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  Introd uction   

 The term “cell adhesion molecule” can be traced back to the mid-1970s where it 
was used to describe molecules forming bonds between cells (Rutishauser et al. 
1976). Some of the fi rst CAMs identifi ed, NCAM1 (Rutishauser et al. 1976) and 
N-cadherin (Hatta and Takeichi 1986), are molecules that mediate cell adhesion 
through homophilic  trans -interactions (one protein attached to one cell surface 
interacting with an identical protein attached to an opposing cell surface). More 
recently, some CAMs, for instance, neurexins and neuroligins (Craig and Kang 
2007), have been found to facilitate cell–cell interactions through heterophilic 
 trans -interactions (one protein attached to one cell surface interacting with a differ-
ent type of protein attached to an opposing cell surface), and many CAMs [for 
example, integrins (Myers et al. 2011)] do not mediate cell–cell interactions directly 
but instead mediate interactions between cells and the extracellular matrix (ECM). 
Moreover, many CAMs form heterophilic interactions not only with components of 
the ECM, but also with the extracellular domains of a variety of proteins located in 
the plasma membrane (Comoglio et al. 2003) as well as with intracellular adapter 
proteins, cytoskeletal elements, and enzymes (Mège et al. 2006; Takai et al. 2008; 
Buttner and Horstkorte 2010). These interactions not only serve to modulate the 
adhesive properties of CAMs but also enable CAMs to modulate intracellular signal 
transduction, cyto-architecture, and gene transcription (Ingber 2003). Moreover, the 
ectodomains of many CAMs can still modulate signal transduction after shedding 
(Cavallaro and Dejana 2011), and consequently, CAMs are involved in a variety of 
biological processes. In the nervous system, CAMs are for instance involved in the 
migration of neural crest cells (McKeown et al. 2013), the growth, guidance, and 
regeneration of axons (Kamiguchi 2007; Zhang et al. 2008), and the maintenance of 
stem cell niches (Marthiens et al. 2010). Not surprisingly, CAMs are therefore also 
implicated in numerous diseases of the nervous system. Moreover, the adhesion of 
most cells is a prerequisite for their growth and survival, and an absence of adhesion 
generally leads to cell death (anoikis) (Zhong and Rescorla 2012). In contrast, one 
of the characteristics of transformed cells is adhesion-independent growth (Reddig 
and Juliano 2005), and consequently, CAMs are also tightly linked to processes like 
tumor suppression (Moh and Shen 2009) and cancer (Makrilia et al. 2009). 



xviii

 The fi rst CAMs described were proteins with no intrinsic enzymatic activity, 
which generally could be classifi ed as belonging to one of four families: cadherins, 
integrins, selectins, and members of the immunoglobulin superfamily (IgSF) 
(Jordan and Morrow 1990). More recently, several proteins with enzymatic activity 
have also been demonstrated to mediate cell adhesion, for instance, receptor protein 
tyrosine phosphatases (Beltran and Bixby 2003), and an increasing number of 
CAMs have been found not to belong to any of the four protein families mentioned 
above, for example, neurexins/neuroligins (Craig and Kang 2007) and members of 
the family of proteins with extracellular leucine-rich repeats (Chen et al. 2006). 

 The purpose of this book is to provide a snapshot of current knowledge about the 
function of CAMs in the nervous system with an emphasis on their implications for 
the development or progression of diseases. In recent years many novel CAMs have 
been identifi ed, and the book to a large extent focuses on these novel proteins of 
which many have been characterized only to a minor degree. Indeed several of the 
described proteins have not yet been demonstrated to serve as CAMs; see e.g., 
Chap.   14     (Winther and Walmod). In contrast, many of the well-characterized CAMs 
have deliberately been omitted from the book because they recently have been 
described extensively elsewhere. The book therefore does not provide a complete or 
a balanced description of CAMs implicated in neural diseases, but instead aims at 
providing an impression of the variety of CAMs expressed in the nervous system 
and how they affect the development, maintenance, and regeneration of the nervous 
system in health and disease. 

