variation but to, for instance, avoidance of capillaries or the 
repulsion away from another neuron of a specifi c class. 

 In conclusion, morphology of neurons plays a fundamental role in brain 
 functioning. Using morphometric quantifi cation we are currently able to classify 
some types of neurons. Moreover, rigorous quantifi cation allows us to study mor-
phological traits and their connection to the brain circuit at large. In the future, we 
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expect a synergy between the big data projects generating detailed statistics of 
neurite morphology and their connections (e.g., connectomics), genetic studies 
revealing local interaction rules governing dendritic growth, and generative 
approaches to link  large-scale data and local interactions. Please enjoy the follow-
ing chapters covering the state of the art in the quantitative studies of dendritic 
morphology.     
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    Abstract     The morphology of neuronal dendrites defi nes the position and extent of 
input connections that a neuron receives and infl uences computational aspects of 
input processing. Establishing appropriate dendrite morphology thus underscores 
proper neuronal function. Indeed, inappropriate patterning of dendrites is a common 
feature of conditions that lead to mental retardation. Here, we explore the basic 
mechanisms that lead to the formation of branched dendrites and the cell biological 
aspects that underlie this complex process. We summarize some of the major steps 
that from developmental transcriptional regulation and environmental information 
modulate the neuron’s cytoskeleton to obtain the arborized structures that have fas-
cinated neuroscientists for more than a century.  

2.1         Why Is Morphology of Dendrites Relevant? 

 Neurons of different types display dendrite morphologies that can be strikingly dis-
tinct. Some dendrites can be represented by a single unbranched process, while 
others can reach extreme complexities, as those of Purkinje cells in the cerebellum 
of a rodent. The resulting wide range of morphological possibilities is tightly related 
to the pattern of connections that the neuron forms. Some neurons, like  Drosophila  
Kenyon cells, make selective contact with a limited number of presynaptic partners, 
while others tend to cover to a maximal extent the area corresponding to their 
 receptive fi eld. The latter type, or space-fi lling neurons, can have highly branched 
 dendrites offering surface for synaptic contact to hundreds of thousands of  synapses. 
So the number and distribution of presynaptic partners appears a major determinant 
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of the morphology of dendrite trees, suggesting that formation of appropriate con-
tacts underlies correct dendrite differentiation. In addition, basic morphological 
characteristics of dendrites, including the number of branching points and the 
 thickness and length of dendrites, infl uence the processing of incoming inputs (see 
Chap.   10    ). Thus, the branching pattern of dendrites is tightly linked to connections 
and processing performed by a neuron of a certain neuronal type. 

 Given this connection between structure and function, it comes to no surprise 
that human mental retardation is often accompanied by inappropriately formed neu-
ronal dendrites (Kaufmann and Moser  2000 ). It is not clear whether the altered 
dendrite organization is a primary cause of mental retardation or a secondary defect. 
Genetic analysis of mental retardation syndromes could shed light on this question. 
This analysis, though, is complicated by the fact that even in cases in which mental 
retardation is caused by genetic factors, these are often multiple, as in the case of 
Down syndrome. Fragile X syndrome is a monogenic form of syndromic mental 
retardation due to lesions in the Fragile X mental retardation protein (FMRP) gene, 
characterized by immature dendritic spines for instance in layer V pyramidal neu-
rons of the visual cortex (Irwin et al.  2001 ). Mouse models carrying a deletion of the 
Fmr1 gene also display immature spines at higher density [reviewed in (De Rubeis 
et al.  2012 )]. Interestingly,  Drosophila FMR1  homologue mutants display dendrites 
with defective morphology (Lee et al.  2003 ). It will be interesting to see whether the 
fl y phenotype could help work out some of the basic mechanisms at the origin of the 
disease. Another form of intellectual disability, Rett syndrome, is linked to muta-
tions in the transcriptional suppressor Mecp2. Mice mutant for Mecp2 display 
reduced dendrite complexity in layer 2/3 pyramidal cells, a defect that is largely cell 
autonomous (Amir et al.  1999 ). Thus, in these two examples, the genes affected 
encode for proteins that modulate dendrite morphology. 

 In this chapter, we summarize the basic principles underlying normal dendrite 
differentiation and the factors that modulate it (Fig.  2.1 ). Furthermore, we address 
how variations in dendrite morphology are achieved.

2.2        The Basics of Dendrite Differentiation: Elongation 
and Branching 

 Rodent hippocampal neurons in culture differentiate by forming multiple neurites. 
Among the initially indistinguishable neurites one starts displaying higher actin 
dynamics at the growth cone and more stabilized microtubules. This process grows 
faster than the others and will develop into an axon. The axonal fate is suppressed 
in the other processes, and they will differentiate into dendrites. A similar course is 
likely to happen also in vivo, as suggested by the analysis in genetically modifi ed 
mice [reviewed in (Neukirchen and Bradke  2011 )]. 

 The initial dendrites extend in a dynamic process that has been observed by time- 
lapse analysis in various systems, including  Drosophila  larva sensory neurons and 
tectal neurons of Xenopus tadpole and zebrafi sh embryo (Hume and Purves  1981 ; 
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  Fig. 2.1    Scheme of the dendrites of two neighboring neurons. Highlighted are the main processes 
involved in dendrite branching and discussed in this chapter       

Kaethner and Stuermer  1997 ; Wu et al.  1999 ; Sugimura et al.  2003 ; Niell et al.  2004 ; 
Williams and Truman  2004 ; Dimitrova et al.  2008 ). Similar dynamics are shown by 
the dendrites of newborn neurons that become integrated into the mouse adult olfac-
tory bulb (Mizrahi  2007 ). Although the systems are different, in all cases it appears 
that fi lopodia-like processes dynamically extend and retract. Some of these processes 
become stabilized and extend into branches (Heiman and Shaham  2010 ). In zebrafi sh 
larva optic tectum neurons, branch stabilization appears to  happen after the selective 
maintenance of an initial synaptic contact (Niell et al.  2004 ). A recent elegant study 
combining in vivo time-lapse microscopy and  electron microscopy of Xenopus tad-
pole optic tectum neurons shows a correlation between maturation of synaptic con-
tacts and stabilization of dendrite branches (Li et al.  2011 ). These observations 
support a model in which the formation of appropriate synaptic contacts promotes the 
selective stabilization of subsets of branches (Cline and Haas  2008 ) (see below). 

 Forming branches that are contacted by appropriate inputs can thus elongate and 
become stabilized to extend into dendrites. It is conceivable that a shift from actin- 
based dynamics to microtubule ingression could accompany this change. 

 A major determinant of the fi nal morphology of dendrites is their pattern of 
branching. There are two basic ways of branching that are utilized to different extent 
by different types of neurons. First, branches can form by the splitting of the growth 
cone at the tip of an extending dendrite branch. The growth cone of an extending 
process is decorated by fi lopodia-like processes in vitro and in vivo. A subset of 
these fi lopodia, interestingly usually two, extends into branch-like structures that 
can acquire in turn a growth cone at their tip and extend further. 
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 Alternatively, lateral branches can be formed along the length of an existing 
dendrite by interstitial branching. Locally, the organization of the dendrite branch 
becomes modifi ed, and a lateral fi lopodium-like process can form and then extend 
further into a dendrite branch. 

 In axons, the site of formation of a collateral branch, a process that requires the 
actin nucleator complex Arp2/3, is marked by the presence of a local actin patch 
(Spillane et al.  2011 ). Actin fi laments are then suggested to bundle into an initial 
fi lopodium. Importantly, it is not clear whether actin patches are also present in 
dendrites at the site of interstitial branching. Local accumulation of actin predicting 
the site of lateral branch formation was observed by confocal microscopy in class 
III sensory neurons of the peripheral nervous system of  Drosophila  larvae (Andersen 
et al.  2005 ). Initial observations of actin organization in related class IV neurons of 
the same system show a very different organization of actin, with no focal accumu-
lation (Lee et al.  2011 ; Nagel et al.  2012 ). Further studies combining live imaging 
and high-resolution microscopy will be necessary to understand the local changes 
underlying the formation of dendrite branches. 

 Different neurons utilize these two branching methods to different extents. 
The combination of initial primary branches formed at the soma, dynamics of exten-
sion and retraction of dendrite branches, stabilization of subsets of dendrites, and 
their branching by growth cone splitting or interstitial branching defi ne the fi nal 
morphology of the dendrite tree. 

 These characteristics are in part defi ned by intrinsic programs established during 
development, in part result from the interaction of the developing dendrites with the 
substrate they grow on, the neighboring neurons of same or different type, the guid-
ance signals they encounter, the synaptic contacts they form, and the activity at 
those contacts. 

 Even after the completion of differentiation, dendrites can remain dynamic and 
modify some of their properties to react to injury, to adapt to a modifi ed environ-
ment, and to respond to physiological signals including hormones and during learn-
ing (Tavosanis  2012 ).  

2.3     The Transcriptional Regulation of Dendrite 
Differentiation 

 Some types of neurons in culture seem to preserve part of their morphological 
characteristics, suggesting an intrinsic determination of dendrite morphology 
(Montague and Friedlander  1989 ,  1991 ). Indeed, neurons are born expressing 
developmentally defi ned combinations of transcription factors that will specify 
their identity, including their functional properties and aspects of their morphology 
[reviewed in (de la Torre-Ubieta and Bonni  2011 )]. In particular, in recent years, it 
has emerged that transcription factors involved in fate specifi cation display an inde-
pendent later role in neuronal differentiation, including the establishment of den-
drite morphology. The proneural bHLH transcription factor Neurogenin 2, in 
addition to its role in the specifi cation of deep-layer cortical neurons, controls the 
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expression of appropriate unipolar dendrite morphology of rodent cortical neurons 
(Hand et al.  2005 ), though potentially in a DNA binding-independent manner. 
In addition, it contributes to the complexity and extension of dendrites of cerebellar 
Purkinje cells, in part by promoting the expression of genes involved in dendrito-
genesis (Florio et al.  2012 ). Similarly, the proneural bHLH transcription factor 
NeuroD promotes appropriate dendritogenesis of cerebellar granule neurons. These 
neurons normally display just a few dendrites terminating with typical claws, a 
morphology that is disrupted in cerebellar slices after NeuroD knockdown 
(Gaudilliere et al.  2004 ). The maturation of cerebellar granule cell dendrites is 
promoted by membrane depolarization in cerebellar slice cultures and could thus 
depend on activity in vivo. The two transcription factors NeuroD and Sp4, a zinc-
fi nger protein, appear to mediate this maturation downstream of depolarization 
(Gaudilliere et al.  2004 ; Ramos et al.  2007 ). 

 A comprehensive view of the impact of transcription factor activity on den-
drite morphology is afforded by studies of  Drosophila  larva sensory neurons. The 
da neurons are multimodal sensory neurons that develop dendrite trees in a two- 
dimensional fashion under the transparent cuticle of the larva. The fact that these 
neurons can be straightforwardly imaged in live animals and their accessibility to 
genetic manipulation have made them a most powerful system to understand 
fundamental aspects of dendrite differentiation (Gao et al.  1999 ; Jan and Jan 
 2010 ). da neurons comprise four morphological and functional categories 
(Grueber et al.  2002 ) (Fig.  2.2 ). In a genome-wide effort, all transcription factors 
identifi ed in the fl y gene genome were knocked down in simple, propioceptive 

  Fig. 2.2    The da neurons of  Drosophila  larvae. ( a ) Tracings of representative da neurons of 
 Drosophila  third-instar larvae. The four classes of da neurons are shown in order of increasing 
complexity. ( b ) Live  Drosophila  larva expressing GFP in class IV da neurons, imaged with a con-
focal microscope       
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class I neurons (Parrish et al.  2006 ). 76 of the 730 tested transcription factors 
produced aberrant dendrite phenotypes, including increased or reduced branch-
ing, unbalance between branching and extension, and defective routing (Parrish 
et al.  2006 ). While most of the identifi ed factors await detailed analysis, this 
result certainly supports a major contribution of transcriptional regulation in the 
establishment of dendrite morphology.

   Importantly, comparative analysis between the different da classes revealed a key 
role of transcriptional regulation in the defi nition of class-specifi c dendrite mor-
phology. In fact, the level of expression of a handful of transcription factors deter-
mined during earlier development defi nes, by and large, the distinctions between the 
four classes of da neurons. The homeodomain-containing transcription factor Cut 
(a member of the CUX family of transcription factors) is highly expressed in class 
III da neurons under the control of proneural gene cascades (Blochlinger et al.  1988 ; 
Brewster and Bodmer  1995 ; Brewster et al.  2001 ;    Grueber et al.  2003a ). The den-
drites of these neurons are decorated by short, straight, and highly dynamic terminal 
branchlets (Grueber et al.  2002 ; Nagel et al.  2012 ). When Cut is genetically removed 
from these neurons, their typical dendrite characteristics are lost. Conversely, if Cut 
is expressed at high levels in da neurons that normally do not express it, as class I 
neurons, their dendrites become more complex and they are now decorated by the 
short and straight actin-rich branches (Grueber et al.  2003a ). Similarly, class I neu-
rons display high levels of expression of the BTB/POZ-zinc- fi nger protein Abrupt. 
Loss of Abrupt leads to more complex processes, while Abrupt overexpression in 
neurons with more complex dendrite organization simplifi es their trees (Li et al. 
 2004 ). Class IV neurons express the COE family transcription factor Knot/Collier 
that together with Cut defi nes their complex morphology (Hattori et al.  2007 ; 
Jinushi-Nakao et al.  2007 ; Crozatier and Vincent  2008 ). Thus, a combinatorial code 
of developmentally defi ned levels of expression of transcription factors is a major 
determinant of individual class morphology of da neuron dendrites (   Parrish et al. 
 2007b ). To understand the mechanism of action of these transcription codes, efforts 
are being undertaken to identify their downstream effectors. Turtle is an immuno-
globulin superfamily protein involved in the regulation of dendrite complexity in 
class II, III, and IV da neurons of  Drosophila  larvae (Long et al.  2009 ; Sulkowski 
et al.  2011 ). Biochemical and genetic evidence reveals that Turtle expression level 
is positively regulated by Cut (Sulkowski et al.  2011 ). Fascin is another downstream 
effector of Cut. Fascin is a conserved actin-bundling protein, typically associated 
with fi lopodia particularly in motile cells, including fl y blood cells and metastasiz-
ing cancer cells (Zanet et al.  2009 ; Machesky and Li  2010 ). In da neurons, it is a 
specifi c marker of the short straight terminal branchlets of class III neurons and is 
required for their formation (Nagel et al.  2012 ). Fascin is not detected in the den-
drites of low-Cut class I neurons. Nonetheless, when Cut is  overexpressed in class I 
neurons, their dendrites become decorated with class III neuron- type short straight 
branchlets that are now marked by the presence of fascin. In the absence of fascin, 
Cut cannot operate this morphological transformation in class I neurons, indicating 
that fascin acts downstream of Cut (Nagel et al.  2012 ). Nonetheless, whether fascin 
is directly or indirectly regulated by Cut remains to be demonstrated. Also Knot/
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Collier regulates the expression level of a cytoskeletal regulatory protein, the 
microtubule-severing factor spastin that modulates the complexity of class IV den-
drites (Jinushi-Nakao et al.  2007 ; Ye et al.  2011 ; Stewart et al.  2012 ). Spastin 
expression can also be modulated by Dar1, a transcription regulator of the Krüppel-
like factor family (Ye et al.  2011 ). 

 In addition to the role of individual transcription factors, chromatin-remodeling 
complexes modulate dendrite patterning. For instance, Polycomb group genes are 
transcriptional repressors required to maintain the dendrite arborization of class IV 
neurons potentially by regulating Bithorax Complex Hox gene expression (Parrish 
et al.  2007a ). The Bap55 chromatin-remodeling factor regulates appropriate  dendrite 
targeting of a subset of olfactory projection neurons during  Drosophila  development 
(Tea and Luo  2011 ). Interestingly, related neuron-specifi c nBAF chromatin-remod-
eling complexes interact with the calcium-responding transactivator CREST to pro-
mote activity-dependent dendrite growth of mouse hippocampal neurons in culture 
(Wu et al.  2007 ). CREST supports the extension of the dendrites of cortical layer5 
and of hippocampal CA3 neurons in vivo and, with its biochemical interactor 
CREB-binding protein (CBP), promotes dendrite complexity of  cortical neurons in 
culture after stimulation (Redmond et al.  2002 ; Aizawa et al.  2004 ). 

 Taken together, developmental transcriptional patterning defi nes major proper-
ties of the differentiating neurons, including important aspects of their morphology. 
However, in an added layer of complexity, dendrites differentiate within a 
 complicated environment, in which they encounter attractive or repulsive signals 
and interact with substrates or with the branches of same-type or different neurons. 
The code of intrinsic information that they carry will defi ne how they interact with 
their environment. An early example of this dialogue between neuron identity and 
the environment is provided by the response of cortical neurons in the ferret visual 
cortex to neurotrophin stimulation. In fact, the same neurotrophin alters the dendrite 
branching pattern in a fashion that is distinctive for pyramidal neurons of different 
layers (McAllister et al.  1995 ). Thus, the response of distinct cell types to the same 
external factor appears to depend on the intrinsic factors unique to each cell type.  

2.4    Basic Principles in Dendrite Patterning: Self-Avoidance 

 While growing and retracting, branches of the same neuron can come in close con-
tact with each other. If the consequence of this contact were adhesion, the whole 
dendrite tree would collapse. In contrast, branches of the same neuron have a strong 
tendency to repel each other, allowing dendrites to spread over their appropriate 
receptive fi eld without crossing each other in a process known as self-avoidance 
[reviewed in (Grueber and Sagasti  2010 )]. 

 All  Drosophila  da neuron classes display self-avoidance, suggesting that this 
could be a mechanism common to many different neuronal types.  Drosophila  
Down syndrome cell-adhesion molecule (Dscam) is a central player promoting 
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self- avoidance in da neurons. The  Dscam  gene, which encodes for an Ig and Fn 
domain- containing transmembrane protein, is highly complex allowing for the 
expression of tens of thousands of different isoforms (Schmucker et al.  2000 ). 
Dscam is capable of high-affi nity homophilic adhesive binding between isoforms 
containing the same ectodomain variants. Thus, the unique complement of Dscam 
isoforms expressed by a single neuron represents a sort of individual barcode 
(Meijers et al.  2007 ; Wojtowicz et al.  2007 ; Sawaya et al.  2008 ; Hattori et al.  2009 ; 
Wu et al.  2012 ). Only branches of the same neuron presenting an overlapping set 
of Dscam isoforms elicit a repulsive signal. In the absence of Dscam, branches of 
the same neuron are not repelled and collapse over each other (Hughes et al.  2007 ; 
Matthews et al.  2007 ; Soba et al.  2007 ). A strikingly similar role to fl y Dscam, 
though with a different molecular makeup, was recently shown for rodent proto-
cadherins. The protocadherin locus encodes 58 transmembrane cadherin-like pro-
teins that are expressed stochastically and display homophilic adhesion. Loss of 
protocadherins in starbust amacrine cells in the mouse retina leads to collapse of 
their dendrite tree, while re- expression of a single protocadherin rescues dendrite 
spreading (Lefebvre et al.  2012 ). It will now be interesting to identify the cellular 
pathways that turn the initial homophilic binding of Dscam isoforms or of proto-
cadherins into a repulsive signal. 

 Vertebrate Dscam and Dscam-like do not display the isoform complexity of 
insect Dscam. Nevertheless, they are involved in self-avoidance in the mouse ret-
ina. In fact, cells that normally express Dscam, including dopaminergic amacrine 
cells and retinal ganglion cells, have bundled dendrites in the Dscam mutant retina. 
In addition, although dendrites of same-type cells can overlap quite extensively in 
the retina, the processes of same-type cells bundle with each other in the mutant. 
Thus Dscam appears to represent a repulsive signal among same-cell dendrites but 
could counteract an adhesive signal between same-type cell dendrites (Fuerst et al. 
 2008 ,  2009 ). 

 Taken together, the presence of a repulsive signal allowing same-cell dendrites to 
spread extensively appears a common trait of the disparate neuronal types studied 
so far. To allow for unhindered overlap with dendrites of same-type neurons (or of 
different types of neurons) while maintaining repulsion of same-cell branches, fl ies 
and rodents have evolved systems that guarantee stochastic expression of isoforms 
capable of homophilic binding. Since only the same barcode guarantees repulsion 
and there is low chance of fi nding the same barcode on neighboring neurons, these 
two opposite requirements can thus be met. 

 Differentiating dendrites interact extensively with the substrate they grow on. 
Class IV da neuron dendrites grow on the epidermal layer, and they are enveloped 
by epidermal cells at discrete positions. Integrins allow dendrites to adhere to the 
extracellular matrix and thus regulate how much they become enveloped by epider-
mal cells. Cell-autonomous loss of integrins leads to a broader inclusion of den-
drites within the epidermis. Thus, same-neuron dendrites do not come in direct 
contact anymore and can cross more freely each other on different planes. Therefore, 
localization to a single plane is a requirement for appropriate coverage of the 
 sensory fi eld in these neurons (Han et al.  2012 ; Kim et al.  2012 ).  
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2.5    The Interaction with Neighboring Neurons: Tiling 

 Sensory systems might require a complete and unequivocal coverage of a receptive 
fi eld. Thus, a conserved appearance of these systems is a mosaic tile-like organiza-
tion of the involved neurons, nicely exemplifi ed by several neuronal types in the 
mammalian retina, including cholinergic cells (Wässle and Riemann  1978 ; Galli- 
Resta  2002 ). The dendrites of mosaic neurons can overlap to various extents in dif-
ferent systems. In subsets of RGCs and of amacrine cells in the rabbit retina and in 
class IV da neurons of the  Drosophila  larva, dendritic territories are largely exclu-
sive (Devries and Baylor  1997 ; MacNeil et al.  1999 ; Grueber et al.  2002 ) [exten-
sively reviewed in (Grueber and Sagasti  2010 )]. 

 Dendritic tiling among class IV da neurons is likely achieved through local 
repulsive signals, as the loss of one neuron leaves space for the dendrites of other 
surrounding same-type neurons to invade the empty area (Grueber et al.  2003a ; 
Sugimura et al.  2003 ). Several molecules were involved in class IV da neuron til-
ing in the past years. These include Flamingo, a seven-pass transmembrane cad-
herin: in  fl amingo  mutants the dendrites of class IV neurons overextend and 
overlap at boundaries (Gao et al.  2000 ; Kimura et al.  2006 ). In addition, the 
 Drosophila  Ser/Thr kinase Tricornered and Furry, two proteins involved in cell 
morphology control, and their  C .  elegans  homologues Sax1 and Sax2 also sup-
press crosses among same- type neuron dendrite branches (Adler  2002 ; Emoto 
et al.  2004 ; Gallegos and Bargmann  2004 ). The phosphorylation of Trc in tiling is 
regulated by the Hippo kinase and by the TORC2 complex (Emoto et al.  2006 ; 
Koike-Kumagai et al.  2009 ). As mentioned above, cell-autonomous loss of integ-
rins makes the dendrites of class IV neurons become largely enveloped by the 
epidermal cells they grow on. In this situation, no direct contact can be made, and 
thus neighboring same-type neurons can extend their dendrites over each other on 
different planes (Han et al.  2012 ; Kim et al.  2012 ). Tricornered and TORC2 appear 
to regulate the level of epidermal envelopment, thus indirectly controlling appro-
priate tiling (Han et al.  2012 ).  

2.6    Guidance Signals 

 While extending and retracting, dendrites experience a number of environmental 
signals that regulate their guidance or their extension and branching. 

 Dendrites grow to cover their receptive fi elds and to meet their appropriate part-
ners under the guidance of signals present in their environment. 

 Semaphorins represent a major family of guidance molecules involved in the 
directional growth of dendrites. In the rodent cortex the soluble Semaphorin3a 
 produced from the marginal zone covers the dual role of repelling the axon of pyra-
midal neurons from the pia while attracting their dendrites, thus enforcing the neu-
ron’s orientation. The intracellular level of cyclic GMP can shift the guidance 
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response from attractive to repulsive, and so the relative enrichment of soluble gua-
nylate cyclase in the dendrites is at the base of this dual response (Polleux et al. 
 2000 ; Komiyama et al.  2007 ). During the early development of the olfactory system 
in  Drosophila , Semaphorins provide important cues for the correct patterning of the 
dendrites of second-order projection neurons. The level of expression of the trans-
membrane Semaphorin1a in projection neurons defi nes the position of dendrites 
along a dorsolateral-ventromedial axis of the developing antennal lobe (Komiyama 
et al.  2007 ). Secreted Semaphorin2a and Semaphorin2b function redundantly as 
ligands of Semaphorin1a to repel the projection neuron dendrites from the ventro-
medial region of the antennal lobe (Sweeney et al.  2011 ). 

 The conserved soluble Slit ligands and their Robo receptors shape dendrites in 
vertebrates and fl ies by promoting dendrite branching or infl uencing dendrite guid-
ance (Whitford et al.  2002 ; Gallegos and Bargmann  2004 ; Furrer et al.  2007 ; 
Dimitrova et al.  2008 ; Brierley et al.  2009 ; Mauss et al.  2009 ).  Drosophila  class IV 
da neurons are space fi lling: their dendrites branch extensively to achieve high cov-
erage of their receptive fi eld. This coverage is achieved during differentiation via 
coordination of branching and extension. In  robo  or  slit  mutants this equilibrium is 
broken: the dendrites extend too fast and branch less and thus do not achieve appro-
priate coverage of the receptive fi eld (Dimitrova et al.  2008 ). 

 Recently, a more subtle form of guidance emerged, in which only subsets of 
branches of a dendrite tree are positioned at a preferred location but the other 
branches are not. Branches of class III da neurons project close to the lateral chor-
dotonal organ that expresses attractive Netrin B. The Netrin receptor Frazzeled/
DCC in class III neurons promotes dendrite targeting towards the chordotonal 
organ, but dendrites are kept spread by the action of Dscam, thus avoiding an accu-
mulation of dendrite branches at a single site (Matthews and Grueber  2011 ).  

2.7     Activity Modulates Dendrite Organization 
During Differentiation 

 A major piece of information that dendrites receive while growing is whether they 
are making appropriate connections that lead to functional activity. Activity modu-
lates the morphology of dendrites also in the adult animal (Tavosanis  2012 ). But 
during differentiation it might contribute to selecting which branches are stabilized 
and which are pruned, sculpting the morphology of dendrites. According to the 
long-standing synaptotrophic hypothesis, dynamic branches become stabilized if 
they form a functional synaptic connection (Vaughn  1989 ). Experimental support to 
this theory was provided by time-lapse experiments in which nascent synapses 
could be identifi ed using fl uorescently tagged synaptic elements or with electron 
microscopy to reveal sites of synaptic contact [see above; (Li et al.  2011 )]. Indeed, 
dendrites of many different neuronal types appear to grow preferentially towards a 
source of afferent input (Greenough and Chang  1988 ; Katz and Constantine-Paton 
 1988 ; Kossel et al.  1995 ; Malun and Brunjes  1996 ; Inglis et al.  2000 ). 
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 Supporting the role of activity in shaping dendrite arbors, blocking NMDA 
receptors genetically strongly affects dendrite remodeling in rodents, yielding lon-
ger dendrites of barrelette neurons of the trigeminal principal nucleus and supernu-
merary primary dendrites of dentate gyrus granule cells (dGCs) (Lee et al.  2005 ; 
Espinosa et al.  2009 ). Contact with input neurons is important for the refi nement of 
a particular serotoninergic neuron in  Drosophila  (Singh et al.  2010 ). Input activity 
refi nes the dendrite tree of the aCC motor neuron in fl y larvae and the input circuit 
of the adult fl y mushroom body input region (Kremer et al.  2010 ). Visual stimula-
tion elicits increased dendrite arbor growth rate of Xenopus optical tectal neurons, 
but activation of photoreceptors suppresses branching of their postsynaptic partners 
in the visual system of the fl y larva (Sin et al.  2002 ; Yuan et al.  2011 ). Thus, although 
the effect of input activation might vary with the system and with the neurotransmit-
ter involved, input activity seems to be a major factor modeling dendrite guidance, 
growth, and branching. 

 Downstream of input activation, calcium concentration within dendrites increases 
due to direct infl ux through calcium-permeable receptors, voltage-gated calcium 
channels, or release from intracellular calcium stores (Lohmann and Wong  2005 ). 
The resulting local increase in calcium concentration modulates dendrite dynamics, 
for instance by stabilizing fi lopodia of retinal ganglion cells and hippocampal neu-
rons (Lohmann et al.  2002 ; Lohmann and Wong  2005 ; Lohmann and Bonhoeffer 
 2008 ). Importantly, several transcriptional regulators involved in shaping dendrites 
are sensitive to variations of calcium levels (see above), showing that in addition to 
a local transient effect on branch dynamics, calcium increase can induce a more 
general and lasting control of dendrite morphology.  

2.8    The Cytoskeleton: A Dynamic Backbone for Branching 

 A trait that defi nes each individual neuron type is the spacing between branching 
points. This affects the coverage and the overall morphology of dendrites. So how 
are branching points defi ned? As mentioned above, work on axonal branching sug-
gests the presence of Arp2/3-dependent actin patches that predict the site at which 
a lateral branch will be formed (Korobova and Svitkina  2008 ; Gallo  2011 ; Spillane 
et al.  2011 ). Assuming that a similar mechanism was involved in specifying the 
position of new branches also in dendrites, then Arp2/3-activating WASP protein 
recruitment and activation could be a major predictor of branch positioning 
(Campellone and Welch  2010 ). The recruitment and activation of WASP family 
proteins could be a major way that Rac1 Rho family GTPases promote formation 
of branches, for instance in da neurons (Lee et al.  2003 ; Andersen et al.  2005 ; 
Nagel et al.  2012 ). Small GTPases of the Rho family orchestrate the branching of 
dendrites in many different systems, either promoting (Rac1 and Cdc42) or restrain-
ing branching (Rho) (Govek et al.  2005 ). As an alternative to the active recruitment 
of a complex positively promoting the formation of a branch, it is possible that the 
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capacity to form fi lopodia is a general property of dendrites that must be actively 
suppressed, except at specifi c sites. 

 In addition to the reorganization of the actin cytoskeleton, microtubules are also 
involved in the formation of a branch. Microtubules are hollow tubes of 25 nm 
diameter that extend in a polarized fashion. They are nucleated at their minus end 
from a template structure, the γ-tubulin ring complex, and then extend by addition 
of α/β tubulin dimers at their plus end. During collateral branch formation in the 
axons of hippocampal neurons in culture, microtubules splay at potential sites of 
lateral branch formation (Gallo  2011 ). It is possible that this locally destabilizes the 
microtubules that will then be needed to penetrate into the forming lateral branch. 
Whether similar phenomena happen in dendrite branching remains to be analyzed. 
Nonetheless, spastin and katanin-p60-like1, microtubule-severing factors, promote 
branch formation in class IV da neurons of  Drosophila  larva, suggesting that micro-
tubule destabilization allows for branch formation (Jinushi-Nakao et al.  2007 ; 
Stewart et al.  2012 ). Potentially, severed microtubules can offer templates for de 
novo microtubule nucleation or elongation. In fact, loss of γ-tubulin in fl y class IV 
da neurons leads to reduced branching (Ori-McKenney et al.  2012 ). Nonetheless, 
how and when microtubules become relevant during the process of branch forma-
tion remains an open question.  

2.9    Microtubules Display Mixed Polarity Within Dendrites 

 The organization of microtubules within dendrites has been for a long time puz-
zling. Early electron microscopy data showed that microtubules within the central 
stretch of a dendrite branch have a mixed orientation in hippocampal neurons in 
culture (Baas et al.  1988 ). More recently, this observation has been extended also 
to fl y neurons (Stone et al.  2008 ). In mitotic cells the γ-tubulin ring complex that 
nucleates microtubules is attached to the centrosome, formed by a matrix sur-
rounding the centriolar pair, found in a juxta-nuclear position (Gonzalez et al. 
 1998 ; Kuijpers and Hoogenraad  2011 ). Only recently it has been shown that in 
post- mitotic differentiating hippocampal neurons in culture, the centrosome is not 
required for microtubule nucleation. Neurons can still differentiate and extend 
their processes after the centrosome has been ablated. Indeed, in these neurons fol-
lowing chemical depolymerization of existing microtubules, newly forming micro-
tubules can be seen polymerizing in a distributed fashion in the cytoplasm (Stiess 
et al.  2010 ). The non-centrosomal nucleation of microtubules during neuronal dif-
ferentiation is conserved. Flies that lack bona fi de centrosomes due to a mutation 
in the  sas - 4  gene display normal neuronal differentiation (Basto et al.  2006 ; 
Nguyen et al.  2011 ). 

 The fact that microtubules are nucleated in a distributed fashion does not address 
yet the mechanism leading to their mixed polarity in dendrites. This long-standing 
question was investigated in fl y class IV neurons. In this system, microtubules can 
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be nucleated at Golgi outposts. These are membranous compartments with Golgi 
characteristics that are localized within dendrites. As dendrites grow, they require 
membrane and membrane-associated proteins that derive from endoplasmic reticu-
lum and Golgi. The presence of small Golgi elements within dendrites was initially 
shown by electron microscopy and live cell imaging (Gardiol et al.  1999 ; Horton 
and Ehlers  2003 ). These Golgi outposts are present at dendrite branching points in 
rodent and fl y neurons, and they are required for dendrite polarization and dendrite 
branch extension (Horton et al.  2005 ; Ye et al.  2007 ). 

 Microtubules nucleated at Golgi outposts in class IV fl y neurons can grow with 
their plus end extending towards the soma, giving rise to mixed microtubule polarity 
(Ori-McKenney et al.  2012 ). Whether such a mechanism is used in other neuronal 
types and in rodent neurons remains to be addressed. In rat hippocampal neurons in 
culture the Golgi outposts are sparser than in fl y neurons and thus might not be 
enough to represent a widespread platform for microtubule nucleation (Horton and 
Ehlers  2003 ; Horton et al.  2005 ). 

 The mixed orientation of microtubules in dendrites is fundamental for the dis-
tinction between the axon and the dendrites. Molecular motors that translocate 
along microtubule tracks do so in a polarized fashion: some of them (most kinesins) 
move towards the plus end of microtubules, while dyneins move towards the minus 
end of microtubules. Therefore, cargos moving on kinesins or dyneins will be dif-
ferentially distributed to axon or dendrites in rodent and fl y neurons (Zheng et al. 
 2008 ; Kapitein et al.  2010 ). This differential traffi cking is important not only for the 
polarized organization of neurons but also for the appropriate differentiation of den-
drites. Indeed, loss of the kinesin MKLP1 disrupts dendrite differentiation in rat 
hippocampal neurons in culture, and loss of components of the dynein complex 
strikingly reduces the extension of the dendrite tree in da neurons (Yu et al.  2000 ; 
Kuijpers and Hoogenraad  2011 ).  

2.10    Conclusion and Future Perspectives 

 Research on the mechanisms of dendrite branching has revealed the basic logic of a 
number of fundamental steps. We now know that neurons are born with a defi ned 
transcriptional identity that specifi es important aspects of dendrite arborization. 
Further, transcriptional regulation can be modulated by activity. It will be essential 
in the next years to identify the cascades that implement the transcriptional codes 
and how they affect morphology. We have learned the basic principles of how same- 
neuron dendrite branches avoid overlapping in different systems. Nonetheless, we 
still need to understand how specifi c self-recognition is turned into repulsion. 
Finally, although a number of molecules modulate one aspect or another of branch-
ing we still have not addressed the basic mechanisms of formation of a new branch 
or its stabilization. For instance, how is the cytoskeleton reorganized at a branching 
point? And are such mechanisms common to all different types of dendrite branches, 
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or are they specifi c to certain neuronal types? Importantly, high resolution in vivo 
imaging will help addressing several of these issues. 

 Molecular understanding of dendrite branching promises to shed light on defects 
leading to mental function impairment and could suggest ways to promote repair 
after injury in the nervous system.     
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    Abstract     Neuromorphology has a long history of meticulous analysis and 
fundamental studies about the intricacies of neuronal shape. These studies con-
verged to a plethora of information describing in detail many neuronal characteris-
tics, as well as comprehensive data about cell localization, animal type, age, among 
others. Much of this information has notably been compiled through efforts of the 
Computational Neuroanatomy Group at the Krasnow Institute for Advanced Study, 
George Mason University, thus originating the NeuroMorpho.org repository, a 
resource that incorporates a large set of data and related tools. In the current work 
we present a methodology that can be used to search for novel relationships in cell 
morphology contained in databases such as the NeuroMorpho.org. More specifi -
cally, we try to understand which morphological characteristics can be considered 
universal for a given cell type, or to what extent we can represent an entire cell class 
through an archetypal shape. This analysis is done by taking a large number of 
characteristics from cells into account, and then applying multivariate techniques to 
analyze the data. The neurons are then classifi ed as archetypes or outliers according 
to how close they are to the typical shape of the class. We fi nd that granule and 
medium spiny neurons can be associated with a typical shape, and that different 
animals and brain regions show distinct distributions of shapes.   
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3.1         Introduction 

 There are many studies in the literature showing the infl uence of neuronal morphol-
ogy on the respective electrical properties (Carnevale et al.,  1997 ) and fi ring rates 
(Krichmar et al.,  2002 ; van Elburg and van Ooyen,  2010 ; Tejada et al.,  2012 ), regu-
lation    of network connectivity (Scorcioni et al.,  2004 ; Chklovskii,  2004 ) and synap-
tic integration (Poirazi et al.,  2003 ; Zhou et al.,  2013 ) of neurons. These works were 
sparked by the seminal work of Ramón y Cajal, who described with great detail the 
structure of a vast number of neuronal cells. Subsequent studies aimed at tracing the 
shapes of neuronal cells provided surplus information describing a large number of 
neuronal characteristics. Some interesting approaches in this area include Sholl 
analysis (Sholl,  1953 ; Ristanović et al.,  2006 ; Milosević and Ristanović,  2007 ), the 
characterization by fractal dimension (Montague and Friedlander,  1991 ), the infl u-
ence area analysis (Toris et al.,  1995 ), and the dendrogram representation 
(Poznanski,  1992 ). There are also more recent works concerning the development 
of computational neuromorphometry (Costa et al.,  2002 ; Rodrigues et al.,  2005 ). 
Such information made possible the categorization of neurons according to their 
overall shape, localization, development stage, animal species, and others. 

 However, the proper study of neuronal morphology requires a large amount of 
information in order to correctly characterize a group of cells. The NeuroMorpho.
org repository (Ascoli,  2002 ; Ascoli et al.,  2007 ) plays an important role on this 
matter, as its mission is to build an online repository with well-organized neuromor-
phological information of as many cells as possible. It offers three-dimensional 
reconstructions of many types of neurons from different brain regions and animal 
species. The repository is maintained by the Computational Neuroanatomy Group 
(Krasnow Institute for Advanced Study, George Mason University), which analyzes 
each new submitted model before its publication, standardizing its format. The 
NeuroMorpho.org database offers interesting information that can be used to 
explore the space of parameters that characterizes neurons. This large database was 
used in a previous work to study the distribution of neuronal geometry (Costa 
et al.,  2010 ), which proposed a multidimensional projection technique to map each 
of the NeuroMorpho.org cells into a space of all possible shapes that a neuron could 
present, showing that real neurons occupy only a small fraction of this space. 
Nevertheless, that work considered all neurons available at NeuroMorpho.org, 
which prevented a detailed investigation of the relationship between subgroups of 
cells inside the same cell class. The main motivation for doing such an investigation 
is to approach questions such as if two neurons can be considered to be of the same 
type despite being traced by different laboratories, or how similar are interneurons 
of rats and mice when compared to interneurons of, for example, a blowfl y. 

 Here we use a multivariate technique of visualization and classifi cation, known 
as Principal Component Analysis (PCA) (Hardle and Simar,  2012 ), to study the 
morphological characteristics of groups of neuronal cells. Our main point of interest 
is in searching for typical shapes that can represent an entire class of neurons, which 
we call archetypes, as well as morphological features of cells that are far from being 
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archetypal and can be understood as outlier cells. We seek to discover similarities 
and differences inside cell classes when considering traditional metrics present in 
the literature, as explained in Sect.  3.2 . 

 As an initial step towards the planned investigation of the entire NeuroMorpho.
org repository, we decided to study three large classes of neurons, namely interneu-
rons, granule, and medium spiny cells. These classes represent 23 % of the models 
available in NeuroMorpho.org and are known for having distinct morphological 
characteristics. Through these three classes we seek to answer the next two ques-
tions: (1) Are there morphologies that can be considered as archetypes? (2) Is it 
possible to associate common characteristics to the cell models considered to be 
outliers? 

 In order to present our methodology we fi rst defi ne basic concepts related to 
morphometry characterization and multivariate analysis. These concepts will be 
presented in the next section.  

3.2      Materials and Methods 

3.2.1     Data Acquisition: The NeuroMorpho.org Database 

 The fi rst version of the NeuroMorpho.org repository was released on 1st August 
2006 (Ascoli et al.,  2007 ) with the main goal of making publicly available digital 
reconstructions of neuronal cells. The repository is very complete and well orga-
nized, in the sense that it provides many useful information, such as the cell type, 
brain region, and animal species for each cell. In addition, 20 morphological mea-
surements are provided for each neuron. All of these measurements were extracted 
by using the software  L − measure , following the methods described in Halavi 
et al. ( 2008 ) and Scorcioni et al. ( 2008a ). Both metadata and morphological mea-
surements can be seen in HTML format at the web page of each cell. For instance, 
in order to access the information of the neuron  n10fts , one can go to the address 
  http://neuromorpho.org/neuroMorpho/neuron_info.jsp?neuron_name=n10fts    , 
where all information will be shown. Thanks to this pattern used for the web page 
address of all cells in the database, it is easy to automatically collect the desired 
information of all cells. In order to obtain the name of the cells, it is possible to use 
the search engine available in the NeuroMorpho.org website.  

3.2.2     Morphological Measurements 

 In Table  3.1 , we list all the 20 measurements collected from the NeuroMorpho.org 
repository. Since these measurements are well established in the fi eld, we will not 
describe them here, but their detailed information and signifi cance can be found in 
Ascoli ( 2002 ), Scorcioni et al. ( 2004 ,  2008b ), and Costa et al. ( 2010 ). 
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3.2.3       Data Processing 

 Considering the set of morphological measurements defi ned above, we have a 
20-dimensional space. This high dimensionality makes the visualization and analy-
sis of the data a hard task. In order to decrease the total dimension of our problem, 
we employed the PCA technique (Hardle and Simar,  2012 ) that reduces the dimen-
sionality from  m  to  n  with minimal loss of information by exploring the variance of 
the data. In this paper, we assume  n  = 2 and then the data is always projected into a 
two-dimensional plane whose axes are defi ned by the two new variables obtained 
through PCA, which we call PCA1 and PCA2. We chose to project into two dimen-
sions because besides being easier to visualize the results, we found that in all cases 
the fi rst two axis explained at least 50 % of the variation of the data, while the third 
axis only added 10 % of explanation. 

 Upon having the projected data, it is possible to estimate its probability density 
function by using a technique called kernel density estimation (Duda et al.,  2000 ). 
Basically, we consider the projected points as Kronecker deltas and convolute these 
deltas with a Gaussian kernel with given standard deviation  σ . The result is a smooth 
continuous function that tells us not only the probability density of the measured 
points but also the estimate probabilities over entire space. Note that this is signifi -
cantly distinct from simply taking the histogram of the data, as besides using the 
frequency of occurrence we are also taking into account the typical position of the 
points. If there is a high concentration of points in some region  and  they are close 
together, this region holds a higher probability of representing the neurons than 
would be otherwise suggested by the histogram.  

3.2.4      Morphology Projection 

 Our entire database consists of 1,260 interneurons, 426 medium spiny, and 341 gan-
glion cells, but since some reconstructions in NeuroMorpho.org show additional 
information about the neurons besides the cell compartments (e.g., spatial localization 
guides), 72 models had to be discarded (1 medium spiny cell and 71 interneurons). 

   Table 3.1    Morphological 
measurements applied  

 Measurements 

 Soma surface  Total volume 
 Number of stems  Max Euclidean distance 
 Number of bifurcations  Max path distance 
 Number of branches  Max branch order 
 Overall width  Average contraction 
 Overall height  Total fragmentation 
 Overall depth  Partition asymmetry 
 Average diameter  Average Rall’s ratio 
 Total length  Average bif. angle local 
 Total surface  Average bif. angle remote 
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Therefore, the analyzed data consists of 1,189 interneurons, 425 medium spiny, and 
341 ganglion cells. In addition, considering that not all reconstructions had the axonal 
morphology described, only the soma and the basal and apical dendritic trees were 
used to obtain the morphological characteristics. 

 After applying the morphological metrics described in Table  3.1  we created high 
dimensional spaces that were projected into two dimensions by using PCA. We ended 
up with one 2D space for each type of cell. Then we estimated the probability density 
functions through kernel density estimation for these 2D spaces, which allowed us to 
seek for relationships between high or low density morphological regions. 

 For each cell on the 2D space we observe what is the probability density of the 
region where the cell was projected into, that is, we look at the value of the probability 
density function at the point (PCA1( i ),PCA2( i )), where PCA1( i ) is the value of the 
fi rst PCA component and PCA2( i ) is the value of the second PCA component for 
cell  i . Through this procedure, we obtain the morphological probability density 
for each cell, which can be used to classify the cell as an archetype or outlier. If the 
cell is in a region of high probability, it means that its morphology can be used to 
characterize the overall shape of the class it belongs to, allowing to confi rm if the 
typical picture one has about the studied class is in fact correct. Additionally, since 
we project the data in 2D, it is possible to color the points representing the cells 
according to some other characteristic (i.e., animal species, brain region, or labora-
tory) and visualize their infl uence on the projected position of the cell. 

 In order to compare cells reconstructed from different laboratories, it is impor-
tant to notice that size-related measurements may represent a source of bias because 
they are strongly affected by distinct experimental conditions (Scorcioni et al.,  2004 ). 
Therefore, it is advisable that an initial analysis is done in order to verify for trivial 
morphological differences. In the case of the three cell classes studied here, we 
found that there was not a trivial feature responsible for signifi cant differences 
between laboratories. Nevertheless, in case a size-related measurement, e.g., the 
average diameter, is found to strongly infl uence the result, a good approach would 
be to separate the cells according to size (e.g., small, medium, and large) and project 
each group separately.   

3.3      Results 

 We fi rst consider the class of granule cells, of which the PCA projections and clas-
sifi cations are shown in Fig.  3.1 . In Fig.  3.1a , cells colored with dark gray are con-
sidered to be outliers, while archetype cells are represented in black. The projection 
shows high dispersion with three nearly distinct groups, although only one of them 
have archetypal cells. An example of a typical archetype granule cell is shown in 
Fig.  3.1b . In order to identify the main features of each group in the projection, we 
used the meta information provided by NeuroMorpho. By separating the cells 
according to species (Fig.  3.1c ), one of the groups is mainly composed by neurons 
of mice, while rat neurons are scattered among the three groups. At fi rst sight this 
can mean that granule cells show more variation in rats than in mice, but we also 
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have to consider that the experimental procedures used to acquire these neurons are 
not the same for all cells. 

 In Fig.  3.1d  we color the points according to the laboratory where the data were 
produced (Rihn and Claiborne,  1990 ; Cannon et al.,  1998 ; Bausch et al.,  2006 ; Arisi 
and Garcia-Cairasco,  2007 ; Vuksic et al.,  2008 ; Carim-Todd et al.,  2009 ; Pierce 
et al.,  2011 ; Murphy et al.,  2011 ; Gupta et al.,  2012 ). As expected, cells obtained 
with the same experimental conditions are close to one another in the projection. 
What is interesting to study here is the relationship between the laboratories. Most 
cells of the work of Bausch et al. ( 2006 ) seem to form a group on their own, and this 
happens because they are hippocampal culture cells treated chronically with a 
sodium channel blocker, which rendered some cells far from what would be expected 
to be a typical granule cell. Another group is formed by cells from Turner and 
Claiborne, 1  which were all acquired from rats, and may represent the true archetypal 
cells of this species. The third group is formed by mouse cells from Danzer, Lee, 
and Vuksic and rat cells from Garcia-Cairasco. Interestingly, the rat cells from 

1   Here we use the lab names that appear on NeuroMorpho.org. 

a b

dc

GranuleCell-Nr4-Septal

  Fig. 3.1    Processing steps for the analysis of the granule cells. ( a ) The 2D PCA projection, show-
ing the identifi ed archetypes and outliers in different  colors  and  marks . Also shown is the PCA 
signifi cance for each axis. ( b ) Example of archetype neuron. ( c ) The same projection as in ( a ), but 
with points colored according to the animal species where the neurons were taken from. ( d ) Again, 
the same projection as in ( a ), but showing in  dark gray  the different laboratories where neurons 
were traced (see footnote  1 )       
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Garcia-Cairasco’s group have altered morphology, very likely a consequence of 
 status epilepticus  induced by pilocarpine (Arisi and Garcia-Cairasco,  2007 ), which 
caused them to be more similar to mouse cells.

   In Fig.  3.2  we show the projections for the medium spiny neurons. We see that 
they form two nearly distinct groups. In the same way of the granule cells, the two 
groups are related to the type of cells and the laboratories from which the cells were 
reconstructed. One group is composed of neurons from the basal forebrain, recon-
structed by Smith, and the other has mostly basal ganglia neurons from Kellendonk. 
It is also possible that the cells considered as archetypes correspond to cells from 
control animals, while the outliers are cells that showed morphological alterations, 
as reported in the original papers (McDonald et al.,  2005 ; Cazorla et al.,  2012 ).

   In contrast with the previous results, the interneurons yielded a large group 
(Fig.  3.3 ), with few separated cells. This is an interesting result, since interneurons 
are the cells we could expect to be the most diverse. If we color the points according 
to the two main brain regions the neurons were acquired from (Fig.  3.3c ), we see that 
there is some discrimination, but it is not strong. By separating the cells according 
to subclasses described in the NeuroMorpho repository, we see that there are still no 
noticeable differences between the projections. The only exception is the tangential 

ACC1

a

c

b

  Fig. 3.2    Processing steps for the analysis of the medium spiny cells. ( a ) The 2D PCA projection, 
showing the identifi ed archetypes and outliers in different  colors  and  marks . Also shown is the 
PCA signifi cance for each axis. ( b ) Example of archetype neuron. ( c ) The same projection as in 
( a ), but with points colored according to the brain region (basal ganglia and basal forebrain) where 
the neurons were acquired from       
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cells, but they are the only cells obtained from the blowfl y, while most of the others 
are from rats or mice. The reason for not observing clear separations between inter-
neurons probably comes from the fact that they are so diverse that it is diffi cult to 
defi ne a characteristic shape for them, even if we consider specifi c subtypes, i.e., 
neurons of the same subtype are so diverse that even they are not able to form dis-
tinct groups in the projection. This means that it is unlikely that the archetype shown 
in Fig.  3.3b  correctly represents the overall shape of an interneuron.

   Concerning only the archetypes and outliers found in the three classes, the impor-
tance of the groups found is clear: the archetypes of the granule and medium spiny 
cells have the typical shape of their cell class and can be used (and usually are) as 
examples of what characteristics are expected to be found in the respective cell class. 
The outliers are usually related to morphological alterations provoked by disease or 
trace of the cell. They may show slight deviations from the cell class, usually in the 
form of specifi c features that are not visually apparent but completely change some 
other feature (e.g., a neuron having slightly larger mean compartment radius and 

07-L5-6int-44

a b

dc

  Fig. 3.3    Processing steps for the analysis of the interneuron cells. ( a ) The 2D PCA projection, 
showing the identifi ed archetypes and outliers in different  colors  and  marks . Also shown is the 
PCA signifi cance for each axis. ( b ) Example of archetype neuron. ( c ) The same projection as in 
( a ), but with points colored according to the brain region where the neurons were taken from. 
( d ) Again, the same projection as in ( a ), but showing in  dark gray  the different subclasses of inter-
neurons according to NeuroMorpho       
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length can have a much larger volume), or have a completely different  morphology. 
Nevertheless, it is worth noting that the classifi cation as an outlier can be an effect 
of a small sample size of the respective cell class in the NeuroMorpho repository, so 
care must be taken to not classify a shape as atypical simply because it is not usually 
submitted to the repository (the interneurons of the blowfl y in Fig.  3.3  are an exam-
ple of this). Finally, an important information that can be obtained for the outliers is 
their distance to the archetype of the associated control group, which represents a 
measure of the impact of the changes on the cell morphology. 

 In Table  3.2  we show the mean and standard deviation for measurements taken 
on the archetypes of the three types of cells analyzed (examples of these cells are 
shown in panel b of Figs.  3.1 – 3.3 ). As is expected for granule cells, they have the 
smallest number of stems and bifurcations when compared with interneurons or 
medium spiny cells. At the same time, looking for the overall width, height, and 
depth of the interneurons, we observe that they are usually bigger and more planar, 
as can be seen in the example of the morphological archetype shown in Fig.  3.3b . 

 Considering a visual inspection of the cells classifi ed as morphological arche-
types, the groups obtained with the PCA were consistent with the main morpho-
logical characteristics of the three cell types. The archetype of the granule cells have 
the typical symmetric cone-shaped dendritic tree (Cannon et al.,  1999 ; Andersen 
et al.,  2006 ), the medium spiny cells of the archetype group have the characteristic 
spherical dendritic branch (Preston et al.,  1980 ; Bishop et al.,  1982 ), and the 

   Table 3.2    Morphological characterizations of the archetypes of the three types of cell analyzed   

 Measurements  Interneurons  Medium spiny  Granule 

 Soma surface (μm 2 )  721.46(280.15)  638.70(256.25)  471.11(205.77) 
 Number of stems  4.92(1.79)  5.99(2.31)  1.25(0.52) 
 Number of bifurcations  23.38(11.90)  17.13(6.58)  10.53(2.75) 
 Number of branches  51.62(24.48)  39.76(13.53)  22.30(5.23) 
 Overall width (μm)  204.08(76.47)  166.41(39.83)  156.77(48.41) 
 Overall height (μm)  300.14(115.94)  160.46(32.23)  198.96(33.85) 
 Overall depth (μm)  73.24(74.00)  76.71(27.75)  38.81(23.21) 
 Average diameter (μm)  0.64(0.37)  0.40(0.33)  0.93(0.64) 
 Total length (μm)  2287.85(772.39)  1778.82(519.74)  1562.05(601.52) 
 Total surface (μm 2 )  4843.67(2265.38)  2132.52(976.02)  5597.07(4344.29) 
 Total volume (μm 3 )  3788.25(1988.49)  2310.17(1175.50)  3359.65(2452.29) 
 Max Euclidean distance (μm)  229.93(50.55)  143.03(21.81)  235.83(26.22) 
 Max path distance (μm)  115.78(25.28)  81.49(10.59)  140.41(22.49) 
 Max branch order  5.87(2.42)  4.30(1.35)  4.56(0.96) 
 Average contraction  0.84(0.05)  0.84(0.03)  0.91(0.03) 
 Total fragmentation  1948.26(2250.36)  841.88(354.94)  1002.78(1036.20) 
 Partition asymmetry  0.50(0.08)  0.45(0.09)  0.43(0.14) 
 Average Rall  1.47(0.71)  0.36(0.71)  1.94(1.42) 
 Avg bif. angle local  78.27 ∘ (10.10)  77.95 ∘ (11.08)  66.12 ∘ (9.13) 
 Avg bif. angle remote  65.39 ∘ (11.43)  70.23 ∘ (11.45)  33.79 ∘ (5.64) 

  The fi rst number is the mean value and the value within parenthesis corresponds to the standard 
deviation  
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   Table 3.3    Morphological characterizations of the outliers of the three types of cell analyzed   

 Measurements  Interneurons  Medium spiny  Granule 

 Soma surface (μm 2 )  2930.41(3114.72)  860.35(517.94)  876.02(882.46) 
 Number of stems  4.74(5.83)  5.56(2.69)  2.38(1.39) 
 Number of bifurcations  190.00(585.39)  18.58(13.16)  16.88(8.30) 
 Number of branches  384.70(1169.99)  42.48(27.92)  35.63(16.65) 
 Overall width (μm)  551.30(387.28)  214.00(102.30)  291.27(176.70) 
 Overall height (μm)  619.36(418.41)  202.65(99.87)  286.38(177.35) 
 Overall depth (μm)  115.98(146.55)  80.25(41.59)  95.27(95.26) 
 Average diameter (μm)  2.31(2.90)  0.64(0.49)  1.19(0.59) 
 Total length (μm)  8708.91(8277.31)  1948.45(942.43)  2915.05(1948.36) 
 Total surface (μm 2 )  44166.33(44134.98)  4075.09(3232.89)  11287.89(7904.89) 
 Total volume (μm 3 )  59150.61(73045.68)  4897.61(4799.38)  9019.18(10253.03) 
 Max Euclidean 

distance (μm) 
 530.06(325.97)  189.56(85.40)  310.27(153.05) 

 Max path distance (μm)  346.82(257.60)  98.35(32.86)  191.80(94.56) 
 Max branch order  15.64(19.57)  4.45(1.89)  5.93(2.87) 
 Average contraction  0.86(0.13)  0.85(0.04)  0.83(0.15) 
 Total fragmentation  6590.36(12772.60)  1276.95(986.31)  1940.60(1449.17) 
 Partition asymmetry  0.60(0.18)  0.47(0.11)  0.50(0.14) 
 Average Rall  1.42(0.83)  0.84(1.04)  1.64(0.83) 
 Avg Bif. angle local  68.24 ∘ (27.34)  77.87 ∘ (11.99)  75.57 ∘ (20.90) 
 Avg Bif. angle remote  58.30 ∘ (25.11)  66.42 ∘ (14.63)  44.55 ∘ (16.16) 

  The fi rst number is the mean value and the value within parenthesis corresponds to the standard 
deviation  

interneurons classifi ed as archetype present a spread out dendritic tree, a common 
characteristic of interneurons connected with pyramidal cells (Andersen et al.,  2006 ). 
The names of the archetypes and outliers found for each cell class are included in 
Appendix of this text. 

  In contrast, Table  3.3  shows the mean and standard deviation for measurements 
taken on the outliers found for each one of the cell types. It is clear that the values 
are very different from those found for the archetypes, specially regarding measure-
ments related to size. That is, outlier cells seem to be much larger than the typical 
size of the class. As expected, the standard deviation of the values is also large, 
meaning that outliers have many different shapes and sizes and cannot be repre-
sented by characteristic structures in the same way that archetypes can. 

3.4       Conclusion 

 We have reported a technique that can be used to analyze a large number of neuronal 
data. We believe that each procedure presented, namely PCA, kernel density estima-
tion and NeuroMorpho data acquisition can be used to great extent, both individually 
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and in combined form, to study the morphology of neural cells. Here we presented 
one of many ways in which these tools can be integrated, and exemplifi ed the 
methodology for three classes of neurons: granule, medium spiny, and interneuron. 

 We found that for granule cells it is possible to defi ne an archetypal shape of the 
class, mainly related to a cone-shaped structure. These cells also have profound 
differences depending if they were obtained from rats or mice, with the interesting 
property that rat cells altered by  status epilepticus  become more similar to mouse 
cells. This means that the methodology can be used to quantify to which extent 
genetic or environmental alterations can modify the overall morphology of the cell 
when compared to the archetypal shape of the class to which it belongs. 

 Clearly, it is also possible for a given cell type to exhibit more than one charac-
teristic morphology. In such cases the methodology presented here can help ascer-
taining if the traditional classifi cation used for the studied cells is in fact 
differentiating between different morphologies or, more importantly, may even help 
in the creation of new categories of neurons that are too different from the original 
class. Here we showed that this may be the case for medium spiny cells occurring in 
different brain regions. 

 Also, it can happen that no trivial classifi cation scheme can be defi ned solely 
based on the morphology of the cell. This happens for cases where the topology 
is so diverse that there is actually no motivation in separating cells by small 
details that can easily change between species or brain regions. This property is 
clear for the interneurons, which present a large diversity. But even if a given cell 
class has a typical shape, it is still diffi cult to defi ne a single structure that can 
completely represent the class across a variety of animal species or brain areas. 
Nevertheless, it is still possible to fi nd combinations of characteristics that are 
similar for the entire class. The PCA method was presented here as the heart of 
this idea. 

 Of particular interest is the effect of experimental conditions on the groups 
observed for each class. In Figs.  3.1  and  3.3  it is clear that the laboratories had an 
infl uence on the morphology of the reconstructed cells. This is an interesting result, 
since, as indicated in Sect.  3.2.4 , no trivial feature strongly discriminates between 
laboratories. Another means to search for trivial effects is to look at the contribution 
of specifi c features on the PCA axes and observe if some feature has a prominent 
infl uence on the result. In our case, no feature had a signifi cantly larger infl uence on 
the projection, meaning that the separation observed between laboratories is caused 
by a combination of distinct morphological characteristics. 

 We also note that the method can be applied in a multiscale fashion. That is, after 
doing the projection for the entire class, it is possible to defi ne a subgroup of cells 
through some criteria (e.g., brain region, cells near a group of archetypes) and defi ne 
a new axis of projection based on this group. This new projection can bring novel 
insights about the data, like the presence of groups of cells from the same brain 
region. This process can be repeated until there are too few cells to allow for a good 
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projection. But now, since there are just a few cells to characterize, it is possible to 
study them individually and look at specifi c measured characteristics. 

 The minimum amount of cells necessary for a proper defi nition of the new axis 
depends on the distribution of the data. If there are seven or eight points scattered in 
a 2D space, it is diffi cult to conclude whether they are forming subclasses or are just 
a single class that has a large variance. On the other hand, if we have two compact 
groups with four points each, and a large distance between the groups, it is more 
plausible to conclude that the data has two subclasses. This means that if the amount 
of data is small, the projection has to be carefully analyzed with respect to the vari-
ance of the observed groups. Still, since the NeuroMorpho repository has a suffi -
ciently large database, it is possible to apply the presented methodology to multiple 
scales of the data.     
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Abstract Neurons innervate space by their axonal and dendritic arborizations. 
Synapses can form when axons and dendrites are in close proximity. The geometry 
of neurons and their numerical densities in space are thus primary factors in the 
formation of synaptic connectivity of neuronal networks. A simulator of neuronal 
morphology based on principles of neural development (NETMORPH) has been 
used to show that realistic network connectivities emerge from realistic neuronal 
morphologies and simple proximity-based synapse formation rules.

4.1  Introduction

Activity dynamics underlying cognition depends crucially on the patterns and 
strengths of synaptic connections between neurons. Neurons innervate space by 
their axonal and dendritic arborizations as determined by their geometries. Axonal 
and dendritic arborizations are complex and show large variations in all their shape 
characteristics, such as in the number of segments and segment lengths, branching 
angles, tortuosity of branches, orientation of branches, thickness of branches, topol-
ogy of their tree patterns, and their global 3D embedding, which may show some 
spherical symmetry or axial symmetry or even flat 2D patterns such as in Purkinje 
cells. Synapses can form only at those locations where axons and dendrites come 
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sufficiently close to each other (Peters 1979). The geometry of neuronal  arborizations 
and the numerical densities of neurons are therefore important determinants of syn-
aptic connectivity of neuronal networks.

How neuronal morphology shapes neuronal network connectivity is, however, 
still poorly understood. From a computational point of view this question can be 
addressed by creating neuronal networks of computer generated or experimentally 
reconstructed neurons along with their axonal and dendritic arborizations in a given 
space and studying the emergent connectivity by applying Peters’ rule (Peters 
1979). The use of experimentally reconstructed neurons has the advantage of best 
morphological realism of their arborizations. For instance, NeuroConstruct (Gleeson 
et al. 2007) is a modeling tool for creating complex neuronal networks in 3D space 
using imported experimentally reconstructed neuronal morphologies.

The efforts of collecting accurate and complete reconstructions are time costly and 
large. Thanks to the initiative of creating the NeuroMorpho.Org database, an increas-
ing number of reconstructions have become available (Ascoli 2006; Ascoli et al. 
2007). For the construction of large networks, however, the finite datasets require the 
use of many copies of the same neuron. The use of computer generated neuronal 
arborizations has the advantage that neurons can be produced in any desired number 
and, depending on the generator, also with full and realistic variation between the 
individual neurons. A number of different neuronal morphological simulators are 
presently available in the field of computational neuromorphology, which differ 
amongst others in the algorithms used. Neurons may be generated by sampling exper-
imental distributions of quantified neuronal shape parameters. These algorithms pro-
duce neurons with realistic variations in neuronal shapes. An important example of 
such an algorithm is L-Neuron (Senft and Ascoli 1999; Ascoli and Krichmar 2002; 
Samsonovich and Ascoli 2007) which was inspired by earlier work of Burke et al. 
(1992). Also the simulator NeuGen (Eberhard et al. 2006) uses this algorithmic 
approach. An algorithm explored by Luczak (2006) uses diffusion limited aggregation 
(DLA) for generating neuron-like arborizations. A recently developed algorithm by 
Cuntz et al. (2010) regards arborizations as locally optimized graphs and neuronal 
morphologies are generated by using the minimal spanning tree principle. Costa and 
Coelho (2005; 2008) generated 2D neuronal morphologies by statistically sampling a 
probabilistic model of neuronal geometry based on branch probabilities per branch 
level using a Monte Carlo approach, and form connections when neuronal trees over-
lap in 2D. Torben-Nielsen et al. (2008a; 2008b) developed an algorithm (KDE-Neuron 
and EvOL-Neuron) for generating arborizations automatically from a set of experi-
mentally reconstructed neurons, without making a priori assumptions about the distri-
butions generating the real data. Neuronal arborizations may also be produced by 
algorithms inspired by the developmental process of neurite outgrowth and branching. 
The simulator CX3D (Zubler and Douglas 2009) is a tool for simulating the growth of 
cortex in 3D space. It includes actions such as cell division, cell migration and neurite 
outgrowth. The simulated neurons have a physical implementation in space and may 
secrete and react to chemical components. CX3D combines mechanistic and stochas-
tic rules for elongation and branching in the morphogenesis of single neurons. The 
simulator NETMORPH (Koene et al. 2009) is a simulation framework for generating 
realistic neuron morphologies also based on rules for neuronal  development. It uses a 
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phenomenological approach in modeling the development of neuronal morphology 
versus developmental time. Real neurons grow out by the actions of growth cones at 
the tips of outgrowing neurites. These actions include migration (elongation of the 
neurite), branching (into two daughter growth cones), turning (changing direction of 
outgrowth), and retraction (shortening of the neurite). The simulator NETMORPH 
uses the dendritic outgrowth model of Van Pelt et al. (e.g., 2001) which describes 
these actions in a stochastic way and which has been shown to generate realistic den-
dritic morphologies. The simulators NETMORPH and CX3D have recently been 
evaluated by Aćimović et al. (2011) and Mäki-Marttunen et al. (2011).

In this chapter, we show examples of networks created with NETMORPH, and 
emergent synaptic connectivities in a single layer of rat cortical L2/3 pyramidal 
neurons. This choice was based on the availability of experimental data on L2/3 
pyramidal cell morphologies and pyramidal-pyramidal cell connectivity. The ques-
tion was addressed whether model neurons, generated with the NETMORPH simu-
lator, and placed in realistic densities in space resulted in networks with realistic 
synaptic connectivity patterns.

We found that networks formed by the realistic neuron morphologies generated 
with NETMORPH show connectivity patterns that are in very good agreement with the 
available experimental data. For a number of connectivity properties experimental data 
was not yet available and these outcomes must therefore be regarded as predictions.

4.2  NETMORPH Simulator

In the simulator NETMORPH, neurons, with their cell bodies initially placed in a 
3D space, grow out independently from each other and fill the space with their axo-
nal and dendritic arborizations. Candidate synaptic locations are searched for on the 
basis of the proximity of axonal and dendritic branches in conjunction with a “cross-
ing criterion” for any pair of axonal and dendritic line-pieces that constitute the 
branches (Van Pelt et al. 2010). The synaptic locations are thus purely based on the 
3D cell geometries.

A simulation run of NETMORPH is based on a script, a text file that contains 
parameter identifiers with associated values specifying the duration, the time step, 
and other parameters required for the growth process. These include the model 
specifications (parameters) and the various probability density functions from 
which random samples are to be drawn. The structure of the scripts and the param-
eters that can be used to specify the growth process are explained in the manual of 
NETMORPH (Koene et al. 2009). The NETMORPH simulator is used for both the 
optimization process in an iterative fashion, and for running the final simulations 
with the optimized growth parameter values. The optimization process aims at find-
ings those parameter values that result in morphologies optimally matching experi-
mental data of reconstructed neurons. A network simulation requires a network 
initialization step including the specification of the space, cell types, positions of the 
cell bodies, etc.
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4.2.1  Model of Neurite Outgrowth in the NETMORPH 
Simulator

An important requirement of a simulator of neuronal morphology is that the 
 simulated structures are realistic both in their shapes and in the variability in shapes. 
The outgrowth model used by NETMORPH is based on stochastic phenomenologi-
cal rules for branching and elongation of neuritic segments (growth cones), formu-
lated by Van Pelt et al., and has been shown to accurately describe the geometry of 
dendrites of various cell types (e.g., Van Pelt et al. 2001; Van Pelt and Uylings 2003; 
2005). Note, that the current version of NETMORPH has also been used for gener-
ating axonal arborizations (see Sect. 4.6 for axonal outgrowth rules).

The growth model is a phenomenological one aiming at describing the growth 
actions, not a biophysical one that would describe the mechanisms underlying the 
growth actions. The model is based on a minimal set of growth rules formulated as 
close as possible to the observables in the neurite outgrowth process. These growth 
rules concern the branching process, producing topological trees, and the elongation 
process defining the lengthening of the segments. The modular structure allowed 
each growth rule to be validated separately on experimental data.

Neurite outgrowth starts with the formation of an initial segment emerging from 
the cell body and with a growth cone at the tip. The growth cone elongates the neu-
rite, can change outgrowth direction, and can branch, creating two daughter growth 
cones. Note that on a smaller time scale growth cone behavior shows more complex 
dynamic behavior including phases of retraction.

4.2.2  Branching

During outgrowth, each growth cone j in a growing tree has a branching probability 
given at time ti with time step Δt by
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(e.g., Van Pelt and Uylings 2002; 2003; 2005; 2007). The equation is the product of 
three factors: a factor e ti− /τ  that decreases exponentially with time constant τ with 
developmental time; a factor 2−S jγ , modulated by the parameter S, that changes 
with the growth cone’s centrifugal order γ (the number of branch points between the 
tip and the root of the tree); and a factor ni

− E that decreases with the momentary 
number (ni) of growth cones in the tree. This last factor reflects competition 
between growth cones for resources. Parameter E denotes the strength of competition. 
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After each branching event, the branching probability thus decreases. The parameter 
B∞ determines the expected number of terminal segments in the final tree for E = 0. 
The coefficient Cni

 is a normalization term to be updated at each branching event. 
The branching process of a tree is thus fully defined by the parameters B∞, E, S, τ, 
and the period of growth T. Examples of optimized values for these parameters for 
a variety of cell types are summarized in Van Pelt et al. (2001).

4.2.3  Elongation

The rate of elongation of a growth cone may vary considerably (e.g., Lamoureux 
et al. 1998; da Costa et al. 2002), also on the time scale of the chosen time steps Δt. 
In NETMORPH a more coarse grained approach is used by taking an averaged 
elongation rate for the period in which a terminal segment is elongating up to the 
occurrence of its next branching event. The daughter segments emerging from a 
branching event are then subsequently given an elongation rate up to their next 
branching events. NETMORPH assigns the elongation rates by randomly sampling 
a Gaussian distribution with mean eri-mn and standard deviation eri-sd (eri stands 
for elongation rate initialization). Alternatively, NETMORPH includes the option to 
select an elongation competition model. In addition to influencing branching prob-
ability, competition between growth cones for limited resources may also affect 
elongation rate (see also Van Ooyen et al. 2001; Van Ooyen 2011), which can be 
described as

 
ν νt n t

F( ) = ( )−
0 ,

 
(4.2)

with parameter F determining the strength of competition (Van Pelt and Uylings 
2003). For F = 0, terminal segments elongate with rate ν0 independent of the number 
of terminal segments. For F > 0, elongation rates depend on the momentary number 
of terminal segments. For F = 1, elongation rates are inversely correlated with the 
number of terminal segments, implying that the total tree increase its length with 
rate ν0. Strong experimental evidence for such dependencies is, however, not yet 
available. Therefore, this option has not been used in the simulations described in 
this chapter, i.e., F = 0.

4.2.4  Neurite Turning and Direction of Outgrowth  
After Branching

The direction of outgrowth of growth cones is subject to different factors with 
intrinsic ones (such as cytoskeletal stiffness) and external ones (such as trophic and 
tropic factors, and irregularities of the surrounding tissue). NETMORPH uses a 
stiffness rule in combination with a stochastic factor to calculate momentary out-
growth directions of all dendritic growth cones (Koene et al. 2009).
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4.2.5  Flatness of Bifurcations

An interesting property of dendritic bifurcations is that they are flat (parent and 
daughter segments lie predominantly in one plane) and that they are aligned with the 
bisector of the daughter segments oriented oppositely to the parent segment 
 (Fig. 4.1a–c) (Uylings and Smit 1975; Van Pelt and Uylings 2012; Kim et al. 2012). 
Such flat geometries may arise when during neuronal development the segments at a 
newly formed bifurcation are subjected to elastic tensions, which force the bifurcation 
into an equilibrium planar shape. Such “balance of forces model” is used by 
NETMORPH to determine the geometry of a bifurcation and to determine the direc-
tions of outgrowth of daughter growth cones after a branching event (Koene et al. 2009).

4.2.6  Segment Diameters

Segment diameters are defined according to the power-law model by Rall (1959) 
based on the relation between the diameters between parent dp and daughter seg-
ments d1 and d2.

Fig. 4.1 (a–c) Flatness of bifurcations—(a) A schematic 3D bifurcation with parent segment GA 
and daughter segments AE and AF and it branching angles, with the intermediate angle ρ between 
the daughter segments, and the side angles σ and τ, between the parent and each of the daughter 
segments, respectively—(b) A flat bifurcation with the parent segment aligned to the daughters’ 
bisector—(c) A flat bifurcation of a side branching bifurcation. Adapted from Van Pelt and Uylings 
(2012). (d) Shortest distance between an axonal and dendritic branch defined by the orthogonal 
distance between a pair of axonal and dendritic crossing line pieces. When this shortest distance is 
smaller than a given criterion value, the line piece pair marks the location of a candidate synapse. 
(e) Connectivity between axons (green) and dendrites (red) of two cells (purple) with three synap-
tic contacts, with presynaptic (a) and postsynaptic (b) Euclidean distances of synapse 1, and pre-
synaptic (c) and postsynaptic (d) path distances of synapse 2. Adapted from Van Pelt et al. (2010)
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Empirical values for the exponent e for different cell types were summarized in 
Van Pelt and Uylings (2005). NETMORPH determines the segment diameters after 
the outgrowth process has ended.

4.3  Neuronal Morphologies

Whether a simulator produces realistic neuronal shapes can only quantitatively be 
assessed by comparing shape properties of real and simulated neurons. Axonal and 
dendritic branching patterns are complex and require many different shape param-
eters to quantify their metrical and topological properties and their embedding in 
3D space (e.g., Uylings and Van Pelt, 2002; Gillette et al. 2001). The shape param-
eters of the individual trees, used for the automatic optimization of the growth 
parameters, are the number of segments, the lengths of intermediate and terminal 
segments, the path distance of the terminal tips to the cell body, the tree asymmetry 
index (topological arrangement of the segments in the formation of the tree), and the 
mean centrifugal order (mean of the number of segments at successive centrifugal 
orders in the tree). In the optimization process the distributions of these shape 
parameters were compared with the experimental ones, both in their mean values 
and their standard deviations. The spatial innervation of the arborizations also 
depends on the curvature and orientation of the branches. These shape properties 
are in NETMORPH controlled by the stiffness parameters and the angular distribu-
tions for the outgrowth directions of growth cones. These parameters were opti-
mized separately.

4.3.1  Parameter Optimization

The outgrowth rules in NETMORPH are determined by a main set of six growth 
parameters (E, S, B∞, τ, eri-mn, and eri-sd) used for (semi-) automatic optimization 
and an additional set of parameters that are set separately. The outgrowth parame-
ters for a given neuron type need to be optimized for an experimental morphological 
dataset of this type of neurons. Some growth parameter values have a direct relation 
with the generated morphological shapes. The topological properties of branching 
patterns emerge from the branching rules, while the metrical properties emerge 
from both the branching and the elongation rules. For instance, the parameters B(T) 
and E directly determine the mean and standard deviation of the degree distribution 
of the generated trees at developmental time T and the user can find the best B-E 
values using for instance the graphs in Van Pelt et al. (2001) or in Van Pelt and 
Uylings (2002). The parameter B∞ in (4.1) relates to B(T) via B∞ = B(T)/(1 − e− T/τ).  
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The parameter S in (4.1) relates to the mean topological asymmetry of the trees via 
the graphs in Van Pelt et al. (2001). The ratio of intermediate and terminal segment 
length depends on the decay constant τ in (4.1). The smaller this value the more 
rapidly in time the branching probability decreases and the longer the segments 
become (unless the elongation rate decreases as rapidly). Nevertheless, finding the 
optimal parameter values typically implicates an iterative process of selecting a 
parameter set, generating a sample of model neurons, analyzing their shapes and 
comparison with the shapes in the experimental dataset. Such optimization may 
proceed manually by selecting certain values for the parameters, but automated pro-
cedures are also available, such as genetic algorithms or maximum likelihood opti-
mization methods. Note, that the six growth parameter values were optimized only 
for generating realistic neuronal morphologies, not for producing particular con-
nectivity patterns.

4.4  Synaptic Connectivity

Axons and dendrites can only form connections at locations where they are in 
 sufficiently close proximity (Peters 1979) which depends on the size of axonal 
 boutons and dendritic spines and the “capture range” of growth cone filopodia.  
In NETMORPH such locations are searched, after having filled a space with axonal 
and dendritic ramifications, by using a preset criterion for the required proximity, 
typically in the range of a few microns. NETMORPH uses a recently developed 
algorithm for this search which combines a crossing requirement of a line piece pair 
(Fig. 4.1d), and the criterion for the orthogonal distance between these line pieces 
(Van Pelt et al. 2010). Note that these locations are based on geometrical consider-
ations only and thus mark candidate sites for synapses. Whether synapses will actu-
ally occur depends on many other biological factors. In the following all these 
candidate sites are taken into account, no selection is thus made here.

4.4.1  Connectivity: Terminology and Measures

Two neurons are connected when they share at least one synaptic contact (Fig. 4.1e). 
The number of contacts per connection (multiplicity) is defined as the number of 
synapses from a given neuron projecting on the dendrites of another neuron. A syn-
aptic contact is between the axon of a presynaptic neuron and a dendrite of a post-
synaptic neuron. A synaptic contact is at certain distances from its presynaptic and 
its postsynaptic cell body, respectively. These distances can be measured as 
Euclidean distances (straight line between synapse location and soma center) or as 
path distances along the arborizations themselves. The Euclidean distance between 
the somata of two connected neurons is called the connection length.
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4.4.2  Connectivity: Statistical Measures of Connectivity

The connection probability between two neurons is defined as the probability that 
two randomly selected neurons in a network are connected, i.e., have at least one 
synaptic contact from the axon of one of the neurons onto the dendrite of the other 
neuron.

The connection probability versus Euclidean distance between two neurons is 
defined as the probability that two randomly selected neurons in a network at a 
given Euclidean distance from each other are connected.

A distinction can be made between directed or undirected connections. The 
directed or one-way connection probability is defined as the probability that a given 
(presynaptic) neuron has at least one synaptic contact with another given (postsyn-
aptic) neuron. Note that in a network of N neurons there are N(N−1) directed neu-
rons pairs but N(N−1)/2 undirected neuron pairs.

4.4.3  NETMORPH Example

For studying emergent network connectivity simulations were run mimicking a net-
work of rat Layer 2/3 pyramidal neurons. A number of 250 cell bodies was uniform 
randomly placed within a cylinder with a height of 380 μm. This number was mainly 
restricted by the computational load of the simulation. A radius of 93 μm was 
adopted to obtain a realistic density of neurons (about 75,000 per mm3, Hellwig 
2000). A minimum distance of 20 μm was taken between the cell bodies. Each pyra-
midal cell was initialized with root points for an axon and an apical dendrite and a 
number of root points for basal dendrites uniform randomly selected between the 
numbers 4 and 8. The growth of the pyramidal cells has been simulated over a 
period of 18 days, a period in which these cells in the rat cortex obtain their mature 
total length (Uylings et al. 1994). Examples of simulated neurons are shown in 
Fig. 4.2b, while Fig. 4.3 illustrates the density of axonal and dendritic fibers in the 
network. Evidently, the axonal and dendritic arborizations covered a space much 
larger than the cylinder used for placing the cell bodies. Synapses thus could occur 
at all places where axonal and dendritic branches were present.

4.4.4  Validation of Morphological Shapes

The similarity between model and real neuronal shapes has been assessed quantita-
tively by comparing both the mean and standard deviation of the distributions of the 
quantitative shape parameters mentioned earlier for both axons and dendrites. Also 
visually do the NETMORPH examples shown in Fig. 4.2b agree very well with the 
experimental reconstructed neurons in Fig. 4.2a. Nevertheless, the visual 
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Fig. 4.2 (a) Four examples of rat neocortical Layer 2/3 pyramidal neurons, obtained from the 
Svoboda data set in NeuroMorpho.Org (Ascoli 2006; Ascoli et al. 2007). (b) Four examples of 
NETMORPH generated rat cortical L2/3 pyramidal neurons. Apical and basal dendrites in red and 
axons in green. Adapted from Van Pelt et al. (2010)

Fig. 4.3 Illustration of a NETMORPH generated network with the spatial distribution of candi-
date synaptic contacts. The 25 cell bodies are indicated as white spheres, axons are in green, den-
drites are shown in red, and the synaptic contacts are indicated as small blue spheres. The 
simulation has been done with a time step parameter of dt = 20 s. Candidate synaptic locations are 
searched for with a distance criterion of 6 μm
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comparison does show some differences in the pattern of axonal fibers which in the 
experimental data clearly show downward and sideward orientation preferences, 
which are not shown in the NETMORPH axons (see Sect. 4.6).

For illustration an example of a connected network of 25 neurons with a realistic 
numerical density is shown in Fig. 4.3. Axonal and dendritic fibers are indicated as 
green and red line pieces, respectively. In this example the candidate synapse loca-
tions were searched using a distance criterion of 6 μm, and are indicated as blue 
dots. Note that the actual simulations were done for networks of 250 neurons.

4.4.5  Connection Probability Versus Intersomal  
Euclidean Distance

With the set of identified synapses in the network of 250 neurons the one-way con-
nection probability was determined by dividing the number of connected presynap-
tic and postsynaptic neuron pairs with a given intersomal distance by the total 
number of directed pairs of neurons with the given intersomal distance. The out-
come in Fig. 4.4a shows that the connection probability decreases rather linearly 
with increasing intersomal distance.

4.4.6  Multiplicity of Connections

The number of synapse locations depends on the proximity criterion value used. 
The larger the criterion value, the more locations in space can be found where axo-
nal and dendritic line pieces are within the required proximity. The effect of the 
proximity criterion value on the connectivity in a network is shown in Fig. 4.4b, 
both in the number of connected neurons pairs (n) and in the number of synaptic 
contacts per one-way connection (multiplicity). The frequency curves decrease 
monotonically, which is expected when the probability of a contact between two 
neurons is smaller than one. For a criterion value of 4 μm two neurons are on the 
average one-way connected by 2.5 synaptic contacts.

4.4.7  Path Distances and Euclidean Distances

For each synapse location its Euclidean and path distances were determined with 
respect to their presynaptic and postsynaptic cell body, resulting in the distance 
distributions in Fig. 4.4c, d. The Euclidean distances in Fig. 4.4c, d show that the 
cloud of synapses does not extend much beyond 500 μm from the presynaptic cell 
body, and does not extend much beyond 300 μm from the postsynaptic cell body. 
The figure also illustrates that pathlengths exceed Euclidean distances because of 
the tortuosity of the branches.
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4.5  Comparison with Available Experimental Data

4.5.1  Connection Probability

Figure 4.4a shows connection probabilities gradually decreasing from about 0.5 
down to less than 0.1 with increasing distance between the somata (30–440 μm). 
These values agree quite well in order of magnitude with a number of experimen-
tal findings.

Hellwig (2000) determined connectivity between reconstructed rat visual 
 cortex L2/3 pyramidal neurons and found gradually decreasing connection prob-
abilities down to less than 0.1 at a distance of 500 μm. Song et al. (2005) did 816 
quadruple whole-cell recording attempts of thick tufted layer 5 pyramidal neurons 
in rat visual cortex and found functional connection probabilities of 11.6 % rather 
uniform over a short range of cell separations up to 100 μm, but with very few 

Fig. 4.4 (a) One-way connection probability between neurons versus intersomal distance. (b) 
Frequency distributions of the number of contacts per connection. The four distributions are 
obtained from a NETMORPH simulated network and for four proximity criterion values of 4, 6, 8, 
and 10 μm, respectively. The inset in the figure shows the mean number of contacts per connection 
for each of the criterion values. (c, d) Distribution of path distances and Euclidean distances of 
synapses to their (c) presynaptic and (d) postsynaptic somata in the model generated networks. 
Path distances exceed Euclidean distances because of the tortuosity of the branches. Presynaptic 
path distances have mean (sd) values of 320(186) μm; postsynaptic path distances of 104(60) μm; 
presynaptic Euclidean distances of 134(74) μm; and postsynaptic Euclidean distance of 77(51) μm
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observations beyond a distance of 60 μm Perin et al. (2011) recorded simultaneously 
from up to 12 thick-tufted layer 5 pyramidal neurons in somatosensory cortical 
slices (300 μm thick) from Wistar rats (pn days 14–16). They found functional 
connectivity probabilities steadily decreasing with distance between cell bodies 
from about 0.21 at a distance of 15 μm down to about 0.03 at a distance of 300 μm. 
A direct comparison of these functional connectivity data and the anatomical con-
nectivity in NETMORPH outcomes is difficult. The candidate synapses in 
NETMORPH emerge purely from the geometry of the neuronal arborizations. 
Whether they will become functional synapses depends on many other biological 
factors.

4.5.2  Multiplicity

For comparison we may use experimental results of Feldmeyer et al. (2002) show-
ing a mean (sd) multiplicity value of 4.5 (0.5), based on a limited number of obser-
vations (n = 13). This experimental outcome fits very well in the range of the model 
outcomes. The model outcomes further show decreasing frequencies with increas-
ing multiplicity, which may be not surprising if the probability of having two con-
tacts in a connection is smaller than having one contact, etc. The number of 
observations in the Feldmeyer data (n = 13) is, however, too small to draw any con-
clusion about the shape of the experimental distribution.

4.5.3  Presynaptic and Postsynaptic Distances

Experimental data of Le Bé et al. (2007) shows a distribution of postsynaptic path 
distances (n = 55) with mean (sd) of 130(138) μm, and thus with a SEM value of 
18 μm. Although the synapses originate from layer 5 corticocallosal projecting neu-
rons, their positions on the dendrites compare quite well with the model outcomes, 
also in the shape of the distribution, with few observations at higher distances. For 
comparison of postsynaptic Euclidean distances we may use experimental data of 
Feldmeyer et al. (2002) who measured connectivity between 13 pairs of L4 spiny 
neurons projecting onto L2/3 pyramidal neurons resulting in a mean (sd) of the 
geometric postsynaptic distances (n = 59) of 67.2(33.6) μm. Although the synapses 
in this study originate from layer 4 spiny neurons, their positions on the dendrites 
compare quite well with the model outcomes, also in the shape of the distribution, 
with few observations at higher distance. Our NETMORPH outcomes on presynap-
tic and postsynaptic path distances also agree very well with qualitative experimen-
tal data from at least seven rat somatosensory cortical pyramidal neurons recently 
published by Hill et al. (2012). Experimental data of presynaptic path- and Euclidean 
distances was not yet available for comparison, making this distribution a prediction 
for future validation.
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4.6  Discussion

4.6.1  Growth Model Assumptions

4.6.1.1  Stochastic Approach

The dendritic growth model, as earlier developed by Van Pelt et al. (e.g., Van Pelt 
et al. 2001; Van Pelt and Uylings 2005), described growth cone behavior in a sto-
chastic way. This approach was based on the consideration that the actual behavior 
of growth cones within neural tissue depends on a multitude of mechanisms, inter-
actions, and environmental structural, molecular, and chemical conditions, and that 
a statistical approach was most appropriate. Indeed, the variability in dendritic 
shape parameters could fully be described by the stochasticity in the modeled 
growth cone behavior.

4.6.1.2  Exponential Decreasing Baseline Branching Rate

An interesting outcome of the model-based analysis of the growth rate of outgrow-
ing dendrites (Van Pelt and Uylings 2003) was that it required the assumption of an 
exponential decreasing baseline branching rate (4.1). This prediction may refer to 
intracellular processes during dendritic outgrowth that reduce the branching proba-
bility of individual growth cones with time.

4.6.1.3  Competition Between Growth Cones

For the dendritic growth model to produce realistic dendritic branching patterns, it 
was also necessary to include a dependence of the branching probability on the 
total number of growth cones in the dendritic tree. Such dependence may point to 
competition between growth cones during outgrowth. Such competition has indeed 
been observed in time-lapse movies of outgrowing neurites in tissue culture (Costa 
et al. 2002).

4.6.1.4  Axonal Outgrowth 

The outgrowth model used by NETMORPH has initially been developed for and 
validated by dendritic arborizations of a large variety of cell types. The stochastic 
rules for dendritic branching and elongation did not include interactions of growth 
cones with their environment as it was assumed that this environment was homoge-
neous for the space of dendritic coverage. In the example the dendritic outgrowth 
model has also been applied for the generation of axonal arborizations. Although 
the dendritic shapes indeed appeared to agree very well with the experimental 
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reconstructed neurons, the visual comparison of the pattern of axonal fibers did 
show some differences in the downward and sideward orientation preferences.  
As mentioned earlier, axonal growth cones migrate and branch in dependence of 
external cues and these interactions need to be included in the axonal outgrowth 
rules in NETMORPH which will further improve the realism of the 3D shape of 
axonal arborizations. In addition, axonal growth cones grow out over longer dis-
tances and in areas with different environmental cues that may influence their 
branching and elongation behavior. The assumption of spatial homogeneity is there-
fore not appropriate for axonal outgrowth. A neural simulator thus needs to specify 
the environment in which axons grow out, and the rules for interaction of axonal 
growth cones with the local environmental cues. Presently, NETMORPH is being 
extended with options for defining areas qualified by spatial scalar and vector fields. 
Scalar fields represent trophic actions on growth cones that modulate branching 
probability and elongation rate, and vector fields represent tropic actions on growth 
cones that modulate the direction of outgrowth of growth cones.

4.6.1.5  Independent Outgrowing Neurons 

The simulator NETMORPH presently assumes that neurons grow out indepen-
dently of each other and that synaptic connectivity fully depends on the geometry 
of the neurons. The independency assumption may be challenged when growth 
cone–environment interactions are being implemented for axon outgrowth, and in 
particular when the environment becomes influenced by the presence of other neurons. 
An interesting finding in this context was recently published by Hill et al. (2012). 
They compared presynaptic and postsynaptic path length distributions from 
experimental data with predictions from artificial networks composed of the recon-
structed neurons and synapse formation based on geometrical considerations. They 
concluded that the predicted statistical connectivity was a good predictor of the 
experimentally observed functional connectivity. This finding may suggest that, 
even when neurite outgrowth proceeds by growth cones influenced by their local 
environments, the number of factors involved in such modulation is still so large 
that a stochastic approach is justified.

In the given example the outgrowth parameters are optimized on the morpholo-
gial properties of reconstructions, made available via the NeuroMorpho.Org data-
base (Ascoli 2006; Ascoli et al. 2007). These reconstructions were all obtained from 
sliced tissue, containing only the parts of the axonal and dendritic arborizations 
within the slices (with thicknesses less than or equal to about 300 μm). By proper 
slicing and selecting only centrally placed neurons, the loss of cut branches can be 
minimized, but axons will certainly lose their long-distance projections. Therefore 
the growth rules have been optimized on the morphological properties of the den-
dritic and axonal parts within the slices. Consequently, the axons and dendrites gen-
erated by NETMORPH agree with these properties.

In the example discussed above the neuronal cell bodies were placed within a 
limited cylindrical space of height 380 μm and radius 93 μm. The space covered by 
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the dendritic arborizations thus extends this cylinder by the dendritic Euclidean 
pathlengths, making synaptic connections only possible for the axonal arborizations 
within this dendritic space. Thus, long-distance parts of axonal arborizations were 
not required for these spatial dimensions.

4.6.2  Future Developments

Computational modeling is an essential tool towards understanding the brain. 
Cognition emerges from the activity dynamics in the neuronal networks comprising 
the brain. Modelers are thus challenged by the need of producing tools for reproduc-
ing the structural components of the brain and for simulating the activity dynamics 
on these structures. It depends on the questions addressed to what spatial and tem-
poral details (granularity) these tools need to be developed.

The connectivity patterns in neuronal networks depend on the morphological 
characteristics of neuronal arborizations. This underscores the need for simulators 
able to generate neuronal arborizations with sufficient level of realism and detail. 
While the simulator NETMORPH has shown its functionality in generating den-
dritic arborizations, extensions are needed to reproduce axonal arborizations in 
more realistic detail. Such extensions include interactions of outgrowing neurites 
with local environmental cues. Preliminary work using scalar and vector fields for 
trophic and tropic actions indeed showed improved realism in the typical orientation 
preferences of axonal fibers and layer specific branching rates.

Long-range axonal connections, however, require also detailed qualifications of 
brain areas for axon guidance, and complex interaction rules to be included in the 
simulator. Finding a good balance between the need for a low-dimensional out-
growth model and a rich and realistic repertoire of emergent structures and connec-
tivities will be a major challenge in further developments of the simulator.

Dendritic and axonal arborizations may also statistically be represented by so 
called density fields. The generation of connected networks from these density 
fields is still a challenge and a topic of ongoing research.
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    Abstract     The geometry of dendritic trees plays an important role in determining 
the connectivity. However, the extent to which environmental factors shape den-
dritic geometry remains largely unknown. Recent development of computational 
models can help us to better understand it. This chapter provides a description of 
one such model (Luczak, J Neurosci Methods 157:132–41, 2006). It demonstrates 
that assuming only that neurons grow in the direction of a local gradient of a neuro-
trophic substance, and that dendrites compete for the same resources, it is possible 
to reproduce the spatial embedding of major types of cortical neurons. In addition, 
this model can be used to estimate environmental conditions which shape actual 
neurons, as proposed in Luczak, Front Comput Neurosci 4:135, 2010. In summary, 
the presented model suggests that basic environmental factors, and the simple rules 
of diffusive growth can adequately account for different types of axonal and 
 dendritic shapes.  

5.1         Introduction 

 Saying that shape determines function is especially true for neurons. The shape of 
dendritic trees to a large degree determines electrophysiological properties of neu-
rons (Migliore et al.  1995 ; Mainen and Sejnowski  1996 ; Krichmar et al.  2002 ) and 
neuronal connectivity (Amirikian  2005 ; Stepanyants and Chklovskii  2005 ; Cuntz 
et al.  2010 ; Perin et al.  2011 ). Experimental data suggests that both intrinsic and 
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extrinsic factors infl uence dendritic geometry, but the relative importance of those 
factors is not well understood (Scott and Luo  2001 ). The complexity of interactions 
between different intrinsic and extrinsic factors during the development of neuronal 
arborization can make it very diffi cult to separate their contributions experimen-
tally. One of the approaches to address this question is to use computational model-
ing. Nevertheless, even with advances in computational neuroscience, it is not a 
simple task, and it has taken decades to develop realistic models of neuronal growth. 
For example, in its earliest works, only dendrograms were modeled (i.e., connectiv-
ity among branches and their length and diameter) yet spatial embedding or envi-
ronmental factors were not considered (Nowakowski et al.  1992 ; Van Pelt et al. 
 1997 ). In the later models of dendritic trees, 3D structures were included but with-
out considering environment. In these models, several parameters measured from 
real neurons (e.g., the probability distribution of branching points as a function of 
the distance from a soma) were used and stochastic procedures were applied to 
recreate dendrites while disregarding infl uence of the environment (Ascoli  1999 ; 
Burke and Marks  2002 ; Samsonovich and Ascoli  2003 ; Samsonovich and Ascoli 
 2005 ; Lindsay et al.  2007 ; Torben-Nielsen et al.  2008 ; Koene et al.  2009 ; for review 
see Ascoli  2002 ). 

 In contrast to the above models based on statistical reconstruction of dendrites, 
the most recent models can simulate 3D neuronal growth with incorporating exter-
nal factors. In these approaches, dendrite geometry parameters (e.g., number of 
segments, branching probability, orientation) are not built into the model, but rather 
geometry parameters emerge as a result of environmental factors such as the con-
centration of neurotropic factors, competition between neurons, and space limita-
tions (Luczak  2006 ; Zubler and Douglas  2009 ). External cues are well known to 
play a signifi cant role in shaping dendritic geometry (Horch and Katz  2002 ), and 
hence these models account for the important biological processes underlying neu-
ronal geometry. 

 In this chapter, we focus on the model developed by Luczak ( 2006 ) which exam-
ines the effect of environmental factors on spatial embedding of neuronal trees. This 
model is based on diffusion-limited aggregation (DLA), which is a well-established 
physical model for the formation of structures controlled by diffusion processes 
(Witten and Sander  1981 ). Prior research has demonstrated that DLA can provide a 
good description of a variety of natural processes, such as electrical discharge in gas 
(lightning) (Niemeyer et al.  1984 ), electrochemical deposition (Halsey  1990 ; Brady 
and Ball  1984 ), or the growth of snowfl akes (Family et al.  1987 ). The form of a typi-
cal DLA structure is illustrated in the insert of Fig.  5.1 .

   Previously, diffusive processes were invoked to explain the origin of dendritic 
arbors by Hentschel and Fine ( 1996 ), who proposed a two-dimensional diffusion- 
regulated model of dendritic morphogenesis in which cell growth depended upon 
the local concentration of calcium. However, their model was restricted to only the 
early stage of neuronal growth, and was based on in vitro dissociated cultures. 
In order to generate a 3D embedding of fully developed dendritic trees, the present 
model operates at a coarser level. It takes into account the local concentrations of 
neurotrophic factors, but without including such details as changes in the concentra-
tions of ions along the dendrite membrane.  
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5.2     Model Description 

 As described in details in (Luczak  2006 ), the growth rule for DLA can be defi ned 
inductively as follows: introduce a randomly moving particle at a large distance 
from an  n -particle aggregate, which sticks irreversibly at its fi rst point of contact 
with the aggregate, thereby forming an  n +1-particle aggregate. Figure  5.1a  illus-
trates a sample trajectory of particles that stick to an aggregate composed of fi ve 
particles (each particle is numbered in the order in which it contacts the aggregate; 
the seed particle is numbered 0). Stated differently, the aggregate grows by one step 
at the point of contact with a particle, thus prominent branches screen internal 
regions of the aggregate, preventing them from growing further (Halsey  1997 ). For 
computational effi ciency, instead of one moving particle,  m  simultaneously moving 
particles were introduced (Voss  1984 ). For computational convenience, particles 
leaving box on one side, enter the box on the opposite side. In the presented model, 
the initial distribution of particles is a model parameter and thus particles are not 

  Fig. 5.1    Illustration of the DLA algorithm. ( a ) Randomly moving particles ( black ) stick irrevers-
ibly at their point of fi rst contact with the aggregate (composed of particles 0–5). To each newly 
jointed particle, a parent particle is assigned and both become connected by a line segment. ( b ) 
While the aggregate grows, the particles at the terminals are randomly deleted from the aggregate 
(pruning) during a specifi ed time window. Insert: Example of a two-dimensional DLA comprising 
6,000 particles. The color intensity decreases in the order in which particles connected to the 
aggregate (reproduced from Luczak  2006  with permission from Elsevier)       
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always  uniformly distributed, which is a signifi cant difference from the classical 
DLA. As a result, there is a higher probability that the aggregate will have more 
branches in areas with a higher concentration of particles. 

 A particle in the aggregate to which the new particle connects is called a parent 
particle. When a new particle is connected to more than one particle in the aggre-
gate, the parent particle is selected at random. For example, in Fig.  5.1a , for particle 
number 4, either particle number 1 or particle number 2 could be assigned as a par-
ent particle, and in this case, particle 1 was selected at random. Thus, the aggregate 
is converted to a directed, acyclic graph (tree), where each particle becomes a node 
connected by a segment to an assigned parent node. 

 Without additional restrictions, the aggregate would form a heavily branched 
structure similar to the DLA in the insert of Fig.  5.1 . Therefore, a pruning procedure 
was implemented, which removes terminal particles from the aggregate. At each 
iteration there is a probability  p  that any terminal particle of the aggregate can be 
deleted if that particle was connected within the last  s  iterations, but later than fi ve 
iterations ago, where  s  is a pruning span parameter. As a result of the deletion, the 
parent particle of the removed particle becomes again a terminal particle (eligible 
for the deletion) unless it is a branching node. Thus, increasing pruning span 
increases the number of deleted particles. Five iterations were chosen before apply-
ing pruning, primarily to allow for the initial growth of the aggregate. Nevertheless, 
this parameter has a very minor effect on the geometry of a dendrite as compared to 
pruning span. The removed particles do not return to the pool of particles, and the 
seed particle cannot be removed by defi nition. The algorithm stops when no new 
particle is connected for 100 iterations. 

 Illustration of the initial spatial distribution of particles for the granule cells is 
presented in Fig.  5.2a . To eliminate tree variability due to seed position, the seed is 
always located in the center at the bottom of the box, or when generating multiple 
trees simultaneously, seeds are uniformly distributed at the bottom of the box. The 
number of seed particles placed inside a box determined the number of aggregates.

   The MATLAB code used to produce the described simulations is available upon 
request, or it can be downloaded from:   http://lethbridgebraindynamics.com/
artur_luczak    .  

5.3      Generating Different Neuronal Tree Types 

 The above description of how branching structures grow could be seen as an “innate” 
set of rules which is the same for all neuronal types generated with this model. What 
differentiates between growing a granule cell and a pyramidal cell in our model are 
mostly differences in parameters defi ning environment. Interestingly, only two 
environment factors were enough to defi ne and reproduce diverse types of neuronal 
trees. These factors were: the distribution of “neurotrophic particles” (NPs), and 
space available to grow. Below we will describe in more detail the effect of both 
factors on neuronal shape, beginning with the space constraints. 
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 In our model, the shape of generated dendrites directly depends on the size of the 
rectangular box in which the neuron is growing (Fig.  5.2 ). For example, increasing 
the height–width ratio of the box changes the dendrite shape from that of a basal 
dendrite to a granule cell and, ultimately, to an apical dendrite. Decreasing relative 
width only in the Z-coordinate direction changes it from a basal dendrite to a 
Purkinje cell. 

 The use of a rectangular box to limit neuron growth may, at fi rst sight, appear to 
impose an artifi cial constraint, whereas this actually simulates the space limitations 
imposed by the thickness of the cortical layers (height of the box), and by neighbor-
ing neurons growing simultaneously and competing for space and neurotrophic sub-
stances (length and width of the box) (Devries and Baylor  1997 ). For example, 
generating a neuron surrounded by other simultaneously growing cells resulted in a 
shape almost identical to growing this neuron in an isolated box with appropriately 
reduced size (Fig.  5.2 ). This is because the neighboring aggregates competed for 
available space and access to NPs, which limited the sideways growth of the neuron. 
Thus, sideways space limitation imposed in the model could also be viewed as 
another manifestation of constrains imposed by the spatial distribution of neuro-
trophic factors, where a neuron has a higher chance of getting access to NPs by 
extending its processes up rather than to the sides due to competition from other cells. 

 We found that it was also important to vary the distribution of NPs along the 
vertical direction to accurately refl ect branching patterns of reproduced neurons. 

  Fig. 5.2    Generating neurons in ensemble. ( a ) Illustration of the initial condition for generating 
nine aggregates.  Small black dots  denote initial location of NP particles. For illustration clarity 
only centers of NPs are marked, as the full size of NP used in this simulation (~10 μm) would 
obstruct view of particles in the back. ( b ) Generated granule cells (cells in corners are not shown 
for visualization clarity).  Rectangular box  represents a space limitation imposed on the growth of 
aggregates (reproduced from Luczak  2006  with permission from Elsevier)       
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This at fi rst was a surprise, but after examining the required patterns of NPs 
 distribution, we found a striking similarity to the laminar structure of cortical layers. 
Thus, the difference in NPs concentration at different heights in the box could be a 
refl ection of a different concentration of actual neurotrophic factors across different 
cortical layers. A direct consequence of “innate” properties of the DLA-based 
model is that increasing the concentration of NPs increases the density of branches. 
For example, increasing the concentration of NPs in the upper 30 % section of the 
box, while reducing it to almost zero elsewhere, produces an aggregate with the 
appearance of an interneuron (Fig.  5.3a ) rather than of a granule cell or basal den-
drite (Fig.  5.3b, d ). As mentioned before, such changes in particle density along the 
vertical axis may be biologically justifi ed as refl ecting different cortical layers. In 
the model, the initial distribution of particle densities along the vertical axis exhibits 
a sharp transition between two regions with different concentrations. However, after 
a few iterations, the diffusive motion of NPs creates a smooth concentration gradi-
ent between the layers which is closer to real biological conditions. Due to much 
faster growth of the aggregate than diffusion of NPs between layers, the difference 
in concentration between layers is maintained throughout simulation. Thus, by 
changing only the space available for growth, the spatial distribution of NPs (and 
the pruning span to a smaller degree, Luczak  2006 ), the DLA-based model makes it 
possible to generate 3D structures similar to different types of dendritic and axonal 

  Fig. 5.3    Examples of real and generated neurons. ( a ) Examples of real and generated axonal trees 
of interneurons. ( b ) Examples of real and generated granule cells. ( c ) Examples of real and gener-
ated apical dendrites of pyramidal cells. ( d ) Examples of real and generated basal dendrites. For all 
neurons, the cell bodies are depicted by spheres (modifi ed from Luczak  2006 )       
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trees (Fig.  5.3 ; Table 2 in Luczak  2006  provides detailed comparison of dendrite 
geometry parameters for generated and actual neurons which were obtained from 
  http://neuromorpho.org    , Ascoli et al.  2001 ).

5.4        Estimating the Effect of Environmental Variables 
on Neuronal Shape 

 Modeling neuronal growth can provide information on which environmental factors 
may be infl uencing neuronal shape. Moreover, it was proposed in (Luczak  2010 ), 
that modeling can also be used to infer what environmental conditions for any actual 
reconstructed neuron were. By measuring “how easy” it is to reproduce the shape of 
the actual neuron with the appropriate model, it can be estimated how “typical” the 
neuron is, and which environmental variables have to be adjusted to better repro-
duce it. For example, if increasing the concentration of NPs in the upper part of the 
box results in a model that can “easier” or “better” reproduce a given neuronal tree, 
then it may indicate that this neuron experienced more neurotrophic factors in upper 
cortical layers. 

 As an example of how to measure “how easy” it is to reproduce a neuron with a 
DLA-based model, let’s use the DLA algorithm with uniform distribution of NPs as 
described in details in (Luczak  2010 ). The “reproduction” rules are similar to rules 
generating DLA. The algorithm starts by placing the seed particle at the location of 
the cell body of the reproduced neuron (Fig.  5.4a ). Randomly moving particles 
(NPs) stick irreversibly at the fi rst point of contact with the aggregate only if the 
point of that contact overlaps with a reproduced object (Fig.  5.4b ). By defi nition, 
every particle at the time of connecting to the aggregate has a hit value equal to 1. 
Moving particles which contact the aggregate at the point not overlapping with the 
object are not connected (Fig.  5.1c , particle on the right side). If such a moving 
particle in the next step moves to a place already occupied by the aggregate, then 
that particle is deleted, and the aggregate at that point registers a new hit (Fig.  5.4d ). 
In summary, the aggregate grows at the points of contact with randomly moving 
particles, covering the reproduced neuron particle-by-particle.

   Thus, a randomly moving particle after hitting the aggregate will either become 
a new particle of the aggregate, or it will be deleted depending on whether or not the 
place of contact overlaps with the reproduced shape. To illustrate how many times a 
particle of the reproduced neuron was hit by moving particles during the growth 
process, a sample pyramidal neuron and Purkinje cell are color-coded for the total 
number of hits (Fig.  5.4e, f ). As can be seen just by visual inspection, the distribu-
tion of hits will be different for both cell types. For pyramidal cell most branches 
were hit a similar number of times. In contrast, for Purkinje cell the number of hits 
decreased gradually with distance from the soma. One could measure distance 
between hit distributions for analyzed objects to evaluate similarity between them. 
For example, comparing the hit distribution of an analyzed structure to the 
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distribution of hits for a structure generated with a DLA algorithm, it could provide 
a reliable measure for how similar to a typical DLA structure (“DLA-like” or 
 “tree-like”) is a given shape (Luczak  2010 ). Likewise, using a DLA-based model 
optimized to generate specifi c type of neurons (as described in Sect.  5.3 ) could be 

  Fig. 5.4    Reproduction of neuronal shape with the DLA algorithm. ( a ) To reproduce the given 
shape, fi rst the initial particle (seed) is placed as the origin of the aggregate. ( b ) Randomly moving 
particles ( grey ) stick to the aggregate at the place of contact, forming new particles of the aggregate 
( blue ). ( c ) Particles which contact the aggregate at places which do not overlap with the reproduced 
shape are not connected to the aggregate ( right side particle ). ( d ) If the particle moves at the place 
already occupied by the aggregate, this particle is deleted ( red cross ). Numbers illustrate how 
many particles moved over (hit) that place of the aggregate—this number is called the number of 
hits. ( e ) Examples of pyramidal cell reproduced in 3D.  Color  denotes the number of “hits” each 
part of the dendrite received. ( f ) Reproduced Purkinje cell (modifi ed from Luczak  2010 )       
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used to measure, for example, how similar to typical Purkinje cell is an analyzed 
neuron, and it can be further used to infer what parameters refl ecting environmental 
conditions have to be adjusted to improve the reproduction.  

5.5     Discussion 

 The main signifi cance of the presented model is that it illustrates that the creation of 
complex dendritic trees does not require precise guidance or an intrinsic plan of the 
neuron geometry, but rather, that external factors can account for the spatial embed-
ding of the major types of dendrites observed in the cortex. In this model, the num-
ber of terminal branches, the mean and maximum branch orders, the fractal 
dimension, and other parameters of dendrite geometry are all controlled by a few 
basic environmental factors (Luczak  2006 ). The most important factor in determin-
ing the shape of generated neurons is the space available for growth and the spatial 
distribution of NPs. Thus, the presented DLA-based model reveals that a simple, 
diffusive growth mechanism is capable of creating complex and diverse 3D trees 
strictly similar to observed neuronal shapes. 