 Notably, members of the cadherin and integrin families are entirely omitted 
from the book. For recent information about these proteins, see (Hirano and 
Takeichi 2012; Redies et al. 2012) and (Becchetti and Arcangeli 2010; McGeachie 
et al. 2011; Myers et al. 2011; Wojcik-Stanaszek et al. 2011), respectively. 
Likewise, one of the most prominent CAMs of the IgSF, NCAM1, has been omit-
ted from the book. For recent information about NCAM1 and other members of the 
NCAM family, see (Owczarek et al. 2009; Berezin 2014; Senkov et al. 2012; 
Winther et al. 2012). 

 The individual chapters of this book are devoted to individual CAMs or families 
of CAMs, and the book has been divided into two sections. The fi rst section 
describes CAMs belonging to the IgSF; the second section describes CAMs not 
belonging to the IgSF. 

 Chapter   1     describes Thy-1 and how this protein is implicated in, e.g., pulmonary 
fi brosis, cancer, Graves’ disease ophthalmopathy, and glomerulonephritis (Leyton 
and Hagood). Chapter   2     describes the three related proteins CAR, NT-IgSF, and 
CLMP, of which in particular CAR has received attention in relation to gene therapy 
(Schreiber et al.). Chapter   3     describes GlialCAM/HepaCAM with an emphasis of 
its implications in the rate neurological disease megalencephalic leukoencephalopa-
thy with subcortical cysts (MLC) (Barrallo-Gimeno and Estévez). Chapter   4     
describes neuroplastins and the effects of these proteins on synaptic plasticity and 
neurite outgrowth (Beesley et al. 2014). Chapter   5     describes the multiple functions 
of nectins and nectin-like proteins and their effects on, e.g., cancer and Alzheimer’s 
disease (AD) (Mori et al.). Chapter   6     describes the effects of ICAM-5 on spine 
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maturation, synapse formation, and immunosuppression (Gahmberg et al.). Chapter   7     
describes the importance of roundabout receptors on a number of processes ranging 
from cell migration to organogenesis (Ypsilanti and Chedotal). Chapter   8     describes 
the effects of members of the contactin family on processes like neural cell migra-
tion, axon guidance, and the organization of myelin subdomains (Mohebiany et al.). 
Chapter   9     describes the L1 family of CAMs, and their implications in, e.g., mental 
retardation, autism spectrum disorders (ASDs), schizophrenia, and multiple sclero-
sis (MS) (Nagaraj et al.), whereas Chap.   10     gives a more detailed description of one 
of the members of the L1 family, neurofascin, and its potential involvement in neu-
ral diseases (Ebel et al.). Chapter   11     describes the two proteins DSCAM and 
DSCAML1 and their involvement in, e.g., Down syndrome (Montesinos). Chapter 
  12     describes the protein anosmin-1, which is implicated in, e.g., Kallmann syn-
drome and MS (de Castro et al.). Chapter   13     describes the large family of protocad-
herins, which include members that are implicated in, e.g., ASDs, schizophrenia, 
Usher syndrome, mental retardation, Huntington disease, and Retinitis pigmentosa 
(Hirabayashi and Yagi). Finally, Chap.   14     describes several families of CAMs 
belonging to the family of leucine-rich repeat-containing proteins. These families 
contain members that are implicated in, e.g., cancer, hearing impairment, glaucoma, 
AD, MS, Parkinson’s disease, ASDs, schizophrenia, and obsessive–compulsive dis-
orders (Winther and Walmod). 

 In total, the book describes more than 75 individual CAMs, and although many 
of these proteins only have been studied to a limited extent, the book will hopefully 
serve to highlight the importance of CAMs in relation to neural diseases and the 
development, maintenance, and regeneration of the nervous system.

    Copenhagen ,  Denmark       Peter     S.     Walmod          
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    Abstract     Thy-1, or CD90, is a glycosylphosphatidylinositol-linked cell surface 
glycoprotein expressed on multiple cell types, including neurons, thymocytes, 
fi broblasts, endothelial cells, mesangial cells, and some hematopoietic and stromal 
stem cells. Thy-1 is developmentally regulated and evolutionarily conserved. Its 
cellular effects vary between and in some cases within cell types, tissues, and 
 species, indicating that its biological role is context dependent. However, it most 
often seems to affect cell–cell or cell–matrix interactions and cellular adhesion and 
migration. In the nervous system, Thy-1 mediates bidirectional cell–cell communi-
cation, which modulates cell–matrix adhesion. Neurons express high levels of 
 Thy-1, which interacts with α v β 3  integrin present in astrocytes and stimulates 
increased astrocyte adhesion to the underlying surface ( trans  signaling) and in neu-
rites, the same ligand–receptor association triggers neurite retraction and inhibition 
of axonal growth ( cis  signaling). Although Thy-1 lacks a cytoplasmic domain, it 
affects multiple intracellular signaling cascades through interaction with a number 
of molecules within lipid raft microdomains. Improved understanding of how this 
enigmatic adhesion molecule modulates signaling and cell phenotype may yield 
novel insights into neurodevelopment and nerve recovery after injury.  

    Chapter 1   
 Thy-1 Modulates Neurological Cell–Cell 
and Cell–Matrix Interactions Through 
Multiple Molecular Interactions 

             Lisette     Leyton       and        James     S.     Hagood     
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1.1         Introduction 

 Thy-1 (thymocyte differentiation antigen 1), also known as CD90 (cluster of 
 differentiation 90), is a highly conserved cell surface molecule that can exist in 
membrane- bound and soluble forms. Thy-1 is developmentally regulated and 
expressed in specifi c cell types, including neurons, retinal ganglion cells, subsets of 
fi broblasts, vascular pericytes, activated endothelial cells, mesangial cells, and 
hematopoietic and mesenchymal stem cells. Previous reviews have focused on its 
immunologic and non-immunologic roles, mechanisms, and consequences of 
 Thy-1- associated signaling and regulation of its expression (   Haeryfar and Hoskin 
 2004 ; Rege and Hagood  2006a ,  b ; Barker and Hagood  2009a ; Bradley et al.  2009 ). 
Here, we will consider the role of Thy-1 as an adhesion molecule, mainly in the 
context of neurobiology. 

 Thy-1, originally designated as theta ( θ ) antigen, was initially defi ned as a 
leukemia- specifi c antigen in mice (Reif and Allen  1964 ; Schlesinger and Yron  1969 ). 
There are important species-specifi c differences in expression (see Sect.  1.4 ). Thy-1 
regulation and signaling have been implicated in several disease states including neu-
ronal injury (Leyton et al.  2001 ; Schlamp et al.  2001 ; Barker and Hagood  2009b ), 
pulmonary fi brosis (Rege and Hagood  2006a ; Sanders et al.  2007 ,  2008 ), some can-
cers (Abeysinghe et al.  2003 ; Lung et al.  2005 ; Fiegel et al.  2008 ), Graves’ disease 
ophthalmopathy (Khoo et al.  2008 ), and glomerulonephritis (Minto et al.  2003 ).  

1.2     Role of Thy-1 in Neurobiology 

 Thy-1 is either absent from or expressed in a restricted manner in neurons during 
development (Xue et al.  1990 ), but accounts for 2.5–7.5 % of total protein on axon 
membranes of mature rat neurons (Beech et al.  1983 ). Thy-1 has been associated 
with the resolution of neuronal injury. Nerve injury in animal models is associated 
with decreased Thy-1 expression, with recovery of expression associated with a 
partial or complete return to the normal or proper physiological neuronal function 
(Chen et al.  2005 ). Thy-1 expression in the nervous system is predominantly neuro-
nal, but some human glial cells also express Thy-1, especially following differentia-
tion (Kemshead et al.  1982 ). Thy-1 inhibits neurite outgrowth on astrocytes, in 
neurons transfected with either human Thy-1 or mouse Thy-1.2 (Tiveron et al. 
 1992 ). Neurite outgrowth is restored in these studies by antibodies against Thy-1, or 
by addition of soluble Thy-1, suggesting that blocking Thy-1’s interaction with a 
ligand on astrocytes removes the inhibitory effect of Thy-1 on neurite extension 
(Tiveron et al.  1992 ). The inhibitory effect of Thy-1 on neurite outgrowth requires 
its correct localization to native membrane microdomains (Tiveron et al.  1994 ). 
Recent epitope mapping studies have characterized the antibody-binding sites that 
affect neurite extension and found that they recognize not only amino acid sequences, 
but also the three-dimensional immunoglobulin-like domains and integrin-binding 
regions (Kuroiwa et al.  2012 ). 