 The main criticism of this model is that although it is able to generate diverse 
neuronal shapes, a direct translation to biological processes is diffi cult, as real den-
drites do not grow directly by aggregating particles from their environment    (Van 
Ooyen  2011 ). This is a very important point, but with a closer examination it can be 
found that the presented model is much less artifi cial than it would appear. This is 
because in the DLA model, connecting a new particle to the aggregate is computa-
tionally equivalent to the growth in the direction of that particle. DLA is an approxi-
mation of Laplacian growth where the probability of growth at any point on the 
boundary of the growing object is determined by Laplace’s equation, which 
describes the “attraction” fi eld around the object (Hastings and Levitov  1998 ). 
Therefore, the growth in the direction of a local gradient is computationally equiva-
lent to the DLA model which connects particles to the aggregate with higher prob-
ability in places which have higher local concentration of NPs. Thus, DLA is used 
as a computationally convenient tool to model (1) the growth of a dendrite  toward  a 
higher concentration of NPs, (2) diffusive motion of NPs, and (3) competition 
between dendrites for access to NPs. 

 The real dendrites grow by elongation and can branch either via bifurcation of 
growth cone-like tips or through interstitial sprouting of new branches from an 
existing dendritic branch. These new branches extend and retract to undergo 
 constant remodeling. Only a subset is eventually stabilized (Jan and Jan  2010 ). 
This phenomenon of constant pruning of dendritic branches during neuron develop-
ment is modeled here by probabilistic deleting the terminals. Parts of the neuron, 
which were not deleted during a specifi ed number of iteration (pruning span), 
become “stabilized” by being excluded from any further pruning. The growth and 
pruning of real cortical neurons is strongly infl uenced by the excess or defi cit of 
extrinsic factors, which includes for example: neurotrophin 3, brain-derived 
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 neurotrophic factor (BDNF), and nerve growth factor (McAlister et al.  1997 ). 
For instance, BDNF released from an individual cell alters the structure of nearby 
dendrites on an exquisitely local scale (Horch and Katz  2002 ). The intrinsic factors 
have an effect on stability rather than the directionality of the dendrite by affecting 
the dynamics of the structural components of dendrites (Scott and Luo  2001 ). The 
NPs in the presented model do not refer to any concrete neurotrophic substance. We 
chose to call these particles “neurotrophic” to suggest a biological interpretation of 
the model, which is that a new dendrite branch sprouts at the point of contact with 
neurotrophic particles. Stated differently, connecting NP to the aggregate can be 
seen as equivalent to the process where a new part of a dendrite comes from the cell 
itself at the location where the NP was detected. Also, a decrease in the number of 
freely moving NPs after contacting the aggregate has a biological justifi cation, 
namely, that the neurotrophic molecules are commonly uptaken by neurons and 
transported to the cell body (Purves  1988 ; von Bartheld et al.  1996 ). As mentioned 
above, the neuron development is a very complicated process and the model pre-
sented here cannot account for all possible phenomena affecting neuron shape. For 
example, the morphology of axons and dendrites can be affected by mechanical 
tensions during brain development (Van Essen  1997 ). Additional model parameters 
could improve the model’s accuracy, but would also increase its complexity. Thus, 
in light of the fact that the existing model performs well, at the goal of keeping the 
model simple, we believe the model’s current level of complexity and accuracy are 
appropriately balanced. 

 The presented DLA-based model can also be used to infer parameters describ-
ing environmental factors for a given actual neuron. It is a conceptually new 
approach based on measuring “how easy” it is to reproduce neuronal shape by 
using a tree- generating algorithm. Thus, by fi nding what values of environmental 
variables allow the model to “best” reproduce of the analyzed neuron, it could 
provide information about conditions shaping this neuron. The performance of 
DLA algorithms could be measured in a variety of ways: for example, how quickly 
it can cover a shape, how completely it covers, how broad the distribution of hits 
is. From all of the different measures tried, the distance to the hit distribution of 
DLA provided the most reliable measure of similarity to modeled shape. In addi-
tion, taking for example the model optimized for generating Purkinje cells, and 
measuring how well this model can reproduce a given shape, this can provide a 
new measure of shape, i.e., how “Purkinje-like” is that object. There is still no 
single measure which quantifi es our intuitive perception of how much this cell 
resembles a Purkinje neuron. This type of question is easily answered by humans, 
but it is very diffi cult to quantify using computers. The reason is that perception 
of a tree-like shape requires simultaneously combining a multitude of global and 
local measures like spatial distribution of segments, relative lengths and direction, 
connectivity, symmetry, space fi lling, etc. For example, we would consider as a 
tree only shapes with a particular type of connectivity pattern, and with a particu-
lar spatial distribution of segments, branching angles, relative lengths, orientation, 
etc. By using the DLA model to reproduce analyzed objects, we can quantify the 
tree-like resemblance of an object by simply measuring performance of the DLA 
algorithm. Thus, this approach presents a new conceptual advancement where the 
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use of a computational model allows one to assess complex properties of an object, 
which otherwise would be very diffi cult to quantify with any other existing 
measures. 

 In conclusion, this chapter describes a realistic model of the formation of diverse 
neuron shapes. The results demonstrate that simultaneously grown diffusion- 
limited aggregates competing for available resources create reproducible, self-
organized structures that are strikingly similar to real neurons (Fig.  5.3 ). This is the 
fi rst model to simulate 3D neuronal growth accounting for external factors such as 
the NP concentration, competition between neurons, and space limitations. 
Moreover, it advances DLA-based models by incorporating pruning and space 
limitations. Analysis of the discrepancies between generated and real neurons may 
also elucidate the relative contribution of different environmental factors on neuro-
nal outgrowth.     
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Abstract The primary function of a dendrite is to connect a neuron to its inputs. 
In this  chapter, I describe a model that captures the general features of dendritic trees 
as a function of the connectivity they implement. This model is based on locally opti-
mising connections by weighing costs for total wiring length and conduction times. 
The model was used to generate synthetic dendrites that are visually indistinguishable 
from their real counterparts for all dendrite types tested so far. Dendrites of different 
cell types vary only in the shape of the volume that they span and in the weight 
between costs for wiring length versus conduction times. Using the model, an equa-
tion was derived that relates total dendrite length, number of branch points, spanning 
volume and the number of synapses, measures that are among the most commonly 
employed in the study of the molecular and genetic background of dendrite morphol-
ogy and growth. This equation holds true for all neurons measured so far and confines 
the possible computations a dendrite is capable of. Finally, beyond the consequences 
for neuronal morphology and computation, an outlook is given on a number of ways 
to scale up the single cell model to study the formation of larger neural circuits.

The large network of finely branched neurons in the nervous system is suggestive of 
its exquisitely complex underlying connectivity. Among these branched processes, 
the dendritic input trees exist in the most striking variety of shapes and sizes (DeFelipe 
2010; Ramón y Cajal 1995; Stuart et al. 2007). This variety most likely reflects the 
different computations required throughout the nervous system. Indeed, the anatomy of 
the dendritic tree is known to shape synaptic integration (Gulledge et al. 2005; 
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London and Häusser 2005; Rall et al. 1967; Rall 1959; Rall and Rinzel 1973; Segev 
and London 2000) and the corresponding neural firing behaviour (e.g. Mainen and 
Sejnowski 1996). Understanding the principles governing dendritic branching is 
therefore essential for unravelling the functionality of single neurons with respect to 
computation and to the way in which they connect. However, so far no unifying 
theory exists that links structure of dendrites to their particular function. Very little is 
known about any general rules leading to the distinct appearance of dendrites partly 
due precisely to the wide variety of shapes among different neuron types. On the 
other hand, a vast amount of recent research has expanded our knowledge on the 
molecular and genetic factors governing dendrite growth in recent years (Acebes and 
Ferrús 2000; Cline 2001; Grueber and Jan 2004; Jan and Jan 2003, 2010; Parrish 
et al. 2007). But in most of these cases the quantitative analysis of dendritic arborisa-
tions is restricted to descriptions of local and global branching parameters (overview: 
Uylings and Van Pelt 2002; see Chap. 1). Measures that are most commonly used are 
the total dendrite length, the number of branch points as well as the classical Sholl 
analysis that measures the number of intersections between the branches of the den-
drite and an imaginary sphere of increasing diameter centred on the dendritic root 
(Sholl 1959). However, these measures have little to do with dendrite function. 
Moreover, classifying individual neurons into different neuron types solely on the 
basis of morphological parameters has been generally unsuccessful although it has 
worked in very specific cases (e.g. Cannon et al. 1999; Oberlaender et al. 2011). 
More recently, computational techniques have appeared that make it possible to con-
struct synthetic neuronal structures in silico governed by the simulation of physical 
and biological constraints (Koene et al. 2009; van Pelt et al. 2001; van Pelt and 
Uylings 2002) or by the implementation of simple geometric rules (Ascoli 1999; 
Hillman 1979; Luczak 2006; Torben-Nielsen et al. 2008). Modelling in the field of 
neuroscience has become an established tool in identifying underlying principles in 
the complex and often dynamical systems of neural circuits (since e.g. Hodgkin and 
Huxley 1952; Rall 1959). This chapter summarises the work of several papers (Cuntz 
2012; Cuntz et al. 2007, 2008, 2010, 2012) for which the goal was to develop a 
model that incorporates known functional constraints directly into the generative 
process of building synthetic dendritic morphologies in order to interpret the conse-
quences of these known constraints onto the neural circuit.

6.1  Morphological Modelling: Synthetic Dendrites Shaped  
by Wiring Constraints

Because dendrites are the main receptive region of neurons, one requirement common 
to all dendrites is that they need to connect with often widespread input sources. 
More than a century ago, Ramón y Cajal was able to make sense of the neuroana-
tomical complexity by formulating fundamental anatomical principles of nerve cell 
organisation (Ramón y Cajal 1995). He described three biological laws of neuronal 
architecture (Chapter V, p.115–125, in Ramón y Cajal 1995). These were optimisation 
principles for the conservation of (1) space, (2) cytoplasm and (3) conduction times 
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in the neural circuitry. These principles were instrumental for him to interpret his 
anatomical observations in terms of wiring and allowed him to postulate a wide 
variety of theories of functionality and directionality of signal flow in various brain 
areas. In the meantime, the principles of optimal wiring that he suggested have been 
substantiated by more rigorous statistical analyses: circuitry and connectivity con-
siderations as well as simple wire-packing constraints have been shown to describe 
statistics of dendritic and axonal morphology (Cherniak 1992; Chklovskii 2004; 
Shepherd et al. 2005). It has also been shown mathematically that the specific 
organisation and architecture of many parts of the brain reflect the selection pres-
sure to reduce wiring costs for the circuitry (Chklovskii and Koulakov 2004; 
Klyachko and Stevens 2003; Wen et al. 2009; Wen and Chklovskii 2008). In a sepa-
rate chapter of this book, Quan Wen describes these findings in great detail (see  
Chap. 7). Are dendrites and axons then ideally matched to anatomically optimise 
connections to their potential connection partners in terms of Cajal’s rules? In order 
to study the relation between dendrite shape and connectivity we derived a growth 
algorithm for building dendritic arborisations following closely the constraints 
described by Ramón y Cajal. The algorithm was introduced in (Cuntz et al. 2007, 
2010). Implementing optimisation procedures known from graph theory the algo-
rithm builds tree structures that minimise the total amount of wiring and the path 
from the root to all points on the tree, corresponding to the conservation of cyto-
plasm and of conduction times respectively.

Figure 6.1a exemplifies the general approach of assembling a set of input target 
points to such an optimised graph. A greedy algorithm based on the minimum span-
ning tree algorithm (Prim 1957) starts at the root (large black dot) with an empty 
tree and connects unconnected target points (dark circles) one by one to the nodes 
of the tree (light circles). At each step, the unconnected target point which is the 
point closest to the tree according to a cost function is connected to the node in the tree 
to which it is nearest. The distance cost is composed of two factors: (1) A wiring 
cost represented by the Euclidean distance between the target point and the node in 
the tree (dashed lines show three sample segment distances for target point P); this 
quantity loosely corresponds to the material or cytoplasm conservation constraint 
by Cajal; (2) A path length cost of the path along the tree from the root to the target 
point; this quantity is consistent with the conduction time conservation constraint 
by Cajal. In the example in Fig. 6.1a, even though P is closer to node 5 in Euclidean 
terms, the additional cost of path length through node 5 might tip the balance in 
favour of connecting P to node 4 or 3, etc. A balancing factor bf, which weighs these 
two costs against each other in the cost function, represents the one and only param-
eter of the model once the target points are defined. Figure 6.1b illustrates the results 
for synthetic trees grown on homogeneously distributed random target points in a 
circular envelope when the root is located at its centre. Since the two constraints 
(minimising wiring and minimising path length to the root) are weighted according 
to the balancing factor bf determining the contribution of the second constraint, the 
synthetic trees range along the dimension of that parameter from a pure minimum 
spanning tree, which grows in wide spirals, to a more stellate architecture (Fig. 6.1b, 
from left to right).
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Fig. 6.1 Morphological modelling of dendrite structure. (a) Dendrite morphology as described by 
an extended minimum spanning tree algorithm (see text). Unconnected target points (dark circles) 
are connected one by one to the nodes of a tree (light circles) starting with a dendrite root (large 
black dot). Dashed lines indicate three sample Euclidean distances to the nodes of the tree for 
sample point P. (b) From left to right the same set of target points (light circles) were connected to 
a starting node (large black dot) according to the minimum spanning tree algorithm with increas-
ing balancing factor bf between the two wiring costs: total cable length and sum of all paths. Below 
the trees dark and light bars indicate total length and average path length respectively for each tree. 
(c) Geometric description of the dendritic density field (DDF) of a starburst amacrine cell (left). By 
randomly selecting target points according to the DDF and subsequently connecting them using 
the minimum spanning tree algorithm (right) to a starting node in the middle (large black dot), a 
synthetic starburst amacrine cell dendrite is generated. (d) The DDF obtained directly from recon-
structions of dentate gyrus granule cells with its characteristic cone-like shape. Views from three 
different angles; A representative real morphology is shown. (e) Separate DDFs for L5 cortical 
pyramidal cell basal trees (dark grey) and apical trees (light grey). A representative real morphol-
ogy is shown. The figure was adapted from previous work (Cuntz et al. 2010)

H. Cuntz



95

The dendritic branching structure is therefore fully determined by the proper 
selection of target points and the one parameter of the model, bf. For example, in 
order to generate a synthetic starburst amacrine cell we designed a geometrical 
arrangement of densities (Fig. 6.1c, a ring shaped density function) according to 
which target points were distributed stochastically. After distributing target points in 
such a way, the resulting synthetic tree structure accurately reproduced the architec-
ture of a real starburst amacrine cell. This type of approach yields good results for a 
large number of dendrites, e.g. for fly interneurons (Cuntz et al. 2008), dentate gyrus 
granule cells, cortical pyramidal cells from different layers and at different develop-
mental stages (Cuntz et al. 2010). In all cases also the branching statistics such as 
branch order distributions and the aforementioned Sholl analysis were comparable 
with available reconstructions from real dendrites (see Cuntz et al. 2010). bf values 
between 0.1 and 0.85 were shown to reproduce realistic dendritic morphologies 
(Cuntz et al. 2010). This simple procedure highlights the usefulness of a dendritic 
density field (DDF), here representing the density of target points per area, to 
describe a dendrite’s morphology. The DDF and the one parameter balancing the 
two costs for wiring mentioned above are thereby sufficient to describe the dendrite 
type in certain cases. In fact, we have shown that for fly interneurons the spanning 
field is the most informative element for classifying dendritic trees into their respec-
tive cell types (Cuntz et al. 2008) using this model. In some cases, DDFs can be 
obtained directly from reconstructions of real neurons. By superimposing their 
soma locations and rotating them such that they lie symmetrically around each axis 
and then scaling their width, height and depth, a set of reconstructions of dentate 
gyrus granule cell dendrites (data from Rihn and Claiborne 1990) was brought into 
a common context. An approximation of the DDF was then obtained directly from 
the density of branch and termination points from the reconstructions (Fig. 6.1d). 
Note that this is not identical to the distribution of target points. Also, DDFs might 
be calculated as density functions of dendrite length, dendrite membrane or dendrite 
volume. When apical and basal dendrites were considered separately, the DDFs of 
pyramidal cells were calculated in a similar way (L5 PCs, Fig. 6.1d; data from 
Wang et al. 2002). Using similar approaches to design sets of target points we have 
successfully first modelled fly interneuron dendrites (Cuntz et al. 2007, 2008) and a 
large number of other dendrite types (Cuntz et al. 2010). The approach has mean-
while also shown to be suitable for neocortical axons (Budd et al. 2010). This indi-
cates that wiring constraints as proposed by Ramón y Cajal play a major role in 
determining dendrite and axon morphology.

6.2  Consequences for Branching Statistics and Dendritic 
Computation: A Scaling Law for Dendritic Trees

Since the wiring rules described above constrain the space of possible real dendrites 
they have consequences on fundamental morphological parameters of dendrites and 
on dendritic computation. This section summarises the work in Cuntz et al. 2012 
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that showed one such relation arising from studying the morphological model. 
Let us assume that a dendritic tree of total length L connects n target points distrib-
uted over a volume V. Each target point occupies an average volume V/n. A tree that 
optimises the total amount of wiring will tend to connect the target points to their 
nearest neighbours, which are located at distances proportional to the cubic root of 
this average volume or (V/n)1/3—since the dendritic segments are one-dimensional 
compared to the volume surrounding them that is three-dimensional. Exactly n such 
dendritic sections are required to make up the tree. The total length L of these 
sections sums up to:

 
L n n V= / .

1/3 1/3 2/3c V c n⋅ ⋅( ) ⋅ ⋅=
 

This shows that a 2/3 power law relationship between L and n (Beardwood et al. 
1958) provides a lower bound for the total dendritic length, where c is a proportion-
ality constant. Approximating the volume around each target point by a sphere of 
the same volume, the length of the dendritic section required to leave the volume 
corresponds to the radius of that sphere. Then c = (3/4π)1/3, giving:

 L V= 3 / 4 .3 3 2/3π × n  (6.1)

To compare this scaling property between L and n with the one observed in neu-
ronal dendritic trees, we took advantage of our morphological model which we have 
shown can reproduce a wide range of dendrite morphologies. As mentioned above, 
in addition to minimising the total length L to connect a set of n target points to a 
tree, this procedure introduces the additional cost to minimise all path lengths from 
any target point toward the root along the tree, parameterised with the balancing 
factor bf. It was therefore important to use the model to check how tightly (6.1) 
matches the model. When target points were randomly distributed within a spheri-
cal volume and connected to a tree to minimise these costs we found that (6.1) 
provided a tight lower bound for the total dendritic length, particularly for low bf 
(Fig. 6.2a). With increasing bf the exponent in the power law increased from pre-
cisely 2/3 i.e. 0.66 (root mean square error of 1.0%) up to 0.72  (root mean square 
error 5.2%) for bf = 0.9, the maximal realistic balancing factor. Interestingly, in the 
model the number of branch points bp grew proportionally to the number of target 
points n leaving bp/n constant. Such a proportional relationship has been well 
described previously (Janson 2005; Steele et al. 1987) but no analytical formula 
exists to compute the precise relation and it must therefore be derived empirically. 
We found that both the scaling behaviour of L with n and the ratio bp/n were 

Fig. 6.2 (continued) database NeuroMorpho.Org (Ascoli 2006). All data strictly follow the pre-
dicted equation in all cases, while different datasets cover their respective range of length and 
complexity. Both measures were normalised by the volume V = 1, 000, 000 μm3 which the dendrite 
covers since the volume covered by the spanning fields of the dendrites was variable. Differences 
in balancing factor cause a vertical offset while conserving the characteristic 2/3 power law trend 
shown here (black line) for α = bp/n = 0.29 corresponding to bf = 0.5. Each datapoint is one neuron, 
with the grey shades corresponding to neuronal types. Best fit (dashed) has a power of 0.70. The 
figure was adapted from previous work (Cuntz et al. 2012)
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Fig. 6.2 Consequences of optimal wiring for single dendrite parameters. (a) Relation between num-
ber of target points n distributed homogeneously in a spherical volume of 1,000,000 μm3 and total 
dendrite length L of resulting synthetic dendrites for increasing bf (grey) and the predicted lower 
bound (black). The results were largely independent of arrangements of target points (see inset 
from left to right: spherical boundaries with homogeneous distribution; inhomogeneous distribu-
tion; root offset from the centre; cubic boundaries) (b) Ratios between number of branch points bp 
and number of target points n were independent of arrangements (see inset in a) or number of 
target points, but depended on the balancing factor bf between the two wiring costs. Error bars are 
for shuffled trees of all conditions. 100 trees were grown for each individual condition in (a) and 
(b). (c) General applicability of optimal space-filling power law relations. Relation between total 
dendrite length L and number of branch points bp for all reconstructions from the morphological 
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independent of the geometrical arrangement of target point distributions. Specifically, 
they did not change regardless of whether target points were distributed inhomoge-
neously, the root was displaced from the centre of the sphere, or the physical bound-
aries of the sphere were replaced by those of a cube (Fig. 6.2a, inset). However, bp/n 
depended in a linear manner on the model parameter bf (Fig. 6.2b), which we know 
varies between different classes of dendrites. Therefore, when two of the three 
quantities bp, n or bf are known, the third can be inferred independently of tree 
conditions or metric scale. The 2/3 power was therefore equally present between bp 
and L in the model (not shown, see Cuntz et al. 2012), with powers ranging from 
0.66 to 0.72 and a mean square error below 2% between the prediction and the 
model for all bf. To test for the presence of our predicted power law in real neuronal 
morphologies, we analysed all available dendritic trees of all different cell types 
from the NeuroMorpho.Org database (Ascoli 2006). In these reconstructions, it is 
unclear what the target points of the dendrites are, but branch points can unam-
biguously be counted. We therefore plotted the wiring length of these cells against 
the number of branch points after normalising these values to a volume of V = 106μm3 
(Fig. 6.2c). The power which best described the trends between the dendrite length 
and the number of branch points obtained for all cell types individually was very 
close to 2/3: 0.72 ± 0.10 and residual norms confirmed the goodness of fit (Cuntz 
et al. 2012). We replaced n by bp in (6.1) and compensated for the decrease in 
points by using the α = bp/n ratio derived from the simulations in Fig. 6.2b to obtain 
our lower bound for dendrite length (Fig. 6.2c, straight line). Although providing a 
lower bound, the resulting equation well described the data (with a root mean square 
error of 6.4%) and was very similar to the best fit (Fig. 6.2c, dashed line) with a 
power of 0.70.

Taking advantage of the morphological model, we have therefore derived from 
first principles a simple equation that relates the most fundamental measures of 
dendrite branching: the total length, the number of branch points, the spanning 
volume and the number of target points. Supporting the intuitive derivations of 
power laws described here, there have been several proofs (Beardwood et al. 1958; 
Steele et al. 1987) that in a minimum spanning tree in d dimensions—the canonical 
model of a tree constructed to minimise wiring length—L scales as a (d − 1)/d power 
of the number of target points or branch points. In summary, the wiring minimisa-
tion hypothesis predicts a 2/3 power law between L and bp, and a 2/3 power law 
between L and n. By contrast, a process that randomly connects target points without 
optimising wiring yields a power law with exponent 1. We showed that the equation 
that we derived holds in our model of dendrite branching. When realistic dendritic 
diameters were mapped on the synthetic dendrites to optimise synaptic democracy 
(Cuntz et al. 2007), we found that the passive electrotonic properties of the dendritic 
trees scaled in a similar manner as the dendrite length L. The number of independent 
electrical compartments and the total electrotonic length were therefore found to 
scale with the number of target points governed by a 2/3 power law when bf > 0 
(Cuntz et al. 2012). This indicates a functional consequence of the scaling law on the 
integration properties of dendrites. Taking advantage of the measured ratio bp/n in 
the model we show that the equation holds for all dendrite and axon reconstructions 
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available in the NeuroMorpho.Org database, including over 6000 reconstructions 
from 140 datasets. For one dataset consisting of newborn neurons in the adult olfac-
tory bulb (Livneh et al. 2009; Mizrahi 2007) for which both faithful reconstructions of 
dendrites and the synapse locations were known (synapses were targeted with PSD95-
GFP) we found that synapse locations corresponded to the target points used in our 
morphological model (Cuntz et al. 2012). Both the scaling of L with n and the bp/n 
ratio were comparable to the model, where n in this case was the number of syn-
apses. Also the location of the synapses when used as target points for the minimum 
spanning tree algorithm were sufficient to predict more than 80 % of the tree seg-
ments. This indicates that in some cases the target points used in the morphological 
model can be considered to be the actual connection points between the neurons. An 
interesting consequence of minimising the wiring to target synapses is that synapses 
that are close together are more likely to be linked by the same stretch of dendrite and 
therefore involved in a local computation (Poirazi et al. 2003; Polsky et al. 2004; 
Williams and Stuart 2002), such that geometry is a key determinant of information 
processing. There is increasing evidence that such sophisticated local processing may 
be carried out within the dendritic tree (Häusser and Mel 2003; London and Häusser 
2005), with nonlinear interactions between synaptic inputs shaping the output of the 
neuron (Branco et al. 2010; Branco and Häusser 2010; Koch et al. 1983). It will there-
fore be fruitful to study in detail how the scaling laws of wiring and branching place 
constraints on the overall computational power of single neurons.

6.3  Dendrite Types as a Function of Local Connectivity

After showing that the morphological model is useful to infer morphological and 
functional properties and constraints for single cells this section describes the par-
ticular relation between dendrite synaptic connectivity and morphology. In the 
beginning of this chapter it was shown that the dendrite density field (DDF) is useful 
for describing dendrite morphology. The next step is to identify useful DDFs based 
on underlying potential connectivity schemes. While the dendrites of starburst ama-
crine cells, dentate gyrus granule cells and many other neurons exhibit complex 
DDFs, some simpler ones such as pyramidal cell basal dendrites observe basic prin-
ciples that can be characterised by studying the statistical moments of their density 
distributions (Snider et al. 2010; Teeter and Stevens 2011). Stevens and colleagues 
have shown that the cable density distributions, i.e. the cable length in a given volume, 
in dendrites roughly follow separate Gaussian distributions for each dimension in 
space. These are cut off at about two standard deviations. What determines this 
particular density profile? In synthetic dendrites generated using the morphological 
model, homogenously distributed target points lead to a homogeneous cable den-
sity. The criteria for optimal wiring alone can therefore not be responsible for the 
observed Gaussian cable density distribution. Intuitively, the shape of a DDF should 
be determined by the set of axons that are a dendrite’s potential, i.e. anatomical, 
connection partners. This simple intuition can explain some basic features of DDFs as 
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Fig. 6.3 Studying circuits using the morphological model. (a) Synthetic dendrite (black) connect-
ing a starting point (large black dot) in 3D space to a set of parallel axons (grey): the resulting 
synthetic dendrite is flat, similar to a Purkinje cell that connects to a set of parallel fibres. (b) Two 
target axon sets (grey) are arranged in two parallel layers and the axons in each layer are isotropi-
cally oriented within the two parallel layers. The synthetic dendrite (black) connecting a starting 
point (large black dot) to these two sets of target axons displays a characteristic pyramidal cell 
shape with an apical and a basal dendrite. Average DDF of 100 such synthetic dendrites in inset; 
Compare with Fig. 6.1e. (c) Three out of 16 trees grown competitively on random target points 
homogeneously distributed on a ring. The resulting sharp boundaries (tiling) are reminiscent of 
Purkinje cells. (d) Hippocampal contours obtained from a sketch by Camillo Golgi (translated in 
Bentivoglio and Swanson 2001) with synthetic dentate gyrus granule cells and CA3 hippocampal 
pyramidal cells observing the limits from the template (see text). (e) Bipolar cells (black) in the 
retina were grown competitively to connect an array of photoreceptors (grey, bottom) to an array 
of starburst amacrine cells (grey, top; obtained as in Fig. 6.1c). In such a case the full morphology 
of bipolar cells is determined by the context of the circuitry, after prescribing soma locations of the 
bipolar cells. Precise scale bars were omitted in all figures since they depend on the system to be 
modelled. The figure was adapted from previous work (Cuntz 2012; Cuntz et al. 2010)

was demonstrated in (Cuntz 2012). After using target axons instead of input target 
points (e.g. Fig. 6.3a) the morphological model was set to connect to each target 
axon only once. To do this, target points were distributed every 50 μm along the 
axon and all target points belonging to one axon were removed once one of them 
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was selected by the iterative growth algorithm. A synthetic dendrite connecting to a 
set of parallel axons traversing space was flat and perpendicular to the axons 
(Fig. 6.3a). Beyond the obvious intuition that direct connections lead to perpendicu-
lar angles between the dendrite and the axons, a flat dendrite that lies perpendicular 
to a set of parallel axons was shown to be the overall ideal geometrical arrangement 
to connect a set of axons with a dendrite to optimise wiring costs (Wen and 
Chklovskii 2008). It is not surprising that the morphological model reproduced 
these findings. Such a planar dendritic structure can for example be observed in 
cerebellar Purkinje cells which reach out to the molecular layer in the cerebellum to 
collect their parallel fibre inputs. These being arranged entirely in parallel the den-
drite must grow in a planar way perpendicular to the parallel fibres to connect to 
them most efficiently. Most neural systems however are not entirely optimised for 
the connection between only one set of axons and one dendrite type. Axon distribu-
tions are typically more complex. In order to illustrate the potential of this construc-
tive approach, a sample configuration is shown in which two separate layers of 
target axons were both connected to a single starting point located at the centre of 
the lower layer (Fig. 6.3b). Under these conditions, the natural shape of a pyramidal 
cell, including its apical dendrite and its two separate DDFs (Fig. 6.3b, shading) 
were a natural consequence. Interestingly, the toy model of a pyramidal cell pre-
sented here does not build on any functional differences between the two layers that 
it connects. The location of the starting point alone determines which of the layers 
will yield an apical dendrite and which one a basal dendrite. This dendrite root cor-
responds to the integration point of the input signals but more importantly it is the 
coordinate from which the axon, the output of the neuron, exits the cell. The fact that 
the location of the exiting axon determines the neuron’s shape was at the centre of 
Cajal’s axopetal polarity theory. In the cortex, most long-range axons project toward 
the white matter away from the pial surface. The axonal output being on one side of 
the cortex, we would predict a stereotypic polarity of pyramidal cell morphology: 
Basal dendrites of pyramidal cells should be on the inside closer to the white matter 
where the output of the cell is located, whereas the apical dendrites should be on the 
pial side. This indeed is the case. At the example of the pyramidal cell dendrite we 
showed that it is possible to predict both their DDF and their precise branching struc-
ture by making assumptions about the input axon distribution. In this way it might be 
possible to link regionalised specialisations in pyramidal cell dendrite shape with dif-
ferences in local connectivity. To summarise, the DDF is a promising attribute of 
dendrite shape which enables direct conclusions on both the morphology of a den-
drite and on the arrangement of a neuron’s axonal inputs, thereby linking morphol-
ogy to connectivity directly.

6.4  Formation of Neural Circuits

In the final section of this chapter the morphological model of single dendrites is 
expanded to larger circuits as sketched previously in Cuntz et al. 2010. The local cir-
cuitry ultimately determines the context in which neuronal trees grow. There are 
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global boundaries given by the neural tissue such as layers, topography or physical 
borders. However, competition for input space between neighbouring neurons also 
seems to play a role (e.g. Samsonovich and Ascoli 2003). Competition is easily imple-
mentable in the greedy minimum spanning tree algorithm that underlies the morpho-
logical model because of the iterative nature of the algorithm. When grown under 
competitive conditions in which trees connect to a target point one after the other, the 
immediate consequence is spatial tiling. In fact, both Cajal’s material cost and his 
conduction time cost independently lead to this type of tiling. This is not the case for 
random wiring. Competitive dendrite growth can for example directly reproduce the 
sharp borders observed in Purkinje cell dendrites of the cerebellum. To demonstrate 
this, 16 cells were grown in a competitive manner on random target points distributed 
homogeneously in a ring-shaped area. Purkinje cell dendrites were required to be 
grown in two stages: first the thick primary dendrites and then the thinner ones cov-
ered in spines (three sample cells are displayed in Fig. 6.3c). The sharp borders of 
Purkinje cell dendrites were well reproduced. However, whether these sharp borders 
are actually a result of tiling in sagittal planes of the cerebellum remains to be deter-
mined experimentally. Cajal’s laws can therefore explain more than just the inner 
branching rule: tiling between cells can emerge directly from his suggested optimisa-
tion principles applied at the network level. The broader network context also plays a 
major role in governing neuronal spanning fields and their density profiles. Arranging 
synthetic hippocampal granule cells obtained from the DDF shown in Fig. 6.1d onto 
the contours of the dentate gyrus demonstrates the effect of the physical boundaries 
onto single cell variability (Fig. 6.3d). Growing CA3 hippocampal pyramidal cells in 
a context-dependent manner (here in a competitive growth process bounded by the 
CA3 contours of the hippocampus, obtained from Golgi; Bentivoglio and Swanson 
2001) reproduces the variability in neuronal branching seen in the reconstructions. 
The idea that the network context determines a neuron’s branching can be followed 
further: both input and output locations can serve as direct constraints for the cell 
morphology, as is the case when an array of photoreceptors (Fig. 6.3e, grey, bottom 
layer) in the retina connects to an array of starburst amacrine cells (Fig. 6.3e, grey, top 
layer; cells were obtained as in Fig. 6.1c) via a set of bipolar cells. In such a case, the 
input–output topography of the network determines the morphology of bipolar cells 
given that these grow in a competitive manner (Fig. 6.3e, black). Extending this idea, 
it might be possible to obtain the complete morphology of an entire circuitry based 
solely on the input–output topography of the underlying network, assuming that 
Cajal’s optimisation principles hold. To then simulate the complete spatial packing of 
the circuit will require the inclusion of dendrite diameters in the growth algorithm.

6.5  Conclusions and Outlook

I showed here that the laws of conservation of cytoplasm and conduction time 
formulated by Ramón y Cajal from simple observation represent a strict constraint 
on neuronal branching. These were sufficient to constrain a morphological model 
that is based on the minimum spanning tree to generate synthetic dendrites of a wide 
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variety of dendrite types (Cuntz et al. 2007, 2008, 2010). The resulting dendrites 
were indistinguishable from real reconstructions by eye and by a variety of dendrite 
branching statistics. The optimal wiring considerations led to a unifying equation 
for dendrite length, number of branch points, spanning volume and number of syn-
apses that the morphological model and all real reconstructions follow (Cuntz et al. 
2012). This represents a direct validation of the fundamental constraints on neuro-
nal circuit organisation described originally by Cajal. It provides direct evidence 
that the major determinant for a dendrite’s morphology is its role in the connectivity. 
The same wiring constraints are further applicable to local and global network con-
siderations and directly lead to dendrite tiling, particular dendrite density fields and 
to complete circuits (Cuntz 2012; Cuntz et al. 2010). These results are in close 
agreement with complementary statistical calculations based on similar connectiv-
ity requirements (Wen et al. 2009; Wen and Chklovskii 2008).

Does this mean that dendritic computation or other requirements do not play a 
role in the formation of dendritic morphology? While operating within the strict 
constraints described above, a dendrite has a number of remaining degrees of free-
dom. The weighting of both wiring costs, the balancing factor bf, is an adjustable 
parameter and differs from one cell type to the next. By adjusting the balance 
between the two wiring costs, a dendrite can efficiently set its electrotonic compart-
mentalisation and conduction speeds, quantities attributable to computation. These 
are then malleable by specialised ion channel distributions to implement the com-
putations known from dendrite structures. Furthermore, the density profile of the 
spanning field in which a dendrite grows determines its shape dramatically. A few 
weaker constraints such as the suppression of multifurcations, the addition of spatial 
jitter or the sequential growth of sub-regions of a dendrite are helpful for reproduc-
ing the dendritic branching patterns of particular preparations. These additional 
constraints might shed light on further functional, computational, developmental or 
network determinants for certain dendritic structures, and more of these will follow 
when applying our method to many more preparations.

Other methods exist to generate synthetic dendrite morphology in models based 
for example on mechanisms of dendrite growth (Koene et al. 2009), the fractal 
organisation of the brain (Ascoli et al. 2001; Luczak 2006), specific computations 
(Torben-Nielsen and Stiefel 2010), or simply on branching statistics (Hillman 
1979). Some of these approaches are described in other chapters in this book. It will 
be useful to combine these approaches and to find out how biology really imple-
ments the optimal wiring constraints that define dendrite structure. I have shown 
here that morphological models based on wiring constraints provide more than just 
anatomically realistic profiles that are useful for neural network simulations. They can 
be a tool to understand how dendrite morphology comes about and a tool to test our 
knowledge about the local connectivity in the brain. They can further help elucidate 
constraints on morphological statistics, on dendritic computation, on the process of 
dendrite growth and on large-scale network connectivity principles.
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Abstract Since Santiago Ramon y Cajal, neuroscientists have been fascinated by 
the shapes of dendritic arbors for more than 100 years. However, the principle 
underlying these complex and diverse structures remains elusive. Here we propose 
that evolution has tinkered with brain design to maximize its functionality while 
minimizing the cost associated with building and maintaining it. We hypothesize 
that the functionality of a neuron benefits from a larger repertoire of connectivity 
patterns between dendrites and surrounding axons, and the cost of a dendritic arbor 
increases with its total length and path length from synapses to soma. We solved this 
optimization problem by drawing an analogy with maximization of the entropy for 
a given energy in statistical physics. The solution predicts several scaling relation-
ships between arbor dimensions and closely fits with experimental data. Moreover, 
our theory may explain why basal dendrites of pyramidal cells and Purkinje cells, 
the two major cell types in the mammalian brains, exhibit distinct morphologies.

7.1 Introduction

Studying the structure of an organ helps unravel its function. More than 100 years 
ago, by applying the histological staining technique to study the anatomy of nervous 
systems, Santiago Ramon y Cajal formulated the “neuron doctrine.” He proposed 
that neurons are interconnected with each other by two polarized components, 
axons and dendrites. The function of dendrites and axons is to conduct electrical 
signals from postsynaptic terminals to the integration site, which often is the cell 
body, and from the integration site to the presynaptic terminals, respectively.

Chapter 7
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One hundred years later, neurobiologists, armed with advanced tools, are embrac-
ing a great opportunity to dissect the complex structure of the neuronal circuitry. For 
instance, cell-labeling methods such as those based on biocytin or green fluorescent 
protein make it possible to describe neuronal arbors in a comprehensive and quan-
titative way (Ascoli 2006). Reconstructing the wiring diagram of an entire brain 
circuitry may become an attainable goal with the advances of high-throughput elec-
tron microscopy and computer-aided image analysis (Lichtman et al. 2008; Denk 
and Horstmann 2004; Chklovskii et al. 2010; Kleinfeld et al. 2011). However, a 
quantitative theory of neuronal arbor shape does not exist. By establishing a direct 
relationship between neuronal structure and function, such a theory could elucidate 
the design principles of neural circuit.

Insight in this direction was also contributed by Cajal, as he wrote (Ramón y 
Cajal 1899), “After the many shapes assumed by neurons, we are now in a position 
to ask whether this diversity … has been left to chance and is insignificant, or 
whether it is tightly regulated and provides an advantage to the organism. … we 
realized that all of the various conformations of the neuron and its various compo-
nents are simply morphological adaptations governed by laws of conservation for 
time, space, and material.”

Echoing Cajal’s thoughts, we propose that evolution has “tinkered” with the 
brain design to maximize the functionality of a neuronal arbor while minimizing the 
cost associated with building and maintaining it. Specifically, brain functionality 
must benefit from high synaptic connectivity and large plasticity, because synaptic 
connections are central to information processing as well as learning and memory. 
However, increasing connectivity requires adding wiring to the network, which 
comes at a cost. The cost of wiring could be accrued by various things, including 
conduction delays, signal attenuation, and wiring volume. Below, I will show that 
these ideas can be formulated in the framework of constrained optimization. By 
solving this mathematical problem, we can account for several salient features of 
the shape of pyramidal and Purkinje dendritic arbors, the two major cell types in 
mammalian brains. This chapter is based on two papers that I have published earlier 
(Wen and Chklovskii 2008; Wen et al. 2009).

7.2  Dendritic Cost Function and Potential Connectivity 
Constraints

To start, let us consider the cost of wiring. We assume that the cost of dendritic 
arbors E grows with the total dendritic length L, i.e., ∂ E/∂ L > 0, and with the average 
path length from a synapse to the soma l, i.e., ∂ E/∂ l > 0 for all L and l. The path 
length cost may be contributed by several factors such as longer delays and greater 
attenuation of synaptic signals and higher metabolic costs for intracellular transport 
(Cuntz et al. 2007; Wen and Chklovskii 2008). These two quite general assumptions 
will be sufficient to make predictions about optimal dendritic shape, which I will 
then compare with the shape of purkinje dendritic arbors in the cerebellum.
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Fig. 7.1 The shape of a dendritic arbor determines which axons are accessible to a neuron.  
(a) Schematic illustration of a 3D dendritic arbor projected onto a plane and nearby axons that are 
labelled based on their relations to the arbor. For illustration purposes, we have shown all axons as 
running orthogonally to the plane of the drawing. Actual synapses (black dots) are a subset of poten-
tial synapses (solid blue circles), which in turn are chosen out of a larger set of axons (circles). 
Potential synapses are located within the spine-reach zone of a dendrite (gray). (b) A compact 
branching arbor makes on average one potential synapse with each axon (blue) passing through the 
arbor. The mesh size is defined as the arbor area divided by the total dendritic length. The mesh size 
is 2s + 〈dd〉 for a compact planar arbor and is the same, up to a numerical factor of order one, for a 
compact 3D arbor. (c) Dendritic arbor of a Purkinje cell from mouse cerebellum and its spine-reach 
zone. (d) Basal dendritic arbor (red) of a pyramidal cell from rat cortex (Shepherd and Svoboda 
2005) and its spine-reach zone (gray). The arbor territory is approximated by the dashed circle. (e) 
Ratio of the area of the spine-reach zone to the area of the arbor territory on a 2D projection [n = 10 
for both pyramidal and Purkinje cells (Kisvarday and Eysel 1992; Martone et al. 2003; Ascoli 2006; 
Rapp et al. 1994; Vetter et al. 2001)]. The spine-reach zone area is calculated as 2sL, where s = 2 μm. 
Pyramidal basal dendrites are sparser than Purkinje dendrites (p < 10−5, t-test with unequal variances) 
and, therefore, have lower probability to form a potential synapse with an axon passing through its 
territory. Error bars are s.e.m. These digitally reconstructed arbors are publically accessible from 
http://NeuroMorpho.Org [see also (Ascoli 2006)]. This figure is modified from Wen et al. (2009)

Next, we switch our attention to the constraints. We consider wiring up a neural 
circuit for a fixed number of potential synapses per neuron. We define potential 
synapse as a location where an axon passes within a spine length of a dendrite 
(Fig. 7.1a and Stepanyants et al. 2002). A potential synapse can be converted into an 
actual one by growing a spine (Trachtenberg et al. 2002). Requiring a potential 
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convergence factor imposes the following constraints on L and l. For simplicity, let 
us first consider a planar dendritic arbor and axons running orthogonally to it. C 
axons must fit within a spine length s of a dendrite, which we call the spine-reach 
zone (gray area in Fig. 7.1a). Then, the area of the spine-reach zone (2sL) must be 
at least equal to the total cross-sectional area of the axons (π/4Cda

2), where da is the 
axon diameter.

Likewise, the mean path length l can only be greater or on the same order of 
linear arbor radius R. We define R as the root-mean-square distance from the center 
mass of the arbor to all dendritic segments. A planar arbor must at least encompass 
all the potential axons and the area occupied by the dendrites on the plane.

7.3  Optimal Dendritic Arbor Is Planar, Compact,  
and Centripetal

By minimizing the cost function E subject to the constraints of L and l, it is straight-
forward to show that the total dendritic length and path length satisfy (Wen and 
Chklovskii 2008)

 
L Cd sa=

π
4

22 / .
 

(7.1)

 l R~ .  (7.2)

Here approximately (~) suggests that l and R only differ by a numerical factor 
that is close to one. In addition, in an optimal arbor, the total arbor area A should 
satisfy

 
A Cd d sa d= +( )π

4
1 22 / .

 
(7.3)

In (7.3), 〈dd〉 is the mean dendritic diameter. Dendritic arbors satisfying (7.1)–
(7.3) have the following properties. First, minimizing total dendritic length ((7.1)) 
demands a spatial organization of the neuropil, in which adjacent dendrites from 
different neurons are excluded from each other’s spine-reach zone (Fig. 7.1a, inset). 
If dendrites penetrated each other’s spine-reach zones, they would add to the 
excluded volume of axons and would increase the total dendritic length.

Second, to achieve the minimum path length l in (7.2), each segment of the den-
drite should be directed towards the soma. We call such arbor design centripetal 
(Fig. 7.1a). If the total dendritic length is greater than the dendritic arbor span, the 
centripetal arbor must branch. Therefore, branching of dendrites is a trivial conse-
quence of minimizing the mean path length.

In suboptimal dendritic arbors, the dependence of l on R does not have to be 
linear as suggested by (7.2). For example, if dendrites consisted of randomly 
 oriented segments, like in a random walk, the path length would be l ~ R2.
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Third, we calculate the arbor mesh size—a parameter that quantifies the 
 sparseness of an arbor—by dividing the arbor area by the total length, A/L. By com-
bining (7.1) and (7.3), we find that

 

A

L
s dd= +2 .

 
(7.4)

We call an arbor satisfying (7.4) compact (Fig. 7.1b). One property of a compact 
arbor is that it forms on average one potential synapse with each axon passing 
through the arbor.

A compact branching arbor is less costly than other branching arbors with the 
same potential convergence. Consider a sparse arbor with a mesh size that is much 
larger than 2s + 〈dd〉 (Fig. 7.1a) and which does not form potential synapses with 
every axon passing through the arbor (Fig. 7.1a). A compact arbor is less costly 
because it has smaller span than a sparse branching arbor.

How does this analysis of a planar dendritic arbor generalize to 3D dendritic 
arbors and axons running in different directions? Note that we can always project a 
3D dendritic arbor onto a plane that is orthogonal to the running direction of some 
axons. One can then calculate the spine-reach zone area that captures these axons. 
The same procedure can be performed on different arbor projections, and the sum of 
these spine-reach zone areas will determine the total dendritic length and the arbor 
size. Direct calculation shows that in the 3D case, the optimality conditions still hold 
if numerical factors close to one are ignored. Yet when these numerical factors are 
included, a planar arbor is preferable because a 2D projection of a 3D arbor is always 
shorter than the original. Thus, both the minimum path length, l, and the minimum 
total dendritic length, L, in a planar arbor are shorter than those in a 3D arbor.

7.4  Purkinje Dendritic Arbors Are Planar, Compact,  
and Centripetal

In the previous section, we derived the properties of optimal dendritic arbors that 
minimize cost for a given potential connectivity. Next, we compare our predictions 
with the experimental measurements for Purkinje dendritic arbors. As Purkinje 
arbors are evidently planar, we demonstrate that they are compact and centripetal.

To prove that Purkinje dendritic arbors are compact, we refer to (7.4) and show 
that the mesh size of a dendritic arbor is 2s + 〈dd〉. Napper and Harvey (1988b) 
reported that s = 1.4 μm as measured from the surface of the dendrites to the tip of 
the spine. They also found the diameter of spiny dendrites receiving parallel fiber 
inputs to be 〈dd〉 = 1.5 μm. Dividing the arbor area by the total dendritic length yields 
a value close to 4 μm (Fig. 7.1c, e), which is consistent with (7.4).

To demonstrate that Purkinje cell dendrites are centripetal, we calculated the 
distribution of dendritic segment orientation angle θ (Fig. 7.2a), which is defined as 
the angle between the vector of the signal flowing along a dendritic segment and the 
vector pointing centripetally from the segment to the soma. Figure 7.2b shows a 
Purkinje dendritic arbor where each dendritic segment is colored according to the 
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value of θ. We found that 70 % of the segments have orientation angles less than 90° 
(Fig. 7.2a), which suggests that Purkinje dendritic segments are predominately cen-
tripetal. This observation is consistent with the measurements of pyramidal cell 
dendrites in hippocampus (Samsonovich and Ascoli 2003).

Many trajectories observed in nature are not centripetal, and one of the classical 
examples is a random walk. For comparison, we simulated a random walk compris-
ing rigid segments 5 μm in length with random orientations and plotted the proba-
bility distribution of orientation angles (gray line in Fig. 7.2a). In a 2D random 
walk, the orientation angle would have a uniform distribution. However, in a 3D 
random walk, the most likely orientation angle is near 90° (Fig. 7.2a).

In optimal dendrites, the typical path length from a dendritic segment to the soma 
must be close to the Euclidean distance between them (7.2), i.e., the tortuosity index, 
defined as the ratio of the path length from a dendritic segment to the soma to the 
Euclidean distance between the two locations, is close to one. To verify that dendrites 
are optimal, we plot the tortuosity in Purkinje cell dendrites as a function of path 
length (Fig. 7.2c). Unlike the simulated dendrites with random walk trajectories, the 
tortuosity of real dendrites is close to one (Fig. 7.2c), consistent with optimality.

7.5  Micro-Architecture of the Cerebellum Molecular Layer

To verify that Purkinje cell dendrites from different neurons are excluded from each 
other’s spine-reach zone (Fig. 7.1a, inset), we shall estimate the interval b between 
potential synapses along a parallel fiber in the molecular layer and show that 
b = 2 s + 〈dd〉 (Napper and Harvey 1988a).

We can view the interval b as the distance a parallel fiber travels before encoun-
tering a different Purkinje dendrite. Along its course, a parallel fiber with length La 
will encounter totally D different dendrites and b = La/D. Below I will call D the 
potential divergence factor of an axon, and it can be calculated as follows. Because 
Purkinje cell dendrites are compact, an axon can potentially connect with all the 
dendrites in the volume Lawh, where w is the width of the dendritic arbor and h is 
the height of the arbor. Therefore, we have

 D L wha= s ,  (7.5)

Fig. 7.2 (continued) Random walk is not centripetal as the distribution has a peak near 90°. (b) A 
digitized Purkinje dendritic arbor, where the color of each dendritic segment represents the value 
of the orientation angle. (c) The tortuosity of Purkinje cell dendrites, which is defined as the ratio 
of the path length from the soma to a dendritic segment to the Euclidian distance between the two 
locations, is close to one for different path lengths from dendritic segments to the soma. The tor-
tuosity of dendrites generated by random walk trajectories is much higher than that of Purkinje 
cell dendrites, and it scales with the square root of the path length. All error bars are standard 
deviations. The above analysis is done on ten digitally reconstructed Purkinje dendritic arbors 
(Rapp et al. 1994; Vetter et al. 2001; Martone et al. 2003) available from http://neuromorpho.org. 
The arbors were projected onto the plane perpendicular to the parallel fibers (sagittal plane). This 
figure is modified from Wen and Chklovskii (2008)
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where ρ is the neuronal density. Because Purkinje cell bodies are arranged uniformly 
in a layer, we may rewrite (7.5) as a function of the neuronal density per unit area σ,

 D L wa= s .  (7.6)

As a result, the interval of potential synapses on an axon b is given by

 
b L D

wa= =/ .
1

s  
(7.7)

By substituting the values from the rat cerebellum σ = 1,018 mm−2, w = 250 μm, 
we obtain b = 4 μm. Recalling that s = 1.4 μm and dd = 1.5 μm (Napper and Harvey 
1988b), we find that the relation b = 2s + dd is satisfied and adjacent Purkinje cell 
dendrites are on average excluded from each other’s spine-reach zone. We hope this 
calculation can be verified directly by electron microscopic reconstructions.

7.6  Purkinje and Pyramidal Dendritic Arbors Exhibit 
Distinct Morphologies

Although we were able to explain the shape of Purkinje cell dendrites, neuronal 
arbor shape varies among cell classes. In particular, cortical pyramidal cell den-
drites in the neocortex have 3D shape and are sparser than Purkinje cell dendrites on 
a projection: the distance between adjacent branches is much greater than spine 
length (Fig. 7.1d). How can we understand the shape of such dendrites?

One difference between the Purkinje cells in the cerebellum and the pyramidal 
cells in the cortex is the geometry of axons representing their dominant input. 
Unlike parallel fibers in the cerebellum, cortical axons run in different directions. 
Thus, a flat dendritic arbor can effectively capture only those axons that are oriented 
near orthogonally to the dendritic plane while a 3D dendritic arbor can effectively 
capture axons from all directions. However, the sparseness of pyramidal cells sug-
gests that they are not minimizing their dendritic cost. Instead, understanding the 
shape of pyramidal dendrites requires the introduction of a new principle.

7.7  Maximizing the Connectivity Repertoire as a Statistical 
Principle

Mammalian neocortex is a highly plastic brain region vital for learning and 
 memory. Because the shape of a dendritic arbor determines which axons are acces-
sible to which dendrites, we hypothesize that the sparseness of a pyramidal den-
dritic arbor may reflect its flexibility to find appropriate presynaptic neurons. In an 
adult brain, a dendritic arbor connects with a combination of appropriate neurons, 
whose axons are sparsely distributed [constituting less than 10 % of all axons 
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passing through the arbor territory (Stepanyants et al. 2002; Markram et al. 1997; 
Thomson and Bannister 2003; Sjöström et al. 2001)] and are not known to the 
dendrites prior to arbor growth. In the course of neuronal development, the arbor 
must find this combination in the ensemble of accessible input neuron combina-
tions (via physical contacts between axons and dendrites) defined by arbor dimen-
sions. Then, finding a more appropriate combination would require choosing arbor 
dimensions that have a larger ensemble. Furthermore, if the developmental search 
strategy is sufficiently good, the larger the ensemble of input neuron combinations 
available to the arbor of given dimensions, the more appropriate the input neuron 
combination can be found.

Therefore, we can quantify arbor functionality by the number of different com-
binations of input neurons available to an arbor of given dimensions. To reduce the 
arbor functionality to an additive and extensive quantity (i.e., it doubles if L is dou-
bled), we consider the logarithm of the number of accessible input neuron combina-
tions for given arbor dimensions, which we call the connectivity repertoire. Thus, 
maximizing arbor functionality reduces to finding arbor dimensions that maximize 
the connectivity repertoire.

We computed the connectivity repertoire by adding the following two contribu-
tions. First, for given arbor dimensions, we counted all possible different shapes of 
a dendritic arbor. Each arbor shape selects a different subset of axons that pass 
within a spine length of a dendrite (Fig. 7.1a). Second, for a given arbor shape, we 
enumerated the number of combinations of choosing actual axonal inputs out of 
potential synapses (Fig. 7.1a).

Whereas the second contribution is straightforward to calculate (Stepanyants 
et al. 2002), the first contribution is challenging because locations of potential syn-
apses are strongly correlated with each other due to the contiguous nature of an 
arbor. Fortunately, a similar problem has been solved in statistical physics by 
expressing the astronomical number of different conformations of a branched poly-
mer in terms of its dimensions (Gutin et al. 1993; Rubinstein and Colby 2003). 
Using this analogy, we derived an expression for the connectivity repertoire, S, in 
terms of three arbor dimensions (Wen et al. 2009): L, R, and the average distance 
along the path from the tip of a branch to the cell body, l (Fig. 7.1a),

 
S S

L

a
R l

l

La

L

R
~ ln / .0

2 2

2
1+ −( ) − −

 
(7.8)

Prior to maximizing S in (7.8) with respect to R and l, let us explain the biological 
meaning of each term. The first term contains contributions independent of R and l 
(both from variations in arbor shape and from selecting actual synapses out of 
potential ones) and, thus, will not be considered further.

The second and third terms are R- and l-dependent corrections to the number of 
different arbor shapes. The second term reflects the fact that straighter branches can 
come in fewer different shapes (Rubinstein and Colby 2003) and is always negative. 
As dendrites become straighter, the path length l approaches from above the 
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Euclidian distance between the tip of a branch and the cell body (approximated by 
R), and the second term decreases dramatically. Therefore, maximizing the number 
of arbor shapes favors R ≪ l, that is, tortuous branches. The third term reflects the 
fact that maximizing the number of arbor shapes favors branchy dendrites (l ≪ L) 
(Gutin et al. 1993). In these terms, a is the persistence length, below which a den-
drite cannot bend (Rubinstein and Colby 2003).

The last term in equation is an R-dependent correction to the contribution to S aris-
ing from choosing actual synapses out of potential ones. Some axons could establish 
more than one potential synapse in different locations on a dendritic arbor (Fig. 7.3a). 
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Fig. 7.3 Dendritic arbor shapes reflect maximization of the connectivity repertoire for a given 
 dendritic cost. (a) Some axons form multiple potential synapses with a 3D dendritic arbor (crossed 
black circles). (b) A sparse arbor, which has lower dendrite density for a given total dendritic 
length, has fewer multiple potential synapses and, hence, maximizes the connectivity repertoire. 
(c) Tortuosity measured as a function of the average Euclidean distance from the tip of a branch to 
the cell body on l. The best fit (magenta line) suggests that basal pyramidal dendrites are approxi-
mately straight. Orange line shows tortuous dendrites predicted from maximizing the connectivity 
repertoire alone, R ~ a1/8l7/8. Each point represents a different cell. (d) Normalized tortuosity index 
as a function of the normalized path length from a dendritic segment to cell body. The tortuosity 
index T is defined as the ratio of the length along a path to the Euclidean distance between its ends 
minus one. In rescaled coordinates, the tortuosity was measured in units of the average index value 
over all paths within an arbor. The path length was measured in units of the average length over all 
paths within an arbor as well. Magenta line is a power law fit. Inset shows the same data on log–log 
scale. Error bars show s.e.m. This figure is reproduced from Wen et al. (2009)
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If the entire dendritic arbor acts as a unit, differences in the locations of actual  
synapses from the same axon do not affect the function (Magee and Cook 2000; 
Chklovskii et al. 2004; Cash and Yuste 1999; Nevian et al. 2007). As a result, addi-
tional potential synapses from the same axon are redundant and do not make a 
contribution to S. Thus, in calculating S, we should subtract the over-counting due 
to multiple potential synapses, which, for isotropically distributed straight axons 
(Braitenberg and Schuz 1998; Binzegger et al. 2005; Kisvarday and Eysel 1992), is 
given by the last term.

Maximizing S favors fewer multiple potential synapses from the same axon and 
hence smaller last term. Reducing the last term calls for a larger R for a given L or 
lower dendrite density (Fig. 7.3b). Thus, avoidance of multiple potential synapses 
leads to a statistical preference for arbors with sparsely distributed branches 
(Fig. 7.3b).

However, maximization of S alone resulted in more tortuous dendrites than those 
observed in a pyramidal cell (Fig. 7.3c, yellow line). This fact indicates that the 
straightness of dendrites (Kawaguchi et al. 2006; Samsonovich and Ascoli 2003; 
Stepanyants et al. 2004) is driven by reducing the dendritic cost. By taking into 
account the cost contributed by path length and total wiring length as discussed in 
the previous section, we derived a scaling form of the cost function E ~ Llδ, where δ 
is model dependent (see Appendix).

7.8  Predictions from Functionality–Cost Optimization  
and Experimental Measurements

Maximizing the connectivity repertoire for a given dendritic cost reduces to maxi-
mizing their combination: S − βE, where β is the weight of E relative to S. We solved 
this optimization problem (analogous to maximizing entropy for a given energy in 
statistical physics) and derived analytical expressions relating arbor dimensions l, R, 
and L. Next, we compare these expressions with experimental measurements.

First, optimal l and R satisfy the relation l/R – 1 ~ 1/lδ, where l/R − 1 is defined as 
the tortuosity index. This prediction is consistent with measurements from basal 
dendrites of pyramidal cells. The tortuosity index of a path from a dendritic segment 
to cell body decreases with the path length, and their relationship can be well fit by 
a power law with exponent δ = 0.309 ± 0.005 (Fig. 7.3d).

Second, our optimization framework predicts that R and L should satisfy a power 
law relation R ~ Lν with the exponent ν = 1/(2 + δ). Substituting the empirically 
 measured value for δ, we find ν = 0.43. Experimentally, by measuring the arbor 
dimensions of 2,171 basal pyramidal dendritic arbors, we found that the relation 
between R and L can be fit via a power law with an exponent, ν = 0.44 ± 0.01 
(Fig. 7.4a), which is not significantly different from our theoretical prediction.

Third, we explored statistical properties of branching by analyzing the spatial 
correlations among branches within an arbor. To this end, we counted the number of 
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pairs of dendritic segments separated by distance r. We expressed the distance in 
units of R and rescaled the counts, ñ, so that the area under the ñ(r/R) curve is nor-
malized to one (Fig. 7.4b). The dependence of ñ on r/R for different arbors collapses 
onto a single curve (Fig. 7.4b).

The universality of the pairwise correlations in the locations of dendritic seg-
ments suggests that dendritic arbors of pyramidal cells are built by statistically simi-
lar processes. Indeed, the analogy between our optimization framework and the 
statistical physics of polymers (Rubinstein and Colby 2003) suggests a functional 
form of ñ. In particular, the rising part of ñ would follow a power law ñ ~ (r/R)μ 
(Fig. 7.4b, inset), indicating that a fragment of an arbor is statistically similar to the 
scaled-down version of the whole arbor (excluding the periphery) (Stevens 2008; 
Smith et al. 1989; Jelinek et al. 2005; Caserta et al. 1990; Rothnie et al. 2006; 
Jelinek and Fernandez 1998; Milosevic et al. 2005). These conclusions are further 
supported by the fact that the measured exponent ν, characterizing the scaling of 
arbor dimensions across different cells (Fig. 7.4a), and the self-similarity exponent 
μ (1.38 ± 0.06 and Fig. 7.4b) are consistent with μ = 1/ν − 1, a relation that results 
from statistical similarity through a standard scaling argument (see Appendix).
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Fig. 7.4 Scaling, universality, and self-similarity of basal dendritic arbors of pyramidal neurons.  
(a) Dendritic arbor radius scales as a power of the total dendritic length. For 2,161 shrinkage-cor-
rected 2D reconstructions of basal dendrites of pyramidal cells from different cortical areas, the 
power is 0.44 ± 0.01. The ten available shrinkage-corrected 3D reconstructions (Kisvarday and 
Eysel 1992) are consistent with this relationship. Inset shows the same data on log–log scale. (b) 
Spatial pairwise correlation between dendritic segments for each neuron shown in rescaled coordi-
nates. Inset at the upper right illustrates how the measurement was performed: counts of intersec-
tions between concentric spheres and dendritic branches were averaged over random sphere center 
locations in the central part of the dendritic arbor. Curves corresponding to different neurons col-
lapse onto a master curve, fit by a universal function (magenta line), in which μ and γ are the only 
fitting parameters; coefficients g and h are fully determined by the normalization conditions. Inset 
under the main curves shows the rising part of the plot on log–log scale, indicating a power law 
relationship and self-similarity of arbor shape. This figure is reproduced from Wen et al. (2009)
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7.9  Why Pyramidal Dendritic Arbors Are Sparser  
than Purkinje Dendritic Arbors?

We have showed that, in the case of isotropically distributed axons, avoiding 
 multiple potential synapses leads to an arbor territory greater than the total area of 
the spine-reach zone (Fig. 7.1a). This accounts for the sparseness of basal dendritic 
arbors of pyramidal cells, which form potential synapses with only a small fraction 
of axons passing through the arbor territory (Fig. 7.1d, e).

In the case of anisotropic distribution of axons and dendrites, avoidance of mul-
tiple potential synapses may not lead to a sparse arbor. For example, if all axons 
were oriented orthogonally to a planar dendritic arbor, such as parallel fibers and 
Purkinje cell dendrites in the cerebellum (Llinás et al. 2004), multiple potential 
synapses could be avoided by arranging dendritic branches so that their spine-
reach zones do not overlap. Thus, to minimize the cost of dendrites, the arbor must 
contract until the spine-reach zone covers most of the arbor territory, just as in 
Purkinje cell dendrites (Fig. 7.1c). Although a projection of Purkinje dendritic 
arbor on the direction other than that of parallel fibers would contain many over-
laps of the spine- reach zone, this would not generate multiple potential synapses 
for parallel fibers.

7.10  Discussion

Are our results applicable to cell classes other than pyramidal and Purkinje cells? 
We note that the basic aspects of our theory still hold even if some assumptions 
were relaxed. (a) If presynaptic axons are tortuous and/or branchy rather than 
straight on the scale of a dendritic arbor, our theory would still hold but predict dif-
ferent scaling exponents. (b) If an individual dendritic branch rather than the whole 
arbor acts as a unit (Losonczy and Magee 2006; Poirazi et al. 2003a, b), actual 
synapses from the same axon lead to the same functionality only when they occur 
on the same branch. In this case, calculations would be different but the general 
framework would still hold.

However, arbor shapes would fall outside the current theoretical framework in 
the following cases. (a) Instead of maximizing the connectivity repertoire, the 
objective of some dendrites could be to maximize the number of synaptic contacts 
with the same presynaptic neuron. An example includes large monopolar cells in 
the insect optic lobe innervated by photoreceptors (Nicol and Meinertzhagen 1982). 
(b) Spatial distribution of axons from appropriate input neurons may not be a priori 
unknown to the arbor but partially or fully predetermined. For example, layer V 
apical dendrites reach out to upper cortical layers I–III containing appropriate 
inputs, which is why we restricted our analysis to basal dendritic arbors. To deter-
mine whether our theory is applicable to various cell types, large data sets of high- 
quality arbor reconstructions would be desirable.
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Why do we believe that the distribution of axons presynaptic to basal pyramidal 
dendrites is not predetermined? (a) Specificity in the location of pyramidal axons 
has been demonstrated only on the scale of cortical layers and columns, which is 
greater than the radius of a basal dendritic arbor (~100 μm) (Gilbert and Wiesel 
1989; Mooser et al. 2004). (b) On the smaller scale (<100 μm), pyramidal axons 
follow relatively straight trajectories in various directions (Binzegger et al. 2005; 
Stepanyants et al. 2004; Fujita and Fujita 1996; Lund et al. 1993; Anderson et al. 
2002; Kisvarday and Eysel 1992) and, thus, are unlikely to organize into specific 
patterns. (c) As synapses on a pyramidal dendrite are made about every half micron, 
it is unclear how axons from appropriate input neurons could align along dendrites 
in such a precise manner. Even if this arrangement could be achieved for one den-
dritic arbor, thousands of other arbors present in the dendritic territory would require 
a rearrangement of axons from one dendrite to the next, a scenario that is highly 
improbable.

One may question the validity of our assumption that pyramidal cell dendrites 
avoid multiple potential synapses because experiments indicate that synaptically 
coupled cortical neurons share multiple synaptic contacts (Markram et al. 1997; 
Silver et al. 2003). However, this observation does not contradict our theory for two 
reasons. First, electrophysiological recordings are heavily biased towards connected 
and hence nearby neurons. Although nearby neurons may make many potential syn-
apses, these inputs are in a minority. Indeed, in V1, 83 % of synapses on a dendrite 
originate from neurons located farther than 200 μm in the cortical plane (Stepanyants 
et al. 2009). For these presynaptic neurons, typically only one axonal branch courses 
through the dendritic arbor territory and hence is unlikely to make multiple potential 
synapses. Second, it is possible that various synaptic contacts form independently 
according to some local rules. Therefore, development can only strive to avoid mul-
tiple potential synapses but cannot guarantee their complete absence.

The cornerstone of our theory is the idea that a dendritic arbor avoids multiple 
hits with the same axon. Statistically, such avoidance results in an apparent  repulsion 
between branches. To go beyond our teleological theory and speculate developmen-
tal mechanisms responsible for repulsion, we must distinguish the following two 
logical possibilities. First, growing dendrites may experience some kind of interac-
tion, which forces them to become more extended, thus leading to reduction of 
multiple hits. Second, arbors somehow detect multiple hits with the same axon and 
rearrange their shapes in response. We think that the latter possibility is less realistic, 
not only because it would be difficult for a cell to detect multiple hits from the same 
axon on the background of simultaneous signals from thousands of other inputs, but 
also mostly because dendrites should avoid multiplying even potential synapses 
which generate no electrical signal in dendrites. We therefore think that the first 
possibility—avoidance of multiple hits as a consequence of interaction between 
branches—is more realistic.

Although the mechanism for such interaction among dendrites is unknown in 
vertebrates, it has been discovered in invertebrates in the form of homophilic Dscam 
interaction (Samsonovich and Ascoli 2003; Hattori et al. 2007; Schmucker et al. 
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2000; Hughes et al. 2007). Due to a large number of stochastically chosen splice 
isoforms, this molecule can mediate self-repulsion among branches of the same 
neuron without inducing interactions among different neurons. However, Dscams 
are thought to be nondiffusible and hence incapable of acting over long distances. 
Moreover, a vertebrate homolog of invertebrate Dscam does not have a large num-
ber of splice isoforms (Fuerst et al. 2008; Yamagata and Sanes 2008). We conjecture 
that a diffusible molecule with a large number of isoforms mediates self-repulsion 
in vertebrates.

Prior works on understanding arbor shape have involved computer simulations 
(Samsonovich and Ascoli 2003, 2005; van Pelt and Uylings 2002) using specific 
rules of branching and orientation of dendrites. Interestingly, it was suggested that 
reproducing realistic arbor shape requires effective repulsion between the cell body 
and dendrites (Samsonovich and Ascoli 2003). Although the proposed scheme can 
explain the straightness of dendritic branches and their centripetal orientation 
(Samsonovich and Ascoli 2003; Marks and Burke 2007a), it does not account for 
the distribution of the nearest neighbor distance among branches (Marks and Burke 
2007b). Here, based on the analysis of dendritic functionality, we proposed that 
effective repulsion exists among all segments of a dendritic arbor, not just between 
the cell body and dendrites.

More recently, Hermann Cuntz and colleagues (Cuntz 2012; Cuntz et al. 2010, 
2012) have used a greedy optimization algorithm to generate realistic dendritic 
arbor shapes with a variability that matches different neuronal types in the insect 
and mammalian brains (see Chap. 6). In his approach, an in silico arbor must calcu-
late a strategy to minimize both the total wire length and path length cost while 
connecting given target points in the neuropil with defined spatial distribution. Our 
complementary approaches reach similar conclusions that total wire length and path 
length costs are important for determining the shape of an arbor. In the future, how-
ever, it is important to understand how these target points (or seeds) are chosen. Do 
these target points reflect the location of the most appropriate axonal inputs? If so, 
what determines their sparseness and spatial distribution? These questions would be 
answered if we have a better understanding of the organization and connectivity of 
a neuropil on the size of a dendritic arbor.

Finally, the idea that avoidance of multiple hits affects arbor shape may not be 
limited to neurons and apply to other biological objects. Consider, for example, the 
spatial arrangement of tree branches. As a tree strives to maximize its exposure to 
sunlight, its leaves must avoid shading each other (Mauseth 2003; Thomas 2001). 
This means that the branches should minimize multiple hits with straight lines 
directed from the sun. Because light rays come from varying directions, they induce 
repulsion among branches, similarly to self-repulsion in dendritic arbors of pyrami-
dal cells. As the cost of branches is likely to grow with both the total length and the 
path length, our theory should apply to the spatial distribution of tree branches as 
well. Thus the similarity of shapes among neurons and trees may not be a coincident 
but arises from similar evolutionary objectives.
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 Appendix

 A.1 Relation Between Scaling Exponents

If the statistical properties of different dendritic arbors were universal and dendritic 
arbors were indeed self-similar, the scaling exponent, ν, from the power law between 
R and L, would be related to the exponent from the rising part of spatial pairwise 
correlation function between dendritic segments, μ, as shown below.

For self-similar dendritic arbors built by common rules, the rising part of the 
pairwise correlation function on the regular scale, n(r), would be described by the 
power law function

 n r r R~ , .µ <  (7.9)

In addition, the pairwise correlation function would be characterized by a single 
length scale, R. Specifically, if n(r) decays fast for r > R and the rising part of n(r) 
remains a power law until r is on the order of R (as in agreement with our data), then 

the normalization condition 
0

∞

∫ ( ) =n r dr L  can be well approximated by introducing 
a cutoff R:

 0

R

n r dr L∫ ( ) ≈ .
 

(7.10)

By using (7.9) for n(r) in (7.10), we obtain

 L R~ .µ+1
 (7.11)

Recall that our measurement for arbor dimensions shows R ~ Lν (Fig. 7.4a). 
Therefore, we arrive at a relation between exponents μ and ν:

 
µ

ν
= −

1
1.

 
(7.12)

In addition, given (7.9) and (7.12), the rising part of the rescaled pairwise cor-
relation function should follow a similar power law ñ ~ (r/R)μ. This can be derived 
straightforwardly from the relation ñ = nR/L, which is a consequence of the normal-
ization conditions.

 A.2 A Cost Model for Dendritic Arbors

As maximizing the connectivity repertoire alone leads to more tortuous branches 
than observed, we must include the dendritic cost in the optimization framework. 
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After considering several simplified models based on the above reasoning (Wen and 
Chklovskii 2008), we propose that the cost scales with L and l as

 E Ll~ .δ
 (7.13)

The value of exponent δ is model dependent. Below, we consider one simplified 
model that yields a specific value of δ.

We assume that E is proportional to the total area of dendritic surface for the fol-
lowing reason. To maintain the resting potential of a neuron or low [Na+] inside a 
cell, sodium ions permeating into a neuron should be actively extruded by Na+/K+ 
pumps (Attwell and Laughlin 2001). The amount of ATP expended is proportional 
to the membrane capacitance for action potential propagation or membrane input 
conductance in the absence of spikes (Attwell and Laughlin 2001). Hence, in both 
considerations, E is proportional to the membrane surface area,

 E Ld~ ,  (7.14)

where d is the mean dendritic diameter.
Although E decreases as the mean dendritic diameter d is reduced, a small diam-

eter would detrimentally affect dendritic function. One possible reason is that pro-
teins must be transported from the cell body to synapses and the rate of transport is 
proportional to the number of microtubules at a given cross section of a dendrite 
(Hillman 1979). The rate of protein transport through a cross section must be pro-
portional to the number of synapses downstream of that cross section. If the density 
of microtubules (per cross-sectional area) is roughly invariant, the cross-sectional 
area must be proportional to the number of microtubules and hence to the number 
of synapses downstream (Hsu et al. 1998; Hillman 1979; Wittenberg and Wang 
2007). If the typical branch has length l, the number of synapses on it is Nl/L. 
Therefore, a typical dendritic diameter is

 d ANl L2 ~ / ,  (7.15)

where A is a cross-sectional area needed to support one synapse. By substituting 
(7.15) with (7.14), we find that

 E N L l~ ./ / /1 2 1 2 1 2
 (7.16)

Given that N ~ L (Larkman 1991), we obtain

 E Ll~ ./1 2
 (7.17)
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    Abstract     Soma location, dendrite morphology, and synaptic innervation are key 
determinants of neuronal function. Unfortunately, conventional functional measure-
ments of sensory-evoked activity in vivo yield limited structural information. In 
particular, when trying to infer mechanistic principles that underlie perception and 
behavior, interpretations from functional recordings of individual or small groups of 
neurons often remain ambiguous without detailed knowledge of the underlying net-
work structures. Here we review a novel reverse engineering approach that allows 
investigating sensory-evoked signal fl ow through individual and ensembles of neu-
rons within the context of their surrounding neural networks. To do so, spontaneous 
and sensory-evoked activity patterns are recorded from individual neurons in vivo. 
In addition, the complete 3D dendrite and axon projection patterns of such in vivo- 
characterized neurons are reconstructed and integrated into an anatomically realistic 
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model of the rat vibrissal cortex. This model allows estimating the number and cell 
type-specifi c subcellular distribution of synapses on these neurons with 50 μm pre-
cision. As a result, each neuron can be described by a rich set of parameters that 
allows investigating structure–function relationships and simulation experiments at 
single-neuron and network levels.  

8.1         Introduction 

 A principal challenge in neuroscience research is to understand how the brain pro-
cesses sensory information and how the diverse stimuli give rise to behavioral 
responses. Despite a long history in recording the activity of individual or small 
groups of neurons by using electrical or optical methods (Armstrong-James and Fox 
 1987 ; Simons et al.  1992 ; Brecht et al.  2003 ; Martinez et al.  2005 ; Bruno and 
Sakmann  2006 ; de Kock et al.  2007 ; Kerr et al.  2007 ; Poulet and Petersen  2008 ; 
Wallace and Sakmann  2008 ; Sakata and Harris  2009 ; O’Connor et al.  2010a ; 
O’Connor et al.  2010b ), our understanding of mechanistic principles underlying 
sensory perception and behavior remains limited. This is mainly due to the fact that 
functional recordings often lack structural information about the underlying neural 
networks, such as the morphology of its constituent neurons and the complex con-
nectivity patterns established among them. Consequently, to understand how com-
plex spatiotemporal patterns of synaptic input drive neuronal output during 
perception and behavior, one has to (1) investigate the synaptic “wiring” of func-
tionally characterized neurons, (2) identify the microcircuits that they form, and (3) 
determine how these microcircuits participate in neural networks during different 
stimulus conditions. 

 At present, methods to monitor sensory-evoked streams of excitation through 
the entire neural networks, combined with quantitative reconstructions of the 
underlying network structure, are scarce. However, recent studies using functional 
two- photon calcium imaging (Svoboda et al.  1997 ) combined with high-throughput 
electron microscopy techniques (Denk and Horstmann  2004 ) allowed investigating 
structure–function relationships in mouse retina (Briggman et al.  2011 ) or primary 
visual cortex (Bock et al.  2011 ). Rendering important steps towards a deeper 
 understanding of visual information processing, at present, these methods 
remain  however limited to relatively small brain volumes of approximately 
200 μm × 200 μm × 200 μm cubes (Helmstaedter et al.  2008 ). Neural networks that 
include long-range projections, for example such as those between different corti-
cal layers or even between different cortical fi elds and subcortical neuron ensem-
bles, may not be accessible with electron microscopic approaches. Furthermore, the 
limited temporal resolution of two-photon calcium imaging (Grewe and Helmchen 
 2009 ) and the lack of subthreshold information may prevent from describing impor-
tant aspects of structure–function relationships using this technique. 

 In this chapter, we review an alternative, reverse engineering approach that is 
based on electrical recordings from individual neurons in vivo, combined with a 
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conventional neuron fi lling method (Pinault  1996 ; Margrie et al.  2002 ; Horikawa 
and Armstrong  1988 ). By recording the functional responses to different sensory 
stimuli in large numbers of individual neurons and with high temporal resolution, 
followed by reconstructing the complete three-dimensional (3D) dendritic and axo-
nal projection patterns, our approach allows investigating how anatomical parame-
ters of individual neurons may infl uence functional responses. To do so, structural 
data from a large number of animals is registered into a common 3D reference 
frame to reconstruct average anatomically realistic neural network models. These 
networks are then populated with in vivo-measured activities, and responses in 
silico are compared with responses measured in the respective in vivo network 
(here, in silico refers to numerical simulations of neuronal activity; see Lang et al. 
 2011  for details). 

 We illustrate our approach by reconstructing the vibrissal cortex in rodents, such 
as rats and mice, which is particularly suited to reverse engineer the structure and 
function of neural circuits that underlie sensory perception and behavior. First, sen-
sory input from a single principal whisker (PW) located on the animal’s snout is 
capable of eliciting simple behaviors, such as gap crossing (Celikel and Sakmann 
 2007 ; Hutson and Masterton  1986 ). Second, in the vibrissal area of rodent somato-
sensory cortex (S1), a cytoarchitectonic equivalent to the elementary functional unit 
of sensory cortices (Mountcastle  1957 ; Hubel and Wiesel  1959 ), designated as a 
barrel column, has been described (Woolsey and Van der Loos  1970 ). Barrel col-
umns are somatotopically organized, resembling the layout of the facial whiskers 
(Fig.  8.1 ). Furthermore, a barrel column primarily processes sensory input from a 
related PW (Welker  1976 ). Specifi cally, sensory-evoked excitation after whisker 
touch and presumably during whisker motion (Yu et al.  2006 ) is mediated by neu-
rons located in the ventral posterior medial (VPM) division of the thalamus. The 
VPM, like the vibrissal cortex, is subdivided into whisker-specifi c areas, referred to 
as barreloids (Land et al.  1995 ). Third, the vibrissal system in rodents is an active 
sensory system. Thus, unlike for example in cats, rodents actively move their whis-
kers back and forth to explore their environment.

8.2        Reverse Engineering the Structure and Function 
of Neural Networks 

8.2.1     Cell Type-Specifi c Representation of Sensory Stimuli 
in Rat Vibrissal Cortex 

 Cell-attached (juxtasomal) and whole-cell recording techniques allow electrophysi-
ological measurements on individual neurons. The high temporal resolution and the 
wide range of applications render single-neuron recordings as one of the primary 
sources of our current understanding of neuron and network function (Barth and 
Poulet  2012 ). 
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 In order to combine these functional measurements with structural information 
about the underlying circuitry, the recorded neuron is labeled with a tracer, for 
example biocytin (Horikawa and Armstrong  1988 ), which allows reconstructing its 
3D morphology. This approach has been largely used for preparations in vitro 
(Helmstaedter et al.  2009 ; Staiger et al.  2004 ), for example resulting in various 
detailed computer models that relate the structure of an individual neuron to its 
measured function (Hay et al.  2011 ; Sarid et al.  2007 ). Unfortunately, the typical 
thickness of a brain slice is 300 μm. Consequently, in vitro tracings usually suffer 
from cutoff dendrites and axons (Oberlaender et al.  2012a ). Thus, in vitro approaches 
may be suffi cient to investigate structure–function relationships at the single-neuron 
level, but insights into a neuron’s function with respect to the underlying neural 
circuits and stimulus conditions are limited. 

 To compensate for these limitations, labeling of individual neurons in vivo allows 
studying the relationships between sensory-evoked activity and the structure of the 

  Fig. 8.1    Cell type-specifi c axonal projection patterns in rat vibrissal cortex. ( a )  Top : Tangential 
view of the barrel fi eld in rat vibrissal cortex. An axon from the ventral posterior medial (VPM) 
division of the thalamus projecting to the D2 barrel is shown in  blue .  Bottom : Semi-coronal view 
of the same axon with respect to the D2 and two surrounding columns. ( b )  Top : As in ( a ). Layer 5 
thick tufted (L5tt) neuron with apical ( orange ) and basal ( red ) dendrites and axonal projections 
( blue ).  Bottom : As in ( a ). ( c )  Top : As in ( b ). Layer 5 slender tufted (L5st) neuron.  Bottom : As in 
( b ). Panels in ( b ) and ( c ) modifi ed from Oberlaender et al. ( 2011 )       
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intact network. The diffi culty in recovering well-labeled dendrites and axons from 
recordings in vivo and the enormous extent and complexity of axons previously 
prevented from manually reconstructing large numbers of complete 3D morpholo-
gies. We thus developed a semiautomated imaging and tracing pipeline that rivals 
manual tracings by human expert users in accuracy and reduces the time required 
for large-scale reconstruction of 3D neuron morphology (Dercksen et al.  2009 , 
 2012b ; Oberlaender et al.  2007 ,  2009a ). 

 Figure  8.1  shows three examples of completely reconstructed dendrite and axon 
morphologies of the major cell types that provide input to (VPM, Fig.  8.1a ) and 
output from the vibrissal cortex (L5 thick-tufted pyramid (L5tt), L5 slender-tufted 
pyramid (L5st); Fig.  8.1b, c , respectively). Slender-tufted pyramidal neurons proj-
ect to the striatum and are commonly referred to as corticostriatal neurons. Thick-
tufted pyramidal neurons project to the posterior nucleus of the thalamus, brainstem, 
superior colliculus, and pons (Alloway  2008 ; Aronoff et al.  2010 ; Groh et al.  2008 ). 
The two neuron types have been characterized across cortical areas, including 
somatosensory and visual cortices, and therefore represent canonical elements of 
the cortical microcircuitry (Groh et al.  2010 ; Binzegger et al.  2004 ). 

 All neurons were reconstructed with respect to anatomical landmarks, such as 
the pia and white matter (WM) surfaces, the local blood vessel pattern, and the bar-
rels in L4 (Egger et al.  2012 ). Thus, our reconstruction pipeline allows determining 
the complete dendrite morphology, axon projection pattern, and 3D location within 
the vibrissal cortex for large numbers of in vivo-recorded neurons. 

 Reconstructing approximately 150 neurons across L2–6, we found that dendritic 
and axonal projection patterns are highly cell type specifi c. For example, VPM 
axons (see Oberlaender et al.  2012b  for more details and a gallery of cells) delineate 
the vertical barrel column boundaries, display the densest innervation within L4, 
and show a second, less pronounced innervation zone at the border between L5 and 
L6. L5tt neurons display widespread apical tuft dendrites that usually reach into the 
septum surrounding the principal column (PC, i.e., containing the neuron’s soma) or 
even into surrounding barrel columns (Oberlaender et al.  2012a ). Axons of L5tt 
neurons are usually sparse within the vibrissal cortex, confi ned to the vertical barrel 
column borders in L1–4, and project to surrounding barrel columns in L5 (see 
Oberlaender et al.  2011  for more details and a gallery of cells). Somata of L5st neu-
rons intermingle with those of L5tt cells but have very different dendritic and axonal 
projection patterns. The apical tuft dendrite of L5st cells is usually confi ned to the 
vertical boundaries of the respective PC. L5st axons within the vibrissal cortex are 
by a factor of 3 more elaborate than L5tt neurons, display widespread projections 
within L1–3, and remain largely confi ned to the PC in L5 (see Oberlaender et al. 
 2011  for more details and a gallery of cells). 

 The anatomically defi ned cell types show also cell type-specifi c functional 
properties. Figure  8.2a  summarizes the average spiking activity for VPM neurons 
after passive whisker defl ection (“passive touch”) (Brecht and Sakmann  2002 ) 
and the evoked activity of L5tt and L5st neurons (de Kock et al.  2007 ). VPM neu-
rons reliably, and almost exclusively, respond to the defl ection of the respective PW. 
In contrast, L5tt neurons show strong responses to defl ection of the principal and 
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the eight surrounding whiskers (Su8W), while L5st neurons show almost no 
response to passive touch at all.

   The situation changes dramatically when the animal is awake and actively moving 
its whiskers back and forth in a periodic manner (Fig.  8.2b  de Kock and Sakmann 
 2009 ). The spiking activity of L5tt neurons remains largely the same compared to 
the anesthetized state or periods without whisker movement (i.e., quiet-awake). In 
contrast, L5st neurons increase their activity during whisking. More importantly, 
L5st neurons carry information about whisker location, which is represented as the 
instantaneous phase of the periodic whisker movement (Hill et al.  2011 ). Neurons 
of all other excitatory cell types, including L5tt neurons, carry only little or no phase 
information at all (de Kock and Sakmann  2009 ; Oberlaender et al.  2011 ). 

 In summary, single-neuron recordings and fi llings in vivo allow (1) determining 
the neuron’s location with respect to anatomical landmarks, (2) reconstructing the 
complete 3D dendritic and axonal projection patterns, (3) classifying anatomical 
cell types, and (4) determining cell type-specifi c functional properties during differ-
ent behavioral states and sensory stimuli.  
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8.2.2     Reconstruction of 3D Anatomically Realistic Neural 
Networks in Rat Vibrissal Cortex 

 Correlating the 3D morphology of individual neurons with their spontaneous or 
sensory-evoked activity in vivo allows specifying cell type-specifi c structure–func-
tion relationships. However, to relate such relationships to the overall stream of 
sensory-evoked excitation and to ultimately infer mechanistic principles of percep-
tion and behavior, the individual neurons have to be embedded and investigated 
with respect to the underlying neural network structure. To do so, we developed a 
set of tools that allow reconstructing an anatomically realistic average model of rat 
vibrissal cortex (Dercksen et al.  2012a ; Lang et al.  2011 ). Using this network model 
we are able to estimate the number, cell type-specifi c origin, and 3D distribution of 
synapses along the dendrites of each reconstructed neuron. Subsequently, we review 
the custom-designed tools and anatomical data necessary to reconstruct an average 
model of the vibrissal cortex. 

 First, to generate an average anatomically realistic model, we needed to investi-
gate whether the 3D layout of the vibrissal cortex is preserved across animals (see 
Egger et al.  2012  for a detailed description). This step yields the maximal possible 
precision of the average vibrissal cortex and allows registering each reconstructed 
neuron to its respective location within the cortex model. We defi ned fi ve anatomi-
cal parameters to describe the 3D structure of each barrel column: (1) the  barrel 
area , defi ned as the maximal circumference of the L4 barrel in the tangential plane; 
(2) the  barrel top , defi ned as the closest point of the barrel to the pia in the coronal 
plane; (3) the  barrel bottom , defi ned as the closest point of the barrel to the WM; (4) 
the  barrel column orientation , defi ned as the perpendicular axis from the barrel 
center (BC) to the pia; and (5) the  barrel column height , defi ned by extrapolating the 
barrel circumference along the BC axis towards the WM and pia (i.e., pia–WM 
distance). We measured these parameters for almost 1,000 barrel columns in more 
than 100 different rats. We found that the standard deviations (SD) of the fi ve 
parameters across animals were small for corresponding barrel columns, usually 
around 5 % of the mean. Furthermore, we generated a standard model of the vibris-
sal cortex by superimposing the respective BC locations of 12 reconstructed vibris-
sal cortices using only rigid transformations. We found that the standard model 
(Fig.  8.1 ) captured the average 3D layout of the vibrissal cortex with approximately 
50 μm precision. Thus, by reconstructing each neuron morphology with respect to 
the anatomical reference landmarks that were used to generate the standard model 
(i.e., pia, WM, barrels), rigid transformations can be used to register (i.e., place) 
each reconstruction into the standard model with 50 μm accuracy. 

 Second, in order to obtain anatomically realistic estimates of synaptic innerva-
tion, we needed to determine the number and 3D distribution of neurons within the 
vibrissal cortex and thalamus. To do so, (1) we stained consecutive brain sections 
with NeuN to label all neuron somata (Meyer et al.  2010b ), (2) counterstained the 
sections with GAD67 to distinguish between excitatory and inhibitory cells (Meyer 
et al.  2011 ) and to reveal the L4 barrels and VPM barreloids, and (3) developed an 
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automated pipeline to detect the center location of each labeled soma (Oberlaender 
et al.  2009b ). Using this method, we determined the number of excitatory and inhib-
itory neurons for each barrel column, barreloid, and the septa between them in three 
different rats (Meyer et al.  in press ). We found that the number and 3D distribution 
of neurons per barrel column and barreloid were preserved across animals. As for 
the fi ve parameters describing the geometry of the respective barrel columns, the 
SDs of the neuron densities were usually around 5 % of the mean. Further, the num-
ber of cells per barrel column correlated strongly with the number of neurons in the 
respective barreloid ( p  < 10–5, two-tailed  t -test). For example the average numbers of 
neurons in the A2 barrel column and barreloid were 11,978 and 198, and the respec-
tive values for C2 were 19,707 and 350, yielding ratios of 61 and 56,  respectively. 
Finally, again using the pia, WM, and barrels as reference landmarks, we generated 
an average 3D distribution of excitatory neuron somata and registered this distribu-
tion to the standard model of the vibrissal cortex (Fig.  8.3a ).

   Third, in order to assign a cell type to each soma in the average 3D soma distribu-
tion, we needed to determine the number and location of excitatory cell types in a 
barrel column. We thus registered 95 reconstructed dendrite morphologies, obtained 
across L2–6, to the standard cortex and extracted 21 dendritic features for each cell 
(see Oberlaender et al.  2012a  for a full list of features). Using these parameters, we 
performed a supervised cluster analysis using the OPTICS algorithm (Ankerst et al. 
 1999 ) implemented in the WEKA software package (  http://sourceforge.net/proj-
ects/weka    ). The clustering yielded nine different dendritic cell types. Since the 
soma location of each registered neuron can be determined with 50 μm accuracy, the 
cluster analysis allowed determining the minimal and maximal depth locations of 
each cell type as well as the overlap ratio between cell types (Oberlaender et al. 
 2012a ). Using these values, each neuron in the soma distribution can be assigned to 
a unique cell type (Fig.  8.3a ). 

 Fourth, as a fi nal step to reconstruct an anatomically realistic average model of 
the vibrissal cortex, we replace each soma in the average soma distribution by a 
dendrite/axon tracing of the respective cell type. Because the number of recon-
structed cells is much smaller than the number of neurons in the vibrissal cortex, we 
need to scale our sample up. During the up-scaling process, a custom-designed 
network assembly pipeline automatically determines a neuron from the pool of 
reconstructed morphologies (Dercksen et al.  2012a ; Lang et al.  2011 ). It is assured 
that the neurons in the soma distribution and the morphology are of the same cell 
type and located within the same barrel column, at approximately the same depth. 
The morphology is then registered to the new location, preserving dendrite/axon 
orientation and scaling relative to the PC. This step yields the 3D distribution of cell 
type-specifi c dendrites and axons within the vibrissal cortex, as exemplarily shown 
in Fig.  8.3a  for the ensemble of L5tt dendrites and VPM axons in different columns, 
respectively. Finally the dendrites and the axon of each neuron in the network model 
are converted into 3D density distributions with 50 μm voxel resolution (i.e., the 
approximate precision of the average cortex model), where each voxel is then 
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multiplied with a cell type-specifi c spine and bouton density value, respectively 
(e.g., 1 spine per μm dendrite; see Lang et al.  2011  for more details). 

 In summary, the network assembly process is based on (1) a 3D standard model 
that captures the average geometry of the vibrissal cortex with 50 μm accuracy, (2) 
the average number and 3D distribution of excitatory and inhibitory somata, (3) 
more than 150 complete dendrite and/or axon reconstructions obtained from in vivo 
recordings in VPM and across all cortical layers, and (4) spine and bouton distribu-
tions measured for each cell type.  

  Fig. 8.3    Reverse engineering synaptic connectivity and sensory-evoked signal fl ow. ( a ) The 
reverse engineering pipeline. From  left  to  right : Assignment of neuron somata to different cell 
types, replacement of each neuron soma with a dendrite tracing of the same cell type, all L5tt 
dendrites of one column, all VPM axons of one column, an individual L5tt neuron registered to its 
location in the average network model. ( b ) Subcellular distribution of VPM synapses from the 
principal whisker (PW) and the eight surrounding whiskers (Su8W) on the individual L5tt neuron 
from panel ( a ). Scale bar applies to ( b ) and ( c ). ( c ) Subcellular distribution of L5st synapses from 
the PW and Su8W on the individual L5tt neuron from ( a ). ( d ) Active VPM synapses after passive 
touch. Scale bar applies to ( d )–( g ). ( e ) Spread of depolarization along the neuron 12 and 17 ms 
after passive touch ( f ) L5st synapses with increased activity during whisking. ( g ) Spread of depo-
larization along the neuron 125 and 175 ms after beginning of the whisking cycle       
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8.2.3     Mapping of Cell Type-Specifi c Subcellular Synapse 
Distributions in Rat Vibrissal Cortex 

 The network assembly process yields an average model of rat vibrissal cortex which 
contains approximately 500,000 neurons of ten different cell types. Each of these 
neurons is represented as a 3D spine density distribution with 50 μm voxel resolu-
tion. Specifi cally, each voxel contains the number of spines a respective neuron 
contributes to the total number of spines within the voxel. Based on this network 
model we can estimate the number and subcellular distribution of synapses using 
structural overlap of spine and bouton distributions. 

 This way of estimating synaptic innervation is commonly referred to as Peter’s 
rule (White  1979 ). While it has been shown that structural overlap between axons 
and dendrites is not suffi cient to predict connectivity at the (sub)micron level 
(Mishchenko et al.  2010 ), estimates at lower resolution (e.g., 50 μm) yielded rea-
sonable fi rst-order approximations (Binzegger et al.  2004 ; Meyer et al.  2010a ). 
Furthermore, in case of the present network assembly process we argue that con-
nectivity mapping at resolutions lower than 50 μm, for example by detecting inter-
secting dendrites and axons, as suggested previously (Kozloski et al.  2008 ), is not 
appropriate for such average cortex models. The variability of cortex geometry lim-
its registering of anatomical data to a precision of 50 μm, which can thus be regarded 
as the lowest possible resolution to predict synaptic innervation by structural over-
lap in the vibrissal cortex. 

 Consequently, during the present connectivity mapping approach we determine 
the number of spines each cell contributes to the total number of spines within 
50 μm × 50 μm × 50 μm voxels. To estimate the number of synapses each neuron 
receives from any presynaptic cell type and in each voxel of its spine distribution, 
the number of boutons within each voxel is divided by the total number of spines 
and multiplied with the number of spines from the respective neuron in the same 
voxel. For example, the total number of spines within a voxel may be 1,000 origi-
nating from various neurons of multiple cell types overlapping in this voxel. The 
total number of boutons from a single presynaptic axon distribution may be 100 in 
the same voxel. One neuron may contribute ten spines to the total number of spines 
(i.e., 1 %). Thus, one bouton from this presynaptic cell type is assigned to this cell 
and to this voxel. Within a voxel, potential synapse locations are randomly assigned 
(i.e., for the described example, one synapse is placed randomly on a piece of den-
drite within the respective voxel). See (Lang et al.  2011 ) for a detailed description 
of the synapse mapping calculations. 

 This connectivity mapping approach is illustrated on the example of one L5tt neu-
ron and its innervation by the VPM (Fig.  8.3b ) and by L5st neurons (Fig.  8.3c ). The 
L5tt neuron has been functionally characterized in vivo (Table  8.1 ). The dendrite and 
axon projection patterns have been completely reconstructed, and it has been regis-
tered to the standard model of the vibrissal cortex. This allows estimating the cell 
type-specifi c number (20,658 synapses in total) and subcellular distribution of syn-
apses this particular L5tt neuron may receive (Table  8.1 ). Specifi cally, the synapse 
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      Table 8.1    Structural and functional characterization of the L5tt neuron used for simulations (Fig.  8.3 )   

 Anatomical parameters  Functional parameters 

 Dendrite length  18,747 μm  Spontaneous spiking 
(anesthetized) 

 2.59 Hz 

 Axon length  26,920 μm  Spiking 0–50 ms after 
passive touch 
(anesthetized) 

 0.99 Hz 

 Soma location: 
cortical depth 

 1,285 μm   Parameters used in 
simulation  

 Soma location: 
distance to vertical 
column axis 

 147 μm   R  m / E  pas   12,000 Ωcm 2 /−70 mV 

 Nr. of synapses  20,658   C  m   0.75 μF/cm 2  
 Nr. of VPM PW 

synapses 
  R  a   150 Ωcm 

  Proximal  168  Synapses 
  Distal  77  Peak conductance  0.6 nS 
 Nr. of L5st PW 

synapses 
 Transmitter binding  1.885/ms 

  Proximal  435   Transmitter unbinding  0.89/ms 
  Distal  878   VPM PW activity 
 Nr. of VPM Su8W 

synapses 
  Nr. of neurons  311 

  Proximal  194   Active fraction  0.65 
  Distal  21   Convergence  0.43 
 Nr. of L5st Su8W 

synapses 
  Nr. of spikes  1 

  Proximal  884   Avg. spike time  10 ms 
  Distal  1,171   Spike time dispersion  1.7 ms 
 Distance of VPM PW 

synapses 
 VPM Su8W activity 

  Proximal  151 ± 88 μm   Nr. of neurons  2,560 
  Distal  821 ± 182 μm   Active fraction  0.058 
 Distance of L5st PW 

synapses 
  Convergence  0.43 

  Proximal  205 ± 94 μm   Nr. of spikes  1 
  Distal  1,208 ± 146 μm   Avg. spike time  15 ms 
 Distance of VPM 

Su8W synapses 
  Spike time dispersion  1.0 ms 

  Proximal  180 ± 92 μm  L5st PW/Su8W activity 
  Distal  778 ± 148 μm  Nr. of neurons  8,381 
 Distance of L5st 

Su8W synapses 
 Active fraction  0.35 

  Proximal  209 ± 86 μm   Convergence  0.5 
  Distal  1,199 ± 167 μm   Nr. of spikes  1 

  Avg. spike time  150 ms 
  Spike time dispersion  50 ms 
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mapping approach by structural overlap yielded that this particular cell at this particu-
lar location (at the lateral border of its PW barrel column) may receive a total of 460 
synapses from the VPM, i.e., roughly 2 % of its synapses thus originate in the thala-
mus. Interestingly, only 245 of the VPM synapses originate from the respective D2 
barreloid. Nearly the same amount of synapses (215) originates from the eight sur-
rounding barreloids (i.e., C1–3, D1, D3, E1–E3). This estimate of the structural thala-
mocortical connectivity may in part explain why L5tt neurons usually respond well 
to defl ections of the PW and Su8W, while responses of VPM neurons are largely 
confi ned to a single whisker (Fig.  8.2 ).

   Figure  8.3b  shows one possible confi guration how the VPM synapses may be 
distributed along the dendrites of the L5tt neuron. This allows quantifying the sub-
cellular distribution in terms of path length distance to the soma (Table  8.1 ). Both 
the distribution of PW and Su8W synapses display a bimodal innervation pattern, in 
agreement with measurements of functional synapses in vitro (Petreanu et al.  2009 ). 
Approximately 79 % of the VPM synapses are located along the basal and apical 
oblique dendrites and are thus referred to as proximal contacts. The remaining 21 % 
are mainly located along the apical trunk in L4, with a few synapses located on the 
apical tuft. 

 The innervation pattern of L5st synapses is very different (Fig.  8.3c ). First, the 
total number of L5st synapses that this particular L5tt cell may receive is 3,368 (i.e., 
~16 % of all synapses). The majority (2,055) originates from neurons located in the 
eight surrounding barrel columns. Second, in contrast to VPM synapses, most L5st 
synapses, around 60 %, are located within the apical tuft dendrite, almost none are 
located along the apical trunk, and the remaining 40 % are proximal contacts, 
located along the basal and apical oblique dendrites. Third, interestingly the subcel-
lular distribution, as quantifi ed by the path length distance to the soma, for PW and 
Su8W L5st synapses differs. While the absolute numbers of distal PW and Su8W 
synapses from L5st neurons are similar (i.e., 878 vs. 1,171), the numbers of proxi-
mal synapses located along the basal and apical oblique dendrites deviate strongly, 
by more than a factor of two (i.e., 435 vs. 884) (Table  8.1 ). 

 In summary, the present approach of recording from single neurons in vivo, com-
bined with reconstructing the complete 3D dendrite/axon morphologies with respect 
to standardized anatomical landmarks, allows embedding neurons into an average 
anatomically realistic model of the vibrissal cortex. Consequently, each recorded 
neuron is described not only by its functional properties in response to various sen-
sory stimuli but also by a detailed set of anatomical parameters, such as (1) 3D 
location, (2) dendrite morphology, (3) axon projection pattern, (4) morphological 
cell type, (5) numbers, and (6) subcellular distribution of cell type- and location- 
specifi c innervating synapses. Thus, our approach allows interpreting functional 
recordings within the context of the underlying neural network structure, which will 
decrease the ambiguity of functional measurements and allow for in silico experi-
ments that investigate potential mechanistic principles of sensory information pro-
cessing and ultimately of behavior.  
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8.2.4     Simulation of Sensory-Evoked Signal Flow 
in Rat Vibrissal Cortex 

 The present approach yields the necessary information to perform in silico experiments 
at single-neuron and network levels within the context of the anatomically realistic 
structure of the underlying circuits. For example at the network level, we previously 
performed Monte Carlo (MC) simulations to investigate the activation of an ensem-
ble of L4 spiny stellate (L4ss) neurons by thalamocortical VPM input after passive 
whisker defl ection (Lang et al.  2011 ). Because the synaptic connectivity within our 
network models is given as a connection probability with 50 μm resolution and 
synapses are placed randomly on dendrites within each voxel, we investigated the 
infl uence of the exact synapse locations (i.e., anatomical connectivity) on the net-
work response. 

 Further, the convergence between the thalamus and the cortex is smaller than 1, 
for example 0.43 between the VPM and L4ss neurons (Bruno and Sakmann  2006 ). 
Thus we investigated the infl uence of the exact locations of active synapses (i.e., 
functional connectivity) on the network response. Finally, the input from the VPM 
is distributed in time (Brecht and Sakmann  2002 ), i.e., 65 % of the VPM neurons 
elicit one action potential (AP) 10.0 ± 1.7 ms after defl ection of the related PW. Thus 
we investigated the infl uence of input synchrony on the network response. 

 Performing a sensitivity analysis by using MC simulations, we found that the 
network response is largely determined by the functional connectivity pattern and 
the synchrony of the VPM input, as was suggested by previous functional measure-
ments in vivo (Bruno and Sakmann  2006 ). Changes in anatomical connectivity had 
almost no infl uence on the network response. Furthermore, we found that the spik-
ing probability of L4ss neurons in all MC simulation trails decreased from the BC 
towards the barrel column borders. Such a location-specifi c spiking activity has 
indeed been observed in L2/3 neurons, one of the major target populations of L4ss 
neurons (Feldmeyer et al.  2002 ), using two-photon calcium imaging during passive 
whisker defl ection experiments (Kerr et al.  2007 ). 

 Apart from investigating mechanistic principles of sensory-evoked information 
processing at the network level, our approach further allows performing single- 
neuron simulations within the context of the entire network. This may help elucidat-
ing mechanistic principles at the single-neuron level by comparing the simulation 
results directly with the respective functional recordings of sensory-evoked activity 
in the very same neuron. In the following we illustrate one possible in silico experi-
ment that may help to determine a cellular mechanism for object localization during 
active whisking. 

 Based on the results that L5tt neurons are reliably activated by passive touch, 
while L5st neurons carry phase information on whisker location during periods of 
active whisker movement, we suggested the following hypothesis (Oberlaender 
et al.  2011 ): after passive touch, L5tt neurons receive input from the VPM primarily 
within their basal and apical oblique dendrites, resulting in single AP activity. 
During active whisker movement, phase information about whisker location is 
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relayed by L5st neurons to large portions of L2/3. L5tt neurons display abundant 
apical tuft dendrites in L2/3. Thus, innervation of L5tt apical tuft dendrites by L5st 
neurons may result in phase locking of the apical tuft dendrite. When locating an 
object during active whisking periods (active touch), proximal input from the VPM 
may coincide with phase input at the apical tuft dendrites, resulting in an amplifi ca-
tion of the inputs and thus burst spiking output from L5tt neurons (Schaefer et al. 
 2003 ). The transition from single AP to bursting output may render one potential 
mechanism to encode for object locations. Because such a mechanism is crucially 
infl uenced by the neuron’s location, dendrite morphology, and input distribution, 
simulations of this scenario require a quantitative and anatomically realistic map-
ping of potential structural and functional inputs. 

 Figure  8.3d–g  illustrates our fi rst simulation experiments using a full- 
compartmental model of the in vivo-characterized and completely reconstructed 
neuron shown in Figs.  8.1  and  8.3a–c , embedded within the anatomically realistic 
model of the vibrissal    cortex. As a starting point, no active conductance distribu-
tions were included. Membrane resistance was set to 12,000 Ωcm 2  with reversal 
potential −70 mV, membrane capacitance to 0.75 μF/cm 2 , and axial resistance to 
150 Ωcm. The surface area increase due to spines was accounted for by scaling the 
membrane capacitance and membrane conductance with a factor of 1.6 (Holmes 
and Rall  1992 ). Synapses were modeled as a two-state AMPA conductance with 
time constants 1.885/ms (transmitter binding rate) and 0.89/ms (transmitter unbind-
ing rate) and a peak conductance value of 0.6 nS (   Destexhe et al.  1994 ). The param-
eters of each synapse were tuned to elicit somatic EPSPs that match in shape and 
amplitude with previously reported measurements in vivo (Bruno and Sakmann 
 2006 ). Using this simplifi ed model, we investigated the potential spread of depolar-
ization caused by VPM input after passive whisker touch and during L5st input 
during periods of active whisking. 

 During passive touch simulations, the input was derived from Brecht and 
Sakmann ( 2002 ) and Bruno and Sakmann ( 2006 ) and was as follows: (1) 65 % of 
the VPM synapses originating from the related PW barreloid elicit one spike, 
10.0 ± 1.7 ms after the stimulus; (2) 5.8 % of the VPM synapses originating from the 
Su8W barreloids elicit one spike, 15.0 ± 1.0 ms after the stimulus; (3) the functional 
convergence for both PW and Su8W VPM synapses was assumed to be 0.43. 
Consequently, in case of the present L5tt neuron, between approximately 8 and 
16 ms after the stimulus, 145 of 245 PW and 8 of 215 Su8W synapses were active 
(Fig.  8.3d ). Figure  8.3e  shows the resulting depolarization 12 ms (left panel) and 
17 ms (right panel) after the stimulus. Without active conductances, the depolariza-
tion by VPM input after passive touch remains largely restricted to the basal and 
apical oblique dendrites and does not spread into the apical tuft. 

 During active whisking simulations, the input was derived from de Kock and 
Sakmann ( 2009 ) and Oberlaender et al. ( 2011 ) and was as follows: 35 % of the L5st 
neurons increased spiking activity during whisking, resulting in spike rates of typi-
cally 5Hz. One whisking cycle (back and forth movement) comprises about 200 ms, 
resulting in approximately one spike per cycle. Each L5st neuron responds to a 
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different whisker location, i.e., represents a different whisking phase. Simulating 
one whisking cycle, we thus activated 35 % of the PW (444 of 1,313) and Su8W 
(736 of 2,055) L5st synapses and distributed their activation across the cycle 
(Fig.  8.3f ). Phase preference of L5st neurons to whisker protraction was simulated 
by drawing spike times from a normal distribution with its mean at 150 ms and a 
standard deviation of 50 ms (modulo 200 ms, the duration of one whisking cycle). 
Figure  8.3g  shows the resulting depolarization 125 ms (left panel) and 175 ms (right 
panel) after the onset of the whisker movement. In contrast to the VPM activation 
after passive touch and in the absence of active conductances, the depolarization by 
L5st input remains largely confi ned to the apical tuft dendrite, leaving the proximal 
dendrites (i.e., basal and apical oblique) largely at rest. Thus, even though the total 
number of active L5st synapses is about eight times higher than the number of active 
VPM synapses, the largely asynchronous L5st input is most likely insuffi cient to 
elicit additional spiking of this L5tt neuron, which is in agreement with previous 
functional measurements of L5tt neurons during active whisking (de Kock and 
Sakmann  2009 ). 

 In summary, these simulation experiments demonstrate that a typical L5tt neuron 
may have two structurally and functionally distinct domains, the proximal and 
 apical tuft dendrites, respectively. The two compartments receive very different 
 synaptic input and may thus process and encode different aspects of whisker-evoked 
sensory stimuli. Depending on the spatial and temporal superposition of the two 
inputs, the output of an L5tt neuron may change, encoding information of the 
 environment, such as the location of an object.   