L. Leyton and J.S. Hagood
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 Remarkably, the phenotype of Thy-1 null mice seems to lack signifi cant 
 functional abnormalities involving the nervous system. The principal abnormalities 
described thus far are inhibition of long-term potentiation in the hippocampal den-
tate gyrus, inability to transmit social cues regarding food selection, and impaired 
cutaneous immune responses (Mayeux-Portas et al.  2000 ; Nosten-Bertrand et al. 
 1996 ; Beissert et al.  1998 ). 

 In cultures of dorsal root ganglion neurons, interfering with Thy-1 molecular interac-
tions causes the neurons to grow complex processes on the culture substrates. Signaling 
pathways leading to neurite outgrowth in this case include the activation of both protein 
kinase A (PKA) and Src, which affect the activation of the mitogen- activated protein 
kinase kinase/extracellular signal-regulated kinase/cAMP response element-binding 
protein (MEK/Erk/CREB) pathway, although a direct link between Thy-1 engagement 
by antibodies and these signaling cascades has not been confi rmed (Chen et al.  2007 ; 
Yang et al.  2008 ). Improved understanding of the molecular mechanisms involved in 
Thy-1-mediated neurite outgrowth inhibition may help in designing interventions to 
block the negative effects of Thy-1 on the repair of neuronal processes. 

 More recently, the ligand of Thy-1 present in mature astrocytes has been revealed. 
An α v β 3  integrin has been reported to bind to Thy-1 and trigger clustering of Thy-1, 
inactivation of Src, and neurite outgrowth inhibition (Herrera-Molina et al.  2012 ). 
The complete fl ow of signaling events initiated as a consequence of Thy-1 integrin 
interactions awaits further investigation.  

1.3     Thy-1 in Non-neuronal Contexts 

 The functions of Thy-1 in immunity and infl ammation, as well as in regulation of 
cell adhesion and migration, have been reviewed previously (Bradley et al.  2009 ; 
Haeryfar and Hoskin  2004 ; Rege and Hagood  2006b ). Additionally, Thy-1 appears 
to function as a tumor suppressor in several malignancies, including nasopharyn-
geal and ovarian cancer (Lung et al.  2005 ). Loss of heterozygosity (LOH) at 
11q23.3–q24.3, where  THY1  is mapped in humans, is associated with poor progno-
sis for ovarian cancer (Cao et al.  2001 ; Williams and Gagnon  1982 ). Forced Thy-1 
expression suppresses tumorigenicity in the ovarian cancer cell line SKOV-3 (Cao 
et al.  2001 ; Abeysinghe et al.  2003 ). In neuroblastoma, Thy-1 expression correlates 
inversely with patient survival (Fiegel et al.  2008 ). 

 In fi broblast cells, Thy-1 has signifi cant effects on the cell phenotype depending 
on the tissue origin and context. In lung fi broblasts, Thy-1 suppresses myofi broblas-
tic differentiation and cell migration through effects on Src-family kinases (SFK) 
and phosphatidylinositol 3-kinase (PI3K) signaling (Barker et al.  2004a ; Rege et al. 
 2006 ; Sanders et al.  2007 ). Thy-1, via interaction with α v β 5  integrin, inhibits 
 activation of latent transforming growth factor-beta1 (TGF-β1) and myofi broblastic 
differentiation in lung fi broblasts (Zhou et al.  2010 ). Conversely, in Graves’ disease 
ophthalmopathy, Thy-1 (+) orbital fi broblasts differentiate into myofi broblasts, 
while Thy-1 (−) are incapable of doing so, but can differentiate into mature 
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adipocytes (Koumas et al.  2003 ). However, more recent evidence suggests that 
Thy-1 (+) fi broblasts can differentiate into lipofi broblasts upon treatment with a 
PPARγ ligand, but that they would secrete an as-yet unidentifi ed soluble factor that 
inhibits such differentiation (Khoo et al.  2008 ; Lehmann et al.  2010 ). Thy-1 
increases PPARγ, fatty acid uptake, and lipofi broblastic differentiation in fetal lung 
fi broblasts (Varisco et al.  2012 ).  