8.3     Conclusion 

 In this chapter we reviewed a novel approach to elucidate mechanistic principles 
underlying sensory perception and behavior by simulating whisker-evoked activity 
within an anatomically realistic model of rat vibrissal cortex. Combining complete 
3D reconstructions of functionally characterized neurons in vivo with (1) a standard 
model of the vibrissal cortex that allows integrating anatomical data obtained from 
many animals into a common reference frame with 50 μm precision; (2) a realistic 
number and 3D distribution of excitatory neuron somata, obtained from counting all 
neurons in three vibrissal cortices; (3) objective clustering to identify morphologi-
cal cell types; and (4) synapse mapping by structural overlap between neuron- and 
cell type-specifi c spine and bouton distributions, our approach allows for a detailed 
functional and anatomical characterization of individual neurons. Specifi cally, for 
each neuron we obtain spontaneous and whisker-evoked activity patterns, the 3D 
location within the vibrissal cortex, dendrite morphology, axonal projections, mor-
phological cell type, and subcellular synaptic innervation patterns. This rich set of 
parameters does not only allow correlating structural and functional data but gives 
rise to simulations at the single-neuron and network levels. Furthermore, the present 
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example of one specifi c L5tt neurons that is activated by input from VPM neurons 
after passive whisker touch and by input from L5st neurons during active whisking 
illustrates that functional measurements need to be interpreted within the context of 
the underlying network structure. Depending on the behavioral state, sensory stimu-
lus, and timing between individual stimuli, a L5tt neuron will receive very different 
synaptic input patterns. In conclusion, the 3D location and morphology of a neuron, 
as well as the specifi cs of sensory stimuli, dramatically infl uence a neuron’s synap-
tic input pattern and thus its computations and output. The present approach is one 
way to investigate this interplay between structural and functional properties and 
may ultimately result in network models that allow monitoring sensory- evoked 
streams of excitation from the periphery throughout the brain.     
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    Abstract     Dendrites are the cellular protrusions of neurons receiving the majority 
of synaptic inputs. We investigated the structure–function relationship of the den-
drites of model neurons optimized for input order detection of stochastic inputs. For 
this purpose, we used an inverse method based on a genetic algorithm. In this 
method, via iterative test and selection steps, the genetic algorithm fi nds a dendritic 
structure as good as possible for a user-selected neural computation. In a previous 
study, we generated model neurons optimized for reacting strongly to two groups of 
synaptic inputs occurring in one but not the reverse temporal order. In the current 
study, we added both temporal noise (synapse activation times) and spatial noise 
(synapse placement) to this computational task. We observed that the model neu-
rons which were exposed to a more noisy input generally had smaller dendritic 
trees. We explain this fi nding by the fact that for input–order detection, sampling 
from more varied responses is advantageous and that positive outliers in a popula-
tion are selected for. We conclude with a general discussion of signal integration in 
neurons, dendrites, and noise.  
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9.1         Introduction 

 Most neurons in the brains of animals possess dendrites, elongated and branched 
protrusions which are receiving synaptic contacts from other neurons. The shapes of 
these dendrites are highly varied between different animals, different brain areas, 
and different neuronal types in one brain area. The branching patterns of these den-
drites vary between highly elaborate trees many 100 μm long with several separate 
regions to short, simple extensions with no more than one degree of branching. Both 
the amount and the exact pattern of dendritic branches vary widely, with some neu-
rons’ dendrites entirely confi ned to a 2-dimensional plane while others sample a 
volume of brain tissue and with signifi cantly different degree of sampling of the 
area the dendrites pass through (Segev and London  2000 ; Stuart et al.  2007 ). 

 Besides these morphological differences, dendrites are also equipped with vastly 
different sets of ionic conductances. Ion channels conducting Na + , K + , Ca 2+ , and K +  
ions are distributed spatially heterogeneously over the dendrites of neurons (Migliore 
and Shepherd  2002 ). The exact sets of conductances, their densities, and spatial 
distribution further add to the diversity of dendrites. The different conductance dis-
tributions can make dendritic trees essentially passive or dampened or excitable and 
allow no, weak, or completely regenerative action potential back-propagation into 
the dendrites (Stuart et al.  1997 ). The difference between different neurons’ den-
drites is well demonstrated when looking at mammalian cortical layer V pyramidal 
neurons and cerebellar Purkinje neurons, two of the most thoroughly studied neuro-
nal cell types. To illustrate how dendrites are diverse on several levels of biological 
organization (ion channels, excitability, morphology, synaptic connections), we use 
the occasion of this book chapter to briefl y review the dendrites of these two neuron 
types. With this, we hope to illustrate to the reader the complexities found in the 
dendrites of neurons. 

 In layer V pyramidal neurons, the dendrites are divided into several subgroups. 
Close to the soma, in layer V of the cortex, are the basal dendrites. Typically between 
two and fi ve thin (<2 μm) basal dendrites grow horizontally from the soma, remain-
ing in layer V, and branch several times. Also growing from the soma is the main 
apical trunk that grows vertically towards the pia. In the region immediately above 
the soma, the oblique dendrites branch off from the apical dendrite. From there, the 
apical dendrite projects further upwards to cortical layer I, where it branches out 
into the apical tuft. The dendrites of a cortical layer V pyramidal neuron are covered 
in spines, tiny (several microns long) protrusions, which are the target of excitatory 
synapses from a variety of cortical and subcortical sources. Inhibitory synapses tar-
get both spines and dendritic stems. There are several types of spines, and their 
density is about 0.2/μm. Cortical layer V pyramidal neurons fi re fast Na +  action 
potentials, which are initiated in the somato-proximal parts of the axon and back-
propagate into the axon and dendrites. Due to a moderate density of Na +  conduc-
tance in the dendrites, the action potentials are not completely regenerated during 
this back-propagation. They lose amplitude and widen by the time they reach the 
distal parts of the dendrites (Hay et al.  2013 ). Layer V pyramidal dendrites also 
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show very interesting Ca 2+  electrogenesis. In the basal dendrites, NMDA-type 
 glutamate receptors can cause Ca 2+  spikes (Major et al.  2008 ). In the distal den-
drites, voltage-gated Ca 2+  conductances can cause such Ca 2+  spikes (Schiller et al. 
 2000 ). Back-propagating action potentials can evoke Ca 2+  spikes in the distal apical 
dendrites when they coincide with synaptic depolarizations at these locations. These 
Ca 2+  spikes can then propagate to the soma and axon, where they evoke more action 
potentials in a ping-pong-like manner of interaction between the distal dendrites 
and the soma/axon (Larkum et al.  1999 ). A diverse set of K +  and mixed cation con-
ductances, several of them increasing in density with path distance from the soma 
(Stuart et al.  1997 ), hold this dendritic excitability in check and alter the integration 
of synaptic inputs. 

 The dendrites of cerebellar Purkinje neurons are organized in one large, 
2- dimensional fan. Emerging from the soma is a thick primary dendrite which then 
branches out evenly into a large array of higher order dendrites densely covering the 
plane of the Purkinje neuron. The dendrites of Purkinje neurons are densely covered 
by spines (>3/μm). The spines are the target of excitatory synapses from the parallel 
fi bers, one of the two main groups of inputs to Purkinje neurons. The other main 
inputs are the climbing fi bers. These inputs synapse on the main dendrite and via 
multiple synaptic connections cause a massive Ca 2+  spike-mediated depolarization 
of the whole Purkinje neuron, a complex spike. In such a complex spike, several Na +  
action potentials ride on a Ca 2+  spike envelope. In contrast, the simple spikes fi red 
by Purkinje neurons are single Na +  action potentials. They do not back-propagate 
into the dendritic trees due to the low Na +  conductance density of the Purkinje neu-
ron dendrites and the large current sink the multiple dendritic branches constitute. 
Besides Na +  and Ca 2+  conductances, the dendrites of Purkinje neurons contain a 
diverse set of K +  and mixed cation conductances which regulate spiking and excit-
ability (Martina et al.  2003 ). 

 The function of the dendrites of central neurons is not completely clear. While a 
general understanding of the function of most brain regions exists, the exact nature of 
the input–output transformations of individual neurons in vivo is not known with 
certainty. Hence, we know that primary visual cortical neurons fi re in response to the 
presence of a properly oriented stimulus in their receptive fi eld (DeAngelis et al. 
 1993 ; Henry et al.  1974 ). But we do not know how exactly the individual neurons 
integrate all their synaptic inputs to arrive at this specifi c response. This issue is 
aggravated by the fact that in an area like the cortex the synaptic input to any neuron 
is many synapses removed from any sensory input or motor output. Furthermore, 
activity reaching cortical pyramidal neurons has often traveled trough recursive corti-
cal connections: the representational meaning of input spike trains is simply not clear. 
Due to the lack of understanding of the coding function (what aspect of the external 
world does neuronal/dendritic activity code for?), discussion has often centered on 
the underlying computational function (what is the signal transformation performed 
by dendrites). One proposal is that dendrites are merely collecting synaptic inputs in 
the regions they are traversing. According to this view, it is the function of different 
branching patterns to sample inputs from different regions (Cuntz et al.  2008 ; Cuntz 
 2012 ). Another proposal is that dendrites are involved in purposely modifying the 
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incoming synaptic signals. Dendrites have been shown to boost synaptic inputs, 
 normalize its waveform, and locally integrate a subset of inputs before passing the 
result on to the soma (Berger et al.  2003 ; Polsky et al.  2004 ). Both the passive electro-
tonic properties of dendritic trees as well as their ionic conductances contribute to the 
modifi cation of synaptic potentials. While we agree that dendrites serve both input 
sampling and input modifi cation, the current study is only  concerned with the latter. 

 So what are the signals dendrites have to process in the functioning brain? One 
class of signals are obviously specifi c sensory information, retrieved memory con-
tents, and motor programs. But, noise and background fl uctuations are also ubiqui-
tously present in the brain. Ion channel noise, spontaneous synaptic release, and 
background network activity are some examples. Some neurobiological processes 
which generate membrane potential fl uctuations most likely do not represent rele-
vant information, such as the stochastic opening and closing of ion channels caused 
by thermal protein structure fl uctuations (ion channel fl icker, Hille  2001 ). However, 
even though the ion channel fl icker is not thought to represent information about the 
external environment, this stochastic process is still important in setting the opera-
tion regimes for neurons (Schneidman et al.  1998 ; Cannon et al.  1998 ). 

 Other forms of background activity, such as the synaptic background activity 
prevalent in several brain regions, do likely carry information (Destexhe and Paré 
 1999 —but see    Waters and Helmchen  2006  for a differing view). Since this informa-
tion is probably contextual and not directly correlated to a stimulus presented by an 
experimenter, the exact nature of this information is diffi cult to elucidate, and the 
distinction between noise and contextual fl uctuations is diffi cult to make. 
Furthermore, the statistical properties of these background fl uctuations (amplitude, 
power spectrum) could be of relevance, while the precise instance of the signal 
could be irrelevant. In any case, neurons are not existing in a quiescent resting state 
but are exposed to ongoing noise and background fl uctuations (used interchange-
ably here) from diverse sources. Background activity in the cortex is signifi cant and 
state dependent. During wakefulness, rapid-eye-movement sleep, and ketamine 
anesthesia, cortical neurons experience a high-conductance state. A constant bar-
rage of partially synchronized excitatory and inhibitory synaptic potentials causes 
signifi cant (standard deviation > 2 mV) membrane potential fl uctuations which can 
be approximated as self-correlated noise (Destexhe et al.  2001 ). Background activ-
ity in the cerebellum is equally important, with constant (>1 Hz) synaptic input 
from 10 6  parallel fi bers depolarizing the Purkinje neurons (Rapp et al.  1992 ). 
Mechanistically, this background activity depends more on the single cells than on 
networks of neurons. This is the case since Purkinje neurons fi re tonically in the 
absence of synaptic input. 

 Naturally, signal processing and transmission work best in low-noise environ-
ments. The nervous system is no such low-noise environment, and the background 
noise could interfere with nervous system function. Hence, likely processes evolved 
which compensate for the noise or even take advantage of it. But little is known how 
dendrites cope with the brain’s background activity. A number of studies by 
Destexhe and colleagues (Hô and Destexhe  2000 ; Destexhe and Paré  1999 ;    Destexhe 
et al.  2002 ) have shown how the cortical synaptic background activity infl uences the 
membrane properties of cortical pyramidal neurons. They found that neurons 
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became depolarized and had shortened passive integration time constants and action 
potential back-propagation was enhanced (Hô and Destexhe  2000 ). The effect of 
cerebellar background activity is equally believed to be a depolarization of neurons 
and a shortening of passive time constants (Jaeger and Bower  1994 ; Rapp et al. 
 1992 ). While these results are intriguing, general principles of how dendrites cope 
with noisy inputs are not understood. 

 We have recently developed an inverse method for relating dendritic function to 
structure (Stiefel and Sejnowski  2007 ; Torben-Nielsen and Stiefel  2009 ,  2010a ,  b ). 
This method is based on applying a genetic algorithm to morphologies generated by 
a morphogenetic algorithm (Fig.  9.1 ). The genetic algorithm tests for a user-selected 
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  Fig. 9.1    Inverse approach and the simulation protocol. ( a ) Schematic of the inverse approach. 
A pool of parametrized model specifi cations is translated to a model neuron. Then, the perfor-
mance of each model at the task at hand is assessed. Based on this performance, a genetic algo-
rithm selects and slightly mutates the model specifi cation. The algorithm iteratively increases the 
performance of the model neurons at the predefi ned computation. ( b ) Simulation protocol used to 
assess the model’s performance.  Left : Initial setup defi ning the soma position and the locations 
where synapses can be added. In the noiseless case, synapses are inserted when a dendrite is inside 
the “target location” ( green dots ). In case of spatial noise, a stochastic distribution defi nes whether 
a synapse is actually added ( green dots ) or not ( gray dot ). In case of temporal noise, a uniform 
distribution jitters the exact activation time of each synapse. ( Panel a  reproduced from Torben-
Nielsen and Stiefel ( 2010a ,  b ))       
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function and selects the top-performing morphologies for inclusion in the next 
 generation. Genetic operations are performed on the parameter strings encoding the 
neural morphologies.

   In this study, we apply this method to study the morphologies of dendrites opti-
mized for increasingly stochastic inputs. This should give us a series of artifi cial 
model neurons which allow us to investigate the integration of noisy inputs.  

9.2     Methods 

 For the details of our optimization method we refer to Torben-Nielsen and Stiefel 
( 2009 ,     2010a ,  b ). The computational tasks we optimized for in this study were a 
stochastic variation of the input-order detection task investigated in Torben-Nielsen 
and Stiefel ( 2009 ). The original, deterministic task is designed so that neurons 
receive two distinct groups of inputs at different predefi ned locations in space and 
that these synapses are activated at a predefi ned time with a delay (Δ t ) between the 
two groups. The goal we defi ne for the neuron is to respond as strongly as possible 
to one temporal order of activation of the two groups and as weak as possible to the 
inverse temporal order. 

 This differential response (= performance,  P ) is defi ned as the ratio between the 
amplitudes of the compound EPSP, in the non-preferred direction, divided by the 
response in the preferred direction:

  

p =
A
A

null

pref

,

   

with  A  being the EPSP amplitude at the soma. 
 The soma is located at the center, and two synaptic target zones are defi ned in 

opposing directions at 200 μm away from the soma. The synaptic zones are spheri-
cal and have a radius of 50 μm. 

 In this work we introduce both spatial and temporal noise (but never both simul-
taneously) as sketched in Fig.  9.1b . In the deterministic task, the model neuron 
receives one synapse per 5 μm of dendrite that grows through the synaptic zones. In 
the spatial noise case, the synapses are added with some level of stochasticity: not 
every 5 μm a synapse is necessarily inserted. Higher spatial noise levels mean that 
less and less synapses get inserted into the model neuron. Thus, the actual location 
is not modifi ed, but the probability ( P ) that a synapse will be inserted at that location 
is. Because we want to exclude neurons that are “optimized” for one noise level, we 
assess the performance of each model neuron at fi ve noise levels: once for fi ve noise 
levels between 0 and 25 % of noise and once with fi ve noise levels between 0 and 
50 % noise. In the deterministic case, all synapses belonging to a group are activated 
at either time t or at  t  + Δ t  (Δ t  = 30 ms, because 30 ms proved to illicit strongest 
responses in passive model neurons (Torben-Nielsen and Stiefel  2009 ). Temporal 
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noise assigns to each synapse a uniformly distributed activation time on [ T  −  ε ,  T  +  ε ] 
where  T  stands for the appropriate time (either  T  =  t  or  T  =  t  + Δ t ) and  ε  is the magni-
tude of the temporal jitter, which is here set to 5 ms (Fig.  9.1b ). All optimization 
parameters and electrical defaults are described in Tables 1 and 2 from Torben- 
Nielsen and Stiefel ( 2009 ). 

 In contrast to the original study, where the optimization goal was a linear combi-
nation of multiple objectives, we used a multi-objective optimization algorithm. 
The two objectives are (1) the performance in the task as outlined above and (2) 
minimization of the total length. The latter objective is inspired by the parsimony 
principle generally found in nature. In multi-objective optimization, selection of 
good performing solutions is based on the ranking “performs equally,” “performs 
worse,” or “performs better.” More specifi cally, in theory, the algorithm fi nds a set 
of solutions which “perform equally”; this set is called the Pareto front. All indi-
viduals on the Pareto front are equally good solutions, which means that increasing 
the performance on one of the objectives will result in a decrease in the other objec-
tives. Thus, while there can be a large variation in the solutions, they are said to be 
not worse than one another as the objectives are often confl icting. In the simulations 
performed here, we used an initial population size of 250 individuals and ran the 
optimization for 5,000 generations. To avoid overfi tting a particular instance gener-
ated by one random seed, we tested each model with fi ve random seeds and used the 
average outcome to measure the performance. We have no way of knowing if the 
genetic algorithm converged to an optimum and how close the optimization prod-
ucts are to a true optimum. Nevertheless, we argue that they are reasonably close 
because (1) in previous work the solution found by the genetic algorithm was essen-
tially at the analytically computed optimum (Torben-Nielsen and Stiefel  2009 ) and 
(2) when distinct runs (starting at different locations in the fi tness landscape due to 
different starting random seeds) converge to a similar output, we can interpret that 
phenomenon as the algorithm having found a global optimum.  

9.3     Results 

 The optimization runs yielded model neurons that performed well as input-order 
detectors. By adopting a multi-objective optimization strategy, a set of model neu-
rons is obtained after the optimization. These models are performing “not worse” 
than one another and reside on the Pareto front: the location that represents their 
performance on both optimization objectives. Smaller values are better. A relevant 
part of the set of solutions (input-order detection ratio  P  < 0.8 and total 
length < 2,100 μm) is shown in Fig.  9.2  (left). Clearly, a trade-off can be seen 
between both objectives. We consider better models to be aligned with the dotted 
arrow as these models score well on both objectives (rather than standing out in one 
of the objectives while neglecting the other objective). For fairness model compari-
son, we compared the different noise-affected models when they perform input-
order detection at  P  = 0.7. One important observation is that the noiseless models 
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perform worse than the models in which spatial or temporal noise is introduced 
(Fig.  9.2a , black triangles). Additionally, the models subjected to higher noise levels 
(50 % spatial noise or uniform jitter of 5 ms) perform best. The model neuron per-
forming input-order detection nearest to  P  = 0.7 is plotted in Fig.  9.2b . In case of the 
spatial noise, we plotted the synapses at the highest noise levels (either 25 or 50 %). 
A second important observation is that at the same performance of input-order 
detection (say at  P  = 0.7), the model neurons subject to noise are smaller compared 
to the noiseless model neurons. Consequently, the model neurons subject to higher 
noise levels also contain less synapses.

   In order to further elucidate how smaller dendritic trees would be benefi cial for 
performing input-order detection on noisy inputs, we used a simplifi ed ball-and- 
stick model neuron. This model neuron is composed of only a soma and two 
unbranched dendrites, bearing groups of four or less synapses each; electrical prop-
erties were the same as in the morphologically elaborate models. 

 We tested how the ball-and-stick model integrated stochastic and deterministic 
synaptic inputs. For this, we tested these ball-and-stick models for input-order 
detection over a range of time intervals (Δ t ) in both temporal orders between the two 
groups of synapses. We then calculated the ratio between the maximum compound 
EPSP amplitudes in the preferred and non-preferred direction as a function of Δ t  
(Fig.  9.3 ). In the deterministic case, the inputs arrived exactly Δ t  apart, whereas in 
the stochastic case (as in the optimization runs), they were jittered around that time.
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  Fig. 9.2    Optimization results. ( a ) Relevant portion of the optimized models displayed in terms of 
their performance on both objectives. The  dotted arrow  indicates the axis along which we consider 
models “better” as they perform well on both objectives simultaneously. The noiseless models 
perform worse than model subjected to noise. Models achieving the same performance in input- 
order detection ( y -axis) are smaller when subjected to noise during optimization. Higher noise 
levels (50 % spatial noise or 5 ms jitter) result in smaller neurons with less synapses. ( b ) 
Representative model morphologies after optimization under different noise levels: spatial noise of 
25 % (S-25 %) or 50 % (S-50 %) and temporal noise with 2 (T-2 ms) and 5 (T-5 ms) ms jitter. The 
models are chosen to have similar input-order detection performance  P  = 0.7.  Red dots  indicate the 
synapses. In case of spatial noise, the synapses at the highest noise level are shown       
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   While we took measures in the optimization procedure against unrealistically 
small compound EPSPs (that lead to trivial solutions), we employed no such mea-
sures for EPSP size in the ball-and-stick model simulations. In these neurons, 
smaller EPSPs performed better due to a more linear addition of small voltage dele-
tions. The relevant comparison here, however, is between models with the same 
number of unitary synapses at different noise levels. 

 We found that on average, all models performed the same with and without tem-
poral input noise. Independently of the number of synapses, the input-order detec-
tion performance did not increase or decrease with increasing stochasticity. What 
did change, however, was the variance around the mean performance, which was 
higher (better), the fewer synapses a neuron contained. The maximum input-order 
detection performance increased with fewer synapses with respect to the case in 
which all synapses were activated simultaneously (Fig.  9.3 ). 

 Our interpretation of the prevalence of smaller neurons with fewer synapses in 
the optimizations hence is as follows:

    1.    The mean input-order detection performance of neurons (independently of the 
number of synapses) does not change with increased noise.   

   2.    In contrast, the variance of the input-order detection performance is higher in 
neurons with few synapses   , and positive outliers (very high performance) are 
more likely.   

   3.    When such cases of very high performance occur, the corresponding neurons are 
always rewarded by the genetic algorithm and selected for inclusion in the next 
generation.   

   4.    Over time, this enriches the population in neurons with fewer synapses.     

 The genetic algorithm acts on a population of neurons, in which it enriches high- 
performing neurons. This is also the case if the high performances are not consistent 
but just more likely, as in the case of neurons with fewer synapses. 
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  Fig. 9.3    Simulations of stochastic input-order detection by a ball-and-stick model. ( a ) Simulations 
with one synapse per dendrite. ( b ) Four synapses per dendrite. Input-order detection performance 
(ratio between the maximum EPSP amplitudes in the preferred and non-preferred directions, deter-
ministic simulations in  bold ). The  thick lines  represent the average, the  thin lines  the individual 
simulation runs. Please note that the higher performance for a smaller number of synapses, due to 
the smaller EPSPs, is corrected for in the optimizations, where larger EPSPs were part of the 
 optimization goal       

 

9 Optimized Dendritic Morphologies for Noisy Inputs



156

 The biological interpretation of this fi nding is that a  population  of neurons with 
fewer synapses per neuron can perform better than a population in which all input 
is relayed to all neurons. This originates from the fact that some neurons with less 
input will perform better than the average neuron that receives more but stochastic 
inputs. Such populations will be more likely to have at least one neuron reacting 
very strongly. In neurons with more synapses, the stochasticity will average out, 
and the response of the different neurons will be more similar to each other. A popu-
lation with such many-synapsed neurons will be more likely to miss positive outli-
ers. Therefore, we hypothesize that any network which aims to detect surprisingly 
large events in heterogeneous input streams should be composed of neurons with 
few synapses.  

9.4     Discussion 

 Our fi ndings show a surprising decrease in dendritic size when optimizing neural 
morphologies for optimal response to increasingly noisy inputs. A standard way to 
overcome the stochasticity to individual elements of a system is to use a large num-
ber of them. In this way, the fl uctuations of the individual elements will cancel out. 
However, this was not the solution found by the genetic algorithm we employed to 
fi nd optimized dendritic trees for input-order detection on stochastic inputs. 
Surprisingly, the genetic algorithm found smaller neurons receiving less synapses 
with increasing stochasticity of the input streams. 

 This fi nding suggested to us that for input-order detection it is  not  crucial to 
cancel out noise. In fact, variation between different instances of stimulus presenta-
tions might be benefi cial as is getting different opinions on one question. Simulations 
with a simplifi ed ball-and-stick model demonstrated this mechanism and supported 
this proposal. Neurons with fewer synapses will be more likely to pick up positive 
outliers when performing input-order detection. This is because that the selection 
algorithm picked neurons from a population which, by chance, picked up a positive 
outlier. This selection mechanism favored small neurons, which will also respond 
well to positive outliers in a population of neurons in a brain area or ganglion. 
However, the population of neurons in the genetic algorithm is not meant as a model 
for a population of neurons in such a brain area or ganglion. 

 The computational task we investigated here, stochastic input-order detection, is 
an interesting and time-critical task most likely performed by a number of neural 
systems (Stiefel et al.  2012 ). However, neurons will certainly perform a large num-
ber of other computational functions as well, some of which will not be enhanced 
by noise. Additionally, while we did study the infl uence of active conductance in the 
deterministic input-order detection task (Torben-Nielsen and Stiefel  2009 ), we have 
not investigated the role of active conductances in the stochastic version nor did we 
investigate spike initiation in the soma/axon, which could further infl uence neuronal 
morphologies. 
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 We speculate that in contrast, neurons which are mainly concerned with carrying 
out computational functions harmed or at least not benefi ted by noise will be large. 
The cortical layer V pyramidal and cerebellar Purkinje neurons described in the 
introduction are unlikely to execute such noise-benefi ted computational functions on 
a whole-cell level. Smaller neurons, such as cerebellar granule cells or cortical inhib-
itory interneurons, are more likely to execute computational functions aided by noise. 
Large neurons could still compute such functions on a smaller scale of neural organi-
zation, such as the level of individual spines (Branco et al.  2010 ; Stiefel et al.  2012 ). 

 This study also demonstrates the usefulness of our inverse method for mapping 
computational functions on dendritic morphologies. Human intuition often fails at 
complex issues, such as relating a neural morphology to its response to noise. In 
essence, our approach fi nds the approximate inverse solution to the stochastic 
nonlinear partial differential equation describing the multi-compartmental model of 
a neuron. This is no trivial task, and surprises about function–structure relationships 
are inevitable. We hope to employ this approach in the future to probe a variety of 
computational functions of neurons.     

  Acknowledgments   We thank Vandana Padala Reddy, Andre van Schaik, Jonathan Tapson, and 
Terry Sejnowski for comments on the manuscript and helpful discussion.  
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    Abstract     Dendrites receive the far majority of synaptic inputs to a neuron. 
The spatial distribution of inputs across the dendrites can be exploited by neurons to 
increase their computational repertoire. The role of dendrites in neural computation 
is the theme of the second part of this book to which this chapter forms the introduc-
tion. We review the various mechanisms that dendritic neurons can implement to 
introduce selectivity to spatiotemporal input patterns or to alter fi ring patterns, and 
briefl y introduce the theoretical methods that are used to study this.  

10.1         Introduction 

 The focus in the second part of this book is on the function of dendrites in the 
 context of neural computation. Specifi cally, what is the role of dendrite morphology 
and membrane properties in the processing of synaptic input and its transformation 
into neural output? 

 The exploration of the role of dendrites in neural input integration was  pioneered 
by Wilfrid Rall. This started in the 1950s with experimental work by Eccles and 
others that suggested surprisingly brief membrane time constants for certain cat 
spinal motoneurons. Those time constant estimates relied on the assumption that 
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motoneurons could be described as point neurons and, therefore, that voltage 
transients followed exponential time courses. Rall realized that the current fl ow 
from the soma into the dendrites should shape the time course and elegantly 
 demonstrated in a note to Science that the voltage response in a dendritic neuron 
follows a signifi cantly faster mathematical function (Rall  1957 ). This work was 
followed by several years of controversy about the role of dendrites in neural func-
tion, but Rall’s view on their relevance was eventually accepted. In the meantime 
Rall went on to develop the compartmental modeling method and the equivalent 
cylinder concept, and to analyze the response of dendritic neurons to different 
spatiotemporal synaptic input patterns, laying the foundation of the study of 
dendritic function (see Segev et al.  1995 ). 

 Many reviews have been written that summarize and interpret the fi ve decades of 
work on dendritic computation that started with Rall’s explorations (for example, 
Magee  2000 ; Segev and London  2000 ; Häusser and Mel  2003 ; Williams and Stuart 
 2003 ; Gulledge et al.  2005 ; London and Häusser  2005 ; Stuart et al.  2008 ; Johnston 
and Narayanan  2008 ; Larkum and Nevian  2008 ; Spruston  2008 ; Branco and Häusser 
 2010 ). In this chapter, we introduce the key concepts that all this work has yielded 
and show how the various chapters in this second part of the book fi t into the overall 
scheme.  

10.2     Dendritic Mechanisms that Compensate for Cable 
Filtering or that Exploit the Spatial Dimension 

 A key question that comes up when discussing the role of dendrites is whether they 
are a “bug or a feature” to the neuron (Häusser and Mel  2003 ). For particular types 
of neurons, a principal function of dendrites can be only the collection of input from 
presynaptic cells and the cell should essentially function as a point neuron, meaning 
that it should produce the same output in response to a specifi c temporal input pat-
tern, irrespective of how the inputs are distributed across the dendrites. In that case, 
the neuron has to deal with the problems introduced by the dendrites themselves 
(“the bug”), that is, compensate for signal attenuation and temporal distortion of 
synaptic inputs that result from passive dendritic fi ltering (Fig.  10.1a ).

   A dendritic neuron can employ various mechanisms to make it function similar 
to a point neuron. As a fi rst example, distal synaptic inputs to cortical pyramidal 
cells can be electrotonically so remote that passively spreading EPSPs would hardly 
affect the somatic voltage. The presence of regenerative currents (e.g., voltage- 
dependent sodium or calcium currents) throughout the dendrites can boost those 
distal inputs as they propagate towards the soma, such that they can have a stronger 
effect on somatic output, potentially resulting in an equal “vote” for all synaptic 
inputs (“dendritic democracy,” Häusser  2001 ). This boosting of the amplitude of 
distal inputs can be a subthreshold process when passive signal attenuation is not 
too strong (Fig.  10.1b ; Schwindt and Crill  1995 ; Remme and Rinzel  2011 ) or can 
involve the generation of dendritic spikes. The chapter by Destexhe and 
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Rudolph- Lilith (Chap.   11    ) in this book reviews dendritic input integration of  cortical 
pyramidal cells under in vivo conditions, including how these cells can achieve 
synaptic democracy through dendritic spikes. 

 Another example can be found in neurons in the mammalian auditory brainstem. 
These cells typically process synaptic input on an extremely fast timescale, since 
the input reaching those cells fl uctuates up to the timescale of sound-wave carrier 
frequencies (<1–2 kHz). The auditory brainstem cells are typically quite compact 
electrotonically, such that input attenuation does not pose a major problem; how-
ever, EPSPs do broaden signifi cantly when the membrane is passive. One special-
ization that certain auditory brainstem cells show is the presence of low-threshold 
voltage-gated potassium ion channels in their dendrites (Mathews et al.  2010 ). 
These currents counter the passive broadening of EPSPs and preserve the very high 
temporal resolution (Fig.  10.1c ; Remme and Rinzel  2011 ). 

 The above types of dendritic membrane mechanisms can be central to the func-
tioning of certain neurons, but it is important to realize that they do not by them-
selves enhance the computational power compared to that of a point neuron. 
However, it is also possible that dendrites are a “feature” for certain types of neu-
rons, expanding the computational repertoire of those neurons. It is imaginable that 
dendrites originally evolved simply to allow for high interconnectivity of neurons, 
but that nature has found ways to make use of the spatial separation of synaptic 
inputs over the dendritic extent. Many studies indeed demonstrate a role for den-
drites in enhancing computational power. We next give an overview of the mecha-
nisms that dendritic neurons can utilize to increase their computational power with 
links to the relevant chapters in this book. 
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  Fig. 10.1    Dendritic fi ltering of synaptic inputs. ( a ) A synaptic input current is injected in a passive 
infi nite cable and recorded at 0, 1, and 2 space constants distance from the synapse. ( b ) The peak 
EPSP amplitude attenuates as it spreads along the cable. A regenerative membrane current ( blue ; 
e.g., a persistent sodium current) boosts the EPSP amplitude compared to the passive cable ( black ). 
A restorative current ( red ; e.g., most potassium currents) causes stronger attenuation.  Inset  shows 
EPSP amplitude relative to that of the passive response. ( c ) The width of the EPSP at half-maximal 
amplitude increases as the EPSP spreads in a passive cable. A regenerative current broadens the 
EPSP further, while a restorative current can maintain a constant halfwidth. Adapted from Remme 
and Rinzel ( 2011 )       
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10.2.1     Dendritic Filtering: Selectivity to Spatiotemporal 
Patterns 

 How can neurons exploit the spatial dimension to enhance computational power? 
This does, in fact, not even require nonlinear mechanisms: the linear dendritic fi lter-
ing of input currents that was discussed above, can already endow the neuron with 
a selectivity to spatiotemporal input patterns that cannot be achieved by a point 
neuron model. Rall already demonstrated that activation of synaptic inputs in a 
sequence along a dendritic cable towards the soma leads to a larger-amplitude com-
posite EPSP at the soma, than when the sequence is directed away from the soma 
(Fig.  10.2a ; Rall  1964 ). This direction-selectivity relies on the delays that result 
from passive dendritic fi ltering and is key to several studies in this book: the chap-
ters by Grimes and Diamond (Chap.   12    ) and by Smith and Taylor (Chap.   13    ) 
describe direction-selective interneurons and ganglion cells in the retina; Stiefel and 
Torben- Nielsen (Chap.   9    ) discuss how passive dendritic morphologies can be opti-
mized to implement input-order detection. Dendritic signal propagation delays also 
play a key role in the chapter by McGinley (Chap.   14    ), who discusses how octopus 
cells in the auditory brainstem can make use of those delays to compensate for the 
delays between sound frequency channels that emerge in the cochlea.

   To generate signifi cant propagation delays and thereby produce the selectivity to 
spatiotemporal patterns, dendrites need to be electrotonically fairly long (though 
subthreshold voltage-dependent membrane currents can modulate those delays; 
Koch  1984 ; Remme and Rinzel  2011 ). The chapter by Branco (Chap.   15    ) in this 
book shows that selectivity to spatiotemporal input patterns is also achieved by 
more compact dendrites with a mechanism that relies on an impedance gradient 
along dendritic branches and the nonlinear activation of NMDA receptors. 

a b c

soma axon

dendritic
subunit

soma response soma response

  Fig. 10.2    Exploiting spatial separation of synaptic inputs to increase a neuron’s computational 
power. ( a ) Dendritic fi ltering introduces propagation delays, which results in selectivity to spatio-
temporal input patterns. ( b ) Synaptic conductance input leads to sublinear summation of colocal-
ized inputs, while synapses on different branches can summate linearly. ( c ) Segregation of the 
dendritic tree into subunits with local spiking nonlinearities turn a single neuron into a network. 
The schematic depicts that input to dendritic subunits is passed through an effectively sigmoidal 
nonlinearity; the subunit outputs are summed at the soma and then passed through a global nonlin-
earity at the axon       
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 Finally, passive dendritic fi ltering also plays a key role in the chapter by Cuntz, 
Haag, and Borst (Chap.   16    ) who discuss optic fl ow processing in the fl y. They show 
that dendro-dendritic electric coupling between cells leads to a spatial blurring—
resulting from dendritic fi ltering—of the signals being passed from one cell to the 
other. This blurred signal can then, in fact, be used to sharpen the original signal.  

10.2.2     Synaptic Conductance Input: Local Sublinear 
Summation 

 The above mechanisms that rely on dendritic fi ltering already operate when EPSPs 
are described by input current transients (i.e., the system is linear). In reality, chemi-
cal synapses affect the postsynaptic cell through local conductance changes, which 
introduces a nonlinearity because of the voltage-dependence of the driving force of 
a synaptic current: the closer the voltage is to the reversal potential of the synaptic 
current, the smaller the current will be. Hence, when considering simultaneous acti-
vation of multiple conductance inputs in a passive point-neuron model, one observes 
sublinear summation of synaptic inputs. In a dendritic tree, such sublinear summa-
tion is found when inputs are colocalized; however, this nonlinear interaction 
decreases with distance between the inputs (Rall  1967 ; Koch et al.  1990 ). Because 
of this, a more linear summation of synaptic inputs can be achieved in a neuron with 
a dendritic tree than in a point neuron, by a distribution of the synapses over the dif-
ferent dendritic branches. Moreover, this mechanism also introduces pattern selec-
tivity, even if all inputs are at the same distance from the soma, depending on which 
inputs are colocalized and which are dispersed over the tree. 

 The saturation nonlinearity plays a central role in the work reviewed by Peron 
(Chap.   17    ) on visual interneurons in locusts. There, the saturating nonlinearity 
serves to output the logarithm of the input variable that is signaled to these neurons 
through strong excitatory synapses. The inhibitory input to these cells signals differ-
ent information and is segregated to another part of the dendritic tree, such that there 
is no interference between the local computations. 

 A study on dendritic computation that is worth mentioning here is the work by 
Agmon-Snir et al. ( 1998 ). They demonstrated that segregation of two excitatory 
synaptic pathways over the dendrites of a bipolar neuron can form the basis of a 
coincidence detector that not only has increased sensitivity but is also very robust in 
the sense that a somatic voltage threshold can only be reached when the two path-
ways are coactive, even when the number of inputs that are active from either path-
way is variable, whereas a single pathway (to one dendrite) can never reach 
threshold, due to local saturation of the synaptic driving force (Fig.  10.2b ). Such 
robustness cannot be achieved in a point neuron model. 

 The local effects of synaptic conductance transients also allow for targeted 
inhibition of excitatory synapses in dendritic neurons. In a point neuron, an inhib-
itory input will have the same effect on all excitatory inputs. Such global inhibi-
tion can also be achieved in a dendritic neuron by having the inhibitory inputs 
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impinge on the soma. However, an inhibitory synapse on a dendritic branch will 
particularly inhibit the colocalized excitatory inputs (see for example Jack et al. 
 1975 ; Koch et al.  1983 ). A single inhibitory cell typically contacts specifi c 
domains of a postsynaptic neuron with multiple (10–20) synapses rather than with 
a single synapse. Gidon (Chap.   18    ) reveals that this has various nonintuitive con-
sequences, specifi cally when focusing on how inhibitory input affects local and 
global dendritic excitability rather than how it affects the subthreshold propaga-
tion of EPSPs to the soma. 

 Finally, the large amount of synaptic input activity that many types of neurons 
experience under in vivo conditions also affects their integrative properties. The 
chapter by Destexhe and Rudolph-Lilith (Chap.   11    ) details how background input 
decreases both the input impedance and membrane time constant, leads to stronger 
spatial segregation between all inputs, and introduces a stochastic operating mode.  

10.2.3     Voltage-Dependent Membrane Conductances: 
Resonance, Oscillations, Dendritic Spikes, Firing 
Patterns 

 The two principal ingredients to expand a neuron’s computational power described 
above—dendritic fi ltering and synaptic conductance input—only required passive 
dendrites. However, many types of neurons display voltage-dependent membrane 
conductances in their dendrites (for review see for example Magee  2008 ). Such 
nonlinearities open up many possibilities for dendrites to further expand the compu-
tational repertoire of a neuron. 

 Membrane currents can be nonuniformly distributed throughout the neuron 
(Nusser  2009 ). This can of course already be the case for passive membrane cur-
rents and is, in fact, a key fi nding in the work presented by Mathiä, Bartos, and Vida 
(Chap.   19    ) in their chapter on input integration by inhibitory basket cells in the hip-
pocampus. A prominent voltage-dependent conductance in the dendrites of many 
types of neurons is the hyperpolarization-activated mixed cation current  I  h . In corti-
cal pyramidal neurons this current has a strongly polarized distribution, with most 
of the current present in the distal dendrites. Zhuchkova, Remme, and Schreiber 
(Chap.   20    ) show that, because of this nonuniform distribution, synaptic inputs are 
differentially fi ltered depending on where they arrive in the neuron. They focus in 
particular on the ability of the h-current to create a band-pass fi lter, i.e., produce 
subthreshold membrane-potential resonances (Hutcheon and Yarom  2000 ). 

 Interactions between voltage-dependent conductances can also underlie the 
generation of intrinsic subthreshold oscillations, which have been demonstrated in 
various cell types (see for example Alonso and Llinas  1989 ). Such nonlinear 
dynamics lie at the heart of hypotheses aiming to explain the generation of place 
fi elds in hippocampus (O’Keefe and Recce  1993 ) and grid fi elds in entorhinal 
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cortex (Burgess et al.  2007 ). These hypotheses require that the oscillation-generat-
ing membrane segments are segregated from the soma and that the dendritic 
 oscillators integrate synaptic input independently from the rest of the neuron. 
Remme, Lengyel, and Gutkin (Chap.   21    ) analyze the biophysical requirements for 
such a setup and show that subthreshold oscillators tend to synchronize very 
quickly because of the ongoing intracellular interactions between them. Hence, 
instead of supporting multiple independent oscillators, the dendritic tree collapses 
to a single oscillator. 

 One infl uential theory of dendritic function—building on strong local dendritic 
nonlinearities—hypothesizes that the dendritic tree consists of multiple subunits, 
such as single dendritic branches (Branco and Häusser  2010 ), that independently 
process input and convey the signal to the soma through an amplitude boosting 
nonlinearity (NMDA, calcium, or sodium spikes). The fi rst studies that put this idea 
forward have focused on instantaneous processing of continuous variables (fi ring 
rates). Each dendritic subunit sums its input and passes it through a local sigmoidal 
nonlinearity; the outputs of these subunits are summated at the soma and passed 
through a global sigmoidal nonlinearity (Fig.  10.2c ; Poirazi et al.  2003 ; Polsky et al. 
 2004 ). Formulated in this way, a single neuron represents a two-layer feedforward 
neural network, and is, in theory, able to approximate any (instantaneous) input–
output transformation. This framework is analyzed by Cazé, Humphries, and Gutkin 
(Chap.   22    ), who consider how the computational capacity of a neuron is increased 
when it has (a fi nite number of) independent dendritic subunits with either saturat-
ing (through synaptic conductances, see above) or spike-type nonlinearities. 
Furthermore, Smith and Taylor (Chap.   13    ) describe retinal ganglion cells that con-
sist of partially isolated subunits that signal to the soma via dendritic spikes. Grimes 
and Diamond (Chap.   12    ) discuss retinal interneurons that consist of many indepen-
dent dendritic subunits, each, in fact, providing output to postsynaptic neurons 
through local dendritic release of neurotransmitters. 

 Finally, voltage-dependent conductances distributed throughout dendritic 
 neurons can also qualitatively alter the membrane-potential dynamics. Classic stud-
ies by Pinsky and Rinzel ( 1994 ) and Mainen and Sejnowski ( 1996 ) showed that 
neural morphology can determine whether a cell operates in a tonic-fi ring or in a 
burst- fi ring mode. The chapter by van Ooyen and van Elburg (Chap.   23    ) in this book 
further details how the size and branching pattern of a dendritic tree shapes a neu-
ron’s fi ring dynamics. An even more detailed perspective on this theme is presented 
in the chapter by O’Donnell and Nolan (Chap.   24    ). They study the consequences of 
stochastic gating of individual ion channels in neuron models with detailed mor-
phologies. Using specially developed software, they focus on how stochastic gating 
impacts membrane-potential dynamics and ultimately dendritic computation. 

 Clearly, there are many other ways in which voltage-dependent conductances 
can shape membrane-potential dynamics and neural computation that we have not 
reviewed here. We have given an overview of the key mechanisms with links to 
chapters in this book and want to refer the reader to the aforementioned reviews for 
further information.   
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10.3     Synaptic and Structural Plasticity 

 As we have seen above, there is a range of dendritic mechanisms that can increase 
a neuron’s computational power. However, to actually exploit those mechanisms, it 
is crucial that the synaptic inputs are properly distributed across the dendritic tree 
(Larkum and Nevian  2008 ). Also, for a neuron to learn to respond appropriately to 
its input, and to store information about its history of input and output, a variety of 
ongoing plasticity mechanisms is required. These synaptic, homeostatic, and struc-
tural plasticity processes in dendrites are reviewed in the chapter by Kastellakis and 
Poirazi (Chap.   25    ). An example of storage and retrieval of input–output patterns by 
a single neuron is described in the chapter by de Sousa, Maex, Adams, Davey, and 
Steuber (Chap.   26    ). They focus on learning by cerebellar Purkinje cells and use a 
morphologically realistic conductance-based model to examine the capacity to learn 
and recognize input patterns through long-term depression of the parallel fi ber 
inputs to these cells.  

10.4     Theoretical Approaches to Study Dendritic Function 

 We will next briefl y introduce the main theoretical methods that are currently in use 
to study dendritic input integration. The backbone of this is cable theory, which was 
already well established in the fi rst half of the twentieth century to describe passive 
signal fl ow in neurites (see for example Hodgkin and Rushton  1946 ). However, it 
was Rall who pioneered the extensive use and development of cable theory to ana-
lyze dendritic function (Rall  1959 ,  1960 ). In cable theory a dendritic branch is rep-
resented by a one-dimensional partial differential equation describing how the 
voltage profi le along the branch evolves over time. The partial differential equation, 
with appropriate boundary conditions, can be solved analytically with various meth-
ods (see for example Tuckwell  1988 ). In this way one can obtain explicit expres-
sions for, for example, the steady state voltage profi le along a dendrite in response 
to a step current, the dendrite’s frequency-dependent input fi ltering, and the impulse 
response function or Green’s function of the branch with which one can compute 
the response to an arbitrary stimulus (see also Jack et al.  1975 ). Cable theory can be 
used to describe a complex, branched dendritic morphology and even multiple cou-
pled cells. Timofeeva and Coombes (Chap.   27    ) illustrate this in their chapter in 
which they compute—using the “sum-over-trips” method—the impulse response 
function for two neurons that are coupled through a dendritic gap junction. 

 Cable theory is not restricted to describe passive neurons but can also be used 
to analyze neurons with voltage-dependent membrane conductances. This relies 
on linearization of such currents around a holding membrane potential by which a 
“quasi-active” cable description is obtained that can reproduce subthreshold den-
dritic input fi ltering of the full nonlinear model (Koch  1984 ; Remme  2013 ). Such 
a linearization approach is used by Zhuchkova, Remme, and Schreiber (Chap.   20    ) 
to describe a single active compartment that is coupled to a passive cable. 
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The chapter by Remme, Lengyel, and Gutkin (Chap.   21    ) uses the quasi-active 
cable approximation to analyze the dynamics of an active cable that connects two 
dendritic oscillators. 

 Of course, there are limits to the complexity of neurons and voltage dynamics 
that can be conveniently described and/or analyzed using cable theory. The most 
common approach is then to make use of compartmental modeling, a method that 
was also pioneered by Rall ( 1964 ). Compartmental modeling relies on spatial dis-
cretization of the cable equation, resulting in a set of connected compartments: the 
partial differential equation becomes a family of ordinary differential equations. 
Each compartment can include any type of nonlinear membrane mechanism. To 
solve the compartmental model one relies on numerical simulation of the system. 
For this one can use software packages such as NEURON (Hines and Carnevale 
 1997 ) and GENESIS (Bower and Beeman  1998 ), which are designed to conve-
niently construct and effi ciently simulate compartmental models. Most work 
described in the second part of this book makes use of compartmental modeling. 

 A central challenge in compartmental modeling is how to fi t the many model 
parameters. Druckman (Chap.   28    ) discusses the various key issues in this problem 
and the methods that are available to constrain the parameters of single neuron 
 models. A further potential issue is that the number of equations that need to be 
solved numerically can become so large that it is no longer feasible to simulate the 
system, especially when intending to simulate networks of detailed model neurons. 
One can, of course, try to reduce the number of compartments of the model; how-
ever, this comes (at least) at the cost of losing spatial accuracy. Hedrick and Cox 
(Chap.   29    ) discuss alternative strategies rooted in linear algebra, in which the spatial 
distribution of synaptic inputs within the dendrites are retained, while the computa-
tional load to simulate the neuron models is strongly reduced.  

10.5     Future Perspectives 

 Recent innovations in experimental techniques provide us with an unprecedented 
wealth of information about dendritic function. Optogenetics allow for precise 
manipulation of input and output activity of neurons (Fenno et al.  2011 ), and 
advances in calcium and voltage imaging make it possible to record dendritic 
responses at high spatial and temporal resolution, all under in vivo conditions 
(Akemann et al.  2010 ; Grienberger and Konnerth  2012 ). Putting all these fi ndings 
together in a coherent framework and increasing the understanding of the immensely 
complex nervous system gives a central role to thorough analytical and computa-
tional approaches such as the ones outlined in this book. At the same time, there are 
limits to what can be done experimentally, and computational work can also be used 
there as a spotlight to direct experimental work. Given the intricate relation between 
experiments, model validation and model predictions, experimental techniques en 
par with computational approaches will yield the largest advances in understanding 
in dendritic computation. 
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 A further recent development relying on both experimental and theoretical 
 neuroscience is the aim of several research consortia to build extremely detailed 
models of cortical columns or even of the entire brain (e.g., the Blue Brain Project, 
Markram  2006 ). The computational demands to simulate such models might be 
prohibitively large. Therefore, researchers have taken up the challenge to reduce 
the computational complexity of morphological neuron models while preserving 
their integrative properties resulting from the spatial distribution of synapses and 
nonuniform membrane properties. Some of these new approaches are described in 
this book (Chap.   29    ) and we expect development in this fi eld will continue 
expanding. 

 The central question remains: what do neurons compute? As reported in this 
book and elsewhere, many computations are attributed to dendrites. However, what 
dendrites  can  compute is not necessarily identical to what they actually  do  compute 
in vivo. For example, the fi ndings from many studies depend on very specifi c spa-
tiotemporal input activation patterns and/or neglect the various sources of noise. 
This issue poses the most important challenge: to fi nd out what a neuron really 
computes rather than what a neuron can theoretically compute. What are the in vivo 
constraints put on the system and how do they affect what can be computed? Single 
neuron computations are part of a system of parallel and serial input–output trans-
formations. How are the computations distributed and combined? Cuntz and col-
leagues (Chap.   16    ) point at this concern and demonstrate that in the fl y Lobula Plate, 
optic fl ow signal processing is a collaborative computation rather than a computa-
tion performed by a single neuron. The issue comes down to what computations are 
too hard (in practice) to be computed by a single neuron and require network inter-
actions. Indeed, many challenges lie ahead and we believe that the work described 
in this second part of the book lead in the right direction and pave the way for 
important future discoveries.     
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    Abstract     While dendritic processing has been well characterized in vitro, there is 
little experimental data and models available about the integrative properties of 
dendrites in vivo. Here, we review existing computational models to infer the 
dendritic processing of neocortical pyramidal neurons in vivo. We start by summa-
rizing experimental measurements of the “high-conductance states” of cortical 
neurons in vivo. Next, we show models predicting that, in such states, the respon-
siveness of cortical neurons should be greatly enhanced, in particular due to the 
presence of high-amplitude fl uctuations (“synaptic noise”). We infer that in den-
drites this effect should be particularly strong, leading to the spontaneous activation 
of dendritic spikes. The presence of noise in dendrites also enhances spike propa-
gation. We show that opposite distance dependencies of spike initiation and propa-
gation result in roughly location-independent synaptic effi cacies. In addition, in 
high- conductance states, dendrites display sharper temporal processing capabilities. 
Thus, we conclude that noisy active dendrites behave more “democratically,” and 
that dendrites should have enhanced processing capabilities in vivo.   

11.1         Introduction 

 Activated states of the brain are characterized by intense, irregular, and desynchro-
nized neuronal activity. In awake animals, neurons in different cortical structures 
display high spontaneous fi ring rates, from 5 to 20 Hz in cats (Evarts,  1964 ; 
Steriade and McCarley,  1990 ). Moreover, the cerebral cortex shows a very dense 
connectivity, with each pyramidal neuron receiving between 5,000 and 60,000 
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synaptic contacts, most of which originate from the cortex itself (DeFelipe and 
Fariñas,  1992 ; Braitenberg and Schüz,  1998 ). As a consequence, many synaptic 
inputs are simultaneously activated onto cortical neurons in vivo. Indeed, intracel-
lular recordings in awake animals reveal that cortical neurons are subjected to an 
intense synaptic bombardment and, as a result, are depolarized and have a low 
input resistance (Matsumura et al.,  1988 ; Baranyi et al.,  1993 ; Steriade et al.,  2001 ) 
compared to brain slices kept in vitro. This activity is also responsible for a consid-
erable amount of subthreshold fl uctuations, called “synaptic noise.” Together these 
properties characterize what is called the “high-conductance state” of cortical neu-
rons. How such high-conductance and high-noise conditions affect the integrative 
properties of neurons remains an intense subject of research (reviewed in Destexhe 
et al.,  2003 ; Destexhe and Contreras,  2006 ; Destexhe,  2007 ; Destexhe and 
Rudolph-Lilith,  2012 ). Besides few exceptions (Helmchen et al.,  1999 ; Branco 
et al.,  2010 ; Branco and Häusser,  2011 ; Lavzin et al.,  2012 ), little is known about 
the integrative properties of dendrites in vivo. 

 In this chapter, we start by overviewing experimental measurements of high- 
conductance states in cortical neurons in vivo. We next review computational mod-
els to explore the impact of such states on integrative properties, and what sort of 
computational advantages may be conferred by synaptic noise in dendrites.  

11.2      Characterization of High-Conductance States In Vivo 

11.2.1     The Synaptic Noise in Neocortical Neurons In Vivo 

 In awake animals, the cerebral cortex (and more generally the entire brain) displays 
an “activated” state, with distinct characteristics compared to other states like 
slow- wave sleep or anesthesia. These characteristics include a low-amplitude 
“desynchronized” electroencephalogram (EEG), a depolarized V  m  , and irregular fi r-
ing activity (Fig.  11.1a , Awake). During slow-wave sleep, the EEG and V  m   activity 
follow low-frequency rhythms (Fig.  11.1a , Slow-Wave Sleep). The most prominent 
rhythm consists of slow-wave complexes in the EEG, which are paralleled with up/
down- state dynamics in the V  m  . During the up-state (Fig.  11.1a , gray bars), the V  m   
is depolarized and the activity is similar to wakefulness; during the down-state, all 
cortical neurons are hyperpolarized and do not fi re. Several anesthetics, such as 
urethane or ketamine–xylazine, induce EEG and V  m   dynamics very similar to slow-
wave sleep. For instance, ketamine–xylazine anesthesia generates an up/down-state 
pattern very similar to sleep (Destexhe et al.,  2003 ). For recent reviews on EEG and 
V  m   dynamics during activated and sleep states, see Steriade ( 2001 ,  2003 ), Steriade 
and McCarley ( 1990 ), and McCormick and Bal ( 1997 ).

   One of the main interests in dealing with up/down-state patterns is that there is 
good evidence that the up-states follow dynamics very similar to that of activated 
states of the brain (for a recent review, see Destexhe et al.,  2007 ). Indeed, at the 
level of EEG and intracellular activities, the dynamics seen during up-states are 
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almost undistinguishable from that during wakefulness. An illustrative example of 
this similarity is that electrical stimulation of the brain stem (pedonculopontine 
tegmentum, or PPT) can transform the up/down-state dynamics into the typical 
desynchronized EEG of activated states, which appears as a “prolonged” up-state 
(see Steriade et al.,  1993 ; Rudolph et al.,  2005 ). Thus, it seems that the up-states 
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  Fig. 11.1    High-conductance states in neocortical neurons in vivo. ( a ) Intracellular recordings and 
electroencephalogram (EEG) in the association cortex of cats (area 5–7, see scheme), during the 
waking state ( left ) and during slow-wave sleep ( right ). The activity during sleep consists of up- and 
down-states (up-states indicated by  gray bars ; modifi ed from Steriade et al.,  2001 ). ( b ) Conductance 
measurements during wake and sleep states. Intracellular recordings such as in ( a ) were used to 
estimate the mean excitatory and inhibitory conductances ( g  e0 ,  g  i0 ) and their standard deviations 
( σ  e ,  σ  i ), respectively (modifi ed from Rudolph et al.,  2007 ). ( c ) Quantifi cation of the conductance 
state of the membrane in active states compared to quiescent states by microperfusion of TTX to 
cortex (see scheme). Hyperpolarizing current pulses were injected during up-states (Before TTX), 
and later after total suppression of network activity (After TTX), in the same neurons. The overall 
conductance was about fi ve times lower after TTX for this particular cell (modifi ed from Paré 
et al.,  1998 )       
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constitute a relatively good approximation of the network state during activated 
states. It is important to stress that these states are close, but not identical, as shown 
for example by conductance measurements (reviewed in Destexhe et al.,  2007 ; 
Destexhe and Rudolph-Lilith,  2012 ).  

11.2.2     Conductance Measurements 

 The total excitatory and inhibitory conductance can be estimated from V  m   measure-
ments in different ways. Injection of constant current during up/down-states induces 
a marked change of the V  m   during down-states, while the up-state seems much less 
sensitive to the injected current (Paré et al.,  1998 ; Destexhe et al.,  2003 ). In other 
words, the up-state has a much larger conductance compared to the down-state. 
These measurements constitute a fi rst indication that the up-states correspond to a 
high-conductance state. The same results were obtained with purely subthreshold 
activity, suggesting that they are not due to the conductances of action potentials. 

 A second, more direct measurement was obtained by using the “VmD method” 
(Rudolph et al.,  2004 ; Piwkowska et al.,  2008 ), which estimates the total conduc-
tances and their variances by fi tting experimental V  m   distributions to the Gaussian 
approximation of an analytical expression for the membrane potential distribution 
of an effective stochastic membrane model (Rudolph and Destexhe,  2003c ,  2005 ). 
This approach leads to estimates of the mean excitatory and inhibitory conductances 
( g  e0 ,  g  i0 ) and their standard deviations ( σ  e ,  σ  i ), respectively, and was successfully 
applied to intracellular recordings from awake and naturally sleeping cats (Fig.  11.1b ; 
Rudolph et al.,  2007 ). These measurements evidenced that the membrane in these 
states is indeed in a high-conductance state, with inhibitory conductances in general 
several-fold larger than excitatory conductances. 

 This result was consistent with another type of direct measurement, in which 
intracellular recordings were compared during up-states and after suppression of 
network activity using TTX (Fig.  11.1c ; Paré et al.,  1998 ). Because TTX blocks all 
sodium channels, it effectively suppresses all action potential-dependent activity 
and reveals the resting V  m   of the neuron. Input resistance ( R  in ) measurements showed 
that, taking the up-states of ketamine–xylazine anesthesia as reference, these active 
states have about fi ve times more synaptic conductance compared to the resting V  m   
of the cell (Fig.  11.1c ; Paré et al.,  1998 ; Destexhe and Paré,  1999 ). These results are 
not affected by the V  m   level or by spiking activity as identical results are obtained at 
hyperpolarized and subthreshold levels. Furthermore,  R  in  measurements correspond 
to the linear portion of the  I – V  curve, suggesting little or no contamination by intrin-
sic voltage-dependent currents (Destexhe and Paré,  1999 ; see also discussion in 
Monier et al.,  2008 ). 

 Similar measurements have also been obtained during active states in vivo in 
other studies, by comparing up- and down-states under various anesthetics such as 
ketamine–xylazine or urethane, in different species. These estimates are very vari-
able, ranging from up to several-fold smaller  R  in  in up-states (Contreras et al.,  1996 ; 
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Paré et al.,  1998 ; Petersen et al.,  2003 ; Leger et al.,  2005 ), to nearly identical  R  in  
between up- and down-states or even larger  R  in  in up-states (Metherate and 
Ashe,  1993 ; Zou et al.,  2005 ; Waters and Helmchen,  2006 ). It was argued that the 
latter, rather paradoxical observation, only found in rats so far, is the result of the 
presence of potassium currents in down-states (Zou et al.,  2005 ), or voltage- 
dependent rectifi cation (Waters and Helmchen,  2006 ). Consistent with the latter, 
blocking K +  currents using cesium-fi lled electrodes has negligible effects on the 
up-state, but abolishes the hyperpolarization during the down-states (Timofeev 
et al.,  2001 ). Moreover, in cats, the  R  in  of the down-state differs from that of the 
resting V  m   (after TTX) by about twofold (Paré et al.,  1998 ). It is, thus, clear that at 
least the down-state is very different from the true resting V  m   of the neuron. Finally, 
conductance measurements in awake and naturally sleeping animals have revealed 
a wide diversity between cells in cat cortex (Rudolph et al.,  2007 ), ranging from 
large synaptic conductances, much larger than the resting conductance, to synaptic 
conductances smaller or equal to the resting conductance. However, on average, the 
synaptic conductance was estimated as about three times the resting conductance, 
where the inhibitory conductance is about twice the excitatory conductance 
(Rudolph et al.,  2007 ). Strong inhibitory conductances were also found in artifi -
cially evoked active states using PPT stimulation (Rudolph et al.,  2005 ), as shown 
in Fig.  11.1b . 

 In conclusion, the data reviewed here indicate that in brain activity states with 
desynchronized EEG, neocortical neurons display a high-conductance state charac-
terized by the following features: (1) a large membrane conductance, which corre-
sponds to a threefold to fi vefold decrease in input resistance; (2) an average 
membrane potential (around −65 to −60 mV), which is signifi cantly depolarized 
compared to the natural resting V  m   (−70 to −80 mV); and (3) large amplitude mem-
brane potential fl uctuations ( σ   V   of 2–6 mV), which are at least tenfold larger than 
those seen in the absence of network activity. In addition, the data indicate that these 
characteristics are attributable mostly to network activity, and that inhibitory con-
ductances account for most of the large membrane conductance. The consequences 
of this strong synaptic bombardment are considered in the next section.   

11.3      Computational Consequences of High-Conductance 
States 

11.3.1     Models of High-Conductance States 

 Since several decades, theoretical studies have been designed to understand the 
impact of noise on the integrative properties of neurons. The notion of high- 
conductance state itself, as well as the fact that neurons could integrate differently 
in such states, was fi rst proposed by modeling studies. By integrating the sustained 
synaptic conductance arising from network activity into models, Barrett ( 1975 ) for 
motoneurons, and later Holmes and Woody ( 1989 ) for pyramidal cells, predicted 
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that synaptic activity could have a profound impact on dendritic integration. This 
theme was then investigated using biophysically and morphologically more precise 
models in cortex (Bernander et al.,  1991 ; Destexhe and Paré,  1999 ) and cerebellum 
(Rapp et al.,  1992 ; De Schutter and Bower,  1994 ). Such models have predicted a 
number of computational consequences of background activity and high- 
conductance states characterizing the in vivo state in neurons which will be briefl y 
summarized in the next section. 

 In addition to morphologically precise computational models, a large number of 
theoretical studies have also designed simplifi ed and mathematically treatable mod-
els to study the effect of noise on neurons. Synaptic activity is commonly modeled 
by a source of current noise in the neuron (Levitan et al.,  1968 ; Tuckwell,  1988 ), 
which leads to a description of the membrane potential in terms of a stochastic pro-
cess. However, this type of model is too simple to account for the effect of conduc-
tances, in particular high-conductance states. For that reason, more recently, another 
approach was followed which modeled background activity by fl uctuating conduc-
tances instead of fl uctuating currents (Destexhe et al.,  2001 ). In this case, the synap-
tic conductances are stochastic processes, which, in turn, give rise to a stochastic V  m   
dynamics. The advantage of this representation is that the high-conductance state of 
the membrane can be directly reproduced and modulated, for instance, through the 
independent control of the conductance mean and the variance. The realism and 
computational simplicity of these models also enable injection into real neurons in 
order to recreate high-conductance states artifi cially using the dynamic- clamp tech-
nique (reviewed in Destexhe and Bal,  2009 ). 

 Another advantage is that such models are simple enough to allow analytical 
treatment. Various mathematical studies of the fi ring dynamics of neurons with 
conductance-based inputs were performed (see for example Burkitt et al.,  2003 ; 
Moreno-Bote and Parga,  2005 ; Muller et al.,  2007 ) and have consequences on net-
work dynamics with conductance-based inputs (Meffi n et al.,  2004 ; see also Shelley 
et al.,  2002 ). The VmD method mentioned above is also a direct consequence of this 
mathematical tractability (Rudolph et al.,  2004 ).

11.3.2        Impact of High-Conductance States on Integrative 
Properties 

 Computational models have predicted several interesting computational consequences 
of high-conductance states and synaptic noise (Rudolph and Destexhe,  2003a ; 
reviewed in Destexhe et al.,  2003 ; Destexhe and Rudolph-Lilith,  2012 ). 

11.3.2.1     Probabilistic Responses 

 A fi rst consequence of the presence of synaptic noise is that the V  m   behaves stochas-
tically and, therefore, neuronal responses in high-conductance states are highly 
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variable (Fig.  11.2a ). In such states, it is necessary to use repeated trials for any 
given stimulus, and the appropriate measure of the response is to compute the prob-
ability of emitting spikes. The use of such probabilistic measures are well known in 
in vivo electrophysiology, where routinely “post-stimulus time histograms” (PSTH) 
from data are calculated. Here, integrating the response (total “output” of the neu-
ron) after a stimulus yields the total probability that a spike is emitted in response to 
the given stimulus (Fig.  11.2b ).  

11.3.2.2     Noise-Induced Enhanced Responsiveness 

 An important consequence of high-conductance states is not only the transforma-
tion of neurons into probabilistic devices, but also the profound impact on their 
response properties. The response curve (or transfer function), which is obtained by 
representing the total response probability (integrated over time after stimulus) 
against stimulus amplitude, is all-or-none for a neuron not subjected to stochastic 
synaptic activity. This behavior refl ects the presence of a fi xed spiking threshold 
(Fig.  11.2b , gray), in which case the emitted spike can only tell whether the stimulus 
is larger than the threshold. In the presence of synaptic noise, however, the response 
curve is qualitatively different. It is no longer step-like, but spans a whole range of 
input amplitudes (Fig.  11.2b , black). In this case, the probability of spiking is indic-
ative of the whole range of input amplitude. Specifi cally, for small-amplitude inputs 
(those in the physiological range), which are normally subthreshold, the neuron’s 
response probability is enhanced (Fig.  11.2b , star). This enhanced responsiveness is 
a very robust feature of neurons in the presence of synaptic background activity 
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  Fig. 11.2    Increased responsiveness in the presence of synaptic noise. ( a ) In the presence of syn-
aptic noise, the response to additional inputs is highly variable, and spikes are evoked at different 
latencies at each trial (40 trials are shown for two different input amplitudes; modifi ed from Hô and 
Destexhe,  2000 ). ( b ) Modulation of the response curve. The response curve (probability of evok-
ing spikes as a function of input amplitude) is all-or-none in quiescent conditions ( gray ). 
Decomposing synaptic activity in “conductance” and “noise” components shows that conductance 
shifts the curve rightward ( gray dashed ), while the noise changes its slope (gain modulation; 
 black ). The response of the neuron is a combination of these effects, showing enhanced responsive-
ness ( star ) for otherwise subthreshold input regime       

 

11 Noisy Dendrites: Models of Dendritic Integration In Vivo



180

(Hô and Destexhe,  2000 ; Shu et al.,  2003 ). Moreover, the shape of the response 
function can be altered by changes in the statistics of the background activity. For 
that reason, this phenomenon has been coined “gain modulation” (Chance 
et al.,  2002 ), refl ecting the fact that the slope of the response curve is modulated by 
synaptic noise. 

 Using computational models to independently control the total amount of con-
ductance, and the amount of fl uctuations, it was possible to determine their respec-
tive role. The conductance alone shifts the response curve (Fig.  11.2b , rightward 
arrow), while the noise component alone modulates the slope (gain) of the response 
curve (Hô and Destexhe,  2000 ; Chance et al.,  2002 ; Shu et al.,  2003 ; Mitchell and 
Silver,  2003 ; Prescott and De Koninck,  2003 ). It is important to note that the type of 
modulation by noise will depend strongly on the intrinsic properties of the neurons. 
For that reason, also an inverse gain modulation can be observed (Fellous et al.,  2003 ) 
and may be explained by potassium conductances (Higgs et al.,  2006 ). Similarly, 
the dual response (burst vs. single-spike) of thalamic relay neurons is also strongly 
affected by the presence of synaptic noise, and the two modes may no longer be 
distinguishable (Wolfart et al.,  2005 ). 

 It is important to note that the phenomenon of enhanced responsiveness is simi-
lar to stochastic resonance phenomena, which have been thoroughly studied by 
physicists (reviewed in Gammaitoni et al.,  1998 ; Wiesenfeld and Moss,  1995 ). 
Stochastic resonance is a noise-induced enhancement of the signal-to-noise ratio in 
nonlinear systems. It typically presents itself as a peak in the signal-to-noise ratio 
when the latter is considered as a function of the noise amplitude. Thus, the system 
appears to “resonate” or to respond optimally for an intermediate but non-vanishing 
amount of noise. While neurons can also show such behavior when subjected to 
noise (Levin and Miller,  1996 ; Stacey and Durand,  2000 ), the situation is more 
complex than for classical stochastic resonance phenomena, because in neurons the 
noise sources are synaptic conductances, and these conductances lead to an addi-
tional shunting effect of the cellular membrane (see details in Rudolph and 
Destexhe,  2001b ). As will be shown below, such a modulation of neuronal respon-
siveness by conductance noise is the basis for the explanation of other neuronal 
response properties.

11.3.2.3        Noisy Dendrites: Equalization of Synaptic Effi cacies 

 Focusing on the dendrites of neocortical neurons, the presence of massive synaptic 
bombardment may fundamentally change dendritic integration properties, as illus-
trated in Fig.  11.3 . An inherent property of neuronal dendrites and other electrical 
cable structures is the attenuation of voltage. This is true in particular for pyramidal 
neurons: synaptic inputs can experience strong attenuation in the neuron at rest 
(Fig.  11.3a , left). If the high-conductance state of the membrane is integrated as a 
static conductance component through an increase in the leak conductance of the 
membrane, the attenuation is much more severe (Fig.  11.3a , middle): already 
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  Fig. 11.3    Location independence of synaptic inputs in high-conductance states. ( a ) Somatic 
response amplitudes for excitatory synaptic inputs located at different positions in dendrites 
( inset ). In a quiescent neuron ( left ), distal inputs are moderately attenuated, as predicted by cable 
theory. With a static high conductance ( middle ), this attenuation is stronger. By including both 
conductance and noise ( right ), the effi cacy of synaptic inputs (defi ned as the total probability that 
a synaptic stimulus evokes a somatic spike) was weakly dependent on the dendritic location of the 
synapse. ( b ) Illustration of forward propagating spike in a quiescent neuron ( top ), and in the pres-
ence of background activity ( bottom ). In quiescent conditions, the propagation of the spike is 
fragile and might be terminated before reaching the soma. In contrast, under in vivo-like condi-
tions, dendritic spikes were found to reliably propagate up to the soma, even for small stimulus 
amplitudes. ( c ) Comparison of the probability of evoking a dendritic spike (AP initiation) and the 
probability that an evoked spike translated into a somatic-axonal spike (AP propagation). Both 
were represented as a function of the location of the stimulus for three stimulus amplitudes. In all 
cases, the probability of stimulus-evoked somatic spikes, which was obtained by multiplying the 
probability for AP initiation and propagation, was found to be nearly location independent (modi-
fi ed from Rudolph and Destexhe,  2003a ; see this paper for details about the model)       

synaptic inputs at distances of a few hundred microns from the soma are almost 
totally attenuated, and resulting post-synaptic potentials (PSPs) at the soma are 
undetectable, a phenomenon which is perfectly predictable by cable theory. 
Remarkably, however, if the full high- conductance state is simulated, the spiking 
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probability shows a surprisingly low dependence on the location of inputs in den-
drites (Fig.  11.3a , right). 

 For the explanation of this equalization of synaptic effi cacy, the dendritic 
 excitability, combined with noise, plays a critical role. In quiescent conditions, syn-
aptic inputs arising in distal dendrites can elicit a local dendritic spike, but such a 
spike is hard to evoke and typically does not propagate well across the dendritic 
structure (Fig.  11.3b , top). With synaptic noise, the V  m   activity is highly variable, 
but as was outlined above, the presence of noise can boost the effect of small inputs. 
Indeed, numerical simulations show that there is a small probability that evoked 
spikes propagate all the way to the soma (Rudolph and Destexhe,  2003a ; Fig.  11.3b , 
bottom). The probability that a local dendritic spike propagates to the soma is there-
fore nonzero, although it would be zero in a quiescent neuron, similar to the 
enhanced responsiveness of Fig.  11.2b .

   The situation is, however, more complex here because the probability to evoke 
and propagate spikes depends as well on the position in the dendrite. The probability 
of evoking a somatic spike increases with distance (Fig.  11.3c , dotted curves) and, 
thus, is higher for more distal inputs, because distal branches have a higher local 
input resistance caused by a smaller dendritic radius. Conversely, the probability 
that an evoked dendritic spikes propagates towards the soma is inversely propor-
tional to distance (Fig.  11.3c , light gray): it is high for positions close to the soma, 
but decreases with distance as there is a higher chance that the evoked AP fails to 
propagate. 

 The probability for a dendritic input to evoke a somatic spike is given by multi-
plying these two probabilities. Because of their inverse distance dependence, the 
product of these two probabilities is necessarily less dependent on location 
(Fig.  11.3c , black). Remarkably, although different intensities of synaptic bombard-
ment give different profi les for the distance dependence of the probabilities of evok-
ing and propagating spikes, their product is in all cases almost independent on 
distance (Fig.  11.3c ). Thus, according to this “stochastic integrative mode” (Rudolph 
and Destexhe,  2003a ), the neuron could solve one long-standing problem, namely 
how to equally integrate inputs situated at different locations in extended dendritic 
trees. This equalization mechanism depends on both intrinsic properties (dendritic 
excitability) and the presence of synaptic noise. It is also seen for different dendritic 
morphologies (Fig.  11.4 ; Rudolph and Destexhe,  2003a ).  

11.3.2.4     Sharper Temporal Processing 

 A major consequence of the presence of synaptic bombardment is that it will greatly 
affect temporal processing. The large conductance is necessarily associated with a 
reduced membrane time constant, which is visible in the faster response to injected 
current (Fig.  11.1c , averaged traces). As proposed more than 30 years ago 
(Barrett,  1975 ), this reduction in the membrane time constant should favor fi ner 
temporal discrimination (Holmes and Woody,  1989 ; Bernander et al.,  1991 ; 
Destexhe and Paré,  1999 ). In excitable dendrites, small membrane time constants 
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also promote fast- propagating action potentials, resulting in a reduced location-
dependence of EPSP timing (Fig.  11.5a ; Rudolph and Destexhe,  2003a ). Here, syn-
aptic noise seems to set the dendrite into a fast-conducting mode, in which the timing 
of inputs shows reduced dependence on their distance from the soma. This remark-
able property is likely to facilitate the association of synaptic inputs arising at distant 
locations from each other.

   The mechanisms underlying this fast-conducting mode depend on several fac-
tors. First, the reduction of the membrane time constant due to the high conduc-
tance, which can be modeled with an equivalent static conductance, shows a partial 
increase in the conduction speed of dendritic spikes. Second, varying the presence 
of sodium conductances also led to intermediate effects on the timing due to the 
presence of dendritic spikes. Combining both of these effects suggests that this fast 
conducting mode is due to fast propagation of dendritic spikes in a membrane of fast 
time constant (see details in Rudolph and Destexhe,  2003a ). 

 Neurons in high-conductance states also display a superior ability to distinguish 
and process high-frequency inputs, when compared to low-conductance states. This 
is illustrated in Fig.  11.5b , which shows the temporal resolution of a neuron repre-
sented against the input frequency. In quiescent or low-conductance states, neurons 
can follow inputs (i.e., produce a spike) up to a maximal frequency which is typi-
cally around 40–50 Hz (Fig.  11.5b , gray). With synaptic noise, the neuron can lock 
its response to larger frequencies (up to more than 100 Hz in the example of 
Fig.  11.5b , black). This property is attributable to the smaller time constant associ-
ated with high membrane conductances. 

 Modeling studies have explored other computational advantages of synaptic 
noise on temporal processing. If both excitatory and inhibitory conductances are 
large during high-conductance states, slight variations of either excitation or inhibi-
tion can be very effective in modifying spiking probability. As a consequence, neu-
rons can reliably detect faint changes in temporal correlation of their synaptic inputs 
(Halliday,  1999 ; Salinas and Sejnowski,  2000 ; Rudolph and Destexhe,  2001a ). This 
type of response is interesting, because changes in correlation do not change the 
average conductance nor the average V  m  , but they uniquely appear as changes of the 
level of fl uctuations (variances) of the conductances and of the V  m  . In this case, 
neurons respond to a signal which is not carried by the mean activity of conduc-
tances, which, thus, constitutes an example of a paradigm which cannot be modeled 
by rate-based models. 

 Finally, high-conductance states also impact on the operating mode of cortical 
neurons. Neurons can operate either as coincidence detectors or as temporal inte-
grators, which determine whether the cortex encodes information by the precise 
timing of spikes, or by average fi ring rates. Modeling studies monitored the spike 
output of neurons submitted to a full spectrum of multisynaptic input patterns, from 
highly coincident to temporally dispersed (Maršálek et al.,  1997 ; Kisley and 
Gerstein,  1999 ). It was found that, in general, the spike output jitter tends to be 
lower than the input jitter, indicating that neurons tend to synchronize the responses 
and reduce their temporal dispersion. However, we found that this conclusion is 
different when simulating high-conductance states. In this case, the temporal 
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dispersion is nearly identical between input and output (Rudolph and 
Destexhe,  2003b ). This suggests that in high-conductance states, both operating 
modes can be used robustly and in parallel.    

11.4     Conclusions 

 In this chapter, we have reviewed models of the high-conductance states in cortical 
neurons, and their predicted consequences on dendritic integration. We have fi rst 
overviewed experimental results (Sect.  11.2 ), showing that cortical neurons in vivo 
are subject to a considerable amount of synaptic noise, and experience what is 
called a high- conductance state. In Sect.  11.3 , we have reviewed models of synaptic 
noise which have predicted a number of computational consequences of synaptic 
noise and high- conductance states on neuronal processing. 

 It is important to note that models are not limited to the sole task of predicting 
consequences on integrative properties. Simple models, such as the point- 
conductance model of synaptic noise (Destexhe et al.,  2001 ), can be used to add 
artifi cial synaptic noise in neurons in vitro using the dynamic-clamp technique. This 
mixed modeling-experimental technique is of primary importance, because it allows 
one to directly test the predictions of the models in real neurons. It can also be used 
to realize experiments that would not be possible in vivo, such as controlling the 
amount of synaptic noise, or controlling independently the amount of mean conduc-
tances and their fl uctuations. Another important application of the point- conductance 
model is that it can form the basis for methods to analyze experimental data. Such 
methods include the estimation of synaptic conductances (the VmD method; 
Rudolph et al.,  2004 ), the estimation of spike-triggered average conductances 
(Pospischil et al.,  2007 ), or the estimation of synaptic parameters from the power 
spectrum of the V  m   (Destexhe and Rudolph,  2004 ). These quantities are evaluated 
from the sole knowledge of the V  m   activity, which makes it applicable to standard 
intracellular recording conditions. In the past years, each of these methods was 
tested using computational models, as well as in real neurons using the dynamic- 
clamp technique (reviewed in Piwkowska et al.,  2008 ). 

 One main consequence of high-conductance states is that the presence of synap-
tic noise drastically affects the responsiveness of the neurons by changing their 
response curve or transfer function. The fi nding that the gain and responsiveness of 
neurons are enhanced by synaptic noise was fi rst reported from modeling studies 
(Hô and Destexhe,  2000 ), and then investigated experimentally using dynamic-
clamp injection of in vivo-like synaptic noise (Destexhe et al.,  2001 ; Chance 
et al.,  2002 ; Fellous et al.,  2003 ; Prescott and De Koninck,  2003 ; Shu et al.,  2003 ; 
Wolfart et al.,  2005 ; Higgs et al.,  2006 ; Piwkowska et al.,  2008 ), thus confi rming 
some of the predictions formulated by models. A fascinating possible consequence 
is that the enhanced responsiveness due to synaptic noise could be used as an atten-
tional mechanism (Hô and Destexhe,  2000 ; Shu et al.,  2003 ). By modulating the 
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amount of synaptic noise, it should be possible to switch entire networks from unre-
sponsive to responsive states, an intriguing possibility which should be investigated 
by designing appropriate experiments and models. 

 Given these drastic effects of noise on neurons, the fact that synaptic noise has 
also profound impact on dendritic processing comes to no surprise. Here, the 
presence of noise affects not only the initiation and propagation of dendritic spikes, 
but its consequences are very different in different parts of the dendritic tree. 
Remarkably, it was found that there is a compensation between two opposite 
distance dependence, leading to a roughly location-independent effect of synaptic 
inputs on somatic spiking (Fig.  11.3c ). Thus, the probabilistic dendrites seem to 
behave more “democratically,” giving to each synaptic input a roughly equal vote on 
somatic spiking. 

 This remarkable property still awaits to be tested experimentally, but such a test 
is not easy. It would require to modulate the conductance state of the whole extent 
of the dendrites, and control synaptic inputs of similar weights at different positions. 
These two conditions constitute clear experimental challenges. However, recently it 
was shown that it is possible to maintain irregular states of activity (up-down states) 
in cortical slices (Sanchez-Vives and McCormick,  2000 ; Silberberg et al.,  2004 ), 
which would be a possible way towards performing such experiments. From a 
mathematical point of view, the almost perfect compensation observed for very 
different distance-dependent profi les (Fig.  11.3c ) suggests a simple theoretical 
explanation for the observed effects. Specifi cally, it should be possible to reproduce 
the present observations using simplifi ed models, endowed, for example, with mul-
ticompartment tapering dendrites and integrate-and-fi re mechanism with noise. 
This, as well, constitutes a possible direction for future theoretical studies. 

 Note that the location independence was only studied for isolated excitatory 
synaptic inputs, and should still be investigated for more complex input combina-
tions, such as multiple excitations and combined excitatory and inhibitory inputs. In 
such cases, we expect that the proximity of the different inputs on the dendrite will 
play an important role and may reveal local aspects of dendritic computations, as 
analyzed previously (Mel,  1994 ). 

 Models also showed that synaptic noise enhances the temporal resolution of 
dendrites, both by setting a fast propagating mode and by enhancing the ability 
of the neuron to follow high-frequency inputs (Fig.  11.5 ). Interestingly, the latter 
type of temporal processing was the fi rst consequence put forward by modeling 
studies (Barrett,  1975 ; Holmes and Woody,  1989 ; Bernander et al.,  1991 ; Rudolph 
and Destexhe,  2003a , b ). Neurons in high-conductance states necessarily have a 
faster membrane which allows sharper temporal processing. Remarkably, the fast- 
propagating mode would make the neuron more suitable to act as a coincidence 
detector. Surprisingly, few experimental studies have investigated these temporal 
aspects, which constitute other interesting directions for future investigations. 

 Finally, we did not review here dendrites with calcium currents, although this 
constitutes an interesting subject to investigate in the presence of synaptic noise as 
well. It was shown previously that synaptic noise has strong effect on bursting medi-
ated by T-type calcium currents in thalamic relay neurons (Wolfart et al.,  2005 ). 
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This study revealed that the classic duality of “tonic” and “burst” modes of fi ring in 
thalamic relay cells no longer holds in high-conductance states, because, with syn-
aptic noise, bursts and single-spikes participate to all responses. Interestingly, it was 
observed that intrinsically bursting neurons are much less frequent in vivo com-
pared to in vitro recordings (reviewed in Steriade et al.,  1993 ). Noise modulation of 
the calcium current in dendrites, as in thalamic neurons, as well as the high synaptic 
conductances, which are likely to compete with dendritic calcium conductances, 
may explain why cortical cells are more reticent to burst under in vivo conditions. 

 In conclusion, modeling studies predict that noisy membranes integrate according 
to different rules. This concept also applies to dendrites and may be responsible for 
properties such as equalization of synaptic effi cacies and fi ner temporal processing. 
Thus, like single neurons, the presence of synaptic noise may also be benefi cial to 
dendrites.     
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    Abstract     In most central neurons, dendritic arbors integrate and shape synaptic 
input before it reaches the soma and axon initial segment, where action potentials 
are generated to relay the processed information down the axon to distant synaptic 
outputs. These input and output regions are typically clearly segregated into sepa-
rate areas of the cell. One fascinating exception to this rule occurs in the retina, 
where amacrine interneurons typically receive synaptic inputs and make synaptic 
outputs within the same dendritic arbor. This morphological multiplexing, more 
typically observed in invertebrate neurons, adds a whole new dimension to dendritic 
processing, one that has recently been studied in greater detail, both at the level of 
synaptic mechanism and in the context of visual processing. Here we review recent 
work examining dendritic input/output signaling in two different amacrine cell sub-
types that play distinct roles in visual processing in the retina.  

12.1         Introduction 

 Amacrine cells, which constitute the most diverse cell class in the vertebrate retina 
(~40 different subtypes; MacNeil and Masland  1998 ), provide feedback and feed-
forward inhibition to bipolar cells and ganglion cells, respectively, to help sculpt 
early neural representations of the visual world. Although amacrine cells typically 
exhibit distinct, occasionally spectacular dendritic arbors, most subtypes lack an 
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axon, leading a bemused Ramon y Cajal to name them from the Greek,  a -makrós - inos    : 
“without long fi ber.” Despite the general lack of obvious output processes, amacrine 
cells collectively release a pharmacopeia of different neurotransmitters, including 
GABA, glycine, acetylcholine, dopamine, and various peptide transmitters, per-
haps conjuring an alternative Latin/Greek etymology (ama-crine: “love to secrete”). 
In most cases, amacrine cells dispatch their synaptic output from the same dendrites 
onto which they receive their synaptic input, with no obvious route through the 
soma. This feature appears to have confused Cajal: amacrine cells are typically 
unaccompanied by the feathered arrows that he used to indicate the direction of 
information fl ow in his prescient drawings. 

 This chapter will focus on two of the best-studied amacrine cells: Starburst ama-
crine cells (SACs) and A17 amacrine cells. Although they have different morpholo-
gies and contribute to very different aspects of network function and visual 
processing, they both share a common, distinctive feature: their function within the 
retinal network is thought to rely on compartmentalized input/output signaling 
within small regions of their dendrites. In the case of SACs, functionally isolated 
dendritic branches that are precisely connected to ganglion cell dendrites mediate 
feedforward inhibitory signaling that underlies directional selectivity; in A17s, 
compartmentalized signaling enables single neurons to provide independent feed-
back to hundreds of bipolar cells in parallel. In both cases, distinct morphological 
and biophysical properties combine to optimize local dendritic processing of visual 
information.  

12.2     SACs Compute Direction Selectivity Through 
Specialized Connectivity and Physiology 

 One of the most intriguing models for neural computation is direction-selective 
encoding of motion in the visual system (Fig.  12.1a ; Demb  2007 ). Direction-
selective neurons—cells that respond preferentially to motion in a particular direc-
tion (Fig.  12.1b )—are observed in both cortex (Hubel and Wiesel  1959 ), LGN 

Fig. 12.1 (continued) across the receptive fi eld in different directions. Responses to the onset of 
light (ON responses) are shown in  closed symbols ; OFF responses are shown in  open symbols . 
From Oesch et al.  2005 . ( c ) Original asymmetric feedforward inhibitory mechanism proposed by 
Barlow and Levick ( 1965 ). The asymmetric inhibitory signal causes excitatory input to be vetoed 
by inhibition only when the stimulus travels in the “null” direction. ( d ) typical SAC morphology 
( red ) amidst a mosaic of SAC somata, from mouse retina. From Keeley et al. ( 2007 ). ( e ) SAC 
( black skeleton ) with output varicosities ( black dots ). Connected DSGC dendritic trees are indi-
cated by  dashed ellipses , and synapses are color-coded according to the preferred direction of the 
postsynaptic DSGC. ( f ) Output synapses made by 24 different SACs (relative to each SAC soma, 
 centered  at the origin), color- coded according to DSGC preferred direction, show that SAC den-
drites connect to DSCGs in an antiparallel fashion. From Briggman et al. ( 2011 )       
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  Fig. 12.1    Starburst amacrine cells (SACs) help compute directional selectivity. ( a ) retina sche-
matic showing direction selectivity circuitry. ON and OFF SACs receive glutamatergic input from 
bipolar cells and make excitatory (cholinergic) and inhibitory (GABAergic) connections to direction-
selective ganglion cells (DSGC). Labels for panel  a :  C  cone,  CB  cone bipolar cell,  ONL  outer 
nuclear layer,  OPL  outer plexiform layer,  INL  inner nuclear layer,  IPL  inner plexiform layer,  GCL  
ganglion cell layer. ( b ) spike responses in an ON-OFF DSGC elicited by bars of light moving 
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(Marshel et al.  2012 ), and retina (Barlow and Levick  1965 ). This suggests that 
direction- selective signals are used throughout the visual pathways responsible for 
perception and must, in part, originate in the retina. Early experiments gave rise to 
models in which directional selectivity was generated by asymmetric inhibitory 
connectivity between amacrine cells and ganglion cells, such that inhibition would 
lead excitation in the “null” direction and lag excitation in the “preferred” direction 
(Maturana et al.  1960 ; Barlow and Hill  1963 ; Barlow et al.  1964 ; Oyster and 
Barlow  1967 ; Barlow and Levick  1965 ; Torre and Poggio  1978 ; Fig.  12.1c ). Recent 
studies have revealed that this hypothesized asymmetric connectivity involves the 
dendrites of “starburst” amacrine cells (SACs) and direction-selective ganglion 
cells (DSGCs), and that localized signaling within SAC dendrites is largely respon-
sible for imbuing the retinal output with information about the direction of motion 
(Briggman et al.  2011 ; Euler et al.  2002 ). In the following sections we briefl y 
outline the major conclusions regarding the SAC-dependent mechanisms that 
underlie this retinal computation.

12.2.1       SAC Morphology and Physiology 

 SACs are easily distinguished in mammalian retinas by their exclusive expression 
of choline acetyltransferase (ChAT; Schmidt et al.  1987 ). They form a dense mosaic 
across the retina: each point in retinal space is covered by the dendrites of as many 
as 70 SACs (Vaney  1984 ). The SAC cell class comprises two apparently compli-
mentary subtypes: SACs with their cell bodies located in the ganglion cell layer are 
components of circuits that respond preferentially to brighter moving objects on 
darker backgrounds (i.e., ON SACs), whereas SACs with their cell bodies in the 
inner nuclear layer are part of the retinal circuitry that responds preferentially to 
darker moving objects on brighter backgrounds (OFF SACs). Both SAC subtypes 
release the inhibitory neurotransmitter, GABA, and the excitatory neurotransmitter, 
acetylcholine, onto DSGC dendrites (O’Malley et al.  1992 ), but physiology experi-
ments have shown that the feedforward GABAergic component of the DSGC’s 
input has the strongest directional-selectivity and is most critical to the retina’s 
encoding of directed motion (Fried et al.  2005 ; Kittila and Massey  1997 ). 

 True to their name, individual SACs exhibit a radially symmetric, burst-like mor-
phology (Fig.  12.1d ): several primary dendritic trunks plunge from the soma through 
one-third of the inner plexiform layer (IPL), turn radially (outward) and, within a 
narrow stratum of the IPL, bifurcate in a stereotypical manner, with branch points 
increasing in frequency with distance from the soma. ON SAC dendrites occupy a 
narrow layer of the ON region; OFF SACs occupy a corresponding layer in the OFF 
region (Fig.  12.1a ). Microscopy studies have shown that SACs receive direct gluta-
matergic input from bipolar cells throughout their dendritic arbors, whereas their 
GABAergic (and cholinergic) output synapses are expressed only within the more 
heavily branched distal dendrites (Fig.  12.1e ; Brecha et al.  1988 ; Famiglietti  1991 ; 
O’Malley and Masland  1989 ; Vaney and Young  1988 ). This asymmetric distribution 
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of input and output synapses along individual dendrites suggests that centrifugally 
(center � periphery)-propagating signals should trigger synaptic release from distal 
tips whereas centripetally (periphery � center)-propagating signals would have no 
proximal output synapses to activate (Tukker et al.  2004 ; Vaney and Young  1988 ). 

 In 2002, Thomas Euler and colleagues directly demonstrated two critical fea-
tures of SAC physiology (Euler et al.  2002 ). By monitoring dendritic calcium sig-
nals (via 2-photon microscopy) while presenting centripetal and centrifugal motion 
stimuli to the retinal preparation, they showed (1) that calcium signals in the distal 
dendrites of SACs are preferentially sensitive to centrifugal motion and (2) that 
SAC dendrites operate independently. They hypothesized that each SAC comprises 
multiple, independent computational units (each maximally sensitive to a slightly 
different direction) and that the retina’s sensitivity to directed motion originates 
within these units. 

 Additional morphological and biophysical mechanisms appear to augment the 
directed fl ow of information and isolation of activity within individual dendrites. 
Morphologically, even the most proximal part of each radiating dendritic unit is a 
thin segment that may restrict electrical and biochemical signals to and from the 
more distal parts of the dendrite (Fig.  12.1d ). These proximal dendritic segments 
connect directly to the soma, not to each other, thereby forming an impedance mis-
match with the larger somatic compartments. Consequently, the soma acts as a cur-
rent sink, effectively isolating dendrites from each other (Goldstein and Rall  1974 ; 
Tukker et al.  2004 ). Distinctive biophysical membrane properties of SAC dendrites, 
such as TTX-insensitive sodium channels (Oesch and Taylor  2010 ) and gradients in 
both synaptic activity (Hausselt et al.  2007 ) and chloride transport (Gavrikov et al. 
 2003 ), may also enhance their preferential response to centrifugal (center � periph-
eral) stimuli (Taylor and Smith  2012 ).  

12.2.2     Wiring Asymmetries Confer Direction Selectivity 
onto Motion-Sensitive Signals 

 Although individual SAC dendrites respond preferentially to light bars moving in a 
particular direction, recordings from SAC somata show relatively weak direction 
selectivity (Euler et al.  2002 ). Moreover, most DSGCs exhibit relatively symmetric 
dendritic arbors (e.g., Briggman et al.  2011 , but see    Trenholm et al.  2011 ). How, 
then, do two classes of morphologically symmetric neurons give rise to directional 
selectivity in the four cardinal directions (dorsal, ventral, medial, and lateral; Oyster 
and Barlow  1967 )? The answer requires that SAC dendrites operate independently 
and that the GABAergic input to a particular DSGC comes primarily from SAC 
dendrites that are aligned antiparallel to the DSGCs preferred direction. 

 As mentioned above, direct measurements of intracellular calcium signals 
within the dendrites of SACs have shown that each radially connected dendritic 
unit functions independently in response to visual stimuli (Euler et al.  2002 ), but a 
detailed assessment of wiring asymmetry remained lacking. This critical aspect of 
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the direction- selective circuitry was recently elucidated using a combination of 
microscopy techniques (Briggman et al.  2011 ; Denk and Horstmann  2004 ). First, 
ganglion cells were indiscriminately loaded with a calcium-sensitive fl uorophore 
and then imaged (using 2-photon microscopy) while delivering moving stimuli to 
the retina, enabling a subset of DSGCs and their directional preferences to be iden-
tifi ed. The tissue was then fi xed and prepared for serial block-face electron micros-
copy, a new technique that enables high-resolution three-dimensional reconstruction 
of large volumes (>10 6  μm 3 ) of tissue (Briggman and Denk  2006 ). From these 
anatomical data, Briggman et al. ( 2011 ) reconstructed the dendritic arbors of sev-
eral DSGCs from which they recorded directional light responses, as well as many 
of the SACs making synaptic connections onto those DSGCs. They found that the 
dendrites of each SAC provided direct GABAergic input to all four DSGC subtypes 
(Fig.  12.1e ) and that the preferred direction of SAC dendrites (i.e., proximal to 
distal) was indeed antiparallel to the preferred direction of each contacted DSGC 
(Fig.  12.1f ; Fried et al.  2002 ; Wei et al.  2011 ).  

12.2.3     Remaining Questions 

 Despite the exciting progress described above, major questions regarding direction 
selectivity and SAC physiology remain unanswered. For example, what computa-
tional role do cholinergic SAC synapses play? Direction-selectivity is not abolished 
in the absence of cholinergic signaling (Kittila and Massey  1997 ), suggesting that 
cholinergic transmission is not required for directional processing. Acetylcholine 
release exhibits a different threshold compared to GABA release (Lee et al.  2011 ), 
suggesting that it may modulate the gain of direction-selective signals, or operate 
over particular spatial frequencies (Grzywacz et al.  1998 ). Another mystery concerns 
the role of the dendrodendritic GABAergic synapses that SACs make with each 
other. Dendrodendritic inhibition between the tips of antiparallel SAC dendrites 
could suppress GABA release onto “preferentially responding” DSGCs when a moving 
bar crosses over the dendritic intersection between a pair of reciprocally connected 
SACs (Lee and Zhou  2006 ). Finally, do ON and OFF SACs operate identically, or do 
they exhibit functional differences that are critical to the computation of directional 
motion? The answer to this question likely will require exploration of SAC physiol-
ogy across a broad range of light stimulus conditions and may involve synaptic inter-
actions between the ON and OFF layers of the IPL (Rivlin-Etzion et al.  2012 ).   

12.3     The A17 Paradox: A Large Neuron Containing 
Hundreds of Local Processors 

 Most dendritic computations require signal integration and/or propagation. An 
interesting counterexample is the retinal A17 amacrine cell, in which morphologi-
cal and biophysical specializations create hundreds of highly compartmentalized, 

J.S. Diamond and W.N. Grimes



197

functionally independent computational units within their dendrites (Ellias and 
Stevens  1980 ; Grimes et al.  2010 ). Consequently, A17 amacrine cells appear to 
forsake typical dendritic integration (i.e., collecting and combining synaptic inputs 
to form a single output signal that is distributed via the axon) in favor of distributed, 
parallel processing. 

12.3.1     Morphology and Physiology of the A17 Amacrine Cell 

 A17 amacrine cells were originally identifi ed by their distinct morphological and 
biochemical properties: Dozens of thin (<150 nm diameter), non-branching den-
drites emanate from a soma at the border of the INL and IPL and are studded with 
small (~1 μm) varicosities located at roughly 20 μm intervals (Zhang et al.  2002 ; 
Fig.  12.2a ). In addition, A17s take up indoleamines and can be identifi ed via fl uo-
rescent staining for serotonin (Negishi et al.  1981 ; Sandell and Masland  1986 ; Dong 
and Hare  2003 ; Fig.  12.2b ). Each of the tiny compartments (varicosities) contains 
the essential machinery to receive excitatory (glutamatergic) synaptic input from 
one rod bipolar cell (RBC) and provide reciprocal inhibitory (GABAergic) synaptic 
output to that same RBC, forming a complete feedback microcircuit within a vol-
ume of ~1 μm 3  (Fig.  12.2c ).

   The extent of functional interactions between these dendritic varicosities has 
been debated. On one hand, active conductances (e.g., Na v  channels) in A17 den-
drites could boost postsynaptic signals and enhance signal propagation, thereby 
ensuring that feedback varicosities in the same A17 amacrine exert a cooperative 
(“global”) circuit infl uence (Bloomfi eld and Xin  2000 ; Zhang et al.  2002 ). Because 
the dendritic fi elds of A17s overlap extensively, this particular cell physiology could 
give rise to classic “center-surround inhibition” in response to local stimulation 
(Bloomfi eld and Xin  2000 ). On the other hand, studies combining serial electron 
microscopy and computational modeling have suggested that passive membrane 
properties and dendritic morphology alone might be suffi cient to restrict locally 
generated signals to individual varicosities, possibly leading to their independent 
operation (Ellias and Stevens  1980 ; Grimes et al.  2010 ). 

 More recently, electrophysiological recordings in rat retinal slices demonstrated 
that A17s express very little Na v  conductance and are incapable of fi ring action 
potentials (Grimes et al.  2010 ). These biophysical and electrotonic properties, when 
combined into a compartmental model, suggested that signifi cant voltage attenua-
tion ought to occur between varicosities (Grimes et al.  2010 ; Fig.  12.2f ). To test 
experimentally whether each varicosity functions independently, electrophysiologi-
cal recordings from A17 somata were made concomitantly with 2-photon imaging 
of synaptically evoked calcium signals in individual varicosities (Grimes et al. 
 2010 ; Fig.  12.2e, f ). Recordings in voltage-clamp mode confi rmed that varicosities 
could be stimulated independently (Fig.  12.2e ). In current clamp mode (i.e., permit-
ting dendritic depolarization and active membrane contributions), synaptic stimula-
tion of one varicosity elicited calcium infl ux in a neighbor only if it was signifi cantly 
closer than the typical distance between varicosities (~20 μm; Grimes et al.  2010 ; 
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  Fig. 12.2    ( a ) Typical A17 morphology, from rat retina. ( b ) A17 somata in fl at-mount rabbit retina 
labeled with 5,7-dihydroxytryptamine. From Dong and Hare ( 2003 ). ( c ) Electron microscopic sec-
tion from rat retina showing a rod bipolar cell (RBC) terminal apposed to postsynaptic processes 
from an AII amacrine cell and an A17 amacrine cell. Note the synaptic ribbon ( red arrow ) in the 
RBC terminal and the reciprocal feedback synapse ( blue arrow ) in the A17 process. ( d ) Reciprocal 
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Zhang et al.  2002 ; Fig.  12.2f ). These results suggested that the >100 varicosities on 
each A17 typically operate independently, especially under low-light (scotopic) 
conditions when light-evoked signals are sparse in both space and time. These inter-
neurons therefore provide an opportunity to study synaptic and cellular mechanisms 
that govern the function of tiny microcircuits in the context of sensory processing. 

 Perhaps not surprisingly, synaptic input and output appear to be tightly coupled 
within these small A17 varicosities. Under certain conditions, GABA release from 
A17s is triggered primarily by calcium infl ux through calcium-permeable AMPA 
receptors, indicating an intimate relationship between the postsynaptic glutamate 
receptors and presynaptic GABA release machinery within A17 varicosities (Chavez 
et al.  2006 ). These results suggest a mechanism by which input–output interactions 
may be exclusively local and relatively unaffected by the local dendritic membrane 
potential. 

 A17s express voltage-gated calcium (Ca v ) conductances (Menger and Wassle 
 2000 ) in both their somas and synaptic varicosities (Grimes et al.  2009 ), but Ca v  
activation in varicosities is limited by large conductance, calcium-activated potas-
sium (BK) channels that suppress postsynaptic depolarization. Accordingly, when 
BK channels are blocked, Ca v s are activated and enhance GABA release (Grimes 
et al.  2009 ). 

 More recent ultrastructural data indicates that most feedback varicosities contain 
one excitatory input synapse and two reciprocal inhibitory synapses. These feed-
back synapses are not distributed randomly across the varicosity membrane; rather 
they are typically aligned to one side of the excitatory input synapse. The closest 
(“proximal”) synapse is typically located within 200 nm of the center of the excit-
atory ribbon synapse, while the “distal” synapse is typically 500–800 nm away 
(Grimes et al.  unpublished observations ). One possibility is that calcium infl ux 
through postsynaptic calcium-permeable glutamate receptors triggers GABA 
release at the proximal synapse (Chavez et al.  2006 ) but, due to calcium buffering 
in the varicosity, fails to trigger release at the distal synapse. The distal release site, 
instead, may require membrane depolarization to activate calcium infl ux through 
Ca v  channels, a process likely regulated by BK channels. BK channels themselves 
are highly regulated (Hou et al.  2009 ), and those expressed in A17 amacrine cells 
exhibit particularly rapid inactivation (Grimes et al.  2009 ). BK channels in A17 
varicosities may, therefore, underlie activity-dependent computations.  

Fig. 12.2 (continued) inhibitory feedback recorded in a RBC from a rat retinal slice. Inward Ca v  
current and outward IPSC were evoked by depolarizing the RBC membrane from −60 to −10 mV. 
From Chavez et al. ( 2006 ). ( e ) Synaptically activated Ca 2+  responses in an A17 dendrite. The RBC 
above varicosity 1 ( blue circle ) was electrically stimulated to elicit a Ca 2+  signal ( blue traces ). 
Stimulation failed to elicit a Ca 2+  signal in varicosity 2 ( red circle ,  red traces ), even when the A17 
membrane potential was allowed to move freely (current clamp). From Grimes et al. ( 2010 ). ( f ) 
Ratio of responses (varicosity 2:varicosity 1) from ten experiments like that shown in ( e ).  Gray 
region  indicates spacing (mean ± SD,  n  = 47) of synaptic varicosities along A17 dendrites.  Dashed 
line  indicates predicted electrotonic decay of membrane depolarizations, given the measured 
active and passive properties of A17 dendrites. From Grimes et al. ( 2010 )       
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12.3.2     A17 Amacrine Cells Infl uence Visual Processing Under 
Dim Lighting Conditions 

 From a visual processing standpoint, A17 amacrine cells receive excitatory synaptic 
input from, and provide reciprocal inhibitory feedback to second order neurons (i.e., 
RBCs) in the retinal pathway/circuitry responsible for night vision. Local process-
ing by A17 varicosities must infl uence temporal aspects of signals and/or noise 
traversing this specialized pathway. The retinal circuitry responsible for night vision 
has an extremely high gain in darkness, suffi cient to detect and transmit signals aris-
ing from the absorption of single photons (Field et al.  2005 ). In dimly lit environ-
ments, conditions for which this circuitry is optimized, signals are sparse in both 
space and time. A high level of convergence within this circuitry confers the retina’s 
output neurons (i.e., ganglion cells) with high sensitivity. As mean light levels 
approach absolute darkness, however, neural noise converging onto downstream 
neurons must be tightly controlled so that spatially and temporally infrequent 
single- photon signals are perceivable under these conditions. 

 Indeed, our recent experiments indicate that A17-mediated reciprocal feedback 
inhibition  enhances  the sensitivity of AII amacrine cells to extremely dim fl ashes 
delivered in absolute darkness (Grimes et al.  unpublished observations ). 
Interestingly, this result appears to be due to the fact that feedback inhibition, by 
regulating tonic release from RBCs in absolute darkness, maintains a larger pool of 
releasable vesicles, thereby increasing synaptic gain in darkness. 

 As signal/fl ash strength increases the discrimination of signals on a noisy back-
ground becomes a trivial task. Under these conditions A17 seems to play a role in 
shaping signal kinetics and dynamic range. In vivo experiments using electroretino-
grams from rabbits have shown that reciprocal inhibition from A17 amacrine cells 
shapes the time course of the retinal’s response to a range of fl ash strengths from 
darkness (Dong and Hare  2003 ). A recent in vivo report on mice has suggested that 
BK channels in A17 amacrine cells limit the dynamic range of RBC signals 
(Tanimoto et al.  2012 ), a result that is in direct agreement with the effects of BK 
channels antagonists on RBC dynamic range in vitro (Grimes et al.  2009 ).  

12.3.3     Remaining Questions 

 As the anatomy and biophysical mechanisms underlying A17-mediated dendritic 
computations become better understood, we pause to consider the remaining ques-
tions surrounding A17 amacrine cells. Do A17 amacrine cells contribute to visual 
processing at higher light levels? And, if so, do these contributions require indepen-
dent processing? What cells, other than RBCs, provide input to A17 amacrine cells 
and how do these inputs infl uence A17 function (e.g., A17 receive inhibition on 
their descending dendrites)? Finally, given the markedly atypical dendritic integra-
tion in A17s (Grimes et al.  2010 ), what parameters dictate the optimal size of A17 
dendritic arbors (Chklovskii  2004 )?   
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12.4     Conclusions 

 Despite the wealth of interesting information gleaned from studying both SACs and 
A17 amacrine cells, the physiology and circuit functions of the majority of ama-
crine cell types remain elusive. Estimates indicate that the retinas of mammalian 
species contain 30 or more different amacrine cell types, so an abundance of inter-
esting information remains to be discovered. What is clear so far is that the specifi c 
details of each amacrine cell type’s connectivity, morphology, and physiology criti-
cally underlie their computational roles in the surrounding circuitry. For example, 
colocalization of input and output synapses within individual dendrites of SACs and 
A17s is a morphological specialization that affords the capacity for independent 
parallel processing. This particular synaptic organization has been observed more 
often in invertebrate nervous systems (e.g., the terminal abdominal ganglion in 
crayfi sh; Takahata et al.  2000 ), although dendrodendritic synapses also have been 
reported in the mammalian suprachiasmatic nucleus (Guldner and Wolff  1974 ) and 
granule cells in mammalian and reptile olfactory bulb (Isaacson and Strowbridge 
 1998 ; Jahr and Nicoll  1980 ). In a cell class with tremendous morphological diver-
sity, some amacrine cells (e.g., AII amacrine cells and polyaxonal amacrine cells) 
exhibit greater separation between inputs and outputs. Correspondingly, at least one 
amacrine cell type with more conventional morphology has been shown to be 
involved in a computation that requires signal integration over a signifi cant area of 
visual space (Baccus et al.  2008 ). 

 Enhanced access to other amacrine cells types, with new cell type-specifi c mark-
ers (Siegert et al.  2009 ) and other genetic manipulations, will enable us to address 
in many more amacrine cells the same questions that have been posed in SACs and 
A17s. Hopefully, this will help us to understand how various forms of compartmen-
talized dendritic processing contribute to specifi c processing tasks of the retinal 
circuitry. In particular, it will be interesting to learn whether each amacrine cell type 
performs functions required by a particular RGC, or whether they each process 
information that is used by a number of RGC subtypes. And how does dendritic 
processing and amacrine cell function change from the night, when photons are 
scarce and rods mediate visual signaling, and the day, when cone photoreceptors 
provide color information to be processed? There is much to be done but the fi eld 
(thanks, no doubt, to amacrine cells) appears to be headed in the right direction.     
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    Abstract     The retina utilizes a variety of dendritic mechanisms to compute  direction 
from image motion. The computation is accomplished by starburst amacrine cells 
(SBACs) which are GABAergic neurons presynaptic to direction-selective ganglion 
cells (DSGCs). SBACs are symmetric neurons with several branched dendrites radi-
ating out from the soma. Larger EPSPs are produced in the dendritic tips of SBACs 
as a stimulus sequentially activates inputs from the base of each dendrite outwards. 
The directional difference in EPSP amplitude is further amplifi ed near the dendritic 
tips by voltage-gated channels to produce directional release of GABA. Reciprocal 
inhibition between adjacent SBACs may also amplify directional release. Directional 
signals in the independent SBAC branches are preserved because each dendrite 
makes selective contacts only with DSGCs of the appropriate preferred- direction. 
Directional signals are further enhanced within the dendritic arbor of the DSGC, 
which essentially comprises an array of distinct dendritic compartments. Each of 
these dendritic compartments locally sum excitatory and inhibitory inputs, ampli-
fi es them with voltage-gated channels, and generates spikes that propagate to the 
axon via the soma. Overall, the computation of direction in the retina is performed 
by several local dendritic mechanisms both presynaptic and postsynaptic, with the 
result that directional responses are robust over a broad range of stimuli.  
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13.1         Introduction 

 Since their discovery over 40 years ago, direction-selective ganglion cells (DSGCs) 
in the vertebrate retina have captured the imagination of neuroscientists as a model 
for understanding how neural computations are implemented (Barlow and Levick 
 1965 ). Many details about the underlying retinal circuitry have been determined 
(for a recent review, see Vaney et al.  2012 ), and it is apparent that diverse mecha-
nisms contribute, both at the synaptic level, and within dendrites. In this chapter we 
outline presynaptic and postsynaptic dendritic mechanisms that contribute to gener-
ating directional responses. 

 Retinal ganglion cells (GCs) represent the output from the retina, and receive 
glutamatergic excitatory inputs from bipolar cells, and GABAergic and glycinergic 
inhibitory inputs from amacrine cells. Mammalian retinas contain about 20 different 
types of GC each with characteristic receptive fi eld properties (Rodieck  1998 ; 
Masland  2012 ). The DSGCs respond with a vigorous burst of action potentials to 
stimuli in a “preferred” direction, and weakly to the same stimulus moving in the 
opposite “null” direction. The response amplitude approximates a sinusoidal depen-
dence on motion angle, suggesting that the cell computes the motion vector compo-
nent aligned along the preferred-null axis (Sivyer et al.  2010 ). The earliest study 
indicated that the computation did not require activation across the full receptive 
fi eld, but that motion within smaller regions, termed “subunits,” was suffi cient to 
generate directional responses (Barlow and Levick  1965 ). A subunit inhibits the 
DSGC when it sees a stimulus moving in the null direction. Since the directional 
preferences of all subunits are aligned, the combined activity of the subunits pre-
vents the DSGC from responding during null motion. Spatially asymmetric inputs 
from the GABAergic starburst amacrine cell (SBAC) to the DSGCs were hypothe-
sized to form the basis for the null inhibition underlying these directional responses 
(Vaney et al.  1989 ), a prediction that has been borne out in the last decade (Vaney 
et al.  2012 ). The subunits are assumed to be generated by the convergent input of 
many SBACs that have dendritic overlap with the DSGC. The spatial asymmetry of 
synaptic connections between SBACs and DSGCs arises due to selective contacts 
between the two cells that preserve the directional signals generated in the SBACs. 

 For a response to be asymmetric for direction of motion, a spatiotemporal asym-
metry is required. An early example of such an asymmetry that has been posited in 
recent models of dendritic integration (e.g., Branco et al.  2010 ; McGinley et al. 
 2012 ) was outlined by Rall ( 1964 ), who showed in a purely passive model of a neu-
ron that a sequence of synaptic inputs progressing from its dendritic tips to the soma 
gave a larger signal at the soma than when the sequence started at the soma and 
progressed to the dendritic tips. Such directional signals depend critically upon the 
asymmetric location of the integration point. For example, for a location that is sym-
metric with respect to the dendritic structure, such as the DSGC soma, the Rall- 
effect will produce symmetric, nondirectional responses. In the following sections 
we will show that the integration points in both the DSGCs and the presynaptic 
SBACs are located asymmetrically, thus allowing utilization of the Rall-effect. 
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 However, even with such directional asymmetries in the structure of the circuitry, 
an additional problem remains. A purely linear system can only modify the ampli-
tude and phase of an input signal. Thus directional signals can be viewed, in the 
frequency domain, as resulting from constructive or destructive interference. Such a 
system is not robust, in the sense that there will be stimuli with frequency and phase 
characteristics that produce “anomalous” responses. For example, the directional 
response of a linear neural model to a spatially repeating stimulus such as a sine- 
wave grating can produce nondirectional or even reversed-directional, responses 
(Egelhaaf et al.  1989 ; Tukker et al.  2004 ). Thus robust biological direction-selective 
systems contain nonlinearities to enhance their directionality. For example, cortical 
direction-selective cells, which lack input from retinal DSGCs, are thought to gen-
erate their direction-selective properties by linearly summing input from “non- 
lagged” and spatially offset “lagged” cells in the lateral geniculate nucleus (LGN) 
(Adelson and Bergen  1985 ; McLean et al.  1994 ). But the lagged LGN cells generate 
their lagged properties by integrating excitation and inhibition with a nonlinear 
spike threshold (Vigeland et al.  2013 ). 

 We will outline current thinking about the retinal mechanisms for presynaptic 
and postsynaptic nonlinearities that greatly enhance the functional utility of the 
“Rall effect.” Much of our discussion will consider the mechanisms that generate 
directional responses in the most widely studied DSGCs, the so-called On-Off 
DSGCs of rabbit retina. The anatomical structure of these cells provides no indica-
tion as to the preferred direction (Yang and Masland  1994 ), and for comparison we 
will briefl y consider the mechanisms proposed to generate directional responses 
within mouse DSGCs that show a strong asymmetry in dendritic structure that is 
aligned with the preferred-null axis.  

13.2     Dendritic Processing Presynaptic to the DSGCs 

 In this section we focus on presynaptic mechanisms that generate directional 
GABAergic inhibition from the SBAC to the DSGC that is strongest in the DSGC’s 
null direction. In Sect.  13.3  we consider three further mechanisms involving post-
synaptic integration of synaptic inputs to the DSGC that contribute to generating 
directional responses. 

 At the fi rst retinal stage, photoreceptors transduce light into electrical signals that 
are transmitted synaptically to second order neurons, called bipolar cells. The 
responses of photoreceptors and bipolar cells show no dependence on the direction 
of stimulus motion. Bipolar cells provide excitatory inputs to the starburst amacrine 
cells and the DSGC, the two key neuronal elements for generating directional sig-
nals in the retina. An early fi nding was that directional responses in DSGCs are 
dependent upon GABAergic transmission (Ariel and Daw  1982 ; Caldwell et al. 
 1978 ). The critical GABAergic transmission originates from starburst amacrine 
cells (SBAC), because when these cells are selectively ablated in mouse or rabbit, 
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the DS responses of the retina are abolished (Amthor et al.  2002 ; Yoshida et al. 
 2001 ). This striking neuron has a radially symmetrical dendritic tree, 250–500 μm 
in diameter with a unique morphology, in which successive bifurcations generate 
profuse branching near the dendritic tips (Fig.  13.1 ) (Famiglietti  1983 ). In record-
ings from the soma, the SBAC appears not to be DS for bars or gratings (Taylor and 
Wässle  1995 ; Peters and Masland  1996 ), which is to be expected at the soma of a 
radially symmetric cell that integrates responses from all directions with equal 
weight (Tukker et al.  2004 ). However, the soma is not a functionally relevant inte-
gration point, since these cells have no axon and do not generate action potentials 
(Taylor and Wässle  1995 ; Peters and Masland  1996 ; Zhou and Fain  1996 ; Cohen 
 2001 ). Rather, the output is generated from synaptic boutons located in the outer 
third of the dendritic arbor, and these local integration points receive summed activ-
ity from excitatory inputs arrayed along each dendrite (Famiglietti  1991 ). The 
asymmetric location of these output synapses within the dendritic arbor results in a 
preferred axis of stimulation from the soma along the dendrite to the bouton. When 
each bouton is considered as an integration point, the Rall-effect is predicted to 
produce an “intrinsic” DS signal at that bouton (Tukker et al.  2004 ). The summation 
of excitatory inputs along the dendrite generates a larger signal in a dendritic bouton 
when a stimulus proceeds outwards from soma (centrifugal), because the EPSPs 
generated near the distant soma are relatively delayed and thus superimpose with 
EPSPs subsequently generated at the bouton (Tukker et al.  2004 ). In the opposite 
direction (centripetal), the EPSP at the bouton rises and falls before the EPSPs from 
the distant soma arrive, resulting in a smaller peak depolarization.

   The morphological parameters that maximize this dendrite intrinsic DS signal 
were examined in detail for SBACs (Tukker et al.  2004 ). Computational modeling 
showed that the precise dendritic structure is not critical. For example, simplifi ed 
models of the SBAC, in which the fi ne details of the branching pattern were 
removed, produced strong intrinsic DS signals at the dendritic tips (Tukker et al. 
 2004 ). However, the degree of isolation from the soma is critical (Velte and Miller 
 1997 ; Miller and Bloomfi eld  1983 ). For models with thick dendrites, which are 
nearly isopotential, or for those with thin dendrites, which are electrically isolated 
from the soma, the directional difference between centrifugal and centripetal signals 
is reduced when compared with dendrites with an intermediate thickness that pro-
vide a partial isolation from the soma. Partial electrical isolation on the order of one 
space constant produces optimal DS at the dendritic tips (Tukker et al.  2004 ), 
because the directional difference depends on the superposition of the “global” 
depolarization, generated across the entire dendritic arbor, with the local depolar-
ization generated at a given bouton. This superposition is asymmetric for stimulus 
direction because each bouton is located asymmetrically relative to the global sig-
nal. Since the SBACs are radially symmetric, boutons on opposite sides will have 
opposite intrinsic preferred directions. Thus, the boutons in each dendritic branch 
will have an intrinsic preferred direction roughly aligned along a centrifugal vector 
connecting the soma with the bouton. 

 Calcium imaging experiments have demonstrated, in agreement with the intrin-
sic preferred direction, that centrifugal motion stimuli generate stronger calcium 
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  Fig. 13.1    ( a ) Morphology of starburst amacrine cell (SBAC) and directional preference of the 
dendritic tips. The SBAC has a distinctive symmetric morphology, in which a few primary den-
drites emanate from the soma and bifurcate several times to generate a bushy appearance at the 
dendritic tips (Famiglietti  1983 ). Each dendrite integrates excitatory postsynaptic potentials 
(EPSPs) from bipolar cells. The amplitude of the summed EPSP is larger for outward motion 
(soma to dendrite,  purple arrows ), and generates GABA release from the outer third of the den-
dritic tree ( gray ) with a directional preference aligned with the orientation of the dendrite relative 
to the soma. This directional-difference in EPSP amplitude represents an “intrinsic” mechanism 
that arises from the morphology and spatiotemporal activation of the excitatory inputs. Image of 
starburst amacrine, David Vaney, unpublished personal communication. ( b ) Connectivity of the 
DSGC pathway. Arrays of bipolar cells make glutamatergic synapses with the SBAC and the 
DSGC ( green arrows ). The SBAC makes GABAergic contacts ( red arrows ) onto DSGCs from the 
outer third of its dendritic arbor. Each SBAC dendrite makes selective inhibitory contacts only to 
DSGCs with the opposite preferred direction. The DSGC contains two dendritic arborization lay-
ers, each with input from bipolar cells and SBACs; only one layer is shown. Note that the bipolar 
cells differ, since SBACs receive tonic excitatory input but DSGCs do not (see text)       
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signals in SBAC dendrites than centripetal stimulation (Euler et al.  2002 ). 
 Electron-microscopic analysis (Briggman et al.  2011 ), cell-specifi c ablation experi-
ments (Yoshida et al.  2001 ; Amthor et al.  2002 ), and paired recording experiments 
(Fried et al.  2005 ; Wei et al.  2011 ), indicate that the large directional inhibitory 
inputs seen in DSGCs originate in selective connections from multiple overlapping 
SBAC dendrites aligned along a common axis. However, the genesis of directional 
signals within these dendrites remains controversial. In the next section we will 
review  current models for nonlinear processes that may enhance the intrinsic direc-
tional signals generated in SBACs. 

13.2.1     Nonlinear DS Mechanisms in the SBAC: Voltage-Gated 
Channels 

 Passive linear computational models of SBACs indicate that the directional- 
differences generated by the intrinsic DS mechanism are not large enough to 
 produce the much greater directional differences in the inhibitory inputs observed in 
DSGCs (Tukker et al.  2004 ), which can differ in magnitude by threefold or more 
(Taylor and Vaney  2002 ; Fried et al.  2005 ). Moreover, the models show that an 
intrinsic DS preference for centrifugal motion in the dendritic tips is accompanied 
by a preference for centripetal motion at the soma (Tukker et al.  2004 ; also see Rall 
 1964 ); however, voltage recordings from SBAC somas show a preference for cen-
trifugal motion (Euler et al.  2002 ; Oesch and Taylor  2010 ), indicating that the linear 
model of DS in SBACs is incomplete. 

 An obvious modifi cation to the simple linear model was the addition of voltage- 
gated calcium channels to the dendritic boutons in the outer third of the dendritic 
arbor, since such channels are required to support neurotransmitter release, and 
might also produce nonlinear amplifi cation of the small intrinsic directional signals 
in SBACs. Indeed, addition of voltage-gated calcium channels to an otherwise pas-
sive model resulted in large directional signals, commensurate with those inferred 
from measuring the inhibition in DSGCs or the calcium transients in the SBACs 
(Tukker et al.  2004 ). Other investigations indicate that voltage-gated sodium chan-
nels, although not dense enough to generate spikes in SBACs (Taylor and Wässle 
 1995 ; Zhou and Fain  1996 ; Cohen  2001 ), might also contribute to the DS nonlinear-
ity (Oesch and Taylor  2010 ). Moreover, the addition of voltage-gated channels to 
the dendrites correctly predicts the  centrifugal  preference for motion that is observed 
for somatic recordings. The voltage-gated channels nonlinearly amplify the intrin-
sic directional difference in the amplitude of EPSPs at the dendritic tip, producing 
larger EPSPs for centrifugal motion (Fig.  13.2 ) (Trenholm et al.  2011 ). The ampli-
fi ed directional EPSPs at the dendritic tips propagate back to the soma and override 
the centripetal preference for motion that is expected for the linear Rall effect. The 
boosting effects of voltage-gated channels will presumably depend on their bio-
physical characteristics. The activation range, and steady-state voltage-dependent 
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inactivation range of the calcium and sodium channels must be such that enough 
channels are available for activation at typical resting potentials of SBACs, and that 
the channels are activated suffi ciently by the light-evoked EPSPs during motion 
stimulation. While these parameters have not been exhaustively investigated, there 
is indirect evidence that the resting potential of SBACs is set dynamically. Under 
steady background illumination (resting state), SBACs receive a constant tonic 
excitatory input that is large enough to depolarize the cell by several millivolts 
(Taylor and Wässle  1995 ; Peters and Masland  1996 ). Hausselt et al. ( 2007 ) pro-
posed that this tonic excitation generates a voltage gradient within the dendrites of 
the SBACs that is essential component of the mechanism for directional voltage 
responses in SBACs. The model included activation of voltage-gated calcium 
 channels and was found to operate only within a relatively narrow voltage-range. 

SBAC

BP BP BP BP BP BP

B AC K chans
Na chans
Ca chans

GABA

[Ca]i

Release

Intrinsic DS

  Fig. 13.2    Biophysical mechanisms amplifying DS at dendritic tips of the SBAC. An array of 
bipolar cells (BP) provides visually mapped excitatory input over the entire dendritic arbor. ( a ) The 
directional preference of each dendrite is defi ned by the direction it points relative to the soma. 
EPSPs vary in amplitude ( black traces ) in response to stimuli moving towards and away from the 
soma ( gray arrows ). Due to the cable properties of the dendrite that partially isolate the tip from 
the soma, stimuli that sequentially activate bipolar cell inputs from soma to tip produce a larger 
EPSP at the tip than stimuli moving from tip to soma. This gives an “intrinsic DS” centrifugal 
preference to the dendritic tip, since the larger centrifugal EPSP can generate more local transmit-
ter release (Tukker et al.  2004 ). ( b ) The directional difference in EPSP amplitude from ( a ) is 
enhanced by voltage-gated channels (Na, Ca,  green arrow ) which nonlinearly amplify larger 
EPSPs, thus increasing the directional difference (Oesch and Taylor  2010 ). Kv channels in the 
soma and proximal dendrites limit depolarization to −20 mV ( red dashed line ) and may function 
to isolate dendritic signals (Ozaita et al.  2004 ). ( c ) The directional difference in the dendritic tips 
is likely further enhanced by the synaptic release mechanism ( blue arrow ), for example a nonlinear 
dependence on calcium infl ux ([Ca]i,  blue traces ) (Hausselt et al.  2007 ; Lee et al.  2010 ). Thus the 
directional synaptic release at the dendritic tips is dependent on the extended spatial activation of 
the synaptic inputs, coupled with nonlinear amplifi cation. Other mechanisms, such as reciprocal 
inhibition from neighboring SBACs, and a gradient in the membrane potential or inhibitory rever-
sal potential from dendritic tip to soma, may also contribute       
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This adds weight to the idea that dynamic control of the resting potential might be 
important for optimizing the nonlinear boosting provided by voltage-gated chan-
nels. The tonic excitatory input is not seen in DSGCs, implying that the bipolar cells 
that drive the SBAC differ in type from those that drive the DSGC (Helmstaedter 
et al.  2013 ).

   The models involving dendritic mechanisms within the SBACs as the primary 
source of directional signals share a common notion that the individual dendritic 
branches represent separate processing mechanisms that essentially act indepen-
dently (see Chap.   12     in this book). In this context, the presence of a fast-activating 
Kv3 delayed rectifi er potassium channel takes on added signifi cance, since these 
channels are found in the highest density in the soma, with a gradient of declining 
density out into the dendrites (Ozaita et al.  2004 ). This K channel activates at 
−20 mV and thus may provide a barrier to depolarization near the soma that might 
restrict nonlinear amplifi cation to individual dendrites.  

13.2.2     Nonlinear DS Mechanisms in the SBAC: Reciprocal 
Inhibition 

 Network interactions between SBACs have also been proposed to contribute to gen-
erating the directional inhibitory input to the On-Off DSGCs. SBACs are highly 
branched and overlap extensively, with each point in the retina “covered” by the 
dendritic arbors of 30–70 individual cells (coverage factor calculated as [dendritic 
arbor area (μm 2 ) × cell density (n/μm 2 )]; Tauchi and Masland  1985 ; Famiglietti  1991 , 
 1992 ; Vaney  1984 ). These overlapping SBAC dendrites run together in tight fasci-
cles along with the DSGC dendrites (Tauchi and Masland  1985 ; Famiglietti  1992 ; 
Vaney and Pow  2000 ; Dong et al.  2004 ; Briggman et al.  2011 ), an arrangement that 
allows for numerous contacts between SBACs and DSGCs, but also between adja-
cent SBACs. Indeed, recordings from pairs of SBACs provide evidence for inhibi-
tory and reciprocal synaptic connections between adjacent cells (Lee and Zhou 
 2006 ). Such an arrangement raises the possibility for positive feedback within the 
network that could enhance directional signaling (Lee and Zhou  2006 ; Taylor and 
Smith  2012 ). For example, when the dendritic tip of one SBAC is depolarized by 
centrifugal motion, it will increase GABA release and hyperpolarize the adjacent 
dendrite of a neighboring SBAC, which in turn will reduce the reciprocal inhibition 
from that dendrite. The reduced reciprocal inhibition will enhance the depolarization 
and inhibitory output of the original SBAC, and so on. This scheme represents posi-
tive feedback, which could enhance the DS signals in SBAC dendritic tips. Such a 
model provides an alternative explanation for the function of tonic excitation to 
SBACs, because if a reciprocal negative feedback mechanism is to produce positive 
feedback it requires tonic excitation to drive both cells to tonically inhibit each other 
(Taylor and Wässle  1995 ; Lee and Zhou  2006 ; Taylor and Smith  2012 ). 

 Such a positive feedback mechanism implies that as a stimulus enhances the 
inhibitory output of one SBAC dendrite, it will suppress the output of the recipro-
cally connected SBAC dendrite which has an opposite preferred direction. Since the 
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preferred directions of SBAC dendrites are aligned with the orientation of each 
dendritic branch, the positive feedback model further requires that, despite the 
extensive coverage factor of 30–70 for SBACs, reciprocal connections are limited to 
opposing dendrites. In a cell such as the SBAC that makes synaptic output only in 
the outer third of dendritic arbor, this can only occur if the somas of reciprocally 
connected SBACs lie outside the dendritic extent of the partner cell. Contrary to this 
expectation, reciprocal inhibitory connections are seen between more closely spaced 
SBACs (Lee and Zhou  2006 ). Moreover, even with suffi cient separation of somas, 
contacts between orthogonally oriented dendrites of adjacent SBACs would be 
counterproductive as they would inhibit the responses of the preferred direction 
dendrite regardless of stimulus direction (Taylor and Smith  2012 ). It is not known 
whether reciprocal contacts between SBACs display the selectively required for the 
positive feedback model. 

 An alternative mechanism has been proposed for enhancing DS and appears to 
include both intrinsic DS mechanisms and enhancement by network inhibition 
between SBACs. In this model, a chloride gradient along each dendrite causes 
GABA receptors to be depolarizing near the SBAC soma and hyperpolarizing near 
the dendritic tips (Gavrikov et al.  2006 ; Enciso et al.  2010 ). A model including these 
mechanisms can approximately duplicate somatic recordings from the SBAC. 
Apparently this mechanism, by preventing GABAergic inputs near the soma from 
generating inhibition, may enhance DS in the dendritic tips. 

 While the involvement of reciprocal network connections between SBACs rep-
resents an attractive model for enhancing DS signals, the evidence for such mecha-
nisms remains equivocal. Models of the SBAC can develop DS at the dendritic tips 
without any inhibition (Tukker et al.  2004 ), and moreover, recordings from SBACs 
show DS signals with GABAergic inhibition blocked (Euler et al.  2002 ; Hausselt 
et al.  2007 ). Finally recordings from SBACs, under conditions that produce strong 
DS signals in DSGCs, fail to elicit strong inhibitory inputs in SBACs (Oesch and 
Taylor  2010 ), implying that inhibition between SBACs is not required to generate 
DS responses within DSGCs. However, such negative results are hardly compelling, 
and further experimental evidence is required to establish whether reciprocal inhibi-
tion plays an active role in generating directional signals.  

13.2.3     Asymmetric Synaptic Connectivity from SBACs 

 Due to the large coverage factor of SBACs (30–70), at each point in the retina, the 
co-stratifying DSGCs have access to SBAC dendrites with all possible preferred 
directions, yet On-Off DSGCs display only four, orthogonally oriented, preferred 
directions. This observation suggested that the four populations of DSGCs make 
selective contacts with appropriately oriented SBAC dendritic branches (Taylor and 
Vaney  2003 ). Recent large-scale EM reconstructions have confi rmed this predic-
tion, by demonstrating the angular specifi city of the synaptic connections made 
from SBACs onto DSGCs. SBAC dendrites pointing in the DSGC’s null direction 
make more synaptic contacts than SBAC dendrites pointing in the preferred 
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direction (Briggman et al.  2011 ). Although not defi nitively identifi ed, the synaptic 
connections were assumed to be GABAergic, which is consistent with a physiologi-
cal analysis demonstrating functionally asymmetric GABAergic connections (Wei 
et al.  2011 ). However, the SBAC is unusual among central neurons in that it releases 
an inhibitory neurotransmitter (GABA) and an excitatory neurotransmitter (acetyl-
choline, ACh) (O’Malley et al.  1992 ). Paired recordings between SBACs and 
DSGCs indicate that the calcium sensitivity and threshold for release are different 
for the two transmitters, with the release of acetylcholine requiring stronger depo-
larization and larger calcium infl ux (Lee et al.  2010 ). Since transmitter release from 
SBACs is assumed to be driven by the directional calcium signals in the SBAC 
dendritic tips (Euler et al.  2002 ) the release of both GABA and ACh is expected to 
have the same directional preference, i.e., the release of ACh should also be larger 
in the null direction. Contrary to this expectation, all reports to date have indicated 
that excitation is larger in the preferred direction (Chiao and Masland  2002 ; Lee 
et al.  2010 ). Possible resolutions to this apparent contradiction include the hypoth-
esis that the release of acetylcholine from SBAC dendrites may be less directional 
than that of GABA, perhaps due to differences in the calcium-sensitivity of release 
(Lee et al.  2010 ), or that the cholinergic synapses from a SBAC dendrite may con-
nect to different DSGCs than its GABAergic synapses. An alternative explanation 
is that the directional excitation observed in somatic recordings of DSGCs results 
from space-clamp errors within the DSGC that are rendered directional by the large 
directional difference in inhibition (Poleg-Polsky and Diamond  2011 ). If true, then 
the cholinergic synapses from SBAC to DSGC might be made symmetrically from 
all directions. Another possibility is that inhibitory feedback from the SBAC to 
bipolar cells could produce a directional bias in the release of glutamate from indi-
vidual axon terminals or axonal branches of the bipolar cells. Further research will 
be required to resolve this issue.   

13.3      Postsynaptic Dendritic Processing in DSGCs 

 In the foregoing we have focused on presynaptic mechanisms that generate direc-
tional GABAergic inhibition from the SBAC to the DSGC that is strongest in the 
DSGC’s null direction. In this section we consider three further mechanisms involv-
ing postsynaptic integration of synaptic inputs in the DSGC that contribute to gen-
erating directional responses. 

13.3.1     Spatial Offset 

 Each SBAC dendrite collects excitatory inputs along its entire length, but only 
makes inhibitory outputs from the outer third of the dendrite. Thus, relative to a 
stimulus edge moving through the receptive fi eld in the null direction, the inhibition 
received by the DSGC is spatially offset ahead of the stimulus, roughly by the 
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dendritic radius of the SBAC (see Fig.  13.1b ). This spatial offset will be evident as 
a difference in the temporal delay of the inhibition for motion in opposite directions. 
By contrast, such temporal delays for excitatory inputs to DSGCs from bipolar 
cells, which have relatively small dendritic and axonal extents, will tend to be small. 
Thus in the preferred direction, where inhibition lags behind the stimulus edge, 
excitation will drive the DSGC, but in the null direction, prior activation of the rela-
tively sustained inhibition will countermand the excitation and suppress spiking 
(Fig.  13.3 ). This mechanism relies entirely on postsynaptic integration of the inhibi-
tory and excitatory inputs, and could in principle operate in the absence of presyn-
aptic mechanisms. That is, the postsynaptic DS mechanism depends only on the 
temporal offset of inhibition, not on any directional modulation of its amplitude 
(Taylor and Vaney  2002 ; Schachter et al.  2010 ).

13.3.2        Dendritic Intrinsic Directional Signals and Active 
Dendrites 

 The “intrinsic DS” outlined for the SBACs above applies to any dendritic structure, 
and thus potentially affects postsynaptic integration in the dendrites of DSGCs. In 
computational analyses of reconstructed DSGC dendrites, we have shown that syn-
aptic integration at each point in the dendritic arbor is asymmetric, with the EPSP 
amplitude at a specifi c locus being slightly larger for motion stimuli directed cen-
trifugally from the center of the dendritic arbor, with this difference becoming 
greater for a more distal locus than a more proximal one. Mapping the local 
preferred- directions across the dendritic arbor results in a pattern of vectors radiat-
ing out from the center, and becoming progressively larger at more distal locations 
(Fig.  13.3e, f ) (Schachter et al.  2010 ). Similar to the effect of dendritic morphology 
described above for the SBACs (Fig.  13.1 ), the strength of the local DS vectors 
relies on partial electrotonic isolation of each dendritic locus from the remainder of 
the cell, i.e., the electrotonic space-constant needs to be roughly the same size as the 
dendritic extent. 

 The consequences of intrinsic DS within DSGC dendrites are less obvious than 
for SBACs, since the morphology of a DSGC bears no relation to its preferred 
direction (Huberman et al.  2009 ; Yang and Masland  1994 ; Vaney et al.  2012 ). For 
example, on the Null side of the DSGC (the side where a null stimulus fi rst reaches 
the cell), the intrinsic DS at each dendritic locus is aligned with the DS of the cell, 
but on the Preferred side, it is opposed (Fig.  13.3 ). Consequently, if DSGCs were 
to sum inputs across the entire dendritic arbor before generating spikes, such 
asymmetries would tend to cancel out, and thus become functionally irrelevant. 
However, in their seminal description of DSGCs, Barlow and Levick ( 1965 ) recog-
nized that directional spike responses could be obtained for stimuli that traversed 
only a faction of the dendritic arbor, indicating that synaptic integration and direc-
tional spike initiation could occur within subregions of the dendritic arbor, which 
they termed “subunits,” repeated many times across a single dendritic arbor. 
Subsequently it was shown that spikes can be initiated within the dendrites of 
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  Fig. 13.3     Top , Mechanisms in the direction-selective ganglion cell (DSGC) and its presynaptic 
 circuit that contribute to its directional preference. ( a ) Presynaptic DS in EPSPs ( black traces ) 
originates in the SBAC (see Fig.  13.2 ), which inhibits ( red ) the DSGC in the null direction. Dendrites 
from many SBACs contact the DSGC over its entire dendritic arbor. The SBAC dendrites that make 
synaptic contact with the DSGC all point in the direction opposite to its preferred direction (e.g., the 
SBAC shown on  right ). Neighboring SBAC dendrites that point in the DSGC’s preferred direction 
do not connect to it ( red arrow  with  black cross ) but are interconnected into the DSGC’s presynaptic 
circuit by reciprocal GABAergic synapses ( red double arrow ), which may further enhance DS via 
positive feedback (see main text). ( b ) The excitatory conductance ( green trace ) from bipolar cells 
overlaps the inhibitory conductance ( red trace ) from the SBAC. The spatial extent of the SBAC 
dendrite temporally advances the SBAC inhibition in the null direction and delays the inhibition in 
the Pref direction. ( c ) Intrinsic DS in the DSGC dendrites ( green arrow , see Fig.  13.2 ) amplifi es 
responses to motion away from the soma, which enhances the directionality of the DSGC on the Null 
side, but opposes directionality of the DSGC on the Preferred (Pref) side, likely contributing to a 
“non-DS zone.” ( d ) Nonlinear spike initiation within the subunits further enhances the directional 
difference between preferred and null direction PSPs (Schachter et al.  2010 ). Schematic view 
shows only one dendritic arborization layer of the bistratifi ed DSGC. A stimulus moving in the 
preferred direction ( black arrow ) goes from the Preferred (Pref) side of the cell to the Null side. 
 Bottom  ( e – h ), Interaction between intrinsic DS and presynaptic DS (taken from Fig. 10 of 
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DSGCs, and that the dendritic spikes propagate to the soma where they elicit 
 axo-somatic spikes (Oesch et al.  2005 ). The implied spike initiation zones within 
the dendrites presumably correspond to the subunits of Barlow and Levick ( 1965 ). 
If synaptic integration within the dendrites can control local spike initiation, then 
it seems plausible that the intrinsic DS within the local subunits might also contrib-
ute to generating directional responses. As noted above, the intrinsic DS is aligned 
with the preferred direction on the Null side but opposes DS on the Preferred side, 
and therefore, DS signals should be weaker on the Preferred side. This prediction 
is in accord with the presence of a “non-DS” zone on the Preferred side of DSGCs 
where DS is weak or absent (Barlow and Levick  1965 ), which has been confi rmed 
subsequently in physiological and modeling studies (He et al.  1999 ; Schachter 
et al.  2010 ; Trenholm et al.  2011 ). 

 Our modeling studies further demonstrated that due to the high current densities 
required to support dendritic spiking, realistic levels of inhibitory synaptic input are 
insuffi cient to suppress active dendritic spikes even when interposed between the 
spike initiation point and the soma (Schachter et al.  2010 ). Similar observations 
have been made for cortical neurons (Williams  2004 ), and led us to propose that DS 
inhibitory inputs most likely control the local PSP amplitude, and thus can prevent 
spike initiation. This immunity of dendritic spikes to on-the-path inhibitory inputs 
further supports the notion that dendritic processing within computational subunits 
can amplify DS signals while remaining relatively unaffected by processing in other 
dendritic compartments (Fig.  13.4 ).

13.3.3        DS in a Morphologically Asymmetric Cell 

 As noted above, the morphology of On-Off DSGCs is not predictive of the preferred 
direction of a particular neuron (Huberman et al.  2009 ; Yang and Masland  1994 ), 
and, the activity of GABA A  receptor mediated inhibition is absolutely essential for 
generating DS responses. However, a genetically labeled On-Off DSGC found in 
mouse, the so-called HB9 cell, differs in both these respects; it has an asymmetrical 
dendritic arbor that is aligned with the preferred direction, and can generate DS 
without inhibition (Trenholm et al.  2011 ). The authors proposed that in the absence 

Fig. 13.3 (continued) Schachter et al.  2010 ). ( e ) Model of a DSGC digitized from a labeled cell, 
without presynaptic DS or inhibition, illustrates the relative strength of the intrinsic DS mechanism 
across the dendritic arbor.  Arrows  represent the strength and direction of the preferred DS vector 
in responses to moving bars at each dendritic location. ( f ) Same model as ( e ) but including presyn-
aptic DS, with excitation and inhibition whose amplitude varied according to the direction of the 
stimulus bars. ( g ,  h ) Responses to bars moving at 0 and 180° (from the  right  and  left , respectively, 
see Fig.  13.4b ), recorded in the model from the left side of the dendritic arbor, at the  red star  in ( e ) 
and ( f ), respectively. The effect of the presynaptic DS in ( f ) and ( h ) is to sum with the intrinsic DS 
of each dendrite, biasing it towards the preferred direction of the presynaptic DS       
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  Fig. 13.4    ( a ) The DSGC comprises partially isolated subunits that amplify DS from its presynap-
tic circuit. Each dendritic tip is partially isolated from the soma and represents a computational 
subunit that integrates its synaptic and dendritic inputs. For a stimulus moving in the preferred 
direction ( gray arrows ), EPSPs on the Preferred side ( smaller black trace  at  left ) are attenuated by 
the dendrite’s intrinsic DS ( green arrows ) that opposes the presynaptic and postsynaptic DS mech-
anisms, thus contributing to the non-DS zone. When the excitation and inhibition summed with the 
intrinsic DS generates a large EPSP within the subunit ( larger black trace  at  right ), this activates 
Na channels which initiate a spike that propagates throughout the cell ( long blue arrows ). This 
allows the cell to respond to local motion within small subunits. The spike back-propagates into all 
the dendrites, which resets the other subunits and prevents them from generating spikes. Thus, the 
dendritic computational subunits of the DSGC function in “winner-take-all” mode, in which the 
subunit with the strongest input signal drives the cell’s spikes (Schachter et al.  2010 ). ( b ) Dendritic 
spikes initiated in subunits amplify DS from EPSPs (taken from Fig. 12a of Schachter et al.  2010 ). 
Polar plots of the number of spikes ( black ) and peak PSP amplitude ( red ) as a function of eight 
stimulus directions, fi t to von Mises functions (circular Gaussians). The surrounding traces show 
the spikes ( black ), and the PSPs ( red ) at each direction       
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of inhibition, the morphological intrinsic DS mechanism generates DS signals that 
are amplifi ed by voltage-gated channels in the dendrites (Tukker et al.  2004 ; 
Trenholm et al.  2011 ). They noted that the lack of dendrites on the Preferred side is 
functionally benefi cial, because the intrinsic DS mechanism for Preferred side den-
drites, if they existed, would countermand the cell’s preferred direction (Schachter 
et al.  2010 ). This point was further supported by experiments showing that in sym-
metric DSGCs, in the absence of inhibition, the preferred directions on opposite 
sides of the dendritic arbor were opposite, and pointed away from the center of the 
dendritic fi eld, as expected for DS signals generated by the intrinsic DS mechanism 
(Schachter et al.  2010 ; Trenholm et al.  2011 ). 

 A second type of On-Off DSGC with strongly asymmetric dendritic arbors has 
been documented in the mouse, the so-called JAM-B cell (Kim et al.  2008 ). Similar 
to the HB9 cells, JAM-B cells displayed preferred directions tightly aligned with the 
axis of asymmetry of the dendrites, and pointing in the same direction. Thus the 
intrinsic DS mechanism might also be important for generating directional responses 
in these cells, but unfortunately the effect of inhibitory blockers was not tested, and 
so the relative roles of inhibition and other possible DS mechanisms remains 
unknown.  

13.3.4     How Much Does Each of the Mechanisms Contribute 
to DS Signals? 

 To generate directional signals requires an asymmetric spatiotemporal correlation 
coupled with a nonlinearity (Barlow and Levick  1965 ). In the foregoing we have 
argued that within the DSGC circuitry, nonlinearities occur within local dendritic 
compartments on the presynaptic and postsynaptic sides, and that on both sides the 
nonlinearity appears to result from the activity of voltage-gated channels that effec-
tively amplify local directional-differences in PSP amplitudes. Moreover, on both 
sides, directional signals arise in part from intrinsic asymmetries arising naturally 
from the structure of dendrites (the “Rall effect”). The distributed nature of the 
computation, built up presynaptically and postsynaptically, makes teleological 
sense, because one can imagine that directionally asymmetric features at any point 
within a circuit might be incrementally selected to improve overall performance. 
Perhaps the asymmetries represented by the Rall-effect were the seeds that provided 
the selective pressure for the eventual evolution of these complex circuits. 

 Although the relative contributions of the various DS mechanisms to the overall 
computation remain unclear, it seems likely that the distributed nature of the com-
putation may have implications for the temporal properties of the system. For exam-
ple, in its simplest form, a system for computing direction contains two sensors and 
a delay line (Barlow and Levick  1965 ). Such a system will exhibit narrow speed 
tuning that can be calculated from the time-constant of the delay and the separation 
of the sensors. However, DS signals in DSGCs operate over a broad range of stimu-
lus speeds (Grzywacz and Amthor  2007 ; He and Levick  2000 ). The processes 
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underpinning this broad speed tuning have not been identifi ed, but the availability of 
different synaptic and biophysical mechanisms, at different levels in the circuit, 
could support broad speed tuning by providing multiple time-constants for signal 
integration. An example of different temporal tuning by DS mechanisms is evident 
in the HB9 DSGCs, in which the intrinsic DS mechanism generates directional 
responses in the absence of the inhibitory mechanisms, but only at low stimulus 
velocities (Trenholm et al.  2011 ). A second example is provided by measurements 
from the JAM-B DSGCs, in which Off and On responses are more directional at 
high and low velocities respectively (Kim et al.  2008 ).      
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Abstract Broadband transient sounds, such as clicks, are transduced in a traveling 
wave in the cochlea that spreads from base to apex. This traveling wave causes 
delays in the activation of auditory nerve fibers that vary systematically as a func-
tion of the tonotopy in the ventral cochlear nucleus (VCN) in the brainstem, activat-
ing high-frequency fibers first. Octopus cells in the mammalian VCN consistently 
spread their dendrites across the tonotopic axis so that the tips receive input from 
fibers tuned to the highest frequencies. As a result, broadband transient sounds pro-
duce a somatopetal (soma-directed) sweep of activation in octopus cells’ dendrites. 
Low-voltage-activated potassium channels (gKL) in the dendrites and soma sharpen 
the sensitivity to sweep duration. Branch points in octopus cells’ dendrites show 
significant impedance mismatch, resulting in violation of Rall’s “3/2 power law” 
and shaping of sweep sensitivity. Thus, the morphology, connectivity, and mem-
brane biophysics of octopus cells allow them to compensate for the cochlear travel-
ing wave delay and respond to clicks with exquisite temporal precision. In the 
context of the time–frequency (Gabor) uncertainty principle, octopus cells can be 
seen to solve a general problem of encoding frequency-dispersed but temporally 
restricted patterns using somatopetal sweep sensitivity. Compensation for longer 
delays in low-frequency hearing animals, implications for downstream processing, 
and relationship to other systems are discussed.
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14.1  Temporally Precise Coding: The Problem  
of Broadband Transients

Speed and temporal precision are at the heart of auditory processing. Auditory 
nerve fibers (ANFs) in mice can detect sound pressure fluctuations with periods 
as short as 12 μs (Taberner and Liberman 2005), and humans can detect differ-
ences of as little as 10 μs in the time of arrival of a sound between the ears (Mills 
1958). By contrast, sensory systems that rely on G-protein-coupled receptors, 
such as vision and olfaction, process information ~10,000 times more slowly 
(Hille 1994). The phenomenal speed of mammalian auditory systems is made 
possible by the precise transduction of sound pressure waves in air into a travel-
ing wave down the basilar membrane in the cochlea (Fig. 14.1a). This traveling 
wave performs a spectral decomposition into a spatial frequency map along a 
logarithmically spaced frequency axis (Dallos 1992). The cochlea can thus be 
thought of as a log-spaced parallel bank of band-pass filters (Yang et al. 1992) 
with exquisite temporal and frequency resolution that approaches the physical 
limits of sound (Weisburn and Parks 1992).

Temporal precision in the processing of broadband sounds presents a spe-
cial problem to auditory systems. In the filter bank model of the cochlea, for 
each frequency channel (i.e., each hair cell or ANF) there is an inherent trade-
off between its spectral and temporal resolution, encapsulated by the Gabor 
uncertainty principle (Gabor 1946): Δt × Δf ≥ 1/π; Δt is the uncertainty in 
time, and Δf is the uncertainty in frequency, originally inspired by the 
Heisenberg uncertainty principle (Heisenberg 1927). Simply put, it takes time 
to determine the frequency of an oscillation with precision. As a result of this 
trade-off, the uncertainty in, for example, the time of onset of each spectral 
component of a broadband sound is inversely related to the uncertainty in the 
frequency of that component. Since the uncertainty in frequency is related to 
the frequency itself (approximately proportional to the log of the frequency) 
(Taberner and Liberman 2005), the temporal uncertainty varies systematically 
with the frequency of the sound component.

The cochlear traveling wave can thus be viewed as a particular solution to the 
Gabor uncertainty problem. This idea can be tested by analyzing the timing of firing 
of the first action potential by an ANF in response to a click sound (Fig. 14.1b). The 
latency from tone onset to first action potential consists of a constant delay, Tc, reflect-
ing the acoustic system, axonal propagation, etc., and a group delay that varies with 
the sound frequency, T(f), corresponding to the traveling wave delay. The total delay 
is the sum of the two: Tt = Tc + T(f). From the Gabor uncertainty perspective, T(f), the 
frequency-dependent delay, is equal to the uncertainty in the time of the signal, Δt. 
Equating these terms makes the assertion that the group delay at each frequency 
reflects an accumulation of evidence overcoming the temporal uncertainty, after 
which time an action potential codes the occurrence of sound energy in that fre-
quency channel. Next, we assume that the uncertainty in frequency, Δf, is propor-
tional to the log of the frequency, reflecting the log-based spacing of the cochlear 
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filter bank. Substituting the uncertainty relationship into the equation for total delay 

yields T T
f

t = +
× × ( )( )c

1

p a ln
, where α is the proportionality constant.

A fit to the first spike latency data with a delay function derived from the Gabor 
uncertainty relationship is in reasonably good agreement with the data (Fig. 14.1b).  
In particular, it captures the tendency of traveling wave delays to be proportionately 
larger at lower frequencies, corresponding to the slowing of the traveling wave as it 
approaches the apex of the cochlea. This slowing effect is prominent in animals 
with low-frequency hearing (Ruggero 1992). A better prediction would be 
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Fig. 14.1 The cochlear traveling wave delay results in a somatopetal wave of activation down  
the dendrites of octopus cells. (a) A schematic representation of the traveling wave spreading down 
the basilar membrane of the cochlea of a mouse from base to apex (left) resulting in a delay line  
in the activation of auditory nerve fibers (middle). This delay profile results in a somatopetal wave 
of dendritic activity in the dendrites of octopus cells in responses to broadband transient sounds. 
The asterisk indicates the axon of the reconstructed octopus cell. (b) The traveling wave delay in 
mice is apparent in first-spike latencies in responses recorded in vivo to clicks. The black curve is 
the result of a least-squares regression fit of the Gabor uncertainty function (Tc = 1.8 ± 0.1 ms and 
α = 0.36 ± 0.04). Parts of panels (a) and (b) are reproduced with permission from Fig. 14.1 of ref. 
McGinley et al. (2012)
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generated by incorporating the experimentally measured frequency dependence of 
sharpness of tuning of ANFs (e.g., ref. Taberner and Liberman 2005, Fig. 14.3b) 
into the function for frequency uncertainty, rather than assuming a linear depen-
dence on log frequency.

Whether viewed as a solution to the Gabor uncertainty problem or simply as a 
temporal dispersion, the cochlear traveling wave delay, which lasts 1.6 ms in mice 
(McGinley et al. 2012) and up to 8 ms in animals with low-frequency hearing, 
including humans (Ruggero and Rich 1987), results in asynchronous activity in the 
population of auditory nerve fibers in response to broadband transient sounds. This 
asynchrony must be dealt with by downstream neurons or circuits if broadband 
transient sounds are to be encoded precisely, for example to signal the snapping of 
a branch under the foot of a predator.

14.2  Biophysical Specializations of Octopus Cells:  
Built for Speed

From the cochlea, ANFs project their axons to the cochlear nucleus where they syn-
apse on several classes of principal neurons that in turn carry acoustic information to 
the next stage of the auditory pathway (Fig. 14.1a). One of the principal classes, 
octopus cells, is in all respects built for speed. They have extraordinarily brief mem-
brane time constants (~300 μs) and low input resistances (~5 MΩ) (Golding et al. 
1995, 1999), making them perhaps the fastest neurons in the mammalian brain 
(Spruston et al. 2007). Their fast membranes result from a high density of low-
voltage- activated potassium conductance (gKL) and hyperpolarization-activated, 
cyclic nucleotide-gated, channels in their soma and dendrites (Oertel et al. 2008), 
which oppose each other in a balance at the resting potential (Bal and Oertel 2000, 
2001; Cao and Oertel 2011). Octopus cells also have brief synaptic currents, medi-
ated through rapid calcium-permeable AMPA receptors (Gardner et al. 1999, 2001; 
Raman and Trussell 1992). Octopus cells express voltage-gated calcium channels 
(Golding et al. 1999; Bal and Oertel 2007), but their physiological role is not known. 
There is an atypical developmental profile of cholinergic receptors in octopus cells, 
which may influence their intracellular calcium dynamics (Morley and Happe 2000).

The high density of gKL channels in octopus cells results in an unusual action 
potential generation mechanism. If an octopus cell is depolarized slowly, gKL 
channels open, shunt the sodium current, and prevent the generation of an action 
potential (Fig. 14.2a). If instead an octopus cell is depolarized quickly, gKL chan-
nels do not have time to open, creating a window for sodium channel activation to 
cause an action potential (Fig. 14.2a). Thus, octopus cells have a threshold in rate 
of depolarization or dV/dt (Fig. 14.2b, left) (Ferragamo and Oertel 2002; Cai et al. 
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1997). This dV/dt threshold is a feature of other auditory neurons with high gKL, 
including bushy cells (McGinley and Oertel 2006) and neurons in the medial 
superior olive (Golding and Oertel 2012; Cai et al. 2000), which have intrinsic 
membrane properties that are very similar to octopus cells. The dV/dt threshold 
creates an integration window or time during which somatic depolarization must 
occur to result in an action potential (McGinley and Oertel 2006), which results in 
extremely stringent coincidence detection (Oertel et al. 2009; Golding and Oertel 
2012; König et al. 1996). The integration window in octopus cells is ~1 ms 
(Fig. 14.2b, right) (McGinley and Oertel 2006).

As a result of the dV/dt threshold, excitatory postsynaptic potentials (EPSPs) in 
octopus cells must rise quickly in order to elicit an action potential. EPSPs must also 
result in sufficient depolarization to activate sodium channels, and thus octopus 
cells also have a voltage threshold. The relationship between the rate-of- 
depolarization threshold and the voltage threshold for an action potential has not 
been explored. Determining the function describing this relationship, Vthresh(dV/dt), 
would provide a more complete picture of the input–output relationship of neurons 
with a dV/dt threshold. Furthermore, knowing this relationship would motivate a 
natural definition of the efficacy of a composite EPSP waveform:
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where Asyn is the EPSP amplitude and dVsyn is the rate of depolarization during the 
rising phase of the EPSP. Visual inspection of the voltage response to current ramps 
suggests that the voltage threshold does not change dramatically with rate of depo-
larization (Fig. 14.2a). Therefore, the amplitude of an EPSP is a reasonable first 
approximation to its efficacy when the rate of rise is above dV/dt threshold. Steady 
depolarization—which may arise from ongoing synaptic activity or modulatory 
influences—does not affect the dV/dt threshold, at least in bushy cells (McGinley 
and Oertel 2006). However, it may affect the voltage threshold (Levy and Kipke 
1998), also warranting further investigation.

Octopus cells put their extraordinary speed to use when processing sounds. They 
respond rapidly and with great temporal precision to onset transients in broadband 
sounds such as clicks or in loud narrowband sounds. In cats, they respond with sub- 
millisecond temporal precision to clicks (Godfrey et al. 1975), having a jitter that is 
less than 200 μs during a 500 Hz click train (Oertel et al. 2000), and can fire at every 
cycle of a loud 800 Hz tone (Rhode and Smith 1986). They encode rapid temporal 
components of vocalizations by strongly phase locking to the fundamental fre-
quency in the presence of formants (Rhode 1998) and to the signal envelope of rapid 
amplitude modulations (Rhode 1994), which are prominent in speech and music. 
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They may contribute to pitch representation, which occurs explicitly in primary 
auditory cortex by unexplained mechanisms (Rhode 1995; Bendor and Wang 2005). 
Thus, octopus cells respond with temporal precision to broadband transients in 
sounds in a variety of contexts, despite the cochlear traveling wave delay. The sound 
responses and cellular and synaptic biophysics of octopus cells have been reviewed 
in detail elsewhere (Oertel et al. 2000, 2009; Golding and Oertel 2012).

14.3  Morphology and Connectivity of Octopus Cells:  
Positioned to Integrate Broadband Sounds

Octopus cells were named on the basis of their striking morphology; they have sev-
eral thick primary dendrites that emanate and branch from only one side of the cell 
body (Fig. 14.2c) (Osen 1969). Octopus cells also have thick daughter branches 
throughout their dendritic trees. This can be seen when comparing the diameter of 
parent and daughter branches to the so-called 3/2 power law of Rall: dp

3/2 = dd,1
3/2 + dd,2

3/2, 
where dp is the diameter of the parent dendrite, and dd “1” and “2” are the diameters 
of the daughter dendrites at a branch point (Rall 1964). If a branch point obeys this 
power law, the impedance at the branch will be matched. Octopus dendritic branch 
points consistently violate the power law, with the right side of the equation being 
larger than the left for nearly all branches due to large daughter branches (see ref. 
McGinley et al. 2012, Fig. 8d). This could serve several functions for octopus cell 
dendritic integration, including increased distal dendritic surface area, rapid trans-
mission of dendritic signals, or delays due to impedance mismatch.

The tendency of thick daughter dendrites to increase distal dendritic surface area 
can be seen in a simple box representation of octopus cell morphology; substantial 
surface area is distributed across many branch orders (Fig. 14.2d). Since the surface 
area of a cylinder is linearly proportional to its diameter, branches obeying the 3/2 

Fig. 14.2 (continued) each action potential is  indicated with an asterisk symbol. (b) The dV/dt 
threshold and integration window vary between several principal cell types of the VCN. Octopus 
cells have higher dV/dt thresholds and shorter integration windows than bushy cells. Stellate cells 
exhibit classical “integrator” characteristics. They do not have a dV/dt threshold, so their integration 
window is not limited by the action potential generation mechanism. (c) Photomicrograph of a 
biocytin-labeled octopus cell against a Nissel stain background (left) and 3D digital reconstruction 
of the same neuron (right). D dorsal; M medial. (d) A box representation of the dendritic morphol-
ogy of octopus cells. Each box corresponds to a branch order. The x-axis is length, and the y-axis 
is total surface area. Each box is the average across cells of the average across branches within each 
order for each cell. The oval corresponds to the soma; the x-axis is the diameter, and the y-axis is 
the surface area of a sphere with equivalent surface area to a reconstruction of the soma. Panel (b) 
is reproduced with permission from Fig. 5 of ref. McGinley and Oertel 2006 and panels (c) and (d) 
from Fig. 8 of ref. McGinley et al. (2012)
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Fig. 14.2 The unique biophysics and morphology of octopus cells. (a) The membrane voltage of an 
octopus cell (top) during application of linear current ramps of varying durations (bottom). Black 
traces show the membrane voltage just below and above the rate-of-depolarization (dV/dt) threshold. 
Longer duration subthreshold ramps do not trigger an action potential (not shown; see refs. Morley 
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power law would distribute less surface area into their daughter dendrites.  
Thick daughter dendrites could increase the speed of signal transmission by  reducing 
the axial resistance, whereas the impedance mismatch at branch points would delay 
propagation from smaller to larger diameter dendrites (Agmon-Snir and Segev 
1993; Lanzinger 1987). The original study demonstrating that octopus cells com-
pensate traveling wave delays predicted a delay compensation of ~0.5 ms, matching 
in vivo delays measured in the same species (McGinley et al. 2005, 2012). A more 
recent study that did not incorporate detailed morphological information predicted 
compensation for about half of that delay (~0.28 ms) (Spencer et al. 2012), suggest-
ing that the precise morphology is important.

The dominant source of synaptic input to octopus cells is excitation from the 
auditory nerve (Oertel et al. 2000). ANFs are tonotopically organized in the cochlear 
nucleus of all mammals studied, including mice (Osen 1970; Wickesberg and Oertel 
1988). Octopus cells orient their dendrites across the tonotopic axis, so ANFs that 
encode higher frequencies synapse closer to the tips of the dendrites, and those that 
encode lower frequencies synapse closer to the soma (Fig. 14.1a, see also ref. 
Golding et al. 1995). Octopus cells show some diversity in morphology (Rhode 
et al. 1983) and, in mice but not cats, excite one another through axon collaterals 
(Golding et al. 1995), serving unknown functions in the processing of sounds 
(Godfrey et al. 1975; Rhode et al. 1983).

The role of inhibitory connections onto octopus cells is uncertain but may be 
minimal. Stimulation of the auditory nerve does not elicit GABAergic or glyciner-
gic inhibition in octopus cells in mice (Golding et al. 1995). Consistent with this 
observation, there is a marked lack of glycinergic staining in the octopus cell area 
(Wenthold et al. 1987; Wickesberg et al. 1994), and tuberculoventral glycinergic 
interneurons exclude their projection from the octopus cell area (Wickesberg et al. 
1991). However, GABAergic terminals exist on octopus cell dendrites (Marie et al. 
1989), and glycine may be expressed in terminals in the octopus cell area of guinea 
pigs (Kolston et al. 1992), though glycine expression is sensitive to experimental 
conditions (Wickesberg et al. 1994).

14.4  Rapid Integration Across Tonotopy: A Marriage  
of Morphology and Connectivity with Biophysics

The relationship of tonotopy in the cochlear nucleus (Osen 1970) with the dendritic 
morphology of octopus cells (Osen 1969) led to early speculation about their role in 
sound processing. It was suggested that octopus cells’ dendritic orientation might 
determine the sensitivity to frequency-modulated (FM) sweeps of different rates or 
direction (Morest et al. 1973). This idea was later related to Rall’s developing view 
of spatiotemporal integration in dendrites (Szentagothai and Arbib 1974). The dis-
covery in mice that octopus cells orient their dendrites in a consistent orientation 
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and direction with respect to the tonotopic organization led to the hypothesis that 
octopus cells compensate the traveling wave delay in their dendrites (Golding et al. 
1995; Wickesberg and Oertel 1988).

This hypothesis was directly tested in mice by combining in vivo measurements 
of the traveling wave delay, in vitro recordings from octopus cells, morphological 
reconstruction, and passive and active compartmental modeling (McGinley et al. 
2012). The traveling wave delay was measured in mice and found to be ~1.6 ms 
across the full hearing range (see Fig. 14.1b). Because octopus cells’ dendrites span 
about 1/3 of the tonotopy in the VCN (Golding et al. 1995), during a broadband 
transient sound each neuron will be exposed to an ~0.5-ms sweep of dendritic acti-
vation spreading somatopetally (towards the soma) (see Fig. 14.1a). In separate 
experiments, whole-cell recordings in the current-clamp configuration were made 
from octopus cells in acute slices of the VCN from mice. Families of current steps 
were applied to determine the passive and active response of the membrane 
(Fig. 14.3a, b, black traces). After fixation, morphological reconstructions were 
made of recorded neurons (Fig. 14.2c, left) and imported into the software NEURON 
(Hines and Carnevale 1997) for computation modeling (Fig. 14.2c, right).

Passive compartmental models of octopus cells were built from current-clamp 
recordings and morphological reconstructions, using simulated annealing 
(Kirkpatrick and Vecchi 1983) to optimize fits of the models to the data (Fig. 14.3a). 
Active models were constructed using a model of the low-voltage-activated potas-
sium conductance (gKL) derived from medial superior olive neurons (Khurana et al. 
2011), which have very similar gKL channels to octopus cell neurons (Golding and 
Oertel 2012; Bal and Oertel 2001; Scott et al. 2005; Mathews et al. 2010), and a 
model of hyperpolarization-activated, cyclic nucleotide-gated channels derived 
from octopus cells (Bal and Oertel 2000; McGinley et al. 2012). Model parameters 
were adjusted for each model to result in a close match to the current-clamp record-
ings from the modeled neuron (Fig. 14.3b). Because gKL- and hyperpolarization- 
activated channels are known to reside in the dendrites of octopus cells and medial 
superior olivary neurons (Scott et al. 2005; Mathews et al. 2010; Oertel et al. 2008), 
these channels were included in the dendrites in active models. The kinetics of 
excitatory synaptic conductances were set to match previous recordings from octo-
pus cells (Gardner et al. 1999).

To test the sensitivity of octopus cells to somatopetal sweeps of synaptic activa-
tion arising from the traveling wave delay, the waveform of the somatic EPSP was 
determined in passive and active models in response to somatopetal sweeps of exci-
tation with different durations. A single-compartment (point) model with identical 
input resistance and membrane time constant to each passive model was compared 
in order to evaluate the role of dendrites in shaping the somatic EPSP. Comparison 
was also made to a passive model with the location of arrival of each input random-
ized in order to evaluate the role of tonotopy and the resulting somatopetal wave of 
activation in EPSP shape. A final model was generated with the magnitude of the 
synaptic conductance at each dendritic location adjusted so that the somatic EPSP 
in response to individual synaptic activation was approximately constant. Such 
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“input normalization” was discovered and thought to be important for reducing the 
location dependence of synaptic efficacy in hippocampal pyramidal neurons 
(Magee and Cook 2000). Surprisingly, input normalization had no effect on the 
dependence of somatic EPSP shape on somatopetal sweep duration (ref. McGinley 
et al. 2012, Fig. 14.3).
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In active and passive models, somatopetal sweeps of activation lasting 
0.6 ms—approximately equal to the duration expected in each octopus cell from 
the traveling wave delay—resulted in somatic EPSPs that were tall and sharp, and 
sharpest in active models (Fig. 14.3c, magenta and yellow curves). Responses in 
point models or passive models with randomized synaptic locations had smaller 
and more slowly rising EPSPs (Fig. 14.3c, blue and green curves). Active and 
passive models had short integration windows (the duration of the rising phase of 
the EPSP; ~0.2 and 0.3 ms, respectively), whereas randomized or point models 
had long integration windows (~0.5 ms; Fig. 14.3d, left). Thus, octopus cells are 
effective at compensating traveling wave delays in part due to their morphology 
and fast membranes.

14.5  The Role of Low-Voltage-Activated Potassium Channels

Although both active and passive models responded to sweeps matching the travel-
ing wave delay with comparable rising rates and integration windows, half-widths 
were dramatically shorter in active than in passive models (0.5 vs. 1.2 ms; Fig. 14.3d, 
right). This reduction in half-width resulted from activation of gKL channels during 
the EPSP, consistent with experimental observations in octopus cells and medial 
superior olivary neurons (Golding et al. 1999; Ferragamo and Oertel 2002; Svirskis 
et al. 2002; Scott et al. 2007). The large effect of gKL channels on the falling phase 
of EPSPs is similar to the shortening of the falling phase of the action potential by 
potassium currents in classical and contemporary observations (Hodgkin et al. 
1952; Bean 2007). The shortening of the falling phase of the EPSP by gKL channels 
rapidly repolarizes EPSPs, which is important when they occur at high rates in the 
face of ongoing activity (Svirskis et al. 2004; Scott et al. 2007).

Activation of gKL channels is also important in shaping the rising phase of the 
EPSP during somatopetal sweeps of activation in octopus cells. This can be seen in 
calculations of the sweep duration that results in the fastest rising and largest EPSP 
in passive versus active models. In active models, EPSPs were largest for sweeps 
lasting ~0.5 ms, with little variance between models (Fig. 14.4a, magenta symbol) 
in good agreement with the measured traveling wave delay of 0.53 ms per octopus 
cell (McGinley et al. 2012). Too slow of a sweep allows gKL to activate and thereby 
reduce the EPSP amplitude. In passive models, however, the sweep duration with 
maximum EPSP amplitude varied between models from 0.8 to 1.6 ms (Fig. 14.4a, 
black symbol). Similarly, the rate of rise (dV/dt) of the EPSP was significantly 
larger in active than in passive models for physiological sweep durations; active 
models had a dV/dt of 50–70 mV/ms compared to 40–48 mV/ms in passive models 
for sweep durations of 0.4–0.6 ms (see ref. McGinley et al. 2012, Fig. 14.3b). The 
half-widths of EPSPs in passive and active models were similar to amplitudes in 
their dependence on sweep duration (Fig. 14.4a), further evidence of the role of gKL 
in octopus cells’ precise responses in the face of the cochlear traveling wave.
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14.6  Compensating Longer Delays in Low-Frequency-
Hearing Animals

Octopus cells in mice have specialized dendritic morphology, connectivity, and 
 biophysics tailored to compensate cochlear traveling wave delays and encode 
broadband transient sounds. However, several important aspects of octopus cell 
physiology remain unexplored, particularly relating to species with lower frequency 
hearing and thus longer traveling wave delays (Ruggero 1992; Ruggero and Rich 
1987). Current findings motivate several possible mechanisms for octopus cells to 
compensate longer delays, including larger size, lower overall membrane conduc-
tance, lower dendritic gKL conductance, or differences in the span of best frequen-
cies in ANFs. Octopus cells in humans are large (Adams 1986). Octopus cells in 
cats and dogs have lower membrane conductance than in mice, but measurements 
have been made only in relatively immature animals (Bal and Baydas 2009; Bal 
et al. 2009).

The effect of overall membrane conductance on dendritic delay compensation 
was studied in active compartmental models of octopus cells (McGinley et al. 
2012). Decreasing active and passive ion channel concentrations by 3-, 10-, 30-, or 
100-fold changed the dendritic sweep duration that resulted in the largest and sharp-
est EPSPs over a range from 0.5 to 2.0 ms (Fig. 14.4a). Surprisingly, somatic input 
resistance changed only 25-fold, and the necessary synaptic conductance to elicit a 
large EPSP changed only 3-fold with the 100-fold change in ion channel concentra-
tion (Fig. 14.4b), demonstrating the importance of cytoplasmic resistance in den-
dritic integration. Bigger animals could use larger diameter dendrites to overcome 
cytoplasmic resistivity. Channels for gKL have an ~3-fold lower density in the den-
drites of MSO neurons (Mathews et al. 2010). Octopus cells might use a similar 
conductance gradient to compensate longer delays. However, changing the 
dendritic-to- somatic leak conductance over a 10,000-fold range had little effect on 
dendritic delay compensation in passive octopus cell models (see Fig. 7 of ref. 
McGinley et al. 2012). The role of conductance gradients of active channels in den-
dritic delay compensation should be studied further.

Fig. 14.4 (continued) and open symbols are for half-width. Conductance magnitudes for active 
 models indicated below with colors matching the symbols. (b) The total synaptic conductance is 
plotted against the input resistance, for the same models as in panel A. To facilitate comparisons, 
the synaptic conductance for each cell in each model was adjusted so that the EPSP amplitude for 
zero sweep duration was 15 mV. (c) The transfer impedance in best-fit passive models (black) and 
passive models with 10-fold (light blue) or 100-fold (orange) reduced membrane conductance super-
imposed on the EPSC power spectrum plotted against frequency (red). Arrows indicate maximum 
frequency up to which each model has relatively constant transfer impedance. Grey bands indicate 
±1 SD, calculated across models (n = 4). (d) Color maps of the spatial profile of the voltage for a sweep 
duration of 0.6 ms in an example simulated passive octopus cell. The time corresponding to each color 
map is indicated on the simulated EPSP traces (insets) with a green dot. Panels (a) and (b) are repro-
duced with permission from Fig. 5 and panel (d) from Fig. 8 of ref. McGinley et al. (2012)
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There is a trade-off between rapid membrane responsiveness and slow dendritic 
integration that limits the length of delays that octopus cells can compensate in 
their dendrites and still fire rapidly. Bushy cells in mice and octopus cells in imma-
ture cats and dogs have lower gKL conductances resulting in lower dV/dt thresholds 
and thus less stringent coincident detection (McGinley and Oertel 2006; Bal and 
Baydas 2009; Bal et al. 2009). Octopus cells’ low membrane resistance allows 
them to transmit fast synaptic signals down their dendrites. This can be seen by 
calculating the frequency dependence of the transfer impedance between the tips of 
the dendrites and the soma, using the ztransfer tool in NEURON (Hines and 
Carnevale 1997). Normalized transfer impedance values can be calculated by 
dividing by the value at 0.1 kHz in that model. In best-fit passive models of octopus 
cells, the normalized transfer impedance is flat up to ~20 kHz (Fig. 14.4c, black 
curve and arrow).

Thus, octopus cells’ dendrites in mice transmit the frequency content in their 
excitatory postsynaptic currents (EPSCs) (Gardner et al. 1999). This can be seen in 
the power spectrum of a double-exponential fit to EPSC waveforms from the synap-
tic conductance, gsyn measured in octopus cells, which can be derived, and is
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where f is the frequency in kHz, w = 1/τ, “r” and “d” refer to the rising and falling time 
constants of the double exponential, and η is a normalization factor, following ref. 
McGinley et al. (2012). Defining normalized EPSG power as log(Ρ(f)/Ρ(0.1)), where 
Ρ(0.1) is the power at 0.1 kHz, illustrates that the EPSC power spectrum in octopus 
cells is significant out to very high frequencies as a result of the extremely fast rise of 
the EPSC (Fig. 14.4c, red curve) (Gardner et al. 1999). When the conductance values 
in active models are divided by 10 (Fig. 14.4c, blue curve) or 100 (Fig. 14.4c, orange 
curve) while keeping all other parameters the same, they no longer reliably transfer 
the high-frequency components of EPSCs. For 10-fold reduction, the transfer imped-
ance was flat up to ~2 kHz (Fig. 14.4c, blue arrow), and with 100-fold it was flat up 
to ~0.2 kHz (Fig. 14.4c, orange arrow). As a result of octopus cells’ effective transfer 
of fast signals down their dendrites, a rapid somatopetal sweep of excitation results in 
progressive activation of the dendritic tree and rapidly rising EPSPs (Fig. 14.4d). The 
role of active conductances, particularly gKL, and conductance gradients in shaping 
the dendrite-to-soma transfer impedance warrants further exploration.

14.7  Downstream Processing and Comparison to Other 
Systems

Octopus cells are perhaps the fastest dendritic integrators in the brain (Golding and 
Oertel 2012; McGinley et al. 2012; McGinley and Oertel 2006; Oertel et al. 2000, 
2009; Spruston et al. 2007) and encode sounds with extraordinary temporal 
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precision (Godfrey et al. 1975; Oertel et al. 2000; Rhode 1994, 1998; Rhode and 
Smith 1986). Yet, our understanding of how this exquisite spectro-temporal pro-
cessing is utilized by downstream circuits is based on indirect evidence and specula-
tion. Octopus cells project predominantly to the contralateral ventral subdivision of 
the ventral nucleus of the lateral lemniscus (VNLLv) with exceptionally thick axons 
(Adams 1997; Smith et al. 2005; Schofield and Cant 1997) where they form large 
endbulb endings onto somas (Adams 1997; Vater and Feng 1990). This configura-
tion results in rapid and powerful excitation of their targets (Schofield and Cant 
1997; Vater and Feng 1990; Willard and Ryugo 1983), which are similar morpho-
logically—and perhaps physiologically—to the temporally precise large spherical 
bushy cells in the VCN (Adams 1997; Wu 1999; McGinley and Oertel 2006; Oertel 
et al. 2009). VNLLv spherical bushy cells are inhibitory neurons (Saint Marie et al. 
1997; Moore and Moore 1987; Winer et al. 1995) and project predominantly 
 non- topographically to the ipsilateral inferior colliculus (IC) (Adams 1979; Brunso‐
Bechtold et al. 1981; Roth et al. 1978; Whitley and Henkel 1984; Loftus et al. 2010).

Consistent with anatomical predictions, neurons in the VNLL synchronize to 
rapid sound modulations (Zhang and Kelly 2006). Some neurons in VNLL respond 
to clicks with large-amplitude, short-duration, onset inhibition, probably further 
sharpening the output to IC (Nayagam et al. 2005). There is substantial physiologi-
cal evidence of rapid and broadly tuned inhibition in the IC. Short latency inhibition 
is seen in a large fraction of unit responses in the IC of cats and rabbits to a wide 
range of sounds, particularly when unanesthetized (Kuwada et al. 1989; Carney and 
Yin 1989; Fitzpatrick et al. 1995, 1999; Bock et al. 1972). Pharmacological evi-
dence supports that short latency inhibition is a direct GABAergic or glycinergic 
input to the IC (Casseday et al. 2000). Rapid and/or side-band hyperpolarization of 
the membrane potential plays a key role in response area of many intracellularly 
recorded IC neurons (Kuwada et al. 1997). Much of this rapid and broadband input 
could be driven by the octopus cell-to-VNLL pathway. However, broadly tuned 
inputs to the central nucleus of IC, including from the DNLL and elsewhere in the 
VNLL, are also inhibitory, possibly because broadband excitation would degrade 
the tonotopic organization (Oertel and Wickesberg 2002).

The temporally precise disynaptic inhibitory pathway from octopus cells, 
through the VNLL, to the IC may be preserved from birds and reptiles, through 
rodents, bats, and cats, to humans (Adams 1979, 1997; Carr and Code 2000), and 
yet its function is unknown. It has been hypothesized that the function relates to 
pattern recognition in natural sounds (Oertel and Wickesberg 2002). Alternatively, 
the pathway could serve to sharpen tonotopy in the IC by providing lateral inhibi-
tion (Blakemore et al. 1970), though it is not clear why extraordinary speed would 
be necessary for this purpose (Amari 1977). Instead, the disynaptic inhibitory path-
way could aid in sound source separation or stream segregation (Bregman 1994) by 
“wiping the slate” of activity in IC neurons at the initiation of sounds, providing a 
signal for “binding” immediately subsequent activity into a percept (Treisman 1996; 
Shadlen and Movshon 1999). This binding mechanism could contribute to the 
 precedence effect (Langner 1992; Litovsky et al. 1999) and echo suppression  
(Yin 1994), because the first instance of the sound would usually contain the 
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sharpest onsets and thus engage the binding mechanism most strongly. The disyn-
aptic pathway likely contributes to transforming the rapid temporal code in the audi-
tory periphery into a rate code or a slower temporal code in the IC suitable for 
processing by thalamocortical circuits (Eggermont 2001; Joris et al. 2004).

Octopus cells compensate the cochlear traveling wave delay using sensitivity to 
somatopetal sweeps of excitation, with passive cable properties playing a signifi-
cant role. Thus, octopus cells may be the clearest example to date of a computation 
performed using Rall’s prediction in 1964 of dendritic sensitivity to sweeps (Rall 
1964). Some amacrine and ganglion cells in the retina use sensitivity to dendritic 
sweeps to compute object motion (Euler et al. 2002; Vaney et al. 2012). However, 
motion occurs over a wide range of temporal and spatial scales, and thus multiple 
complex circuit, synaptic, and intrinsic mechanisms play a role in this computation 
(Briggman et al. 2011; Vaney et al. 2012; Chap. 13 in this book). It has been dem-
onstrated that cortical neurons are sensitive to sweeps of excitation, possibly to aid 
in detection of temporal input sequences (Branco et al. 2010; Chap. 15 in this 
book). However, sweep sensitivity in cortical neurons occurs on a much slower 
time scale than in octopus cells, supported by impedance gradients and other non-
linearities in cortical dendrites (Branco et al. 2010). Given the primitive state of our 
understanding of the precise distribution of ion channels in dendrites and the in 
vivo patterns of dendritic activation in most brain areas (Briggman et al. 2011; 
Bock et al. 2011; Johnston and Narayanan 2008), dendritic sweep sensitivity—pre-
dicted by Rall and exploited elegantly by octopus cells—will be the subject of 
study for decades to come.
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    Abstract     This chapter describes recent experimental results showing that dendrites 
of cortical pyramidal neurons can compute the temporal sequence of synaptic input. 
Electrophysiological recordings combined with two-photon glutamate uncaging, 
calcium imaging, and compartmental modeling have shown that single cortical 
dendrites have a gradient of nonlinear synaptic integration, which relies on dendritic 
impedance gradients and nonlinear synaptic NMDA receptor activation. This gradient 
confers high sensitivity to the temporal input sequence, allowing single dendrites 
and individual neurons to implement a fundamental cortical computation.  

15.1         Introduction 

 The detection and discrimination of temporal input sequences is a fundamental 
computation implemented by the brain. It underlies basic elements of animal and 
human behavior, such as communication via vocalizations, where specifi c sequences 
of sounds have a social meaning, or the sensory perception of directionality, where 
the order of activation of sensory receptors carries information about where the 
stimulus is coming from or going to (Meister et al.  1995 ; deCharms and Merzenich 
 1996 ; Wehr and Laurent  1996 ; Johansson and Birznieks  2004 ). While the early 
stages of sensory systems have specifi c mechanisms to implement the detection of 
temporal sequences (Barlow and Levick  1965 ; Borg-Graham and Grzywacz  1992 ; 
Euler et al.  2002 ; Johansson and Birznieks  2004 ; Hausselt et al.  2007 ), this sensitivity 
to the temporal order of the stimulus is carried to high-order sensory brain areas (Simons 
 1978 ; deCharms and Merzenich  1996 ; Livingstone  1998 ; Zhang et al.  2003 ) and 
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ultimately should be transmitted to motor areas to generate outputs that are conditional 
to particular sensory stimulus sequences. The transmission of temporal selectiv-
ity can in principle be implemented in several ways. For example, a network of 
simple excitatory and inhibitory neurons can selectively amplify particular 
sequences of activation of an input layer and generate varying levels of output 
depending on the activation sequence (Borg-Graham and Grzywacz  1992 ). An 
alternative means for temporal discrimination is to implement it at the level of the 
neuron itself, instead of relying on network-based mechanisms. This requires more 
complex individual neurons that have mechanisms that decode temporal sequences 
but has the advantage that it requires less neurons to implement, which could be an 
advantage for small neuronal networks. 

 The fi rst work to point out that neurons could respond selectively to sequences of 
synaptic inputs was the theoretical work of Wilfrid Rall in 1964 (Rall  1964 ). 
Pioneering the application of mathematical and cable analysis to the study of propa-
gation of electrical impulses in dendrites, Rall showed that because dendrites act as 
a delay line, activation of synapses along a dendrite in different directions should 
produce different responses at the soma. Starting from the tip of the dendrites (IN 
sequence), if the interval between activating each synapse is such that the sequence of 
activation is equal to the speed of propagation, the peak of all synaptic potentials will 
arrive at the same time at the soma and summate to produce a large potential. 
Activation in the inverse direction (OUT sequence) can never produce peaks that align 
temporally at the soma and will tend to produce a plateau response (Fig.  15.1a ). 
Dendrites thus seem to be ideally placed to implement the computation of temporal 
order detection. In addition, they are highly nonlinear devices because of the presence 
of multiple voltage-gated conductances (Schiller et al.  1997 ; Golding and Spruston 
 1998 ; Magee  2000 ; Gulledge et al.  2005 ; London and Häusser  2005 ; Johnston and 
Narayanan  2008 ) and because synaptic input is a conductance and not a pure current 
source. These mechanisms could in principle also be exploited to implement temporal 
sequence detection, and it has been shown that auditory neurons rely on sublinear 
summation of inputs in the same dendrite to compute coincidence detection 
(Agmon-Snir et al.  1998 ) and that starburst amacrine cells in the retina use a dendritic 
mechanism that contributes to direction selectivity of retinal ganglion cells (Euler 
et al.  2002 ; Hausselt et al.  2007 ). Despite Rall’s prediction being more than 50 years 
old, until recently it was not technically feasible to directly test the sensitivity of 
dendrites to the sequence of excitatory synaptic input. This chapter reviews and sum-
marizes the experimental and modeling work previously published in Branco et al. 
( 2010 ), showing that cortical dendrites can compute temporal input sequences.

15.2        Technical Challenges and Solutions 

 The main challenge in testing the response of dendrites to sequences of synaptic input 
is that it requires exceptionally high spatial and temporal precision of synaptic stimula-
tion. Synapses are about 1 μm wide and act on a millisecond time scale, so a technique 
for activating single synapses in specifi c orders has to act on the same scales. 
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     Fig. 15.1    ( a ) The original Rall model was recreated as faithfully as possible, and the cable length 
progressively shortened ( left panel ). The original model used a cable 2 length constants long, 
resulting in prominent direction selectivity ( middle panel ). Dendritic branches in layer 2/3 pyrami-
dal neurons and most neurons in the brain have a length of 0.5 λ or less where direction selectivity 
is negligible ( right panel ). ( b ) Two-photon image of a layer 2/3 pyramidal cell used in experi-
ments. ( c ) Two-photon glutamate uncaging on a single dendrite ( yellow box  in ( b )) shows highly 
direction selective responses. The difference between the two directions requires activation of 
NMDA receptors ( d ). ( e ) Simultaneous calcium imaging reveals pronounced differences in the 
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 The traditional method for activating synaptic input is electrical stimulation. 
While this has very high temporal precision (the electrical impulse for stimulation 
is less than 1 ms), the spatial precision is hard to control. Most often the stimulation 
activates a group of axons, and unless they run in an orderly and parallel direction, 
it is hard to control the number and location of the activated synapses. While in 
some preparations it is possible to activate a single synapse, testing a sequence 
of synapses would require careful placement of several electrodes next to target 
synapses, which would be extremely challenging. 

 An alternative means of activating synapses is to apply the neurotransmitter 
directly to the postsynaptic receptors. One way of doing this with extreme precision 
is to apply to the preparation a chemically caged form of the neurotransmitter 
(Ellis- Davies  2007 ). The caged form is inert, but the cage can be removed by light 
of a specifi c wavelength, allowing the neurotransmitter to bind to the postsynaptic 
receptors. By using a diffraction-limited laser spot it is possible to uncage neu-
rotransmitter with high lateral resolution (<0.5 μm) and activate single synapses 
(Matsuzaki et al.  2001 ; DiGregorio et al.  2007 ). The laser light intensity is con-
trolled using an electro- or acousto-optic modulator, and sub-millisecond fl ashes 
can be achieved. While single-photon lasers are more effi cient at releasing most 
cages, single-photon excitation suffers from lack of resolution in the Z plane, which 
is a problem for preparations where synapses are several tens of micrometers below 
the surface. In these cases, a two-photon laser can be used to achieve excellent Z 
precision (~1 μm) (Matsuzaki et al.  2001 ). In the work described in this chapter, 
excitatory synapses were activated using two-photon glutamate uncaging. 

 For measuring the electrical response of a neuron to synaptic activation, the most 
convenient site of recording is the soma, as this compartment is easily accessible 
and reports the generation of action potential output as well as the subthreshold 
responses that lead to it. However, in order to understand the electrogenesis of 
somatic potentials it is informative to also record from the dendrites where the acti-
vated synapses are located. While multiple and simultaneous dendritic recordings 
have been obtained from thin dendrites (Larkum et al.  2007 ; Nevian et al.  2007 ), 
these recordings remain extremely challenging, and unless multiple electrodes on 
the same dendrite are used, they report the electrical activity visible only at the site of 
recording. An alternative is to combine electrical somatic recordings with dendritic 
calcium imaging. While calcium entry is not a direct surrogate of voltage, it can 
provide valuable information about the local voltage dynamics. In this work, a second 
two-photon laser was used to perform calcium imaging in several line-scan confi gu-
rations, in combination with whole-cell somatic recordings.  

15.3     Sequence Detection in Single Dendritic Branches 

 To test the sensitivity of single dendrites to the order of activation of a defi ned set of 
synapses, spatiotemporal input patterns were delivered using two-photon glutamate 
uncaging in spines of layer 2/3 pyramidal neurons (Branco et al.  2010 ). The fi rst 
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pattern tested was the one explored by Rall in his simulations: an ordered sequence 
of synaptic activation in opposite directions. This systematically produced electrical 
responses at the soma that were larger when activation started from the tip, just as 
Rall had predicted (Fig.  15.1b, c ). The differences in the size of the two electrical 
responses were large enough that they had a pronounced effect in the probability of 
generating action potentials, demonstrating that the output of cortical neurons can 
represent the direction of synaptic input sequences onto a single dendritic branch 
using a local computation mechanism. While these experimental results are in 
accordance to Rall’s simulations, simultaneous calcium imaging of the stimulated 
dendrite showed that there were dramatic differences in the amount of calcium 
between the two patterns (Fig.  15.1e ). This suggested that local dendritic electrogen-
esis was contributing to the differences between the two patterns, which was not 
expected from Rall’s theory, because in this case the difference results from sum-
mation of the peaks at the soma. Furthermore, there was also a noticeable difference 
in the integral of the two responses, which again was not expected from Rall’s pre-
diction, as the differences should be for the peak of the response but the charge 
should be the same in both directions. The contribution of dendritic electrogenesis 
was confi rmed by blocking NMDA receptors, which abolished the differences 
between the two sequences (Fig.  15.1d ). 

 At fi rst sight, the lack of directional selectivity in the presence of NMDA-receptor 
blockers seems to contradict Rall’s prediction. However, passive direction selectivity 
requires a cable long enough to generate signifi cant fi ltering and delays to the EPSP 
peak. Basal dendrites of layer 2/3 cells are around 0.5 length constants long 
(Larkman et al.  1992 ), which is not long enough to introduce signifi cant peak 
delays. Indeed, Rall’s simulations were done with a cable which was 2 length con-
stants long, and repeating these simulations for a shorter cable produces virtually no 
differences in the peak EPSP (Fig.  15.1a ). 

 To understand the biophysical basis of the NMDAR-dependent direction sensi-
tivity, a detailed compartmental model was constructed, based on a reconstructed 
layer 2/3 pyramidal cell. The initial model included excitatory synapses with NMDA 
receptors but it was otherwise passive, and it was able to accurately reproduce the 
experimentally observed sensitivity to the direction of input sequences, which was 
markedly reduced by removing NMDA receptors from the model (Fig.  15.2a, b ). 
Analysis of the simulations showed that the mechanism for direction sensitivity in 
single dendrites can be explained by the interaction between the voltage- dependent 
Mg ++  block of NMDAR channels (Mayer et al.  1984 ; Nowak et al.  1984 ) with the 
spatial gradient in local input impedance along the dendrite. When distal synapses 
are activated fi rst, the local depolarization is large due to the high local input imped-
ance, and this produces substantial relief of Mg ++  block in the NMDAR channel. 
Subsequent activation of more proximal synapses in turn generates signifi cantly 
greater NMDAR current, as the distally generated EPSP propagates inwards, leading 
to a regenerative wave of depolarization spreading towards the soma. If the order of 
activation is reversed, the small local depolarization produced at the proximal syn-
apses is less effi cient in relieving the Mg ++  block, and therefore substantial regen-
erative activation of NMDAR conductance is only achieved at the distal synapses. 
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  Fig. 15.2    ( a ) A cell used in one of the experiments was reconstructed and its morphology used for 
the simulations. ( b ) A passive model with AMPA and NMDA receptors reproduces the robust 
direction selectivity in short dendrites, in an NMDAR-dependent manner. Different traces for each 
direction show progressively slower speeds of activation. ( c ) Direction selectivity was tested for 
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While IN/OUT differences increase with the impedance ratio of the dendrite, longer dendrites 
generate more pronounced differences (impedance ratio is the impedance at the tip over the imped-
ance at the base of the branch)       
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Thus, more NMDAR conductance is recruited when activating synapses towards 
the soma than in the opposite direction, and the spatial profi le of the experimentally 
recorded calcium transients is fully consistent with this explanation and matched 
the NMDAR conductance profi le along the dendrite in the model.

   Given the simple requirements for the generation of NMDAR-dependent direc-
tion sensitivity, the model was used to show that dendrites of a variety of cell types 
exhibit suffi cient impedance gradients to exploit this mechanism (Fig.  15.2c ). 
Different cell types have IN/OUT differences of different magnitude, which is due 
to two factors: fi rst, the absolute value of the local impedance, which determines the 
overall amount of local depolarization and NMDA conductance and thus the ampli-
tude of the IN/OUT difference, and second, the length of the dendritic branch, 
which sets the maximal inter-synaptic distance. This distance is important because 
the magnitude of the IN/OUT difference depends not only on the facilitation of 
NMDAR opening by previously activated synapses but also on the local driving 
force. In shorter dendrites, like those of CA1 pyramidal cells, synaptic depolariza-
tion spreads to the whole branch with little attenuation, temporarily reducing the 
driving force available to subsequent synaptic activation. In such dendrites, the ben-
efi t of activating distal synapses fi rst is therefore partially attenuated by the smaller 
driving force available to the proximal synapses, thus counteracting the enhanced 
NMDAR opening and yielding smaller direction sensitivity when compared to the 
longer dendrites of granule cells of the dentate gyrus or substantia nigra dopamine 
neurons. 

 Given the prominent presence of different types of active dendritic conductances 
in pyramidal cells, models of increasing complexity were used to explore the impact 
of different types of voltage-gated conductances on direction sensitivity. These sim-
ulations showed that in general, increasing dendritic excitability increases the sen-
sitivity to the direction of input sequences, which can also be achieved by 
depolarizing the membrane potential. This increase in sensitivity has however a 
limit, given that if the dendrite is too excitable, the less favorable OUT sequence can 
become as effi cient as the IN sequence in recruiting NMDAR conductance, and 
both sequences of activation will generate maximal NMDAR recruitment and pro-
duce very similar responses. While the distribution of voltage-gated conductances 
is not known for basal dendrites of cortical neurons, other dendrites such as the api-
cal trunk of hippocampal CA1 pyramidal cells and cortical L5 cells have a gradient 
of Ih channels, which will impact on the impedance gradient and can in principle 
counteract the sequence discrimination mechanism described here. However, the 
predominant effect of experimentally blocking Ih channels in L5 neurons is hyper-
polarization and reduction of NMDAR recruitment (Branco and Häusser  2011 ), 
indicating that the presence of Ih can be favorable to NMDAR-dependent dendritic 
mechanisms. In general dendritic gradients of voltage-gated channels (Lörincz et al., 
 2002 ; Magee  1999 ; Mathews et al.  2010 ; Williams and Stuart  2000 ) or synaptic 
properties (Katz et al.  2009 ; Magee and Cook  2000 ) will be superimposed on, 
and may modify, the impedance gradient and the dendritic integration mechanisms 
that depend on it. 
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 While testing and analyzing the activation of the two perfectly ordered IN and 
OUT sequences was essential for determining the underlying mechanisms of 
sequence sensitivity, it seems unlikely that such sequences will occur often in vivo, 
given the requirement for very precise subcellular connectivity and the stochastic 
nature of synaptic transmission. Therefore, the model was used to test the discrimi-
nation of random temporal patterns of input and showed that different sequences 
produced a wide range of somatic electrical responses, in an NMDAR-dependent 
manner. This happens because synapses at different locations along the dendrite 
differentially infl uence each other, depending on their relative timing. The use of the 
model had the great advantage that more than 400,000 sequences could be tested, 
which showed that not all sequences are different from each other. Instead, groups 
of sequences with similar temporal structures produce similar electrical responses, 
and the overall likelihood of discriminating any two sequences (for a >1 mV EPSP 
peak difference) is around 40 %. Using the information from the model, a subset of 
temporal sequences was selected and tested experimentally, confi rming that single 
dendrites discriminate multiple temporal input patterns (Fig.  15.3a, b ). This particu-
lar result is a great example of the benefi ts of the close interplay between modeling 
and experiments, as experimentally it would have not been feasible to test a large 
number of different sequences, and without the model it would have been impossi-
ble to predict which sequences should produce signifi cantly different responses.

15.4        Sequence Discrimination with Multi-Dendrite Patterns 

 Voltage-dependent synaptic interactions are maximal if synapses are on the same 
dendrite, and thus single dendrite spatial patterns should exhibit maximal sensitivity 
to temporal sequences using an NMDAR-dependent mechanism. However, neurons 
in the cortex are connected by synapses that spread over multiple dendritic branches 
(Watts and Thomson  2005 ; Helmstaedter et al.  2007 ), and while it is possible that 
activation of specifi c subsets of input neurons results in activation of a large number 
of synapses in the same branch, it seems likely that in most cases the complement 
of activated synapses will be spread over multiple dendritic branches of the same 
neuron. Given that voltage can spread between dendritic branches (Zador et al. 
 1995 ), the extent depending on the tree geometry and biophysical properties, it is 
possible that the sequence discrimination mechanism described here for single 
dendrites might be exploited when synapses are distributed over the dendritic tree. 
This was tested both experimentally and using modeling, which revealed that robust 
sequence discrimination was possible in these conditions, in an NMDAR-dependent 
manner (Fig.  15.3c ). Exploration of a wide range of spatial input distributions using 
the model showed that while the reliability of sequence discrimination scaled 
with the average number of synapses per dendritic branch, discrimination was still 
possible with very small number of synapses per branch. To confi rm that sequence 
discriminability with patterns of synapses on different dendrites relies on voltage 
interactions between different branches, we performed experiments where the 
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somatic EPSP was recorded in response to the combined activation of all branches 
as well as to the separate activation of individual branches that had more than one 
synapse. The assumption that the differences between the two tested sequences with 
distributed input resulted entirely from the differences generated within a single 
dendrite was tested by comparing the sum of the differences from each branch with 
the recorded difference in response to multi-branch activation. The measured differ-
ence was almost ten times larger than expected, directly confi rming that interactions 
between different dendrites underlie sequence discrimination with distributed input 
(Fig.  15.3c ). Importantly, there was no relationship between sequence discrimina-
tion and the net directionality of the pattern. The sequences that generate the 
largest responses are the ones that maximize voltage transfer between synapses 
activated closely in time, and given the complex nature of forward and 
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backpropagation of voltage in complex dendritic trees (Zador et al.  1995 ), it is often 
hard to predict what sequences are the most effi cient ones. 

 The above result highlights an important aspect of nonlinear synaptic integration 
and computation in dendrites: while single dendritic branches are extremely effi cient 
units for implementing local computations (Branco and Häusser  2010 ), the same 
computations can be implemented over a wide range of spatial distributions of input, 
because they can still recruit voltage-dependent dendritic mechanisms. This relaxes 
the constraints on the network connectivity patterns that can exploit dendritic 
computations.  

15.5     The Advantages of Active Sequence Detection 

 Using an active mechanism such as NMDAR activation for implementing sequence 
detection has several potential advantages over a purely passive mechanism. The main 
one is amplifi cation: an active mechanism generates more charge, and large differ-
ences can be achieved with small number of synapses and short dendrites. For ten 
synapses activated on a basal dendrite of a cortical neuron this amplifi cation is more 
than fi vefold, which produces differences that are robust against synaptic noise 
coming from activation of background synapses and that can be reliably thresholded 
by the action potential generation mechanism. The passive sequence sensitivity 
described by Rall depends crucially on the precise timing of synaptic activation, as 
differences between sequences are generated because of propagation delays along 
the dendrite. This makes the mechanism extremely sensitive to temporal jitter in 
synaptic activation (Faisal and Laughlin  2007 ) and could entirely abolish differ-
ences between sequences. On the other hand, an NMDAR-dependent mechanism 
requires less temporal precision, because the selective amplifi cation of favorable 
sequences depends on the overlap between depolarization coming from activation 
of other synapses and glutamate binding to the NMDA receptor, which lasts for 
several milliseconds (Lester and Jahr  1992 ). Another potential advantage of using 
NMDA receptors is that the degree of sequence sensitivity can be quickly tuned by 
changing the membrane potential as well as by changing the amount of NMDA 
receptors, which can be done in a dendrite- or a synapse-specifi c manner, thus 
allowing the same neuron to have dendrites or groups of synapses with different 
ability for discriminating temporal sequences. 

 It is important to note that while NMDA receptors are the main channel underly-
ing the mechanism described here, in principle similar results could be obtained 
with other types of voltage-gated channels, such as voltage-gated calcium channels. 
However, NMDA receptors have the advantage of being recruited in a more graded 
manner when compared to voltage-gated calcium or sodium channels (Major et al. 
 2008 ; Branco and Häusser  2011 ), which allows for a wide analog range of response 
sizes to which sequences can be mapped to, whereas sodium or calcium voltage- 
gated channels will tend to produce a binary discrimination of sequences, generating 
either a large or a small response.  
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15.6     Conclusion 

 The experimental and theoretical results described in this chapter show that single 
neurons can discriminate temporal sequences of synaptic input using a dendritic 
mechanism. This is a complex computation that can in principle be exploited by 
neural networks for implementing sequence detection tasks that are important for 
behavior. Like for other dendritic computations that have been described (Mel  1993 ; 
Schiller et al.  2000 ; Poirazi et al.  2003 ; London and Häusser  2005 ; Losonczy and 
Magee  2006 ; Branco and Häusser  2011 ), successful implementation depends on the 
subcellular organization of networks and could prove especially relevant for circuits 
with layered input such as the hippocampus, where for example this mechanism 
could be used by dentate gyrus granule cells to directly detect the sequence of ento-
rhinal cortex activation. Given that sequence detection can be implemented across 
multiple dendrites, a general bias in the distribution of inputs, which has been 
described for several cortical areas (Petreanu et al.  2009 ; Richardson et al.  2009 ; 
Little and Carter  2012 ), could be suffi cient to differentially process the order of 
activation of different classes of input to single neurons. A fi nal answer requires 
detailed knowledge of the entire spatiotemporal pattern of inputs onto single neurons 
during behavior. While this is a formidable task, technical advances in electrical 
recording and imaging methods are rapidly making this an achievable goal, and of 
the amazing library of mechanisms that are available to neurons, we will soon know 
which are the ones used to implement computations in real life.     
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Abstract Understanding the computational power of individual neurons is one of 
the major tasks in neuroscience. Complex calculations in dendrites and axons were 
identified in recent years in a great number of different systems. The small set of 
around 60 lobula plate tangential cells (LPTCs) in the fly visual system is a prime 
example where such computations and their underlying mechanisms are well under-
stood. In this chapter we review recent findings resulting from detailed modelling 
studies based on experimental data from LPTCs. These studies have shown that the 
network connectivity is sufficient to explain the morphology of LPTCs to a large 
extent. Furthermore, an extensive network ubiquitously but highly selectively con-
nects LPTC dendrites and axons with each other and is responsible for sophisticated 
optic flow calculations. The electrotonic features of LPTCs are affected by this net-
work. We describe how a selective dendritic network between Horizontal System 
(HS) and Centrifugal Horizontal (CH) cells implements a specialised spatial filter 
operating on the moving images encoded in the dendrites. We also show how an 
axonal network renders the axon terminals of Vertical System (VS) cells in the fly 
selective to rotational optic flow. In summary, fly LPTCs are a prime example to 
show that the embedding and wiring within the network is crucial to understand 
morphology and computation.
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16.1  Introduction

Ever since the 1960s when Wilfrid Rall showed that the spatially distributed electric 
load on the dendrite plays a prominent role in synaptic integration (Rall 1959; Rall 
and Rinzel 1973), a vast number of complex calculations has been associated with 
the spatial distribution of inputs in the dendrites of single cells (for review, see 
London and Häusser 2005). At the same time, a number of computations were 
explored at the level of a network of neurons which can be understood without spe-
cifically modelling the dendritic tree (e.g., Hubel and Wiesel 1962; Seung et al. 
2000). In recent years, however, it has increasingly become clear that computation 
in the nervous system originates from precise arrangements in both the network 
wiring and the single cell morphological and electrotonic composition (e.g., Bock 
et al. 2011; Briggman et al. 2011; Watt et al. 2009). Effort has been made to inte-
grate sophisticated, anatomically and electrically realistic compartmental models 
into larger scale neural networks (Lang et al. 2011; Markram 2006). In most cases, 
however, the precise wiring in such models is not known, and morphological recon-
structions in the network models cannot be connected according to their real 
biological counterpart. Here, we review one circuit in the fly lobula plate for which 
such knowledge exists.

A number of invertebrate neural circuits stand out for being particularly well 
studied both at the level of electrophysiology and anatomy of the single cells 
involved. For example, the looming sensitivity of the lobula giant movement detec-
tor (LGMD) cell in the locust has been successfully associated with a multiplica-
tive computation in its dendrite between the angular velocity and the object size 
(Gabbiani et al. 2002). Also, the precise circuitry of the locust sky compass 
(Homberg et al. 2011), cricket cerci (Jacobs et al. 2008) and the central pattern 
generator of the lobster (Marder and Bucher 2001) have been dissected in terms of 
electrophysiology and morphology of the individual cells involved. Among neural 
circuits in general, only few are so amenable to detailed analyses as the network of 
tangential cells in the lobula plate of the fly (Borst 2012; Borst et al. 2010; Borst 
and Haag 2002). The lobula plate lies flat in full view when the cuticle is removed 
at the back of the fly’s head. Inserting a tungsten electrode into the lobula plate 
enables the recording of extracellular spikes from the so-called H1 cell for many 
hours in the living fly (De Ruyter et al. 1988). This has been a model system to 
study neural coding and information theory (e.g., Bialek et al. 1991; Borst and 
Haag 2001) at the level of the single neuron using real-life visual stimulation. 
The H1 cell is one of only around 60 lobula plate tangential cells (LPTCs) many 
of which are meanwhile well characterised both electrophysiologically and 
morphologically.

Details of the underlying computations are known for many LPTCs. The lobula 
plate, a neural control centre for course corrections during flight (Borst and Haag 
2002), encodes visual motion information retinotopically, that is, neighbouring 
points in the visual field correspond to neighbouring points on the lobula plate. 
Dendrites of LPTCs that integrate local motion information to produce large-field 
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responses therefore cover large areas of the lobula plate. In agreement with their 
location within the lobula plate and thus the anatomical pendant of their receptive 
field, calcium signals measured in dendrites of LPTCs conserve the retinotopy of 
the visual input (Borst and Egelhaaf 1992). This literally means that motion images 
are directly mapped onto the dendrites of LPTCs. Via descending neurons, LPTCs 
then connect to motor neurons in the thoracic ganglia to control flight manoeuvres 
(Geiger and Nässel 1981; Haag et al. 2007; Wertz et al. 2008). Some LPTCs even 
connect directly to neck motor neurons responsible for head movements of the fly.

Horizontal System (HS) and Vertical System (VS) cells (Fig. 16.1a) are among 
the most accessible LPTCs for intracellular electrophysiology in the large blowfly, 
Calliphora vicina, where sharp recording electrodes are positioned in the very large 
axons (~10–25 μm diameter) of these cells (Hausen 1982a, b). Three HS cells exist 
that respond to horizontal motion in three horizontal parts of the visual field: the 
HSN cell responds to large-field motion in the northern part, and the HSE and HSS 
in the equatorial and southern parts, respectively. The dendrites of the ten VS cells 
are positioned sequentially along the rostro-caudal axis of the lobula plate jointly 
covering it with some degree of overlap. VS cells respond preferably to vertical 
motion in ten vertical stripes arranged from frontal to lateral corresponding to the 
location of their dendrites.

HS and VS cells respond to visual stimulation with graded membrane potential 
deflections, depolarising when a stimulus is moved in the preferred direction and 
hyperpolarising when the stimulus is moved in the anti-preferred direction. A num-
ber of computations were identified by studying the single cell electrophysiology of 
HS and VS cells. Firstly, it was shown that in HS and VS cells voltage-gated ion 
channels do not produce full-blown action potentials but rather elicit smaller spike-
lets that enhance the transmission of high temporal frequency signals that would 
otherwise be filtered out by the time constant of the membrane (Haag and Borst 
1996). On the other hand, local irregularities in the motion signal get filtered out by 
spatial integration in the dendrite, a prime example for a functional interpretation of 
dendritic morphology (Single and Borst 1998). To better understand the sophisti-
cated computations in single neurons, it has proven useful to design realistic com-
puter models of the cells involved. LPTCs were modelled successfully with respect 
to their morphology, passive (Borst and Haag 1996) and active membrane proper-
ties (Borst and Single 2000; Haag et al. 1997) as well as with respect to their visual 
responses (Haag et al. 1999). It could be shown that the models reproducing the 
current flow within the realistic morphology of the individual cells were consistent 
with the dendritic integration principles mentioned above (Haag and Borst 1996; 
Single and Borst 1998).

Here, we summarise the results of modelling studies on morphology, electro-
physiology and connectivity in HS and VS cells that shed light on their respective 
computations in the network. It becomes clear that in the case of these particular 
cells (1) the morphology mainly reflects the wiring in the network and (2) the spe-
cialised network connectivity between these neurons plays a decisive role for com-
putation. The morphology and function of the single dendrite can therefore not be 
fully understood outside of the context of their wiring in the circuitry.
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16.2  Modelling the Morphology of HS and VS Cells

Are the morphology and electrophysiology of HS and VS cells indeed specialised 
for the intricate computations described above? This could be the case similar to 
locust LGMDs that have a dedicated dendritic structure favouring the response of 
the cells to looming optic flow stimuli (Gabbiani et al. 2002; Peron et al. 2009; see 
also Chap. 17). Indeed, early work on LPTCs has shown that morphological fea-
tures influence dendritic integration properties (Egelhaaf et al. 1994).

The first step in modelling the LPTC circuit therefore concerns the morphol-
ogy of the cells. In insects, not only individual neuron types but actually individ-
ual neurons can be identified accurately because of their stereotypic anatomy and 
electrophysiology. As such, LPTCs are uniquely identifiable and, thus, represent 
an ideal subject for investigating the structure–function relationship in dendrites. 
While their anatomical structures are unique and identifiable by visual inspection, 
it is also obvious that for one particular cell, e.g., the left HSE cell, no one single 
dendritic branch from one animal can be associated with one particular branch of 
the same cell in another animal (Hausen 1982a). It was therefore interesting to 
study the inter-individual constancy and variability among LPTCs in a quantita-
tive way, i.e., what factors make LPTCs different from each other and what fac-
tors are common to all cells. This section summarises this work (Cuntz et al. 
2008), where we chose two members of the horizontal system (HSE and HSN, 
Fig. 16.1a black and red), and two members of the vertical system (VS2 and VS4, 
Fig. 16.1a green and blue), each of them represented by at least ten individuals 
from different flies to answer these questions. After the cells were filled with fluo-
rescent dye, the anatomy of each neuron—including soma, axon and dendrite—
was manually traced from two-photon image stacks and described by a set of 
 connected cylinders.

We first parameterised the area covered by the dendritic tree, the so-called 
 “dendritic field” (Hausen 1982a). We defined the spanning field of a dendrite by 
drawing a contour around it at a distance of 25 μm after orienting each reconstructed 
neuron along its axonal axis (Fig. 16.1b). Parameters relating to the spanning field 
plainly reflected cell-type-specific differences: All four cells could be easily dis-
criminated by eye by their relative position and the shape of their dendrite spanning 
fields. Consequently, parameters pertaining to the spanning field readily grouped 
individual cells into their respective cell types. This is illustrated in Fig. 16.1c where 
two arbitrarily chosen parameters are plotted against each other: (1) a quantitative 
measure of convexity of the dendrite spanning field versus and (2) a contextual 
measure, the relative location of the dendrite off the axonal axis. This shows that the 
shape of the spanning field of LPTC dendrites determines their identity. On the 
other hand, using branch-specific statistics (Fig. 16.1d) a qualitative distinction was 
possible only by detailed examination of distributions of parameters such as den-
drite complexity, path lengths to the root and branch order. Clustering the cells 
according to these branching statistics separated HS from VS cells but not the indi-
vidual members of the two families (Cuntz et al. 2008).
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Fig. 16.1 Morphology of HS and VS cells. (a) Sketch showing HSE (black), HSN (red), VS2 
(green) and VS4 (blue) in the context of the lobula plate (grey). (b) Superimposed full anatomies 
of all individual cells sorted according to their respective cell type. Cells were aligned along their 
axonal axis (orange lines). To the right, the corresponding dendrite spanning fields are outlined. (c) 
Two dendrite spanning field parameters plotted against each other: the convexity and the relative 
location to the axonal axis. (d) Statistics specifically related to dendrite branching. Statistics are 
represented as superimposed distribution histograms, filled squares show mean values and error 
bars correspond to standard deviation between individual dendrites. Statistics shown are (1) path 
length to root values for all topological points, (2) topological branch order values, counting for any 
point on the dendrite the number of branch points along the tree towards the dendrite root and (3) 
surface area values assigned to each topological point after Voronoi segmentation indicating topo-
logical point density and distribution homogeneity. (e) Synthetic dendrites: two examples of each 
cell type. Upper row: real dendrites. Lower row, marked by preceding “m”: synthetic dendrites 
corresponding to each of the spanning field of the real dendrites. (f) Synthetic dendrite parameter 
distributions as in (d) showing the similarity to the real dendrites. Modified from (Cuntz et al. 2008)
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In accordance with these findings, we postulated that if the spanning area readily 
determines neuronal appearance, the differences in branching parameter distribu-
tions might be merely a consequence of the neuronal target zone. In order to identify 
the critical impact of spanning field shape on branching parameters, a morphologi-
cal model was designed that generated synthetic dendrites, which covered the same 
region as their biological counterpart. Inside the contours of the original cells, ran-
dom points were distributed following the respective density map of branch and 
termination points. An iterative greedy algorithm developed previously to reproduce 
LPTC morphology (Cuntz et al. 2007a) was launched starting at the coordinates of 
the real dendrite root, adding connections to the distributed points while housekeep-
ing both total amount of wiring and the path lengths from the root to each point. The 
morphological modelling procedure based on optimising these two wiring costs has 
meanwhile been shown to be applicable to a large variety of neuron types (Cuntz 
et al. 2010, 2012; see Chap. 6). In this case, it resulted in synthetic dendrites that 
were virtually indistinguishable from their real counterparts and that remained con-
fined to the same area as the corresponding dendrite reconstructions (Fig. 16.1e).

Most importantly, synthetic dendrites yielded quantitatively similar inner branch-
ing parameter distributions as their real counterparts in all cases (Fig. 16.1f). The 
exact same branching rule can therefore account for all individual morphologies 
after constraining the spanning field shape alone. The dendrite spanning field shape 
is therefore instrumental in determining the distributions of inner branching statis-
tics. This is remarkable since it shows that dendrites with highly different branching 
statistics might have grown using the exact same growth programme as was the case 
for the synthetic dendrites presented here, indicating that branching statistics are 
flawed for categorising cells. It also suggests that for LPTCs only the spanning field 
shape is responsible for their respective unique anatomies, while the inner branch-
ing structure is similar for all LPTCs and follows optimal wiring constraints. Since 
no optimisation criteria relating to dendritic computation were required to generate 
the dendritic morphologies, there is no evidence that the morphologies of LPTCs 
are specifically optimised for optic flow processing. This is in agreement with a 
more recent study that shows that optimising total cable length and path length costs 
using genetic algorithms results in morphologies with a similar fitness as real 
LPTCs while adding computational requirements attributed to LPTCs results in 
synthetic dendrites that perform these tasks better than their real counterparts 
(Torben-Nielsen and Stiefel 2010). However, dendrites satisfying wiring constraints 
in such a way might in turn be restricted in the computations that they can imple-
ment (Cuntz et al. 2012; see also Chap. 6).

16.3  Dendritic Network Model with HS Cells

We have therefore demonstrated that network wiring plays an important role for 
dendritic morphology in two different ways: (1) Wiring constraints determine the 
inner branching pattern and (2) the location of presynaptic input axons, i.e., the 
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anatomical receptive field, determines the dendritic field. We now proceed to  discuss 
the role of network wiring for computation on visual inputs. It was proposed that 
associating responses from various LPTCs could be useful to provide specific optic 
flow selectivity (Hausen 1982a, b). The possibility of using dual or more simultane-
ous intracellular recordings in conjunction with calcium imaging has recently 
opened up the possibilities of studying the connections between LPTCs and there-
fore the computational power of the highly specialised networks. In the following 
two sections we briefly summarise the results from realistic network model studies 
based on these types of experiments concerning the network of HS cells (Cuntz 
et al. 2003) and the network of VS cells (Cuntz et al. 2007b).

Apart from HS and VS cells, LPTCs comprise among others two centrifugal 
horizontal (CH) cells, a dorsal (dCH) and a ventral (vCH) one, whose receptive 
fields also correspond to the location of their dendrites. CH cells possess inhibitory 
(Meyer et al. 1986) dendritic output synapses (Gauck et al. 1997). Their output 
therefore has a spatial component not present in axo-dendritic communication. In 
contrast to HS cells, CH cells do not receive visual input directly from local motion 
elements distributed in the lobula plate but indirectly via electrical synapses from 
the overlapping dendritic trees of HS cells (Haag and Borst 2002). This indicates 
that the information from HS cells is processed spatially and passed on within a 
dendritic network of LPTCs. By measuring the dendritic calcium distribution while 
stimulating the fly with a small moving object, it was previously shown that signals 
are blurred in CH cells compared to HS cells (Dürr and Egelhaaf 1999; Haag and 
Borst 2002); this could represent an important processing step made possible only 
by the dendritic network. It is also known that, after selective laser ablation of the 
CH cell, the small-field selectivity of so-called figure-detection (FD) cells (Egelhaaf 
1985a, b, c) is eliminated (Warzecha et al. 1993). Thus, CH cells and the underlying 
dendritic network must be part of the neural pathway for the detection of small mov-
ing objects.

To understand how the network performs this computation, we arranged com-
partmental models of a vCH, an HSE and an HSS cell (Borst and Haag 1996) appro-
priately (Fig. 16.2a) and connected them to each other with 760 spatially distributed 
linear electrical synapses of 210 pS at the overlapping sections of their dendritic 
trees. As a consequence, the model required slight adjustments in both the mem-
brane resistance and the axial resistance compared to the disconnected case. Active 
properties remained unchanged. The model then accurately reproduced the experi-
mental results at many levels. (1) The model revealed a significant outward rectifi-
cation in the transfer function between the HS and the CH model as had been 
observed experimentally (Haag and Borst 2002). Since the electrical synapse was 
represented as a linear conductance, outward rectification resulted from the active 
membrane currents in both cells (Haag et al. 1997). (2) Dual recordings had shown 
that spikelets did not propagate from HS to CH cells (Haag and Borst 2002). In our 
network model, using electrical synapses without any dynamic properties, we saw 
the same effect. (3) In agreement with experimental results (Haag and Borst 2002), 
simulated axonal current injections into either HS model cell resulted in a mem-
brane response only in the CH model dendritic area that overlapped with the 
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Fig. 16.2 (continued) unconnected cells; Current was injected in HSS (bottom left) and vCH (bot-
tom right). (c) Two cylinders (HS and CH) are connected by five linear conductances surrounding 
the location of current injection. In HS the signal spreads following an exponential decay, while the 
CH spread is broader (bottom traces). Since the CH signal is smaller than the HS signal, both 
were normalised to the maximum value. The CH spread can be approximated by the sum of pas-
sive spread through each individual conductance (top traces). Modified from (Cuntz et al. 2003)

stimulated HS model. (4) A realistic visual response was found in the CH model 
when only the HS models received a simulated visual input. The input resistance 
change was only 5 % in the CH model and, as such, was close to the experimental 
results. In contrast to our network model, previous simulations where CH cells were 
modelled to receive visual input directly were not able to reproduce most of the 
above characteristics faithfully (Haag et al. 1999).

To examine the spatial low-pass characteristics (blurring) found in CH cells 
experimentally, currents were injected into different dendritic branches of the HS 
models and the voltage distribution was compared between the two model cell 
types. The potential spread was consistently broader in the vCH model. This was 
not an effect of the vCH cell anatomy alone since it was not observed when currents 
were injected into the dendrites of the isolated models (Fig. 16.2b). These simula-
tion results demonstrate that it is the electrical connection between the two neurons, 
and not their geometry, that is responsible for the blurring of signals passing from 
HS to CH neurons. In a simplified model connecting two identical cylinders (2.5 mm 
long and 3 μm diameter, Rm = 2,500 Ω cm2 and Ra = 100 Ω cm) by five conductances 
of 2.5 nS at 100 μm distance from each other surrounding the current injection site, 
we found that after point-like current injection in the first cylinder, a broadening of 
the signal was observed in the second compartment (Fig. 16.2c). The current feed-
back being negligible, the potential in the second cylinder approximates a simple 
summation of individual currents through the synapses. This can be examined ana-
lytically by convolving the signal with a kernel determined by the filtering proper-
ties of the cells. With f1(x) and f2(x) describing the potential distribution in the first 
and in the second cylinder, respectively, we find
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where x is the location and λ is the length constant. By solving (16.1) and (16.2) at 
a distance λ from the point of current injection, the attenuation in the second cylin-
der is much smaller than in the first one: f1(x = λ) = 1/e and f2(x = λ) = 2/e (see Cuntz 
et al. 2003 for more details). Hence, the amount of blurring is determined by the 
length constant λ of both cells which in turn depends on the dendritic anatomy as 
well as on the axial and transmembrane resistance (Rall 1959).

We have shown that a dendro-dendritic electric coupling leads to a spatial blur-
ring of the signals being passed from one cell to the other. This means that in addi-
tion to their integrative properties (Haag and Borst 1996; Single and Borst 1998), 
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Fig. 16.2 Computation in dendritic network of LPTCs. (a) Realistic compartmental models of a 
vCH cell (green), connected to an HSS and an HSE cell (red). (Left Inset) Original fluorescent stain-
ing for comparison. (Right Inset) Location of electrical synapses (white) used for these analyses. (b) 
Membrane potential spread in HSS model (top left) and vCH model (top right) after local current 
injection into HSS. In the bottom panels, potential spread is shown similar to top panels, but with 
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LPTCs form a dendritic network allowing for complex image processing with only 
a few cells. The blurred motion image, as represented in the CH cell dendrites, is 
passed onto FD cells via inhibitory dendritic synapses. This puts the unique properties 
of the CH cell into a functional context. Subtracting the CH cell’s blurred motion 
image from the FD cell’s own local motion detector input leads to a sharpening of the 
original image, equivalent to an enhanced motion contrast. Similar interactions of 
large-field sensitive tangential cells in motion contrast calculation had been suggested 
before (Egelhaaf 1985c; Reichardt et al. 1983). At that time, however, the spatial 
dimension of the dendritic output had not been considered (dendrites were considered 
compact) and an extensive reconnection of the pooled signal to columnar elements 
was consequently proposed to underlie this computation. We show here an alternative 
solution where motion contrast is enhanced by a small dendritic network, performing 
stepwise image processing at a minimal cost with respect to neuronal expenditure.

16.4  Axonal Network Models with VS Cells

As opposed to the comparably simple responses from HS cells to large-field  horizontal 
motion, the ten VS cells (Fig. 16.3a) exhibit more complex receptive fields (Krapp 
et al. 1998; Krapp and Hengstenberg 1996; Laughlin 1999) going beyond the recep-
tive field size expected from the retinotopic location of their dendrites within the 
lobula plate. Krapp and colleagues furthermore showed that the orientation prefer-
ence depends strongly on the spatial location in the visual field. The complex recep-
tive fields of VS cells roughly match the optic flow that occurs during rotational flight 
manoeuvres of the fly around its own axis (see inset in Fig. 16.3a). Such large and 
specialised complex receptive fields might either be the result of connections to 
unknown small-field elements in the lobula plate, or an alteration of the simple recep-
tive field structure through network interactions between  various VS cells.

Intracellular dual recording experiments between VS cells clarified this issue 
(Haag and Borst 2004): Current injection into one VS cell led to a change in the 
membrane potential in all other VS cells and vice versa. The coupling strength 
decreased as distance between the dendritic trees of the partner VS cells increased. 
Moreover, the coupling strength did not tend towards zero for larger distances: for 
neurons where the dendrites and the receptive fields were clearly separated (like 
VS1 and VS9), a sign reversal occurred: Depolarisation of VS1 led to a hyperpo-
larisation of VS9 and hyperpolarisation of VS1 to a depolarisation of VS9. These 
data strongly suggest that the VS cells are coupled via electrical synapses, which 
would explain the broad receptive fields of VS cells. Furthermore, to account for 
the sign reversal between distant VS cells a reciprocal inhibitory connection 
between VS1 and VS10 was postulated. The gradient in the coupling strength can 
be explained by two different wiring schemes of the VS cells: (1) each VS cell is 
directly connected to all other VS cells but the connection strength varies according 
to the location of the dendritic tree or (2) each VS cell is connected only to its 
immediate neighbour in a chain-like manner (Fig. 16.3b). The idea of a chain-like 
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Fig. 16.3 Computation in axonal network between VS cells. (a) Ten VS cells as obtained from 
2-photon image stacks for which detailed compartmental models were reconstructed. Cells were 
placed manually according to their position in the lobula plate with neighbouring dendritic arbori-
sations slightly overlapping. Inset shows the idealised optic flow field for self-rotation. The vertical 
components scale linearly with the x-axis (dashed line). (b) Suggested connectivity scheme from 
(Haag and Borst 2004). Adjacent cells are coupled electrically, and distal cells inhibit each other 
(schematic filled spots). (c) Potential responses at the primary dendrite in VS2–10 after current 
injection of −10 nA in the VS1 primary dendrite; black line—model, red line—experimental coun-
terpart. (d) Voltage transfer from all different VS cells at the location of the synapses in the axon 
terminal. Normalised amplitudes, dotted horizontal line represents 0 mV. (e) Examples of the 
response in the VS cell network to different input signals (dotted line with circles), measured in the 
dendrite (red) and in the axon terminal (black). Traces are normalised to maximum value, dashed 
line represents zero. Modified from (Cuntz et al. 2007b)
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connection was strengthened by dye-coupling experiments in which the direct 
neighbours of any VS cell were most strongly stained (Haag and Borst 2005). 
Measuring calcium signals with optical recording methods to identify the site of the 
synaptic connection (Egelhaaf and Borst 1995; Haag and Borst 2000) revealed an 
accumulation in the axonal region indicating an axo-axonal coupling between the 
cells. In accordance with an axo-axonal inhibitory connection between distant VS 
cells, depolarising current injection into VS1 elicited a decrease in fluorescence in 
the terminal region of the distal VS cell.

To match the circuit suggested by the experimental results, we connected model 
cells based on fully reconstructed morphologies corresponding to all VS cells via their 
axon terminals. The synaptic conductances and membrane parameters were then tuned 
to render a realistic voltage transfer within the VS network model (Fig. 16.3c) while 
conserving the input resistances of all cells in a realistic range (3.7 ± 0.7 MΩ). This 
model reproduced a number of experimental results: (1) the potential gradient back-
ward from the axon toward the dendrite matched the calcium imaging results. (2) As a 
model prediction, the backpropagating signals within the axons during visual stimula-
tion decreased the signal decay from dendrite to axon as compared to current injection 
(a decay to ~75 % as compared to ~50 %, respectively). This prediction was then veri-
fied quantitatively in double axonal recordings in VS cells (see Cuntz et al. 2007b). 
Consequently, the response further down in the axon indeed contained a larger compo-
nent originating from the visual response in the other VS cells. (3) Receptive field size 
alterations due to single cell ablations (Farrow et al. 2005) were reproduced under 
similar conditions in the network model. (4) The signals of VS cells did not penetrate 
the dendrites of their neighbouring cells. VS cells can therefore be considered to be 
efficiently compartmentalised into a dendritic and an axonal region. This was later 
validated experimentally, again using calcium imaging (Elyada et al. 2009).

Interestingly, simulations of the current transfer from other VS cell models in the 
network revealed a symmetrical almost linear potential decay at the axonal synapses 
in all cases (Fig. 16.3d). The network thereby effectively implements a triangular 
filter. The linear potential decay is the result of a superposition of the potential 
decaying exponentially from VS1 to more distal VS cells and the inverse potential 
via the inhibition again decaying exponentially backwards from the distal VS cell to 
the VS1 cell (see details in Cuntz et al. 2007b; including a simplified model). A 
triangular filter possesses the interesting characteristic of linearly interpolating the 
inputs. Through the highly selective coupling, the VS cell network therefore is able 
to perform linear interpolation on its inputs (Fig. 16.3e): The axonal membrane 
potential of VS cells whose signals are close to zero, e.g., because no texture is pres-
ent in their visual receptive field, is set to the linearly interpolated values of their 
neighbouring cells in the chain. In this way, the VS network interestingly incorpo-
rates prior knowledge about the linear relationship of rotational optic flow vectors 
with horizontal disparity: Fig. 16.3a inset clearly shows this linear relationship in 
the rotational optic flow field (dashed line). A VS cell without motion response will 
exhibit in its axonal membrane potential deflection the linearly interpolated value 
between its neighbours because of the specialised circuit. In this way, the axis of 
rotation can faithfully be read out by the VS cell whose membrane potential is clos-
est to zero, i.e., the resting potential. This is the case since the line connecting the 
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amplitudes of the vertical components of the optic flow crosses zero in the axis of 
rotation (compare again dashed line in Fig. 16.3a inset). Using movies of rotational 
optic flow in natural images, we showed that the jitter due to low-contrast or texture-
less areas in natural image scenes prevented a correct read-out of the axis of rotation 
in the VS dendrites. On the other hand the axonal signal was perfectly useful after 
the linear interpolation through the VS cell network (see details in Cuntz et al. 
2007b). This prediction of the network model was later validated experimentally 
(Elyada et al. 2009). Also, descending neurons that collect the signals from VS cells 
have been identified that robustly encode the axis of rotation (Wertz et al. 2009).

In summary, we showed that the simple connection scheme between VS cells 
proposed in Fig. 16.3b could well bring simulations and experiments to close agree-
ment. The benefit of coupling the signals from neighbouring VS cells after dendritic 
integration is to reliably and robustly represent the centre of rotation in the activity 
distribution of the VS cell network.

16.5  Conclusions and Outlook

The work summarised above demonstrates that the network structure of the tangen-
tial cells within the lobula plate needs to be considered if one is to fully understand 
computation in LPTCs. We first showed that the dendrite spanning field shape of 
LPTCs strongly reflects their respective specific connectivity in the network. The 
dendrite spanning field is what makes LPTCs individually identifiable. Their inner 
branching properties are similar even between different cell types (HS vs. VS cells), 
indicating that the wiring constraints are similar. A computational model that 
describes the branching structure as a function of the dendrite spanning field opens 
up a number of possibilities. Assuming generality of this principle, the morphology 
and function of cells, which have not yet been reconstructed, can be inferred and 
studied based on the contours of their dendrites alone. Moreover, the fly is an animal 
in which the molecular components that determine neural growth are currently 
being unravelled, mainly through genetic tools (Grueber et al. 2005). Our frame-
work therefore allows a quantitative study of the impact of genetic modifications far 
beyond basic statistics. In particular, molecular principles guiding neuronal self- 
avoidance during development (Hughes et al. 2007), and others can now be put in 
relation with the branching constraints presented here. Eventually, studying molec-
ular factors shaping dendritic spanning fields separately from a specific branching 
rule should elucidate a fundamental organisational element in the brain, i.e., the 
neuron’s branching structure. In any case, morphology does not seem to reflect 
computational requirements for optic flow processing; instead it was useful to study 
functional aspects in the network context.

Incorporating experimental evidence from multiple simultaneous intracellular 
electrophysiological recordings into network models including the realistic morphol-
ogies of HS or VS cells turned out to be a successful approach to understand many 
features of optic flow computation. We found that a dendritic network comprises sev-
eral LPTCs as part of the circuit for the detection of small moving objects. Since the 
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blurring effect could also be reproduced in simplified models, we can conclude 
that spatial blurring is a feature of any dendro-dendritic connection.  
This might be relevant for other neural circuits for which dendro-dendritic connec-
tions exist, such as in the retina (Cook and Becker 1995). We also found that a special-
ised combination of electrical and inhibitory synapses can lead to a spatial, triangular 
filter performing a linear interpolation between neighbouring cells. A model repro-
ducing a more complete connectivity of the lobula plate but using simplified mor-
phologies has meanwhile confirmed that the complex receptive fields measured in real 
VS cells are a direct result from the specific network connections (Borst and Weber 
2011). These findings show how important it is to know precisely the location of the 
synapses in a given circuit, if one wants to understand the underlying computation.

It has become widely acknowledged that selective connectivity (e.g., Ohki et al. 
2005) and the precise location of a synaptic input on a given neuron (e.g., Branco 
et al. 2010; Gidon and Segev 2012; see Chaps. 15 and 18) are important for compu-
tation. The studies presented here serve as an example for including both types of 
information into network models with realistic morphologies. These models were 
useful to explain discrepancies between the electrophysiology and the single cell 
compartmental models, e.g., concerning the visual responses in LPTCs (Haag et al. 
1999). The electrical synapses between LPTCs led to a necessary revision of the 
dendritic integration properties in those cells. The models furthermore provided 
testable predictions, many of which have been validated for both network models 
discussed above. This study should be useful for further large-scale network model 
simulations in other systems and points out the importance of electrical synapses for 
computation in neural circuits. For the insect brain it shows that the synapses con-
necting the different neurons are incredibly selective regarding connection partners, 
location of synapses and type of synapses involved. The resulting models were 
highly sensitive to those particular features of the connection.

Meanwhile a large number of new findings have continued to expand the known 
circuitry in the lobula plate (Borst et al. 2010). In particular, the way with which optic 
flow signals are read out via descending neurons and conveyed to the flight control 
circuitry has been studied in great detail. These descending neurons have been 
described in depth, and their connection with LPTCs, partly mediated again by elec-
trical synapses, is now well characterised (Haag et al. 2007, 2010; Wertz et al. 2008, 
2012), although a model that incorporates these data and explains the read-out mech-
anism of the axis of rotation does not yet exist. Also, a large number of heterolateral 
connections linking both brain halves in the fly involving spiking neurons have been 
characterised in more detail (Farrow et al. 2006; Haag and Borst 2001, 2008). The 
results of the computational studies presented here therefore have to be revised in the 
light of these new findings. Also, more data is needed on the connectivity between 
LPTCs. This also concerns details of the circuits described in this chapter since the 
inhibitory connections between VS1 and lateral VS cells as well as between CH cells 
and FD cells have not yet been identified. This is likely to be solved when the first 
connectome data (Kleinfeld et al. 2011) will become available for the lobula plate. 
Morphological models for all existing LPTCs and the descending neurons in combi-
nation with that data will provide a more complete and definitive understanding of 
the lobula plate’s role in optic flow computation.
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Abstract The lobula giant movement detector (LGMD) is a large-field visual 
 interneuron believed to be involved in collision avoidance and escape behaviors in 
orthopteran insects, such as locusts. Responses to approaching—or looming—stim-
uli are highly stereotypical, producing a peak that signals an angular size threshold. 
Over the past several decades, investigators have elucidated many of the mecha-
nisms underpinning this response, demonstrating that the LGMD implements a mul-
tiplication in log-transformed coordinates. Furthermore, the LGMD possesses 
several mechanisms that preclude it responding to non-looming stimuli. This chapter 
explores these biophysical mechanisms, as well as highlighting insights the LGMD 
provides into general principles of dendritic integration.

17.1  Introduction

Insect neurons have a rich history as model systems for dendritic integration (Borst 
et al. 2010; Gabbiani et al. 2004; London and Häusser 2005; Segev and London 
2000). Experimentally, their advantages include the relative robustness of inverte-
brate preparations, the existence of individual identified neurons with conserved 
properties across animals, accessibility in in vivo preparations, and the large size of 
many of the neurons. The lobula giant movement detector (LGMD) possesses all 
these features. Because its presumed behavioral role—collision avoidance and 
escape—is highly specific, it is possible to link computation to function. Biophysical 
mechanisms can therefore be behaviorally contextualized to a degree not possible in 
many other systems.
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The LGMD is a large-field visual interneuron found in the third neuropil of the 
optic lobe of Orthopteran insects that responds preferentially to stimuli on a colli-
sion course with the animal, or looming stimuli. O’Shea and Williams (1974) dis-
covered the LGMD when searching for neurons that synapsed onto the descending 
contralateral movement detector (DCMD), a giant neuron present in the locust 
nerve cord that was, as its name implies, known to be sensitive to visual motion 
(Rowell 1971). Subsequent work demonstrated that the LGMD and DCMD are 
linked via a powerful, mixed electrochemical synapse that transmits spikes from the 
LGMD to the DCMD in one-to-one fashion (Killmann et al. 1999; Killmann and 
Schürmann 1985; Rind 1984; O’Shea and Rowell 1975b). Coupled with the obser-
vation that the DCMD possesses the largest axon among nerve cord neurons (O’Shea 
et al. 1974), it was likely that this neuronal tandem subserved an ethologically 
important function. While O’Shea and colleagues extensively characterized many 
of the LGMD–DCMD’s response features (O’Shea and Rowell 1975a, 1976; Rowell 
and O’Shea 1976a; Rowell et al. 1977), sensitivity to looming stimuli was first 
documented by Schlotterer (1977). An example looming stimulus response is shown 
in Fig. 17.1. Schlotterer’s (1977) result, and the known DCMD output to motor 
centers involved in jumping (Burrows and Rowell 1973; O’Shea et al. 1974) and 
flight (Simmons 1980), suggested the possibility that the LGMD–DCMD subserves 
escape behavior in stationary animals and collision avoidance in flying animals.

Over the decades following Schlotterer’s (1977) observation that the LGMD–
DCMD prefers looming stimuli, evidence for the LGMD–DCMD’s behavioral role 
has expanded (for review, see Fotowat and Gabbiani 2011). The preference for 
looming stimuli has been probed extensively in varying contexts (Rind and Simmons 
1992; Simmons and Rind 1992; Judge and Rind 1997; Guest and Gray 2006). The 
response has been shown to be invariant to many features of the approaching object 
(Gabbiani et al. 2001, 2004). Perhaps most convincingly, extracellular recordings 
from intact, behaving locusts (Schistocerca americana) demonstrate that the timing 
of the DCMD’s firing rate peak reliably predicts jump times. Furthermore, during 
the phase of the jump where the locust builds up muscle tension via co-contraction 
of both flexors and extensors, the extensor motorneuron spike count correlates 
strongly with DCMD spike count (Fotowat et al. 2011). Ablation of the DCMD in 
one nerve cord while severing the other nerve cord does not, however, abolish 
escape. Instead, it increases the latency variability and reliability of the response 
(Fotowat et al. 2011; see also Santer et al. 2008), implying that the DCMD, though 
important in shaping the escape response, is not the only unit capable of driving 
escape. The DCMD is essentially a relay for the output of its presynaptic partner, 
the LGMD. As such, investigators interested in computations mediating escape and 
collision avoidance have focused on the LGMD.

The LGMD’s role in collision avoidance and escape makes it an ideal model 
system in the study of dendritic integration and single-neuron computation. The 
strong selective pressure presumably experienced by neurons mediating behavior 
essential for survival likely explains the elaborate menagerie of computational 
mechanisms observed by investigators. While some processing of visual input is 
performed upstream to the LGMD, a series of integrative mechanisms produce the 
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input–output function of this neuron. Some computations are performed proximal 
to the spike initiation zone (SIZ): summation of excitatory and inhibitory branch 
input, sodium conductance mediated exponentiation of membrane potential prior to 
spiking (Gabbiani et al. 2002), and spike-frequency adaptation via a calcium- 
sensitive potassium conductance (KCa; Gabbiani and Krapp 2006; Peron and 
Gabbiani 2009a). Local dendritic computations include orientation preference 
(Peron et al. 2009) and sublinear summation (Jones and Gabbiani 2012). 
Additionally, the output from photoreceptors is first processed by interneurons in 
the lamina and medulla before reaching the LGMD, producing habituation (O’Shea 
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Fig. 17.1 Example response to looming stimulus. (a) A disc with l/|v| = 30 ms was presented to the 
animal. The LGMD membrane potential and DCMD spiking activity were recorded concurrently 
(top and middle traces, respectively). The bottom trace shows the evolution of the stimulus size on 
the retina with time. Times prior to collision are negative; collision occurs at time 0 (Modified from 
Peron and Gabbiani 2009a). (b) In the context of monocular vision, looming stimuli can be 
described simply by the angle, θ, that they subtend on the retina of the observer. Trigonometry 
implies that for an object approaching at a fixed velocity v (v < 0 for approach) and having a half- 
height l, the retinal angle at time t (t < 0 prior to collision) can be described by 

θ t
l

vt
( ) = ⋅ −2 1tan . Angular size depends only on time and the ratio of half-height to velocity, 

l/|v|. That is, doubling of an object’s size is equivalent to reducing its velocity by half. This effec-
tively limits the parameter space one has to explore when conducting experiments: one has but to 
sample a reasonable range of l/|v| values. The illustration shows the geometric variables at times 
t < 0 and t = 0
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and Rowell 1976) as well as lateral inhibition (O’Shea and Rowell 1975a). This 
chapter reviews these mechanisms, as well as placing them in the broader context of 
dendritic computation.

17.2  LGMD Morphology

The LGMD consists of three dendritic fields, one excitatory and two inhibitory 
(Fig. 17.2a). Like many invertebrate neurons, the soma is attached via a thin process 
to the rest of the cell and appears to play no role in dendritic integration. Instead, a 
narrowing of the main process constitutes the spike initiation zone (SIZ; O’Shea 
1975). The excitatory branch is connected to the main process at its dendritic end, 
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Fig. 17.2 The anatomy of the LGMD. (a) The LGMD’s excitatory dendrite is shaped like a large 
ellipsoidal claw, whose shape closely matches that of the locust eye (Peron et al. 2007). The two 
inhibitory dendrites are highlighted in grey. The inhibitory field receiving input from the dorsal 
uncrossed bundle is the one not overlaid by the excitatory dendritic fan. The spike initiation zone 
is the narrowest point of the main process. Note the extensive axonal arborization which connects 
to the DCMD (Modified from Peron and Gabbiani 2009a). (b). Visual input in the locust optic lobe 
originates in ~7,500 individual ommatidia. The ommatidia are arranged in a hexagonal lattice. 
Individual photoreceptors output onto large monopolar cells (LMCs), which output onto transmed-
ullary neurons. Finally, these output onto the LGMD excitatory dendrites. To illustrate the retino-
topy observed in Peron et al. (2009), red, magenta, blue, and green dots were placed on the dorsal, 
anterior, posterior, and ventral edges of the eye, and the recipient portion of the excitatory dendrite. 
Note that this diagram only includes the pathway believed to be responsible for LGMD excitatory 
dendritic input; the optic lobe itself is an incredibly complex neural organ, and the connections 
outlined here are a small subset of those present
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while the two inhibitory branches connect to the main process between the excitatory 
dendrite and the SIZ, a theoretically ideal arrangement for shunting inhibition (Koch 
et al. 1983).

The LGMD’s excitatory dendrite receives a projection of ~15,000 inputs 
(Strausfeld and Nässel 1981). These inputs form nicotinic cholinergic synapses, as 
evidenced by immunohistochemistry (Rind and Leitinger 2000) and their block 
with nicotinic antagonists (Peron et al. 2009). Consistent with observations in other 
insect neurons (e.g., blowfly lobula plate tangential cells; Borst and Egelhaaf 1992), 
calcium imaging has revealed that the excitatory input projection onto the LGMD is 
retinotopic (Peron et al. 2009). In contrast, the inhibitory branches are believed to 
receive non-retinotopic input (Strausfeld and Nässel 1981). This feed-forward 
inhibitory input consists of separate ON and OFF pathways responding to increased 
and decreased luminance, respectively (Rowell et al. 1977). The ON and OFF 
branches are clearly distinct, as mechanical cutting of the dorsal uncrossed bundle 
abolishes only the OFF inhibitory responses, leaving ON responses intact (Rowell 
et al. 1977). Input to both inhibitory branches is likely mediated by GABAA recep-
tors, as evidenced by their block when the GABAA antagonist picrotoxin is puffed 
onto the lobula (Gabbiani et al. 2005). While the excitatory input exhibits a complex 
response, the inhibitory input appears to simply reflect the overall change in lumi-
nance, a feature common in visual feed-forward inhibitory circuits (Rowell et al. 
1977; but see Jones and Gabbiani 2012). Indeed, dendritic integration in the excit-
atory branch appears to be far more mechanistically complex.

17.3  Processing Prior to the LGMD

The processing stream leading to the LGMD is illustrated in Fig. 17.2b. The 
LGMD’s excitatory branch receives its ~15,000 inputs from transmedullary neurons 
(Strausfeld and Nässel 1981), roughly two per ommatidium (Krapp and Gabbiani 
2005). These neurons in turn receive input from large monopolar cells (LMCs) in 
the lamina, which themselves receive direct photoreceptor input. Though the photo-
receptor output is no doubt heavily processed prior to the LGMD, only a few studies 
have investigated the nature of this processing (e.g., James and Osorio 1996), and 
the precise projection from photoreceptor to LGMD remains uncharacterized. The 
first processing stage of photoreceptor input is carried out by the LMCs, and while 
the second stage cells, the transmedullary neurons, are difficult to record from, 
some aspects of their activity can be inferred using the voltage clamp technique in 
the LGMD and looking at synaptic currents. Jones and Gabbiani (2010) employed 
this approach to study speed sensitivity along the pathway leading to the LGMD, 
recording from photoreceptors, LMCs, and the LGMD. They showed that the 
LGMD’s motion sensitivity is not due to Reichardt detectors (Reichardt 1987) but 
is instead due to the rate of luminance change of individual photoreceptors. The 
LMCs convert the slope of the graded photoreceptor output into a firing rate signal. 

17 Biophysical Mechanisms of Computation in a Looming Sensitive Neuron



282

Because the slope of a photoreceptor’s response will be steeper for a faster luminance 
change, and because a faster translating edge produces a faster luminance change, 
the LMC’s spiking encodes edge velocity. This luminance rate change sensitivity is 
present in the LGMD’s membrane potential as well as the excitatory postsynaptic 
current observed under voltage clamp, implying that the impinging transmedullary 
neurons also share this feature (Jones and Gabbiani 2010). This result is consistent 
with the LGMD’s previously reported sensitivity to the velocity of locally rotating 
disks (Krapp and Gabbiani 2005).

In addition to speed sensitivity, habituation to local flashes (Palka 1967; O’Shea 
and Rowell 1976) and looming stimuli (Rogers et al. 2007) is implemented prior to 
the LGMD’s excitatory dendritic field. This habituation is likely implemented at 
either the synapse itself or the transmedullary neurons, as it can be produced with 
repeated electrical stimulation of the medulla (O’Shea and Rowell 1976). While 
separate ON and OFF pathways are common in insect visual systems (Strausfeld 
and Nässel 1981; Joesch et al. 2010), in the LGMD, habituation to ON and OFF 
responses transfers to the other response type, suggesting that input on to the excit-
atory dendrite is of a combined ON–OFF stream (O’Shea and Rowell 1976). 
Habituation appears to be context dependent: if a locust’s leg is stroked, which is 
believed to induce octopamine release (Bacon et al. 1995), habituation to repeated 
stimulation can be abolished (Rind et al. 2008). In addition to habituation, experi-
mental evidence has demonstrated that the LGMD’s visual response is susceptible 
to lateral inhibition. Specifically, there is a decline in response to local motion when 
it is presented along with flaking drifting gratings or other proximal moving stimuli 
(O’Shea and Rowell 1975a; Rowell and O’Shea 1976b; Rind and Simmons 1998). 
Electron microscopy suggests that lateral inhibition may result from muscarinic 
cholinergic synapses between the axon terminals of the adjacent medullary outputs 
onto the LGMD (Rind and Simmons 1998). If demonstrated conclusively, this 
would be consistent with habituation taking place at the synapse, as lateral inhibi-
tion abolishes local motion habituation (O’Shea and Rowell 1975a).

17.4  Mechanisms Shaping the LGMD’s Response  
to Looming Stimuli

Hatsopoulos et al. (1995) initially made the observation that the LGMD’s peak fir-
ing rate during looming stimulus presentation occurs with a fixed delay following 
crossing of an angular threshold. They further found that the firing rate during loom-
ing was well fit by the product of the angular velocity of the object and an exponen-
tiation of the object’s angular size. This model was refined in Gabbiani et al. (1999) 
by adding a static nonlinearity to yield:

 
f t g t e t( ) = −( )⋅( )− −( )Ψ δ αθ δ .

 
(17.1)
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Here, f(t) is the LGMD firing rate at time t (with t < 0 for times prior to collision), 
g(x) is a static nonlinearity, θ(t) and ψ(t) are the angular size and edge velocity of a 
looming object at time t, respectively, and δ and α are constants. δ is the offset of the 
timing of the peak relative the crossing of a threshold angle, while α is a scaling 
factor. Gabbiani et al. (1999) empirically determined the value of the threshold 
angle, reporting a range of 18.0°–37.0°. Subsequent work showed that the relation-
ship in (17.1) held across several locust species, different looming object approach 
angles, shapes, textures, and edge counts (Gabbiani et al. 2001), as well as animal 
temperature (Gabbiani et al. 1999; see Gabbiani et al. 2004 for review).

Behavioral data shows that various phases of the escape response occur at fixed 
angular thresholds when looming stimuli are presented (Fotowat and Gabbiani 
2007), that jump preparation coincides with high frequency LGMD–DCMD spik-
ing (Santer et al. 2008), and that the LGMD–DCMD firing rate peak time predicts 
the timing of jumps (Fotowat et al. 2011). Because (17.1) implies that the firing rate 
peak will take place at a fixed delay following the crossing of an angular threshold, 
the biophysical mechanisms responsible for its implementation can be directly 
linked to the animal’s behavior. Work in the past decade suggests that the multipli-
cation of the exponential term with edge velocity takes place in log-transformed 
coordinates (Jones and Gabbiani 2012; Gabbiani et al. 2004). That is, ignoring the 
static nonlinearity g(x) and delay parameter δ, the LGMD appears to implement 
(17.1) in the following way:
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Briefly, the logarithm of angular speed is implemented at the excitatory branch 
(Jones and Gabbiani 2012), the angular size input arrives directly at the inhibitory 
branches (Rowell et al. 1977; Gabbiani et al. 2005), the subtraction takes place at 
the level of dendritic integration, and the result is exponentiated at the SIZ (Gabbiani 
et al. 2002).

The LMCs convert the photoreceptor luminance change signal into a velocity 
signal, which is relayed to the LGMD via transmedullary neurons (Jones and 
Gabbiani 2010). Thus, the LGMD excitatory dendrite has ready access to angular 
velocity information, or ψ(t). The logarithmic transform takes place because the 
excitatory synapses produce large local depolarizations, bringing membrane poten-
tial closer to the synaptic reversal potential. Subsequent input produces less driving 
force, and therefore a smaller depolarization than predicted from linearity (Johnston 
and Wu 1995). This sublinear summation is accentuated by the fact that increasing 
velocity produces larger presynaptic input in an ever-shrinking temporal window 
(Jones and Gabbiani 2010). It is likely that the precision of the LGMD’s retinotopic 
projection also plays a role (Peron et al. 2009), as sublinear summation should be 
more pronounced with a more retinotopic mapping when spatially coherent 
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looming stimuli are presented. Thus, dendritic integration results in the LGMD’s 
excitatory branches outputting the logarithm of angular velocity, ln[ψ(t)].

Two major sources of inhibitory input onto the LGMD’s dendrite have been 
demonstrated: lateral inhibition (O’Shea and Rowell 1975a; Rowell and O’Shea 
1976b) and feed-forward inhibition (Rowell et al. 1977; Gabbiani et al. 2005). 
Lateral inhibition—the suppression of a response if a spatially adjacent stimulus is 
presented—is presynaptic. Feed-forward inhibition—inhibition in direct response 
to a given stimulus—is mediated by inputs to the two large inhibitory dendritic 
fields (see Fig. 17.2a). Gabbiani et al. (2002) showed that it is feed-forward inhibi-
tion that dominates during the looming response. First, they demonstrated that a 
slow drifting background grating, which triggers lateral inhibition, is only effective 
at suppressing responses during the first ~23° of a looming approach. Second, the 
sudden onset of a fast moving background grating during the early phase of a loom-
ing approach, which drives the large luminance change needed to trigger feed-for-
ward inhibition, abolishes the response prematurely. Finally, this abolition can be 
prevented with the puffing of picrotoxin onto the lamina. Indeed, under the influ-
ence of picrotoxin, the sudden appearance of the rapidly translating background 
grating elicits a sharp increase in firing. Consistent with this, subsequent experi-
ments have revealed that picrotoxin only influences the later two-third of the loom-
ing response (Gabbiani et al. 2005). Simulations incorporating the known features 
of the LGMD suggest that while inhibitory conductance approximately follows the 
square of object size, the effect on membrane potential is approximately sigmoidal 
(Jones and Gabbiani 2012). This is consistent with representing the inhibitory 
branches as providing an input proportional to angular size or αθ(t).

Taken together then, the excitatory and inhibitory branches’ influence on 
 membrane potential will sum to ln[ψ(t)] − αθ(t), with the negative sign indicating 
inhibitory input. The final step implied by (17.2) is exponentiation of the membrane 
potential. Gabbiani et al. (2002) employed the sodium channel blocker tetrodotoxin 
(TTX) to determine the impact of sodium conductances on the membrane potential 
to firing rate transform. They puffed TTX onto the lobula so as to abolish spiking 
and unmask the underlying membrane potential response. The transform from 
membrane potential to spike rate could then be determined, and they showed it to be 
best approximated by a third-order power law, which is nearly equivalent to an 
exponential. Thus, it appears that the initial proposal of Hatsopoulos et al. (1995) 
has been confirmed and that the terms of (17.2) can be explained biophysically. This 
is summarized in Fig. 17.3.

17.5  Precise Retinotopy in the LGMD

The notion that dendritic input location plays a substantial role in shaping neuronal 
response dates to Wilfrid Rall and his early modeling studies (e.g., Rall et al. 1967). 
Evidence suggests that the preservation of retinotopy by the inputs onto the LGMD’s 
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excitatory branch is highly precise—probably down to the level of individual 
 afferents (Peron et al. 2009). Combined with the ease of visual stimulation and 
recording of the LGMD’s spike output, this makes the neuron an ideal system for 
studying the influence of synaptic position on integration.

While the projection is retinotopic, the amplitude of the LGMD’s response to 
local motion stimuli across visual space deviates from one predicted by the distri-
bution of individual ommatidia. The locust eye consists of approximately 7,500 
ommatidia, and they sample visual space nonuniformly (Krapp and Gabbiani 
2005). Specifically, the frontal portion of visual space and the equatorial region are 
oversampled. In contrast, the receptive field of the LGMD to local rotating disks 
peaks for posterior stimuli and is fairly uniform azimuthally (Krapp and Gabbiani 
2005). This suggests that electrotonic structure—rather than visual input 
 density— dominates the receptive field. Fitting of the LGMD’s passive properties 
reveals the excitatory dendrites to be electrotonically extensive (Peron et al. 2007). 
The tips are 3–4 log-attenuation units (Zador et al. 1995) away from the SIZ, mean-
ing that only 2–5 % of the local dendritic membrane potential peak is attained at the 
SIZ. Since posterior inputs project proximally to the SIZ on the excitatory branch, 
while anterior inputs project distally (Peron et al. 2009; see also Fig. 17.2b), this 
can partly account for the discrepancy between the sampling of visual space and the 
response of the neuron.

The “realistic” mapping of ommatidial onto the excitatory dendrites space (real-
istic in that the dendritic tips receive anterior visual inputs; see Fig. 17.2b) does not, 
however, explain the lack of response drop off away from the equator (i.e., dorsally 
or ventrally) observed physiologically. The best-fitting synaptic connectivity model 
combined the coarse retinotopy of the projection (anterior visual space projecting to 
dendritic tips) with a uniform sampling of visual space (Peron et al. 2007). This 
implies some sort of input normalization either prior to or at the LGMD’s excitatory 
dendrite, because dorsal and ventral stimuli should produce responses greater than 

operation

dendritic
input

variable

Fig. 17.3 Summary of the 
core computation performed 
by the LGMD during 
looming stimulus 
presentation. The excitatory 
dendrite receives as input an 
angular velocity signal, ψ(t), 
which it transforms 
logarithmically, yielding 
ln[ψ(t)]. The inhibitory fields 
receive an angular size input, 
θ(t), which they scale to yield 
− αθ(t). The sum of the two 
branches is exponentiated at 
the spike initiation zone, 
giving eln[ψ(t)] − αθ(t) (17.2)
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predicted from ommatidial density, while equatorial stimuli should produce weaker 
ones. The biophysical implementation of this normalization awaits experimental 
investigation.

One possible mechanism is presynaptic lateral excitation, whereby activation of 
an ommatidium spreads to its immediate neighbors. For posterior inputs that acti-
vate only a single ommatidium, activation of all adjacent fibers would produce a net 
activation of seven ommatidia (the ommatidia are organized in a hexagonal array) or 
a sevenfold increase. In contrast, activation of an anterior input would presumably 
already activate several ommatidia; if seven were activated initially, this simplistic 
lateral excitation would produce a net activation of eleven ommatidia, or a ~1.6-fold 
increase. As the number of directly activated ommatidia increases, the number of 
additional ommatidia recruited via lateral excitation declines, producing the required 
normalization. This would also help explain why single ommatidium stimulation 
produces such strong responses (Peron et al. 2009; Jones and Gabbiani 2010).

An alternative, though not mutually exclusive, explanation could simply be sub-
linear summation of synaptic inputs (Jones and Gabbiani 2010): such summation 
would have a greater effect on larger stimuli. The precise retinotopy of the inputs 
means that such summation will take place more readily with multiple synapses, as 
this will bring local membrane potential closer to the synaptic reversal potential. 
However, the use of relatively large stimuli in the modeling study—on the order of 
those employed by Krapp and Gabbiani (2005) in their electrophysiological study—
suggests that sublinear summation is not the only mechanism at play (Peron et al. 
2007). Teasing apart the contribution of these various mechanisms would likely 
require direct stimulation of individual transmedullary afferents to provide accurate 
estimates of single afferent EPSPs. Additionally, a single ommatidium stimulation 
apparatus would have to be used to stimulate an ever-larger number of adjacent 
ommatidia. Combining the results of these experiments in a realistic model should 
make possible the elucidation of the underlying amplification mechanism.

It is also likely that the precise mapping contributes to the relative decrement of 
larger stimuli; for instance, if dorsal and ventral inputs are distributed among adja-
cent branches to a greater degree than equatorial inputs, they would produce less 
sublinear summation and hence greater responses per ommatidium stimulated. 
Two-photon calcium imaging in conjunction with local visual stimulation could be 
employed to experimentally test this hypothesis by producing a more detailed map-
ping than the one obtained previously. Clearly, active conductances, which are 
known to be present in the excitatory dendrite (Gabbiani and Krapp 2006), could 
play a role here (Johnston et al. 1996; Magee 2000; Spruston 2008).

Precise synaptic projections have been observed in several preparations (Borst 
and Egelhaaf 1992; Ogawa et al. 2006, 2008; Baden and Hedwig 2007; Bollmann 
and Engert 2009), and novel techniques should make it far easier in diverse prepara-
tions (Petreanu et al. 2009). It is generally difficult, however, to investigate complex 
spatial interactions among inputs because the projection pattern is not amenable to 
such investigations or the sensory modality makes it difficult. Because the LGMD 
has a precise retinotopic mapping and synapses can be visually activated, it is an 
ideal system to study such interactions. In the simplest interaction in passive den-
drites, stimulation of proximal synapses should produce sublinear summation and 
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hence reduced responses relative distributed stimulation (Johnston and Wu 1995). 
This effect has been observed in the LGMD: when presenting vertical bars, which 
activate synapses in distinct dendritic branches, responses are larger than when pre-
senting horizontal bars, which activate synapses in one or a few branches (Peron 
et al. 2009).

A second theoretical prediction is that, in passive cells, a sequence of activation 
that moves toward the soma will, given appropriate timing, elicit a stronger response 
than an activation sequence moving away from the soma (Rall 1967). This effect 
has recently been produced in cortical pyramidal neurons using two-photon gluta-
mate uncaging (Branco et al. 2010). In the LGMD, small squares (10°-by-10°) trav-
eling in an anterior–posterior direction elicit stronger responses throughout their 
trajectory than those traveling in the opposite direction (Peron and Gabbiani 2009a 
Supp. Fig. 5). Anterior–posterior stimuli are activating synapses that are ever- closer 
to the SIZ; posterior–anterior stimuli elicit the opposite sequence. This is true 
throughout the response, across a range of velocities, and occurs independently of 
spike-frequency adaptation. The only exception is the initial response, which is 
larger for posterior–anterior stimuli, presumably because posterior inputs activate 
synapses closer to the SIZ than anterior inputs.

Though the precise retinotopic projection makes the LGMD a useful system for 
the study of dendritic integration, the retinotopy likely plays only a minor role in the 
context of looming. First, it is likely to contribute to the logarithmic transform of 
synaptic input via sublinear summation in the excitatory branch (Jones and Gabbiani 
2012). It may also act, in conjunction with presynaptic directional selectivity, to 
imbue the LGMD with invariance to stimulus position (Gabbiani et al. 2001). 
Consistent with similar neurons in other insects (Douglass and Strausfeld 2003; 
Single and Borst 2002; Single et al. 1997), the LGMD’s excitatory dendrite receives 
directionally selective input. The selectivity is such that anterior–posterior drifting 
grating stimuli produce stronger responses than posterior–anterior gratings (Peron 
et al. 2009). Because the LGMD has no voltage-gated calcium channels in the excit-
atory dendrite (Peron and Gabbiani 2009a), the calcium response’s directional pref-
erence implies the inputs must be directional. Looming stimuli originating in anterior 
visual space will activate electrotonically distal dendrites, while posterior- originating 
stimuli activate proximal dendrites. Alone, this would suggest that the response to 
anterior looming should be smaller. However, because the anterior stimulus is domi-
nated by anterior–posterior motion, while the posterior stimulus is dominated by 
posterior–anterior motion, the first will be enhanced and the latter mitigated.

17.6  Mechanisms Preventing Responses to Non-looming 
Stimuli

Circuits mediating escape behaviors must strike a delicate balance: effective escape 
from real threats is vital, but premature responses can be counterproductive, as they 
can reveal the animal’s presence to potential predators. Lateral inhibition, feed- 
forward inhibition, and local motion habituation prevent large responses to many 
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classes of stimuli (O’Shea and Rowell 1976; Rowell and O’Shea 1976b; Rowell 
et al. 1977; Rind and Simmons 1998; Gabbiani et al. 2005). One class of stimuli that 
would be minimally affected by these mechanisms and should elicit strong responses 
are constant velocity stimuli. Nevertheless, constant velocity edges and squares 
moving across visual space elicit weak responses (Rind and Simmons 1992; 
Simmons and Rind 1992; Peron and Gabbiani 2009a), as do looming approaches 
with constant edge velocity (i.e., simulating a decelerating approach; Hatsopoulos 
et al. 1995). A shared feature of many of these responses is a large initial response, 
followed by rapid decrement to a new steady state (see, e.g., Hatsopoulos et al. 
1995, Fig. 17.2b; Peron and Gabbiani 2009a).

One mechanism that could produce this kind of response—large initial response, 
followed by lower steady state—is spike-frequency adaptation. Spike-frequency 
adaptation can be elicited in the LGMD by direct current injection (Gabbiani and 
Krapp 2006; Peron and Gabbiani 2009a). Pharmacological investigation has 
revealed this adaptation to be mediated by a KCa conductance. Specifically, Peron 
and Gabbiani (2009a) showed that the after-hyperpolarization following current 
injection cessation, a telltale indication of adaptation, as well as the degree of adap-
tation could both be substantially reduced by cadmium bath application and intra-
cellular BAPTA iontophoresis. Cadmium is a calcium channel blocker (Hille 2001), 
while BAPTA chelates calcium intracellularly (Tsien 1980), implying that adapta-
tion is calcium mediated. Elevation of extracellular potassium brought the neuron’s 
resting potential to the reversal potential of potassium and abolished the after- 
hyperpolarization, showing adaptation to be potassium mediated (Peron and 
Gabbiani 2009a). Combined with additional pharmacology, these results were most 
consistent with an SK-like KCa conductance. Subsequent experiments employed 
intracellular BAPTA iontophoresis, ensuring that only the LGMD would be phar-
macologically manipulated. These experiments demonstrated that reducing KCa pro-
duces enhanced responses to constant velocity stimuli (translating edges and 
squares), while leaving the looming response unaffected. Furthermore, calcium 
imaging revealed that a large calcium influx took place proximal to the SIZ (Peron 
et al. 2009), an ideal place to implement shunting inhibition (Koch et al. 1983), and 
roughly the same location where the inhibitory dendrites join the main process.

Another class of stimulus response that spike-frequency adaptation also miti-
gates is inverted looming stimuli—that is, receding objects (Peron and Gabbiani 
2009b). Receding stimuli produce large onset responses followed by a quick decline 
in firing (Rind and Simmons 1992; Simmons and Rind 1992; Peron and Gabbiani 
2009b). Of course, feed-forward inhibition is likely to be involved in responding to 
such stimuli.

Nevertheless, simulations show that an LGMD lacking feed-forward inhibition 
but having adaptation would produce smaller responses to receding than looming 
stimuli (Peron and Gabbiani 2009b). When feed-forward inhibition is abolished 
with picrotoxin, sudden rapid background motion during a looming stimulus pro-
duces much higher firing rates than normal (Gabbiani et al. 2002, Fig. 17.3b). After 
the background motion stops, there is very little response to the final phase of the 
looming stimulus—normally the period of greatest activity. It is likely that adaptation 
is responsible for this phenomenon.
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Fundamentally, spike-frequency adaptation appears to act as a second-derivative 
filter (Peron and Gabbiani 2009b). That is, it can only be overcome by stimuli 
 having a positive second derivative, such as looming stimuli. Indeed, translating 
objects having an accelerating velocity profile produce both an onset transient and 
sustained, increasing activity (Peron and Gabbiani 2009b).

17.7  Outlook

The LGMD is arguably one of the most well-characterized cells in neurobiology. 
The mathematical description of the looming response (Hatsopoulos et al. 1995; 
Gabbiani et al. 1999; see (17.2) above) and the linking of underlying biophysical 
mechanisms to this description (Gabbiani et al. 2002, 2004; Jones and Gabbiani 
2012) stand out as a particularly impressive series of experiments elucidating this 
neuron’s function in a behavioral context. It constitutes a novel example of how 
neurons can perform a multiplicative operation by using log-transformed coordi-
nates. Nevertheless, much remains to be discovered. The presynaptic circuitry 
remains poorly understood, including the mechanisms responsible for habituation 
(O’Shea and Rowell 1976) and lateral inhibition (O’Shea and Rowell 1975a; Rowell 
and O’Shea 1976b; Rind and Simmons 1998). Furthermore, the input onto the 
inhibitory branches remains under-characterized, especially the ON branches 
(Rowell and O’Shea 1976a; Gabbiani et al. 2005).

While the presence of sodium conductances is implied by Gabbiani et al.’s (2004) 
TTX experiments, and Peron and Gabbiani (2009a) demonstrated the presence of 
KCa, the precise repertoire of active conductances in the LGMD awaits investiga-
tion. Active conductances have a profound role in shaping a neuron’s dendritic inte-
gration (Johnston et al. 1996; Magee 2000; Stuart et al. 2008; Spruston 2008; Silver 
2010). Previous work suggests that an inward rectifying conductance, possibly the 
h-current, Ih, is present in the excitatory dendrites (Gabbiani and Krapp 2006). 
Recent work has confirmed that both Ih and an M-current are present (Dewell and 
Gabbiani 2012). The function of these conductances remains to be elucidated, 
though they are known to play important roles in pyramidal neurons, including 
input normalization (Magee 1999).

Additionally, the behavioral role of LGMD–DCMD is still not completely under-
stood. While correlates between behavior and DCMD firing rate have been demon-
strated (Fotowat and Gabbiani 2007; Santer et al. 2008; Fotowat et al. 2011), DCMD 
ablation experiments raise questions about the specific role the neuron plays (Santer 
et al. 2008; Fotowat et al. 2011), because while ablation increases response latency 
and variability, it does not abolish the escape response. One hopes that a combina-
tion of targeted gene expression (e.g., Judkewitz et al. 2009) and optogenetics could 
be used to shed light on the subject. Specifically, if excitatory and inhibitory optical 
transducers could be delivered exclusively to the DCMD, and a method developed 
to deliver light to the nerve cord in a behaving animal, one could both mimic realis-
tic firing patterns in the absence of visual stimuli as well as prevent DCMD responses 
in their presence. Clearly, such an experiment would require a novel 
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photostimulation approach and a noninvasive way of delivering the optogenetic 
construct, but the unprecedented temporal control afforded by such an approach, as 
well as the ability to both stimulate and silence the DCMD should allow investiga-
tors to precisely unmask its behavioral role.

Most work to date has focused on the role of the LGMD in the context of station-
ary animals. Yet locusts are excellent fliers, and the DCMD projects to flight motor-
neurons (Simmons 1980). Behavioral work supports the notion that the 
LGMD–DCMD plays an important role in in-flight collision avoidance and escape 
via a gliding response (Santer et al. 2005, 2006). Flight should not only produce 
changes in arousal (Rind et al. 2008) but also present a constant optic flow to the 
LGMD. The impact of optic flow and flight has been extensively investigated in 
other insect neurons and is known to be profound (Liang et al. 2011; Jung et al. 
2011). At least transiently, it is expected to produce a large increase in synaptic 
input, which is known to alter electrotonic structure (Bernander et al. 1991). This 
surge in activity would presumably produce a complex interplay between lateral 
inhibition, feed-forward inhibition, and habituation (but see Rind et al. 2008), and it 
is likely that the new steady-state of the LGMD would be distinct from the one 
observed in stationary animals. While neither flight nor wide-field background 
motion suppress the LGMD–DCMD response (Santer et al. 2006; Gabbiani et al. 
2002), the mechanisms by which the response is maintained remain unstudied. 
Furthermore, experiments combining flight and optic flow have yet to be performed, 
and are essential if the goal is to understand the LGMD’s behavior under realistic 
flight conditions.

The LGMD–DCMD system constitutes a rare instance where the link between 
biophysics and behavior can be made with relative ease. Substantial progress has 
been made in understanding the mechanisms underlying computation in the LGMD, 
especially with respect to the response to looming stimuli. Many questions remain, 
however, and will require novel experimental approaches to be addressed.
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Abstract This chapter aims at investigating the functional implications of the 
biologically realistic and widespread case in which a single inhibitory axon forms 
multiple (10–20) synaptic contacts on the dendrites of its target neuron. We analyzed 
the impact of multi-site dendritic inhibition on the neurons’ output and, thus, gained 
several counterintuitive insights into the biophysical and functional implications of 
such connectivity pattern. In the course of the chapter, we propose a functional role 
for very distal dendritic inhibition; demonstrate the regional effect of multiple, 
rather than single, inhibitory synapses in terms of the spread of their collective 
shunting effect in the dendritic tree; and suggest an explanation as to why, in both 
cortex and hippocampus, the total number of inhibitory dendritic synapses per pyra-
midal cell is smaller (about 20 %) than that of excitatory synapses. This chapter, 
thus, provides a fresh perspective on the biophysical design principles that govern 
the operation of inhibition in dendrites.

18.1  Introduction

Synaptic inhibition was introduced by Sir Charles Sherrington (in his Nobel lecture 
in 1932) and discovered later by John Eccles (Brock et al. 1951). Since then, synap-
tic inhibition was shown to be one of the most fundamental mechanisms that shape 
the operation of the nervous system. A crucial step towards understanding the inhib-
itory control over the dynamics of neuronal systems lies in deciphering the func-
tional significance of the very particular connectivity design of inhibitory synapses 
over their target neurons. Like excitatory synapses, inhibitory synapses are distrib-
uted over the whole dendritic tree of their target neuron and, surprisingly, are found 
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even at very distal dendritic branches, far from the output axonal region. Importantly, 
recent anatomical studies have demonstrated that afferents of inhibitory neurons 
belonging to a specific interneuron class (e.g., Chandelier, Basket, Martinotti) 
tend to occupy a particular dendritic subdomain of their target neuron; in these sub-
domains a single inhibitory axon establishes many (10–20) contacts (Klausberger 
and Somogyi 2008; Markram et al. 2004). The implications of this highly specific 
multi-site inhibitory connectivity remain unclear.

In aiming to provide a theoretical understanding for dendritic inhibition, a few 
(by now classical) analytical studies have utilized Rall’s cable theory (Jack et al. 
1975; Koch et al. 1982; Rall 1964). Two fundamental insights were provided by 
these studies. First, the “visibility” of the inhibitory conductance perturbation is 
highly local. Namely, the effect of local conductance perturbation in dendrites 
decays very steeply with distance from the inhibitory synaptic contact (Koch et al. 
1990; Williams 2004). Second, “on-path” inhibition, located between the excitatory 
synapse and the soma, is more effective than the respective “off-path” inhibition in 
dampening the excitatory current that reaches the soma.

These theoretical studies were limited in several ways. First, they adopted a 
“somato-centric” viewpoint, whereby the impact of dendritic inhibition is consid-
ered solely at the soma and/or axon loci. Second, the dendrites were assumed to be 
passive, and third, inhibition was modeled (in most of the cases) as forming a single 
synaptic contact onto the dendrites rather than multiple synapses contacting multi-
ple dendritic branches as is the biological case.

Indeed, the existence of multiple contacts between connected pairs of neurons is 
the rule rather than the exception in many types of cortical cells. Interestingly, sin-
gle inhibitory interneurons typically make more contacts on PC dendrites than do 
single excitatory cells (more than ten contacts per connection; see review by 
Markram et al. 2004). A large number of contacts per connection and the domain- 
specific innervation of specific axonal afferents as found in the cerebral cortex are 
also found in the hippocampus for many cell types (Buhl et al. 1994; Miles et al. 
1996). Paradoxically, multiple synapses from the same axon reduce the repertoire of 
inputs potentially obtained by the postsynaptic cell (Wen et al. 2009). Therefore, 
this common feature in hippocampus, neocortex, and other brain regions [e.g., the 
striatum (Tepper et al. 2004)] may suggest an underlying common functional 
principle.

Another important feature of dendrites is that they are decorated by an abun-
dance of voltage-gated excitable ion channels such as NMDA, Ca2+, and Na+ inward 
currents which, in some cases, trigger a dendritic spike. Dendrites of several neuron 
types were shown to operate in a highly nonlinear fashion (for review see Magee 
2007) both in vitro (Larkum et al. 2009) and in vivo (Lavzin et al. 2012; Palmer 
et al. 2012). In these neurons, inhibition establishes multiple synaptic contacts in a 
restricted dendritic domain and thus specifically influences regional dendritic non-
linear phenomena. Therefore, an extension of the classical theoretical framework is 
required to account for conditions that are more realistic. Such a framework which 
incorporates a “dendro-centric” viewpoint is described in this chapter.
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Here, we present an experimentally based theoretical study that solves the cable 
equation for the case in which multiple synaptic contacts impinge on the dendritic 
tree. This solution provided several new (sometimes counterintuitive) principles 
that govern the operation of dendritic inhibition. By introducing a new measure 
(the “shunt level”) for the impact of inhibitory conductance perturbation, we pro-
vided an explanation for the role of distal dendritic inhibition and for the domain-
specific multi-site inhibitory connectivity pattern and analyzed the strategic 
placement for synaptic inhibition for optimally controlling dendritic excitability.

Our analytical results enabled us to explain how a relatively small number of 
strategically placed inhibitory synapses effectively counterbalance the effect of 
larger number of excitatory synapses found in many central neurons such as cortical 
(DeFelipe et al. 2002) and hippocampal (Megías et al. 2001) pyramidal cells.

In the modern “age of connectomics” (Bock et al. 2011; Briggman et al. 2011; 
Seung 2009), new data unraveling the details of specific synaptic connections in 
neuronal networks is rapidly accumulating. This chapter, which summarizes results 
from our previous work, serves as a step towards a theoretical understanding that 
will provide a systematic functional interpretation of the inhibitory connectivity in 
the neuronal microcircuit.

18.2  Results

Symbols

X (Xi) Electrotonic distance (in units of the space constant, λ) from origin to location i 
(dimensionless)

L Electrotonic length (in units of λ) of a dendritic branch (dimensionless)
V Steady membrane potentials, as a deviation from the resting potential (V)
Ri Input resistance at location i (Ω)
ΔRi Change in Ri due to synaptic conductance perturbation (Ω)
gi Steady synaptic conductance perturbation at location i (S)
SL Shunt level (0 ≤ SL ≤ 1; dimensionless)
SLi Shunt level ΔRi/Ri due to activation of single- or multiple-conductance perturbations 

(0 ≤ SL ≤ 1; dimensionless)
Ri,j Transfer resistance between location i and location j (Ω)
SLi,j Attenuation of SL (SLj/SLi) for a single-conductance perturbation at location i 

(0 ≤ SLi,j ≤ 1; dimensionless)
Ai,j Voltage attenuation, Vj/Vi, for current perturbation at location i (0 ≤ Ai,j ≤ 1; dimensionless)

18.2.1  The Shunt Level: A Tractable Measure for the Impact  
of Dendritic Inhibition

When an inhibitory synapse is activated at a dendritic location, i, a local conduc-
tance perturbation gi (a shunt) is induced in the dendritic membrane which is 
followed by an inhibitory postsynaptic potential (IPSP). “Silent” or “shunting” 
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inhibition occurs when the inhibitory reversal potential is equal to the resting membrane 
potential (Koch and Poggio 1985); thus, an IPSP is not observed in this case.

Although the membrane shunt due to the activation of the inhibitory synapses 
at i is highly local, its effect spreads to (i.e., is visible at) other dendritic locations 
(Rall 1967; Koch et al. 1990; Williams 2004). Indeed, this spatial spread is reflected 
by a change in input resistance, ΔRd, at location d. We defined the shunt level at 
location d, SLd, as

 SL R Rd d d= ∆ / ,  (18.1)

where Rd is the input resistance in location d prior to the activation of gi. SLd is thus 
the relative drop in Rd at location d due to the activation of single (or multiple) 
steady conductance perturbations at arbitrary dendritic locations (see Gidon and 
Segev 2012 for generalization to the transient case). The value of SLd ranges from 
0 (no shunt) to 1 (infinite shunt) and depends on the particular dendritic distribu-
tion of gis. For example, SLd = 0.2 implies that the inhibitory synapse reduced the 
input resistance at location d by 20 % which is also the relative drop in the steady 
voltage at d due to the inhibition, following the injection of steady current at 
location d.

The solution for ΔRd (Koch et al. 1990) following the activation of a single 
steady conductance perturbation, gi, at location i is

 ∆R R R
g R

g Rd d d
i i d

i i

= − =
+

* , ,
2

1
 (18.2)

where Rd and Rd
* are, respectively, the input resistance prior to and following the 

activation of gi (see definitions in the Symbols list). The transfer resistance from i to 
d, Ri,d, is (Koch et al. 1983)

 R R R A R Ai d d i i i d d d i, , , , .= = =  (18.3)

Combining (18.2) and (18.3), SL at location d due to the activation of the conduc-
tance perturbation at location i is

 SL SL SL
g R

g R
A Ad i i d

i i

i i
i d d i= × =

+








 ×, , , .

1
 (18.4)

The bracket denotes, SLi, the amplitude of SL at the input location (d = i) and 
SLi,d = Ai,d × Ad,i is the attenuation of SL.

Note that the shunt level measure is applicable also for assessing the change in 
input resistance due to excitatory synapses, which, like inhibition, exert a local 
membrane conductance change.

In the next sections, we analytically and numerically compute SL in idealized 
dendrites as well as 3D reconstructed dendrites. This provided several new and 
counterintuitive results regarding the overall impact of multiple inhibitory dendritic 
synapses in dendrites and explained several experimental and modeling results that 
were not fully understood prior to the present study.
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18.2.2  Distal Dendritic Inhibition Effectively Controls 
Excitability at Proximal Regions

We started with a geometrically simple case, whereby a single inhibitory synapse 
impinged on a dendritic cylinder sealed at one end and coupled to an isopotential 
excitable soma at the other end (Fig. 18.1a). The dendritic cylinder comprised a 
hotspot (Antic et al. 2010; Larkum et al. 1999; Magee et al. 1995; Schiller et al. 
1997, 2000) modeled by a cluster of 20 NMDA synapses, where each synapse was 
randomly activated at 20 Hz (red circle and red synapse in Fig. 18.1a). We then 
searched for the strategic placement of the inhibitory synapse that would effectively 
dampen this local dendritic hotspot.

Using numerical simulations for the nonlinear cable model described above 
(Fig. 18.1b), we found that when the inhibitory conductance perturbation, gi, was 
placed distally (“off-path”) to the hotspot, the rate of the soma action potentials was 
reduced more effectively than when the same inhibitory synapse was placed proxi-
mally (“on-path”) at the same distance from the hotspot (Fig. 18.1b). The asymme-
try of the impact of proximal versus distal inhibition for dampening a local dendritic 
hotspot holds regardless of the distance from the hotspot (Fig. 18.1c). When we 
increased the distance (in a given cable length) of both the distal and the proximal 
synapses from the hotspot the relative advantage of the distal inhibition also 
increased (Fig. 18.1c).

Indeed, such asymmetry in the impact of proximal versus distal inhibition for 
dampening a local dendritic hotspot was previously observed in vitro (Jadi et al. 
2012; Liu 2004; Lovett-Barron et al. 2012; Miles et al. 1996) and in simulations 
(Archie and Mel 2000; Rhodes 2006), but the basis for this counterintuitive result 
has remained unclear.

In order to provide an explanation for this result, we analytically computed the 
value for SL at the hotspot (h) and thus assessed the impact of inhibition at this loca-
tion (Fig. 18.1d). In the corresponding passive case, SLh at the hotspot due to the 
inhibitory conductance perturbation gi at location i can be expressed as the product 
of SL amplitude at location i (SLi) and the attenuation of SL from i to h (SLi,h; see Eq. 
(18.4)). The asymmetry of the impact of distal versus proximal inhibition on loca-
tion h (the hotspot) results from the difference in the model’s boundary conditions, 
namely, sealed end boundary at the distal end and an isopotential soma at the proxi-
mal end. This difference implies that the input resistance and SLi (in cases of a fixed 
gi) also increase monotonically with distance from the soma. Thus, SLi at the distal 
site (depicted by the black synapse) is larger than that at the corresponding proxi-
mal site (depicted by the orange synapse). Additionally, the overall SLi,h attenuation 
from the inhibitory synapses to the hotspot is shallower for the distal synapses than 
for the proximal synapses, because the latter is more affected by the somatic current 
sink. The product of these two effects—the initially larger SLi at the distal synapse 
and the shallower attenuation of SLi from the distal synapse to the hotspot—implies 
that SL at the hotspot (SLh) is larger for this synapse. The latter conclusion also 
holds for transient inhibitory synaptic conductance.

18 Biophysics of Synaptic Inhibition in Dendrites
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The results in Fig. 18.1 (in particular Fig. 18.1d) hold at the dendritic site for 
any dendritic region producing inward current, either for voltage-independent con-
ductances (e.g., via an AMPA synapse) or for voltage-dependent conductances 
(e.g., NMDA currents or active Ca+2 or Na+ inward currents). But the advantage of 
distal versus proximal inhibition at that region is amplified in the voltage-dependent 
(nonlinear) case because inhibition at the hotspot increases the threshold for the 
activation of regenerative inward currents (Jadi et al. 2012).

18.2.3  SL in Branched Dendrites

The attenuation of SL for a single-conductance perturbation, gi, at location i is 
SLi,d = Ai,d × Ad,i (18.4). Therefore, it is straightforward that SLi,d = SLd,i, namely, SL 
attenuation is symmetrical for any given two dendritic sites, regardless of the 
dendritic structure (Ai,d ≠ Ad,i in most cases).

Using (18.4), we compute SL attenuation for the case of an idealized dendritic 
tree receiving a single-conductance perturbation at the distal dendritic terminal 
(Fig. 18.2). For comparison, the steady voltage attenuation (Rall and Rinzel 1973), 
V, is also shown (Fig. 18.2, dotted line). V attenuation is steep from the distal (input) 
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branch towards the branch point (P) but is shallow in the direction of the sibling 
branch S (Fig. 18.2, black arrow) because of the sealed-end boundary condition in 
this branch (Rall and Rinzel 1973). Similarly to V, SL attenuates steeply towards the 
soma; however, in contrast to V, SL attenuates steeply towards terminal S (blue 
line). This follows directly from (18.4), as SL attenuation from P to S depends on the 
(steep) voltage attenuation from S to P (AS,P). Consequently, the impact of conduc-
tance perturbation diminishes rapidly with distance in such thin dendritic branches. 
Hence, excitatory currents in distal dendrites are electrically “protected” from the 
inhibitory shunt, unless the inhibitory synapses directly target these branches.

18.2.4  Inhibitory Shunt Spreads Centripetally in Dendrites 
Encircled by Multiple Inhibitory Synapses

In the central nervous system, a single inhibitory axon typically forms multiple 
synaptic contacts (up to 20 contacts per axon) on the target dendritic tree. Therefore, we 
examined the implications of multiple inhibitory synapses for SL in dendrites, using 
the model of a reconstructed CA1 neuron (Golding et al. 2005) depicted in Fig. 18.3. 
This modeled neuron received inhibition at three distinct dendritic subdomains: the 
basal, apical, and oblique dendrites. In CA1, these morphological domains are 
indeed innervated by inhibitory synapses arising from different classes of inhibitory 
interneurons [for example, the axon of bistratified cells targets the basal and the 
oblique dendrites, while the apical dendrite is targeted by the oriens lacunosum-
moleculare cells (Klausberger and Somogyi 2008)]. We assumed that each domain 
receives a cluster of five inhibitory contacts (white dots).

The color-coded SL value induced by the activation of these 15 inhibitory syn-
apses is shown in Fig. 18.3a, b, superimposed on the modeled cell. SL spreads 
poorly (it attenuates steeply) in the direction of the dendritic terminals (Fig. 18.3a, 
blue dendrites), but, surprisingly, it spreads effectively (Fig. 18.3a, red region) hun-
dreds of micrometers centripetally to the region delineated (dashed line) by the 
contact sites themselves. Even more surprising was that SL became larger in regions 
lacking inhibitory synapses compared to SL at the synaptic sites themselves 
(Fig. 18.3b). This is in contrast to the prevailing view that the maximal effect of 
inhibition is always at the synaptic site itself (Jack et al. 1975). This was further 
demonstrated by simulation, whereby an excitatory synapse in the proximal apical 
tree, far away from any inhibitory synapse, was more inhibited than an excitatory 
synapse contacting the oblique branches (top EPSP; see Fig. 18.3b, continuous yel-
low line—before inhibition; dashed line—following inhibition).

The elevated centripetal increase in SL (red central dendritic regions in Fig. 18.3a) 
existed under a wide range of conditions. Interestingly, we can show analytically 
that such elevation in centripetal inhibition required at least three inhibitory syn-
apses encircling a dendritic region consisting of at least three branches (see 
Sect. 18.2.5 and further analysis in Gidon and Segev 2012).

For comparison, we also computed the impact of dendritic inhibition as observed 
at the soma. In Fig. 18.3c, d, the same CA1 cell as in Fig. 18.3a, b was modeled, but 
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here we computed the percentage drop of somatic voltage due to current injection at 
any dendritic location following the activation of the 15 inhibitory synapses. When 
measured at the soma, the largest impact of inhibition was obtained for depolariza-
tion originating at distal dendrites, particularly for distal branches receiving inhibi-
tory synapses (red branches in Fig. 18.3c). In contrast, SL was very small in these 
distal branches (blue branches in Fig. 18.3a).

18.2.5  Maximal Inhibition May Occur in Dendritic Domains 
Lacking Inhibitory Synapses

To analytically explain the counterintuitive results whereby inhibition accumulates 
centrally to the synapses which encircle the somatic regions (Fig. 18.3) we con-
structed a symmetrical starburst-like dendritic model (Fig. 18.4) consisting of mul-
tiple identical branches stemming from a common junction (X = 0). Each of these 
branches received an identical gi at a fixed distance (X = 0.4) from the junction 
(Fig. 18.4a). In order to solve for SL in a symmetrical starburst-like dendritic model 
consisting of N identical branches with N synapses we used an equivalent model 
consisting of two connected branches with two synapses (Fig. 18.4c, inset). It is 
straightforward to show that in such a structure, SL at the junction remains constant 
(Rall 1959), independent of the number of stem branches (Fig. 18.4b, all curves 
converge at X = 0). However, when we increased the number of branches (each with 
an additional inhibitory synapse) in the starburst-like model, the input resistance at 
each of the synaptic sites and at the junction was reduced. Consequently, SLi at each 
of the synaptic sites was reduced (Fig. 18.4b, arrow), and the attenuation of SL from 
the junction to each of the synaptic sites became steeper. Namely, synapses had 
progressively smaller shunting impact on each other with increasing number of 
branches.

Together, these results imply that when the number of branches is large enough, 
SL at the junction (lacking synapses) may become larger than SL at each of the synap-
tic sites. Figure 18.4c summarizes SL as a function of the distance of gi from the soma 
for different number of branches in the starburst-like model. The enhanced centripetal 
impact of SL becomes more prominent as the number of branches increases.

18.3  Discussion

The shunt level, SL, introduced in this study is a simple, intuitive, and analytically 
tractable measure for assessing the impact of inhibitory conductance perturbation in 
the dendritic tree. The “dendro-centric” view of inhibition using SL in arbitrary pas-
sive dendritic trees receiving multiple inhibitory contacts has provided several sur-
prising results. In particular, distal dendritic sites are effective in dampening more 
proximal nonlinear events. Additionally, we found that with multiple synapses, SL 
spreads very effectively towards dendritic regions encircled by these synapses and 
that it may become larger in these regions than at the synaptic loci themselves. 
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These findings yielded several new insights regarding the functional implications 
of the unique connectivity pattern of dendritic inhibition. Importantly, although 
these insights were based on the solution for the steady state case and for passive 
dendrites, they nevertheless explained the simulated results obtained for corre-
sponding nonlinear and transient cases.
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identical branches (L = 1) stemming from a common junction (X = 0). (b) SL for the corresponding 
models depicted in a. Each branch receives a single gi (1 nS) at X = 0.4 (dashed line). For N = 8 (blue) 
and N = 16 (red), SL at the junction (lacking synapses) is larger than SL at the site of the inhibitory 
synapse. (c) Ratio between SL at the junction (SL0) and at the synaptic sites (SLi) as a function of the 
distance of the synapses from the junction. Models as in a but with varying number of branches 
(1–20), each with one synapse. SL0/SLi increases with the number of branches (with ~2.2 for 20 
synapses and branches; arrow). Inset: Equivalent dendritic model used to solve for SL where N is the 
total number of branches and synapses in the starburst-like model (see Appendix). Reproduced from 
Gidon and Segev (2012) with permission from Cell Press
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18.3.1  On-Path and Off-Path Inhibition: Somatic Versus 
Dendritic Viewpoints

The “on-path theorem” (Koch 1998) states that the maximal effect of inhibition in 
reducing the excitatory potential recorded at the soma is achieved when inhibition is on 
the path between the excitatory synapse and the soma (Rall 1964; Jack et al. 1975; Koch 
et al. 1983). At first glance, our findings (Fig. 18.1) seem to contradict this classical 
result. However, we searched for the strategic placement of inhibition so that it most 
effectively dampens the inward current generated at the locus of the excitatory synapses 
(or the “hotspot”) itself, rather than reducing the current reaching the soma. Indeed, the 
powerful impact of the off-path inhibition on the somatic firing as demonstrated in 
Fig. 18.1 is a secondary outcome of the significant reduction of the inward current in the 
hotspot by the distal inhibitory synapse: the more excitable the hotspot, the more advan-
tageous the distal inhibition compared to the corresponding proximal inhibition.

The results in Fig. 18.1 were obtained with inhibitory conductance, i.e., the case of 
a “silent inhibition,” whereby the reversal potential of the inhibitory synapse, Ei, 
equals the resting potential, Vrest. However, these results still hold when Ei is more 
negative than Vrest (hyperpolarizing inhibition) because the hotspot would be more 
hyperpolarized due to the inhibitory potential originated at the distal synapse than due 
to the inhibitory potential generated at the proximal synapse (Gidon and Segev 2012).

In recent experiments, Hao et al. (2009) co-activated dendritic inhibition, gi, and 
excitation, ge, while recording at the soma of a CA1 pyramidal cell (somato-centric 
view). They derived an arithmetic rule for the summation of the somatic EPSP and IPSP, 
confirming the predictions of the on-path theorem also for the case of multiple inhibi-
tory and excitatory synapses. Examining the effect of dendritic inhibition on dendritic 
spikes invoked by ge, they found that the arithmetic rule does not hold when gi and ge 
were co-activated on the same branch. This is expected because, in this case, gi directly 
inhibits the dendritic spike (large local SL). This case demonstrates that for dendrites 
with active nonlinear currents (Kim et al. 2012; Murayama and Larkum 2009; Murayama 
et al. 2009; Palmer et al. 2012), a dendro-centric view is required in order to characterize 
the impact of dendritic inhibition. This is particularly true due to the global and centrip-
etal spread of inhibition in dendrites with multiple inhibitory synapses.

18.3.2  Anatomical Versus Functional Inhibitory Dendritic 
Subdomains

Typically, axons belonging to particular inhibitory classes contact specific dendritic sub-
domains of their target dendrites (Klausberger and Somogyi 2008; Markram et al. 2004). 
For example, Chandelier axo-axonic inhibitory interneurons target the axon initial seg-
ment of excitatory neurons (Somogyi et al. 1983; Szentágothai and Arbib 1974), while 
Basket cells target the soma and proximal dendrites (Wang et al. 2002). Interestingly, 
individual inhibitory axons often form multiple (10–20) synaptic contacts on the target 
dendritic tree. Therefore, in most cases, the principles discussed in this chapter are rele-
vant even at the level of a single inhibitory axon and its postsynaptic dendritic target.

A. Gidon



307

The effective spread of SL into the dendritic region surrounded by multiple 
inhibitory synapses (Fig. 18.3) leads to a spatially extended shunted dendritic 
domain beyond the anatomical domain demarcated by these synapses. Therefore, 
the spatial extent of SL could serve as a way to assess spatial specificity of the 
impact of different classes of interneurons on their postsynaptic targets (“functional 
subdomain”), rather than relying on the anatomical connectivity alone.

The global spread of the inhibitory shunt implies that the functional subdomain 
would be less specific than the anatomical subdomain. Namely, in order to dampen 
excitatory/excitable dendritic currents, it is not necessary to match each excitatory 
synapse with a corresponding adjacent inhibitory synapse. Rather, by surrounding a 
dendritic region with a few inhibitory contacts, it is possible to effectively dampen 
the excitatory/excitable current that would be generated in this region (Figs. 18.3 and 
18.4) and thereby effectively control the neuron’s output. This may explain why in the 
neocortex and the hippocampus, only a small number (~20 %) of the synapses are 
inhibitory (DeFelipe and Fariñas 1992; Megías et al. 2001; Merchán-Pérez et al. 2009).

18.3.3  Why Does Inhibition Target Distal Dendrites?

One surprising analytic result of this study is that distal off-path inhibition is more 
effective than the corresponding on-path inhibition for dampening a midway den-
dritic nonlinear hotspot (Fig. 18.1, and see also experimental validation in Miles 
et al. 1996; Lovett-Barron et al. 2012 and simulated results in Archie and Mel 2000; 
Rhodes 2006). This result, together with the result showing that SL spreads poorly 
to thin distal branches (Figs. 18.2 and 18.3), implies that in order to control nonlin-
ear processes in distal dendritic branches, inhibitory synapses should directly target 
the distal end of these branches.

Interestingly, branch-specific off-path (rather than on-path) distal inhibition is 
expected to powerfully affect the plasticity of excitatory synapses in these branches, 
as this process depends on the influx of (active) Ca2+ current via either NMDA-
dependent receptors or voltage-dependent Ca2+ channels (MacDonald et al. 2006; 
Malenka 1991; Malenka and Nicoll 1993). Indeed, a recent study (Bar-Ilan et al. 
2013) has shown that inhibitory synapses can fine-tune the transition between syn-
aptic potentiation and synaptic depression with high spatial resolution, even in elec-
trically short branches (despite the global spread of synaptic inhibition).

The result in Fig. 18.1 relies, in part, on the increase of the input resistance Rd in distal 
branches (Rall and Rinzel 1973; Rinzel and Rall 1974). However, in some cell types the 
specific membrane resistivity, Rm, along the main stem dendrite decreases with distance 
from the soma (Ledergerber and Larkum 2010; Magee 1998; Stuart and Spruston 1998), 
and this could lead to a decrease, rather than an increase, in Rd with distance from the 
soma (Magee 1998; but see Ledergerber and Larkum 2010). However, it is possible to 
show in simulations that due to the thin diameter of distal dendritic branches and the 
effect of the adjacent sealed-end boundary conditions, even with the observed decrease 
in Rm with distance from the soma, Rd in thin distal branches still increases towards the 
distal tips and thus the advantage of the off- path versus on-path conditions still holds.
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In summary, this work advocates a “dendro-centric” viewpoint for understanding 
how the neuron’s output is first and foremost shaped in the dendrites, whereby excit-
atory and inhibitory dendritic synapses interact with nonlinear membrane currents 
before an output is generated at the axon.

 Appendix

In all the models we used unless stated otherwise, the axial resistance was Ra = 100 Ω cm 
and the specific membrane capacitance was Cm = 1 μF/cm2. In Fig. 18.1, the model 
consisted of a sealed-end passive cylindrical cable (L = 1; Rm = 20,000 Ω × cm2) with a 
diameter of 1 μm, coupled at X = 0 to an isopotential soma such that the dendritic-
to-somatic conductance ratio was 0.1. In addition to the passive membrane resistance, 
the somatic conductances in Fig. 18.1 included Na+ and K+ channels [model and 
parameters as previously described (Traub et al. 1991) with activation and inactiva-
tion functions shifted by +15 mV]. NMDA synapses were modeled (with 
gmax = 0.5 nS) as previously described (Sarid et al. 2007). In Fig. 18.3 we used the 
reconstructed morphology of a CA1 pyramidal neuron (Ascoli et al. 2007; Golding 
et al. 2005) with Rm = 15,000 Ω × cm2. In Fig. 18.3a, the AMPA-like synapse was 
modeled by voltage-independent conductance with peak value of 0.5 nS and rise 
and decay time constants of 0.2 and 10 ms, respectively.

The equivalent model as in Fig. 18.4c (inset) consists of two cylindrical branches: 
the thin branch is identical to any one of the original branches of the starburst-like 
models in Fig. 18.4a, whereas the thick branch is the equivalent cylinder model for 
the other N − 1 branches with diameter Deq = D0 × N2/3 (Rall 1959), where D0 is the 
diameter of the thin branch. The equivalent cylinder receives conductance of 
(N − 1)×gi at a distance Xi (as in the thin branch) from the junction.
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  Abstract   GABAergic interneurons in cortical circuits control the activation of 
principal cells and orchestrate network activity patterns, including oscillations at 
different frequency ranges. Recruitment of interneurons depends on integration of 
convergent synaptic inputs along the dendro-somatic axis; however, dendritic pro-
cessing in these cells is still poorly understood. 

 In this chapter, we summarise our results on the cable properties, electrotonic 
structure and dendritic processing in “basket cells” (BCs; Nörenberg et al.  2010 ), 
one of the most prevalent types of cortical interneurons mediating perisomatic 
inhibition. In order to investigate integrative properties, we have performed two- 
electrode whole-cell patch clamp recordings, visualised and reconstructed the 
recorded interneurons and created passive single-cell models with biophysical prop-
erties derived from the experiments. Our results indicate that membrane properties, 
in particular membrane resistivity, are inhomogeneous along the somato-dendritic 
axis of the cell. Derived values and the gradient of membrane resistivity are differ-
ent from those obtained for excitatory principal cells. The divergent passive mem-
brane properties of BCs facilitate rapid signalling from proximal basal dendritic 
inputs but at the same time increase synapse-to-soma transfer for slow signals from 
the distal apical dendrites. 

 Our results demonstrate that BCs possess distinct integrative properties. Future 
computational models investigating the diverse functions of neuronal circuits need 
to consider this diversity and incorporate realistic dendritic properties not only of 
excitatory principal cells but also various types of inhibitory interneurons.   

      Chapter 19
Role of Non-uniform Dendrite Properties 
on Input Processing by GABAergic 
Interneurons 
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19.1      Introduction 

 GABAergic inhibition is a crucial factor for proper network function in cortical 
circuits. The inhibitory system controls the level of neuronal excitation and the 
timing and frequency of discharge and plays a major factor in the generation of 
population activity patterns (Buzsáki  2006 ). A critical change in the balance of 
inhibition to excitation is thought to underlie many major brain disorders, such as 
epilepsy and schizophrenia (Lewis et al.  2005 ). 

 Inhibitory interneurons, in contrast to excitatory principal cells, are much lower in 
number and show a high level of heterogeneity with respect to their morphological, 
physiological and neurochemical properties (Ascoli et al.  2008 ; Freund and Buzsáki 
 1996 ). Interneurons can be classifi ed into two main classes, preferentially innervat-
ing either the dendrites or the perisomatic region of their targets (Bartos et al.  2011 ). 
BCs are the main type of perisomatic inhibitory interneurons that innervate the 
soma and the proximal dendrites of principal cells and various types of interneu-
rons. BCs are interconnected by mutually inhibitory synapses and gap junctions and 
are thought to play a central role in the generation of oscillations at theta (4–12 Hz), 
gamma (30–90 Hz) and ripple frequencies (14–200 Hz) (Bartos et al.  2007 ; Buzsáki 
and Draguhn  2004 ). 

 BCs are recruited by different mechanisms, including the tonic drive through 
metabotropic receptors (Whittington et al.  1995 ; Fisahn et al.  2002 ) or the phasic 
excitation mediated by ionotropic receptors in glutamatergic synapses (Geiger et al. 
 1997 ). With respect to circuit structure, excitatory synapses are formed by either (1) 
afferent pathways originating outside the area or (2) “recurrent” collaterals of local 
principal cells resulting in feedforward vs. feedback activation of the interneurons, 
respectively. 

19.1.1     Circuitry of the Dentate Gyrus 

 In order to understand synaptic activation and integration in BCs, we need to consider 
the specifi c organisation of the surrounding network. 

 The dentate gyrus (DG) is considered to be the gateway to the hippocampus, the 
fi rst station of the so-called “trisynaptic pathway” (Andersen et al.  1971 ). As a corti-
cal area, the DG shows a strict but simple layered structure (Fig.  19.1a ): the cell 
body layer densely packed with somata of mainly principal cells, the granule cells 
(GCs), also called as the granule cell layer. GC dendrites emerge from the apical 
pole of the soma and extend into the neuropil, the “molecular layer”, whereas the 
axon arises from the basal pole and extends into the “hilus”. Most interneurons, 
including BCs, differ from GCs in that they have a bipolar dendritic arbour with 
apical dendrites in the molecular layer and basal dendrites in the hilus.

   The main input to the DG, the perforant path, constitutes fi bres from the ento-
rhinal cortex and terminates in the outer two-thirds of the molecular layer form-
ing synapses onto distal dendrites of GCs as well as inhibitory interneurons 

A. Matthiä et al.



313

(Amaral  1993 ). Dendrites in the inner third of the molecular layer are targeted by 
commissural/associational fi bres originating from excitatory mossy cells in the 
ipsi- and contralateral hilus. Thereby, dendritic trees of GCs and interneurons 
receive strictly laminated, segregated inputs (see Förster et al.  2006 ). 

mossy
fibers

perforant
path

 
 

GC 

BC 

h 

gcl 

mol 

GC 

excitation 

inhibition 

a

b1 FB inhibition FF inhibition mutual inhibition b2 b3

BC BC 

PP

BC 

GC 

PP

BC 

GC 

  Fig. 19.1    The dentate gyrus circuitry. ( a ) The granule cell layer with the densely packed somata 
of granule cells (GC,  blue ) is shown in  grey . These cells are activated mainly by distal excitatory 
perforant path synapses (in  green ) but also from excitatory mossy cells ( black ). Granule cell axons 
form the mossy fi bres with local collaterals in the hilus. Basket cells (BC,  red ) have a larger cell 
body located at the border of the granule cell layer (gcl) to the hilus (h). The apical dendrites of 
basket cells, similar to those of granule cells, extend into the molecular layer (mol) that is subdi-
vided into an outer and inner part (indicated by the  dashed line ). Basket cell dendrites receive distal 
synaptic input from the perforant path and proximal input from mossy cells within the inner 
molecular layer. In contrast to granule cells basket cells have basal dendrites which extend into the 
hilus and receive recurrent excitatory input from granule cells. ( b ) Schematic representations of 
connectivity between perforant path (PP), basket cells and granule cells. BCs are involved in feed-
back (FB, b1) or feedforward inhibition (FF, b2). At the same time they are interconnected by 
mutual inhibitory synapses (b 3 ). Whereas FF inhibition is generated by the afferent activation of 
BCs, FB inhibition involves the activation of GCs       
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 The main output of the DG is conveyed by the mossy fi bres, i.e., GC axons being 
directed to the hilus and the CA3 area. Within the hilus, mossy fi bres form axon 
collaterals contacting basal dendrites of DG interneurons and thereby provide direct 
excitatory feedback. Thus, many DG interneurons, including BCs, receive input from 
both afferent pathways and recurrent collaterals, and therefore they are embedded in 
both feedforward and feedback inhibitory microcircuits (Fig.  19.1b ).  

19.1.2     Integrative Properties of Dendrites 

 The dendritic tree of a neuron receives excitatory and inhibitory synaptic inputs. 
These inputs are transmitted along the dendro-somatic axis until they reach the 
perisomatic domain and the site of action potential initiation, typically at the axon 
initial segment. How different types of inputs are integrated to produce specifi c 
neuronal output is dependent on the spatio-temporal pattern of inputs (Magee  2000 ), 
the morphological structure of the cell (Rall  1959 ; Vetter et al.  2001 ) and the mem-
brane properties (Gulledge et al.  2005 ). 

 Integrative membrane properties can be determined by passive and active mech-
anisms. Passive membrane properties together with the morphology defi ne the elec-
trotonic structure of neurons (Rall  1959 ,  1962 ) and therefore set the basis for 
integration of synaptic signals within the dendritic tree. Integration or summation of 
different inputs over time is enhanced when the cell membrane has low leak con-
ductance and the intracellular (“axial”) conductance (Spruston et al.  2008 ) is high. 
As an effect, the integration time window becomes larger, and many inputs from dif-
ferent sources, e.g. different brain regions, can be integrated. Thus, the cell will act as 
an “integrator”. In contrast, temporal summation in a neuron is smaller when the leak 
conductance is large. Synaptic signals would decay rapidly and show more attenua-
tion along the dendrites, and inputs would summate only within a brief time window. 
These passive properties would, thus, result in a “coincidence’ or a “synchrony detec-
tor” neuron. Therefore, passive membrane properties can set the basis for different 
modes of integration, such as strong integration (e.g. DG GC Krueppel et al.  2011 ) 
or synchrony detection (e.g. CA1 pyramidal cell Losonczy and Magee  2006 ). 

 On the basis of the passive properties, active, i.e. voltage dependent, conduc-
tances increase the cell’s repertoire of integrating synaptic inputs, for example by 
counteracting the passive location-dependent attenuation (Magee  2000 ) or compart-
mentalising the dendrite into different functional units (e.g. Larkum et al.  2009 ; 
Scott et al.  2005 ).   

19.2     Dendritic Properties of Dentate Gyrus Basket Cells 

 The passive properties of each dendritic cable segment can be characterised by three 
main parameters: the specifi c membrane resistance  R  m , the specifi c membrane 
capacitance  C  m  and the intracellular (axial) resistivity  R  i .  R  m  describes the leakiness 
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of the membrane and is determined by the presence of leak channels in the membrane. 
 C  m  is a measure of the capacitive nature of the membrane. The lipid and protein 
content is the main determinant of the dielectric attributes of the membrane and thus 
 C  m . Finally,  R  i  refl ects the resistive properties of the intracellular medium, and it 
may change depending on the intracellular content, including the number and size 
of intracellular organelles and the fl uidity of intracellular medium. Ultimately, the 
knowledge of  R  m ,  C  m  and  R  i  as well as the detailed morphological structure of a 
neuron makes it possible to create a realistic computational model of the cell and 
analyse its integrative properties either in isolation or as part of a network. 

 The development of a realistic model of BCs includes three major steps: (1) 
whole-cell patch-clamp recordings of passive voltage responses to current applica-
tion; (2) visualisation and 3-dimensional reconstruction of cell morphology and 
(3) derivation of  R  m ,  C  m  and  R  i  by numerical simulations using a model based on the 
recorded voltage traces and the respective neuronal morphology. 

 Upon completion of these separate steps the developed model was used to study the 
integrative properties of BC dendrites. We showed that BC dendrites are optimised 
for speed and effi cacy of signalling properties. BC dendrites exhibit faster signal-
ling properties in basal than apical dendrites, but at the same time the effi cacy of 
slow distal apical inputs is increased. In the fi nal part of the chapter, we discuss the 
implications of BC signalling properties for the proper function of the DG 
circuitry. 

19.2.1     Electrophysiological Experiments 

 In the experiments, BCs were selected in 300 μm hippocampal slices of 17–19-day- 
old Wistar rats on the basis of their large cell body located at the border of the 
granule cell layer to the hilar region. To confi rm their physiological identity, a series 
of hyperpolarising subthreshold and depolarising suprathreshold current pulses 
were injected to evaluate input resistance and fi ring patterns under current clamp 
conditions. Typically, BCs show low input resistance, produce very brief action 
potentials followed by a large-amplitude fast afterhyperpolarisation and can dis-
charge at very high frequencies in response to sustained current pulses (119–216 Hz 
at 0.75–1 nA current amplitude; at 30–34 °C; Fig.  19.2a ).

   To record passive responses from the neurons, ligand- and voltage-dependent 
currents need to be eliminated. Therefore, blockers of glutamatergic (10 μM 
6-cyano-7-nitroquinoxaline-2,3-dione) and GABAergic (20 μM bicuculline or 
1–2 μM gabazine) synaptic transmission and active conductances (sodium channels, 
1 μM tetrodotoxin), including the hyperpolarisation-activated current ( I  h , 30 μM 
ZD7288), were bath-applied, and voltage responses were kept as small as possible 
(see below, Fig.  19.2 ). 

 Electrophysiological recordings were performed with two electrodes in two dif-
ferent experimental confi gurations: (1) dual-somatic recordings and (2) dual-somato- 
dendritic recordings (Fig.  19.2a, d ). In the dual-somatic recording confi guration, 
current injection is separated from voltage recording. Therefore, artefacts that 
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would emerge during current application due to series resistance and capacitance of 
the electrodes are eliminated from the voltage-recording electrode. This is espe-
cially important for the early, fast decay of the voltage transient in response to brief 
current injections. This early transient refl ects a rapid redistribution of charge within 
the cell after the end of the current pulses. Conceptually, the intracellular medium is 
a low-resistance path (refl ected by  R  i ) which enables the rapid charge redistribution 
before the membrane capacitance can fully discharge through the high-resistance 
path across the membrane (determined by  R  m ). In case of single-electrode record-
ings this transient is superimposed by electrode artefacts (Schmidt-Hieber et al. 
 2007 ; Thurbon et al.  1998 ; Major et al.  1994 ), but dual-somatic electrode confi gura-
tions as in our experiments enable the reliable recording of this essential determi-
nant of  R  i . 

 In the second somato-dendritic recording confi guration, one electrode was posi-
tioned at the soma and the other on the apical dendrite between 100 and 300 μm 
distance from soma (Fig.  19.2d , Nörenberg et al.  2010 ; Hu et al.  2010 ). Currents 
were applied to the soma, and voltage recordings were performed at both sites, 
somatic and dendritic (Fig.  19.2e , black and blue traces, respectively). In these 
recordings, the electrode artefact could not be avoided in the somatic responses, and 
thus the initial fast decay was excluded from analysis (see overlay of simulated and 
experimental traces in Fig.  19.3a ). Nevertheless, voltage responses obtained from 
an additional point of the dendritic structure served as a spatial constraint for the 
derivation of the parameters  R  m ,  C  m  or  R  i . This was particularly important to enable 
us to assess homogeneity along the somato-dendritic axis.

   In both confi gurations, membrane properties were probed by two sets of current 
pulses, either long pulses with small amplitude (400–600 ms, 20–50 pA, Fig.  19.2b, 
e  lower traces) or short pulses with large amplitude (0.5 or 2 ms, 100–500 pA, Fig.  19.2b, 
e , upper traces). Voltage responses to both sets of pulses were always kept smaller 
than 4 mV to prevent activation of voltage-dependent conductances (Fig.  19.2b, e ). 
The advantage of the dual pulses was that the brief pulses probe membrane proper-
ties mainly locally, i.e. at the soma, whereas the long pulses can charge more distal 
membrane surface, and thereby the kinetics of charging and discharging phases may 
uncover potential inhomogeneities in  R  m  or  C  m . 

 Indeed, analysing the decay of voltage responses to short and long current injec-
tions revealed a difference in the apparent membrane time constant (Fig.  19.2b , inset). 

Fig. 19.2 (continued) response to a 1 nA current pulse. ( b ) Voltage responses ( black ) to short ( top ) 
and long ( bottom ) current pulses ( blue ) in the dual-somatic recording confi guration. Inset: 
Semilogarithmic plot of the decay phase of short and long voltage responses shows their different 
time constants. ( c ) Point-by- point comparison between voltage responses to positive and negative 
current injection indicates linearity of the voltage responses. ( d ) Detailed reconstruction of a bas-
ket cell with a schematic representation of the dual-somato-dendritic recording confi guration. ( e ) 
Voltage responses to short ( top ) and long ( bottom ) current pulses recorded from the soma (in  black , 
with current injected to the dendrite in  blue ) or the dendrite (in  blue , with current injected to the 
soma in  black ). ( f ) Point-by- point comparison of somatic responses to dendritic current injection, 
and dendritic responses to somatic current injection indicate reciprocity of the response. 
Reproduced with permission from Nörenberg et al. ( 2010 )       
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Short voltage responses decayed much faster than long voltage responses. This 
 difference suggested that proximal and distal surface membrane areas may display 
differences in their passive membrane properties, more specifi cally a non-uniform 
membrane resistance. 

 Altogether, the combination of dual-somatic and somato-dendritic recordings 
and the analysis of brief and long responses can constrain  R  m ,  C  m  and  R  i  well, offering 
good estimates of these parameters. 

 To confi rm that our recordings refl ected a passive electrotonic system, dual- 
somatic responses were checked for linearity and somato-dendritic responses were 
checked for reciprocity, prerequisites for passive systems (Major et al.  1994 ). To test 
for linearity, voltage responses to positive and negative current pulses were com-
pared. The point-by-point comparison did not show any signifi cant deviation from 
the identity line (Fig.  19.2c ) irrespective of whether short or long current pulses 
were used. To test for reciprocity, dendritic current injections were performed and 
the resulting somatic voltage responses were compared to the dendritic ones 
evoked by somatic current injections. The points did not deviate from the identity 
line in this test either, indicating that reciprocity held true also for our somato-
dendritic recordings (Fig.  19.2f ).  

19.2.2     Morphological Analysis and Reconstruction 

 During the experiment, recorded cells were fi lled with biocytin and subsequently 
visualised for reconstruction and morphological analysis. Reconstructions were 
only performed of those neurons whose extensive dendritic and axonal arborisation 
was considered complete. 

 On the basis of stable electrophysiological recording conditions and the morpho-
logical criteria, six cells (three dual-soma recordings and three somato-dendritic 
recordings) were selected for further analysis. Full 3-dimensional reconstructions 
were made using a Neurolucida reconstruction system at x63 magnifi cation. First, the 
soma was traced as a closed contour by following its perimeter. Second, dendrites 
and axon were reconstructed as a series of virtual cylinders giving rise to a set of 
interconnected local compartments. Dendritic branches had larger (0.68–2.52 μm) 
and slowly changing diameter, whereas axon collaterals had thin diameter 

Fig. 19.3 (continued) De, average dendritic  R  m ; Ax,  R  m, axon . ( c ) Comparison between  R  m  of basket 
cells and principal cells such as granule cells (GCs), CA3 pyramidal cells (CA3), CA1 pyramidal 
cells (CA1) and layer V neocortical pyramidal cells (LV PyC). ( d ) Somatic ( black ) and dendritic 
( blue ) responses to short somatic ( top left ) or dendritic ( bottom left ) current injections. The differ-
ence between both traces is shown in  grey . Note that in case of somatic injection somatic and 
dendritic responses cross each other at an early time point of the decay phase (6.6 ms), but both 
responses to dendritic injections do not cross but converge at a later time point (50.6 ms). The sum-
mary graph for all 23 somato-dendritic recordings ( right ) shows that this is true for all recordings 
with the dendritic recording site <120 μm from soma. Reproduced with permission from Nörenberg 
et al. ( 2010 )       
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(0.32–1.33 μm at distances of 0–500 μm from soma) and regularly spaced varicosities 
(“boutons”). Dendrites extended either into the molecular layer or the hilus corre-
sponding to apical or basal, respectively. In contrast, the axon arborised extensively 
in and near the granule cell layer. Finally, dendrites and axons could also be distin-
guished on the basis of their branching pattern: The angle between two children 
branches was narrow for dendrites (<90°), whereas for the axon the angle between 
children branches could be up to 180°. Because the diameters of dendrites appeared 
unchanged by fi xation, the reconstructed morphology was not corrected for any 
shrinkage.  

19.2.3     Detailed Biophysical Model of BCs 

 To determine the three cable parameters,  R  m ,  C  m  and  R  i , the reconstructed morphology 
was imported to the simulation environment NEURON (Hines and Carnevale  1997 ; 
Carnevale and Hines  2006 ) and used as the spatial framework for subsequent single-
cell simulations. In the NEURON model, current pulses identical to those in the 
experiment were used to simulate voltage responses of the imported cell assuming 
certain values for  R  m ,  C  m  and  R  i . These values were then systematically changed 
using a random-walk procedure and NEURON’s built-in Brent’s principal axis 
algorithm (Brent  2002 ) in order to best reproduce voltage responses measured in the 
experiments. The best fi t between experimental and simulated traces was quantifi ed 
by the minimal sum of their pointwise squared errors (SSE) for both short and long 
pulses (Fig.  19.3a ). 

 Initially,  R  m ,  C  m  and  R  i  were assumed to be uniform throughout the entire cell 
(data not shown), but no parameter combination was found that reproduced well the 
difference in the decay time course of short and long pulses. Therefore, alternative 
models with non-uniform parameters were tested next. While no substantial improve-
ment in SSE was found for non-uniform  C  m  or  R  i , implementing non- uniform  R  m  
improved the fi t and reduced the SSE markedly. In the non-uniform  R  m  model, three 
domains were defi ned: soma/proximal dendrites (≤120 μm), distal dendrites 
(>120 μm) and axon. On average, the SSE was reduced by 84.7 % in the best-fi t 
non-uniform model in comparison to the uniform one. 

 The best-fi t value for  C  m  was 0.93 μF cm −2 ; for  R  i  it was 172.1 Ω cm. In the fi nal 
non-uniform model,  R  m  was low in proximal dendrites with  R  m, prox  = 7.6 kΩ cm 2  
( x  ≤ 120 μm) and high in distal dendrites with  R  m, dist  = 74.3 kΩ cm 2 . The highest  R  m , 
however, was found to be in the axon ( R  m, axon  = 281.6 kΩ cm 2 ; Fig.  19.3b ; Nörenberg 
et al.  2010 ). 

 This result was in strong contrast with the non-uniformity observed in principal 
cells (Stuart and Spruston  1998 ; Golding et al.  2005 ). To obtain further evidence for 
the gradient of  R  m  along the somato-dendritic axis in BCs, the time course of voltage 
transients evoked by brief current pulses to either the dendritic or the somatic 
recording sites was analysed (Fig.  19.3d ). Theoretically, if brief current pulses are 
injected into compartments with differing  R  m , the voltage transients will decay more 
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rapidly in the low- R  m  region (in our case at the BC soma) than in the high- R  m  region 
(BC distal dendrites). This leads to a crossing of superimposed voltage responses in 
the two recording sites (London et al.  1999 ). Conversely, injecting current into the 
high- R  m  region, local signals will decay more slowly than remote ones; thus both 
traces would not cross but converge to a common level at a later time point. To com-
pare this theory with the experiment, somatic and dendritic voltage transients to short 
current pulses were compared in somato-dendritic recordings from BCs (Fig.  19.3d ). 
For somatic stimulation, somatic transients showed faster decay than dendritic ones 
and the two transients crossed within 10 ms after the pulse (23 somato- dendritic 
recordings) indicating that a lower  R  m  region is located close to the soma. For 
dendritic stimulation 100 μm or more from soma, the two transients did not cross 
but converged to a common level. 

 In summary, this analysis confi rmed a decreasing gradient of  R  m  towards the soma 
in BCs. The value of  R  m  in BCs differed substantially from values in other cell types 
in the hippocampus and the neocortex (Fig.  19.3c ). The average dendritic  R  m  
( R  m, dend  = 14.2 kΩ cm 2 , in the presence of  I  h  channel blocker ZD 7288) was lower in 
BCs than in hippocampal principal cells, including GCs (Schmidt-Hieber et al. 
 2007 ), CA3 (Major et al.  1994 ) and CA1 pyramidal cells (Golding et al.  2005 : 
weighted mean  R  m, dend  = 26 kΩ cm 2 , assuming a distal:proximal membrane area ratio 
of 2:1). Furthermore, BCs showed a gradient of  R  m  which decreases from distal den-
drites towards the perisomatic domain, opposite to that observed in both CA1 and 
neocortical layer V pyramidal cells (Golding et al.  2005 ; Stuart and Spruston  1998 ). 

 In contrast to  R  m , values for both  C  m  and  R  i  in BCs were comparable to those in 
other cell types in the hippocampus and the neocortex. The best-fi t non-uniform 
model revealed a  C  m  of 0.93 μF cm −2 , consistent with previous capacitive measure-
ments of nucleated patch recordings from hippocampal neurons (0.90 μF cm −2 ; 
Gentet et al.  2000 ). Furthermore, similar values of  C  m  were obtained using whole- 
cell recordings of GCs (1.01 μF cm −2 ; Schmidt-Hieber et al.  2007 ), CA3 pyramidal 
neurons (0.75 μF cm −2 ; Major et al.  1994 ) and CA1 pyramidal neurons (1.50 μF cm −2 ; 
Golding et al.  2005 ). The similarity of  C  m  between different cell types quite plausibly 
suggests comparable lipid and protein composition of cellular membranes in these 
distinct cell populations. 

 The mean value of  R  i  in BCs was 172 ± 18.5 Ω cm. First studies of interneuron 
cable properties either failed to determine  R  i  (Chitwood et al.  1999 ) or obtained 
highly variable values (52–484 Ω cm, Thurbon et al.  1998 ). Early estimates of  R  i  in 
hippocampal principal cells were also more variable and higher (160–340 Ω cm, 
Major et al.  1994 ). These values were based on single-electrode recordings and 
were very sensitive to recording conditions, such as electrode parameters affecting 
the fast initial decay of voltage responses. More recent studies using a dual-elec-
trode recording confi guration, in contrast, report values of  R  i  in GCs (194 Ω cm; 
Schmidt- Hieber et al.  2007 ) and CA1 pyramidal neurons (178 Ω cm; Golding et al. 
 2005 ) which are closer to our estimate for BCs but markedly lower for layer 5 neo-
cortical pyramidal neurons (70–100 Ω cm; Stuart and Spruston  1998 ). As  R  i  is highly 
dependent on the density of intracellular organelles as well as cytoplasmic ion con-
centrations, it may vary between different cell types. For example, in BCs the 

19 Role of Non-uniform Dendrite Properties on Input Processing…



322

density of mitochondria is higher due to a higher metabolic rate (Gulyás et al.  2006 ) 
and thus  R  i  could be increased. On the other hand, due to a more positive Cl −  equi-
librium potential in BCs compared to principal neurons (Vida et al.  2006 ), the intra-
cellular Cl −  concentration will be higher and result in a decreased  R  i  because of the 
high mobility of Cl −  (Hille  2001 ). 

 In the following section, we show what effects BC cable parameters have on 
synaptic integration in these cells.  

19.2.4     Integration of Synaptic Inputs in Basket Cells 

 How are the different inputs onto apical versus basal dendrites integrated in BCs? 
How do these passive cable properties contribute to fast signalling? 

 To answer these questions, simulations were run in one single-cell model out 
of our sample 1  using its best-fi t parameters of the non-uniform  R  m  model (Fig.  19.4 ). 
To better reproduce the low input resistance and the physiological conditions in 
BCs, a uniformly distributed  I  h  conductance with 6.8 pS μm −2  was inserted into the 
membrane of the model cell. This value was chosen from the experimental measure-
ment of input resistance of the same BC before ZD 7288 application.

   To study the generation and propagation of synaptic inputs, an excitatory syn-
apse was placed on apical or basal dendrites at different locations corresponding to 
the perforant path input distally, the commissural-associational path input onto 
proximal apical dendrites and the recurrent GC input onto basal dendrites (Fig.  19.4a , 
left). These synapses were modelled as conductance-based excitatory synapses with 
a rise time of 0.2 ms, a decay time constant of 1 ms and a reversal potential of 
−5 mV (Geiger et al.  1997 ). 

 Since the action potential initiation site is close to the soma (Hu et al.  2010 ), it is 
important to know how excitatory postsynaptic potentials (EPSPs) are shaped at the 
synapse and the soma. Figure  19.4a  shows the EPSP amplitude plotted against the 
distance of the synapse that was activated on basal dendrites (negative  x -values) or 
apical dendrites (positive  x -values). Distal synapses evoke somatic EPSPs with 
small amplitude because of strong attenuation along the dendrites, whereas proxi-
mal synapses showed less attenuation and were thus larger (Fig.  19.4a , centre). 
Attenuation of EPSPs was similar for basal and apical dendrites, even though the 
local EPSP amplitude was larger for basal than for apical sites (Fig.  19.4a , right). 

 BCs are well known for their fast and precise timing of their intrinsic and syn-
aptic signalling. To study temporal aspects of dendritic integration with realistic 
specifi c cable parameters, latency, decay time constant and half-duration of EPSPs 
were analysed (Fig.  19.4b ). The latency was calculated between the onset of 
synapse activation and the peak of somatic EPSP waveform, and thus it is a measure 
of propagation velocity. Somatic EPSPs induced by inputs onto basal dendrites 

1   All model BCs can be downloaded from ModelDB (#140789;  http://senselab.med.yale.edu/
modeldb/ ). 
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  Fig. 19.4    Timing and effi cacy in basket cells. ( a ) For each graph one conductance-based synapse 
was placed at different locations (scheme,  left ) along the somato-dendritic axis, with negative 
 x -values for basal and positive ones for apical dendrites. For each synapse, the somatic ( middle ) 
and local ( right ) excitatory postsynaptic potential (EPSP) was analysed and plotted against the 
distance of the synaptic site from soma. ( b ) Latency ( left ), decay time constant  τ  ( middle ) and half-
duration (right) of somatic EPSPs were plotted against the distance of the activated synapse from 
soma. Inset,  left : Representative somatic EPSP waveforms for the activation of basal synapses at 
different distances from soma. ( c ) The ratio between  R  m, prox  and  R  m, dist  was subsequently changed 
from uniform ( black ) to either pyramidal type ( dark blue ) or basket cell type ( light blue ). The half-
duration ( left ) and transfer resistance  Z  tr  ( right ) were then computed for the three different sce-
narios. Inset: Transfer impedance for 100 Hz signals. Reproduced with permission from Nörenberg 
et al. ( 2010 )       
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showed shorter latencies than those in response to apical dendritic inputs, indicating 
faster signal propagation on basal dendrites (116 μm ms −1  vs. 79 μm ms −1  for dis-
tances ≤200 μm; Fig.  19.4b , left). Similarly, the decay of EPSPs as well as somatic 
EPSP half- durations were faster and shorter, respectively, for basal than for apical 
dendrites (Fig.  19.4b , centre and right). 

 In summary, the fastest somatic EPSPs were generated if the synapse is located 
on basal dendrites close to the soma. This difference gives a kinetic advantage to 
feedback over feedforward synapses (see Sect.  19.3.2 ). 

 How do the specifi c cable properties contribute to the fast signalling phenotype 
of BCs? To understand the effect of the  R  m  gradient in BCs on timing, we compared 
the effect of three different scenarios with the same cell morphology keeping the 
total leak conductance constant. Either no gradient was implemented, i.e.  R  m  was 
equal for all dendritic segments ( R  m, prox : R  m, dist  = 1:1), the gradient was either of the 
BC type ( R  m, prox : R  m, dist  = 1:10) or pyramidal cell type ( R  m, prox : R  m, dist  = 10:1). For basal 
and proximal apical dendrites, the BC-type gradient produced faster EPSP half-
durations than the other two, the model with no gradient and the pyramidal cell-type 
model (Fig.  19.4c  left). 

 However, somatic EPSP half-durations for distal apical synapses were heteroge-
neous, independent of which scenario was used. To systematically analyse the rela-
tion between the location of the low- R  m  region and the kinetics of the somatic 
EPSPs, the  R  m  in the model with BC-type gradient was uniformly increased to the 
distal, high  R  m  and the low  R  m  was implemented in a single segment with varying 
location along the somato-dendritic axis. Activating a distal synapse (arrow in 
Fig.  19.4c , centre) the corresponding somatic EPSPs were the fastest if the low- R  m  
region was implemented close to the soma. Thus, a low somatic  R  m  produced the 
maximal EPSP speeding for distal inputs, too. 

 These results indicate that BC cable properties are optimised for EPSP speeding. 
However, a low  R  m  leads to stronger attenuation and thus lower effi cacy of distal 
inputs. To study the effi cacy of synaptic inputs, transfer impedance for fast inputs 
and transfer resistance ( Z  tr ) were computed (Fig.  19.4c , right). The transfer imped-
ance denotes the degree of coupling between a synaptic location on the dendritic 
tree and the soma, i.e. the “effi cacy” of signal transmission (Koch  1999 ). The 
smaller the transfer impedance the larger the attenuation, as it is the case for distal 
inputs, revealed in our analysis (Fig.  19.4c , right). 

 The BC-type non-uniform model led to an increase in  Z  tr  for distal inputs, 
whereas it remained low in the model with no  R  m  gradient (Fig.  19.4c , right). 
Furthermore, compared to the pyramidal cell-type non-uniformity, the BC-type 
model equalises  Z  tr  for all inputs along the apical dendrite. Therefore, interpreting 
 Z  tr  as a measure for effi cacy of intracellular signalling, the high  R  m  on distal den-
drites enhances signal transfer for slow distal inputs in BCs. 

 In summary, the distinct non-uniformity of  R  m  in BCs, in particular the low 
perisomatic  R  m , ensures fast kinetics of somatic EPSPs generated by fast inputs 
albeit at the cost of substantial attenuation for distal inputs. At the same time, the 
high  R  m  on distal dendrites increases the effi cacy for distal inputs at low 
frequencies.   
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19.3      Discussion 

19.3.1     Inhomogeneity of  R  m  in BCs Enhances Transfer 
of Distal Slow Input to the Soma 

 Our results show that BCs exhibit distinct passive membrane properties; in particular 
 R  m  is non-uniform along the somato-dendritic axis, with a high value on the distal 
dendrites and low in the perisomatic region. This fi nding deviates from the uniform 
 R  m  in DG GCs (Schmidt-Hieber et al.  2007 ) and CA3 pyramidal cells (Major et al. 
 1994 ) and is in stark contrast to the gradient observed in CA1 or neocortical pyra-
midal cells (Golding et al.  2005 ; Stuart and Spruston  1998 ). 

 How do these divergent distributions of  R  m  infl uence synaptic integration? We 
showed that in BCs the transfer resistance and thus the somatic response to synaptic 
inputs onto the dendrites are equalised over a wide range of distances (Fig.  19.4c , 
right, light blue). In contrast, if a uniform  R  m  is implemented the difference of trans-
fer resistance between proximal and distal compartments is stronger (Fig.  19.4c , 
right, black). This effect is further enhanced if an opposite gradient of  R  m  is used, 
leading to an electrotonic separation of the distal dendritic tree from the soma as 
for example in the thin and distal apical tufts of pyramidal cell dendrites (London 
et al.  1999 ). Voltage-dependent conductances are required for local nonlinear inte-
gration and transmission of distal synaptic inputs to the soma, as observed in neo-
cortical pyramidal neurons (Larkum et al.  2009 ). Since BCs show only minimal 
voltage- dependent conductances along their dendritic tree (Hu et al.  2010 ), the 
BC-type non-uniformity with high  R  m  in the distal dendrites appears to be optimised 
for the transmission of distal synaptic inputs down to the soma. 

 Consistent with the slow integrative properties of distal apical dendrites, the 
entorhinal input is primarily tuned to the low theta frequency range. Recent experi-
mental evidence further suggests that theta activity from the entorhinal cortex at 
10 Hz activates GCs most effi ciently in the functional DG network (Ewell and Jones 
 2010 ). The proposed mechanism is that lower as well as higher frequencies lead to 
increased inhibition, whereas a frequency around 10 Hz leads to EPSP facilitation, 
effi cient temporal summation and reduced inhibition in GCs. The non- uniform  R  m  
in BCs could support such a mechanism. For low frequencies, inhibition in GCs by 
BCs is enhanced because of the more effi cient signal transfer (see Fig.  19.4c , right) 
at distal apical dendrites. In contrast, at higher frequencies, proximal and basal 
inputs may preferentially recruit BCs and increase inhibition onto GCs.  

19.3.2     Fast Signalling in the Basal Dendrites of BCs 

 BCs are well known for their fast synaptic and intrinsic properties. They have fast 
excitatory (Geiger et al.  1997 ) and inhibitory synaptic inputs (Bartos et al.  2001 ,  2002 ), 
fast membrane time constant (Jonas et al.  2004 ), fast discharge pattern (Pike et al. 
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 2000 ) and fast synaptic output (Bucurenciu et al.  2008 ). These fast properties are 
important for the precise timing of principal discharge and the generation of gamma 
oscillations within the DG (Bartos et al.  2007 ). Our results further demonstrate that 
membrane properties, in particular the  R  m , and the electrotonic structure appear to 
be also optimised to serve fast signalling in the basal dendrites and the perisomatic 
domain of these interneurons. 

 In fact, there are marked differences between apical and basal dendrites as well 
as proximal and distal synapses. These differences are consistent with the divergent 
properties of the synapses themselves: Inputs of the perforant path onto the distal 
apical BC dendrites express slower calcium-impermeable glutamate receptors of 
the AMPA type, whereas mossy fi bre inputs onto the proximal basal BC dendrites 
express fast calcium-permeable AMPA receptors (Sambandan et al.  2010 ). Our 
results further show that EPSPs on apical dendrites propagate slower and will have 
slower kinetics when reaching the soma than those on basal dendrites (Fig.  19.4b ). 
Thus, the recurrent inputs onto the basal dendrites have a kinetic advantage over 
those onto the apical ones. 

 What might be the network impact of this kinetic advantage of the feedback 
circuit? The DG consists of ~10 3 –10 4  times more GCs than BCs, and the divergent 
GC–BC connectivity is smaller than the convergent BC–GC connection (Patton and 
McNaughton  1995 ). As soon as GCs are activated by entorhinal inputs, they can 
recruit BCs in a fast and reliable manner, thereby producing strong feedback inhibi-
tion to the GC population. The strong inhibitory feedback and the lack of recurrent 
excitatory synapses (i.e. GC–GC synapses) make DG circuits a competitive network 
(Rolls and Treves  1998 ). 

 In such a network, sparse activity and a high signal-to-noise ratio can be achieved. 
Specifi cally in the DG, information fl ow could be as follows. The main input, the 
perforant path, is weak and slow and will not activate BCs but rather put them into 
a ready-to-fi re subthreshold state. However, when a small set of highly excited GCs 
discharge, they can recruit BCs. Feedback inhibition will suppress any further activity 
in the GC population, maintaining the sparse activity pattern and a good signal-to- 
noise ratio. Synapses onto the “winner” GC could be potentiated under these condi-
tions, whereas synapses onto suppressed GCs will not undergo potentiation or may 
even show depression. Thus, potentiated GCs can emerge as a cell assembly which 
transmits the given information further to CA3, consistent with a winner-takes- all 
mechanism. 

 The synaptic and dendritic properties of the basal dendrites involved in feedback 
inhibitory loop are central to these mechanisms, because they enable the fast, tem-
porally precise and effi cient activation of BCs by low number of coincident inputs 
(Geiger et al.  1997 ; Nörenberg et al.  2010 ). Furthermore, the GC-to-BC synapse 
might itself undergo potentiation in an associative manner under these conditions 
(Sambandan et al.  2010 ). The precise role of associative plasticity is not known, but 
one can speculate that on the one hand it will help to preserve the balance of excita-
tion and inhibition in the circuit. On the other hand, it may facilitate the emergence 
and stabilise the “winner” cell assembly. 
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 Although main aspects of computational function of the DG are becoming apparent, 
several details of the underlying microcircuit mechanisms are still unknown. In par-
ticular the role of the various types of interneurons, e.g. the distinct operation of 
dendrite-inhibiting versus perisomatic-inhibiting interneurons, remains elusive. 
Our results provide some insights into how the divergent properties of synaptic 
inputs and surface membranes of different subcellular compartments in BCs con-
tribute to microcircuit operation in the DG. However, further systematic analysis of 
synaptic and integrative properties as well as the pattern and timing of activity of the 
various interneuron types will be required to better understand how inhibitory neu-
rons contribute to the control of fl ow and storage of information in the DG and other 
cortical networks.      
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Abstract Synaptic input to neurons is subject to cell-intrinsic filtering. In the 
subthreshold membrane potential range this filtering can have either low-pass or 
resonant characteristics and thereby have a key role in the frequency-dependent 
information flow in neuronal networks. Experimental classification of neurons as 
resonant versus nonresonant is usually based on somatic measurements, which, as 
we demonstrate here, may not accurately reflect neuronal filter properties because 
of nonuniform distributions of active membrane processes. Using cable theory, we 
identify conditions under which dendritic currents, in particular Ih, can generate 
somatic resonances. We find that even a strong dendritic resonance may not be 
detectable somatically in pyramidal cells with a high density of HCN channels in 
the distal parts of the dendrites. In addition, we show that noise-driven membrane 
potential oscillations caused by dendritic resonance can propagate to the soma 
where they can be recorded in the absence of somatic resonance.

20.1  Introduction

Experimental studies have demonstrated in the last decades that dendrites can 
express a large variety of voltage-gated channels (see for example Migliore and 
Shepherd, 2002). Often, these channels are not distributed uniformly across the 
dendrite, but can either be found at specific dendritic locations, or arranged in a 
gradient (Nusser, 2009). This fine-tuned expression of channels suggests a role for 
the spatial distribution of dendritic ion channels in neural computation.
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In this chapter we focus on a subset of conductances that activate at subthreshold 
membrane potentials and are involved in the generation of so-called membrane 
potential resonances (Hutcheon and Yarom, 2000). Subthreshold membrane poten-
tial resonance characterizes the property of certain neurons to respond best, i.e., 
with maximal voltage amplitude, to subthreshold inputs at a specific (nonzero) fre-
quency. Such resonances hence lead to band-pass-like filtering of neuronal inputs 
and are therefore relevant for the frequency-dependent information flow in the brain 
(Gloveli et al., 1997). Here, we specifically aim to understand how the spatial local-
ization of such conductances affects somatic versus dendritic input filtering.

Hyperpolarization-activated, cyclic nucleotide-gated HCN channels (h- channels) 
have been identified as key players in shaping subthreshold resonance in many 
neurons: the current flowing through activated h-channels (designated as Ih) underlies 
membrane potential resonance in various cortical and hippocampal neurons (Hutcheon 
et al., 1996a; Ulrich, 2002; Wang et al., 2006; Nolan et al., 2007; Wahl-Schott and 
Biel, 2009; Zemankovics et al., 2010; Gastrein et al., 2011). It produces a mem-
brane potential resonance as it actively opposes changes in membrane voltage and 
activates slowly relative to the membrane time constant (Hutcheon and Yarom, 2000). 
The biophysical properties of h-channels can give rise to a resonance within the 
theta range (4–12 Hz; see for example Klink and Alonso, 1993; Pike et al., 2000; Hu 
et al., 2002; Wahl-Schott and Biel, 2009), and could thus play a central role in the 
generation of local-field theta oscillations (Nolan et al., 2004; Rotstein et al., 2005).

The h-channels are distributed in a nonuniform fashion across the soma and den-
drites in various types of neurons (Nusser, 2009). A subcellular distribution was first 
described in CA1 pyramidal cells (Magee, 1998). Subsequent work demonstrated that 
the density of h-channels increases up to 60-fold with distance from the soma along 
the apical dendrites of hippocampal and neocortical layer 5 pyramidal cells (Williams 
and Stuart, 2000; Berger et al., 2001; Nusser, 2009; Lörincz et al., 2002). An impor-
tant consequence of this location-dependence is that properties of the membrane 
potential resonance typically also vary across the neuron (Narayanan and 
Johnston, 2007; Hu et al., 2009), and may hence be expected to affect the processing 
of synaptic inputs in a location-dependent manner, which we explore in this chapter.

In addition we consider the occurrence of subthreshold membrane potential 
oscillations (MPOs), which have been associated with membrane potential reso-
nance and are thought to contribute to the generation of various brain rhythms 
(Buzsaki and Draguhn, 2004). Modeling work suggests that self-sustained, highly 
regular MPOs arise from an instability of the membrane’s resting state leading to 
subthreshold limit-cycle oscillations of the membrane potential (Lampl and 
Yarom, 1997; Hutcheon and Yarom, 2000; see also Chap. 21 in this book). 
Alternatively, MPOs can also result from the interplay between resonance-generat-
ing active conductances and noise that arises from, e.g., ion-channel stochasticity 
(Dorval and White, 2005; Erchova et al., 2004). The latter MPOs are noise-driven 
and hence less regular, but show a prominent peak in the voltage power spectrum. 
They can, for example, arise from the h-channel-mediated, resonant filtering of cell-
intrinsic noise. Interestingly, we find that MPOs and resonance may have distinct 
“visibility” in somatic recordings.
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In this chapter we show that neurons can express a strong dendritic resonance that 
filters the somatic response to dendritic inputs without affecting the response to 
somatic inputs. It is important to note that, as a consequence, experimental classifi-
cation of resonant versus nonresonant cells may be misleading when it is exclusively 
based on somatic recordings. We use a simple, analytically tractable model to iden-
tify morphological and physiological parameters that foster a masking of dendritic 
resonance when measuring somatically. In addition, we demonstrate that dendriti-
cally generated MPOs may still propagate to the soma where they can be picked up 
by somatic measurements under circumstances where dendritic resonance itself is 
“invisible” to somatic recordings. Note that this chapter is a modified and abbrevi-
ated version of Zhuchkova et al. (2013).

20.2  Mathematical Analysis of the Impedance  
Amplitude Profiles

In this section we briefly lay the ground for the analytical derivation of dendritic and 
somatic resonance properties in a simple model of a spatially extended neuron with 
h-conductances that are distributed nonuniformly along the dendrite. We consider a 
passive dendritic cable of length l attached to a single compartment representing the 
soma, similar to the Rall model of the motoneuron (Rall, 1964). Unless stated oth-
erwise, the model is extended with a lumped distal dendritic compartment where all 
h-conductances are located (Fig. 20.1a). This simplification gives us an analytically 
treatable model, capturing the steep asymmetry of h-channel density along the 
apical dendrite of pyramidal neurons.
The passive cable equation satisfies 
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Fig. 20.1 Modeling a dendritic neuron with nonuniform membrane properties. (a) The analytically 
treatable model of a pyramidal cell consists of a finite passive cable, with a soma connected at x = 0 
and a distal dendritic segment with h-channels at x = l. (b) Steady-state activation curve of the 
h-current (see Appendix). (c) Resonant dynamics is represented by an LRC-circuit: for perturba-
tions around holding potential VR, the h-current responds as if the total membrane resistance is in 
parallel with two inductive branches
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where V (x,t) is the membrane voltage along the cable, λ is the space constant, τm is 
the membrane time constant, and EL is the leak reversal potential. The soma, repre-
sented by a single isopotential compartment, is attached at x = 0: 
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where Cs is the capacitance and Rs is the membrane resistance of the soma membrane, 
and ra is the axial resistance. We typically consider that the h-conductances are con-
centrated in a lumped compartment at the distal end of the dendritic cable: 
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where Cd is the capacitance and Rd the membrane resistance of the dendritic 
compartment, and Iinj is an arbitrary current input.

The description of the h-current, Ih, is based on recordings from cortical neurons 
(Spain et al., 1987) and consists of a fast and a slow component: 
I g h h V Eh h f s h= + −( . . )( )0 8 0 2 , where gh  is the peak conductance and Eh the reversal 
potential of the h-current. The gating variables hf and hs have steady-state activation 
function h∞(V) (Fig. 20.1b) and evolve according to standard first order differential 
equations with time constants τf = 40 ms and τs = 300 ms (for details see Appendix).

In order to analyze the frequency-dependent input filtering of the neuron model, 
we first linearize the h-current about a holding membrane potential VR (here,  
− 60 mV, see Mauro et al., 1970). The linear system can be described as an LRC 
electric circuit consisting of two phenomenological inductances, three resistances, 
and a capacitance (Fig. 20.1c; see Appendix); for perturbations around VR the h-cur-
rent responds as if the total membrane resistance is in parallel with two inductive 
branches. A passive cell membrane is represented by an RC circuit and always 
shows low-pass filtering, i.e., the membrane impedance decreases with increasing 
frequency. In contrast, the LRC circuit may behave as a band-pass filter and its 
impedance can have a prominent maximum. In this case, the RC part of the circuit 
forms a low-pass filter, while the inductive branches act as high-pass filters. To pro-
duce a band-pass filter, a voltage-gated current should actively oppose changes in 
membrane voltage and activate slowly relative to the membrane time constant 
(Hutcheon and Yarom, 2000). The h-current, considered in this study, satisfies both 
conditions and, hence, can cause resonant behavior.

To quantify the effect of the filtering of inputs at various locations, we compute 
the transfer impedance. It relates the current injected in one location to the voltage 
response that this current elicits in a different location. As the majority of excitatory 
inputs arrives at the dendritic tree, but action potentials are usually generated in the 
axon initial segment close to the soma, the transfer impedance between the distal 
dendritic and the somatic compartment is most interesting for our work (note that a 
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transfer impedance is always identical in both directions). To calculate this transfer 
impedance, we rewrite (20.1) with the boundary conditions given by (20.2) 
and (20.3) in the Fourier domain, and solve for a δ-current impulse at the distal 
dendritic end. Details are given in Appendix. In addition to the transfer impedance, 
we compute the input impedances for somatic and dendritic compartments (current 
injection and response measurement in the same location).

To describe the quality of a band-pass filter we compute the Q-value 
(Koch, 1984; Hutcheon et al., 1996b): the ratio of the impedance amplitude at its 
resonant frequency to the input resistance (i.e., the impedance at zero frequency). If 
Q > 1, the membrane shows resonant dynamics. Note that in experimental studies 
one should generally rely on larger Q-values (usually more than 1.2) to identify 
membrane resonances in order to surpass the intrinsic noise level (Erchova 
et al., 2004). For completeness, we also compare our analytical results with numeri-
cal simulations of the nonlinear conductance-based model using the NEURON 
simulation environment (Hines and Carnevale, 1997; see Appendix). In these simu-
lations we consider ZAP current stimuli or injection of white noise.

20.3  Dendritic Resonance Can be Invisible in a Somatic 
Assessment of Input Impedance

To set the reference frame, we first illustrate the frequency filtering in a neuron 
without dendritic h-conductances. We hence compute the local membrane imped-
ance in a purely passive neuron model as well as in a neuron model with somatic 
(but no dendritic) expression of Ih. The passive neuron behaves as a low-pass filter 
(Fig. 20.2a, blue curve), while the neuron with somatic Ih displays a resonance 
(magenta curve). Both behaviors are not surprising, as long as h-channels are 
located in the soma and one measures the somatic input impedance.

However, a different situation occurs if we analyze the input impedance when the 
h-channels are distributed in pyramidal-like manner, where h-conductances are con-
centrated in the distal dendritic end (Fig. 20.2b). When measuring the input imped-
ance at the distal dendritic end, a strong resonance is seen (Q = 1.36, gray curve). 
However, the input impedance at the soma demonstrates a low pass filter, as if there 
were no resonant current present in the neuron (red curve). Note that we used the 
same number of h-channels in the distal end as in the soma in Fig. 20.2a. The thick 
curves were calculated analytically and coincide with the thin curves obtained from 
numerical simulations of the full nonlinear model stimulated with a ZAP current 
(see Appendix). This shows that the nonlinear models are very well approximated 
by the analytically treatable linear ones. These results also demonstrate that  
a somatic measurement of the input impedance could misleadingly suggest that a 
neuron cannot show band-pass filtering despite dendritic resonance. In principle,  
a distal dendritic location of a resonant current can be ineffective for somatic synap-
tic inputs, which in this scenario remain low-pass filtered, whereas synaptic inputs 
impinging directly on the distal dendrites are locally band-pass filtered.
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20.4  Dendritic Resonance-Induced MPOs Can Propagate  
to the Soma

Next, instead of determining the local response to external inputs arriving at the 
soma or distal dendritic end (i.e., the input impedance), we describe the filtering 
along the dendritic cable (i.e., the transfer impedance). We consider the transfer 
impedance between the distal dendritic end and the soma. We want to relate the 
transfer impedance to the characterization of somatic membrane potential fluctua-
tions. In experiments, one can measure such fluctuations under in vitro or in vivo 
conditions and determine their spectral properties (Dudman and Nolan, 2009). Both 
the spectral properties and the amplitude of membrane potential fluctuations are 
shaped by the presence of h-channels. If there is a prominent peak at a nonzero 
frequency in the voltage power spectrum, one may talk about the presence of MPOs.

As in Sect. 20.3, we again consider the three neuron models: a passive neuron, a 
model with h-channels in the soma, or a model with h-channels in the distal den-
dritic end (Fig. 20.3, parts a, b, and c, respectively). Now, we inject white noise 
(representing synaptic or channel noise) in the distal dendritic segment and measure 
the membrane voltage response at the soma. It is not clear from the voltage traces 
themselves whether the subthreshold somatic voltage has any oscillatory compo-
nent (Fig. 20.3, top traces; see also Dudman and Nolan, 2009). However, the voltage 
power spectra demonstrate maxima in the theta-range (fMPO = 6.58 Hz and fMPO = 
6.84 Hz, when h-channels are in the soma or in the distal end, respectively) for both 
neurons with h-channels, while the passive neuron does not show a preferred fre-
quency. The spectra of the nonlinear models are well approximated by the squared 
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a band- pass filter (magenta). (b) If h-channels are located in the distal dendritic end, resonance is 
found in the dendrite (gray), but is not visible in a somatic recording (red). Thin curves in panels a 
and b give numerical results from the nonlinear model
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transfer impedances (multiplied by the noise power spectrum) calculated for the 
linear  models (Fig. 20.3, black dots versus green curves in bottom panels).

The Q-values of the transfer impedances for current injected at the distal end and 
measured at the soma are 1.00 (passive), 1.25 (somatic Ih), and 1.28 (dendritic Ih) for 
the three models. Although low-pass properties are expected for the passive neuron, 
it is perhaps surprising that the two models with Ih show similar Q-values. In fact, 
the transfer impedances of these two models are very similar because the total num-
ber of h-channels is the same. In accordance with results from Angelo et al. (2007), 
the transfer impedance is hardly affected by the precise distribution of Ih between 
input and output locations. While both distributions have similar somatic imped-
ance profiles when the current is injected at the distal end, this is not the case for 
somatic input (insets in Fig. 20.3). Presence or absence of local resonances strongly 
depends on the h-channel distribution along the neuron.

Comparing Q-values of the somatic input impedance (inset in Fig. 20.3c) and 
transfer impedance in the case of a dendritic neuron with a pyramidal cell-like dis-
tribution of h-conductances, we come to the conclusion that even if the somatic 
resonance is absent, there still can be somatic MPOs resulting from dendritic reso-
nances. Note that both noise sources, synaptic background activity and stochastic 
opening of ion channels, could introduce filtering by themselves (e.g., they could 
have band-pass power spectra, see White et al., 2000), which could modify the 
amplitude and frequency of MPOs.
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Fig. 20.3 MPOs resulting from interplay of dendritic Ih and synaptic/channel noise may propagate 
to the soma. White noise is injected at the distal dendritic end. Voltage traces recorded at the soma 
(solid black curves) and their power spectra (black dots) approximated by squared dendro-somatic 
transfer impedances (green curves) are shown for three models. (a) The neuron is entirely passive. 
(b) h-Channels are only present in the soma. (c) h-Channels are localized in the distal end of the 
dendrite. Insets show local somatic impedances from Fig. 20.2. Even if the somatic resonance is 
invisible, dendritic resonance-induced MPOs can “show up” in somatic measurements
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20.5  Electrotonically Large Neurons Can Show Somatic 
MPOs in the Absence of Somatic Resonance

We next aim to identify the conditions under which the transfer impedance shows 
a resonance while the somatic input impedance does not. Using the model with 
dendritic Ih, we compare Q-values of input impedances (depicted with a red line) 
and transfer impedances (black line) measured at the soma when varying the model 
parameters.

A key parameter determining the presence of a resonance in the somatic input 
impedance is the dendritic length (Fig. 20.4a). Long dendrites display a low-pass 
input impedance, while the transfer impedance shows a strong resonance over the 
entire depicted range. Hence, when the h-conductances are electrotonically remote 
from the soma (here, 1–2 space constants), they are not detectable in the somatic 
input impedance.

In our default parameter set (indicated by vertical dashed lines) the somatic 
input impedance does not show a resonance. This does not change significantly 
when increasing the dendritic diameter (Fig. 20.4b) or soma surface area 
(Fig. 20.4c). Both parameters do decrease the Q-value of the transfer impedance, 
because they decrease the relative contribution of the distal dendritic segment to 
the total membrane surface area.
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Another important parameter controlling the input impedance resonance is the 
axial resistivity, Ra. Decreasing this parameter reveals the dendritic resonance in the 
soma (Fig. 20.4d), since it decreases the electrotonic separation between dendrite 
and soma. It is important to realize that there is a large uncertainty about the actual 
values of axial resistivity for different neurons. For example, Golding et al. (2005) 
found that the axial resistivity of CA1 pyramidal neurons lies within the range of 
139–218 Ω cm, which is approximately twice as high as estimates for cortical layer 
V pyramidal neurons (70–100 Ω cm, see Stuart and Spruston, 1998).

Finally, parameters that affect the resonance directly, such as the density of 
h-channels in the distal dendritic end (Fig. 20.4e) and the cell’s holding potential 
(Fig. 20.4f), also control the Q-values of the transfer impedance. However, it does 
not change the low-pass nature of the somatic input impedance, since these param-
eters do not affect the electrotonic separation between the soma and the active, dis-
tal dendritic segment.

20.6  Discussion

We have used mathematical descriptions of spatially extended neurons to analyze 
the effect of dendritic resonance on dendritic and somatic input. We have found that 
a dendritic resonance may strongly affect the somatic response to dendritic inputs, 
without affecting somatic input, or indeed, without being detectable with somatic 
current clamp recordings.

The extent to which dendritic resonance affects somatic input depends on the 
electrotonic separation of the resonant dendritic segments from the soma. If the 
resonant membrane is close to the soma, the somatic input will activate the resonant 
current, which in turn will affect the somatic response. However, if the resonant 
membrane is more distant, the attenuated somatic input will perhaps activate the reso-
nant currents somewhat, but these currents will be further attenuated on the way 
back to the soma, thereby becoming negligible. In contrast, distal dendritic input 
will be locally filtered by the resonance, and the response, though attenuated, will 
still be detectable at the soma. Indeed, we show that MPOs that are generated by 
distal, resonant dendritic segments may propagate to the soma, leading to a situation 
where such cells, when measured somatically, do exhibit subthreshold MPOs in the 
apparent absence of somatic resonance.

Usually, it is assumed that if subthreshold MPOs can be detected, also a 
subthreshold membrane potential resonance should be present. Our results show, 
however, that depending on the spatial location of the resonating mechanism, MPOs 
can be picked up by somatic recordings while recordings in this compartment do not 
show a pronounced resonant peak in the frequency-dependent membrane imped-
ance. This is the case if the resonating currents are located in electrotonically distant 
compartments, like the distal ends of apical dendrites, such that the local resonance 
is not strongly reflected in the voltage responses to currents injected somatically. 
Noise-driven MPOs of distal dendritic origin (caused either by channel or synaptic 
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noise) may nevertheless still reach the somatic compartment and reflect the local 
dendritic filtering in a peaked voltage power spectrum.

It should be noted that at least two alternative mechanisms exist that lead to a 
scenario where somatic MPOs can occur in the apparent absence of somatic mem-
brane potential resonance. The first mechanism relies not on a spatial, but a 
depolarization- dependent separation of resonance. For example, the M-type potas-
sium current leads to resonance at membrane potentials that are more depolarized 
than the membrane potentials at which the h-current mediated resonance is preva-
lent. If tested at resting potential, a neuron with the M-type current may be classified 
as nonresonant, as the current is not sufficiently activated. Nevertheless, such a cell 
may show pronounced MPOs in the subthreshold range close to threshold. In anal-
ogy to the spatial separation presented in this chapter, the underlying cause of MPOs 
is also a resonance in this case. The resonance, however, may be missed if not mea-
sured at the right level of depolarization. Experimentally, these measurements may 
not always be straightforward because the amplitude of (the time-varying compo-
nent of) the ZAP current has to be small in order to avoid spiking. Such a constella-
tion of depolarization-dependent resonance has been reported in hippocampal CA1 
pyramidal cells (Hu et al., 2009) and has been related to differences in the spiking 
dynamics of these cells—integrator versus resonator—under in vitro and in vivo 
conditions (Prescott et al., 2008).

A second mechanism for MPOs without subthreshold resonance relates to the 
properties of resonance itself. A theoretical study by Richardson et al. (2003) 
showed that even in point neurons there is no equivalence between subthreshold 
resonance and damped oscillations in response to temporary stimulus changes. 
These authors identified a restricted parameter range, for which the subthreshold 
dynamics of a simple neuronal model exhibited damped oscillations despite the 
absence of membrane potential resonance. In this regime, a cell is likely to exhibit 
noise-driven MPOs without showing a resonant peak in its impedance.

It should also be mentioned that while MPOs can occur somatically without 
somatic resonance, as we argue here, the opposite is also possible as outlined by 
Erchova et al. (2004). They show that a resonance may not be sufficient to cause 
MPOs of substantial size. Only if the cell-intrinsic noise is of sufficient size, MPOs 
can become large enough to be detected.

The spatial distribution of resonant currents as analyzed in this chapter has 
important implications for the filtering properties of neurons. A high density of 
h-channels in the distal parts of the dendrite will lead to band-pass-like filtering of 
synaptic inputs impinging on this part of the dendritic tree. Our work implies that 
somatic inputs to the same cell, however, may—depending on the electrotonic sepa-
ration—be low-pass filtered, as the dendritic resonance does not substantially affect 
inputs to the somatic compartment. Thus the spatial segregation of resonance allows 
for differential filtering of inputs arriving at different neuronal sites. In CA1 pyra-
midal cells, inputs at distal dendrites stem from entorhinal projections, while the 
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proximal inputs come from hippocampal CA3 cells. The large Ih gradient of 
h- channels along the dendrites of CA1 pyramidal cells suggests that inputs arriving 
from these two pathways are subject to differential frequency filtering (see also 
Narayanan and Johnston, 2007). Moreover, spike initiation may be subject to a 
third frequency-dependent filter process despite its near-somatic location due to 
local resonant currents that activate at more depolarized levels (Engel et al., 2008; 
Hu et al., 2009; Schreiber et al., 2009). Altogether, spatial separation of resonance 
is likely to contribute to frequency-dependent information routing in the brain.

Previous mathematical work on active dendritic currents has typically considered 
uniform membrane properties, using the so-called quasi-active description of den-
dritic cables (Sabah and Leibovic, 1969; Koch, 1984; Coombes et al., 2007; Remme 
and Rinzel, 2011). An important result comes from the study by Koch (1984), who 
showed that if a small patch of dendritic membrane acts as a band-pass filter, both 
the local input impedance and the transfer impedance of the entire uniform cable 
will have the same response characteristics. Here, to mathematically analyze the 
effects of a strongly polarized distribution of active conductances on the filtering of 
dendritic and somatic input, we extended the Rall model of a passive dendritic neu-
ron (Rall, 1964) by including an active distal dendritic segment. With this compact 
description we showed that one can find a band-pass somatic response to distal 
dendritic stimuli and a low-pass filter response when stimulating proximally. Hence, 
nonuniform ion channel distributions can underlie differential filtering of segregated 
synaptic inputs. In such cases, it may not be sufficient to assess fundamental proper-
ties of neuronal dynamics based on somatic recordings alone.
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 Appendix

 A.1 Model Parameters

Leak-conductance gL = 0.09 mS/cm2, capacitance C = 1 μF/cm2, passive membrane 
time constant tm L= =C g/ 11  ms. Length of passive dendritic cable l = 900 μm, 
length of the active distal end ld = 100 μm, dendritic diameter d = 2 μm, surface area 
of the distal end S dld d= =p 628 mm2, surface area of the soma Ss = 1,257 μm2. 
Axial resistivity Ra = 200 Ω cm, space constant l = =d R g/ ( )4 527a L mm.
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 A.2 h-Channel Kinetics

The equations describing the h-current are based on Spain et al. (1987), see also 
Bernander et al. (1994) and Hutcheon et al. (1996b): 
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Here, peak conductance of the active distal dendritic segment gh = 3 8.  mS/cm2, 
reversal potential Eh = -43  mV, fast time constant τf = 40 ms, and slow time con-
stant τs = 300 ms. The steady-state activation curve h∞(V ) is shown in Fig. 20.1b. 
Note that in the case of an active soma gh = 1 9.  mS/cm2 to ensure the same number 
of h-channels as in the distal dendritic end.

 A.3 Equations Describing the LRC Circuit

When an isopotential compartment containing a leak current and the h-current 
described above is linearized around a holding voltage VR, we obtain the equations 
describing an LRC electric circuit (Fig. 20.1c): 
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 The resistances and inductances are computed as 
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For our default parameters we have R = 4,019 Ω cm2, rf = 3,381 Ω cm2, rs = 13,522 Ω cm2, 
Lf = 135 H cm2, and Ls = 4,057 H cm2.

 A.4 Calculation of the Local and Transfer Impedances

The impedance amplitude profile of the spatially extended neuron equals the abso-
lute value of the (complex-valued) transfer function (i.e., the impulse response func-
tion in the frequency domain). Here, we provide the transfer functions for the 
passive cable with a passive soma attached at x = 0 and the active distal dendritic 
segment at x = l. The current is injected at the distal dendritic end. The passive cable 
equation (20.1) can be expressed in the frequency domain as 
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with ω = 2π f (where frequency f is in Hz) and with propagation constant 
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The boundary conditions defined by (20.2) and (20.3) with an impulse current Iinj = 
δ(t) in the distal dendritic segment can be written in the frequency domain as 
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where for the passive soma g w ws s L( ) = +( )S i C g  and for the active dendritic  
segment g w w w wd d L h R f f s s( ) ( ) ( / ( )) ( / ( ))= + + + + + +( )∞S i C g g h V r i L r i L1 1 . By 
solving (20.4) with boundary conditions given by (20.5) and (20.6) we obtain the 
transfer function of the neuron model 

 
 G x V x A x B x( , ) ( , ) cosh( ) sinh( ),w w g g= = +  (20.7)

where coefficient A A K= =( )w g  and B B r K= =( )w ga s , with 
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and γ = γ(ω), γs = γs(ω), γd = γd(ω). To compute the dendritic input impedance or the 
transfer impedance between the distal dendritic end and the soma one must let x = l 
or x = 0 in (20.7), respectively. When the current input is injected somatically we 
have A l r l K= +( cosh( ) sinh( ))g g g ga d  and B r l l K= − +( cosh( ) sinh( ))a dg g g g  and 
one can compute the somatic input impedance by letting x = 0. Input and transfer 
impedances for the neuron with active soma and/or passive distal dendritic segment 
can be obtained by setting γs and γd appropriately.
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 A.5 Computation of the Impedances from the Simulations

To compute somatic and dendritic input impedances, we inject a so-called ZAP 
current IZAP(t) = I0sin(2π f(t)t), with frequency f t f t T( ) /= m 2 , input amplitude I0 = 
0.01 nA, maximum frequency fm = 100 Hz, and stimulus length T = 150 s. At the 
same location we measure the membrane potential V (t) and compute the impedance 
as G f V t I t( ) ( ( )) / ( ( ))= FFT FFT ZAP

, where FFT is the fast Fourier transform. To 
compute transfer impedances and power spectra, we inject a white noise current 
(with a duration of 100 s and standard deviation of 0.1 nA) at the distal dendritic end 
and measure the somatic voltage V (t). Impedance amplitude profile is determined 
as | ( ) | ( ( )) / ( ( ))G f V t I t= FFT FFT noise .
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Abstract Membrane potential oscillations are ubiquitous in neurons and have been 
proposed to underly important neuronal computations. As a paradigmatic example, 
the periodic spatial tuning of stellate cells from medial entorhinal cortex neurons is 
thought to be generated by the interference patterns arising from multiple, indepen-
dent dendritic oscillators, each controlled by direction-selective input. We analyzed 
how multiple dendritic oscillators embedded in the same neuron integrate inputs 
separately and determine somatic membrane voltage jointly. We found that the 
interaction of dendritic oscillations leads to phase locking, which sets an upper limit 
on the time scale for independent input integration. Factors that increase this time 
scale also decrease the influence that the oscillations exert on somatic voltage. In 
stellate cells, inter-dendritic coupling dominates and causes these cells to act as 
single oscillators. Our results suggest a fundamental trade-off between local and 
global processing in dendritic trees integrating ongoing signals.
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21.1  Introduction

Dendritic trees possess a wide variety of voltage-dependent processes (Stuart 
et al., 2007) that render them into sophisticated computing devices (Poirazi 
et al., 2003). Many studies characterized how synaptic inputs are mapped into 
dendritic membrane potentials, for example into dendritic spikes (Golding and 
Spruston, 1998), and how the local membrane potential signals from several such 
dendritic units then jointly determine the somatic membrane potential and ulti-
mately the action potential output of cells (Rudolph and Destexhe, 2003). Two key 
features of neuronal computation emerged from these studies. First, the dendritic 
tree can consist of several functional compartments, each processing its inputs 
locally and largely independently from the other compartments (“dendritic indepen-
dence”, Polsky et al., 2004). Second, the soma integrates the outputs of these com-
partments in a way that even distant compartments exert an influence on it (“dendritic 
democracy,” Magee and Cook, 2000; Häusser, 2001).

The issue of dendritic independence and democracy lies at the heart of a promi-
nent theory for the spatial tuning of neurons in the entorhinal cortex. “Grid cells” of 
the rat medial entorhinal cortex respond by forming characteristic grid patterns 
when the animal is navigating through its environment (Hafting et al., 2005; Sargolini 
et al., 2006). These hexagonal grid patterns remain stable over long periods of time 
and even persist in the dark for as long as 30 min (Hafting et al., 2005). This per-
sistence is a signature of a path integration mechanism which computes the spatial 
position of the animal by the continuous integration of self-motion-generated cues 
(McNaughton et al., 2006). Intrinsic membrane potential oscillations have been 
proposed to be particularly well suited for integrating synaptic inputs on long time 
scales (Huhn et al., 2005), and thus to play a key role in path integration (Lengyel 
et al., 2003). This is because the phase of an oscillator naturally integrates inputs 
modulating its frequency. Consequently, a dominant theory to provide a mech-
anistic explanation for the firing pattern of grid cells posits the existence of several 
independent oscillatory units in the dendritic tree—each integrating the animal’s 
velocity along a different direction—and a “democratic” summation of the signals 
contributed by these dendritic oscillations at the soma (O’Keefe and 
Burgess, 2005; Burgess et al., 2007; Hasselmo, 2007).

The “multiple oscillator” theory of grid cells is supported by several lines of 
evidence. First, entorhinal spiny stellate cells show subthreshold membrane poten-
tial oscillations (Alonso and Llinás, 1989; Alonso and Klink, 1993), which appear 
to result from the interaction between a persistent sodium current and the 
hyperpolarization- activated inward current (Alonso and Llinás, 1989; Dickson 
et al., 2000; Fransén et al., 2004; Rotstein et al., 2006). Second, on top of the spatial 
tuning, the theory can also explain the dynamics of the phase relationship between 
the grid cell firings and the local field potential (theta) oscillations as the animal 
passes through each peak of the grid field (Hafting et al., 2008). Finally, the theory 
can account for the correlation between the intrinsic oscillator frequencies and the 
spacing and size of grid fields (Giocomo et al., 2007). However, while holding 
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considerable explanatory power, the multiple oscillator theory does not consider 
realistic membrane potential dynamics. Critically, it relies on the assumption that 
dendritic independence and democracy can coexist on long time scales in an oscil-
latory regime. Therefore, understanding the requirements for these two features to 
emerge in oscillating dendrites would offer important insights into the mechanisms 
underlying grid field formation, as well as into the nature of ongoing dendritic com-
putations in general.

In this chapter, we summarize and extend our study (Remme et al., 2010); see the 
original study for further details that have been omitted from this chapter.

21.2  Results

21.2.1  The Multiple Dendritic Oscillators Model of Grid Cells

We implemented the multiple oscillator model of grid cells (O’Keefe and 
Burgess, 2005; Burgess et al., 2007; Hasselmo, 2007) using three dendritic oscilla-
tors (Fig. 21.1a). The frequency of each of these oscillators is modulated by external 
input that reflects the movement speed s(t) of the animal in a particular direction 
ϕ(t). The input to oscillator i has a preferred direction ϕi (differing by multiples of 
120º for the three oscillators) and is linearly dependent on speed, such that the input 
to oscillator i is proportional to s(t)cos(ϕ(t) −ϕi). In turn, the oscillator frequency is 
linearly dependent on the input current. Hence, the phase ϑi of oscillator i evolves as 

a b c

Fig. 21.1 Independent dendritic processing of velocity signals yields stable grid-fields. (a) 
Schematic of a neuron implementing the interference model showing the soma (black) and three 
dendritic oscillators (red, blue, green). The oscillator frequencies are modulated by velocity-tuned 
external input. The preferred direction of the external input to the three oscillators differs by mul-
tiples of 120º (as indicated by the panels next to each oscillator). (b) Membrane potentials of the 
three dendritic oscillators sum at the soma, thereby producing somatic voltage interference patterns. 
Spikes (red dots) are determined by threshold crossings. (c) Example of a 10-min simulated trajec-
tory of a rat where the velocity-tuned inputs control the oscillator frequencies of the model in panel 
a: spike output (red dots) is organized in a hexagonal grid pattern. Modified from Remme 
et al. (2010)
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with oscillator frequency w p= 2 / T  and period T = 0.125 s, and constant β > 0. 
Somatic voltage is simply determined by the sum of the dendritic voltages: 

Vsoma ( ) (cos cos cos )t = + +
1

3 1 2 3J J J , i.e., each oscillator contributes equally to the 

somatic response. Variation over time of the dendritic oscillator frequencies lead to 
interference patterns in the somatic membrane potential; spikes are generated when 
the somatic membrane potential crosses a threshold (Fig. 21.1b). Using this model, 
we simulated the activity of a grid cell as an animal explored an environment, and 
reproduced the hexagonal grid-like firing rate fields of entorhinal cells (Fig. 21.1c). 
Thus, independent dendritic processing of continuous input signals in the idealized 
multiple oscillator model could produce stable grid field patterns.

21.2.2  A Trade-Off Between Independence and Democracy  
for Dendritic Oscillators

One of the key assumptions in the multiple oscillator model is that the interaction 
between the dendritic oscillators and somatic voltage is unidirectional (arrows in 
Fig. 21.1a): somatic voltage does not affect the oscillators, thus ensuring their per-
fect independence. However, within a real neuron, electrotonic coupling pre-
vents dendritic compartments from being completely independent. The coupling 
results from the voltage gradient between the soma and the oscillators, and it is 
bidirectional: intracellular currents are not only propagated from the dendrites to the 
soma, but also propagate from the soma back to the dendrites. These interdendritic 
currents will affect the oscillator frequencies in the same way as the velocity-tuned 
external input currents, and could thereby interfere with correct path integration 
and, hence, with the formation of stable grid fields. In fact, we have previously 
demonstrated (Remme et al., 2009) that the periodic interactions between dendritic 
oscillators tend to lead to fixed phase differences between the oscillators. The 
strength of the interactions between the dendritic oscillators determines on what 
time scale this phase locking takes place and, therefore, whether this interaction still 
allows for stable grid formation on the time scale of minutes. We therefore formu-
lated a mathematical theory that established a direct relationship between the time 
scale of phase locking of dendritic oscillations and the biophysical properties of the 
dendritic membrane to assess whether a biophysically realistic time scale of phase 
locking is sufficient for maintaining stable grid fields.

In order to estimate the time scale on which the dendritic oscillators phase lock, 
we mathematically analyzed the interactions between two sinusoidal oscillators 
connected by a segment of membrane that itself did not generate intrinsic oscilla-
tions (Fig. 21.2a, top panel; see Appendix). The phase difference between two oscil-
lators that are not perturbed by external input exponentially decays to zero with time 
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constant τlock (Fig. 21.2a, bottom panel). Our analysis focussed on deriving τlock to 
determine how it can be slowed down to the time scale of minutes. The electrotonic 
separation, L, of the dendritic oscillators is the most obvious parameter to affect 
their independence: the larger it is, the less the oscillators should influence each 
other. This intuition was confirmed by our analysis (Fig. 21.2b, top panel), although 
τlock still remained in the sub-second range for realistic values of L (up to 3 length 
constants). Importantly, increasing electrotonic separation also resulted in a decreasing 
effect of the dendritic oscillators on somatic voltage, Vsoma  (Fig. 21.2b, bottom 
panel). This trade-off between the independence (large phase locking time constant) 
and democracy (strong signal propagation to the soma) of dendritic oscillations is 
easily seen when plotting Vsoma  against τlock for different lengths of the connecting 
cable (Fig. 21.2c, blue curve).

In order for the dendritic tree to be able to realize more than one functional oscil-
latory integrator, as required by the multiple oscillator model of grid cells, democ-
racy and independence must coexist. Thus, we analyzed the effects of various 
biophysical properties of dendritic membrane potential dynamics on τlock and Vsoma  
to see what conditions may loosen the democracy-independence trade-off. We 
found that changing most of the relevant parameters characterizing dendritic 

a b c

Fig. 21.2 Analysis of dendritic oscillator interactions shows a trade-off between the speed of den-
dritic phase locking and somatic signal amplitude. (a) Two dendritic oscillators with voltages V1 

(green) and V2 (blue), oscillation amplitude Vdend  and phase difference ϕ are coupled via a cable 

with electrotonic length L. The “somatic” voltage (magenta) at halfway point of the cable, Vsoma, 

has maximal oscillation amplitude Vsoma . Bottom panel illustrates the phase locking of coupled 

dendritic oscillators. In this example, where L = 3 and the oscillator period T = 125 ms, the phase 
difference ϕ approaches 0 with time constant τlock ≈ 130 ms as indicated by the exponential fit 
(dashed line). (b) Phase locking time constant τlock (top) increases, while the somatic oscillation 
amplitude Vsoma  (bottom) decreases as a function of L. (c) Trade-off between phase locking time 
constant τlock and somatic oscillation amplitude Vsoma  persists across biophysical parameter 

ranges. Curves show the relationship between τlock and Vsoma  when each of the parameters indi-

cated is varied over a realistic range while keeping the other parameters at their standard values. 

Reproduced from Remme et al. (2010) with permission from Elsevier

21 Dendritic Democracy Versus Independence



352

membrane potential dynamics (dendritic diameter, conductance load, oscillator 
amplitude) resulted in a trade-off between dendritic democracy and independence 
for oscillating dendrites (Fig. 21.2c). Moreover, even at the independence end of the 
trade- off, the phase locking time constant fell far below 1 s for biophysically realiz-
able values of the parameters.

Although the independence-democracy trade-off proved to be robust to changes 
in most of the properties of the dendrites, we identified one possibility for alleviat-
ing it. Making the dendritic oscillators insensitive to inputs by increasing the total 
amount of current that generated the oscillations naturally made them less sensitive 
to the somato-dendritic currents that caused their coupling. There were two ways in 
which this could be achieved. First, the surface area of the dendritic oscillators 
could be increased. Second, the magnitude of the individual currents generating the 
oscillation could be increased such that the amplitude of the oscillator phase 
response curve (PRC), describing the amount of phase shift obtained by unit exter-
nal perturbations (see Appendix), was decreased. The effects of these changes were 
formally equivalent: both increased τlock without affecting Vsoma  (Fig. 21.2c, red 
line). Nevertheless, τlock still remained well below 1 s in a realistic range of these 
parameters. Further analyses showed that increasing τlock to an extent that allows for 
stable grid fields on a time scale of many minutes would require membrane proper-
ties that lie far outside the physiological range (results not shown). Moreover, an 
increased insensitivity of the oscillators to the coupling currents also makes them 
increasingly insensitive to synaptic inputs since the response to such inputs is also 
determined by the PRC amplitude and the oscillator surface area.

21.2.3  Simulations of a Reconstructed Stellate Cell Show 
Dendritic Phase Locking and Failure of Grid-Field 
Formation

Our mathematical theory pointed to a general trade-off between independence and 
democracy for oscillating dendrites and made specific predictions about how bio-
physical properties of the dendritic tree influence the phase locking behavior of 
dendritic oscillators and their effects on somatic voltage. We next constructed a 
detailed biophysical model of stellate cells—the cell type believed to produce the 
grid field responses—to test whether successful path integration in such cells is 
limited by the lack of independence of the dendritic oscillators. In this model we 
set all parameters to values that allowed for the most independence within a real-
istic range.

The subthreshold oscillations were generated by an interaction between a persis-
tent sodium current, INaP, and a hyperpolarization-activated cation current, Ih (Dickson 
et al., 2000). These oscillator currents were moved to the distal dendritic tips (>150 μm 
from the soma) to promote independence of the oscillators (Fig. 21.3a). We first deter-
mined the electrotonic structure of the stellate cell model, computing the distribution 
of electrotonic distances between all dendritic oscillators. The average electrotonic 
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distance between all pairs was found to be ∼2 (Fig. 21.3b). Our theoretical analysis 
predicted fast coupling in this range of electrotonic distances (see Fig. 21.2b).

We next attempted to generate grid field activity with the compartmental model 
in the same way as in the idealized oscillator interference model (Fig. 21.1). We 
subdivided the dendritic tree into three groups of dendrites (see Fig. 21.3a) that 
received external input with preferred head directions differing by multiples of 120º. 
Despite setting up the simulation in favor of dendritic independence, we found it to 
be impossible to obtain grid field activity (Fig. 21.3c, top). The oscillating dendritic 
segments locked so strongly that the cell always showed global synchronized mem-
brane potential oscillations. Tracking the membrane potential during three represen-
tative 1-s segments of the exploration episode revealed complete synchronization of 
the soma and the oscillating segments in the dendrites (Fig. 21.3c, bottom).

These results demonstrate that even with optimistic estimates of neuronal prop-
erties for independence, the coupling between dendritic segments is too strong to 
maintain several independent oscillators within one stellate cell. As a consequence, 
these cells act as single oscillators.

21.2.4  Alleviating the Trade-Off Through Large Dendritic 
Conduction Delays and High Oscillation Frequencies

Since the above analysis focussed on the multiple oscillator model of grid field 
formation by stellate cells, the results were restricted to the relevant parameter 
range regarding electrotonic size of the cell and oscillation frequency (i.e., within 
the theta range). We next explore the phase locking dynamics of dendritic 

a b c

Fig. 21.3 Simulations of stellate cell activity with a detailed compartmental model with realistic 
electrotonic scales show strong dendritic coupling. (a) Stellate cell model with oscillations- 
generating conductances in distal dendritic segments ( >150 μm from soma) are grouped into three 
clusters (red, blue, green) each of which receives external input with a different preferred direction. 
(b) Electrotonic distances between all pairs of dendritic oscillators. (c) Activity of the stellate cell 
during a simulated 5-min exploration. Top, trajectory with threshold crossings (red dots). Bottom 
traces show membrane potentials for three indicated 1-s trajectories (a,b,c). The colors of the 
traces each correspond to one dendrite from the three clusters of oscillators in panel a. Black trace 
shows somatic voltage. Reproduced from Remme et al. (2010) with permission from Elsevier
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oscillators when considering a larger range of both electrotonic length L and the 
oscillation frequency (Fig. 21.4).

In the parameter regime we explored above, dendritic oscillators always phase 
lock with zero phase difference. However, other stable phase-locked solutions are 
possible, depending on the properties of the oscillators and the connecting dendritic 
cables. Using the mathematical analysis of two cable-coupled dendritic oscillators 
(see Fig. 21.2) we can also analyze the stable phase-locked solution (see Appendix). 
The sinusoidal oscillations can either synchronize or lock in anti-phase (Fig. 21.4a). 
Which of the two states is stable has great consequences for the membrane potential 
fluctuations measured in between the dendritic oscillators. When considering that 
the soma is located halfway between the oscillators, oscillators that are locked in- 
phase will lead to (attenuated) somatic oscillations, while dendritic oscillations that 
lock in anti-phase will be invisible at the soma.

Coupling of the oscillators via a dendritic cable introduces conduction delays. 
The stable phase-locked solution is uniquely determined by this cable-induced phase 
shift, ξ. When the absolute dendritic phase shift is smaller than π ∕2, the oscillators 
will synchronize. However, when it is larger than π ∕2, the in-phase state is unstable 

a b c

Fig. 21.4 The stable phase-locked solution of dendritic oscillators is controlled by their electro-
tonic separation and oscillation frequency. (a) The oscillators with voltage trajectories V1(t) and 
V2(t) determine the membrane potential at the ends of a cable with electrotonic length L. When the 
oscillators are synchronized (in-phase, left traces), a membrane potential oscillation is also visible 
halfway along the cable (Vsoma). When the oscillators lock in anti-phase (right traces), no oscilla-
tion is visible at the soma. (b) Top panel, the value of phase shift ξ determines where the in-phase 
(white area) or anti-phase solution (gray area) is stable. It is plotted as a function of the electro-
tonic distance L between the oscillators. The cable is passive (black) or includes a regenerative 
(red) or restorative (cyan) current. Bottom panel, the logarithm of the phase locking time constant 
τlock (arbitrary units) increases with L and shows peaks for values of L where the stable phase- 
locked solution switches from in-phase to anti-phase or vice versa. The oscillator frequency is 
8 Hz. (c) As in panels b, but showing ξ and the logarithm of τlock as a function of the oscillation 
frequency. The electrotonic distance between the oscillators is L = 2
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and the oscillators will lock in anti-phase instead (Fig. 21.4b, top panel). The phase 
shift naturally increases with the electrotonic separation L between the oscillators. 
For large values of L, the phase shift ξ increases linearly with L (see Remme 
et al., 2009). When oscillators with an intrinsic frequency of 8 Hz are coupled 
through a passive dendrite, the transition to anti-phase locking occurs at L ∼ 5 (black 
curve). However, the dendritic delays can be strongly affected by voltage-dependent 
membrane  currents that are active in the subthreshold range (Remme and 
Rinzel, 2011). Such currents can be divided into two classes: restorative currents 
(e.g., the hyperpolarization-activated h-type current) that actively counteract changes 
of the membrane potential, and regenerative currents (e.g., the persistent sodium cur-
rent) that amplify membrane potential changes. Restorative currents decrease den-
dritic delays, whereas regenerative currents increase delays. As a consequence, the 
transition from in-phase to anti-phase locking occurs at a much smaller value of L ( 
∼3.2) in dendrites with regenerative currents (red curve) than in passive dendrites. In 
contrast, a restorative current (cyan curve) can stabilize the in- phase locking.

Interestingly, the transition from in-phase to anti-phase locking also has great 
consequences for the phase locking time constant (Fig. 21.4b, bottom panel). In the 
cable with a restorative current (which does not show such transitions) the time 
constant simply increases exponentially with L. However, the time constant goes to 
infinity at parameter values where the stability transitions occur (e.g., at L ∼ 3.2 in 
the regenerative cable).

The oscillation frequency is also a key parameter determining the transitions 
between in-phase and anti-phase locking, since it is really the dendritic delay rela-
tive to the oscillation period that is the critical factor. Hence, when increasing the 
frequency of the dendritic oscillators, a critical value will be reached where a transi-
tion in the stability of the phase-locked solution occurs (Fig. 21.4c, top panel). 
Consequently, the phase locking time constant can become very large at realistic 
values of L when the oscillation frequency is much higher than the theta frequency 
that we considered for the grid cell model (Fig. 21.4c, bottom panel). Note that the 
oscillation frequency will also affect the dynamics of the voltage-dependent den-
dritic currents, which will modulate the oscillator interactions less and less as the 
frequency increases, such that active dendritic cables behave as passive ones for 
high frequencies.

In summary, dendritic conduction delays that are sufficiently large relative to the 
oscillation period can lead to anti-phase locking of dendritic oscillators. The den-
dritic oscillators can be independent at the transition point, thereby avoiding the 
trade-off between dendritic democracy and independence.

21.3  Discussion

We report mathematical analyses and numerical simulations of interacting den-
dritic oscillations. Intrinsic subthreshold membrane potential oscillations have been 
demonstrated in various types of neurons: in stellate cells from entorhinal cortex 
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layer 2 (Alonso and Llinás, 1989; Alonso and Klink, 1993), neurons from the fron-
tal cortex (Gutfreund et al., 1995), neurons from the amygdala complex (Pape 
et al., 1998; Sanhueza and Bacigalupo, 2005), and pyramidal cells and interneurons 
from the hippocampal CA1 area (Leung and Yim, 1991; Chapman and 
Lacaille, 1999). Our results suggest that in such an oscillatory regime, there is a 
trade-off between dendritic “democracy” (Häusser, 2001), expressing how much 
each oscillator can influence the somatic membrane potential and hence the spiking 
output of the cell, and dendritic “independence,” that is how much each oscillator 
can integrate its inputs independently of the other oscillators. This is because the 
same electrotonic coupling that is necessary for dendritic signals to reach the soma 
also promotes phase locking of dendritic oscillations.

We find that the time constant of phase locking of dendritic oscillators in bio-
physically realistic regimes can be on the order of hundreds of milliseconds. This 
defines two different modes of operation for multiple dendritic oscillations. On time 
scales shorter than that of phase locking, inputs are integrated in each oscillator 
locally and independently, and somatic firing is determined by their joint effect. 
Importantly, this integration can still take place on a time scale that is considerably 
longer than that suggested simply by membrane time constants. Once phase locking 
occurs, it causes cells to act as single oscillators. In this mode, synaptic inputs 
throughout the dendritic tree are integrated in the phase of this single “global” oscil-
lator, which in turn determines somatic firing. Thus, the main difference between 
local (shorter time scale) and global (longer time scale) dendritic integration of 
inputs is in the way dendritic nonlinearities and summation act on incoming signals. 
This difference closely parallels that found between traditional (McCulloch and Pit
ts, 1943; Rosenblatt, 1958; Hopfield, 1982; Rumelhart and McClelland, 1986) and 
more recent accounts (Poirazi et al., 2003) of near instantaneous dendritic process-
ing, treating the dendritic tree as a single global computational unit, or as a “net-
work” of multiple local computational units, respectively (Fig. 21.5).

Our results also predict neuronal morphologies that promote independence of 
dendritic oscillators by slowing down their phase locking. First, a key parameter is 
the electrotonic distance between the dendritic oscillators, typically related to the 
spatial extent of the neuron. The larger the electrotonic separation between the 
oscillators, the weaker their interactions and the slower the phase locking. Second, 
when the oscillation generating currents are present over a large stretch of dendritic 
membrane, more current will be needed to shift the phase of this “large” oscillator 
and, hence, such an oscillator will phase lock more slowly than a “small” oscillator 
(i.e., having weak currents or small membrane area). Tufted dendritic terminal 
branches seem particularly well suited for creating large but electrotonically sepa-
rated oscillators. This is because each tuft can contain multiple branches, thus 
creating an oscillator with a large total surface area, but different tufts can be placed 
at the ends of different dendrites thus ensuring the separation of their oscillators. 
Certain heavily branching cells, such as Purkinje neurons, could exploit such an 
arrangement to slow down phase locking of dendritic oscillations.
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Fig. 21.5 Near-instantaneous versus integrative modes of dendritic operation. During near-instan-
taneous processing of inputs the net signal to the soma depends only on the current level of the 
inputs driving different dendritic subunits. Classical neural network models assumed that dendritic 
signals are first summed globally and then passed through a nonlinearity (blue) that determines the 
firing rate of the cell (left; McCulloch and Pitts, 1943). More recent results indicate that dendritic 
subunits perform local nonlinear operations before their signals are summed at the soma (right; 
Poirazi et al., 2003). When inputs are integrated by dendritic oscillations, somatic voltage depends 
on the history of the inputs. In particular, the information in the inputs is integrated by the oscilla-
tion phase. Beyond the time scale on which the dendritic oscillators phase lock, the dendritic tree 
acts as a single global oscillator integrating all inputs in its phase (red, left). The somatic mem-
brane potential is a (sinusoid-like) nonlinear function of the phase of this global oscillator (green). 
Below the time scale of phase locking, each dendritic subunit integrates its inputs locally before 
the dendritic signals are summed at the soma (right). Reproduced from Remme et al. (2010) with 
permission from Elsevier

Our results showed that besides the morphology, also the oscillation frequency is 
a central parameter determining the phase locking dynamics of dendritic oscillators. 
Not only do higher oscillation frequencies undergo stronger attenuation, therefore 
leading to slower phase locking, but the oscillation frequency is also important for 
the stable phase difference that the oscillators move towards. For low frequencies, 
phase locking typically leads to synchronization of the oscillators, but as oscillation 
frequency increases, a point will be reached where the synchronized state loses 
stability and the oscillators lock in anti-phase. When oscillators reach this state, the 
oscillation amplitude will strongly decrease along the dendrites connecting the 
oscillators, and even be invisible exactly halfway between the oscillators. 
Importantly, at the oscillation frequency where the stability of the phase-locked 
state switches, the phase locking time constant becomes very large, yielding a pos-
sibility for the coexistence of dendritic independence and democracy.

The oscillation frequency and electrotonic structure of cortical stellate cells—the 
cell type thought to produce the grid field activity—are quite unlike that predicted 
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to be ideal for dendritic independence. This is because the stellate cell oscillates at 
low frequencies ( ∼8 Hz) and is electrotonically compact, having 4–6 primary den-
drites that do not branch extensively (Klink and Alonso, 1997), and tapering of the 
dendrites further supports strong coupling of dendritic voltages to the soma (Rall 
and Rinzel, 1973; Rinzel and Rall, 1974; Carnevale and Johnston, 1982). Although 
inhibitory inputs impinging on the dendrite can increase the effective membrane 
conductance through their shunting effects, our results show that the slowing-down 
of phase locking brought about by such shunting is limited (Fig. 21.2c). Indeed, in a 
compartmental model of a spiny stellate cell, we found that with realistic biophysi-
cal properties the interdendritic coupling was so strong that rather than supporting 
independent dendritic oscillations, the cell acted as a single oscillator (Fig. 21.3), 
even when strong shunting effects were taken into account. These results suggest 
that at least certain network mechanisms need to be taken into account for explain-
ing the emergence of grid fields (for review see Giocomo et al., 2011). Recent in 
vivo intracellular recordings from entorhinal cortex cells in navigating mice (in 
virtual-reality environments) have demonstrated slow, large depolarizing ramps 
during traversals of firing fields, supporting attractor network mechanisms rather 
than oscillator interference mechanisms to underly the spatial tuning of these cells 
(Schmidt- Hieber and Häusser, 2013; Domnisoru et al., 2013).

The dendritic democracy-independence trade-off we identified is unique to 
ongoing dendritic processing, such as that achieved by oscillations: if inputs are 
integrated only on short time scales, then the dendritic processing is essentially over 
by the time different dendritic branches would start interacting. Previous studies of 
dendritic integration were focusing on such near-instantaneous transformations of 
dendritic inputs into somatic outputs and thus did not address this issue (Poirazi 
et al., 2003). More generally, the contributions of active ionic conductances to den-
dritic processing have almost exclusively been studied in the context of near- 
instantaneous processing (Wei et al., 2001; Gasparini et al., 2004; Losonczy and 
Magee, 2006; Nevian et al., 2007; Larkum et al., 2009). The analysis presented here 
represents the first step towards understanding dendritic computation in another and 
hitherto scarcely studied dynamical regime in which active processes may play a 
crucial role, that of ongoing dendritic oscillations, and identifies computationally 
relevant features that are unique to this mode of operation.

 Appendix

 A.1  Derivation of Phase Locking Time Constant and Stable 
Phase-Locked Solution

We performed a mathematical analysis to determine the dynamics of two subthresh-
old dendritic oscillators. We determined how fast phase locking of dendritic oscilla-
tors occurs as a function of the oscillator properties and the properties of the 
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membrane segment connecting the oscillators, and what is the phase difference 
ϕ between the oscillators in the stable phase-locked solution. Consider a system of 
two identical oscillators with natural frequency f (in Hz) that are coupled via a cable 
of length l (in cm), with oscillator i = 1,2 located at x = 0 and x = l, respectively (see 
Figs. 21.2a and 21.4a). The membrane potential Vi(t) (in millivolts) of each den-
dritic oscillator is described by a sinusoidal function: 

 V t V t Vi i( ) cos( ( )) ,= + +dend Rw q  (21.1)

with dendritic oscillator amplitude Vdend  (in millivolts), angular frequency ω = 2π f, 
phase shift θi, and resting membrane potential VR. We consider the oscillators are 
weakly coupled (i.e., the interactions only affect the oscillators’ phases). We can 
then write the changes in the phase shifts of the oscillators as 

 
�q ei iZ t p t= ( ) ( ),  (21.2)

 where the positive parameter ε ≪ 1, and Z(t) is the infinitesimal PRC which is 
assumed to be identical for both oscillators. It describes the change of the oscillator’s 
phase shift in response to an infinitesimally small and short perturbation at a par-
ticular phase (Izhikevich, 2007). Here we consider Z t Q t( ) sin( )= − w , where Q is 
the amplitude of the PRC (in seconds per millivolt). Note that when Q V= 1 / w dend  
we obtain the PRC of Andronov–Hopf oscillators, the minimal dynamical system to 
produce the sinusoidal limit cycle oscillations in (21.1). The perturbations pi(t) 
result from the axial currents that flow between the cable and oscillator i. The pas-
sive properties of the cable are determined by membrane time constant τ (in sec-
onds), leak reversal potential EL (in millivolts), and length constant λ (in centimeters), 
giving the cable an electrotonic length L l= / l . The cable also expresses a voltage- 
dependent conductance with reversal potential Em. The dynamics of this conduc-
tance are determined by a single gating variable m(x,t) with activation function 
m∞(V ) and time constant τm(V ). The equations governing the membrane potential 
V (x,t) and gating variable m(x,t) along the cable are 

 

t l g

t

∂
∂

=
∂
∂

− − − −
t
V x t

x
V x t V x t E m x t V x t E( , ) ( , ) ( ( , ) ) ( , )( ( , ) ),2

2

2 L m m

mm ( ( , )) ( , ) ( ( , )) ( , ),V x t
t

m x t m V x t m x t
∂
∂

= −∞
 
(21.3)

 where γm is the ratio of the maximal conductance of the active current to the passive 
membrane conductance. In order to determine the perturbations to the oscillators we 
need to solve (21.3) with the oscillators at the ends of the cable giving the periodi-
cally forced end conditions of the cable. For this, we first linearize (21.3) about the 
membrane voltage VR around which the membrane potential oscillates, leading to 
the quasi-active approximation for the cable (Sabah and Leibovic, 1969; Koch, 1984;  
Remme and Rinzel, 2011). We define U(x,t) as the difference between the oscillat-
ing solution and the resting membrane potential VR, i.e., U(x,t) ≡ V (x,t) − VR and we 
define w(x,t) analogously as w(x,t) ≡ m(x,t) − m∞(VR). The equations describing the 
quasi-active cable read 
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where g gR m R= +1 m V∞ ( )  and τm =τm(VR). Using the oscillators from (21.1) as the 
periodically forced end conditions for (21.4) we can write the solution as 
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where Re[z] is the real part of the complex number z and where 
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with 
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∂
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V
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(21.7)

Note that the sign of μ determines whether the active current is restorative (μ > 0) or 
regenerative (μ < 0; the current is passive when μ = 0). We can now show that the 
perturbation to oscillator i = 1 reads 
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(21.8)

We want to describe the evolution of the phase difference f q q( ) ( ) ( )t t t= −2 1 . 
For this we first need to determine the phase interaction function Hi(ϕ) that describes 
the average effect of perturbation pi(t) on the phase of oscillator i over a cycle of 
period T = 2p w/ . For oscillator i = 1 this interaction function reads 

 
H

T
Z t p t dt
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where 
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b

bLsin h( )
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(21.10)
 

 
x = 
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sinh( )

,
b

bL  
(21.11)

and ν is a constant, and where |z| and arg[z] are the absolute value and the angle of 
the complex number z, respectively. Since we consider two identical oscillators the 
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interaction function H H2 1( ) ( )f f= − . We now obtain an equation describing the 
evolution of the phase difference between the two oscillators: 

 
�f q q e f f e

l
r x wf= − = − − =−2 1 1 1

. .

( ( ) ( )) cos( )sin( )H H
QVdend

 
(21.12)

 The fixed points of this differential equation (i.e., the points where �f = 0 ) are 
f = k T· / 2 , where k is an integer. The stable fixed points are those points where 
d d�f f/ < 0 . The synchronous solution ϕ = 0 is thus stable when cos(ξ) > 0. When 
this solution is stable the anti-phase solution f = T / 2  is unstable and vice versa.

Close to the stable fixed point of (21.12), the term sin(ω ϕ) is approximately 
linear and the phase locking time constant can be written as 
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The parameter ε can be described in terms of cable and oscillator parameters: 
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where Ri is the intracellular resistivity (in Ω cm), a is the surface area of one oscil-
lator (in cm2), and Cm is the specific membrane capacitance (in μF/cm2). The second 

equality uses l = d R g/ 4 i L  and t = C gm L/ , where gL is the specific membrane 

conductance (in S/cm2). Hence we can write the phase locking time constant as 
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(21.15)

 A.2 Amplitude of the Voltage Oscillations Along the Cable

Using (21.5) we can easily obtain explicit expressions for the amplitude of the volt-
age oscillations along the cable as a function of the cable parameters. For synchro-
nized dendritic oscillators (i.e., ϕ = 0) the oscillation amplitude V x( )  at any point x 
along the cable of length l is 

 
V x V

b L x bx
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(21.16)

 Considering the voltage at the middle of the cable as the “somatic” voltage 
V t U l tsoma ( ) ( / , )= 2 , we find the somatic oscillation amplitudes for synchronized 
oscillators: 
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(21.17)
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Abstract In a single dendritic branch of a neuron, multiple excitatory inputs can 
locally interact in a nonlinear fashion. The local sum of multiple excitatory post- 
synaptic potentials (EPSPs) can be inferior or superior to their arithmetic sum; in 
these cases summation is respectively sublinear or supralinear. While this experi-
mental observation can be well explained by conductance-based models, the com-
putational impact of these local nonlinearities remains to be elucidated. Are there 
any examples of computation that are only possible with nonlinear dendrites? What 
is the impact of nonlinear dendrites at the network scale? We show here that both 
supralinear summation and sublinear summation enhance single neuron computa-
tion. We use Boolean functions, whose input and output consists of zeros and ones, 
and demonstrate that a few local dendritic nonlinearities allow a single neuron to 
compute new functions like the well-known exclusive OR (XOR). Furthermore, we 
show that these new computational capacities help resolve two problems faced by 
network composed of linearly integrating units. Certain functions require (1) that at 
least one unit in the network have an arbitrarily large receptive field and (2) that the 
range of synaptic weights be large. This chapter demonstrates that both of these 
limitations can be overcome in a network of nonlinearly integrating units.

Chapter 22
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It would be better to think of the brain not as a single network whose elements operate in 
accord with a uniform set of principles but as a network whose components are themselves 
networks having a large variety of different architectures and control systems.

(Minsky and Papert, 1988)

22.1  Introduction

In a single dendrite, the measured excitatory post-synaptic potential (EPSP) result-
ing from multiple stimulations can be different from the expected algebraic sum of 
the EPSPs resulting if each stimulation arrives independently, as shown in Fig. 22.1a. 
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Fig. 22.1 Spiking and saturating dendrites. (a) The x-axis (Expected EPSP) is the arithmetic sum 
of two EPSPs induced by two separate stimulations and the y-axis (Measured EPSP) is the mea-
sured EPSP when the stimulations are simultaneous; the dashed line corresponds to linear summa-
tion. Left, observations from cortical pyramidal neurons (redrawn from Polsky et al., 2004). 
Summation is both supralinear and sublinear due to the occurrence of a dendritic spike. Right, 
observations from cerebellar interneurons (redrawn from Abrahamsson et al., 2012). In this case 
summation is purely sublinear due to a saturation caused by a reduction in driving force. (b) The 
activation function of a dendritic subunit Di (left) modeling dendritic spike-type nonlinear summa-
tion: both supralinear and sublinear on [0,∞], or (right) the saturation type nonlinear summation: 
strictly sublinear on [0,∞]. This function has two parameters: a threshold Θi and a height hi. These 
figures are copied from Cazé et al. (2013) (under CCAL)
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Within a dendrite, summation can either be supralinear, sublinear, or both. 
Supralinear local summation of EPSPs can be due to the opening of NMDA, Ca2+, 
or Na+ voltage-gated channels (Wei et al., 2001; Ariav et al., 2003; Nevian 
et al., 2007; Polsky et al., 2004; Losonczy and Magee, 2006; Polsky et al., 2009), 
which cause a sharp deflection in the local membrane voltage called a dendritic 
spike. Sublinear local summation of EPSPs is most often due to a reduction in driv-
ing force: i.e., a reduction in the potential difference between inside and outside the 
membrane which drives the ionic current (Haag et al., 1992; Heck, 2003; Abraham
sson et al., 2012). These two experimental findings can be explained using 
conductance- based models (see Rall, 1967; Koch, 2005 for details). Nevertheless, 
the impact of the nonlinear summation of EPSPs on single neuron computation 
remains to be elucidated. This question requires the use of a different kind of model, 
i.e., binary neuron models. In this chapter, we use such a model to demonstrate that 
local nonlinear summation of EPSPs enhances the computational capacity of both 
single neurons and networks.

The first binary models of neurons by McCulloch and Pitts (1943) and 
Rosenblatt (1958) assumed linear integration of excitatory inputs, and these models 
have informed much subsequent thinking about how neurons compute, both indi-
vidually and collectively. The limitations of linear integration models—or threshold 
linear units (TLU)—are well known: TLUs cannot compute linearly nonseparable 
functions (see example just below, and Results section for a formal definition). By 
contrast, we show that nonlinear summation of EPSPs enables a binary neuron 
model, schematized in Fig. 22.2a, to compute linearly non-separable functions.

We show in the first part of this chapter that a binary neuron model with a single 
nonlinear dendrite can compute a well-known example of linearly non-separable 
function: the famous exclusive OR (XOR). Suppose that a neuron has two sources 
of presynaptic inputs: this neuron computes the XOR if it fires when only one of the 
input sources is active, but remains silent if no or both sources are active simultane-
ously. The truth table of an XOR and its implementation are shown in Fig. 22.2b. 
The reason why a TLU cannot compute XOR is an intuitive one. A neuron that 
computes XOR needs to fire when at least one of two excitatory input sources (i.e., 
sets of excitatory synapses) is active, but it must stay silent when both sets are active 
at once. This is impossible when the EPSPs add up linearly, but when excitatory 
inputs interact nonlinearly then it becomes possible (Zador et al., 1993). This last 
theoretical study demonstrates that a neuron can compute XOR because activity in 
two excitatory input sources can depolarize the soma less than activity in a single 
excitatory input source, due to the local activation of potassium voltage-gated chan-
nels. In this chapter, we propose a way to implement this function using classic 
inhibition and dendritic saturation. In this case, this capacity is due to the local 
nonlinear summation which had been theoretically conjectured by Koch et al. (1982) 
and has since been experimentally demonstrated by Polsky et al. (2009). Local sum-
mation means that the dendritic tree can be segmented into independent subunits, 
meaning, for instance, that two EPSPs generated in two different dendritic branches 
sum linearly and that two EPSPs generated on the same branch sum nonlinearly, 
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e.g., by inducing a dendritic spike (Polsky et al., 2009) or a dendritic saturation 
(Heck, 2003). This capacity enables a single neuron to compute linearly non-sepa-
rable functions. To conclude this first part, we refer to our previous publications 
(Cazé et al., 2012, 2013) which introduce a set of linearly non-separable functions 
computable with a small number of dendritic subunits.

Fig. 22.2 The two-stage neuron model and its computing capacity. (a) is a general definition of 
this model, (b) and (c) are specific implementations of linearly non-separable functions. (a–c) 
Each xi is a binary variable, corresponding to the activity of the cell assembly i (0 = inactive; 
1 = active). y is a binary variable, representing post-synaptic activity. In circles are independent sets 
of integer- valued synaptic weights, corresponding to the amplitude of the EPSP or the IPSP 
recorded locally when a presynaptic source is active. In black squares, θj and hj are the integer-
valued thresholds and heights which are the parameters of the activation function Dj of dendrites 
j—this function is either spiking (Fig. 22.1b, left) or saturating (Fig. 22.1b, right). In the gray 
square, Θ is a positive integer- valued threshold determining whether the post-synaptic neuron is 
active or silent. (b) Implementation of the XOR function: the lower part is the truth table. The 
numbers in the second column are the result of dendritic integration. The two parts of the sum in the 
second column correspond to the activation states of the two dendritic subunits. Left, an implemen-
tation where the dendritic subunit can only be of the spiking type. Right, an implementation where 
the dendritic subunit can either be spiking or saturating. (c) Left, the implementation of the object-
feature binding problem (FBP). Right, the implementation of the dual version (dFBP). Note that 
either spiking or saturating dendritic activation functions can be used for both implementations
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We go on to discuss the impact of such new computational capacities on 
networks of neurons possessing nonlinear dendrites. Our opening quotation is taken 
from the edition of Perceptron published after the Parallel Distributed Processing 
book (McClelland et al., 1986). This manifesto of connectionism argued that much 
of what at first sight seem to be bafflingly complex learning and memory processes 
in cognition can be explained by layered networks of simple interconnected units 
such as TLUs. Nonetheless, networks of TLUs may, in practice, be unable to imple-
ment certain functions (Minsky and Papert, 1988). Why? Minsky and Papert’s book 
demonstrated at least two limitations of networks of TLUs. First, a function can 
require a unit with an arbitrarily large receptive field. For instance, the parity func-
tion, a generalization of the XOR operation, requires at least one unit of the network 
with a receptive field covering the whole input space. Second, the implementation 
of a function can require synapses with a huge number of distinct synaptic weight 
values. Our quotation from their book proposes a way to overcome these two limita-
tions: the use of networks made up of more complex units. This proposition fits with 
the recent observation that single neurons are computationally complex entities 
capable of linearly non-separable computations. In the second part of this chapter, 
we demonstrate that a network made up of complex neurons with small receptive 
fields can implement the parity function. Finally, we show that dendritic nonlineari-
ties make it possible for intrinsic parameters to store information, reducing the 
range of synaptic weight values needed to implement the parity function.

22.2  Impact of Nonlinear Summation in Dendrites  
of Single Neurons

In this section, we present a simple neuron model that takes into account nonlinear 
dendritic summation of EPSPs. These nonlinearities are due to voltage-gated chan-
nels (Schiller et al., 2000; Polsky et al., 2004, 2009) or to the passive electrical 
properties of the dendritic cable, as shown in Fig. 22.1. Depending on the intensity 
of stimulation, the sum of multiple EPSPs can be higher or lower than their arithme-
tic sum—respectively supralinear and sublinear—or both (see Poirazi et al., 2003b 
for a first definition, and Cazé et al., 2012, 2013 for a formal definition). Moreover, 
a neuron’s dendrites can be decomposed into a set of quasi-independent subunits 
based on some measure of relative electrical compartmentalization, such as between 
branch points (Koch et al., 1982; Hendrickson et al., 2011). Each subunit may thus 
independently support nonlinear integration of its inputs. The existence of so-called 
dendritic spikes and of independent subunits has led to the proposal that a single 
neuron behaves as a two-layer feed-forward neural network (Gurney, 2001a,b; Poirazi 
et al., 2003a).

Figure 22.2a introduces this two-layer model. We distinguish between models 
composed of spiking subunits, which are both supralinear and sublinear (Fig. 22.1b, 
left), and those composed of saturating subunits, which are strictly sublinear 
(Fig. 22.1b, right). In the former case, we use spiking activation functions for the 
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dendritic subunits to model the generation of local dendritic spikes, and in the latter 
we use saturating activation functions to model local dendritic saturations. We call 
this class of models threshold nonlinear unit (TNLU), to contrast with the 
classical TLU.

22.2.1  Dendrites Enable the Computation of Linearly  
Non- separable Functions

To quantify the difference between the TLU and the TNLU, we used Boolean 
functions. These functions are central in the study of computation (Wegener, 1987; 
Muroga, 1971), and they can be defined as follows:

Definition 1. A Boolean function is a function of n input sources on 0,1n into 0,1.

In biological terms, the n input sources correspond to the activity of n assemblies 
of pre-synaptic neurons. 0 means that the pre-synaptic assembly is inactive and 1 
means that it is active. If the post-synaptic neuron responds then the output of the 
Boolean function is 1, if it remains silent then the output is 0.

Using this framework, it can be demonstrated that the computational capacities 
of a TNLU are both quantitatively superior to and qualitatively different from those 
of a TLU. A TLU is limited to linearly separable functions which are defined below 
(Crama and Hammer, 2011; Muroga, 1971).

Definition 2. f is a linearly separable Boolean function if and only if there exists 
at least one vector W and a number Θ such that for all f(X) = 0 we have W ⋅ X < Θ 
and for all f(X) = 1 we have W ⋅ X ≥ Θ.

A TNLU can compute every Boolean function provided a sufficient number of 
spiking dendritic subunits (see Anthony, 2010, Theorem 13.9). This proof can be 
explained intuitively: all Boolean functions can be decomposed into a “disjunction 
of conjunctions,” an OR of ANDs; for instance the XOR function can be expressed 
as (x1AND(NOTx2))OR((NOTx1)ANDx2). A spiking dendritic subunit can implement 
an AND term through its supralinear summation: only some combination of inputs 
can elicit the subunit’s output, not a single input alone. Moreover, the soma with a 
sufficiently low threshold can implement the OR term by firing whenever one of the 
spiking subunits has an output. Thus, with one spiking subunit per AND term, a 
TNLU can theoretically implement any Boolean function. Figure 22.2b (left) shows 
how the TNLU with spiking subunits can implement the XOR function.

In biological terms, these results hold only for neurons with spiking dendrites like 
cortical and hippocampal pyramidal neurons (Polsky et al., 2009; Katz et al., 2009). 
Extending the generality of this result, we have found that even when dendrites are pas-
sive, as illustrated in Fig. 22.1b, the distinction between TLUs and TNLUs remains 
(Cazé et al., 2012, 2013): a sufficient number of saturating subunits can implement any 
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Boolean function. This proof can be understood intuitively in a similar way. All Boolean 
functions can be expressed as a “conjunction of disjunctions,” an AND of ORs; for 
instance, the XOR function can be expressed as (x1ORx2)AND((NOTx1)OR(NOTx2)). 
A saturating dendritic subunit can implement an OR term through its sublinear sum-
mation: each input elicits an output, but the output does not grow with further active 
inputs. A soma with a sufficiently high threshold can implement the AND term by only 
firing when a sufficient number of saturating subunits have an output. Thus, with one 
saturating subunit per OR term, a TNLU can theoretically implement any Boolean 
function. Figure 22.2b (right) shows how the TNLU with saturating subunits can imple-
ment the XOR function.

The linearly separable functions represent a tiny proportion of all Boolean func-
tions: as the number of input variables xi increases the proportion of functions that 
are linearly separable tends to zero: if n is the number of input variables, there are 
at most 2

2n  (Hastad, 1994) linearly separable functions, whereas the total number 
of Boolean functions is 22n

 (Wegener, 1987). Consequently, the mere existence of 
dendrites increases the computational capacity of a neuron beyond that bestowed 
by linear integration, even if the dendrites are not spiking. The newly accessible 
functions include the feature-binding problems, reviewed in the next section, which 
map onto a wide range of computations performed by vertebrate and invertebrate 
neural systems.

The previous formal propositions are valid for an infinite number of dendritic 
subunits, but the number of independent nonlinear subunits in a real neuron is finite. 
To show that these formal propositions are relevant to computation by real neurons 
we needed to answer two fundamental questions. What functions are computable 
with a limited number of dendritic subunits? And how a single neuron can imple-
ment these functions?

22.2.2  A Finite Number of Dendritic Subunits Expand  
the Computational Capacity of a Single Neuron

We used large systematic parameter searches for the TNLU model (described in 
“Method” section of Cazé et al., 2013) to find functions computable given a limited 
number of dendritic subunits. We found that, with a number of subunits linearly 
proportional to the number of input sources, a TNLU can compute an interesting set 
of linearly non-separable functions. Contrary to XOR, inhibition is not necessary 
for these functions; in formal terms, such functions are linearly non-separable and 
monotone (Shmulevich et al., 1995; Korshunov, 2002). Some of these functions are 
already known as object-feature binding problems (FBPs) (Legenstein and 
Maass, 2011). Two subsets of FBPs are particularly notable as they correspond to 
biological problems solved by single neurons in vertebrates (Agmon-Snir 
et al., 1998; Archie and Mel, 2000). One of these functions is already well known 
as the object-feature binding problem (FBP) (Legenstein and Maass, 2011), we call 
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the other the “dual” FBP (dFBP); Table 22.1 gives the truth tables defining these 
functions. The FBP is a well-known problem in visual (Treisman and Gelade, 1980) 
and auditory perception (Hall and Wieberg, 2003; for review see 
Treisman, 1998; Roskies and Binding, 1999; Taraborelli, 2002; Holcombe, 2009; F
eldman, 2012). An example of this problem is to correctly signal distinct objects 
that are each characterized by disjoint sets of features, for instance shape and color, 
e.g., to detect red Xs or blue Os but not blue Os or red Xs. Binocular disparity 
(Archie and Mel, 2000) is another example of a FBP problem: consider input in the 
form of four binary variables [xl,1, xl,2, xr,1, xr,2], two each from the left (l) and right 
(r) eye. The neuron responds maximally if all inputs from a single eye are active, 
i.e., [1, 1, 0, 0] and [0, 0, 1, 1], but not when inputs from both eyes are partially 
active, e.g., [0, 1, 0, 1]. The problem that we have called the dFBP is also a binding 
problem, important in binaural coincidence detection (Agmon-Snir et al., 1998). 
Using the same notation with l and r referring to the left and right ear, this function 
consists in responding more to inputs from both ears simultaneously than to inputs 
from only one ear (Segev, 1998).

Figure 22.2c shows how these functions can be implemented in a TNLU with 
two nonlinear dendritic subunits. In these examples there are two objects made of 
two features, but one can implement the FBP or dFBP of o objects made of f fea-
tures with only o dendritic subunits (Cazé et al., 2012).

22.2.3  Different Strategies for Implementing Functions  
in Nonlinear Dendrites

The decomposition of Boolean functions into a “disjunction of conjunctions” 
(called the disjunctive normal form) and “conjunction of disjunctions” (called the 
conjunctive normal form) provide a guaranteed method for implementing functions 
using a decomposition into spiking or saturating dendritic subunits. They are in 
turn examples of two broader classes of function implementations: a local strat-
egy where a single dendritic subunit is capable of eliciting a somatic spike (like 

Table 22.1 Feature-object binding problems expressed by their truth 
table

xl,1 xl,2 xr,1 xr,2 FBP dFBP

1 1 0 0 1 0
1 0 1 0 0 1
1 0 0 1 0 1
0 1 1 0 0 1
0 1 0 1 0 1
0 0 1 1 1 0

The partial truth tables for the Feature Binding Problem (FBP) and its 
dual version (dFBP) for n = 4 variables. All input vectors containing 
fewer 1s than in this truth table yield y = 0; all input vectors containing 
more 1s than in this truth table yield y = 1
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the “disjunction of conjunctions”); and a global strategy where no single dendritic 
subunit can generate a somatic spike thus somatic spiking always requires 
simultaneous activity in at least two dendritic subunits (like the “conjunction 
of disjunctions”).

We have shown that using a local strategy with saturating subunits cannot imple-
ment any linearly non-separable Boolean function. By contrast, using a local strat-
egy with spiking dendritic subunits can implement any linearly non-separable 
Boolean function (Cazé et al., 2012, 2013). This in turn contrasts with the global 
strategy, which can be used with both types of subunits to implement any linearly 
non-separable Boolean function. We illustrate in Fig. 22.4 how the FBP and dFBP 
can be computed using a global strategy. In these implementations, each dendritic 
subunit can reach its maximum possible level of activity and yet the neuron stays 
silent. The existence of a global strategy could explain why Layer 2/3 pyramidal 
neurons have different input tunings between their dendrites and the output of the 
whole neuron: inputs which elicit the largest calcium response in a local region of 
dendrite did not cause the neuron to fire, while inputs that caused the neuron to fire 
did not elicit the maximum calcium response in the dendrite (Jia et al., 2010).

22.3  Impact of Nonlinear Summation in Dendrites  
on a Network of Neurons

If an individual neuron (a TNLU) is computationally more powerful than a TLU, 
yet multi-layered networks of TLUs can implement any Boolean function, what 
further advantages do we gain from a network of TNLUs? In this section, we 
demonstrate that networks made of TNLUs are computationally more efficient than 
networks of TLUs; first we show that a network of TNLUs can better parallelize a 
function than a network of TLUs; we then show that they allow for a more flexible 
and larger storage capacity.

22.3.1  Dendrites Enable the Efficient Parallelization of 
Functions

To show that networks of TNLUs are more efficient in parallelizing certain 
functions we have first to understand the limitations of a network of TLUs, the topic 
of the famous book Perceptrons by Minsky and Papert (1988). A Perceptron is a two 
layer feed-forward network: an input layer made of units with unlimited computation 
capacity projecting to a processing layer which is a single TLU. Their book starts 
with a simple question: Why does the Perceptron fail at computing certain functions 
in practice? Indeed, provided a sufficiently large number of units or sufficiently 
complex units in the input layer, the Perceptron can compute every Boolean 
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functions in theory, but in practice a Perceptron can fail to implement certain of 
these functions.

The parity function is one generalization of the XOR: it requires signalling 1 for 
input vectors containing an odd number of 1s and remaining silent (signalling 0) for 
input vectors containing an even number of 1s. Minsky and Papert found that the 
parity function can be implemented in a Perceptron only if it obeys the biologically 
implausible constraint that at least one of the units in the input layer takes as input 
the whole input space (see Rojas, 1996, Chap. 3 for a detailed explanation). This is 
true even if the input layer of a Perceptron is made of universal units, which can 
compute every Boolean functions—including the parity function itself (Fig. 22.3, 
left). To put this into perspective, if the input is a retina, the Perceptron can compute 
the parity function only if at least one neuron of the network has a receptive field as 
large as the retina. This necessary convergence of inputs creates a processing 
bottleneck.

What happens if the processing layer of the Perceptron is a TNLU instead of a 
TLU? If we assume a situation where a TNLU is capable of computing the parity 
function then, while the receptive field of the units in the input layer can be arbitrary 
small, as is shown on Fig. 22.3, the processing later still needs to receive as many 
inputs from those units as there are inputs. But two layers of TNLUs can remove the 
necessary convergence by decomposing the parity function. We saw that a TNLU is 
capable of computing the XOR function, as illustrated in Fig. 22.2b. If the unit of the 
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Fig. 22.3 Parallelizing the computation of the parity function. These three feed-forward networks 
compute the 4-parity function: they determine whether a retina made of 4 pixels contains an odd 
number of black pixels. In rectangles, the computing capacity of units in the input layer; in rounded 
triangles, the computing capacity of the unit in the processing layer. T is the identity function, 
4-Parity is the parity function with 4 input variables. In the network in the middle the computa-
tional burden is distributed equally, i.e. every unit has the same receptive field and computing 
capacity

R.D. Cazé et al.



375

processing layer is capable of such computation, then the parity function can be 
computed with further XOR units in the input layer, as shown in Fig. 22.3. Each unit 
receives a limited number of inputs in this network of TNLUs, whereas this type of 
implementation is impossible with TLUs.

The implementation of some functions can also be impossible in practise because 
they require a large range of synaptic weight values between the input and the 
processing layer. For instance the range of synaptic weight values necessary to 
compute the parity function can grow exponentially with the number of pixels n of 
the retina if the network is made of TLUs. But a network of TNLUs can implement 
the parity function with binary synaptic weights, in this case the implementation is 
easy.

22.3.2  Dendrites Expand the Information Storage  
Capacity of Intrinsic Parameters

Information storage is a vaporous notion, difficult to define for a neuron. This is 
surprising because defining memory for a computer is easy. Memory and its pro-
cessing are independent in a computer based on von Neumann architecture. This 
means that n bits of information can be stored in n free bits of memory. Memory and 
its processing are interwoven in a neuron, thus memory cannot be measured directly. 
To overcome this difficulty there is an indirect but quantitative way to measure 
memory storage capacity in a neuron (used in Brunel et al., 2004; Poirazi and 
Mel, 2000), by estimating the number of functions a neuron can potentially com-
pute in a given range of parameter values. Counting the number of functions a neu-
ron can implement enables us to directly quantify the information storage capacity 
of a neuron.

Before looking at the general case, let us look again at the parity function exam-
ple. This function cannot be implemented by a single TLU; however, a network of 
TLUs can implement it in theory. Nevertheless, if the input layer is made of ORs and 
the processing layer is a TLU, then the synapses between the input and the process-
ing layer need to have integer values ranging between 1 and 2n−1, where n is the 
number of binary input variables (Minsky and Papert, 1988). If n = 4, such Perceptron 
would require eight different distinct synaptic weight values to compute the parity 
function whereas a network made of XORs, which are TNLUs, only requires binary 
weights. Other functions can be found where such a disparity between networks of 
TLUs and networks TNLUs exists (Hastad and Goldmann, 1991).

We can push this observation much farther by looking at the capacity advantage 
gained by having a single dendritic subunit with nonlinear summation. Our exhaustive 
parameter searches demonstrated that a TNLU with one nonlinear dendritic subunit can 
implement tenfold more functions than a single TLU (Table 22.2) (Cazé et al., 2013). 
Notably this tenfold increase in memory capacity necessitates a smaller range of syn-
aptic weight values for a TNLU than for a TLU, as shown in Table 22.2. For n = 6, a 
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TNLU needs a number of distinct synaptic weight values twofold smaller to reach a 
memory storage capacity tenfold higher than a TLU. Thus, given practical, biological 
restrictions on possible synaptic weight values, a TNLU neuron can have a dramati-
cally greater storage capacity.

The root of this advantage is in the availability of intrinsic plasticity for the 
TNLU. While the only intrinsic storage space of a TLU is its threshold, a single 
parameter which is negligible compared to the multidimensional space of synaptic 
weights, TNLUs have a much larger number of intrinsic parameters than TLUs to 
store information, namely the subcellular placement of synapses and the dendritic 
local excitability (here modeled as the height and threshold of the dendritic activa-
tion function D).

Mainstream theories of memory and its use focus on synapses as the main infor-
mation reservoir in the brain, learnt through synaptic plasticity (Abbott, 1990; Bliss 
et al., 1973; Sjöström et al., 2008), but plasticity of intrinsic neuron properties has 
long been described experimentally (Brons and Woody, 1980; Frick and Johnston, 
2005; Schulz, 2006; Williams et al., 2007). Intrinsic plasticity works by modifying 
the properties of the neuron itself, i.e., the property of the voltage-gated ionic chan-
nels contained in the membrane (Alkon, 1984; Desai et al., 1999; Frick and 
Johnston, 2005; Zhang and Linden, 2003) or the subcellular placement of synapses 
(Chklovskii et al., 2004). As has been suggested in an experimental study in inver-
tebrate (Alkon, 1984), local intrinsic plasticity is possible in dendrites (Losonczy 
et al., 2008).

Consequently, a brain made of TLNU-like neurons—those with local nonlinear 
dendritic summation—has a greater storage capacity than has traditionally been 
recognized (Fig. 22.4): in a network made of TLUs, learning occurs through synap-
tic plasticity because information is only stored in the connections between nodes 
(McClelland et al., 1986); but a significant amount of information can also be stored 
within the nodes of a networks of TNLUs.

Table 22.2 Information storage capacity of TLUs and TNLUs as a function of 
the number of input variables

n # of computable functions # of possible synaptic weights

6 [1113;13505] [10;5]
5 [119;208] [6;4]
4 [30;30] [4;3]

The numbers of implementable functions with or without a nonlinear den-
dritic subunit [TLU;TNLU] are in the first column. The numbers of synaptic 
weight values required to reach this capacity are given in the second column. 
This tablewas built using large parameter searches (see Cazé et al., 2012 for 
moredetails)
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22.4  Conclusion

In this chapter, we have discussed three implications of nonlinear summation in 
dendrites for single neurons and networks.

We showed, first, that a neuron can use its analogue spiking or saturating den-
drites to perform new sets of computations like XOR, FBP, or dFBP, suggesting 
that neurons are complex computing units rather than networks of simple units. 
We labeled these units TNLUs. This observation challenges the connectionist 
hypothesis that the brain is a network made of simple computing elements, either 
neuronal or dendritic.

Second, we demonstrated that networks of TNLUs can do better at parallelizing 
a difficult function than networks of TLUs. In the former type of networks some 
computations, such as the parity function, require pre-synaptic units with large 
receptive fields; this requirement can be weakened or eliminated in networks of 
TNLUs. This observation can be generalized to recurrent networks if the input layer 
is considered to receive both feed-forward and recurrent inputs.

Third, we have shown that a TNLU can store a substantial amount of information 
in its intrinsic parameters. Consequently, intrinsic plasticity plays a more important 
role in a network of TNLUs, and such network can store more information with a 
smaller range of synaptic weight values than a network of TLUs containing the 
same number of units. This last property allows networks of TNLUs to store infor-
mation more efficiently than networks of TLUs.
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    Abstract     Neurons have highly branched dendrites that form characteristic tree-like 
structures. The morphology of these dendritic arborizations is not fi xed and can 
undergo signifi cant alterations in many pathological conditions. However, little is 
known about the impact of morphological changes on neuronal activity. Using com-
putational models of pyramidal cells, we study the infl uence of dendritic tree size 
and branching structure on burst fi ring. Burst fi ring is the generation of two or more 
action potentials in close succession, a form of neuronal activity that is critically 
involved in neuronal signaling and synaptic plasticity. We show that there is only a 
range of dendritic tree sizes that supports burst fi ring, and that this range is modulated 
by the branching structure of the tree. Shortening as well as lengthening the dendritic 
tree, or even just modifying the pattern in which the branches in the tree are connected, 
can shift the cell’s fi ring pattern from bursting to tonic fi ring. The infl uence of dendritic 
morphology on burst fi ring is attributable to the effect that dendritic size and branching 
pattern have on the average spatial extent of the dendritic tree and the spatiotemporal 
dynamics of the dendritic membrane potential. Our results suggest that alterations in 
pyramidal cell morphology, such as those observed in Alzheimer’s disease, mental 
retardation, epilepsy, and chronic stress, can change neuronal burst fi ring and thus 
ultimately affect information processing and cognition.  
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23.1          Introduction 

 Neurons exhibit a wide range of intrinsic fi ring patterns (Connors and Gutnick 
 1990 ; Contreras  2004 ). A distinct fi ring pattern that is critically involved in neuro-
nal signaling and synaptic plasticity is burst fi ring, the generation of clusters of 
spikes with short interspike intervals (Krahe and Gabbiani  2004 ). Bursts improve 
the signal-to-noise ratio (Eggermont and Smith  1996 ), are transmitted more reli-
ably than isolated spikes (Swadlow and Gusev  2001 ), are more effective than 
single spikes in inducing synaptic long-term potentiation (LTP) (Yun et al.  2002 ), 
and can even determine whether LTP or LTD (long-term depression) occurs 
(Birtoli and Ulrich  2004 ). 

 Two main classes of ionic mechanisms underlying intrinsic neuronal burst fi r-
ing have been identifi ed (Krahe and Gabbiani  2004 ). In so-called dendrite-inde-
pendent mechanisms—responsible for bursting in thalamic relay neurons 
(McCormick and Huguenard  1992 ), for example—the fast, spike-generating con-
ductances and the slow, burst-controlling conductances are co-localized in the 
soma. Conversely, in dendrite-dependent mechanisms—involved in pyramidal 
cell burst fi ring—these conductances are distributed across the soma and den-
drites, with the interaction between somatic and dendritic conductances playing 
an essential role in burst generation. Dendritic voltage-gated Na +  and K +  channels, 
which promote propagation of action potentials from the soma into the dendrites, 
cause the dendrites to be depolarized when, at the end of a somatic spike, the soma 
is hyperpolarized, leading to a return current from dendrites to soma. The return 
current gives rise to a depolarizing afterpotential at the soma, which, if strong 
enough, produces another somatic spike (Williams and Stuart  1999 ; Wang  1999 ). 
This whole process was described by Wang ( 1999 ) as “ping-pong” interaction 
between soma and dendrites. 

 Although ion channels play a central role in burst fi ring, dendritic morphology 
also appears to be an important modulating factor. In many cell types, including 
neocortical and hippocampal pyramidal cells (Mason and Larkman  1990 ; 
Chagnac- Amitai et al.  1990 ; Bilkey and Schwartzkroin  1990 ), neuronal fi ring pat-
terns and the occurrence of bursts are correlated with dendritic morphology. 
Results from modeling studies also suggest a relationship between dendritic mor-
phology and fi ring pattern (Mainen and Sejnowski  1996 ; Sheasby and Fohlmeister 
 1999 ; Van Ooyen et al.  2002 ; Krichmar et al.  2002 ). However, these studies are 
mainly correlative, focus on morphologically very distinct cell classes, use only 
the physiologically less appropriate stimulation protocol of somatic current injec-
tion, and do not investigate the impact of topological structure of dendritic 
arborizations. 

 In this chapter, we summarize our study (Van Elburg and Van Ooyen  2010 ) in 
which we used computational models of neocortical pyramidal neurons to investi-
gate the impact of a cell’s dendritic morphology (both size and topological struc-
ture) on the ping-pong mechanism of burst fi ring, under either somatic current 
injection or synaptic stimulation of the apical dendritic tree.  

A. van Ooyen and R.A.J. van Elburg



383

23.2      Methods 

23.2.1     Pyramidal Cell 

 We used a morphologically and biophysically realistic model of a bursting layer 5 
pyramidal cell (Mainen and Sejnowski  1996 ) implemented in NEURON (Hines and 
Carnevale  1997 ). The pyramidal cell was activated by either somatic or dendritic 
stimulation. For somatic stimulation, the cell was continuously stimulated with a 
fi xed current injection of 0.2 nA. For dendritic stimulation, the cell was stimulated 
by synapses that were regularly distributed across the apical dendrite. Each synapse 
was randomly activated. 

 We investigated the effect of both dendritic size and dendritic topology on burst 
fi ring. The size of a dendritic tree is the total length of all its dendritic segments. 
The topology of a dendritic tree is the way in which the dendritic segments are 
connected to each other. For example, a tree with a given number of terminal seg-
ments can be connected in a fully asymmetrical (Fig.  23.4a ) or a fully symmetrical 
way (Fig.  23.4b ). 

 To investigate how the dendritic size of the pyramidal cell infl uences burst fi ring, 
we varied the total length of the cell’s apical dendrite according to two methods. In 
the fi rst method, we successively pruned terminal segments from the apical den-
dritic tree. Starting with the full pyramidal cell morphology, in each round of prun-
ing we randomly removed a number of terminal segments from the apical dendritic 
tree. From the reduced dendritic tree, we again randomly cut terminal segments, and 
so on, until the whole apical dendrite was eliminated. This whole procedure of start-
ing with the complete apical dendritic tree and sequentially stripping it of all its 
segments was repeated 20 times. The density of synapses was kept constant during 
pruning, so with dendritic stimulation pruning also changed the total input to the 
cell. With somatic simulation, the total input to the cell did not change when the 
apical dendrite was pruned. 

 In the second method, we kept the dendritic arborization intact and changed the 
size of the apical dendrite by multiplying the lengths of all its segments by the same 
factor. Thus, the entire apical dendritic tree was compressed or expanded. For den-
dritic stimulation, we kept the total synaptic input to the cell constant by adapting 
the density of the synapses. So, both with somatic and dendritic stimulation, the 
total input to the cell did not change when the size of the apical dendrite was 
modifi ed. 

 To examine the impact of the cell’s dendritic branching structure on burst fi ring, 
we varied the topology of the apical dendritic tree by swapping branches within the 
tree. The apical dendritic trees that were generated in this way had exactly the same 
total dendritic length and other metrical properties such as total dendritic surface 
area and differed only in their topological structure. The total input to the cell, both 
with somatic and dendritic stimulation, did not change when the topological struc-
ture was altered.  
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23.2.2     Morphologically Simplifi ed Cells 

 We also studied a set of morphologically simplifi ed neurons, consisting of all the 
23 topologically different trees with eight terminal segments (two examples are 
shown in Fig.  23.4a, b ), but with the same ion channel composition as in the full 
pyramidal cell model. All dendritic segments had the same length, so the tree 
topologies did not differ in total dendritic length. All terminal segments were 
given the same diameter (0.7 μm; Larkman  1991 ), while the diameters of 
 intermediate segments were calculated using Rall’s power law (Rall  1959 ), with 
a branch power of 1.5. This implied that asymmetrical topologies had a higher 
total dendritic surface area than symmetrical topologies. We therefore also con-
sidered the case in which all segments in the tree had the same diameter (3 μm) 
and all tree topologies thus had the same dendritic surface area. The neurons 
were continuously stimulated with a fi xed current injection of 0.03 nA (0.1 nA 
for the non-Rall neurons) at the soma, or by uniformly distributed synapses 
across the dendritic tree. 

 To examine how the size of the dendritic tree infl uences fi ring pattern, we 
changed the total dendritic length of a given tree topology by multiplying the lengths 
of all its segments by the same factor. For dendritic stimulation, the total number 
of synapses on the tree was thereby kept constant. Thus, both with somatic and 
dendritic stimulation, the total input to the cell did not change when the size of the 
dendritic tree was modifi ed.  

23.2.3     Quantifying Burst Firing 

 Bursting is defi ned as the occurrence of two or more consecutive spikes with short 
interspike intervals followed by a relatively long interspike interval. To quantify 
bursting, we used the burst measure  B  developed in Van Elburg and Van Ooyen 
( 2004 ). This measure is based solely on spike times and detects the correlated 
occurrence of one or more short (intraburst) interspike intervals followed by a 
long (interburst) interspike interval. It quantifi es the extent of bursting in the 
whole spike train; it does not try to identify individual bursts. The higher the ratio 
of interburst to intraburst interspike intervals, the stronger the bursting and the 
higher the value of  B .  

23.2.4     Input Conductance and Mean Electrotonic Path Length 

 The input conductance of a pyramidal cell was determined by applying a subthresh-
old current injection at the soma. The ratio of the magnitude of the injected current 
to the resulting change in membrane potential at the soma is defi ned as the input 
conductance of the cell. 

A. van Ooyen and R.A.J. van Elburg



385

 To quantify the electrotonic extent of a dendritic tree, we used the mean electro-
tonic path length (MEP) (Van Elburg and Van Ooyen  2010 ). For a given terminal 
segment, the electrotonic path length is the length (normalized to the electrotonic 
length constant) of the path from the tip of the segment to the soma. This electrotonic path 
length is determined for each terminal segment, and the sum of all electrotonic 
path lengths is divided by the total number of terminal segments to obtain the MEP 
of the dendritic tree.   

23.3     Results 

 Employing a standard model of a bursting pyramidal cell (Mainen and Sejnowski 
 1996 ), we investigated how dendritic morphology infl uences burst fi ring by varying 
either the size or the topology of the apical dendrite. We also examined a set of mor-
phologically simplifi ed cells with systematic differences in dendritic topology. 

23.3.1     Pyramidal Cell 

  Dendritic size . To investigate how pyramidal cell size infl uences burst fi ring, we 
changed the total length of the apical dendrite according to two methods. In the fi rst 
method, we successively pruned terminal branches off the apical dendrite. Both 
with somatic and with dendritic stimulation, the degree of bursting decreased as the 
dendritic tree became shorter (Fig.  23.1a ). Reducing the size of the apical dendrite 
ultimately transformed the bursting pyramidal cell into a tonically fi ring cell. 
The removal of only a few small terminal segments could be enough to completely 
change the fi ring state of the cell (Fig.  23.1b ). Because of the random activation of 
synapses, the changes in the degree of bursting were more gradual with dendritic 
than with somatic stimulation.

   In the second method, we kept the dendritic arborization intact and varied the 
size of the apical dendritic tree by multiplying the lengths of all its segments by 
the same factor. Both with somatic and with dendritic stimulation, and in line with 
the previous results, burst fi ring disappeared as the total dendritic length was 
decreased (Fig.  23.2a ). Interestingly, the pyramidal cell also did not exhibit burst fi r-
ing when the apical dendrite became too large. Only when the length of the apical 
dendrite remains within a certain range are bursts generated. Figure  23.2b  shows 
the fi ring patterns of the pyramidal cell at increasing lengths of its apical dendrite.

    Dendritic topology . To examine whether dendritic branching structure, or topology, 
could infl uence burst fi ring, we varied the topology of the apical dendritic tree by 
swapping branches within the tree. Thus, all the dendritic trees generated in this way 
had exactly the same metrical properties (total length, total surface area) and differed 
only in the way their branches were connected. Within this set, we found pyramidal 
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  Fig. 23.1    Both with somatic and with dendritic stimulation, pyramidal cell burst fi ring decreased as 
the apical dendrite became shorter. ( a ) The degree of bursting, as measured by the burst measure  B , 
against the total length of the apical dendritic tree. The total length of the apical dendritic tree was 
gradually reduced by successively removing terminal segments. Results are shown of 20 times start-
ing with the complete apical dendritic tree and randomly removing terminal segments until the whole 
tree was eliminated. The complete apical dendritic tree had a total length of 36,865 μm. ( b ) Examples 
from the experiment in ( a ) showing that the removal of only a few small terminal segments from the 
apical dendritic tree could change the fi ring state of the cell. Morphology of pruned pyramidal cells, 
and voltage traces for both somatic and dendritic stimulation.  Left , Bursting cells ( Top , 9,772 μm; 
 Bottom , 8,925 μm).  Right , Non-bursting cells ( Top , 8,184 μm;  Bottom , 6,927 μm). Scale bar: 100 ms, 
50 mV. Scale bar (anatomy): 100 μm.  Arrows  in the bursting cells indicate the branches that were 
shorter or absent in the non-bursting cells. (Reproduced from Van Elburg and Van Ooyen  2010 )       
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cells that produced fi ring patterns ranging from tonic fi ring to strongly bursting 
(Fig.  23.3 ). Just remodeling the topology of the apical dendrite could completely 
change the fi ring state of the cell and turn a bursting cell into tonically fi ring cell or 
vice versa. Interestingly, dendritic topology not only affected whether a cell exhibited 
bursting or not (Fig.  23.3a–c  vs. Fig.  23.3d–f , but also infl uenced the fi ne structure or 
degree of bursting. The cell displayed in Fig.  23.3a  generated (with somatic stimula-
tion) two-spike bursts alternating with single spikes. The cells in Fig.  23.3b, c  both 
produced a pattern of two-spike bursts, but the relative sizes of the interspike 

  Fig. 23.2    Both with somatic and with dendritic stimulation, pyramidal cell burst fi ring disap-
peared when the apical dendrite became either too large or too small. We varied the size of the 
apical dendrite by scaling the entire apical dendrite, thus keeping the dendritic arborization intact. 
( a ) The degree of bursting against the factor by which the length of all the apical dendritic seg-
ments was multiplied. ( b ) Voltage traces obtained for different sizes of the apical dendrite.  Left , 
somatic stimulation.  Right , dendritic stimulation. Scale bars: 100 ms, 50 mV. (Reproduced from 
Van Elburg and Van Ooyen  2010 )       
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intervals between and within bursts were different. Although dendritic stimulation 
introduced irregularities in fi ring pattern because of the stochastic nature of the acti-
vation of synapses, somatic and dendritic stimulation yielded comparable results.

23.3.2        Morphologically Simplifi ed Cells 

  Dendritic size and topology . To analyze more precisely the effect of dendritic 
morphology on burst fi ring, we also investigated (Van Elburg and Van Ooyen  2010 ) 
a set of 23 morphologically simplifi ed neurons consisting of all the topologically 
different trees with eight terminal segments (two examples are shown in Fig.  23.4a, b ). 
The total length of a given tree topology was varied by changing the lengths of all 
the segments in the tree by the same factor. Under all conditions (somatic or den-
dritic simulation, trees with uniform segment diameters or trees whose segments 
diameters obeyed Rall’s power law), bursting occurred only for a certain range of 
tree sizes, as in the full pyramidal cell model. Interestingly, this range depended on 

  Fig. 23.3    Both with somatic and with dendritic stimulation, dendritic topology affected pyramidal 
cell burst fi ring. We varied the topology of the apical dendritic tree by swapping branches within the 
tree. Thus, all the pyramidal cells shown had exactly the same total dendritic length and dendritic 
surface area and differed only in the topology of their apical dendrite (basal dendrites were the 
same). Voltage traces for three bursting cells ( a – c ), and three non-bursting cells ( d – f ). Scale bar: 
100 ms, 50 mV. Scale bar (anatomy): 100 μm. MEP values indicate the mean electrotonic path 
length of the apical dendritic tree. (Reproduced from Van Elburg and Van Ooyen  2010 )       
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the topology of the dendritic tree: trees with an asymmetric branching structure 
started bursting at a lower total dendritic length than trees with a symmetric branching 
structure, and also stopped bursting at a lower total dendritic length.

   Also under all conditions, we found that both the onset and the cessation of 
bursting were strongly correlated not to the input conductance but to the mean elec-
trotonic path length of the dendritic tree (see Sect.  23.2 ), with burst fi ring occurring 
only within a certain range of path lengths. Burst fi ring occurred when the mean 
electrotonic path length was higher than a certain critical value. At the same total 
dendritic length, asymmetrical trees have a higher mean electrotonic path length 
than symmetrical trees, and consequently reached this critical value earlier than 
symmetrical trees as dendritic length was increased. 

  Fig. 23.4    The importance of electrotonic distance for burst fi ring and the impact of dendritic topol-
ogy illustrated with a fully asymmetrical and a fully symmetrical tree ( a ,  b ). At this dendritic size, 
the asymmetrical tree ( a ) generated bursts, whereas the symmetrical tree ( b ) produced single spikes. 
The segment diameters in the trees obeyed Rall’s power law, and both trees had the same total den-
dritic length (1,600 μm). The cell was stimulated at the soma. Scale bars: 100 ms, 20 mV. The ticks 
on top of the action potentials in ( a ) and ( b ) indicate the spikes that are shown at t + 0 and t + 13 in 
( c ). ( c ) The membrane potential evolution over time in the asymmetrical tree ( top row ) and the sym-
metrical tree ( bottom row ) along the dendritic paths indicated in ( a ) and ( b ). Time is relative to the 
fi rst spike (at 0 ms), and membrane position on the  x -axis runs from soma to the tip of the terminal 
segment. Because the distance between soma and terminal segment is smaller in the symmetrical 
than in the asymmetrical tree, the membrane potential evolution in the symmetrical tree had less 
spatial differentiation, the membrane potential reached a lower value at the distal end, and the distal 
membrane potential started decreasing earlier in time so that the return current from dendrites to 
soma reached the soma at a time when the delayed-rectifi er K +  channels were still open, preventing 
the generation of a second spike. (Reproduced from Van Elburg and Van Ooyen  2010 )       
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  Importance of electrotonic distance and dendritic topology for burst fi ring . Why is 
mean electrotonic path length important for bursting? In the burst fi ring mechanism 
of pyramidal cells, a somatically generated action potential propagates into the den-
dritic tree and depolarizes the dendrites, creating a potential difference between 
distal dendrites and soma. This leads to a return current from dendrites to soma, 
which, if strong enough, produces another somatic spike (“ping-pong” mechanism; 
see Sect.  23.1 ). The arrival of the backpropagating action potential in the dendritic 
tips marks the onset of the return currents. If these return currents reach the soma 
when the delayed-rectifi er K +  conductance is still high, it will be diffi cult for the 
soma to depolarize and produce a spike. Since the propagation velocity of volt-
ages and currents is proportional to the electrotonic length constant (Koch  1999 ), 
the mean electronic path length is a measure for the average time it takes for a back-
propagating action potential to travel to the dendritic tips (and for the return current 
to move to the soma). Thus, if the mean electronic path length is too small, the 
return current will arrive too early at the soma, when the delayed-rectifi er K +  con-
ductance is still high, so that it cannot produce another spike—that is, no bursting. 
Furthermore, if the electrotonic distance between soma and distal dendrites is too 
small, the large conductive coupling will lead to currents that quickly annul mem-
brane potential differences between soma and distal dendrites. This prohibits a 
strong and long- lasting differentiation in membrane potential between soma and 
distal dendrites, which is the generator of the return current. 

 However, if the electrotonic distance between soma and distal dendrites is too large, 
bursting will also not occur. Note that even in the absence of a return current, the cell will 
generate a next spike as a result of the external (somatic or dendritic) stimulation. So, 
what the return current in fact does when it causes bursting is to advance the timing of 
the next spike. If the electronic distance is too large, the return current will arrive too 
late—that is, not before the external stimulation has already caused the cell to spike. 
Furthermore, if the electrotonic distance is too large, the potential gradient between dis-
tal dendrites and soma will become too shallow for a strong return current. 

 Importantly, the mean electrotonic path length depends also on the topology of 
the dendritic tree, which accounts for the infl uence of dendritic topology on burst 
fi ring. In asymmetrical trees, the terminal segments are on average further away from 
the soma than in symmetrical trees. Consequently, at the same dendritic size, asym-
metrical trees have a higher mean electrotonic path length—as well as “normal” 
mean path length—than symmetrical trees (both in trees with uniform segment 
diameters and in trees whose segments diameters obey Rall’s power law). As a 
result, asymmetrical trees reach the critical values of mean electrotonic path length 
from where bursting starts, and from where it stops, at lower dendritic sizes than 
symmetrical trees. Figure  23.4  illustrates the importance of electrotonic distance 
and the impact of topological structure on burst fi ring. 

 In general, the results obtained with dendritic stimulation are comparable to 
those produced with somatic stimulation (Figs.  23.1 – 23.3 ). In the ping-pong mech-
anism of burst fi ring, the sequence and timing of events start when a somatic action 
potential propagates into the dendritic tree. How this action potential is generated in 
the fi rst place, by current injection into the soma or as a result of summation of 
dendritic synaptic inputs, appears not to be crucial.   
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23.4     Discussion 

 Burst fi ring is critically involved in synaptic plasticity and neuronal signaling, and 
it is therefore important to know what factors might affect bursting. We showed that 
either shortening or lengthening the apical dendrite tree beyond a certain range can 
transform a bursting pyramidal cell into a tonically fi ring cell. Remarkably, altering 
only the topology of the dendritic tree, whereby the total length of the tree remains 
unchanged, can likewise shift the fi ring pattern from bursting to non-bursting or 
vice versa. Moreover, both dendritic size and dendritic topology not only infl uence 
whether a cell is bursting or not, but also affect the number of spikes per burst and 
the interspike intervals between and within bursts. 

 The infl uence of dendritic morphology on burst fi ring is attributable to the effect 
dendritic length and dendritic topology have, not on input conductance, but on the 
spatial extent of the dendritic tree, as measured by the mean electrotonic path length 
between soma and distal dendrites. For the spatiotemporal dynamics of dendritic 
membrane potential to generate burst fi ring, this electrotonic distance should be 
neither too small nor too large. Because the degree of symmetry of the dendritic tree 
also determines mean electrotonic path length, with asymmetrical trees having 
larger mean path lengths than symmetrical trees, dendritic topology as well as den-
dritic size affects the occurrence of burst fi ring. 

 In Mainen and Sejnowski’s ( 1996 ) two-compartment model for explaining the 
role of dendritic morphology in shaping fi ring pattern, the spatial dimension of mor-
phology was completely reduced away. Although the model is able to reproduce a 
wide range of fi ring patterns, it does not capture the essential infl uence of dendritic 
morphology on burst fi ring, for which, as we have shown here, the spatial extent of 
the dendritic tree and the resulting spatiotemporal dynamics of the dendritic mem-
brane potential are important. 

 Our results are in accord with empirical observations suggesting that pyramidal 
cells should have reached a minimal size to be capable of burst fi ring. In weakly 
electric fi sh, the tendency of pyramidal cells to fi re bursts is positively correlated 
with the size of the cell’s apical dendritic tree (Bastian and Nguyenkim  2001 ). In rat 
prefrontal cortex (Yang et al.  1996 ) and visual cortex (Mason and Larkman  1990 ), 
the classes of pyramidal cells that exhibit burst fi ring have a greater total dendritic 
length than the other classes. 

 In addition, the developmental time course of bursting shows similarities with 
that of dendritic morphology. In rat sensorimotor cortex, the proportion of bursting 
pyramidal cells progressively increases from postnatal day 7 onwards, while at the 
same time the dendritic arborizations become more complex (Franceschetti et al. 
 1998 ). In pyramidal cells from rat prefrontal cortex, the total lengths of apical and 
basal dendrites increase dramatically between postnatal days 3 and 21, with neurons 
capable of burst fi ring appearing only from postnatal day 18 onwards (Zhang  2004 ; 
Dégenètais et al.  2002 ). 

 Dendritic morphology can undergo signifi cant alterations in many pathological 
conditions, including chronic stress (Sousa et al.  2000 ; Radley et al.  2004 ; Cook and 
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Wellman  2004 ; Magariños et al.  1996 ), epilepsy (Teskey et al.  2006 ), hypoxic ischemia 
(Ruan et al.  2006 ), Alzheimer (Yamada et al.  1988 , Moolman et al.  2004 ), and disor-
ders associated with mental retardation (Kaufmann and Moser  2000 ). Functional 
consequences of these morphological changes are usually interpreted in terms of loss 
or formation of synaptic connections as a result of a diminished or expanded post-
synaptic surface area. Our modeling results indicate that alterations in dendritic 
morphology can directly modify neuronal fi ring, irrespective of changes in total 
synaptic input. 

 Chronic stress, as well as daily administration of corticosterone, induces extensive 
regression of pyramidal apical dendrites in hippocampus (Sousa et al.  2000 ; 
Magariños et al.  1996 ; Woolley et al.  1990 ) and prefrontal cortex (Radley et al. 
 2004 ; Cook and Wellman  2004 ). As a result of a decrease in the number and length 
of terminal branches, the total apical dendritic length can reduce by as much as 
32 % (Cook and Wellman  2004 ). Similarly large alterations have been observed in 
response to mild, short-term stress (Brown et al.  2005 ). Our results predict that 
stress and the accompanying reduction in apical dendritic length could turn a burst-
ing neuron into a non-bursting one. Indeed, Okuhara and Beck ( 1998 ) found that 2 
weeks of high corticosterone treatment caused a decrease in the relative number of 
intrinsically bursting CA3 pyramidal cells. Since burst fi ring of CA3 pyramidal cells 
is critically involved in LTP (Bains et al.  1999 ), this could have profound functional 
consequences for hippocampal information processing (Pavlides et al.  2002 ). 

 With regard to epilepsy, a signifi cant decrease in total dendritic length and number 
of branches has been found in pyramidal cells following neocortical kindling 
(Teskey et al.  2006 ). In line with our results, Valentine et al. ( 2004 ) reported that 
cells recorded from the primary auditory cortex of kindled cats showed a reduction 
in the amount of burst fi ring and a decrease in the number of spikes per burst. 

 In Alzheimer’s disease, various aberrations in dendritic morphology have been 
observed—including a reduction in total dendritic length and number of dendritic 
branches (Yamada et al.  1988 ; Moolman et al.  2004 ) and alterations in the pattern 
of dendritic arborization (Arendt et al.  1997 )—which may contribute to the abnor-
mal neurophysiological properties of Alzheimer pyramidal cells (Stern et al.  2004 ). 
The anomalies in morphology could infl uence the cells’ ability to produce burst, 
and, because of the role of burst fi ring in LTP and LTD (Yun et al.  2002 ; Birtoli and 
Ulrich  2004 ), ultimately affect cognition. In disorders related with mental retarda-
tion, the observed alterations in dendritic length and pattern of dendritic branching 
(Kaufmann and Moser  2000 ), e.g., changes in the degree of symmetry of the apical 
dendrite (Belichenko et al.  1994 ), may likewise be hypothesized to contribute to 
impaired cognition. 

 In conclusion, our results show that alterations in either the size or the topology 
of dendritic arborizations, such as those observed in many pathological conditions, 
could have a marked impact on pyramidal cell burst fi ring and, because of the criti-
cal role of bursting in neuronal signaling and synaptic plasticity, ultimately affect 
cognition.  
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23.5     Outlook 

 One way to test experimentally the importance of mean electrotonic path length for 
burst fi ring is to study whether the occurrence of bursting in a large set of electro-
physiologically similar pyramidal cells correlates with the mean electrotonic path 
length (or alternatively, “normal” path length) of their apical dendrites. Direct 
experimental testing of the infl uence of dendritic morphology on burst fi ring could 
be done by physically manipulating the shape or size of the dendritic tree, e.g., by 
using techniques developed by Bekkers and Häusser ( 2007 ). In line with our results, 
they showed that dendrotomy of the apical dendrite abolished bursting in layer 5 
pyramidal cells. 

 Since fi ring patterns characteristic of different classes of neurons may in part be 
determined by total dendritic length, we expect on the basis of our results that a 
neuron may try to keep its dendritic size within a restricted range in order to main-
tain functional performance. Indeed, Samsonovich and Ascoli ( 2006 ) have shown 
that total dendritic size appears to be under intrinsic homeostatic control. Statistically 
analyzing a large collection of pyramidal cells, they found that, for a given morpho-
logical class and anatomical location, fl uctuations in dendritic size in one part of a 
cell tend to be counterbalanced by changes in other parts of the same cell so that the 
total dendritic size of each cell is conserved. We predict that dendritic topology may 
similarly be protected from large variations. In fact, there could be a trade-off 
between dendritic size and dendritic topology. In a set of bursting pyramidal cells, 
we expect that apical dendritic trees with a lower degree of symmetry are shorter in 
terms of total dendritic length or have thicker dendrites to reduce electrotonic length 
than those with a higher degree of symmetry. 

 We investigated the impact of dendritic morphology on the ping-pong mechanism 
of burst fi ring (Williams and Stuart  1999 ; Wang  1999 ) in pyramidal cells. Future 
computational studies could also examine the role of morphology in other mecha-
nisms of burst fi ring (McCormick and Huguenard  1992 ).     
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Abstract The electrical signals underlying neural computations are mediated by 
membrane ion channels. Although these ion channels are well known to operate 
stochastically, most computational models of dendritic neurons instead make the 
approximation that ionic conductances are deterministic. We review the basic 
mathematical considerations underlying this approximation and new efficient simu-
lation tools that allow it to be evaluated systematically. We show how this approxi-
mation breaks down for dendritic neurons, with the relative functional influence of 
stochastic ion channel gating likely to depend strongly on neuron type. An important 
consequence of stochastic gating of ion channels may be that it causes dendritic 
neurons to integrate synaptic inputs probabilistically, rather than in the all or nothing 
fashion predicted by deterministic models.

24.1  Introduction

Neural circuits are computational devices. Increasing experimental evidence indi-
cates that key neural computations involve biochemical and electrical signals that 
are localized to subcellular compartments such as synapses and dendrites. In very 
large compartments, such as the cell soma, biochemical and electrical signaling is 
mediated by many thousands of molecules and is typically reliable, with fluctua-
tions that are small relative to the signals generated. However, many neural compu-
tations take place in smaller subcellular compartments, such as dendrites, in which 
relatively few molecules mediate biochemical and electrical signaling. Because 
molecular reactions are stochastic, signaling at the subcellular level may therefore 
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be unreliable. While the consequences of this stochasticity have been overlooked in 
many studies, recent theoretical evidence suggests that stochastic effects may 
fundamentally shape computation in neural circuits. Here, we will address the influ-
ence on neural computations of stochastic gating of ion channels found in dendrites. 
Other recent work has addressed consequences of stochastic biochemical signaling 
including molecular diffusion, probabilistic biochemical reactions, and stochastic 
gene expression (Raj and van Oudenaarden 2008; Bhalla 2004a, b).

We will address three questions. How can the impact of stochastic ion channel 
gating on dendritic computation be predicted? What are the effects of stochastic 
gating of dendritic ion channels on neuronal membrane potential dynamics? Does 
unreliability of signaling, particularly by stochastic dendritic ion channels, have 
functional consequences for computations carried out by neurons? We will first 
review basic principles of ion channel gating and theoretical considerations for the 
impact of stochastic ion channels in dendrites. We will highlight practical difficul-
ties in simulating stochastic ion channel gating in dendrites and review new simula-
tion tools that solve many of these difficulties. We will then show how these tools 
reveal influences of dendritic morphology on the functional impact of stochastic ion 
channel gating and how this stochastic gating leads to probabilistic modes of 
dendritic communication. Finally, we will suggest key areas for future research.

24.2  Stochastic Gating of Dendritic Ion Channels

Cells generate electrical signals by opening and closing of ion channels that selec-
tively conduct specific ions. Some of these ion channels are sensitive to the mem-
brane voltage (voltage-gated ion channels) whereas others are influenced by 
neurotransmitters (ligand-gated ion channels). The resting membrane potential of 
most neurons is determined primarily by leak potassium channels, while the rapid 
depolarization of an action potential is due to opening of voltage-gated sodium 
channels. Fast excitatory synaptic transmission typically involves opening of ligand- 
gated ion channels that selectively conduct sodium and potassium ions, while fast 
inhibitory transmission is typically through ligand-gated ion channels that selec-
tively conduct chloride ions. In almost all models of electrical signaling in neurons 
the properties of single ion channels are not accounted for. Instead, electrical signals 
are modeled as arising from macroscopic conductances that represent the collective 
behavior of large populations of ion channels (Hodgkin and Huxley 1952; Hines 
and Carnevale 1997). In these models, conductances change smoothly over time 
and react deterministically to the model’s voltage dynamics, while ion channels are 
assumed to be continuously distributed in the cell membrane rather than localized 
to particular points in space.

These assumptions are in contrast to data from patch-clamp recordings which 
show that macroscopic conductances are mediated through opening and closing of 
many single ion channels (Neher and Sakmann 1976). If the behavior of a single ion 
channel is recorded in stationary conditions, its conductance is not constant, but 
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instead jumps rapidly between discrete closed and open states (Fig. 24.1a). Typically 
the open states of single ion channels have conductances from <1 pS to as high as 
150 pS (Hille 2001). Stimuli that modulate macroscopic ionic conductances usually 
do so not by modulating the single channel conductance, but by influencing the 
probability that single channels will be in their open state. For example, changes in 
membrane potential influence voltage-gated ion channels by modulating the prob-
ability of their opening. As a result, a single ion channel generates unpredictable 

a b

c

Fig. 24.1 Examples of fluctuating currents from simulated Hodgkin–Huxley potassium channels.  
(a) A single channel shows a fluctuating conductance (top, solid trace) by opening and closing ran-
domly even when subject to a stationary voltage (bottom) at a fixed open channel probability (middle). 
The equivalent deterministic conductance is also plotted (top, dashed trace). (b) The channel 
responds to a depolarizing voltage step (bottom) with an elevated open probability (middle). 
Notably, the conductance response (top) is different on each trial (sequential rows) despite an iden-
tical stimulus. (c) The conductance response (top four traces) to a voltage stimulus (bottom trace) 
is less noisy for larger ion channel populations. For this illustration, single channel conductances 
were scaled inversely to channel number in order to normalize total conductance amplitudes
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step-like responses to a repeated stimulus (Fig. 24.1b). In contrast, the responses of 
large populations of ion channels are predictable and show relatively little trial-to- 
trial variability (Fig. 24.1c). A key question then is to what extent the variability 
arising from stochastic ion channel gating influences neuronal function and to what 
extent it should be included in models of neuronal signaling. Before addressing 
this question we consider the properties of single ion channels found in dendrites of 
central neurons.

Cell-attached patch-clamp recordings and antibody labeling data demonstrate 
localization of voltage-gated ion channels to dendrites of many neuron types 
(Spruston 2008; Magee 2000; Johnston et al. 2003; Reyes 2001; Nusser 2009). The 
estimated densities of channels in dendritic membrane range from fewer than 1 μm−2 
to greater than 500 μm−2 (Kole et al. 2006; Engel and Jonas 2005; Chen and Johnston 
2004). In cortical pyramidal neurons dendritically located voltage-gated Na+ and K+ 
channels support propagation of action potentials in anterograde and retrograde 
directions in the dendritic tree. Hyperpolarization-activated cation channels (HCN 
channels), which mediate the hyperpolarization-activated current Ih, and some other 
K+ channel types, for example mediating the A current, have little influence on 
action potential propagation, but instead influence integration of synaptic responses 
(Robinson and Siegelbaum 2003; Magee 2000; Wahl-Schott and Biel 2009; 
Johnston and Narayanan 2008). Most electrophysiological investigations of den-
dritic ion channels have relied on macroscopic currents that reflect gating of many 
ion channels within the patch of recorded membrane (Hoffman et al. 1997; Johnston 
et al. 2003), but single channel recordings from dendrites have been reported in a 
few studies (Chen and Johnston 2004; Magistretti et al. 1999; Magee and Johnston 
1995; Bittner et al. 2012). These studies reveal the kinetics of dendritic ion channel 
gating and show that macroscopic dendritic conductances can be explained by 
changes in single channel open probability. Typical single channel conductances of 
dendritic voltage-gated Na+ and K+ channels are 15–30 pS (Chen and Johnston 
2004; Magee and Johnston 1995). In contrast, the single channel openings of den-
dritic HCN channels have not been observed directly, but have been inferred from 
noise analysis to be less than 1 pS (Kole et al. 2006). The reasons for this diversity 
of single channel conductances are not yet clear, but a possibility raised by the work 
we describe below is that it enables fine tuning of the functional consequences of 
stochastic ion channel gating.

24.3  Theoretical Considerations for Impact of Stochastic 
Dendritic Ion Channels

Are deterministic models sufficient to explain dendritic computation? Or are there 
circumstances in which it is necessary also to take account of stochastic gating of 
single channels? We first address these questions by examining a simple model. 
Consider a population of N stochastically gating ion channels in a cell membrane, 
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each with the same open probability p and single channel current i. The mean 
current through this population of channels is:

 I iNp=  

In a deterministic model the current flowing through these channels is always 
equal to the mean current. In contrast, for real populations of channels, and for 
models that account for their stochastic opening and closing, the actual population 
current fluctuates around the mean value, hence generating electrical noise around 
the mean signal. The standard deviation of these current fluctuations is a natural 
measure of the amplitude of this noise, and is given from binomial statistics as:

 
s = −( )i Np p1 .

 
This equation leads to a number of predictions. First, the absolute amplitude of 

noise is maximal when p = 0.5, and minimal when p = 0 or p = 1. Below action 
potential threshold, most ion channels in the nervous system have open probabilities 
less than 0.5. In this range, increasing the open probability will increase the current 
fluctuations. Because for many ion channels p increases upon depolarization (Hille 
2001), this suggests that the absolute amplitude of ion channel noise will increase 
with depolarization. In contrast to the absolute amplitude, the relative amplitude of 
fluctuations, when defined as the standard deviation of the current divided by its mean,

is proportional to ( )1− p

p
. Because this quantity decreases with increasing p,

the relative amplitude of fluctuations usually decreases upon depolarization. Second, 
because the standard deviation is proportional to N , the absolute amplitude of 
current fluctuations will be greater for larger populations of ion channels. On the 
other hand, because the mean current is proportional to N, the relative amplitude of 
current fluctuations will decrease for larger populations of ion channels. Third, 
larger single channel currents will also lead to greater amplitude current fluctuations 
(both absolutely and relatively). Because single channel currents can differ by three 
or more orders of magnitude between channel types, both because of differences in 
single-channel conductances and differences in reversal potentials (Hille 2001), this 
could lead to considerable diversity in the impact of stochastic ion channel gating.

How will current fluctuations from the ion channel populations influence mem-
brane potential dynamics? When current flows through an ion channel it can modify 
the membrane potential by charging or discharging the membrane capacitance or it 
can flow axially to other parts of the cell (Rall 1959, 1962). The functional impact 
of stochastic ion channel gating therefore depends not only on the properties of 
stochastic currents, but also on the electrical properties of the cell in which they take 
place. The cell membrane’s parallel capacitance and resistance act as a low-pass 
filter—they preferentially attenuate high frequency components of membrane cur-
rents. The product of the capacitance and resistance determines the time constant of 
filtering, while the resistance sets the amplitude of membrane potential changes. 
The low pass filter characteristics of the membrane suggest that current fluctuations 
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from ion channels with faster gating kinetics will be more attenuated than those 
from channels with slower gating kinetics (DeFelice 1981). This prediction is 
confirmed by simulations comparing channels with different physiological gating 
kinetics (Cannon et al. 2010). In addition to membrane properties, the cytoplasmic 
resistivity will influence the axial flow of ionic currents. Because axial flow of 
current is determined by axial resistance, membrane resistance and membrane 
capacitance throughout a cell, the cell’s morphology and the spatial arrangement of 
the cell’s compartments influences both the local and distal impact of stochastic 
current fluctuations. Finally, the cell’s eventual voltage dynamics will also depend 
on its entire complement of ion channels, and on the cell’s level of depolarization. 
For example, in most cells near resting potential small voltage transients are damp-
ened and quickly decay back to rest. In contrast, at membrane potentials nearer to 
spike threshold the voltage dynamics become nonlinear. In this region, small volt-
age fluctuations from channel noise can be quickly amplified by the macroscopic 
dynamics, leading to large amplitude transients or oscillations (White et al. 1995, 
1998). If the fluctuations are large enough, they may even trigger action potentials 
(Skaugen and Walloe 1979; Johansson and Arhem 1994). Hence, microscopic fluc-
tuations from stochastic channel gating can have large macroscopic consequences 
(Schneidman et al. 1998; Dudman and Nolan 2009; Faisal et al. 2005). This sensi-
tivity to noise near threshold reflects a general property of all nonlinear excitable 
systems near a bifurcation (Lindner et al. 2004).

In summary, a number of factors may determine the influence of stochastic ion 
channel gating on neuronal computation. Together, single channel conductance, the 
number of channels and their open probability determine the amplitude of current 
fluctuations that arise from a population of channels. The impact of these current 
fluctuations on membrane potential dynamics is determined by local membrane 
capacitance, axial current flow, and presence of other ion channels. This suggests 
that in principle stochastic ion channel gating could profoundly influence mem-
brane potential dynamics, particularly in small electrically isolated structures. 
However, because many of the properties that will determine the influence of 
stochastic ion channel gating vary both within and between cells, predicting the 
functional consequences of stochastic ion channel gating requires models that 
account for these details in a particular neuron.

24.4  Simulation of Stochastic Ion Channels  
in Complex Neuronal Morphologies

The computational demands of accurately simulating model neurons in which all 
ion channels gate stochastically have until recently made it impractical to carry out 
detailed investigations of the consequences of stochastic ion channel gating. The 
scale of this challenge is illustrated by the fact that a single neuron has on the order 
of one million ion channels, each at a different location on its membrane, and 
because each channel gates independently and stochastically, any channel might 
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switch state at any moment in time. There are two different general approaches to 
this problem. Microscopic models describe individual ion channels as continuous- 
time Markov chains where stochastic transitions occur between discrete states. 
In contrast, stochastic differential equation (SDE) models describe ionic currents as 
the sum of a deterministic Hodgkin–Huxley-style component plus a stochastic noise 
component.

24.4.1  Microscopic Models of Ion Channel Gating

In microscopic descriptions each ion channel is considered a distinct object which 
can exist in one of several discrete states. These states typically correspond to dif-
ferent conformations of the ion channel protein. At least one of the states is “open” 
(the channel passes current), and at least one state is “closed” (the channel does not 
pass current). The channel is considered memoryless (the Markov property), so that 
the length of time the channel has spent in the present state has no bearing on its 
future behavior. Transitions between states are driven by thermal fluctuations, and 
because actual transition times are on the order of nanoseconds (Hille 2001), for 
modeling purposes they are usually assumed to be instantaneous. For voltage-gated 
ion channels, the membrane voltage influences the probability of transitions between 
states. For example, a Na+ channel will be more likely to switch to an open state 
upon depolarization. Most microscopic simulation methods use Monte Carlo tech-
niques. The most conceptually simple way to do this is to first, after choosing a 
small time step Δt, convert each transition rate, k, in a channel’s kinetic scheme to a 
transition probability, p by assuming p ≈ kΔt. Then, for each time step, a random 
number x between zero and one is drawn for each channel. If x < p, the state transi-
tion is performed. However, for realistic neuronal simulations this approach is pro-
hibitively expensive because it requires the generation of at least one random 
number for each ion channel at each time step. For example, if a neuron model 
containing one million two-state ion channels were to be simulated with a time 
step of 1 μs, then one millisecond of simulation time would require generation of
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1
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sm
 random numbers, each to be compared to transition probabilities,

in addition to the normal calculation of the voltage dynamics.
A solution to this problem comes from algorithms developed to accelerate simu-

lation of stochastic chemical reactions (Gillespie 1977, 2001; Cao et al. 2006). In 
early algorithms, following each channel transition random numbers are drawn to 
determine both when the next transition will occur, and which transition will occur 
(Skaugen and Walloe 1979; Chow and White 1996). Then the simulation steps for-
ward in time by the calculated interval and performs the corresponding state transi-
tion. Although this algorithm is exact, meaning that it has zero approximation 
errors, it does not scale well to many ion channels. More recently, we developed 
software called the Parallel Stochastic Ion Channel Simulator (PSICS) to enable 
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more efficient simulation of stochastic ion channel gating in spatially distributed 
neuron models (Cannon et al. 2010). This simulator, which is used for the studies 
described in detail here, includes several approaches to speed up simulations without 
compromising accuracy:

 1. It groups together the ion channels in each state per spatial compartment, 
enabling stochastic calculation of the numbers of channels making a certain 
transition instead of performing the calculation for each channel independently. 
This grouping is allowable because sufficiently nearby ion channels can be 
considered interchangeable from an electrical point of view. That is, they are 
subject to and influence the same local membrane potential.

 2. It uses a version of the tau-leap method (Cao et al. 2006), where multiple state- 
transitions are allowed within a single time step, even for a single ion channel. 
This allows for longer time steps and hence faster simulation. However, the 
changes at the end of the time step must be evaluated to make sure that voltage 
would not have changed so much during the time step that the assumption of 
fixed transition probabilities was unjustifiable.

 3. It ignores state transitions that are highly improbable, according to a specified 
threshold.

 4. It precomputes lookup tables for the state-transition probabilities over the antici-
pated voltage range.

When these approaches are combined, simulation of detailed and realistic 
compartmental models of neurons becomes possible in a reasonable period of time 
(Cannon et al. 2010).

24.4.2  Stochastic Differential Equation Models of Ion  
Channel Gating

The SDE approach for simulating ion channels was pioneered with the hope of 
providing faster simulation algorithms than the Monte Carlo techniques (Fox and 
Lu 1994; Fox 1997). In early descriptions, the membrane conductance gating 
variable dynamics were reduced to a Langevin equation:

 

d

d
, 

x

t
x x V t= −( ) − + ( )a b h1

 

where x is a given Hodgkin–Huxley gating variable, α and β are voltage-dependent 
transition rates, and η(V, t) is a zero-mean Gaussian noise term. Note that this is 
equivalent to the classic Hodgkin–Huxley description plus a stochastic noise term.

Although relatively fast to compute, in this form the algorithm shows poor 
approximation to the exact solutions, even in the limit of a large population of ion 
channels (Mino et al. 2002; Bruce 2009). This is because it does not accurately 
capture correlations in fluctuations between channel states (Bruce 2009; Goldwyn 
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et al. 2011; Linaro et al. 2011). In general, the difficulties in the SDE approach arise 
in deciding where to insert the noise term (as a current, conductance, or channel 
subunit fluctuation), deciding how the noise intensity should scale as voltage 
changes, and deciding how to accurately account for temporal correlations in the 
noise. The primary discrepancies have only recently been resolved by modeling the 
noise statistics based on single channel properties rather than on channel subunit 
properties as in earlier studies (Goldwyn and Shea-Brown 2011). Despite these 
advances, further approximations in the SDE approach await resolution: for example, 
at present the noise statistics may lag the voltage dynamics during fast transients 
(Linaro et al. 2011). In addition, the relative speeds and approximation errors of 
modern SDE approaches versus modern Markov-chain simulation algorithms 
(Cannon et al. 2010) remain unquantified, making it unclear which approach is best 
for a given simulation problem. Indeed, SDE approaches are yet to be applied 
successfully to investigation of stochastic ion channel gating in dendrites.

24.5  Dendritic Morphology Determines the Influence  
of Stochastic Ion Channel Gating

Does stochastic gating of ion channels influence membrane potential dynamics in 
dendrites and what is the impact of dendrite morphology on the functional conse-
quences of stochastic ion channel gating? Previous simulations suggest that 
stochastic ion channel gating causes larger fluctuations in the membrane potential 
of dendritic neurons compared to spherical neurons of a similar surface area (van 
Rossum et al. 2003), but these simulations did not evaluate different dendritic struc-
tures or distinct neuron types. By developing software for efficient simulation of 
stochastic gating of ion channels in spatially extended model neurons, we have been 
able to address these issues directly (Cannon et al. 2010). To do so, we compared 
membrane potential activity of 29 reconstructed neurons corresponding to six 
different neuron types. To isolate the influence of neuronal morphology we inserted 
the same density of ion channels in the membrane of each simulated neuron. Ion 
channel models and distributions were implemented according to a previously 
published neocortical pyramidal neuron model (Mainen and Sejnowski 1996). The 
leak conductance was modeled as a mixture of voltage-independent Na+ and K+ 
channels with open probabilities of 0.7 and density of 0.016 μm−2. Active channels 
included fast Na+ channels (1 μm−2), non-inactivating K+ channels (0.05 μm−2), and 
high- voltage Ca2+ channels (0.15 μm−2). Because ion channels distributions were 
identical across neurons, differences in voltage fluctuations must reflect differences 
in morphology.

We found that with these parameters stochastic ion channel gating caused the 
resting membrane potential of all simulated neurons to fluctuate with standard 
deviation up to 0.8 mV. This is in agreement with experimental measurement of 
voltage noise from cultured neurons (Diba et al. 2004) and from neurons in brain 
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slices (Jacobson et al. 2005). Comparison of voltage fluctuations at different locations 
along the dendrites of the simulated neurons reveals that the amplitude of the fluc-
tuations increases with distance from the soma (Fig. 24.2). Thus, stochastic gating 
of ion channels can contribute to the voltage noise in neurons and this noise is great-
est in more distal dendrites. When we compared voltage fluctuations between dif-
ferent neuron types we found striking differences. For example, noise from 
stochastic ion channel gating was relatively small in simulated Purkinje cells and 
parvalbumin positive interneurons, but was much larger in CA1 pyramidal neurons 
(Fig. 24.2). This suggests that the impact of stochastic gating is sensitive to differ-
ences in morphology that are found between different neuron types. These effects 
are likely mediated both by differences in the degree of axial charge flow and differ-
ences in local membrane impedance profiles across neural morphologies (as dis-
cussed earlier). Both of these properties are influenced by dendritic diameter, length 
and branching pattern (Koch 1999).

To test the effects of channel kinetics on voltage noise we reduced the time con-
stants for the gating of leak channels tenfold. This manipulation changes only the 
rate of switching between open and closed states while leaving the mean fraction of 
open channels unaltered. This change caused the amplitude of the voltage fluctua-
tions to increase approximately threefold, but dependence of noise on dendritic 
location and differences between neuron types were maintained, indicating that in 
realistic neuronal morphologies channel kinetics will influence the amplitude of volt-
age fluctuations resulting from stochastic ion channel gating (Cannon et al. 2010).

a b

Fig. 24.2 The impact of stochastic ion channel gating depends on neuronal morphology. (a) 
Example resting membrane potential traces (right) from three model neurons with dendritic 
arbours from different cell types (left). Traces are from soma and at a dendritic location 300 μm 
from soma. (b) Standard deviation of the resting voltage for 29 reconstructed neurons from six 
different cell types. Greyscale level indicates dendritic distance from soma. Note that the ampli-
tude of fluctuations depends on cell type, and is generally larger in the dendrites than at the soma. 
Adapted from Cannon et al. (2010)
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Together these simulations demonstrate that neuronal geometry critically determines 
the influence of stochastic gating on membrane potential dynamics. They also show 
that geometry and ion channel properties interact, with slow gating ion channels 
causing larger membrane potential fluctuations. While these results demonstrate 
that models which include physiologically realistic ion channel and membrane 
properties lead to consistent functional effects of stochastic ion channel gating, the 
sensitivity of these effects to differences in morphology and channel properties sug-
gests that predictions for specific cell types should be treated with care. In particu-
lar, these results indicate the importance of obtaining accurate reconstructions of 
neuronal morphology and more data about the single channel properties of neuronal 
ion channels.

24.6  Stochastic Dendrites Integrate Probabilistically

How might stochastic gating of ion channels influence neuronal computations? To 
address this question, it is important to establish the effects of stochastic channel 
gating on transformation of synaptic input into an action potential output. We there-
fore adopted a detailed model of a hippocampal CA1 pyramidal neuron that is well 
constrained by experimental data, but has previously only been simulated using 
deterministic ion channels (Jarsky et al. 2005). We implemented the model in a fully 
stochastic configuration and further refined it by adding a realistic distribution of 
HCN channels, which mediate the hyperpolarization activated current (Ih) (Cannon 
et al. 2010). These channels are expressed in an increasing gradient from soma to 
distal dendrites (Magee 1998; Golding et al. 2005; Lorincz et al. 2002; Nolan et al. 
2004). We then investigated the response of the model to activation of 1,503 excit-
atory synaptic inputs located randomly throughout the basal and apical dendrites. 
The activity of each input followed a Poisson process and the amplitude of the 
inputs was adjusted so that the firing rate of the stochastic neuron was approxi-
mately 20 Hz. We chose these parameters to mimic activity levels that might occur 
during active theta states in the hippocampus. We reasoned that if stochastic gating 
of ion channels influences neuronal computation then switching the model between 
stochastic and deterministic configurations should modify its transformation of syn-
aptic input into spike output.

When we compare responses to repeated presentation of the same pattern of 
synaptic inputs, we find as expected that the deterministic version of the model 
produces identical responses on each trial. In contrast, the version of the model in 
which all ion channels gate stochastically generates responses that differ from trial 
to trial (Cannon et al. 2010). In general action potentials occur at similar times in 
each trial, but unlike the deterministic model where the probability of spiking at a 
particular time point is either one or zero, in the stochastic model the probability of 
spiking at any time point varies between one and zero (Fig. 24.3). At times when 
spikes are triggered in the deterministic model they are “dropped” on a fraction of 
trials by the stochastic model, whereas at other times at which spikes are absent in 
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the deterministic model “extra” spikes occur in the stochastic model. We quantified 
the reliability of each spike as the fraction of trials on which it occurred (Fig. 24.3c). 
Stochastic ion channel gating also introduces considerable jitter into the timing of 
action potentials, quantified as the standard deviation of the spike timing (Fig. 24.3d). 
Whereas we find that the probability of spike initiation is modified when ion 
channels gate stochastically, the waveform of action potentials does not differ. 
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Fig. 24.3 Channel noise affects synaptic integration in a morphologically realistic neuron. (a) 
Morphology of the CA1 neuron model. (b) Example voltage traces from deterministic model 
(grey), and stochastic trials 1, 2, and 3 (black). Plus symbols mark “dropped” spikes and minus 
symbols mark “extra” spikes occurring on stochastic trials when compared to the deterministic 
trial. (c–d) Reliability (c), jitter (d) for each spike event. (e) Spike count for each trial in (f). (f) 
Raster plot of action potential times recorded at soma during 1 s of model time. One deterministic 
trial in grey squares and 50 stochastic trials in black ticks. Adapted from Cannon et al. (2010)
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This is in agreement with previous simulations of the responses of stochastic 
neurons which used injected current rather than distributed synaptic input to initiate 
action potentials (Diba et al. 2006). Together, these data predict that in real neurons, 
stochastic ion channel gating will cause responses to a given synaptic input to be 
probabilistic. This is in contrast to deterministic simulations which generate identi-
cal all-or- nothing responses to repeated presentation of the same input.

Where in the neuron does the variability in spiking originate from and do differ-
ent types of ion channel, or ion channels found at different locations, preferentially 
contribute to the functional effects of stochastic ion channel gating? By recording 
the membrane potential simultaneously in each primary dendrite of the model 
neuron (~20 μm from the soma), the origin of the “extra” and “dropped” spikes can 
be addressed. This reveals that both “extra” and “dropped” somatic spikes are pre-
ceded by all-or-nothing dendritic depolarizations indicating that they originate from 
dendritic spikes that propagate towards the soma (Fig. 24.4).

To address the roles of particular ion channels we simulated models in which 
subsets of ion channels gate stochastically while the remaining ion channels gate 
deterministically. We found that stochastic gating of any single ion channel type 
causes “dropped” and “extra” spikes, but no single ion channel type alone could 
fully account for all of the “dropped” and “extra” spikes in the fully stochastic 
model. Stochastic gating of either Na+ channels, A-type or delayed rectifier potas-
sium channels alone caused more than 50 % of the number of “dropped” and “extra” 
spikes in the fully stochastic model, indicating strong redundancy in the contribu-
tion of particular ion channel types to probabilistic integration of synaptic inputs. 
When only axonal channels gated stochastically then the number of “dropped” and 
“extra” spikes was reduced by approximately 50 %, whereas when only dendritic 

a bFig. 24.4 Probabilistic 
dendritic events underlie 
probabilistic axonal firing 
from stochastic ion channel 
gating. Rows are example 
voltage traces from 
deterministic (top), stochastic 
trial 1 (middle), and 
stochastic trial 2 (bottom) 
simulations from Fig. 24.3. 
Extra (a) and dropped (b) 
axonal action potentials from 
probabilistic dendritic spikes. 
Adapted from Cannon et al. 
(2010)

24 Stochastic Ion Channel Gating in Dendritic Neurons



410

ion channels gated stochastically the number of “dropped” and “extra” spikes was 
similar to in the fully stochastic model, indicating that stochastic gating of dendritic 
ion channels is particularly important for probabilistic integration of distributed 
synaptic inputs.

Together, these data suggest that stochastic gating of dendritic ion channels may 
have profound effects on single neuron computations. In contrast to deterministic 
models where the same synaptic inputs produce the same output, when ion channels 
gate stochastically then the response to synaptic inputs is probabilistic. The consid-
erable redundancy revealed by substantial numbers of “extra” and “dropped” spikes 
when only a single channel type gates stochastically, suggests that the basic results 
are robust to the exact choice of parameters. Indeed, because our choice of simula-
tion parameters is quite conservative, it is perhaps more likely that in real neurons, 
ion channels with a greater conductance would further increase the impact of 
stochastic gating.

24.7  Other Sources of Electrical Noise in Neurons

Before discussing further functional implications of these results, it is worth consid-
ering the likely influence of noise from stochastic ion channel gating relative to that 
of other potential neuronal sources of noise. In general these other noise sources can 
be divided into two categories: synaptic and non-synaptic. Non-synaptic sources of 
noise include thermal or “Johnson” noise, and ion channel shot noise. Johnson noise 
arises from thermal fluctuations in the potential difference across a conductor (e.g., 
the cell membrane) and is calculated to be negligible for neural membranes (Lecar 
and Nossal 1971; Manwani and Koch 1999). Ion channel shot noise is generated by 
momentary fluctuations in the flow of discrete ions, but the high rate of ion flow in 
physiological currents (~106/s) implies that shot noise is likely negligible. Thus 
stochastic channel gating should be considered the dominant non-synaptic source of 
electrical noise. Synaptic sources of variability are numerous and include probabi-
listic presynaptic release of neurotransmitter vesicles, heterogeneous location of 
vesicle release within synapses, heterogeneity in the size of vesicles, diffusion of 
the neurotransmitter, stochastic binding of neurotransmitter to postsynaptic recep-
tors, and stochastic gating of ionotropic receptors. These factors may lead to sub-
stantial variability in synaptic currents (Franks et al. 2003; Lisman et al. 2007; 
Faisal et al. 2008) and it will be important to establish their influence relative to that 
of stochastic ion channel gating.

24.8  Summary and Future Directions

Given that the functional consequences of stochastic ion channel gating are dif-
ficult to predict, but might in principle affect neuronal computation, why have 
they not received more attention? The success and adaptability of the original 
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Hodgkin–Huxley formalism for describing membrane conductances compared with 
the relative scarcity of studies demonstrating physiologically relevant implications 
of stochastic ion channel gating has justified use of deterministic approaches to 
understanding neuronal computations. However, the neuronal compartments where 
stochastic effects are likely to be greatest, such as dendritic branches, spines, and 
synaptic terminals, are also the least accessible to experimental analysis. Hence this 
confidence in deterministic frameworks may turn out not to be supported by the 
data. Of equal importance, the computational demands of simulating neurons with 
fully stochastic ion channel models have until recently made it impractical to carry 
out detailed simulations of morphologically realistic models of neurons in which all 
channels gate stochastically.

Further functional consequences of stochastic channel gating in dendrites may 
remain to be discovered. Questions for future research include:

• What are the implications of channel noise for neural coding? Several theoretical 
studies have now shown that stochastic ion channel gating can induce unreliability 
in neural responses, and imprecision in response timing (Schneidman et al. 1998; 
Dudman and Nolan 2009; Cannon et al. 2010). If information is encoded in the 
timing of spike sequences, then stochastic channel gating might set an upper 
limit on the information rate because spike timing cannot be more precise than 
the inherent jitter. If information were instead encoded in spike rates, then chan-
nel gating might also limit information coding by adding noise to any spike count 
over a short time interval (Fig. 24.3e). Alternatively, the probabilistic synaptic 
integration caused by stochastic channel gating may be used by the nervous sys-
tem in some beneficial way. For example, one possibility is that channel noise is 
used to implement a “sampling” process where fluctuations in a neuron’s firing 
pattern reflect uncertainty in the brain’s inferences about the external world 
(Fiser et al. 2010; Buesing et al. 2011).

• How big an impact do the fluctuations from stochastic channel gating have 
relative to the contributions from other sources of electrical noise? For example, 
it is possible that probabilistic vesicle release will prove at least as significant. 
The answer to this question may strongly depend on cell type specific factors 
such as ion channel composition, dendritic morphology, and synaptic properties.

• Where in the cell does stochastic ion channel gating have the greatest impact? 
Our simulation results suggest that stochastic ion channel gating is of particular 
importance for dendritic computations. This is consistent with general biophysi-
cal considerations which suggest that voltage noise from channel fluctuations 
will be largest when channel numbers are small and the local membrane imped-
ance is large. Indeed we expect that channel noise will have greatest impact in 
small protrusions such as dendritic spines, which to our knowledge have not yet 
been considered in fully stochastic simulations.

• Does stochastic channel gating introduce unreliability into intracellular bio-
chemical signaling? Several voltage-gated ion channels, particularly those with 
a high permeability to calcium, serve dual roles as mediators of electrical and 
biochemical signaling. Because these ion channels gate stochastically, down-
stream sensors of these signals must also be activated stochastically, unless they 
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act to integrate the biochemical signals over a slower timescale to average out 
stochastic fluctuations. In particular, local Ca2+ microdomain signaling may be 
drastically affected by stochastic channel gating because Ca2+ microdomains are 
believed to require a few hundred microseconds to reach their steady-state 
concentration (Neher 1998)—a timescale comparable to the switching times of 
many dendritic ion channels (Magee and Johnston 1995).

In conclusion the ability to simulate stochastic ion channels distributed through 
neurons with arbitrary morphology has enabled direct comparison between realistic 
models of synaptic integration. The results indicate that in principle stochastic 
gating of ion channels has profound effects on neuronal computation, converting 
neurons from all-or-nothing to probabilistic integrators of synaptic input. Key chal-
lenges for the future are to establish the range of neuronal computations that are 
influenced by stochastic ion channel gating and to determine the consequences for 
higher level models of neuronal computation. Addressing these challenges will 
require more detailed and accurate experimental data and further improvements in 
simulation methods to enable efficient stochastic simulation of whole neuronal cir-
cuits. A final challenge is to develop experimental tests that enable simulation-based 
predictions of the consequences of stochastic ion channel gating to be tested in 
experimental models (Dorval and White 2005).
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    Abstract     The physical basis of memory storage in the brain, the  memory engram , 
is a long-standing question in neuroscience, yet an established theory of its realiza-
tion is still missing. It is only recently that advances in genetic tools and cellular 
imaging have allowed the visualization of cellular correlates of learning and mem-
ory, thus beginning to uncover the rules that underlie the formation of new memory 
engrams in the brain. As data cumulate, memory formation appears to be a complex 
process that spans multiple layers, from the neural network down to the subcellular 
level. Dendrites in particular are suggested to play a central role, not only in the 
localized processing of incoming signals but also in controlling, both spatially and 
temporally, the plasticity of their synaptic connections. In this chapter, we discuss 
recent evidence regarding the formation of memory traces and their properties, pay-
ing special attention to the dendritic structure that underlies cellular memory 
engrams as well as the implications of these fi ndings for the development of cogni-
tive and theoretical models of learning and memory.  
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25.1         Introduction 

 Initial lesion studies that searched for the memory engram found that permanent 
memories are not stored in a particular location of the brain. Based on these early 
fi ndings, Lashley postulated the “theory of mass action” according to which the 
brain acts “as a whole” during learning and memory is not localized to a certain 
brain compartment (Lashley  1950 ). Since then, however, a large body of work has 
shown that at least some forms of new memories are directed or allocated to identifi -
able neurocircuits, which comprise the cellular substrate of memory engrams (Dash 
et al.  1990 ; Han et al.  2007 ,  2009 ; Quirk et al.  1995 ). The key mechanism underly-
ing the formation of such memory engrams, namely, the activity-dependent modifi -
cation of synaptic connections between neurons, was fi rst proposed by Donald 
Hebb in the 1940s (Hebb  1949 ). According to Hebb’s postulate, when a presynaptic 
neuron persistently causes the postsynaptic cell to fi re, then the connection between 
them is strengthened. A few decades later, the phenomena of long-term potentiation 
(LTP) (Bliss and Lomo  1973 ) and long-term depression (LTD) (Stent  1973 ) of syn-
aptic effi cacy were proposed as the most plausible mechanisms for implementing 
Hebbian learning. According to this connectionist view of memory formation, the 
engram is stored in the strengths of synaptic contacts between neurons, which are 
modifi ed in an activity-dependent manner. McCulloch and Pitts were the fi rst to 
propose a mathematical model of a neuronal network in which neurons are treated 
as point processes (completely void of a dendritic tree) and in which associative 
memories are stored in the connection strengths between neurons (McCulloch and 
Pitts  1943 ). Despite the theoretical appeal of artifi cial neural networks and their 
applications as generic function approximators (Hornik et al.  1989 ), their failure to 
account for the processing performed by dendritic trees renders them less represen-
tative models of brain function (Hinton  1989 ). 

 In single-compartment neural network models, dendritic processes are either 
completely ignored or treated as passive conduits whose function is to transfer 
incoming stimuli to the soma, which, in turn, acts as the only nonlinear unit in these 
point neuron models. Several studies in recent decades, however, have established 
that dendritic subunits can act as local processing devices which contribute to mem-
ory encoding and recall by actively and dynamically reshaping their local response 
function as well as the output of the cell (Branco and Häusser  2010 ; Gómez González 
et al.  2011 ; Lavzin et al.  2012 ; Losonczy and Magee  2006 ; Pissadaki et al.  2010 ; 
Poirazi et al.  2003a ,  b ; Polsky et al.  2004 ; Sidiropoulou and Poirazi  2012 ; Spruston 
 2008 ). Additionally, synaptic plasticity mechanisms can interact with local dendritic 
nonlinearities, allowing dendritic subunits to store complex patterns of multiple 
incoming stimuli via the use of local cooperative plasticity rules (Govindarajan et al. 
 2011 ; Makara et al.  2009 ; Sjöström et al.  2008 ; Spruston  2008 ). Thus, the connection-
ist view of memory storage where synaptic connections are the sole reservoir for 
memory storage must be revised to account for the new possibilities offered by active 
dendritic trees. In this book chapter we discuss recent fi ndings regarding memory 
formation, starting from the cellular level and stepping down towards the level of 
dendrites and spines, in an attempt to establish a link between activity-dependent 
dendritic modifi cations and the allocation of memories within neuronal circuits.  
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25.2    The Cellular Memory Engram 

25.2.1    Ensembles of Neurons Can Store Memories 

 Several studies have recently shown that memories are stored in specifi c neuronal 
ensembles in which neurons are recruited in a competitive manner, revealing for the 
fi rst time the cellular trace created during learning (Han et al.  2007 ,  2009 ; Josselyn 
 2010 ; Zhou et al.  2009 ). As discussed in the following section, this competitive 
recruitment of neurons into the populations containing the memory is subserved by 
the transcription factor cAMP response element-binding protein (CREB), whose 
overexpression interferes with neuronal excitability.  

25.2.2    The Role of CREB in Memory Allocation 

 CREB is a transcription factor that regulates a large number of genes and has mul-
tiple functions in different organs, along with a well-studied role in neuronal plastic-
ity. CREB was fi rst associated with memory in Aplysia (Dash et al.  1990 ), but 
knockout mutations in mice also cause profound memory defi cits and block the late 
phase of LTP consolidation (Bourtchuladze et al.  1994 ). Conversely, increasing 
CREB levels enhances learning in general (Josselyn et al.  2001 ). At the cellular 
level, CREB overexpression in vivo increases hippocampal NMDA currents and 
LTP as well as dendritic spine density (Marie et al.  2005 ), while at the network 
level, CREB plays a key role in memory allocation. Neurons that overexpress CREB 
before fear learning are three times more likely to be included in the ensemble of 
neurons that is activated during subsequent fear memory retrieval (Han et al.  2007 ). 
Importantly, despite the increased CREB levels, the size of the neuronal population 
that comprises the memory trace is kept constant, suggesting that fear memory allo-
cation is a competitive process in which neurons with increased CREB levels are 
preferentially recruited over those with baseline levels. Moreover, fear memory 
is lost if CREB-overexpressing cells are reversibly or irreversibly inactivated 
(Han et al.  2009 ; Zhou et al.  2009 ) showing that CREB-expressing cells are the ones 
containing the memory engram. Finally, experiments involving local and acute 
expression of CREB have demonstrated that CREB is suffi cient to rescue spatial 
memory in the hippocampus (Sekeres et al.  2010 ). The mechanism via which CREB 
infl uences memory allocation is postulated to be the ensuing increase in the excitabil-
ity of the infected cells. This is evidenced by the lower action potential threshold and 
afterhyperpolarization current of CREB-overexpressing cells, which are proposed 
to facilitate plasticity during fear memory induction, thus increasing the probability 
of being included in a memory trace (Silva et al.  2009 ; Zhou et al.  2009 ). 

 Corroborating these memory allocation studies, a number of experiments con-
fi rm the existence of a cellular basis of memory as expressed at the behavioral level. 
Using a viral vector on transgenic mice, Liu et al. selectively labeled the neurons 
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activated during contextual fear training with light-activated ChR2 ion channels. 
Subsequent reactivation of these labeled neurons with light alone induced a behav-
ioral fear response (Liu et al.  2012 ). Garner et al. used transgenic mice to introduce 
an excitatory receptor exclusively activated by designer drug (DREADD) in cells that 
are activated in a specifi c context. First, they expressed the DREADD in the popula-
tion of cells that were spontaneously active in one context (ctxA). Subsequently, 
that population was artifi cially activated via DREADD ligand injection, while mice 
were being fear conditioned in a second context (ctxB). This manipulation resulted in 
the formation of a hybrid fear memory that required both the chemical and context 
stimulus in order to be expressed (Garner et al.  2012 ). 

 These fi ndings establish that memory engrams are stored in specifi c cellular 
populations for certain types of memory and serve as models for future studies of 
more complex forms of memory. However, the subcellular structure of the memory 
engram remains unknown. In the following sections we review evidence from 
numerous studies that highlight the potentially critical role of dendrites in regulating, 
in a spatially and temporally restricted manner, incoming signals and synaptic 
plasticity, both of which are prerequisites for the formation of memory engrams.   

25.3    The Subcellular Structure of the Memory Engram 

25.3.1    Dendrites Play a Key Role in Memory Allocation 

 The localization of memory traces in sparse neuronal subpopulations reveals only 
the higher level of its multilayered structure. Long-term potentiation and depres-
sion, which are considered the correlates of Hebbian memory storage, act at the 
level of individual synapses. As the majority of excitatory synapses to neocortical 
pyramidal neurons terminate on their dendritic tree (Larkman  1991 ), dendrites 
provide an environment rich in biophysical mechanisms that affects the subcellular 
structure of engrams. Thus, plasticity mechanisms acting at both the cellular and the 
dendritic levels need to be taken into account when investigating the formation of 
memory engrams. In the following paragraphs we review evidence regarding the 
computational capabilities of dendrites and argue that these elaborate structures are 
key players in the process that underlies memory formation.  

25.3.2    Computations in Dendrites 

 The passive properties of dendrites as well as their morphology endow them with 
certain nonlinear capabilities that enhance single-neuron computations compared to 
a linearly thresholded summation unit (point neuron). For example, Wilfrid Rall 
was the fi rst to propose that dendrites act as delay lines for incoming signals, 
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and this delay can be thought to “label” distinct inputs so that the order of activation 
of inputs can be refl ected in the time course of somatic voltage changes (Rall et al. 
 1967 ). This is because interactions between nearby inputs lead to sublinear summa-
tion of individual responses providing a saturating mechanism for depolarization. 
Additionally, shunting inhibition can have a divisive effect on excitatory signals 
(Fatt and Katz  1953 ), creating a computational mechanism at the dendritic level. 
Finally, the strong attenuation of incoming signals at dendritic branch points acts as 
a natural compartmentalizing factor (Branco and Häusser  2010 ). 

 On top of the nonlinearities provided by passive characteristics, dendrites can 
transform incoming signals through a plethora of active channels that are present in 
most pyramidal neuron types (Spruston  2008 ). These active mechanisms contribute 
to the generation of various types of dendritic spikes, local regenerative phenomena 
that may be critical to the induction of plasticity (Antic et al.  2010 ; Losonczy and 
Magee  2006 ; Polsky et al.  2004 ; Remy and Spruston  2007 ; Schiller et al.  2000 ; 
Stuart and Sakmann  1994 ). These active mechanisms also allow the integration of 
backpropagating action potentials and the forward propagation of dendritic spikes 
and thus may further contribute to plasticity induction and memory storage (Spruston 
 2008 ). As revealed in the following paragraphs, the contribution of dendritic 
functions in memory formation is an active line of research that is seeking to map 
the subcellular structure of memory engrams.  

25.3.3    Spatial Arrangement of Incoming Connections 

 A requirement for understanding the formation of memory engrams at the subcel-
lular level is to discover the structure and distribution of incoming synaptic inputs 
that terminate onto dendritic branches and how these properties are shaped by expe-
rience. By combining high-speed two-photon imaging with electrophysiological 
recordings, it has become possible to observe the arrangement of synaptic inputs in 
dendritic branches in vivo. It was found that the synaptic input to visual cortex neu-
rons that share the same orientation preference is widely distributed throughout the 
dendritic tree. Synaptic inputs of different orientation preferences are interspersed 
in the dendrites, without showing signs of regularity in the order with which syn-
apses are arranged in the dendritic branch (Jia et al.  2010 ). Similarly, in the barrel 
cortex of rats, whisker inputs activate a set of multiple “hot spots” in the dendritic 
arbor of single neurons, and each hotspot is activated stochastically with low prob-
ability (Varga et al.  2011 ). In the auditory cortex of mice, neighboring spines receive 
synaptic inputs coding for different and widely varying frequencies or ranges of 
frequencies without having an orderly arrangement in dendrites (Chen et al.  2011 ). 
Taken together, these results suggest that sensory afferent inputs are not orderly 
arranged in dendritic branches of the receiving neurons, but instead inputs with 
different sensory tuning appear to be randomly scattered in dendritic branches. 
This lack of order at the dendritic level may appear at odds with the well-known 
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observation that sensory cortical neurons have characteristic receptive fi elds and 
form orderly cortical maps in which receptive fi elds shift progressively between 
neighboring neurons. Additionally, as we shall see in Sect.  25.3.6 , a number of 
recent studies provide ample evidence in support of the functional clustering of 
synapses in dendritic branches, both in vitro and in vivo, which is also at odds with 
the aforementioned observations. One possible explanation for this discrepancy 
could be that the clustering of co-activated synapses within dendritic branches rep-
resents individual features (i.e., certain orientations or sound frequencies) that are 
not necessarily neighboring in the respective sensory space but appear simultane-
ously in sensory signals that are frequently experienced by the animal. Natural 
speech for example consists of repetitions of sets of frequencies that are not along a 
continuum. The coappearance of these distinct frequencies would result in the for-
mation of dendritic clusters of synapses with different sensory tuning, in agreement 
with the fi ndings of Chen et al. ( 2011 ).  

25.3.4    Structural Plasticity in Dendritic Spines 

 In cortical pyramidal cells, dendritic spines are the terminal loci where excitatory 
synaptic connections are formed and they are thought to be the elementary units of 
memory storage (Yuste and Denk  1995 ). In contrast to neuronal cells and dendritic 
arbors, which are relatively stable in mature animals (Trachtenberg et al.  2002 ), 
dendritic spines are continuously and spontaneously created in the brain (Grutzendler 
et al.  2002 ; Marrs et al.  2001 ), forming a physical substrate for the generation and 
elimination of synapses that subserves the functional rewiring of neuronal circuits 
(Matsuzaki et al.  2004 ). Single spines typically contain a single synapse which is in 
most cases the single point of axodendritic contact (Takahashi et al.  2012 ), and their 
volume has been found to correlate with the synaptic effi cacy in mature synapses 
(Matsuzaki et al.  2001 ). Spine dynamics are closely linked to the plasticity of syn-
aptic inputs that terminate on them. Glutamate uncaging experiments have demon-
strated that the size of a dendritic spine correlates with its functional effi cacy both 
in vitro (Matsuzaki et al.  2001 ) and in vivo (Noguchi et al.  2011 ). Thus, the spine 
enlargement that follows LTP results in greater functional EPSP (Matsuzaki  2007 ). 
Additionally, Ca 2+  transients are confi ned within the spine heads and are greater in 
thinner spines, allowing for independent plasticity induction in spines (Sabatini 
et al.  2002 ). 

 Using glutamate uncaging and calcium imaging it has become possible to 
observe spine dynamics during LTP consolidation. Late LTP facilitation between 
neighboring spines as well as the phenomenon of bidirectional synaptic tagging and 
capture has been observed recently (Govindarajan et al.  2011 ; Harvey and Svoboda 
 2007 ). This LTP facilitation takes place between spines that are less than 70 μm 
apart and is biased to occur within the same dendritic branch in the presence of Mg + , 
thus providing further credence to the hypothesis that the single dendritic branch is 
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the fundamental unit of learning and memory formation in the brain. Overall, these 
studies suggest that spine dynamics enable dendritic spines to rapidly encode 
incoming stimuli and suggest rules that govern their structural plasticity (Kasai 
et al.  2010 ). The tight relation between spine structural and functional plasticity 
renders spines the primary candidate sites of structural plasticity, in contrast to the 
structure of dendrites and axons which changes little during adulthood (Trachtenberg 
et al.  2002 ). Dendrites on the other hand contribute to the spine plasticity by con-
straining synaptic plasticity both in time and space and enabling cooperativity so 
that it occurs within specifi c dendritic compartments.  

25.3.5    Spatially Constrained Consolidation of LTP and LTD 

 The changes in synaptic effi cacy that accompany LTP after learning require at least 
two phases. The persistent change in synaptic effi cacy that lasts for more than a few 
hours is termed late LTP, in order to distinguish it from early LTP, a form of synaptic 
potentiation that lasts only for a few hours before decaying back to baseline levels 
(Reymann and Frey  2007 ). Late LTP has been found to be dependent on de novo 
protein synthesis. The production of these plasticity-related proteins (PRPs) may 
require the activation of nuclear genes, or alternatively, PRPs may be translated 
locally by the cellular machinery that resides in dendrites (Miller et al.  2002 ; Ostroff 
et al.  2002 ; Steward and Schuman  2007 ; Sutton and Schuman  2006 ). For this 
purpose a surprisingly rich set of mRNAs resides in the dendrites, enabling indi-
vidual dendritic compartments to translate PRPs at request, without depending on 
somatic translation (Cajigas et al.  2012 ). The local compartmentalization of the 
endoplasmic reticulum can restrict the spatial mobility of membrane cargo near 
spines and dendritic branch points (Cui-Wang et al.  2012 ). It is therefore possible to 
observe NMDA- and protein synthesis-dependent LTP in isolated dendrites of CA1 
neurons (Vickers et al.  2005 ). Dendritic protein synthesis appears to be specialized 
in producing proteins with synaptic functions rather than general housekeeping pro-
teins, for example key kinases (CaMKIIa, PKMz), cytoskeletal proteins (Arc, 
MAP2), and neurotransmitter receptors of the AMPA and NMDA families 
(Andreassi and Riccio  2009 ; Bramham  2008 ; Wang et al.  2010 ). Inhibition of both 
protein translation and mRNA transcription has been shown to disrupt the consoli-
dation of LTP (Kelleher et al.  2004 ). 

 According to the synaptic tagging and capture (STC) model, synaptic stimula-
tion during learning creates a temporary synaptic “tag” in the activated synapses, 
marking them as candidates for permanent potentiation (Frey and Morris  1997 ). 
The consolidation to late LTP and stabilization of the tagged synapses requires the 
presence of PRPs that must be available in the dendrite within a time window in 
order to be captured by the tagged synapses. These proteins may be produced via 
strong (late LTP inducing) synaptic stimulation or via pharmacological means. The 
PRPs can readily be captured by tagged synapses, even if their translation was not 
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induced by the tagging stimulus, leading to the phenomenon of cross-capture, 
whereby an early LTP- or early LTD-inducing stimulus is converted in its late form 
due to the presence of protein products generated by a previous or a subsequent late 
LTP/LTD-inducing stimulus (Frey and Frey  2008 ; Redondo and Morris  2011 ; 
Sajikumar et al.  2005 ). It has been suggested that such spatial and temporal limits 
lead to stable formation of engrams that consist of synapses which are organized in 
clusters within individual dendritic branches (Govindarajan et al.  2006 ).  

25.3.6     Clustering of Synaptic Inputs 

 The ability of dendrites to perform local computations has led to the proposal that 
dendritic branches should be considered as the fundamental processing unit of the 
nervous system (Branco and Häusser  2010 ). However, in order for neurons to 
exploit the additional processing capabilities afforded by dendritic spiking mecha-
nisms, their synaptic inputs need to be distributed spatially and temporally in a way 
that facilitates dendritic spike generation (Branco and Häusser  2010 ; Poirazi and 
Mel  2001 ). This proposed clustering of synaptic inputs is a crucial property that 
allows such facilitation (Poirazi et al.  2003b ) and has been shown to enhance neu-
ronal storage capacity (Poirazi and Mel  2001 ). Numerous recent studies support the 
synaptic clustering hypothesis, according to which inputs with functional similari-
ties are organized by plasticity in clusters within the dendrites of pyramidal neurons 
(Govindarajan et al.  2006 ; Makino and Malinow  2011 ; Poirazi and Mel  2001 ; 
Takahashi et al.  2012 ; Winnubst and Lohmann  2012 ). 

 Cooperative plasticity in dendrites provides a mechanism that favors the hypoth-
esis of synaptic clustering. Synaptic plasticity and its consolidation require changes 
in AMPA receptor distribution, remodeling of actin cytoskeleton, and protein syn-
thesis. These changes require NMDA signaling, Ca 2+ , numerous kinases (CaMKII, 
PKA, PKC, MAPK), phosphatases, as well as activation of molecular pathways 
such as Ras and Rap (Kennedy et al.  2005 ). The spatial extent of these molecular 
pathways can be limited. Ca 2+  concentration changes during synaptic stimulation 
are restricted to individual dendritic spines (Yuste and Denk  1995 ), and the spread 
of Ras activity is confi ned to the spines of a small dendritic region of 10 μm (Harvey 
et al.  2008 ). The spatial confi nement of synaptic plasticity consolidation may thus 
provide a mechanism that facilitates the clustering of potentiated synapses after 
learning. 

 Optogenetic techniques have recently made it possible to observe the localiza-
tion of synaptic inputs as they are formed both in vivo and in vitro and provide 
evidence that supports the functional clustering of synaptic inputs in the brain. In 
organotypic cultures of the developing hippocampal cortex, which is characterized 
by spontaneous bursts of activity, neighboring synaptic inputs tend to be more 
coactive, creating functional clusters. The observed clustering is eliminated by the 
NMDA antagonist AP5 or the Na +  channel blocker TTX, suggesting that it is a 
result of activity-dependent plasticity (Kleindienst et al.  2011 ). Using fl uorescently 
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tagged AMPA subunits in order to visualize AMPA traffi cking during normal 
 experiences in vivo, Makino and Malinow  2011  found that GluR1 subunits were 
enriched in groups of neighboring spines in the barrel cortex of mice as a result of 
experience but not during sensory deprivation, suggesting that synaptic potentiation 
occurs in groups of neighboring synapses that form clusters. Additional in vivo stud-
ies in the mouse barrel cortex revealed that neighboring spines in pyramidal neuron 
dendrites were signifi cantly co-activated and formed functional synaptic “assemb-
lets” which were spread out in the dendritic tree and were abolished in the presence 
of AP5 (Takahashi et al.  2012 ). Anatomical studies also found that synaptic clusters 
occur more often than random and that enlarged, mushroom-shaped spines appear 
more often in these clusters (Yadav et al.  2012 ). Finally, during a repetitive motor 
learning task, it was found that a third of the newly formed spines occurs in clusters, 
most of which contain two spines, and that clustered spines are more stable than 
nonclustered ones (Fu et al.  2012 ). Overall, there is strong accumulating evidence 
that the computationally advantageous clustering of functionally relevant synaptic 
inputs is indeed an organizing principle in the dendrites of multiple neuron types and 
may arise through experience-related cooperative plasticity that takes place in den-
dritic branches (Magee  2011 ). Therefore the rules underlying the formation of syn-
aptic clusters must be taken into account along with other types of synaptic plasticity 
in order to understand the processes leading to the formation of memory engrams.  

25.3.7    Plasticity of Dendritic Excitability 

 While structural plasticity can support the rapid encoding of the characteristics of 
incoming signals in synapses, other biophysical mechanisms can also regulate the 
effect of localized groups of synapses on neuronal output by modulating the excit-
able properties of dendrites. Dendritic spikes in CA1 pyramidal neurons for exam-
ple are strongly regulated by prior activity of the neuron via Na +  channel inactivation 
which can attenuate dendritic excitability globally in the cell (Remy et al.  2009 ). 
Changes in synaptic input on the other hand can lead to permanent alterations in the 
physiological properties and the distributions of ionic channels locally in dendrites 
(Zhang and Linden  2003 ). This form of intrinsic neuronal plasticity can be induced 
by electrical stimulation in vitro or through exposure to an enriched environment 
(Beck and Yaari  2008 ). Indeed, it has been shown that the properties of voltage- 
gated channels in the main apical dendrites of CA1 pyramidal neurons are altered 
after LTP-inducing excitatory stimulation. A-type currents are persistently down-
regulated leading to increased dendritic excitability (Frick et al.  2004 ). This type 
of plasticity can be induced locally via synaptic activity as is evidenced by the 
potentiation of branch coupling strengths: the repetitive elicitation of dendritic 
spikes leads to a slow but permanent increase in the coupling between local den-
dritic spikes and the soma in hippocampal CA1 cells through NMDA-dependent 
regulation of A-type potassium currents (Losonczy et al.  2008 ), an intrinsic plas-
ticity mechanism which has been termed  branch strength potentiation  (BSP). 
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Theoretical models have indicated that this form of branch-specifi c plasticity can 
enable self- organization of dendritic inputs in branches, in a way that can facilitate 
binding of input features in dendrites (Legenstein and Maass  2011 ). Experimentally, 
exposure of animals to an enriched environment leads to the enhancement of 
dendritic spike propagation of a subset of dendritic branches in rat CA1 neurons, a 
mechanism that might be utilized to store recent experiences in dendrites (Makara 
et al.  2009 ).  

25.3.8    Homeostatic Plasticity 

 Homeostatic mechanisms that are continuously active in a cell can also infl uence the 
formation of memory traces via the fi ne-tuning or the normalization of synaptic 
strengths both globally, at the cellular level, and locally, within a branch. Uncontrolled 
synaptic potentiation may lead to destabilization of neural network activity, a phe-
nomenon that is compensated by mechanisms that act to revert the neural fi ring rate 
back into physiological levels. This is achieved via multiple mechanisms affecting the 
intrinsic membrane excitability, presynaptic transmitter release, balance between 
excitation and inhibition, connectivity, and synaptic strengths (Turrigiano and Nelson 
 2004 ). Synaptic scaling, a slow process that readjusts synaptic effi cacies in order to 
keep the fi ring rate of the neuron within physiological limits, has been proposed to be 
such a homeostatic mechanism (Turrigiano  2008 ). Synaptic scaling has been observed 
at the level of network and individual neurons (Burrone et al.  2002 ) and more locally 
at the level of single synapses (Hou et al.  2011 ), indicating the ability of single syn-
apses to regulate their own synaptic potency. Multiple models of homeostatic scaling 
of plasticity have been proposed, suggesting either a whole-cell process (Ibata et al. 
 2008 ) or a set of rules that act locally between neighboring synapses (Rabinowitch 
and Segev  2008 ). Homeostatic plasticity of inhibition occurs in concert with homeo-
static enhancement of excitability, as evidenced by chronic TTX administration in 
the hippocampus (Echegoyen et al.  2007 ). Homeostatic mechanisms can also affect 
the probability of presynaptic vesicle fusion via enhanced calcium infl ux during 
spikes, effectively enhancing synaptic strength (Zhao et al.  2011 ). Finally, homeo-
stasis of intrinsic excitability can lead to upregulation of I h  and subsequent decrease 
of excitability during LTP induction in dendrites of CA1 neurons (Fan et al.  2005 ), 
while the opposite occurs after LTD induction (Brager and Johnston  2007 ). 

 The aforementioned homeostatic mechanisms act in parallel with plasticity 
induction and protein production to shape synaptic strengths during memory forma-
tion. They act on different and varying time scales, performing a continuous restruc-
turing of incoming connection strengths, local excitability, and dendritic coupling 
strengths as new memories are encoded in populations of cells. Their effect on 
memory formation and expression is not yet assessed experimentally due to the 
spatial and temporal constraints of experimental approaches. Therefore, computa-
tional models that incorporate plasticity rules of different temporal and spatial 
dimensions from the neural network down to the sub-dendritic level can provide 
insights that help understand their action.   
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25.4    Computational Modeling of Memory Allocation 

25.4.1    Computational Models of Dendritic Function 

 Historically, the role of dendrites in neuronal computation was fi rst approached com-
putationally due to the diffi culty of recording at the dendrite level. Neuronal models 
that take into account dendritic nonlinearities have assigned various possible func-
tions to dendrites, branches, and spines. Early studies assessed the signal- enhancing 
capabilities that arise when spines are considered as excitable structures (Segev and 
Rall  1988 ; Shepherd et al.  1985 ). Using a compartmental neuronal model Bartlett 
Mel showed that, by clustering its synaptic inputs, the neuron could implement a 
“sum of products” computation (Mel  1993 ). Later, Traub et al. ( 1994 ) used a CA3 
computational model to show that the timing of inhibition can control Ca 2+  concentra-
tion, thus crucially affecting synaptic plasticity. Agmon-Snir et al. ( 1998 ) studied the 
role of dendrites in neurons of the auditory brainstem and showed that dendrites 
enhance the cell’s coincidence detection properties. The receptive fi elds of complex 
cells can arise from integration of synaptic inputs from the LGN to dendrites of com-
plex cells, as shown in a pyramidal model cell (Mel et al.  1998 ). Dendritic clustering, 
dendritic spike generation, and their role in neuronal capacity have been examined in a 
series of computational studies of CA1 neurons, indicating that synapse clustering can 
greatly enhance the memory storage capacity of single neurons and additionally that the 
fi ring rate of CA1 neurons can be reliably approximated with a simpler model where 
dendritic branches are represented as point nonlinearities in a two-layer model of neu-
ronal cells (Poirazi et al.  2003a ,  b ; Poirazi and Mel  2001 ; Sidiropoulou et al.  2006 ).  

25.4.2     Computational Models of Plasticity and Memory 
Formation 

 Synaptic plasticity was traditionally modeled as an instantaneous procedure, mainly 
because the underlying biological processes incorporate large and complex net-
works of molecular interactions that are not yet fully understood (Ajay and Bhalla 
 2006 ; Bhalla and Iyengar  1999 ; Shouval et al.  2010 ; Smolen et al.  2006 ). Recently, 
more realistic yet simplifi ed phenomenological models of memory formation that 
examine the infl uence of multiple plasticity rules in memory consolidation have 
begun to emerge. Barrett et al. propose a stochastic state-based model of synaptic 
plasticity consolidation that can exhibit synaptic capture (Barrett et al.  2009 ). 
Clopath et al. implemented a model of spike timing-dependent synaptic plasticity 
and synaptic capture (STC) and found that synaptic consolidation is not indepen-
dent in synapses but acts as a whole-cell phenomenon (Clopath et al.  2008 ). These 
models studied plasticity at the cellular population level without taking into account 
dendritic plasticity. Dendritic plasticity has also recently been introduced to compu-
tational models of memory. In a rate coding network model that incorporates 
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multiple dendritic branches, dendritic compartmentalization was shown to enable 
accurate memory formation that is not sensitive to the intensity of the stimulus on 
the condition that dendritic inhibition is global or is coupled with somatic inhibition 
(Morita  2008 ). In another study, Legenstein et al. have incorporated branch-specifi c 
homeostatic plasticity rules in a neuron model with nonlinear dendrites and 
dendritic- branch strength potentiation rules. Their results show that dendritic non-
linearities and dendritic-branch plasticity induce a competition which allows the 
neuron to bind multiple input features within specifi c dendritic branches (Legenstein 
and Maass  2011 ). While dendritic plasticity models are just beginning to emerge, 
they provide valuable tools towards understanding the mechanistic underpinnings 
of memory at the dendrite level.   

25.5    Perspective 

 As we have briefl y seen in this chapter, the plasticity that underlies learning and 
memory acts at multiple levels and time scales (Fig.  25.1 ). Fast spine dynamics are 
shaped by synaptic activity, the dendritic branch excitation properties are regulated 
by activity and homeostatic mechanisms while neuronal excitability is affected by 
previous learning, levels of proteins and CREB, and, at the network level, regulation of 
inhibition. These parallel plasticity processes (structural and intrinsic excitability) 
are interrelated, as dendritic excitability properties are affected by synaptic activity 
and vice versa (Sjöström et al.  2008 ). An emerging view is that while single 
synapses can express plasticity independently, they are too weak to function by 
themselves as memory units. Instead, the dendritic branches, which appear to be 
relatively independent units of function and plasticity, are putatively the fundamental 
processing units of the brain (Branco and Häusser  2010 ; Govindarajan et al.  2006 ; 
Losonczy et al.  2008 ; Poirazi and Mel  2001 ). The observation of synaptic clusters 
implies that synapses act in groups, formed by cooperative plasticity and local 
protein synthesis, which exert a nonlinear effect in the output of the cell (Losonczy 
and Magee  2006 ). This effect is in turn regulated by intrinsic plasticity mechanisms 
that modify the excitability properties of dendritic branches where groups of 
synapses reside. This model entails that memory traces consist of clusters of func-
tionally related synapses that are transformed by the local biophysical properties of 
dendritic branches. According to this hypothesis, active dendrites serve as the units 
of plasticity governed by the temporal dynamics of the synaptic tagging and capture 
model, the plasticity of dendritic excitability and homeostatic mechanisms. New 
memories are directed to neuronal populations governed by the dynamics of 
CREB activation (Silva et al.  2009 ). CREB levels, in turn, are increased temporarily 
after memory induction (Stanciu et al.  2001 ) leading to increased neuronal excit-
ability and a lower threshold for plasticity, thus making expressing neurons “attrac-
tors” of new memories. Therefore, memories that appear in close temporal 
proximity are expected to be stored within overlapping neuronal populations and 
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form synaptic clusters within common dendritic branches (Fig.  25.2 ). This model 
proposes a mechanistic explanation for the creation of episodic memories through 
dendritic plasticity.

    In summary, experimental studies begin to uncover the structure of memories for 
basic forms of learning. There is a large body of work on the existence and possible 
manipulation of memory engrams at the cellular level (Josselyn  2010 ; Silva et al. 
 2009 ). On the other hand, dendritic activation patterns (Fu et al.  2012 ; Kleindienst 
et al.  2011 ; Magee  2011 ; Winnubst and Lohmann  2012 ) and localized plasticity 
properties (Govindarajan et al.  2011 ; Losonczy et al.  2008 ; Makara et al.  2009 ) 
make dendrites the key candidates to serve as the fundamental unit of learning and 
memory formation in the brain. Technical advances in dendritic visualization and 
manipulations as well as theoretical and computational studies are expected to eluci-
date further the role of dendritic plasticity in brain function and its implications.     
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  Fig. 25.1    Multiple plasticity rules shape synapse strength and excitability in dendritic branches. 
( a ) Synaptic tagging and capture allow cooperative plasticity to occur across time scales of hours. 
 Dotted green : early LTP,  solid green : late LTP,  blue : plasticity-related protein concentration. 
( b ) Branch strength potentiation allows compartmentalized plasticity in dendritic branches. 
Branches that generate dendritic spikes increase their branch coupling strengths ( yellow ,  purple ) in 
contrast to idle branches ( cyan ). ( c ) Homeostatic mechanisms normalize synaptic weights as new 
learning occurs (traces represent the time evolution of synaptic strengths of ten different synapses). 
( d ) Dendritic excitability is differentially modulated depending on the plasticity induction protocol. 
(d1) Maximal LTP induction homeostatically regulates the I h . Theta burst pairing of backpropagat-
ing action potentials and synaptic stimulation ( left ) induces reduction of excitability and a decrease 
in the voltage response at the soma ( right ,  black : before,  grey : after stimulation). (d2) Moderate 
LTP after high-frequency stimulation ( left ) decreases dendritic I h , reducing voltage response in the 
stimulated dendrite ( right ,  black : before,  grey : after stimulation). Adapted from Papoutsi et al. 
( 2012 ), with permission       
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Abstract Many theories of cerebellar learning assume that long-term depression 
(LTD) of synapses between parallel fibres (PFs) and Purkinje cells is the basis for 
pattern recognition in the cerebellum. Here we describe a series of computer simu-
lations that use a morphologically realistic conductance-based model of a cerebellar 
Purkinje cell to study pattern recognition based on PF LTD. Our simulation results, 
which are supported by electrophysiological recordings in vitro and in vivo, suggest 
that Purkinje cells can use a novel neural code that is based on the duration of silent 
periods in their activity. The simulations of the biologically detailed Purkinje cell 
model are compared with simulations of a corresponding artificial neural network 
(ANN) model. We find that the predictions of the two models differ to a large extent. 
The Purkinje cell model is very sensitive to the amount of LTD induced, whereas 
the ANN is not. Moreover, the pattern recognition performance of the ANN 
increases as the patterns become sparser, while the Purkinje cell model is unable to 
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recognise very sparse patterns. These results highlight that it is important to choose 
a model at a level of biological detail that fits the research question that is being 
addressed.

26.1  Introduction

Cerebellar Purkinje cells are amongst the neurons with the most elaborate dendrites 
and an ideal preparation for the study of dendritic computation. In Purkinje cell 
dendrites, excitatory inputs from approximately 150,000 parallel fibres (PFs) and a 
single climbing fibre (CF) are integrated with inhibitory inputs from molecular 
layer interneurons (MLIs) and recurrent Purkinje cell collaterals, and the resulting 
spikes that are transmitted down the Purkinje cell axon provide the output from 
cerebellar cortex to the rest of the brain. Understanding synaptic integration and 
information processing by Purkinje cell dendrites is a prerequisite for understanding 
the computational role of the cerebellum as a whole.

The cerebellum contributes to many diverse brain functions, including motor 
control, in which it is responsible for the smoothness and precision of body move-
ments. Although this is still under active debate (see for example Schonewille 
et al., 2011), it is often thought that in order for new motor skills to be accomplished 
learning must take place in the cerebellum. In general, it is known that learning 
occurs in neural systems when synapses change their strength. The classical Marr–
Albus–Ito cerebellar learning theory (Marr, 1969; Albus, 1971; Ito, 1984) proposes 
that motor learning is based on plasticity at PF synapses onto Purkinje cells. This 
theory suggests that a Purkinje cell can learn to discriminate between different activ-
ity patterns presented by its thousands of afferent PFs based on long-term depression 
(LTD) at PF synapses. LTD decreases the strength of PF synapses by reducing the 
number of postsynaptic AMPA receptors; this has been shown to occur when 
Purkinje cell synapses receive excitatory input from both the CF and PF at roughly 
the same time (Ito et al., 1982; Ito, 2001). Thus, it has been suggested that the CF 
provides a teaching signal. As a result of PF LTD, the Purkinje cell firing rate has 
been assumed to be reduced in response to the presentation of a learned PF pattern 
(as compared to a novel pattern), and thus the Purkinje cell is expected to exert less 
inhibition on the cerebellar nuclei. As a consequence of this process, the cerebellar 
output would be increased, so implementing the motor learning. However, Purkinje 
cells in vivo are characterised by continuous irregular simple spike firing at varying 
rates (Shin et al., 2007; Armstrong and Rawson, 1979; Goossens et al., 2001), and it 
is by no means clear how synaptic plasticity could be used to store and retrieve input 
patterns in such a continuously spiking neuron. Moreover, the complex interactions 
between voltage and ligand gated ion channels and intracellular calcium that occur 
in the Purkinje cell dendrites and soma, and the distribution of PF inputs across the 
large dendrite, could affect the recall of stored patterns.

In this chapter we summarise and elaborate on previous work addressing the ques-
tion how PF LTD can enable Purkinje cells to respond differently to stored as opposed 
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to novel PF input patterns (Steuber et al., 2007; Sousa et al., 2009). We describe 
results of simulations of a conductance-based multi- compartmental Purkinje cell 
model with a morphologically realistic representation of a dendritic tree, and compare 
these with results from an artificial neural network (ANN) model that uses the same 
LTD-based learning rule, but that does not contain any representation of dendritic 
morphology or realistic neuronal physiology. In particular, we describe how the actual 
amount of synaptic depression can affect the performance of the Purkinje cell model, 
and we contrast this with how it affects the performance of the ANN.

26.2  Purkinje Cell Model

The simulations described in this chapter used the conductance-based multi- 
compartmental model of a cerebellar Purkinje cell by De Schutter and 
Bower (1994a,b). This model is based on a morphological reconstruction and a 
passive model of a Purkinje cell by Rapp et al. (1994) and includes ten different 
types of voltage-dependent channels that are modelled using Hodgkin–Huxley type 
equations. The soma compartment contains a fast and persistent Na+ conductance, a 
delayed rectifier, a transient A-type K+ conductance, a non-inactivating M-type K+ 
conductance, an anomalous rectifier, and a low-threshold T-type Ca2+ conductance. 
The dendritic compartments contain a Purkinje cell-specific high-threshold P-type 
and a low-threshold T-type Ca2+ conductance, two different types of Ca2+-activated 
K+ (KCa) conductances and an M-type K+ conductance. Like real Purkinje cells, the 
model can generate three types of activity: tonic spiking, bursts, and pauses. These 
activity patterns make up the trimodal spiking behaviour that has been observed in 
Purkinje cells (for review, see Engbers et al., 2013). In the model, the tonic spiking 
is based on the activation of somatic fast Na+ and delayed rectifier K+ channels that 
results from small current injections or weak and irregular synaptic activation, while 
bursts are generated by the interaction of dendritic P-type Ca2+channels and KCa 
channels in response to strong current injections or synaptic input.

Each cell was originally modelled with 147,400 dendritic spines, which were 
activated randomly by a sequence of PF inputs at an average frequency of 0.28 Hz. 
In our pattern recognition simulations, the background excitation was balanced by 
tonic inhibition, which made the model fire simple spikes at an average frequency 
of 48 Hz. Due to the large number of dendritic spines, which made the simulations 
computationally expensive, a simplified version of the model was constructed by 
decreasing the number of spines to 1 % of the original number, resulting in a model 
with 4,550 compartments. Each of the 1,474 spines in this scaled down version of 
the Purkinje cell model received input through 100 PF synapses that were activated 
at the same rate as in the full model, which resulted in a total rate of PF excitation 
for each spine of 28 Hz. As this simplified model gave very similar results to the 
full model, it was used in the simulations presented here. The simulations were 
performed using the GENESIS neural simulator (Bower and Beeman, 1998), with 
additional routines implemented in C++ and MATLAB.
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26.3  Modelling Learning and Pattern Recognition

In this study, pattern recognition means the process whereby a neuron, represented 
by a computational model, responds differentially to particular sets of patterns. The 
patterns here are represented initially by a number of random binary inputs, which 
are learned by two different models: an ANN and a morphologically realistic Purkinje 
cell model. These two models were used in order to compare the pattern recognition 
performance between them and to evaluate how dendritic morphology and neuronal 
dynamics can affect performance, as was done previously in studies of pattern rec-
ognition (Graham, 2001; Steuber and De Schutter, 2001; Steuber et al., 2007).

The pattern recognition simulations were performed in two steps. In the first 
step, a number of random binary input patterns were generated, initially 200, and 
half of these patterns were learned by a corresponding ANN. To reflect the 
dimensionality of the PF input to the Purkinje cell model, the input patterns had an 
arity of 147,400 with a varying sparsity or number of active inputs (confusingly, 
sparsity is normally measured as the fraction of “on” bits in a pattern, so that a spar-
sity of 0.9 is actually a highly non-sparse patterns with 90 % of the bits being “on”). 
Most of the simulations used input patterns with 1,000 active inputs (a sparsity of 
about 0.007), as these patterns resulted in the best performance in the initial simula-
tions of the Purkinje cell model.

The ANN used was a modified version of an associative net with feed-forward 
connections between its inputs and output (Willshaw et al., 1969) and was trained 
by applying an LTD learning rule. The simulations of the ANN consisted of two 
phases: learning and recall.

Initially all the weights to the unit were set to 1. In the learning phase, the weights 
of all the active inputs were adjusted using a multiplicative learning rule; the network 
learned each pattern by reducing the weight to a fraction of its previous value, deter-
mined by a specific LTD factor (in Fig. 26.1, the LTD factor chosen was 0.5). More 
formally the learning rule was: To learn the set of patterns xμ, for each of xμ: 
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(26.1)

In the recall phase, the ANN response was calculated by summing all the synap-
tic weights associated with active inputs. So the output of the ANN, y, was given by 
y = ∑ xiwi, where xi are the inputs and wi are the weights, which is a linear transfer 
function. As shown for the recall phase in Fig. 26.1, the stored patterns resulted in 
lower responses than novel patterns (middle and right graphs, respectively).

In the second step of the pattern recognition simulations, the vector of synaptic 
weights was transferred from the ANN onto AMPA receptor conductances in the 
multi-compartmental Purkinje cell model. This represents learning the PF patterns 
by depressing the corresponding AMPA receptor conductances during LTD induc-
tion. To test the recall of learned patterns, the Purkinje cell model was then pre-
sented with a corresponding pattern of synchronous AMPA receptor activation at the 
PF synapses. As with the ANN this was done for both the stored and novel patterns. 
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Fig. 26.1 ANN with multiplicative and fixed LTD learning rule and Purkinje cell model. (a) ANN 
with the original multiplicative learning rule (Steuber and De Schutter, 2001; Steuber et al., 2007). 
Learning phase: three patterns are stored by multiplying the synaptic weights for every active input 
in every stored pattern by an LTD factor of 0.5. Recall phase: the network response is calculated as 
the inner product of the input and weight vector. The resulting responses show a lower output value 
for the stored pattern when compared to the novel pattern. (b) ANN with a fixed LTD learning rule 
(Sousa et al., 2009). In the learning phase, the synaptic weight is set to a fixed LTD value (here 0.2) 
for the first active input and only for the first active input in the stored PF patterns. The patterns are 
recalled as in (a). (c) Purkinje cell model. Snapshot of the Ca2+ concentration in all compartments of 
the Purkinje cell model 10 ms after presentation of a stored (left) and novel (right) pattern. The stron-
ger synaptic activation of the model by the novel pattern leads to larger Ca2+ influx compared to the 
stored pattern, more activation of KCa channels and a longer pause in firing (see text and Fig. 26.2)
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The response of the Purkinje cell model could then be quantified in a variety of 
ways, such as by counting the number of spikes produced in a post-presentation 
window. The various metrics examined are described in Sect. 26.4.1.

The discrimination between the stored and novel patterns was evaluated by cal-
culating a signal-to-noise (s/n) ratio (Dayan and Willshaw, 1991): 
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(26.2)

where μs and μn represent the mean values and σs
2 and σn

2 the variances of the 
responses to stored and novel patterns, respectively.

In the LTD learning rule that was used in the original set of simulations (Steuber 
and De Schutter, 2001; Steuber et al., 2007), and described above, the weights of 
activated synapses were decreased by half each time a pattern was learned, which 
represented the AMPA receptor conductance being depressed by 50 % during the 
learning process. However, consecutive applications of this learning rule could 
result in very small synaptic weights, while experiments with LTD induction in 
cerebellar slices suggest that the mean AMPA receptor conductances are hardly 
ever depressed to less than 50 % of the pre-induction baseline (Wang 
et al., 2000; Mittmann and Häusser, 2007). Therefore, we decided to investigate the 
effect of a lower bound on weight changes and different degrees of synaptic plastic-
ity on learning and recall in the ANN and Purkinje cell model. In this study, we used 
a set of fixed LTD values, which varied from 0 to 0.8. This meant that the synaptic 
weight was set to a fixed LTD value when the first active input was stored in a par-
ticular synapse; subsequent active inputs did not change the weight. Consequently, 
in this case a given weight could change at most once during learning. So, the 
weights of the network initially were set to one, wi := 1, and they were adjusted 
according to the fixed LTD learning rule wi

′ = LTD_value whenever xi
μ = 1 for any 

pattern μ. One consequence of using this learning rule (which will be important in 
our subsequent argument) is that the output of the ANN is exactly the same for all 
stored patterns, giving zero variance. However this will not be the case for the 
Purkinje cell model, as it is inherently noisy, due to the background input.

In Fig. 26.1, an example of the new fixed LTD learning rule is presented, where 
an LTD value of 0.5 was used. The results of this study are presented in the next 
section (Sect. 26.4).

26.4  Pattern Recognition in the Purkinje Cell Model

26.4.1  Pattern Recognition Based on Simple Spike Pauses

The simulations of LTD-based learning and recall of PF input patterns in the 
Purkinje cell model led to surprising results (Steuber et al., 2007). Presentations of 
PF input patterns with large enough numbers of active inputs (at least 750 active PFs 
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out of a total of 147,400 PFs, that is a sparsity of at least 0.005) so that they could 
be detected in the presence of the ongoing simple spike activity in the Purkinje cell 
model led to stereotypical responses composed of a short burst of spikes followed 
by a pause. Moreover, the model responded with shorter pauses to learned patterns 
than to novel patterns, as can be seen in Fig. 26.2a for stored and novel PF input 
patterns with 1,000 active inputs. The generation of pauses in the model was based 
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Fig. 26.2 Responses of the Purkinje cell model to novel and learned PF input patterns. (a) Upper 
panel: The presentation of a learned and a novel PF pattern results in a burst-pause sequence in the 
Purkinje cell model, with a pause in response to the novel pattern that is longer than that for the 
learned pattern. Lower panel: Raster plot of spike responses to presentations of 75 learned and 75 
novel patterns (100 PF patterns with 1,000 active PFs were stored using the original multiplicative 
learning rule from Steuber et al., 2007). (b) Response distribution for three different spike features. 
Upper: Latency of first spike after pattern presentation. Middle: Number of spikes in the first 
25 ms. Lower: Length of pause. Modified from Steuber et al. (2007)
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on a negative feedback process. The strong activation of synaptic AMPA receptors 
during the presentation of a pattern triggered a burst of Na+ spikes and led to the 
opening of high-voltage activated P-type Ca2+ channels. The resulting influx of Ca2+ 
activated an outward current through KCa channels, which caused an after- 
hyperpolarisation (AHP) and a pause in the simple spike activity. Thus, the presen-
tation of patterns that had been stored by PF LTD resulted in less AMPA receptor 
activation, less Ca2+influx and consequently shorter pauses in spiking. Interestingly, 
similar pauses in the simple spike activity can also be triggered by the CF input to 
the Purkinje cell that is commonly assumed to contribute to the induction of PF LTD 
during pattern storage.

The pause duration as a carrier of information about input patterns was compared 
with two other spike features: the number of spikes in a fixed time-window (e.g. 
25 ms) after pattern presentation and the latency of the first spike in the response. 
Examples of response distributions for the latency, number of spikes in a 25 ms 
window and pause duration are given in Fig. 26.2b, where the respective s/n ratios 
are 0.33, 0.21 and 15.6. These results suggested that the pause was the best criterion 
for pattern recognition by cerebellar Purkinje cells. This form of neural coding 
diverges from the classical view, which assumes that the number or timing of indi-
vidual spikes is used to distinguish between novel and learned patterns. However, 
simple spike numbers may be important for weaker PF stimuli and in the presence 
of less or no PF background input (Walter and Khodakhah, 2006; Mittmann and 
Häusser, 2007; Walter and Khodakhah, 2009).

The model prediction that Purkinje cells could use a novel neural code based on 
the duration of pauses in their activity raised the question of the robustness of this 
finding against parameter variations, and, importantly, the question whether this 
prediction could be confirmed by experimental data. Extensive parameter explora-
tions using the Purkinje cell model showed that the pause-based coding was indeed 
a robust result and not affected by variability in the synaptic responses, temporal 
jitter in the input spikes, physiologically realistic on-beam inhibition by MLIs and 
variations in the PF background rate. In fact, an increased PF background rate led to 
faster Purkinje cell spiking and therefore less variation in the pauses and an improved 
pattern recognition performance, in contrast to pattern recognition by the ANN 
where noise in the inputs deteriorated the performance.

More support for a pause-based recall of PF patterns that had been stored by LTD 
of their synapses onto Purkinje cells came from electrophysiological recordings of 
Purkinje cells in cerebellar slices and in awake behaving mice. In Purkinje cell 
recordings in cerebellar slices, stimulating PF inputs with increasing stimulus inten-
sities resulted in increased simple spike pause durations. This result supported the 
model prediction that weakening the PF input by LTD should lead to pauses with 
shorter lengths. Moreover, a standard LTD induction protocol (coincident stimulation 
of PF and CF input for 5 min at 1 Hz) led to a shortening of pauses in the Purkinje 
cell responses, both with on-beam inhibition blocked and on-beam inhibition intact. 
Finally, recordings from awake behaving mice revealed that simple spike trains 
from Purkinje cells in LTD-deficient mice contained longer pauses than the ones 
from mice where LTD was intact, providing additional indirect evidence for the 
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reduction of pause durations by PF LTD and a potential pause-based code (Steuber 
et al., 2007).

In a follow-up study, we used the Purkinje cell model with a modified learning 
rule to analyse the effect of different levels of fixed synaptic plasticity on pattern 
recognition by Purkinje cells; these results are presented in the next section.

26.4.2  Effect of Fixed LTD at Different LTD Values

The multiplicative LTD learning rule that had been used in the simulations described 
in the previous section could result in very small AMPA receptor conductances in 
the Purkinje cell model. This is in apparent contrast to data from LTD induction 
experiments in cerebellar slices, where the mean Purkinje cell response to PF stimu-
lation is usually not depressed to less than 50 % of the baseline response before LTD 
induction (Wang et al., 2000; Mittmann and Häusser, 2007). However, this is con-
tentious as other work has shown that many PF synapses are silent (Isope and 
Barbour, 2002). In a follow-up study, we therefore explored the effect of different 
amounts of LTD on pattern recognition. We changed the learning rule so that for 
every active PF in a stored pattern the corresponding synaptic weight was set to a 
fixed LTD value that served as a lower bound. We initially investigated the effect of 
varying two parameters on pattern recognition: the fixed LTD value and the number 
of active PFs, the sparsity of the input patterns. Firstly, to study the effect of the 
extent of LTD at PF synapses, we varied the LTD value over a range of values from 
0 to 0.8, where 0 represented that the synaptic weight are set to 0 and 0.8 repre-
sented that the synaptic weight was decreased from 1 to 0.8. For this experiment, we 
used the same numbers of active PFs (1,000, which represents 0.7 % of the total 
number of PF inputs) and PF patterns (100 novel and 100 stored) as in most of the 
previous work (Steuber et al., 2007). Figure 26.3 shows the results for the ANN (a) 
and Purkinje cell model (b) where the performance of each model was calculated by 
averaging their s/n ratio over ten runs with different sets of patterns.

From these results, we can see that the ANN was insensitive to the LTD value 
(Fig. 26.3a). In contrast, the pattern recognition capacity, based on the duration of 
pauses, in the Purkinje cell model improved when the LTD value decreased, finding 
an optimal performance when the synaptic weights of active PFs were set to zero 
(Fig. 26.3b). The reason for the difference in sensitivity of the ANN and the Purkinje 
model to varying amounts of LTD became apparent when the squared difference of 
the mean responses to stored and novel patterns ((μs − μn)2, the numerator of 2) and 
the summed variance of the responses (σs

2 +σn
2, the denominator of 2) of the two 

models were plotted against the LTD saturation value (Fig. 26.3c, d).
In the Purkinje cell model, increasing LTD values reduced the difference in 

pause duration between stored and novel patterns, with variances that were affected 
to a lesser extent (Fig. 26.3d). Given that the responses of the Purkinje cell model 
were noisy, and the variance of the responses was always much higher than in the 
ANN, this led to the drastic reduction in s/n ratio for weak LTD shown in Fig. 26.3. 
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In the ANN, the fixed LTD learning rule resulted in invariant responses to stored 
patterns (σs

2 = 0), and in a variance of responses to novel patterns σn
2 that exhibited 

a linear relationship to the squared difference of the mean responses to stored and 
novel patterns (μs −μn)2. Thus, in the ANN, the numerator and denominator of 26.2 
were affected equally by the fixed LTD value, which meant that the s/n ratio was not 
affected by the amount of LTD induced (Fig. 26.3c). In fact, it can be shown analyti-
cally that the s/n ratio of the ANN can be approximated as 
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2
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Fig. 26.3 Pattern recognition performance of the ANN and Purkinje cell model for a range of 
fixed LTD values. The performance was evaluated by calculating the mean s/n ratio for the ANN 
(a) and for pause duration in the PC model (b), averaging over ten different sets of 100 stored and 
100 novel PF patterns with 1,000 active PFs. Error bars indicate standard deviation. (c,d): 
Normalised s/n ratio (black), squared difference between the mean responses (numerator of (26.2), 
red) and sum of the variance of the responses (denominator of (26.2), blue) to stored and novel 
patterns for the ANN (c) and for pause duration in the Purkinje cell model (d). (c) In the ANN, an 
increase in LTD value leads to decreases in both numerator and denominator that cancel out, 
resulting in an approximately constant s/n ratio. (d) In the Purkinje cell model, an increase in LTD 
value affects the denominator more than the numerator and thus leads to a reduced s/n ratio
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where S is the total number of synapses, A is the number of active synapses per 
pattern and D is the number of depressed synapses after learning, which can be 
approximated as 
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(26.4)

where L is the number of learned patterns (for an analytical demonstration, see 
Appendix). So, for the configuration of the ANN used here, S = 147,400, A = 1,000, 
L = 100, D will be approximately 72,779, and the s/n ratio will be 2,050, which cor-
responds to the number shown in Fig. 26.3a. It is important to note that the s/n ratio 
is independent of the actual amount of synaptic depression. By contrast, in the 
Purkinje cell model the s/n ratio is dependent on the actual extent of LTD as the 
variance of the responses does not change as much as the mean difference between 
the responses to learned and novel patterns.

In a second experiment, we measured the effect of variation in the number of 
active PFs. The range of active PFs was varied from 500 to 5,000, corresponding to 
0.3–3.4 % of all PF inputs (147,400), where the same synaptic conductance was 
used regardless of the number of active PFs. The LTD saturation values were varied 
over the same range as in previous experiments (from 0 to 0.8). Comparing once 
more the effects on pattern recognition by the ANN and the Purkinje cell model 
based on pause duration, we can see from Fig. 26.4a, c that the performance of the 
ANN decreased with an increasing number of activated PFs, and that its perfor-
mance was independent of the LTD factor across the whole range of sparsities 
tested. In contrast, in the Purkinje cell model, lower LTD factors produced better s/n 
values for pattern recognition, especially in an optimal range of active PF numbers 
between 1,000 and 2,000 (Fig. 26.4b, d). Figure 26.4c also shows that the analytical 
prediction (26.3) provides a good fit with the results of the numerical simulation.

The rapid deterioration in performance of the Purkinje cell model for PF patterns 
with less than 1,000 active synapses can be explained by the fact that the synaptic 
conductances were not scaled when varying the number of active PFs, so that the 
resulting PF input patterns were too weak to activate the Purkinje cell sufficiently. 
A further experiment has shown that in the case of 500 active PFs, the best perfor-
mance was achieved (s/n~ 38) when the synaptic conductance was doubled from the 
original conductance value (0.7 nS), which was set initially for 1,000 active PFs 
(results not shown here).

26.5  Conclusion

Ever since the theoretical work by Marr (1969) and Albus (1971) more than 40 
years ago, much of cerebellar research has been influenced by the assumption that 
PF LTD forms the basis of cerebellar learning, enabling Purkinje cells to store and 
recall PF input patterns. Several theoretical and computational studies have built on 
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the work by Marr and Albus, typically using simplified models such as ANNs or 
integrate-and-fire networks (Gilbert, 1974; Medina et al., 2000; Schweighofer and 
Ferriol, 2000). However, the integration of synaptic inputs and generation of spike 
responses by Purkinje cells are governed by complex interactions of ion channels 
and intracellular Ca2+ in their dendritic tree. Moreover, PF input patterns are likely 
to activate synapses that are distributed across the Purkinje cell dendrite, and 
Purkinje cells in vivo fire simple spikes at varying rates (Shin et al., 2007; Armstrong 
and Rawson, 1979; Goossens et al., 2001). All of these factors are expected to affect 
the response of Purkinje cells to PF patterns that have been stored by LTD.

Although experiments in cerebellar slices have indicated that a change in the 
Purkinje cell firing rate can carry some information about the strength of PF inputs 
and the PF synaptic weights (Walter and Khodakhah, 2006; Mittmann and 
Häusser, 2007; Walter and Khodakhah, 2009), the large number of PF inputs that 
each Purkinje cell receives (approximately 150,000) means that a complete under-
standing of pattern recognition by Purkinje cells requires simulations of a 

 

Fig. 26.4 Pattern recognition performance of the ANN (a,c) and the Purkinje cell model (b,d) 
using pause duration as response criterion. The performance of the ANN (a) and the Purkinje cell 
model (b) over ten trials is shown for a range of LTD values (0–0.8) and varying numbers of active 
PFs (500–5,000). While the performance of the ANN is independent of the LTD value and 
decreases monotonically with the number of active PFs (a), the Purkinje cell model performs best 
for an LTD value of 0 and between 1,000 and 2,000 active PFs (b). (c,d) Pattern recognition 
performance of the ANN (c) and the Purkinje cell model (d) for an LTD value of 0 and varying 
numbers of active PFs. (c) Compares simulation data from the ANN (black) and the predicted 
values based on (Equ. 26.3) (red), showing that the analytical prediction is in good agreement with 
the numerical simulations
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conductance- based Purkinje cell model with a morphologically realistic representation 
of a dendritic tree. In this chapter, we have described a series of simulations of a 
biophysically realistic Purkinje cell model (De Schutter and Bower, 1994a,b) that 
were used to study the LTD-based storage and recall of PF input patterns. These 
simulations predict that the feature of the Purkinje cell spike response that gives the 
strongest differentiation between stored and novel PF patterns is the length of a 
pause in spiking that follows the presentation of PF patterns, with shorter pauses in 
response to PF patterns that have been stored by LTD (Steuber et al., 2007). The 
predictions of these simulations were robust against parameter variations and differ-
ent kinds of noise in the simulations, and they were confirmed using experiments in 
cerebellar slices and in awake behaving mice (Steuber et al., 2007).

Although the initial set of simulations used a biophysically detailed Purkinje cell 
model that had been tuned to replicate a wide range of behaviours in vitro and in 
vivo (De Schutter and Bower, 1994a,b), they applied a simplified LTD learning rule, 
which involved dividing the synaptic weights of active PF inputs by two every time 
a PF pattern was learned. This could result in very small synaptic weights and did 
not fit experimental data on LTD induction in cerebellar slices, where the mean 
AMPA receptor conductances saturate and are hardly ever depressed to less than 
50 % of their pre-depression baseline values (Mittmann and Häusser, 2007; Wang 
et al., 2000). This suggested that it would be interesting to study the impact of the 
actual level of synaptic depression that was allowed.

We found that the ability of the Purkinje cell model to discriminate between 
learned and novel PF input patterns was very sensitive to the value at which LTD 
saturated. The best performance resulted from LTD saturation values of zero, which 
corresponds to silencing the PF synapses completely. Interestingly, large numbers 
of silent PF synapses have been observed by monitoring microscopically identified 
PF-Purkinje cell connections in cerebellar slices (Isope and Barbour, 2002). Our 
simulation results indicate that the discrepancy between the existence of these silent 
synapses and the apparent saturation of LTD in induction experiments needs to be 
resolved to understand the connection between LTD and cerebellar learning.

In contrast, a corresponding ANN was unaffected by the amount of LTD induced. 
When we looked in detail at the difference between the response of the Purkinje cell 
and ANN, it was apparent that for the ANN both the numerator and denominator of 
the s/n ratio decreased at the same rate as the LTD depression was decreased. 
However, for the Purkinje cell the numerator dropped more rapidly than the denom-
inator, so that the mean response to stored and novel patterns became very similar.

Our final experiment added the sparseness of the patterns as one of the parame-
ters. As is well known, with the type of learning rule employed here, sparse patterns 
will give better results: sparse patterns are more likely to be orthogonal (not share 
any “on” bits) and this is confirmed for the ANN in Fig. 26.4a, where performance 
gets worse as patterns become less sparse, independently of the value of synaptic 
depression. For the Purkinje cell the response to sparseness is initially similar—
increasing sparseness leads to better performance. However, unlike the ANN this 
effect is not present with very sparse patterns, where performance begins to fall due 
to the inability of the patterns to activate the Purkinje cell sufficiently.
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The discrepancy of the results from the simple ANN and biophysically detailed 
Purkinje cell model highlights that it is important to choose a model at a level of 
detail that fits the research question that is being addressed. When the results can be 
affected by the specific physiology and morphology of a neuron, it is clearly better 
to use a model where the physiology and morphology are represented explicitly. 
This approach has been followed in the work that has been summarised in this chap-
ter, leading to the prediction that the cerebellum can use pauses in Purkinje cell 
activity to encode information. However, a complete understanding of the func-
tional role of pause- versus spike-number-based coding for cerebellar computation 
will require computer simulations and experiments that investigate how these differ-
ent features of the Purkinje cell spike trains can be read out by their target neurons 
in the cerebellar nuclei (Luthman et al., 2009; Schutter and Steuber, 2009; Steuber 
and Jaeger, 2013).

 Appendix: Calculation of the Signal-to-Noise  
Ratio for the ANN

We here derive a simple approximation for the signal-to-noise ratio of the ANN 
responses to stored and novel patterns. We assume, as in Fig. 26.4, that the synapses 
take binary values: they are either depressed or non-depressed, and without loss of 
generality (see below) we assign them weights zero and one. In this case, the 
responses to stored patterns are always zero, as is their variance. Hence we need 
only to calculate the mean and variance of the responses to novel patterns. For this 
we proceed in two steps: (a) find the number D of depressed synapses; (b) draw A 
synapses (A being the number of active synapses per pattern) from a pool of n = S 
synapses of which D are depressed. Let us start with the second problem, so D is 
supposed to be known.

Calculating the response to a novel pattern is now equivalent to drawing, without 
replacement, A balls from an urn containing S balls of which D are white (depressed) 
and S − D balls are red (non-depressed). The distribution of the number of red balls 
drawn on each trial is known to be hypergeometric. However, if S be very large 
compared to A, the numbers approximate a binomial distribution with the probability 
p of drawing a non-depressed synapse equal to ( / )1− D S . A binomial distribution 
has mean n p and variance n p (1 − p), hence the average output of the ANN for 
novel patterns will be A D S( / )1−  with variance A D S D S( / )( / )1− . The signal-to-
noise ratio becomes: 
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Note that the signal-to-noise ratio does not depend on the exact values of the 
weights assigned to the binary synapses. If the depressed and non-depressed syn-
apses were to be assigned weights a and b, respectively, instead of 0 and 1, we 
would obtain from the binomial distributions μs = an, mn an p bnp= − +( )1 , σs

2 = 0, 
and s n a b np p2 2 1= − −( ) ( ) , which after substitution yields the same value for s ∕n.

We now turn to the problem of assessing the number D of depressed synapses. If 
the number of learned patterns L is very small and/or the patterns are very sparse 
(A small), then the degree of overlap between learned patterns will also be small, so 
that D becomes approximately equal to LA (each depressed synapse is unique).

Then the signal-to-noise ratio reduces to:
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≈

2

2

2
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S LA
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where it is assumed that L ∗ A ≪ S. Hence the “s/n” signal-to-noise ratio is propor-
tional to the number S of synapses and inversely proportional to the number L of 
learned patterns.

If LA is large, we cannot assume LA to be a good approximation of D. But let us 
assume all synapses are independently depressed with probability A∕S for each pat-
tern, then each synapse has probability ( / )1− A S L  of not having been depressed by 
any of the L patterns, and consequently the mean number D of depressed synapses 
will approximate S S A S L− −( / )1 .
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Abstract Dendrites form the major components of neurons. They are complex 
branching structures that receive and process thousands of synaptic inputs from 
other neurons. The impulse response function for branched dendritic trees can be 
calculated using a so-called sum-over-trips approach. In this chapter we extend this 
formalism to treat networks of dendritic trees connected via dendro-dendritic gap 
junctions. To illustrate the usefulness of this extended formalism for understanding 
how gap junctions can contribute to signal integration in neural networks, we con-
sider how they affect somatic voltages in a simple two neuron network with gap 
junction coupling between distal dendrites. We find that proximal input on one cell 
can strongly innervate the soma of that cell though the spread of charge to the gap 
junction-coupled cell is weak. In contrast distal inputs on one cell weakly innervate 
the soma of that cell though charge can spread effectively to the gap junction- 
coupled cell.

27.1  Introduction

The nervous system is an extremely complex structure that includes neurons 
specialised for generating electrical signals in response to chemical and electrical 
inputs and transmitting them to other cells. Despite the fact that the experimental 
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and theoretical work for the understanding of signal processing in neurons was 
begun more than a century ago, the role of an individual neuron in neural computa-
tion has long been debated. Traditionally, relatively simple computational proper-
ties have been attributed to the individual cell and complex computations to networks 
of these simple elements. However, this assumption is oversimplified in view of 
the properties of real neurons and the computations they perform (London and 
Häusser, 2005). In particular neurons are spatially extended and can have elaborate 
dendritic structures as illustrated in Fig. 27.1. 

Dendrites are involved in receiving and integrating thousands of inputs (via both 
chemical and electrical synapses) from other cells as well as in determining the 
extent to which action potentials are produced by neurons. The theoretical work of 
Rall during the 1950s and 1960s that introduced a new framework (cable theory and 
compartmentalisation) for modelling these complex structures was revolutionary. 
He demonstrated that the structural and electrical properties of dendrites play a criti-
cal role in the way a neuron processes its synaptic inputs (Segev et al., 1995). Indeed 
there is now much activity within the computational neuroscience community in 
studying networks of compartmental neurons with synaptic coupling, such as the 

Fig. 27.1 Dendrites form the 
major components of 
neurons. They are complex 
branching structures that 
receive and process thousands 
of synaptic inputs from other 
neurons. It is well known that 
dendritic morphology plays 
an important role in the 
function of dendrites. Visit 
NeuroMorpho.Org to see a 
repository of digitally 
reconstructed neurons (Ascoli 
et al., 2007). Here we show 
an example of a digitally 
reconstructed Purkinje cell 
(Martone et al., 2003), 
NeuroMorpho.Org ID: 
NMO_00864
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Blue Brain project (Markram, 2006). This is a direct attempt to reverse- engineer the 
mammalian brain, in order to understand brain function and dysfunction through 
detailed computer simulations. Such studies emphasise that the need to give biologi-
cal interpretation to model output requires biological realism to be taken seriously 
in all model components, and has generated much activity in the mathematical neu-
roscience community in an attempt to attain similar levels of understanding without 
recourse to brute-force simulations (Rabinovich et al., 2006). However, it is fair to 
say that both approaches have paid correspondingly little attention to the electrical 
synapse or gap junction. An electrical synapse is a mechanically and electrically 
conductive link between two adjacent nerve cells that is formed at a fine gap between 
the pre- and post-synaptic cells known as a gap junction and permits a direct electri-
cal connection between them. Each gap junction contains numerous connexin hemi-
channels which cross the membranes of both cells. With a lumen diameter of about 
1.2–2.0 nm, the pore of a gap junction channel is wide enough to allow ions and even 
medium-sized molecules like signalling molecules to flow from one cell to the next 
thereby connecting the two cells’ cytoplasm. Their discovery was first demonstrated 
between escape-related giant nerve cells in crayfish in the late 1950s. They are now 
known to be abundant in the retina and cerebellar cortex of vertebrates and have 
been directly demonstrated between inhibitory neurons in the neocortex (Galarreta 
and Hestrin, 1999) (particularly between fast-spiking cells and low-threshold spik-
ing cells). In fact it would appear that they are now ubiquitous throughout the human 
brain, being found in the hippocampus (Fukuda and Kosaka, 2000), the inferior 
olivary nucleus in the brain stem (Sotelo et al., 1974), the spinal cord (Rash 
et al., 1996), the thalamus (Hughes and Crunelli, 2007) and have recently been 
shown to form axo-axonic connections between excitatory cells in the hippocampus 
(on mossy fibers) (Hamzei-Sichani et al., 2007). Without the need for receptors to 
recognise chemical messengers gap junctions are much faster than chemical syn-
apses at relaying signals. The synaptic delay for a chemical synapse is typically in 
the range 1–100 ms, while the synaptic delay for an electrical synapse may be only 
about 0.2 ms. Not very much is known about the functional aspects of gap junctions, 
but they are thought to be involved in the synchronisation of neurons (Alvarez 
et al., 2002; Bennet and Zukin, 2004) and are believed to contribute to both normal 
(Hormuzdi et al., 2004) and abnormal physiological brain rhythms, including epi-
lepsy (Velazquez and Carlen, 2000). However, it is known that network dynamics 
can be tuned by the location of the gap junction on the dendritic tree (Traub 
et al., 2001; Saraga et al., 2006).

Seminal work by Abbott et al. (1991, 1992) has shown how to calculate response 
functions for passive branched dendritic trees with arbitrary geometry. In Sect. 27.2 
we briefly review the cable equation and the “sum-over-trips” formalism. Next in 
Sect. 27.3 we describe how this can be extended to cover networks of dendritic trees 
connected via dendro-dendritic gap junctions. In Sect. 27.4 we consider the applica-
tion to two cells coupled by gap junctions between their distal dendrites, and explore 
how this network integrates different patterns of input activity. We find that proxi-
mal input on one cell can strongly innervate the soma of that cell though the spread 
of charge to the gap junction-coupled cell is weak. In contrast distal inputs on one 
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cell weakly innervate the soma of that cell though charge can spread effectively to 
the gap junction-coupled cell. Finally in Sect. 27.5 we consider possible future 
directions for the work in this chapter.

27.2  Modelling a Single Branched Dendritic Tree

A nerve fibre consists of a long thin, electrically conducting core surrounded by a 
thin membrane whose resistance to transmembrane current flow is much greater 
than that of either the internal core or the surrounding medium. Injected current can 
travel long distances along the dendritic core before a significant fraction leaks out 
across the highly resistive cell membrane. Conservation of electric current in an 
infinitesimal cylindrical element of nerve fibre yields a second-order linear partial 
differential equation known as the cable equation (Rall, 1962). Let V (x,t) denote 
the membrane potential at position x along a uniform passive cable at time t mea-
sured relative to the resting potential of the membrane. Let τ be the cell membrane 
time constant (measured in ms), D the diffusion constant (in μm2∕ms), then the basic 
uniform (infinite) cable equation is 
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The constants τ and D =λ2∕τ, where λ (in μm) is the electrotonic space constant, can 
be found in terms of the electrical parameters of the cell membrane: the specific 
membrane capacitance C (μF/cm2), the resistance across a unit area of passive mem-
brane R (Ω cm2) and the specific cytoplasmic resistivity Ra (Ω cm). We have that τ = 
RC and D = a∕(4RaC), where a (in μm) denotes the diameter of the branch. The 
source term I(x,t) describes an external input. Diffusion along the dendritic tree 
generates an effective spatio-temporal distribution of delays as expressed by the 
associated Green’s function of the cable equation.

In response to a delta-Dirac pulse at x ′ at t = 0 and taking V (x,0) = 0 the dendritic 
potential behaves as V (x,t) = G(x − x ′,t), where 
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The Green’s function G(x,t) determines the linear response to an instantaneous 
injection of unit input at a given point on the tree. Using the linearity of the cable 
equation one may write the general solution as 
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This equation describes a convolution of the input I(x,t) and some initial conditions 
V (x,0) with the response function G(x,t).

Abbott et al. (1991) have shown how to calculate response functions for passive 
branched dendritic trees, extending the approach above for a single unbranched 
dendrite. The machinery to do this borrows heavily from the path-integral formal-
ism for describing Brownian motion, and has been used to give simple diagram-
matic rules for obtaining the Green’s function for a passive tree with a dendritic 
structure such as that shown in Fig. 27.2a. Formally speaking the response on a tree 
at position x on branch i to (delta-Dirac) input at position y on branch j is 

 
G x y t A G L i j x y tij ( , , ) ( ( , , , ), ),= ∑ trip

trips
trip

 
(27.4)

where Ltrip (in μm) is the length of a path along the tree. A path (or a trip) must start 
at point x on branch i and end at point y on branch j. Starting out from point x a trip 
may travel in either direction along branch i, but it may subsequently change direction 
only at a branching point or a terminal (and may pass through the points x and y). 
When a trip arrives at a branching node, it may pass through the node to any other 
segment radiating from the node or it may reflect from the node back along the same 
segment on which it entered. Any trip which approaches a terminal simply reverses 
its direction and reflects back. The trip coefficients are chosen in such a way to 
enforce all appropriate boundary conditions (at branching points and terminal nodes). 
There are an infinite number of paths and trip coefficients Atrip that can be generated 
and although the longer paths will typically contribute less and less to the solu-
tion the convergence of the “sum-over-trips” method is not monotonic if the terms 

Node

Terminal

a b

GJ node

GJ node

Fig. 27.2 (a) A single neuron consisting of a branched dendritic structure with the lumped soma. 
(b) A network of two cells connected by gap junctions (GJs)
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in (27.4) are added in monotonic order of increasing length Ltrip (Caudron et al., 2012). 
In Sect. 27.3 we summarise the rules for generating the trip coefficients as well as 
provide the new ones for handling gap junction coupling between dendritic trees. 
The linearity of the model means that voltage anywhere in the tree can be obtained 
by spatial integration of an injected current with the Green’s function of the tree.

27.3  Dendro-Dendritic Gap Junction Coupling

We start by considering a single neuron consisting of a soma connected to a branched 
dendritic structure (see Fig. 27.2a). We assume that the dendrites are passive and so 
the dynamics of the membrane voltage along a finite branch i of length Li is described 
by the linear cable equation: 
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Note that we allow for the electrical properties and source term on each branch to 
be different (distinguished by the subscript i). Equation (27.5) for each branch must 
be accompanied with additional equations describing the dynamics of voltage at 
two ends of each branch, i.e. at x = 0 and at x = Li. If the proximal or distal end of a 
branch is a branching node point the continuity of the potential across a node and 
Kirchoff’s law of conservation of current are imposed. For example, for a node in 
Fig. 27.2a this means the following set of equations: 
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enforcing conservation of current, where rm = 4Ra ∕ (πam
2) (in Ω cm−1) is the axial 

resistance on branch m. If a branch terminates at x = Li we either have a no-flux 
boundary condition known as a sealed (or closed) end ( ∂ ∂ ==V x t xi x Li

( , ) / | 0 ) or a 
zero value boundary condition known as a killed (or open) end (Vi(Li,t) = 0). We 
model the soma as an equipotential surface with passive properties described by a 
capacitance cs =πas

2C and conductance gs = (π as
2) ∕R, where as denotes the diameter 

of the soma. Such a lumped soma model can be treated as a special node point with 
the somatic membrane voltage Vs satisfying Vs(t) = Vj(0,t) (continuity of voltage) and 
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where the sum is over all branches connected to the soma (conservation of current). 
We refer the reader to (Tuckwell, 1988; Ermentrout and Terman, 2010; Sterratt 
et al., 2011) for an overview of boundary conditions at node points, terminals and a 
lumped soma.

The single neuron model above can be naturally extended to a network of cells 
coupled by gap junctions (see Fig. 27.2b). Gap-junctional coupling can be consid-
ered as a special node point on an extended branching structure. This special node 
point, the GJ node, connects branches from two separate dendritic trees and it 
requires the following set of boundary conditions (assuming that it is placed at x = 
0, see the zoomed insert of Fig. 27.2b): 
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where gGJ is the conductance of the gap junction. The expressions in (27.9) reflect 
continuity of the potential across individual branches m and n, and (27.10)–(27.11) 
enforce conservation of current. These types of model, either at a single neuron 
level or at the level of a whole network, can be solved by brute-force numerical 
simulations. However, since the equations that describe the system are linear, insight 
into the model’s behaviour can be obtained by analytically constructing the network 
Green’s function (generalising the approach for a single dendritic tree). Denoting 
this function by Gij(x,y,t) then the voltage at any location along the cell or cells for 
multiple stimuli is given as 

 
V x t G x y t s I s si ij

t

j
j j( , ) ( , , ) ( ) ,= −∫∑

0

d
 

(27.12)

where yj is a location of a spatially localised stimulus Ij(t) on branch j (and we have 
assumed that initial data is identically zero).

The “sum-over-trips” method described above in Sect. 27.2 shows how the 
response function on a branching structure can be found in terms of the response 
function of an unbranched dendrite. In this case the Green’s function can be calcu-
lated directly in the time domain. However, this method was originally developed 
for passive dendrites of a single cell without the inclusion of a soma. The incorpora-
tion of a lumped soma and the inclusion of gap junctions lead to a modified branch-
ing structure in which some special node points (the somatic node and the GJ node) 
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appear. This requires additional boundary conditions which makes it hard to find a 
closed form solution in the time domain. Fortunately, a generalisation of the original 
“sum-over- trips” method to the frequency domain allows one to make explicit prog-
ress in obtaining the response function (Coombes et al., 2007; Timofeeva 
et al., 2013).

For simplicity we assume here that the membrane time constant τ, the diffusion 
coefficient D, the diameter of each branch a and the axial resistance r are the same 
along the whole tree and refer the reader to (Timofeeva et al., 2013) for the case of 
nonidentical membrane parameters. We aim to construct the Green’s function  
Ĝij (x,y,ω) which is the Laplace transform of the original Green’s function Gij(x,y,t) 
defined in terms of the spectral parameter ω as 

 

ˆ ( , , ) ( , , ) .G x y G x y t tij
t

ijw w= −
∞

∫ e d
0  

(27.13)

The response function Ĝij (x,y,ω) can be found using the “sum-over-trips” for-
malism as 
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where g w w t( ) ( / ) /= +1 D . We recognise Ĝ (x,ω) as the Laplace transform of 
G(x,t) defined by (27.2). There are an infinite number of trips that can be generated 
and allowed to pass through any type of node (branching, somatic or GJ) and reflect 
from any type of node (branching, somatic or GJ) and terminals. The trip coeffi-
cients Atrip(ω) are chosen according to the following set of rules (see Timofeeva 
et al. 2013 for more details): 

•	 Initiate Atrip(ω) = 1.
  Branching node
•	 For any branching node connecting N branches, at which the trip passes from one 

branch to another branch, Atrip is multiplied by a factor 2∕N.
•	 For any branching node connecting N branches, at which the trip approaches a 

node and reflects off this node back along the same branch, Atrip is multiplied by 
a factor 2∕N − 1.

  Terminal
•	 For every terminal which always reflects any trip, Atrip is multiplied by + 1 for the 

sealed-end boundary condition or by − 1 for the killed-end boundary condition.
  Somatic node
•	 For the somatic node with N connected branches at which the trip passes through 

the soma from one branch to another branch, Atrip is multiplied by a factor 
2ps(ω,N).

•	 For the somatic node with N connected branches at which the trip approaches the 
soma and reflects off the soma back along the same branch, Atrip is multiplied by 
a factor 2ps(ω,N) − 1.
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  GJ node
•	 For the GJ node at which the trip passes through the gap junction from one 

branch to another branch, Atrip is multiplied by a factor pGJ(ω).
•	 For the GJ node at which the trip approaches the gap junction, passes it and then 

continues along the same branch, Atrip is multiplied by a factor 1 − pGJ(ω).
•	 For the GJ node at which the trip approaches the gap junction and reflects off the 

gap junction back along the same branch, Atrip is multiplied by a factor − pGJ(ω).
Here the frequency dependent parameters ps(ω,N) and pGJ(ω) are given as 
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The network Green’s function in the time domain can be obtained by (numerically) 
inverse Laplace transforming Ĝij (x,y,ω). Analysis on mathematical convergence of 
the “sum-over-trips” method for a single cell can be found in Abbott (1992) and 
Caudron et al. (2012) and can be readily generalised to the network level.

27.3.1  A Semi-infinite Branch

For the case of a semi-infinite dendritic branch with the terminal point at one end the 
“sum-over-trips” approach generates only two trips for any pair of points (x,y) along 
this branch (Fig. 27.3a). Considering the sealed-end boundary condition at the ter-
minal we find 

 
ˆ ( , , ) ˆ ( , ) ˆ ( , ).G x y G x y G x y11 w w w= − + +  (27.17)

Taking the inverse Laplace transform of this solution we obtain the response func-
tion in the time domain as 

 G x y t G x y t G x y t11( , , ) ( , ) ( , ),= − + +  (27.18)

where G is given by (27.2). For the case of a lumped soma attached to a semi-infinite 
branch (Fig. 27.3b), the solution in the frequency domain needs to be modified as 

 
ˆ ( , , ) ˆ ( , ) ( ( , ) ) ˆ ( , ).G x y G x y p G x y11 2 1 1w w w w= − + − +s  (27.19)
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In this simplified case we can perform the inverse Laplace transform analytically to 
obtain: 
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where l t± = − ± − −[ ( / )] / ( )1 1 4 22c Dr g c c r Ds s s s , Q1   =   λ+   ∕ (λ+ −λ−) and Q2 =λ− 
∕ (λ−−λ+). Figure 27.3c, d demonstrates how the inclusion of a lumped soma affects 
the voltage response in a model with a semi-infinite dendritic branch. We note that 
the inclusion of a realistic soma model can significantly sculpt the shape of the den-
dritic response to impulsive (delta-Dirac) input. In particular, after an initial tran-
sient, the membrane voltage decay can be much faster for the model that includes a 
lumped soma.
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Fig. 27.3 (a) A semi-infinite dendritic branch with a sealed end boundary condition at x = 0. (b) 
A semi-infinite dendritic branch with the lumped soma at x = 0. (c–d) The response functions for 
the model with the terminal (red curves) and for the model with the lumped soma (black curves). 
Parameters: C = 1 μF/cm2, R = 2,000 Ω cm2, Ra = 100 Ω cm, a = 2 μm (giving D = 50,000 μm2/ms 
and τ = 2 ms), as = 25 μm, location of the stimulus y = 100 μm, x = 50 μm (c) and x = 150 μm (d)
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27.3.2  A Finite Branch

Here we consider the case that a dendritic branch in the models in Fig. 27.3a, b has 
a finite length L and is terminated with a sealed-end boundary condition. There are 
an infinite number of trips from x to y that can be constructed due to reflections at 
both ends of the branch. In the case of a finite dendrite with two terminals the solu-
tion is simply a sum involving the function Ĝ (Ltrip,ω) as the trip coefficients are + 
1. However, if the soma is included each reflection at x = 0 requires us to add a coef-
ficient (2ps(ω,1) − 1) so that the (Laplace transformed) Green’s function is 
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In Fig. 27.4 we plot the Green’s function at two different locations along a dendritic 
branch for the model with and without a soma. We see a similar behaviour to that of 
Fig. 27.3, namely that the inclusion of a lumped soma can lead to a faster temporal 
decay of dendritic voltage.

27.4  Two Neuron Network with Gap Junction Coupling

Here we demonstrate how the “sum-over-trips” formalism can be applied to a network 
of cells coupled by gap junctions to provide some insight into the network dynamics. 
As an example we consider a model of two identical cells, each of which consists of 
a passive soma and N attached passive semi-infinite dendrites as shown in Fig. 27.5a. 
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Fig. 27.4 The response functions for the model with a finite dendritic branch. Red curves: a finite 
branch with two terminals. Black curves: a finite branch with lumped soma at x = 0. Parameters as 
in Fig. 27.3 and L = 200 μm. Location of the stimulus y = 100 μm, x = 50 μm (a) and x = 150 μm (b)
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Fig. 27.5 (a) Two identical cells coupled by a gap junction. (b–c) Voltage profiles in the soma of 
Cell 1 (b) and in the soma of Cell 2 (c) in response to a delta-pulse at the location y1 (blue curve) 
and at the location y2 (red curve). Biophysical parameters of each cell as in Fig. 27.3. LGJ = 100 μm, 
RGJ = 1∕gGJ = 200 MΩ, y1 = 125 μm, y2 = 50 μm, number of branches connected to each soma N = 4

The cells are coupled by a dendro-dendritic gap junction located at some distance 
LGJ away from their cell bodies. We assume that this network receives either a distal 
input at the location y1 or a proximal input at the location y2, which are both applied 
to Cell 1. Knowing the Green’s function for this network it is easy to compute the 
voltage response along the whole structure for any form of these two inputs by per-
forming the integration in (27.12). To study how distal and proximal inputs affect 
the somatic responses of both cells, we find the Green’s functions in the soma of 
Cell 1, namely G11(0,y1,t) and G11(0,y2,t), and in the soma of Cell 2, namely G21(0,y1,t) 
and G21(0,y2,t), for a delta-Dirac pulse either at the location y1 or y2. Applying the 
“sum-over-trips” method it is possible to construct compact solutions for these 
Green’s functions in the frequency domain. The somatic response functions for Cell 
1 take the following forms: 
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and 
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For Cell 2, compact somatic solutions for the individual inputs can be found as 
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and 
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In these formulae Ĝ (x,ω) is as described in (27.14), and ps = ps(ω,N) and pGJ = 
pGJ(ω) are given by (27.15) and (27.16). More details about how such compact solu-
tions can be constructed making use of combinatorics can be found in Timofeeva 
et al. (2013). Taking the inverse Laplace transform of (27.22)–(27.25) we obtain the 
Green’s functions for each soma in the time domain. In Fig. 27.5b, c we plot these 
somatic response functions for distal input at the location y1 (blue profiles) and for 
proximal input at the location y2 (red profiles). Proximal input strongly depolarises 
Cell 1, but spread of charge to Cell 2 is weak. On the other hand, distal input local-
ised closely to the gap junction depolarises Cell 2 significantly better and at the 
same time the spread of charge to Cell 1 is weakened. It is worth mentioning here 
that the strength of synaptic conductances on single neurons can increase with dis-
tance from the soma (Magee and Cook, 2000), though we take both inputs to be 
identical in this example. The model dynamics are consistent with recent results, 
reported in Vervaeke et al. (2012) which suggest that gap junctions enable distal 
inputs to drive the activity of a neural network more effectively. It is important to 
recognise that the passive properties of the cell membrane provide the fundamental 
basis for neural integration. In our example the somas are not equipped with any 
active conductances for generating proper action potentials. However, the passive 
somatic responses can be linked with the level of excitability in each cell by intro-
ducing a notion of threshold for spike generation.

The “sum-over-trips” approach for constructing the Green’s function on the 
entire network provides an alternative to the brute-force numerical simulations 
based on the compartmental method. The Green’s function in the time domain cap-
tures the essential characteristics of synaptic efficacy such as the peak depolarisa-
tion and the time at which this peak occurs. Moreover, the Laplace representation of 
the response function allows us to use the method of moments (Agmon-Snir, 1995) 
for studying spatio-temporal integration properties of a network using the relation 
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where Mn is the nth moment of the response function Gij(x,y,t).

27.5  Future Directions

In this chapter we have extended the “sum-over-trips” approach to describe networks 
of branched dendritic trees connected via gap junctions. As an illustration of the 
usefulness of this analytical approach we have shown how to calculate the response 
of a simple two neuron network and have found results consistent with recent data 
reported in Vervaeke et al. (2012). There are a number of natural extensions of the 
work in this chapter to incorporate further important aspects of biological realism. 
The one that requires the least mathematical changes to the framework developed so 
far is the inclusion of quasi-active membrane, along the lines in Coombes 
et al. (2007). Quasi-active membrane models can more accurately describe neurons 
that exhibit resonances whereby subthreshold oscillatory behaviour is amplified for 
inputs at preferential frequencies. This extends the more usual “RC” (resistor-
capacitor) circuit description of passive membrane to the “LRC” (inductance- 
resistor-capacitor) case. A more substantial mathematical challenge is the treatment 
of active dendrites and tractable models of action potential generating membrane at 
the soma and dendritic “hot-spots”. Recent progress in developing minimal models 
of excitable tissue capable of generating accurate action potential shapes has been 
made in Coombes (2008), using piece-wise linear planar models. This piece-wise 
linearity fits nicely with the “sum-over-trips” approach (which is premised on lin-
earity of the underlying dendritic voltage model) and will allow for the analytical 
treatment of a minimal model of an active soma coupled to a branched dendritic tree 
along the lines described in Svensson and Coombes (2009). An alternative to using 
models of excitable membrane is to use integrate-and-fire type models, which has 
inspired the development of the “spike-diffuse-spike” formalism (Coombes and 
Bressloff, 2003; Timofeeva et al., 2006; Timofeeva, 2010) for active “hot-spots”. 
Extending this to somatic models is more challenging when one wishes to incorpo-
rate the back coupling to the tree (Bressloff, 1995), though recent progress on this 
problem has been made by Schwemmer and Lewis (2012).

A programme of work based on the above observations will allow for a more 
thorough investigation of how network dynamics of spatially extended neurons 
coupled by gap junctions are affected by geometric complexity and intrinsic proper-
ties of dendrites as well as by gap junction modulation. In particular it will help us 
to understand the role of location and strength of gap junctions on generating differ-
ent patterns of neural network activity.
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Abstract Single-neuron models and especially detailed single-neuron models 
often have a large number of free parameters that must be constrained. Despite the 
seemingly straightforward nature of this problem, the main challenge is properly 
defining and quantifying the match between a given model and a target data set. In 
this chapter we present the problem of constraining the parameters of single-neuron 
models, focusing on conductance-based models. We introduce and review the steps 
of the procedure and present multiple objective optimization, a technique that allows 
a more general and powerful approach to expressing the comparison between mod-
els and experiments. Using this approach one is able to map out the trade-offs 
achievable by the model between the different goals of the optimization and decide 
accordingly whether to be satisfied with the current model or consider different 
models and model parameters. We discuss how to interpret the results of a parameter 
constraining attempt and open questions in neural model parameter constraining.

28.1  Introduction

At the risk of preaching to the choir, we shall begin by contending that unraveling 
the inner workings of the single neuron is one of the most fundamental questions in 
theoretical neuroscience. How do these computational elements perform their dif-
ferent functions? How much of the computational burden does the single element 
take upon itself and how much is solely due to network interactions? Lord Kelvin is 
famously known to have said, “I am never content until I have constructed a mechan-
ical model of the subject I am studying. If I succeed in making one, I understand; 
otherwise I do not.” In this chapter we shall consider a small, but crucial, step along 
this path—constraining the parameters of single-neuron models, the basic biophysical 
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models of neural computation. The goal of this chapter is not to provide a simple 
answer to this complicated and general question (since we believe none such exists) 
but rather to present the salient issues in order for the reader to be able to recognize, 
understand, and wisely employ parameter constraining approaches.

28.1.1  Brief Introduction to Conductance-Based Models  
and Their Parameters

Conductance-based models are biophysical models that, as their name implies, 
directly describe neuronal dynamics in terms of the different conductances assumed 
to be present in the neuron. This class of models differs from phenomenological 
biophysical models, such as the integrate-and-fire model introduced by Lapicque in 
1907 [a translation of the original 1907 paper can be found in Lapicque (2007)], as 
in the latter certain behaviors (e.g., action potential generation) are introduced by 
direct intervention rather than being accounted for by a description of the underly-
ing ion channels. The main advantage of conductance-based models is that they 
offer a direct and crucial link between the macroscopic electrical behavior of the 
neuron under study and the microscopic level of the ion channels responsible for 
this behavior.

The bare bones of a conductance-based model consist first and foremost of the 
assumed morphology, typically obtained via reconstruction of stained neurons filled 
by injection of a cell tracer such as biocytin. Occasionally the full morphology is 
replaced with a more schematic and simplified version of the true morphology to 
simplify analysis and decrease the required computations to simulate the model 
(Bahl et al. 2012). Second, some assumptions must be posed regarding the neuron’s 
ion channel composition. This can range from simple assumptions such as a fully 
passive model to highly detailed ones including over a dozen different channels dif-
ferentially expressed in the soma, axon, and dendrites (Poirazi et al. 2003).

The dynamics of such models are governed by well-known equations [see for 
instance Koch and Segev (1998) and references therein and introduction chapter]. 
To introduce the mathematical nomenclature consider for example the dynamics of 
a simple passive single compartment model:

 
C V
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m
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where Vm is the membrane voltage, and the dot notation, �Vm , represents its temporal 
derivative dV/dt (Volt/second), Cm is the membrane capacitance in units of Farad 
(F), Rm is the membrane resistance (Ω), Vr is the resting membrane potential (Volt), 
and Iext (Amp) is an externally applied current. This simple equation can be readily 
solved for a known current.
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The equation above is one specific example of the more general equation of the 
change in voltage reflecting the sum of currents (the sign, negative/positive, is a 
convention):

 
C V Im

i i

type
type
i� = −Σ

 

where the sum over I itype represents the sum of different types of currents in the ith 
compartment arriving from various sources: passive ion channels, voltage- dependent 
ion channels, intracellular current flow, externally injected currents, etc. The current 
contributed by each channel is governed by dynamical equations based on the clas-
sical Hodgkin and Huxley papers (Hodgkin and Huxley 1952) but using more con-
venient notation:
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where ga  represents the maximal conductance of channel a and Ea its reversal 
potential. Both of these are constant (i.e., non-time dependent) quantities. ma rep-
resents the fraction of activation (within the range of 0–1) taken to the power α. hb 
represents the fraction of inactivation taken to the power β. In the lower equation 
minf indicates the steady-state value of m and mtau the time constant of m, both typi-
cally voltage dependent. The form of the voltage dependency is different for each 
channel; minf is typically of sigmoidal form, whereas the form of mtau varies consid-
erably but often is approximately Gaussian.

The conductance of each channel is a parameter in the current equations above. 
Unfortunately, it is extremely difficult to experimentally characterize the density 
of the ion channels along the surface of the membrane. Hence, it is typically left 
as a free parameter, making the parameter constraining procedure a central part of 
the generation of conductance-based models. A single-conductance value may be 
sufficient to describe the conductance value across the entire neuron, or more 
realistically it can be allowed to change between different neurite regions to reflect 
the changing density of ionic channels. In addition, other aspects of the model that 
may not be well constrained, for instance those related to morphology (e.g., spine 
density) or to single-channel dynamics (e.g., uncharacterized voltage depen-
dency), can be left as free parameters as well (and potentially also variable between 
different neurite regions).

Traditionally, this was performed by a process of manual parameter tuning, 
whereby the modeler changed the values of the different parameters until a suitable 
match with the model’s goal was achieved (Mainen et al. 1995). There are numerous 
drawbacks to this approach. First, it requires a significant amount of expertise and a 
large investment of time. Second, due to the subjective nature of the approach, 
biases of different nature might be implicitly introduced. Last, but not least, the 
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effort spent in arriving at a given model makes it unlikely that alternative possibilities 
for modeling the phenomenon, such as different ion channel composition and 
increased/reduced details, will be explored.

It is therefore not surprising that the alternative option of performing automated 
parameter constraining by harnessing the increasingly formidable available com-
putational resources was raised already in the mid-1990s (Vanier and Bower 
1999; Bhalla and Bower 1993; Foster et al. 1993; Tawfik and Durand 1994). 
Recently, there has been a revived interest in applying automated parameter con-
straining (Achard and De Schutter 2006; Weaver and Wearne 2006; Keren et al. 
2005; Huys et al. 2006; Huys and Paninski 2009) and especially to directly fit 
experimental data (Keren et al. 2009; Bahl et al. 2012; Druckmann et al. 2007; 
Ambros-Ingerson et al. 2008). Notably, the “single-neuron modeling competi-
tion,” launched in 2007, aims to advance quantitative neuronal modeling by 
offering public challenges and the opportunity to compare results from different 
labs dealing with models of differing levels of complexity (Jolivet et al. 2008a, b; 
Gerstner and Naud 2009).

28.2  Constraining Parameters of Conductance-Based Models

Broadly speaking, an automated model parameter constraining procedure consists 
largely of four parts: the target data to be modeled (Fig. 28.1a), the measure by 
which we find the model to be successful (Fig. 28.1b), the model including its asso-
ciated parameters (Fig. 28.1c), and finally the approach to adjust the parameters in 
order to improve the model (Fig. 28.1d). Additionally, once the parameter con-
straining process has been performed, some model selection criteria must be applied 
to determine whether the optimization was successful or further attempts are 
required (Fig. 28.1e).

Two of the aspects, the target data and model assumptions, though clearly cru-
cially important, are problem specific, and we will therefore touch upon them only 
briefly. Of the two remaining issues at least in our hands the distance measure has 
been ultimately the more important factor. Intuitively, the reason behind its impor-
tance is that the main benefit of automated parameter constraining is that tens of 
thousands of parameter combinations can be tested without human intervention. 
Accordingly, it is imperative that the ones that are considered the most interesting 
by the automated measure (i.e., have the lowest distance value to the data) will be 
those that indeed offer the best approximation (we will discuss later what is meant 
by the best approximation, but for now let us just say that these should be at least 
considered good approximations if a human were examining the same parameter 
values). Therefore, it is arguably better to spend time carefully considering the dis-
tance function and adopting a crude parameter choice approach (such as random 
sampling) than vice versa. Though both of these aspects are discussed in this chap-
ter, when attempting a parameter constraining procedure we would recommend that 
the user at least initially focus on the choice of distance functions used in the proce-
dure as opposed to the optimization algorithm.
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28.3  Distance Functions

What is the right distance function to use for neural modeling? This deceptively 
simple question is actually quite difficult to answer. A crucial point to consider from 
the onset is that due to the highly complex nature of neurons and the often- simplified 
nature of models, any model will be merely an approximation of the true neuron’s 
dynamics. Unfortunately, answering the question of what makes a good or bad 
approximation of complex data such as neural recordings is extremely difficult 
without very strong assumptions. Nonetheless, that is the question that must be 
addressed in order to define what is a good distance function. Accordingly, it is not 
surprising that the choice of distance function is highly nontrivial and has been the 
subject of much research and debate (Achard and De Schutter 2006; Ambros- 
Ingerson et al. 2008; Druckmann et al. 2007; Huys et al. 2006; Keren et al. 2005; 
LeMasson and Maex 2001; Weaver and Wearne 2006).
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Fig. 28.1 Overview of model parameter constraining procedure. (a) Example of target data on 
which the model is based upon. Two repetitions of a step current injection are shown along with 
the current injection that generated them (bottom). Two traces with fairly large differences were 
chosen to highlight the variability. (b) The difference between any prospective model and target 
data is measured by the distance functions chosen for the comparison. In this example feature-
based distance functions are shown. (c) The main assumptions behind the model consist of a 
reconstructed morphology and an assumed set of membrane ion channels (including their kinetics 
but not their densities). (d) An optimization approach is used to test multiple tentative models (i.e., 
sets of parameter values) and progressively find solutions with lower distance values to the target 
data. (e) At the end of the optimization, a criterion is used to select the tested tentative models that 
are deemed successful solutions. In this example a value of less than two experimental standard 
deviations in each feature is used as a criterion. (f) An example of the response of two different 
successful models to a step current input as in (a). Two models with fairly large differences were 
chosen to highlight the variability. Figure adapted from Druckmann et al. (2011)
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The most commonly used distance function in most realms is the mean squared 
error (MSE). The MSE between two vectors, a and b of length n, is defined by
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This form of error is popular since it can be placed in a clear statistical setting 
(Gaussian noise model), is easy to optimize analytically, and can serve as an approx-
imation to the true error around fixed points (Boyd and Vandenberghe 2004).

The problems associated with using MSE to fit neuron models are clearly laid 
out in (LeMasson and Maex 2001). Briefly stated, the issue is that small jitters in the 
time of the spike that can occur even when comparing two repetitions of the response 
of the same neuron to the same stimulus (Fig. 28.2a) get very strongly penalized 
since there is a spike at the wrong time and a missing spike at the right time. 
Therefore, a model with a flat line can actually have a lower MSE and is therefore 
considered a better approximation by this particular distance function than two rep-
etitions from the same neuron (Fig. 28.2b).

To overcome this pathological sensitivity to timing, the authors suggested to 
replace the explicit dependence on time by measuring the distance between the two 
vectors not in the straightforward way of comparing each time point but rather of 
looking at the voltage trace in the V (voltage), dV/dt state space (Fig. 28.2c). This 
removes time as an explicit parameter and solves the issue of jittered traces having 
very large error values.

However, this approach is not perfect either. A slightly more subtle but also 
important point is that at low firing rates the spikes represent very little of the volt-
age trace. Indeed, assuming a firing rate of 5 Hz, with an average spike width of  
1 millisecond, spikes take up only 5 % of the voltage trace and most of the weight 
will be put on the subthreshold behavior of the neuron (Fig. 28.2c). If the spikes are 
isolated both of these problems can be overcome. One approach is to do so directly, 
by “cutting out” the data and model spikes and comparing the voltage excursions 
directly (Weaver and Wearne 2006) or combining the two approaches: cutting out 
the spikes and comparing them alone in the V, dV/dt state space (Bahl et al. 2012). 
Unfortunately, completely removing time from a trace may be problematic since it 
smears the difference between, for instance, an adapting and non-adapting neuron’s 
spike train. Moreover, cutting spikes and comparing them one to one leaves unan-
swered the question of what to do with discrepancies in spike number (of course, 
one can think of many straightforward ways to penalize these kinds of differences 
between traces by separate distance functions).

A different approach is that of “feature-based” distance functions (Druckmann 
et al. 2007). Feature-based distance functions are distance functions that take into 
account the variability of the responses of a neuron to a single (frozen) stimulus. For 
any feature (firing rate, AP height, AP width, time to first AP, etc.) a distance mea-
sure is obtained by first extracting the mean and standard deviation of the feature 
value for all experimental repetitions. Following that, the distance between the 
model-generated response and the experimental data is measured by the distance of 
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the value from the experimental mean in units of experimental standard deviation. 
The advantage of these distance functions is that they can capture many different 
aspects of neuronal dynamics and take into account their variability. The disadvan-
tage is that it is unclear which and how many features would be effective to con-
strain a particular model.

In summary, one way or another, we find ourselves with the realization that we 
will require multiple distance functions.
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Fig. 28.2 Difficulties with simple error functions. (a) Two voltage responses (top and mid) from 
the same neuron to an identical step current (bottom). Two traces with fairly large differences were 
chosen to highlight the variability. Spike times for each response are shown as black-filled circles 
above trace. The spike times of the top trace have been transposed to the bottom trace but marked 
with empty circles, in order to simplify comparison. Note temporal jitter of spike times. (b) Zoom 
in on a single-action potential. Up-stroke marked in red and down-stroke in blue. (c) Same action 
potential as in (b) but shown in the V, dV/dT space. Same color scheme has been used. Grid exem-
plifies one possible binning of the space. Note how up-stroke is represented by only a few points, 
down-stroke by about three times more and most in sub-threshold range
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Would using multiple distance functions require a trivial change to our optimization 
approach? The main source of difference is that comparing two solutions seems to 
require a single (scalar) distance measure (i.e., if the distance measure is smaller the 
solution is better and if larger the solution is worse). However, when multiple dis-
tance values are available for each solution it is unclear a priori how to say which 
solution is better and which is worse (e.g., is the error vector [0.2, 5] better or worse 
than the error vector [1,1]?). Of course, multiple distance functions can always be 
summed up (either equally weighted or not) to come up with a scalar measure. 
However, if the weights are not properly balanced, one distance measure may end 
up overshadowing the others. In addition, distance functions may be expressed in 
completely different units and some may be easy to reduce to a near-zero value, 
whereas others have only very few successful solutions that reduce the error to a low 
value. In summary, it is not a simple task to sum disparate distance functions in a 
way that maintains the importance of each individual function.

28.4  Multiple Objective Optimization

When confronted with the need to use multiple distance functions an alternative 
approach to summing them into a scalar distance is known as multiple objective 
optimization (MOO; note that MOOP, for multiple objective optimization problem, 
is also found in the literature most likely to avoid the bovine reference).

The classical types of problem used to illustrate the importance of MOO are prob-
lems with two clearly clashing goals. Consider for instance trying to build a column 
that will support a ceiling. Two reasonable criteria to evaluate a design would be those 
of column strength and cost. Namely, we would like to make sure that the ceiling is 
well supported, i.e., minimize the fragility of the column. Second, we would like to 
construct the column as cheaply as possible, i.e., minimize its cost. It is clear that these 
two criteria are potentially in conflict. A massive column will be non-fragile but will 
require a lot of material and therefore have high cost. Since these two criteria are 
completely disparate, i.e., expressed in different units and on different scales, weight-
ing them one against the other in an a priori fashion is clearly very difficult. Instead, 
we would like to know what are all the possible solutions and how they trade-off these 
two criteria against each other, allowing us to make an informed decision (Deb 2001).

It is not a coincidence that we find ourselves immediately considering trade-offs. 
Indeed, finding the best trade-offs between conflicting (or potentially conflicting) cri-
teria is at the heart of the MOO approach. Conceptually this is a very appealing notion 
for neural modeling since it avoids trying to arbitrarily weight different criteria against 
each other. In other words, it avoids questions such as: which is more important for a 
model correct spike timing or correct shape of AP? Indeed, assigning a specific weight 
to the importance of a distance function that quantifies the accuracy of the shape of 
APs in comparison to a distance function that quantifies the temporal fidelity of AP 
timing seems impossible. Yet this is precisely what we must do in order to sum the 
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two distance functions if we seek to arrive at a scalar distance function. MOO allows 
us a way out of this conundrum.

The key difference between single and multiple objective optimization is the 
replacement of the greater-than (>) or lesser-than (<) relationship that is well defined 
when considering two scalars (but not when considering two vectors) by that of 
domination. Consider two solutions, A and B. Assuming that there are M objectives 
(or distance functions), fi, i = 1 … M, solution A is said to dominate solution B if the 
following two conditions hold:

 1.  $ ( ) ( )j f A f Bj jsuch that <  

 2.  " Î{ } ( ) £ ( )k M f A f Bk k1 2, ,....  

Or stating the above in words, solution A is said to dominate solution B if solu-
tion A is strictly better than solution B in at least one objective and no worse than 
solution B in all other objectives. Note that three possible relations between A and B 
now exist. Either A dominates B or B dominates A, and most importantly neither A 
dominates B nor B dominates A. When does the latter relation happen? Mutual non-
domination occurs when solution A is better than B in one objective, but solution B 
is better than A in another one, in other words when A and B represent different 
trade-offs amongst the objectives. For instance, in Fig. 28.3a solutions a and b do not 
dominate each other, whereas they both dominate solution c. Indeed, the purpose of 
multiple objective optimization is not to find the single best solution as in scalar 
optimization but rather to map the best possible trade-offs between the different 
objectives. This best set of trade-offs is referred to as the “Pareto-optimal front” 
(filled dots in Fig. 28.3).
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Fig. 28.3 Pareto fronts in multiple objective optimization. (a) A schematic representing a hypo-
thetical set of solution distance values and their division into Pareto-optimal fronts. Each of the 
fronts is marked by a roman numeral (i–iv). (b) 2-dimensional projection of a set of distance values 
from a six-objective optimization (AP rate accommodation is a measure of the change in firing 
from beginning to end of stimulus, see Druckmann et al. (2007)). Note that the Pareto front has a 
“corner” to it, indicating that no real trade-off exists between these objectives and single optimum 
exists (marked by arrow). (c) Different 2-dimensional projection of a set of distance values from 
same six-objective optimization as in (b). Note that the Pareto front has a fractured shape, indicat-
ing that trade-offs indeed exist. Panels b and c adapted from Druckmann et al. (2007)
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28.5  Optimization Approaches: Genetic Algorithms

Considering that most optimization approaches can be applied quite widely there 
are numerous options to choose from. However, since this is not the focus of the 
current chapter we shall restrict ourselves to discussing genetic algorithms (GAs) 
that we have empirically found very useful. These algorithms seek to optimize a 
given error function by considering in parallel a set of tentative solutions while 
combining, propagating, and perturbing them in a manner reminiscent of (and 
inspired by) evolution of organisms.

The concept of GAs was introduced by J. Holland in the 1970s, and they are by 
now algorithms of widespread use. Briefly stated, these algorithms operate by going 
through multiple iterations (generations) during each of which the fitness of each 
solution (an organism) in a large group of solutions (a population) is evaluated and 
the next iteration of solutions is generated according to the fitness of the current 
population in an effort to discover more successful solutions. Since many solutions 
are considered in parallel the risk of falling into local minima is smaller than, for 
instance, straightforward gradient descent. Indeed, these algorithms are well suited 
for problems that have nonlinear dependencies and rich, complicated error surfaces, 
both salient properties of neuronal model parameter constraining (Achard and De 
Schutter 2006; Druckmann et al. 2007).

The basic logic of GA optimization is quite simple. Starting with an initial set of 
solutions, one performs multiple iterations of evaluating the current solutions and 
using the best solutions to attempt to find better solutions (see pseudo code in 
Table 28.1). Below we briefly describe each step:

Evaluation (fitness selection)—In the case of neuronal parameter constraining, this 
step typically comprises for every solution simulating the response of a model 
with fixed parameters to a series of stimuli and comparing the results to the 

Table 28.1 Pseudocode for basic genetic algorithm

Basic genetic algorithm Pseudocode

For generation in generations

 For solution in solutions

    evaluate solution

 propagate successful solutions

 evolve propagated solutions

Genetic algorithms are a class of stochastic optimization algorithms that 
repeatedly test a set of solutions (a population) through multiple iterations 
(generations). In each iteration all solutions are evaluated. Then the successful 
solutions are used to generate the basis for the next iteration of solutions. 
These tentative solutions are then perturbed stochastically to yield the next 
iteration of solutions, and the cycle continues until it reaches a predetermined 
number of generations
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experimental response of the target neuron. This step can be performed very 
effectively using parallel computing clusters since the evaluation of each solu-
tion is completely independent of the others.

Propagation (reproduction)—The goal of this operation is to make multiple dupli-
cates of successful solutions (which will later be perturbed) and eliminate poorer 
solutions in an effort to move towards more valuable solutions in the next gen-
eration. To explain the concept let us consider a single-objective optimization 
attempt and an attempt to minimize a penalty function (as opposed to maximiz-
ing a value function). In such a case, more successful solutions are simply solu-
tions with a lower error value in this single objective. One straightforward 
approach for propagating successful solution is to stochastically select which 
solutions will propagate according to a probability proportional to the solution’s 
success. In order to do so, one can normalize the population by assigning a score 
to each solution that is simply a fixed maximal penalty value minus each solu-
tion’s penalty value. Summing these scores across the population and dividing  
by the sum assigns a probability of duplication to each solution by which more 
successful  solutions are more likely to propagate.

Evolution (mutation)—The goal is to semi-randomly change parameter values in an 
effort to stochastically strike upon a more successful solution. This operation 
represents the main search aspect of the algorithm. Often the evolution is per-
formed through one or both of the operators: mutation and crossover. Mutation 
in principle consists simply of jittering the parameter values. However, there are 
many methods to do so with respective important parameters such as the degree 
of change (i.e., the standard deviation of Gaussian noise added to each parame-
ter) or whether parameters are changed independently or with some (possibly 
learned) covariation. Regarding crossover operators, similarly to genetic cross-
over the basic idea is taking two solutions (i.e., two lists of parameter values) and 
creating a combined solution by choosing a point on the list and taking the 
parameter values up until that point from one solution and beyond that point 
from the other. We note that using crossover assigns meaning to the particular 
order of the parameter list, a possible complication.

We stress that GA optimization is a mature and rich field with many suggested 
algorithms and variants. We refer the interested reader to several possible textbooks 
(Deb 2001; Goldberg 1989; Holland 1992).

The main difference between a single-objective GA and a multi-objective GA is 
the process of solution selection and propagation. Instead of simply copying solu-
tions proportionally to their scalar error value one needs a more sophisticated crite-
rion for the multiple objectives. In MOO the most natural property of a favorable 
solution is one that dominates many other solutions. This property can be transformed 
into a selection process in many ways (Deb 2001) for instance having the number of 
solutions that a given solution dominates as a fitness value and the population size 
minus that number as an error value. Below we describe in more detail a specific 
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approach that has the advantage of not allowing the most favorable solutions to drop 
out of the population (which is typically a possibility due to the stochastic nature of 
the algorithm); this property is known in the technical literature as “elitism.”

The intuition behind this approach to the selection and propagation process is 
straightforward. We consider the current set of solutions and the one from the 
 previous generation as a whole. Our goal is to select only half of the solutions 
(since we are considering solutions from two generations), while favoring the 
more successful solutions. Accordingly, we divide the population into a series of 
tentative Pareto- optimal fronts, i.e., sets of solutions that are mutually non- 
dominating but dominate the other solutions in the set (Fig. 28.3a, there are four 
Pareto-optimal fronts, marked i–iv). We then add entire Pareto-optimal fronts to 
our set of retained solutions until we find that we have no more room for the next 
front. At that point we must select a subset of the front. The criterion of selection 
is that of maximal spread, i.e., we want to avoid selecting solutions that are very 
similar to each other. Similarity can be defined in the objective space (i.e., the values 
of the distance functions), the solution space (i.e., the values of the parameters), or 
both. Such measures of similarity (or dissimilarity rather) are termed “crowding 
 distances” (Deb 2001) since they aim to avoid a “crowd” of similar solutions over-
taking the population.

The particular algorithm we have used is a custom implementation in NEURON 
of an algorithm named NSGA-II (Deb et al. 2002). It uses the selection approach 
described above and more sophisticated measures of stochastically perturbing the 
solutions which are meant to emulate the behavior of binary GAs that have some 
favorable properties. Details can be found in (Deb et al. 2002).

28.6  Running Parameter Constraining

Currently the most popular program for simulating conductance-based models is 
NEURON (Carnevale and Hines 2005). Besides NEURON’s general expressive 
power that allows nearly any biophysical model to be simulated, two features of 
NEURON are particularly useful in the context of parameter constraining. First, 
NEURON allows for parallel computation, and in particular it is straightforward to 
implement “embarrassingly parallel” tasks such as the shipping of different param-
eter values to different processors for model evaluation. Second, NEURON allows 
for variable-time-step integration, a numerical method approach which can yield 
major speedup in parameter constraining. In brief, instead of using a fixed and very 
small integration time step, the size of the time step is chosen adaptively according 
to the rate of change in the integration. This option is highly useful when perform-
ing parameter constraining since many parameter combinations may yield only 
weakly nonlinear behavior (e.g., low sodium and high potassium channel parameter 
combinations) that can be integrated with longer integration steps for faster model 
evaluation. NEURON’s hoc language is rich enough to allow direct programming of 
GAs in hoc. Alternatively, the ability to combine NEURON and Python (Hines et al. 
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2009) can be used to perform the more generic GA programming in Python (for an 
elegant implementation see http://projects.g-node.org/emoo/).

In terms of computation time, a standard GA uses a population size on the order 
of 100 and should be allowed to run for several hundred iterations. Thus, the amount 
of time it takes to simulate the response of a single model to the tested data set 
should be multiplied by 104 for the run time of the parameter constraining attempt. 
If a model requires 1 min of simulation time (a reasonable time for a simple model), 
this corresponds to roughly a week on a single-core machine. On a cluster, if there 
are as many processors as organisms in the population the entire population can be 
evaluated simultaneously and the run time divided by that factor. Therefore on a 
100-core cluster, given a simulation time of 1 min for a single model, the parameter 
constraining should take a few hours. We note that it is advisable to repeat the 
parameter constraining attempt several times due to its stochastic nature.

28.7  Interpreting the Results of a MOO Parameter 
Constraining Attempt

The first question at the end of a parameter constraining attempt is how successful 
are the final models. At face value, this should be indicated by the final error scores, 
i.e., how well the model matches the target data. However, while important, this 
factor alone can be misleading. Since conductance-based models can contain doz-
ens of parameters, overfitting is a serious potential issue. The classical approach to 
avoid overfitting is to constrain the model using only a part of the data (the training 
set) and then to simulate the response of the selected models (unmodified) to a sec-
ond set of previously unseen data (generalization set). One simple approach to do 
this in neuroscience is to probe the neuron with different types of current stimuli 
(e.g., steps and ramps) and use only one type of stimulus for training and the other 
for generalization (Druckmann et al. 2011). Indeed, this is the approach we recom-
mend as the final test for the validity of the models.

If the parameter constraining attempt failed to sufficiently reduce the error func-
tion between data and model during training a number of issues should be checked. 
First, since the algorithm is stochastic a repeated attempt at optimization may yield 
better results. Second, two obvious parameters that control the strength of the opti-
mization are the number of solutions checked in parallel (number of organisms) and 
the number of iterations performed by the algorithm (number of generations); these 
may need to be increased. Third, as the number of distance functions used increases 
so does the risk of the optimization getting stuck since there are multiple trade-off 
combinations and not enough solutions to properly express them. If the number of 
solutions cannot be further increased it is worthwhile to attempt and sum together 
some of the distance functions in order to have a smaller number of parallel distance 
functions. Intuitively, distance functions that test the same measure over different 
stimuli (and especially different intensities of the same stimulus) are good candi-
dates to sum together without too much adverse an effect (Druckmann et al. 2007). 
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Alternatively, one can examine the shape of the Pareto-optimal fronts at the end of 
the optimization to find whether actual trade-offs between the different distance 
functions occur (Fig. 28.3b, c). If the Pareto front projected down to a subset of dis-
tance functions has a “corner” to it (Fig. 28.3b) then any weighting of these two 
distance functions will yield the same optimum (marked by arrow in Fig. 28.3b) and 
hence keeping these distance functions separate is not crucial. In contrast, if the 
Pareto- optimal front has a curve or a fractured shape (Fig. 28.3c) then different rela-
tive weightings of the distance functions will yield different optima (marked by 
arrows in Fig. 28.3c). Such distance functions should be kept separate and should 
not be summed together. Finally, it is always possible that the model may not be 
appropriate for the data. Before that conclusion is reached it is important to check 
whether all the appropriate parameters were indeed set to be free parameters along 
with an appropriate range.

We feel and would like to stress that MOO is not just a more sophisticated form of 
searching through parameter space. Rather, it allows one to flexibly test, explore, find, 
and develop the right combination of model assumptions, data-model distance func-
tions, and free parameters for a given neural model. These are the real problems at the 
heart of neural parameter constraining. Once they have been solved and finalized, any 
parameter search approach used upon them is likely to yield good solutions (Fig. 28.4).

Fig. 28.4 Training and generalization paradigm. (a, b) Training phase involves using a defined set 
of experimental data to generate models. (a) In this case, experimental voltage responses recorded 
from rat layer 5 pyramidal cell to three depolarizing current steps (bottom) are used as the training 
set; the experimental response to the largest step current, #3, is shown. (b) Model response to step 
current #3 following training on the three current steps. (c, d) Generalization phase involves testing 
the success of the model on predicting the response of the target neuron to a stimulus not used 
during parameter constraining. (c) Model response to a new stimulus, in this case a ramp current 
(bottom trace in d). (d) Experimental response to the same ramp current. Figure adapted from 
Druckmann et al. (2011)
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28.8   Alternative Optimization Approaches:  
Direct Parameter Constraining

Considering fitting the current, not voltage, response of a target neuron provides an 
especially appealing alternative approach to parameter constraining. First note that 
since the Hodgkin–Huxley equations depend only on the history of the neuron volt-
age, if that is known (i.e., recorded) then the gating variables as a function of time 
can be computed directly (let us ignore for the moment channels that are dependent 
on additional attributes, e.g., SK channels and their dependency on calcium). 
Accordingly, the recorded voltage at each time point is used to calculate the gating 
variables, activation, and driving force of each channel. The total current experi-
enced by the neuron is given on one hand by the contribution of all channels (and 
possibly also an injected current) and on the other hand by the empirical derivative 
of the recorded voltage. Equating these two expressions for voltage, all that remains 
as unknown is the linear scaling of each channel’s contribution by its conductance. 
Therefore, finding these conductance values reduces to a simple linear regression 
problem. This point was noticed at least as early as Toth and Crunelli (2001) and 
was later generalized to include more complicated models (Huys et al. 2006; Lepora 
et al. 2012) and nonlinear parameters (Huys and Paninski 2009). These techniques 
are very promising, yet it remains unclear how effective they are since on a practical 
level they have yet to be tested in a robust way against real experimental data (i.e., 
not surrogate data obtained from a model) and on a conceptual level it is unclear 
how realistic are the simplified assumptions of the assumed noise model.

28.9  Open Questions

As hinted above, many aspects of parameter constraining could be rewarding for 
future study. A few important ones are the following:

Optimal distance functions. Each of the distance functions mentioned above has 
advantages and disadvantages. Though MOO allows one to combine different dis-
tance functions, it does not solve the question of which distance functions are the 
best to use. One possible approach is to try to understand what makes each neuron 
class distinct from other neuron classes and directly incorporate these features into 
the parameter optimization. Of course, such an approach depends on being able to 
define a neuronal class, an issue question of much debate (Ascoli et al. 2008; 
Druckmann et al. 2012; Sugino et al. 2006). One result of such analysis (and many 
other analyses) is that both the pattern of AP firing and the shape of individual APs 
carry useful information. Therefore, any approach is likely to require distance func-
tions related to both aspects.

Relative importance of the different ion channels underlying neuronal dynamics. 
The approach described in this chapter allows one to generate a large amount of 
different models according to a given set of target experimental data. The spread of 
successful models in parameter space, i.e., the densities of different ion channels 
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present in successful models, can potentially be analyzed in order to determine the 
relative importance of different ion channels in generating the electrical behavior 
under consideration (Prinz et al. 2004; Weaver and Wearne 2006). This question is 
of great conceptual importance since one of the main goals of conductance-based 
models is to relate neuron dynamics/function to the underlying biophysics.

Model uniqueness. A typical parameter constraining attempt using GAs will lead to 
multiple solutions. How should the multiplicity of solutions be addressed? Should 
the best solution be chosen and the rest ignored? Or should all solutions that fall 
within the experimental variability be considered valid models? A closely related 
question is how does the range of successful solutions change as we add more dis-
tance functions and/or target stimuli. Will the number of successful models go down 
all the way to a single model? Or to zero? In other words, is the parameter constrain-
ing underdetermined or overdetermined. In some systems it is quite clear that many 
different channel combinations yield similar behavior (Prinz et al. 2004; Schulz 
et al. 2006). However, one needs to keep in mind that the question of how many suc-
cessful models are found is intimately related to the question of how one formalizes 
the comparison between model and experiment as well as where do we set our 
threshold, both aspects that are, at least a priori, extrinsic to the biological question.

28.10  Summary

In this chapter we presented an approach to constraining the parameters of 
conductance- based models. This approach can be applied to other biophysical 
model types as well. We have stressed that the main difficulty with properly con-
straining such models is formalizing the way in which we quantify to what degree 
is a given model a good or a bad approximation of the data. We presented MOO, an 
approach that allows a richer vocabulary of expressing the comparison between 
models and experiments. We briefly described one optimization tool that is well 
suited to MOO, genetic algorithm optimization. This chapter did not provide a sin-
gle, “one-size-fits-all” solution to the problem of constraining biophysical models. 
This is intentional, since we strongly believe that, at least at the moment, the field is 
not at a state where one can use an off-the-shelf automated parameter constraining 
algorithm as a black box which inputs data and outputs a model. Rather, the advan-
tage of the automated parameter constraining algorithm is that it shifts the weight 
from the tedious task of guessing and checking hundreds of parameter combinations 
to the more fruitful and challenging task of trying to define what type of an approxi-
mation is a good biophysical model, which will allow the computer to properly 
search through the parameter combinations.

The results above were presented, for the sake of simplicity, from a soma-centric 
point of view. The approach described in this chapter can be extended in a straight-
forward manner to deal with dendritic phenomena and parameters (Hay et al. 2011). 
Looking forward, as we seek to integrate more detailed, biophysically realistic mod-
els into larger and larger neural circuit models, e.g., Markram (2006) and Bibbig 
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et al. (2001), it is crucial to have powerful and flexible tools to constrain single- 
neuron models if we are to hope for network-level accuracy. We hope this chapter 
will inspire and instruct parameter constraining of conductance-based models in 
accordance with rich experimental data.

 Appendix

All simulations for this chapter were performed in the NEURON simulation envi-
ronment (Carnevale and Hines 2005). The basic equations and pseudo code have 
been given in the main text. More details regarding the models, data, and fitting 
procedures are given in the following references, Druckmann et al. (2007); 
Druckmann et al. (2008); and Druckmann et al. (2011).
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Abstract Computational models are important tools for determining dendritic 
properties and for understanding their functional roles. However, these models are 
limited by simulation time and storage requirements, particularly when modeling 
neuronal networks. We review reduced models of the neuron that accurately report 
the transmembrane potential at a few specified locations while retaining dendritic 
properties, including the spatial distribution of synaptic inputs throughout the den-
dritic tree. These models are rooted in two classes of methods from linear algebra: 
methods based on the singular value decomposition and moment-matching meth-
ods. The reduced models can be used to further elucidate dendritic function as they 
greatly reduce the computational cost associated with simulating networks of mor-
phologically accurate neurons. We demonstrate this capability by simulating a net-
work of hippocampal pyramidal cells and interneurons coupled through chemical 
synapses and electrical gap junctions.

Chapter 29
Morphological Reduction of Dendritic 
Neurons

Kathryn R. Hedrick and Steven J. Cox

K.R. Hedrick 
Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
e-mail: kathryn.r.hedrick@gmail.com 

S.J. Cox (*) 
Rice University, 6100 Main Street, Houston, TX 77005, USA
e-mail: cox@rice.edu



484

29.1  Introduction

Neuronal activity largely depends on the properties of dendrites, including their 
electrical properties, their morphology, and the spatial distribution of synapses. 
Electrically, dendrites have passive properties, such as membrane capacitance and 
axial resistivity, and active properties, such as voltage-dependence of ionic currents. 
Morphology affects how a local excitatory postsynaptic potential (EPSP) is trans-
mitted to the soma, and the efficacy of neuronal input depends on the location of the 
synapse in the dendritic tree. For example, an EPSP near the soma is more likely to 
evoke an action potential (AP) than is an EPSP of equal strength in distal dendrites, 
and EPSPs from two synapses may combine nonlinearly depending on their prox-
imity to each other as well as the ionic currents present near the synapses.

Elucidating dendritic properties and functionality often requires a partnership 
between experimental and computational studies, but simulation time and storage 
requirements constrain the detail captured by computational models. To retain mor-
phology, one must discretize in space to form compartments, computing the synap-
tic currents, ionic currents, and transmembrane potential within each compartment. 
If discretizing to the level of a spine (about 1 μm in length), 1,000 compartments are 
needed to model just 1 mm of dendrite, and tracking ionic currents can easily lead 
to ten variables per compartment. The number of variables can become intractable 
when modeling the entire dendritic tree of each neuron within a network.

This high computational cost has inspired a vast collection of reduced models. 
A successful reduced model approximates the output of a neuron, such as mem-
brane potential or timing of action potentials, using a system with a much smaller 
dimension and simulation time by sacrificing or approximating certain dendritic 
properties. Reduced models are as old as computational neuroscience itself. The 
quasi-active model, which linearizes ionic currents about rest, already appears in the 
seminal paper in which Hodgkin and Huxley first characterize active ionic currents 
(Hodgkin and Huxley, 1952). This linear approximation is accurate for subthreshold 
stimulation, and it is still widely used today. The reduction of dendritic morphology 
also dates back to the 1950s, when Wilfrid Rall derived conditions for which 
the dendritic tree can be mapped to an equivalent cable (Rall, 1959). However, the 
assumptions prescribed by Rall were too restrictive, and further attempts to relax 
the assumptions (Schierwagen, 1989; Poznanski, 1991) were insufficient to apply the 
reduction to a general dendritic tree.

Since Rall, the primary focus of reduced models has been reducing the dendritic 
morphology. The most common technique used is merging compartments. In its 
simplest form, this means coarsening the spatial discretization of the neuron, effec-
tively lumping together the synaptic currents, ionic currents, and transmembrane 
potential over larger regions in the dendrites. The more sophisticated reduced mod-
els use the characteristics particular to the given neuron. For example, Pinsky and 
Rinzel reduced the 19-compartment model of a CA3 pyramidal cell constructed by 
Traub et al. (1991) and Traub and Miles (1991) to two compartments. Their reduc-
tion was based on the observation that most fast-spiking ionic currents are located 
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in or near the soma while most calcium channels are relegated to the distal dendrites 
(Pinsky and Rinzel, 1994). Similarly, while Traub and Miles also derived a detailed 
51-compartment model of a CA3 interneuron (Traub and Miles, 1995), the most 
commonly used model is a single-compartment model from Wang and Buzsáki that 
reproduces the high spike rate of interneurons (Wang and Buzsáki, 1996; Skinner 
and Saraga, 2010).

Several reduced models have recently emerged that retain the spatial distribution 
of synaptic inputs within the dendrites. These models, which are the focus of this 
chapter, are constructed using methods from numerical linear algebra. The methods 
are divided into two classes: methods based on the singular value decomposition 
(SVD) and moment-matching methods. Models from both classes accurately report 
the transmembrane potential at a few specified locations of the neuron.

The models are illustrated in Fig. 29.1. In reality, the transmembrane potential, 
v(x,t), and the synaptic conductance, g(x,t), vary continuously in space and time. In 
a discrete model, the potential, vi(t), and synaptic conductance, gi(t), vary in time 
within each compartment i. In a reduced model constructed by merging compart-
ments, each compartment covers more dendrite, leading to fewer compartments at 
the expense of the spatial specificity of synapses. By contrast, in a morphologically 
reduced model, the number of compartments is reduced while retaining the spatial 
specificity by projecting the system to a similar system of much smaller dimension. 
SVD-based methods can be applied to a neuron with any set of ionic currents; how-
ever, the reduced model lacks a biological interpretation. While moment-matching 
methods apply only to passive (linear) or quasi-active (linearized) systems, the elec-
trophysiology of the reduced model is similar to that of full model. For a detailed 
review and comparison of the two classes of reduction techniques, see Antoulas 
et al. (2001) and Antoulas (2005).

In Sect. 29.2, we present the general neuronal models that are to be reduced. In 
Sects. 29.3 and 29.4, we review the reduced models of the neuron using SVD-
based methods and moment-matching methods, respectively, providing a brief 
derivation of each reduced model. We close in Sect. 29.5 by demonstrating the 
generality and capability of moment-matching methods by reducing a network of 
quasi-active hippocampal cells interconnected through chemical synapses and 
electrical gap junctions.

29.2  Discrete Models of the Neuron

We begin by describing the discrete active model and its linear counterpart, the 
discrete quasi-active model. These models are standard, and a detailed derivation 
of each can be found in several texts, including (Gabbiani and Cox, 2010). We 
present the models using the classic Hodgkin and Huxley description of the 
squid giant axon (Hodgkin and Huxley, 1952), but the models generalize for any 
ionic currents.

29 Morphological Reduction of Dendritic Neurons
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29.2.1  Discrete Active Model

By Kirchoff’s Current Law (KCL), the transmembrane potential, vj, in compartment 
j ≤ n is governed by the differential equation, 
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Fig. 29.1 Schematics of neuronal models. (a) Two-dimensional projection of a rat CA3 pyramidal 
cell. Neuronal input drives the conductance at each synapse, denoted g(x,t). The transmembrane 
potential, v(x,t), depends on the synaptic conductance as well as the neuron’s intrinsic properties. 
A neuron typically receives thousands of inputs throughout the dendritic tree. We highlight three 
such synapses with arrows. (b) The full discrete model is formed by discretizing in space into 
compartments. For this example, there are 100 compartments, and the soma is compartment 100. 
The synaptic conductance in each compartment i is denoted gi(t). The potential at each compart-
ment, vi(t), is computed through solving 100(Ng + 1) coupled ordinary differential equations 
(ODEs), where Ng denotes the number of gating variables for all active ionic currents (see 
Sect. 29.2.1). Note that each synapse indicated by an arrow drives a different compartment. (c) 
Reduced model constructed by merging compartments. For this example, the compartments repre-
sent apical dendrites (ga,va), basal dendrites (gb,vb), and the soma (gs,vs). There are now only 3(Ng 
+ 1) coupled ODEs to solve, but spatial specificity is lost, as illustrated by the solid red and dashed 
blue arrows driving the same compartment. (d) Reduced model constructed through an SVD- 
based or moment-matching method. The conductances at each compartment are linearly combined 
to form the conductance at three reduced compartments. The potentials at each reduced compart-
ment are computed by solving 3(Ng + 1) coupled ODEs, and the somatic potential is computed 
through linearly combining these potentials. In morphologically reduced models, computational 
complexity is reduced without sacrificing spatial specificity
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The first two terms describe the capacitive and leakage current leaving compartment 
j through the cell membrane, where Aj (cm2) is the surface area, Cm (μF/cm2) is the 
membrane capacitance, gL (mS/cm2) is the membrane leakage conductance, and VL 
(mV) is the membrane reversal potential. The third term is the axial current flowing 
from compartment j to neighboring compartments, where Gax is called the Hines 
matrix and encodes the branching structure of any general dendritic tree 
(Hines, 1984; Gabbiani and Cox, 2010). The fourth term is the current flowing 
across the cell membrane through active (voltage-dependent) ionic channels (29.2). 
The final term is the current flowing into the cell through the synapse at compart-
ment j, which is proportional to the synaptic conductance, gj (mS), and biased by the 
synaptic reversal potential, Vsyn,j (mV).

The squid giant axon has a sodium and a delayed rectifier potassium channel, 
leading to the active current at compartment j, 
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The sodium and potassium currents are proportional to their peak conductances (mS), 
gNa  and gK, respectively, and are biased by their reversal potentials, VNa and VK. The 
gating variables (m,h,q), describe the activation or inactivation of the ionic currents. 
Given a fixed potential, any gating variable, w ∈{m,h,q}, approaches its steady-state 
value, w∞, at the rate τw. All parameters were determined empirically. We assume for 
simplicity of notation that the peak conductances are uniform throughout the tree, 
although the system can be generalized for a nonuniform distribution.

Equations (29.1) and (29.2) combine to form the discrete active model, which has 
the state vectors, v = [v1,…,vn]T ∈ ℝn and η = [m1 h1 q1,…,mn hn qn]T ∈ ℝ3n. This means 
that for a cell with n = 100 compartments, one must track 100 variables for the trans-
membrane potential and 300 gating variables, leading to 400 coupled ODEs.

The state vectors are governed by the full nonlinear system, 
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This equation is a succinct way of writing (29.1) and (29.2) for all compartments. Let 
A  be the average surface area across all dendritic compartments, and set 
D A A= diag( )/ , or a diagonal matrix with A A/  along the diagonal. The capaci-
tance and conductance matrices are given by 

 C AC D G Ag D Gm L= = +and ax .  

Active currents are contained in the nonlinear function, Iact : ℝn ×3n → ℝn, given by 
(29.2) with the additional term, − AgLVL. Although (29.3) tracks the potential 
throughout the tree, we define the output of the system, y(t), to be the transmem-
brane potential at the spike initiation zone (SIZ), usually assumed to be the soma. 
The output is obtained through multiplication by eSIZ, the canonical unit vector with 
the single nonzero element corresponding to the SIZ.
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29.2.2  The Discrete Quasi-Active Model

The active model can be as accurate as is one’s knowledge of the neuron’s morphology 
and electrical properties. However, the model is nonlinear and thus one cannot take 
advantage of the efficient methods for solving linear systems. A common approxi-
mation is the quasi-active model, which linearizes the active model about its resting 
state. A detailed derivation of the quasi-active model can be found in Gabbiani and 
Cox (2010), and the electrophysiology of the model is described in Koch (1999).

Suppose the synaptic conductance at compartment j is given by ɛ gj(t) for some 
small ɛ > 0. The potential and gating variables (w ∈{m,h,q}) can then be written as 
v t v v t Oj j j( ) ( ) ( ),= + +R e e� 2  and w t w w t Oj j j( ) ( ) ( ),= + +R e e� 2 , where �v  and �w  are 
the linear perturbations from the resting states, vR and wR = w∞(vR), respectively.

Let u t g t v Vj j j( ) ( )( ), ,≡ − −R syn j  for all j. By matching terms of order ɛ in (29.1) 
and (29.2), the linear perturbation from rest at compartment j is governed by 

 

A C v t g g g v i i i G j kj m j L m q j m j h j q j
k

n

( )( ) ( ) ( , ), , ,� �′

=

+ + + + + + + ∑1 1
1

ax ��

�

v u

L i t v i g w m h q

k j

w w j j w j w

=

− + = ∈′

,

( ) / { , , }., , 2
0 for

 
(29.4)

A current flows from each compartment to ground, or extracellular fluid, according 
to the membrane capacitance, Cm, and constant conductances, g gL m,

1
, and gq1

. For 
each gating variable, the current, A i A g w v wj w j j w j j, ,( )/ ( ) ,= ∞

′
2 R �  flows to ground 

through the inductor, Lw, and resistor with conductance, gw2
,  placed in series. The 

remaining two terms describe the axial current through the neuron and the synaptic 
input. For more details as well as a detailed circuit diagram, see Koch (1999) and 
Hedrick and Cox (2013). (Note that while the quasi-active model contains an induc-
tor, there is no known biological element corresponding to an inductor.)

Finally, (29.4) can be written as the linear system, 

 C G Bz t z t u t y t L z tT′ + = =( ) ( ) ( ), ( ) ( ),ˆ
 (29.5)

with the state vector z i i i vm h q
n= ∈[ ; ; ; ]� �4 . The system’s matrices are given by 
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44  

(29.6)

where G A g g g D GL m q44 1 1
= + + +( ) ax

. The input matrix, B∈ ℝ4n ×n, has nonzero 
elements only in the last n ×n submatrix, which contains the identity matrix. 
The output vector, L ∈ ℝ4n ×1, has nonzero elements only in the last n ×1 submatrix, 
which contains the unit vector, eSIZ. The output, y, is the linear perturbation from rest 
of the transmembrane potential at the SIZ.
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29.3  SVD-Based Model Reduction

To model a neuron with n compartments and Ng gating variables, solving either the 
active or quasi-active model requires solving n(Ng + 1) coupled differential equa-
tions, a task that can be computationally expensive as n(Ng + 1) is often at least on 
the order of 103. The goal of a reduced model is to track the transmembrane poten-
tial at the SIZ given a system of much smaller dimension. Kellems et al. presented 
the first morphological reduction of the neuron that retains the spatial specificity of 
inputs (Kellems et al., 2009, 2010). We briefly review the SVD-based methods they 
used to reduced the quasi-active neuron in Sect. 29.3.1 and the active neuron in 
Sect. 29.3.2. For a detailed description of the SVD, Cholesky factorization, or bal-
anced truncation, see Gabbiani and Cox (2010).

29.3.1  Reduction of the Quasi-Active Model

Balanced truncation (BT) is a method from control theory for reducing linear sys-
tems (Rahn, 2001; Dullerud and Paganini, 2000). BT centers around two notions: 
controllability and observability. Given the initial state, z(0) = 0, z  is a controllable 
state if there exists an input, u(t), such that z z( )t =  for some τ > 0. Given u(t) = 0 
for all t and z z( )0 = , z  is an observable state if the output, y(τ), is nonzero for 
some τ > 0. Only states that are both controllable and observable are relevant, for an 
uncontrollable state is not affected by input, and an unobservable state does not 
affect the output. For example, due to the interplay of ionic currents, dendrites have 
intrinsic bounds on the transmembrane potential. A state is uncontrollable if it con-
tains potentials outside these bounds since no synaptic input can drive the neuron to 
such a state. Assuming the SIZ is the soma and the cell receives no synaptic input, 
a small depolarization in distal dendrites that is not transmitted to the soma is unob-
servable since one cannot determine this initial depolarization from voltage 
 recordings at the soma.

BT reduces the dimension of a system by quantifying controllability and observ-
ability and keeping only the more relevant states. Consider the quasi-active system 
of (29.5) written in the standard form, 

 z t Az t Bu t y t L z tT′ = + =( ) ( ) ( ), ( ) ( ),  (29.7)

where A = − −C G1  and B = −C B1 . Define the controllability and observability 
Grammians, 

 
P BB dt Q LL dtAt A t A t At= =

∞
∗

∞
∗∫ ∫

∗ ∗

e e and e e
0 0

,
 

respectively, where ∗ denotes the conjugate transpose. The range of P and Q is the 
subspace consisting of all controllable and observable states, respectively.
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The first step of BT is to transform the system into a balanced system, or a sys-
tem for which the Grammians are equal and diagonal. For such a system, there 
exists a single measure for both controllability and observability. This transforma-
tion is done by computing the Cholesky factors, P = U U∗ and Q = V V∗, and com-
puting the SVD of the mixed product, U∗V = Z Σ Y∗. The transformation matrix is 
given by T Y V= − ∗ ∗Σ 1 2/ . Substituting ẑ Tz=  into (29.7) leads to the balanced coun-
terpart to the quasi-active system, 

 ˆ ( ) ˆ ( ) ˆ ( ), ( ) ˆ ˆ( ),z t Az t Bu t y t L z tT′ = + =  (29.8)

where Â TAT= −1 , ˆ ,B TB=  and L L T
T

T� = −1 .
The Grammians of this balanced system, P̂ TPT= ∗  and Q̂ T QT= −∗ −1 , are equal 

and diagonal, given by ˆ ˆP Q= = S . The diagonal elements of Σ, called the Hankel 
singular values, provide a measure for controllability and observability, where 
larger values correspond to more relevant states. Since they are nonnegative and in 
descending order, one truncates the last n − k singular values to construct the reduced 
system of dimension k, 

 x x x′ = + =( ) ( ) ( ), ( ) ( ),t A t B u t y t L tkk k k
Tˆ ˆ ˆ ˆ

 

where Âkk  is the initial k ×k submatrix of Â , and B̂k  and L̂k  are the initial k rows 
of B̂  and ˆ,L  respectively. The reduced state vector, ξ ∈ ℝk, has no apparent biologi-
cal interpretation, but the output of the system approximates the SIZ potential.

The reduced model is both accurate and efficient. Kellems et al. showed that it 
can accurately track the subthreshold potential, perform parameter sweeps for syn-
aptic scaling, and determine the neuron’s resonant frequency. As an example, their 
reduced model of a projection neuron in the rat entorhinal cortex has up to five 
digits of accuracy while reducing the dimension by a factor of 269 and the  simulation 
time by a factor of 4 (Kellems et al., 2009).

29.3.2  Reduction of the Active Model

The quasi-active model is accurate given small input currents, and it can be used 
effectively for network simulations by coupling it with a spiking threshold scheme 
such as the integrate and fire (IAF) model. However, as the model is linear, it cannot 
capture nonlinearities in the neuronal dynamics, such as the action potential. For 
this, one must use the active model, given by (29.3). Kellems also reduced the active 
model using a combination of two methods: the principal orthogonal decomposition 
(POD) (Liang et al., 2000; Kunisch and Volkwein, 2002) and the direct empirical 
interpolation method (DEIM) (Chaturantabut and Sorensen, 2010).
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Principal Orthogonal Decomposition

Equation (29.3) can be written in the standard form, 

 

v t Hv t N v G t v t V y t e v tT′ = + − − =( ) ( ) ( , ) ( )( ( ) ), ( ) ( )

(

h
t

syn syn SIZ

diag hh h h h( )) ( ) ( ) ( ),v t v t′
∞= −

 
(29.9)

where H C G= − −1  and G C gsyn diag= −1 ( ) . The nonlinear terms are contained in 
the function, N

n nN ng:� �× → , given by N C I= − −1 act .
POD is the standard method for reducing nonlinear systems, such as (29.9). 

Given a reducer X ∈ ℝn ×r such that r ≪ n, substituting v = X ξ into (29.9) leads to 
the reduced system of dimension r, 

 

x x x h x′ = + − + =( ) ( ) ( , ) ( ) ( ) ( ) , ( )t H t X N X G t t X G t V y t eT Tˆ ˆ ˆ
syn syn syn SIIZ

diag

T X t

X t X t

x
t x h h x hh

( )

( ( )) ( ) ( ) ( ),′
∞= −

 
(29.10)

where Ĥ X HXT=  and Ĝ X G XT
syn syn= .

The accuracy of the reduced system, or the extent to which ŷ y≈ , depends on 
the choice of the reducer, X. According to POD, the reducer is constructed by first 
taking Ns snapshots of the potential to form the matrix, S v t v tN

n N

s

s= … ∈ ×[ ( ) ( )]1 � . 
The columns of the reducer are the best orthonormal basis for S, meaning they solve 
the optimization problem, 

 
min ( ) ( ( ) ) .
{ }X j

N

j j
T

i
i

N

i
i i

r

s s

v t v t X X
= = =
∑ ∑−

1 1 1
2

2� �
 

The columns are computed from the SVD of the snapshot matrix, S = U Σ V∗. The 
singular values, which are found on the diagonal of Σ, are nonnegative and in 
descending order, and the best rank r approximation of S is given by S ≈ UrΣr rVr

∗, 
where Ur and Vr are the first r columns of U and V , respectively, and Σr r is the first 
r ×r submatrix of Σ. The reducer is given by X = Ur, and the accuracy of the reduced 
system depends on the rate of decay of the system’s singular values.

While the state vector, ξ, has dimension r ≪ n, the nonlinear function, N, depends 
on X ξ ∈ ℝn and, even worse, on h ∈�nNg. Hence, the reduced system only appears 
to be reduced, but in reality it has the same complexity as the original system. DEIM 
is a method recently developed to overcome this problem.

Direct Empirical Interpolation Method

DEIM is a discrete variant of the empirical interpolation method, a reduction method 
for finite element applications (Barrault et al., 2004). DEIM considers discrete 
points in space (dendritic compartments for our application) and can be applied to 
any general set of ODEs.
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Given a basis matrix, W ∈ ℝn ×k for k ≪ n, the nonlinear term can be 
approximated by 

 N X t t Wc t( ( ), ( )) ( )x h ≈  (29.11)

for some set of coefficients, c(t). This overdetermined system can be solved uniquely 
for c by including only k rows of W. Explicitly, given k spatial interpolation points, 
p1,…,pk, let P ep pk

= …[ , , ]
1

e , where each column is the canonical unit vector with 
the single nonzero element, e pp ii

( ) = 1 . After multiplying both sides of (29.11) by 
PT, c has the unique solution, c P W P NT T= −( ) 1 . Equation (29.11) then becomes 

 N X W P W P N XT T n( , ) ( ) ( , ) .x h x h≈ ∈−1 �  

This may not appear like a simplification, but a closer look reveals the dramatic 
decrease in the computations required. Each row j of N encodes the active ionic 
currents for compartment j and depends only on vj and wj for all gating variables, w. 
Therefore, PTN depends on PTXξ ∈ ℝk rather than on Xξ ∈ ℝn. Similarly, instead 
of tracking h ∈�nNg , the gating variables in all compartments, one need only to 
track ĥ ∈�kNg, where ĥ  contains the gating variables in compartments {pi}i

k
=1.

Connecting all the pieces, the combined approach of POD and DEIM leads to the 
reduced system, 

 

ξ ξ ξ η ξ′ = + − + =( ) ( ) ( , ) ( ) ( ) ( ) , ( )t H t N G t t X G t V y t eTˆ ˆ ˆ ˆ ˆ ˆsyn syn syn SIIZ

diag

T X t
t

ξ
τ ξ η η ξ ηη

( )
( ( )) ( ) ( ) ,ˆ

ˆ ˆ ˆ ˆ ˆ′
∞= −

 
(29.12)

where x̂ x= ∈P XT k� , and ˆ ( )N X W P W P NT T T r= ∈−1 � . The success of this spatial 
interpolation scheme depends on the appropriate choice of the basis matrix, W, and 
interpolation points, {pi}. DEIM specifies that the basis be constructed using POD 
on snapshots of N since POD provides the optimal basis. DEIM then provides an 
algorithm for iteratively constructing interpolation points that lead to an accurate 
reduced system with a global error bound. For more details, see Chaturantabut and 
Sorensen (2010).

Kellems et al. showed that the reduced model can accurately capture the sub-
threshold potentials and the nonlinear action potentials. They report up to two orders 
of dimension reduction with an order of magnitude speed-up (Kellems et al., 2010).

29.4  Moment-Matching Model Reduction

As described in Sect. 29.3.1, BT can be used to reduce the quasi-active model while 
retaining the rich spatial structure in the input signal. However, BT requires one to 
transform the system before truncating, and the cost and storage requirements 
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associated with computing the system’s Grammians become prohibitive for large 
systems. In contrast, moment-matching methods iteratively project the system onto 
a subspace of reduced dimension, a reduction process that is far less complex in 
terms of the computations performed and the storage requirements.

Moment-matching methods have recently been used to reduce the quasi-active 
model (Kellems et al., 2009; Yan and Li, 2011; Hedrick and Cox, 2013). Like SVD- 
based reductions, the reduced models retain the spatial distribution of inputs while 
approximating the potential at a few specified locations of the neuron. The reduc-
tion procedure is straightforward, and under certain conditions, the reduced model 
has an electrophysiological interpretation.

29.4.1  Reduced Systems

Consider the quasi-active system of (29.5). Given a reduced dimension, r, and a 
reducer,  ∈ + ×�n N rg( )1 , substituting z z= ˆ  into (29.5) leads to the reduced system, 

 C G B� � � �ˆ ( ) ˆ( ) ( ), ˆ( ) ˆ( ),z t z t u t y t L z t
T′ + = =  (29.13)

where C X CX G X GX� �= =T T, , B X B� = T ,  and L̂ LT=  .
The system’s accuracy, or the extent to which ŷ y≈ , depends on the choice of 

reducer. Kellems et al. used the iterative rational Krylov algorithm (IRKA) to con-
struct the reducer (Kellems et al., 2009; Gugercin et al., 2008). While this reducer is 
effective, Yan and Li demonstrated that the simple reducer based on the PRIMA 
algorithm for reducing circuits with resistors, inductors, and capacitors (RLC cir-
cuits) is similarly effective (Yan and Li, 2011; Odabasioglu et al., 1998). A numeri-
cally stable way to construct this reducer is to use the Arnoldi iteration (Trefethen 
and Bau, 1997) to orthogonalize the basis vectors, 

 X G G C G G C G X Xbasis basisorth= … =− − − − − −[ , ( ) , , ( ) ], ( ).T T T T r TL L L1

 (29.14)

 These basis vectors apply to any general quasi-active system.
One shortcoming of all reduced models presented thus far is that the reduced 

state vector has no apparent interpretation. In the case of the quasi-active model, the 
reduction procedure transforms a well-defined RLC circuit to a mysterious black 
box that has the same input–output relationship. We recently presented an alterna-
tive reducer that endows the reduced system with an RLC circuit structure similar 
to that of the original system (Hedrick and Cox, 2013). The reduction procedure is 
modified from a structure-preserving reduction technique (Li and Bai, 2005), and 
the reduced system is applicable when the density of active channels is uniform 
throughout the dendrites.
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Its reducer is constructed in two steps. First, the matrix, Y ∈ ℝn ×r, is constructed 
by using the Arnoldi procedure to orthogonalize the basis vectors, 

 

Y G e G D G e G D Gr
basis eff SIZ eff eff SIZ eff eff= …− − − − − −1 1 1 1 1 1, ( ) , , ( ) ee

Y Y G A g g g D GL w w
w

SIZ

basis eff axorth

 

= = + +( )





+∑

,

( ), ,
1 2

 
(29.15)

the summation being taken over all gating variables. Second, the reducer, 
 ∈ + × +�n N r Ng g( ) ( )1 1 , is a block diagonal matrix with Y on each n ×r diagonal 
submatrix.

All three reduced systems have similar reductions in dimension and simulation 
time, accurately capturing the subthreshold potential (Kellems et al., 2009; Yan and 
Li, 2011; Hedrick and Cox, 2013). As an example, our reduced model of a rat CA1 
pyramidal cell has a relative error on the order of 10−4 while reducing both the 
dimension and simulation time by a factor of 50 (Hedrick and Cox, 2013).

We briefly describe the theory underlying moment-matching methods in 
Sect. 29.4.2, and we describe the electrophysiology of the latter reduced system in 
Sect. 29.4.3.

29.4.2  Theory

Since u is the input vector into both the original system (29.5) and the reduced sys-
tem (29.13), the outputs of each system will agree if the systems’ transfer functions 
agree. The transfer function of a system is a linear mapping from its inputs to its 
outputs in the frequency domain. Let ℒ f denote the Laplace transform of a given 
function, f. The transfer functions of the full and reduced systems, H and Ĥ , satisfy 
ℒ y(s) = H(s)ℒ u(s) and  ˆ( ) ˆ ( ) ( )y s H s u s= . The error in the outputs is related to 
the error in the transfer functions via 

 

max | ( ) ( ) | || ( ) ( ) || || (t y t y t H i i d u i- £ -
æ
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ç
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ø
÷

-¥

¥

-¥

¥
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æ

è
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÷

 

(29.16)

Assuming u has bounded energy, the reduced system is accurate if the transfer func-
tions agree along the imaginary axis.

Moment-matching methods minimize the error bound given by (29.16) by inter-
polating H at specified interpolation points. According to IRKA, the interpolation 
points are set to be the negative of the poles of the transfer function, which are found 
iteratively. For full details of IRKA, as well as a review of moment-matching meth-
ods, see Gugercin et al. (2008).
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As shown in Yan and Li (2011) and Hedrick and Cox (2013), an accurate reduced 
system can be constructed by setting a single interpolation point of zero. The Taylor 
expansions of H and Ĥ  about zero reveal the moments, Mi and M̂i , where 

 

H s s M M L

H s s M M

j

j
j j

T j

j

j
j j
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The reducer is constructed to match as many of the leading moments as possible, for 
if M̂ Mj j=  for j r= … −0 1, , , then ˆ ( ) ( ) ( )H s H s O sr= + .

For a given matrix A, let sp(A) denote the range of A, or the span of its columns, 
and let basis  denote the r basis vectors given by (29.14). If  ∈ ×�n r  such that 
sp spbasis( ) ( ) ⊆ , then M̂ Mj j=  for j r= … −0 1, , . This is a classic result of 
moment-matching methods (Villemagne and Skelton, 1987; Grimme, 1997; Li and 
Bai, 2005), and a proof simplified for the quasi-active neuron can be found in 
Hedrick and Cox (2013). Both reducers presented in Sect. 29.4.1,   and  , satisfy 
this property and thus lead to accurate reduced systems. These reduction methods 
are often referred to as Krylov subspace projection methods since the reducer proj-
ects the original system to the Krylov subspace, K Lr

T T( , ) ( )G C G X− − = sp basis .

29.4.3  Electrophysiology

Consider again the classic Hodgkin and Huxley system, and assume the reduced 
system was constructed using the reducer,  , presented in Sect. 29.4.1. The matri-
ces in the reduced system have the same structure as do the matrices in (29.6), where 
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Ir is the r ×r identity matrix, and ˆ ( ˆ ) ˆG A g g g g I GL L m q r44 1 1
= + + + + ax . Explicit 

expressions for ĝL  and Ĝax  can be found in Hedrick and Cox (2013).
Let the reduced state vector be given by ˆ [ˆ ; ˆ ; ˆ ; ˆ]z i i i vm h q

T r= ∈�4 . The reduced 
system tracks the transmembrane potential, v̂ , and active ionic currents, îw , in each 
of the r reduced compartments. Similar to (29.4), the membrane potential and active 
currents for each compartment j are governed by 

 

A C v t g g g g v i i i Gj m j L L m q j m j h j q j
k

( )( ) ( ) , , ,
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For both the full and reduced quasi-active systems, the membrane has the capacitance 
Cm, and currents flow to ground across resistors with conductances g gL m, ,

1
 and 

gq1
. The three ionic currents to ground flow through an inductor with inductance Lw 

and a resistor with conductance gw2
 for w ∈{m,h,q}. The reduced system has an 

additional leakage current proportional to ĝL . All currents to ground are propor-
tional to the compartmental surface area, Aj for the full system and A A= mean( )  
for the reduced system. The primary difference between the two systems is that Ĝax  
is dense, implying that each pair of reduced compartments are connected through a 
resistor with conductance, ˆ ( , )G i jax . Since accuracy is typically achieved with r < 10, 
this increased density has little effect on the simulation time.

Each compartment of the full system is driven by the input current, 
u t g t v Vj j j( ) ( )( ), ,= − −R syn j . The columns of Y filter the inputs to provide the driving 
current for reduced compartment j, given by Yj

Tu(t). In particular, the first column of 
the reducer acts as the dendritic filter, attenuating inputs according to the distance 
between the synapse and SIZ. Finally, all reduced compartments contribute to the 

SIZ potential, y Y j v
j

r

j≈
=

∑
1

( , )SIZ ˆ . See Hedrick and Cox (2013) for detailed circuit 

diagrams comparing the full and reduced models.

29.5  Reduction of an Interconnected Hippocampal Network

We close by demonstrating the generality and potential of moment-matching meth-
ods by reducing a hippocampal network with both chemical synapses and electrical 
gap junctions. We combine the reduction techniques described in Yan and Li (2011) 
and Hedrick and Cox (2013) to construct a reduced model that accurately predicts 
the network activity while retaining the underlying electrophysiology.

Two questions arise when simulating such a network. First, how well do both the 
full and reduced quasi-active models approximate such network dynamics as syn-
chrony and current across a gap junction? Second, how do the accuracy and gain of 
the reduced model scale with the network size and number of gap junctions? In 
Sect. 29.5.1, we describe how the models can be extended to incorporate gap junc-
tions. We then address both questions through concrete examples in Sect. 29.5.2.

29.5.1  Extension to Incorporate Gap Junctions

Several modeling studies indicate that the strength and location of gap junctions 
affect synchrony among interneurons, which in turn can drive population rhythms 
in the hippocampus (Saraga and Skinner, 2004; Saraga et al., 2006; Zahid and 
Skinner, 2009; Skinner and Saraga, 2010). The quasi-active models described in 
Sects. 29.2.2 and 29.4.1 can incorporate gap junctions given a few modifications.
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The Discrete Quasi-Active Model

We use the basket cell model derived by Wang and Buzsáki, one of the most com-
monly used models of a hippocampal interneuron (Wang and Buzsáki, 1996; Skinner 
and Saraga, 2010). The model includes the traditional Hodgkin and Huxley sodium 
and potassium currents used in Sect. 29.2, but the parameters are modified to repro-
duce the high spike rate characteristic of an interneuron. As the distribution of active 
channels is unknown in CA3 interneurons, we assume the channel density is uni-
form throughout the neuron. Using this model, an isolated interneuron has an intrin-
sic firing rate of 16.85 Hz; consequently, the cell has no resting potential about 
which to linearize.

We first adapt the active model. For simplicity of notation, assume two homoge-
neous interneurons are connected by a single gap junction at compartment p1 of cell 
1 and p2 of cell 2, and let ggap denote the associated conductance (m S). The intrinsic 
current, or the current crossing the cell membrane given no inputs, is given by 
I Ag v V I v m h qL L0 = − +( ) ( , , , )R

act
R R R R , where Iact is given by (29.2), wR = w∞(vR) 

for all gating variables, and vR = −78  mV (roughly midway between the minimal 
potential and the potential at which the cell evokes an AP). For cell 1, the potential 
and active current at compartment j are governed by (29.1) and (29.2) with the fol-
lowing two changes: I0 is subtracted from Ij

act, and the input in (29.1) is replaced by 

 
I t g t v t V I g v t v tj j j p p

stim
syn j gap

,
,( ) ( )( ( ) ) ( ( ) ( )1 1 1

0
2 1

2 1= − − − + − )) ,d
jp1

 
(29.17)

where d
jp1 1=  if j = p1 and zero otherwise.

If Istim = 0, the cell has the resting state, (vR,mR,hR,qR). As described in Sect. 29.2.2, 
we linearize about this resting state to arrive at the quasi-active model given by 
(29.5). For each cell k, the state vector, zk, and input matrix, ℬk, are unchanged.  k  
and  k  are given by (29.6), but g e e

p p

T
k kgap  is added to G44

k. We set the output of the 
neuron to be the SIZ and gap junction potentials. Accordingly, Lk ∈ ℝ4n ×2 with non-
zero elements in the last n ×2 submatrix, given by [ ]e e

pkSIZ . Finally, the input into 
compartment j of cell 1 is given by 

 
u t g t v V I g v tj j p jp

1 1
0

2
2 1( ) ( )( ) ( ) .,= − − − +R syn j gap d

 
(29.18)

The governing equation for cell 2 is analogous. When this model is coupled with the 
IAF scheme, as described in Sect. 29.5.2, the isolated quasi-active neuron has an 
intrinsic spike rate of 16.852 Hz.

The Reduced Quasi-Active Model

According to the last term in (29.17), the current across a gap junction depends on 
the gap junction potentials. Hence, the reduced model must approximate the gap 
junction potentials as well as the SIZ potential.

This problem is similar to the case of the passive model (no active ionic channels), 
for which the synaptic current depends on the potential at the synapse. Yan and Li 
suggest that one set the system’s outputs to be the synaptic potentials as well as the 
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SIZ potential, leading to a reduced dimension proportional to the number of synapses 
(Yan and Li, 2011). The reduced model is accurate, but the gain is quickly lost as the 
number of synapses grows. We offered an alternative reduced system with the single 
output, y = vSIZ. This reduced system sacrifices some of the nonlinearities in the 
synaptic currents, but its dimension is independent of the number of synapses 
(Hedrick and Cox, 2013).

Here, our approach is a hybrid between the two reduction techniques. Assuming 
the number of gap junctions for each cell is small, we take the former approach in 
setting all gap junction potentials as outputs of the system. To retain the electro-
physiology, we use a reducer adapted from (29.15). Given a single gap junction at 
compartment pk, block i of the basis vectors for cell k is given by 

 

Y i G D G e e

G

k k i k

p

n
kbasis eff eff SIZ

ef

where( ) (( ) ( ) [ ] ,)= ∈− − − ×1 1 1 2�

ff ax gap
k

L w w
w

p p

TA g g g D G g e ek k= + + + +∑( ( )) .
1 2

 
(29.19)

As described in Sect. 29.4.1, the reducer,  , is a block diagonal matrix with Yk in 
each diagonal submatrix, where Yk is constructed by orthogonalizing Yk basis via the 
block Arnoldi iteration (Saad, 2003). The reduced system is then given by (29.13). 
There are now two outputs for each cell k, where ŷk

1  and ŷk
2  approximate the poten-

tial at the SIZ and gap junction, respectively.
Figure 29.2 illustrates the full and reduced quasi-active models. The electro-

physiology is largely unchanged. The input mapping, currents to ground, and axial 
currents are identical to those described in Sect. 29.4.3. For each cell k, the rows of 
Yk corresponding to the SIZ and gap junction map the reduced compartmental 
potentials, v kˆ , to the output potentials, ŷk

1  and ŷk
2 , respectively. The current flowing 

across the gap junction into cell 1 is then given by 

 
I g y y g y ygap gap gap

1
2
2

2
1

2
2

2
1= - » -( ) ( ).ˆ ˆ

 

The gap junction current into cell 2 is analogous.

29.5.2  Numerical Simulations

We ran a series of numerical simulations to demonstrate the accuracy and gain of 
the reduced system when modeling neuronal networks. We first compared the syn-
chrony between two interneurons given the active, quasi-active, and reduced quasi-
active models. We then reduced neuronal networks of interconnected pyramidal 
cells and basket cells in the CA3.

For all simulations, the quasi-active model was coupled with the IAF scheme. 
When the SIZ potential reaches a set threshold value, the potential throughout the 
quasi-active neuron emits an AP, as recorded from the active model. Reproducing 
the AP shape in the quasi-active model is essential for capturing the current across 
the gap junction.
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Synchrony

Two homogeneous interneurons were modeled according to Sect. 29.5.1. The 
morphology data for each cell was obtained from neuromorpho.org, cell 98-SR-HiDe 
(a rat interneuron in the CA3 (Ascoli et al., 2009)). We first compared the phase 
response curve (PRC) generated using each model. The PRC is generated by inject-
ing a square pulse current into a distal dendritic compartment at time t1 +ρpT, where 
t1 is the time of the first AP, ρp is the perturbation phase, and T is the reciprocal of 
the cell’s intrinsic frequency. The proportion phase shift is given by rs t T t T= + −( ) /1 2

, where t2 is the time of the second AP.

Fig. 29.2 Schematic of two quasi-active neurons coupled through a gap junction. (a) Full model. 
Each cell k is shown as a cable of n compartments with associated potentials, �vk , representing the 
linear perturbations from the resting potential. The input current, uj

k, drives each compartment j 
according to (29.18). The SIZ and gap junction are in compartments 1 and pk, respectively, and 
their potentials are the outputs of the system, y1

k and y2
k. (b) Reduced model. Each reduced cell k 

has three interconnected compartments with associated potentials, vkˆ . The columns of Yk map 
the inputs, uk, to their reduced representation. The dashed green and dotted blue lines indicate the 
summation of all compartmental potentials weighted by the rows of Yk corresponding to the gap 
junction and SIZ, respectively, such that ŷ y≈ . The currents to ground (not shown) are 
preserved
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As shown in Fig. 29.3a, the PRC agrees well for small perturbation phases. For 
larger phases, the active model evokes an AP at the gap junction, which then propa-
gates to the soma, causing a large phase advance. Since a threshold is only applied 
to the quasi-active model at the SIZ, dendritic APs are not detected.

We next ran simulations similar to those presented in Saraga et al. (2006). Two 
interneurons are connected through a single gap junction in the distal dendrites. The 
cells are driven out of phase due to a 5 ms current injected into cell 1. Current 
 flowing through the gap junction then synchronizes the cells.

As illustrated in Fig. 29.3, both the full and reduced models accurately predict 
the rate at which the two interneurons become synchronous. This indicates that the 
reduced quasi-active model may be used to study synchrony between interneurons 
in a fraction of the time required for the active model. For the example shown in 
Fig. 29.3b–d, the reduced model requires 15 % of the simulation time and 2 % of the 
number of state variables for the active model.
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Fig. 29.3 Synchrony driven by current across a gap junction. Results are shown for the active 
model (black), quasi-active model with 1,312 variables (red), and reduced model with 24 variables 
(green). For all plots, the error between the full and reduced quasi-active models is negligible. (a) 
PRC for an isolated interneuron. The quasi-active linearization performs well for small perturba-
tion phases, but cannot capture the large phase shifts due to dendritic spikes seen in the active 
model. (b) Percentage phase difference between two electrically coupled cells after a current is 
injected into the soma of cell 1. The total time is 1 s. All three models predict the same rate of 
synchronization. (c) Interspike interval for both cells. As the cells become synchronous, their fre-
quencies converge to the intrinsic frequency, 16.85 Hz. (d) Voltage traces at the SIZ and gap junc-
tion with truncated APs. The perturbing current was applied between 70 and 75 ms. The gap 
junction current causes large potential changes when the APs are asynchronous. (e) Two- 
dimensional projection of the interneuron, indicating the gap junction (GJ) and soma (S), set to be 
the SIZ. Dendrites are shown in black, and the axon is shown in gray
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Network Simulations

The neuronal network consists of Npyr pyramidal cells and Nbc basket cells in the 
CA3. Cell morphologies were obtained from neuromorpho.org, cell l48b (a rat 
pyramidal cell in the CA3 (Turner et al., 1995)) and cell 960217c (a rat basket cell 
in the CA3 (Chitwood et al., 1999)). Each compartment in the discrete models is 
2 μm in length. Each pyramidal cell is driven by an independent set of random 
inputs, assumed to originate in the entorhinal cortex (EC). Regardless of the net-
work size, each pyramidal cell projects to 25 pyramidal cells and 5 basket cells, and 
each basket cell projects to 5 pyramidal cells and 2 basket cells. Synapses on each 
pyramidal cell are set randomly within the proper dendritic region, where inputs 
from the EC project to the distal apical tuft (stratum lacunosum-moleculare), inputs 
from other pyramidal cells project to the basal dendrites (stratum oriens) or apical 
dendrites (stratum radiatum), and inputs from basket cells project to the cell body 
or proximal apical dendrites (stratum pyramidale/lucidum) (Johnston and 
Amaral, 1998; Witter and Moser, 2006; Skinner and Saraga, 2010). The locations of 
synapses and gap junctions are set randomly for each basket cell.

The Wang and Buzsáki model is used for basket cells, as described in Sect. 29.5.1. 
The ionic currents in the pyramidal cell are adapted from a model derived for CA3 
pyramidal cells (Migliore et al., 1995). The quasi-active model consists of only 
those ionic currents that are nonzero in the subthreshold regime, giving the model 
delayed-rectifier, A-type, and noninactivating potassium currents with a total of five 
gating variables. All channels are uniformly distributed throughout the dendrites. 
For more details, see Hedrick (2012).

We compared the network activity given the full and reduced quasi-active mod-
els. Figure 29.4 shows examples of voltage traces. The number of cells and number 
of gap junctions, Ngap, varied between simulations. Table 29.1 provides a sampling 
of the results. For all simulations, a dramatic reduction was seen in the number of 
state variables and the simulation time.

Each reduced system accurately captures the overall network activity, both the 
average spike rate and the individual spike times. The spike rate was averaged over 
all active pyramidal cells or all basket cells, where an active pyramidal cell has a 
nonzero spike rate. In Table 29.1, the number of active pyramidal cells is denoted Nact.

The agreement between individual spike trains was determined through the coin-
cidence factor (Kistler et al., 1997; Kellems et al., 2010), given by 

 
G

t
t

=
−

+ −
N N N T

N N N T
match full red

full red full

( / )

( )( ( / )) /
.

1 2  

Nmatch denotes the number of matched spikes, or the number of spikes in the reduced 
model that occur within τ = 3 ms of the associated spike in the full model. Nfull and 
Nred denote the total number of spikes for the full and reduced models, respectively, 
and T = 1,000 ms is the length of the simulation. The spike trains are equal if Γ = 1 
and have no correlation in Γ = 0. Table 29.1 shows the coincidence factors averaged 
over all pyramidal cells or over all basket cells.
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Network simulations are a true test of the system’s accuracy as error in one cell 
leads to error in its postsynaptic cells. In the case of basket cells, any error in pre-
synaptic cells leads to a phase shift, as illustrated in Fig. 29.4d. Even so, given a 
large enough reduced system, the reduced model accurately predicts the network 
dynamics given a reduction in the number of state variables of two orders of magni-
tude and a reduction in the simulation time by a factor of about ten. This dramatic 
reduction in the storage requirements and simulation time could allow one to simu-
late large neuronal networks of morphologically accurate neurons.

29.6  Discussion

We have surveyed and illustrated methods that dramatically reduce the mathematical 
complexity of the input–output map of highly branched cells. A cell is driven by the 
spatio-temporal distribution of synaptic inputs, and its output is the transmembrane 
potential at the SIZ. The standard input–output model requires micron-scale com-
partmentalization of cells with thousands of microns of dendrites, leading to thou-
sands of differential equations. This complexity is reduced via an algebraic mapping 
of the exact inputs onto a significantly smaller system of differential equations, 
followed by an algebraic mapping onto an output that is demonstrably close to the 
SIZ response of the full cell. In the context of synaptic integration, the algebraic 
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Fig. 29.4 Examples from network simulations with 40 pyramidal cells and 4 basket cells, each 
with one gap junction. The full quasi-active system has 3.14 ×105 variables, while the reduced 
system has 1,296 variables. (a–b) Voltage traces of two pyramidal cells. The reduced system 
matches (within 3 ms) all spikes of the full system except the last spike shown in (b). Over 1.5 s, 
the reduced system matches 97 % of all pyramidal cell spikes, and Γpyr = 0.99. (c–d) Traces of two 
basket cells. In (c), the reduced system misses the first two spikes but matches the remaining 
spikes. In (d), the reduced system becomes asynchronous with the full system, but it eventually 
realigns due to common input from the network. Overall, the system matches 83.9 % of all basket 
cell spikes, and Γbc = 0.83
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mappings encode the cell’s spatial integration while the small system of differential 
equations encodes its time integration.

The most common reduction procedure is merging compartments. Such reduced 
models are usually derived for a particular neuron type and thus cannot be applied 
in general. Since the reduction is intuitive and based on intrinsic neuronal proper-
ties, the reduced model has in some cases helped to elucidate dendritic function. For 
example, Pinsky and Rinzel used their two-compartment model to theorize that 
bursting in CA3 pyramidal cells is due to the electrotonic separation between fast, 
low-threshold currents near the soma and slow, high-threshold currents in distal 
dendrites (Pinsky and Rinzel, 1994). However, merging compartments sacrifices the 
spatial component in the input signal, which is often highly structured. Furthermore, 
the processing capabilities of a neuron depend on the branching structure of its 
dendrites, and certain intrinsic properties of the neuron are lost in models that sim-
plify the morphology (Hendrickson et al., 2011).

SVD-based reduced models apply to any neuron, regardless of the dendritic mor-
phology and distribution of ionic channels. BT applies to linear models, such as the 
quasi-active model, and POD-DEIM applies to nonlinear models, such as the active 
model. These methods are powerful computational tools for constructing efficient 
reduced models that preserve the input–output map, but the conceptual link between 
the model and the underlying biology is severed in the reduction process.

Moment-matching reduction techniques have a simpler reduction process, 
requiring computation of a single reducer explicitly defined and dependent on den-
dritic properties. They apply to any quasi-active neuron, again regardless of den-
dritic morphology and distribution of ionic channels. If ionic channels have a 
uniform distribution, one can construct a reduced system with a similar RLC circuit 
structure as the original quasi-active system. The simple reduction procedure and 
the link between the electrophysiology of the full and reduced models could be an 
important step for developing efficient reduced models with the potential to further 
the understanding of dendritic function.

The challenge of extending the rigor, power, and structure preservation of 
moment-matching methods to fully active cells remains, though extensions of these 
methods to nonlinear systems are beginning to emerge (Gu, 2011). Beyond this, one 
should be able to construct efficient hybrid or adaptive schemes that couple the 
linear reduction of the weakly excitable dendrites to the nonlinear reduction of the 
strongly excitable SIZ in a fashion that captures back-propagating action potentials. 
Such a reduced model would permit, for example, the incorporation of plasticity 
models specific to the synapse. Exploiting this in networks of NMDA-dependent 
plastic neurons calls for model reduction of the associated slow neuronal calcium 
system and coupling to the fast reduced electrical system. Such a reduced system 
would significantly lessen the computational expense associated with simulating 
large networks of morphologically accurate plastic neurons.
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