1.4      Thy-1 Species Differences and Structural Evolution 

 Thy-1 is an evolutionarily conserved member of the immunoglobulin superfamily 
(IgSF) (Chen et al.  2005 ), with signifi cant homology among tunicates, birds, fi sh, 
amphibians, rodents, and humans. Among different species, tissue and cellular distri-
bution of Thy-1 expression varies. Mice express Thy-1 on thymocytes, T-lymphocytes, 
bone marrow stem cells, neurons, and some fi broblasts. In humans, Thy-1 is expressed 
on a subset of CD34+ bone marrow cells, on a subset of CD34+ and CD3+/CD4+ 
lymphocytes, and on hematopoietic cells derived from umbilical cord blood and fetal 
liver, but is absent from mature T cells. In humans, the highest expression levels are 
on thymic stromal cells (especially fetal) and most fi broblasts. Thy-1 is also expressed 
in endothelial cells, smooth muscle cells, and some leukemic and lymphoblastoid 
cells (Feng and Wang  1988 ). Thy-1 is expressed in neural tissue of all mammalian 
species studied. In the human nervous system, Thy-1 is expressed primarily in gray 
matter and in some peripheral nerve fi bers (McKenzie and Fabre  1981 ). Thy-1 is both 
spatially and temporally regulated during nervous system development; brain expres-
sion levels rise nearly 100-fold during early postnatal development (Morris  1985 ). 

 Because Thy-1 functions in both the immune system and the nervous system, it 
may represent a primordial domain of the IgSF ancestry (Cao et al.  2001 ). Most 
studies of gene regulation and structure of Thy-1 have been done in the mouse. 
Murine  thy1  has two alleles which map to chromosome 9, coding for proteins desig-
nated Thy-1.1 and Thy-1.2, which are characterized by either arginine or glutamine 
at position 89. Human  THY1  has no described allelic variants. It is expressed as a 
161 aa pro form with a 19 aa signal peptide, which is removed after targeting Thy-1 
to the cell membrane (Williams and Gagnon  1982 ). Thy-1 is variably N-glycosylated, 
with differing glycosylation among different tissues (Seki et al.  1985 ; Almqvist and 
Carlsson  1988 ; Barclay et al.  1976 ; Hoessli et al.  1980 ). Carbohydrate content makes 
up a third or more of the mass of Thy-1, which ranges from 25 to 37 kDa (Almqvist 
and Carlsson  1988 ; Haeryfar and Hoskin  2004 ). Following cleavage of the C-terminal 
transmembrane domain, a glycosylphosphatidylinositol (GPI) anchor composed of 
two fatty-acyl groups is added at residue 131, so that mature Thy-1 is tethered to the 
outer leafl et of the cell membrane and  targeted to lipid rafts (Seki et al.  1985 ). 

 The carbohydrate composition of Thy-1 is also developmentally regulated and 
varies between and within tissues. For example, in rats, sialic acid is much more 
prominent in thymic Thy-1 than in brain Thy-1, and galactosamine is restricted to 
brain Thy-1 (Haeryfar and Hoskin  2004 ).  
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1.5     Thy-1 Regulation 

 Unusual regulatory elements defi ne the unique expression profi le of Thy-1. The 
Thy-1 promoter is found in an area of high G/C content and lacks a TATA box; it 
contains two elements traditionally attributed to “housekeeping” genes (Giguere 
et al.  1985 ; Spanopoulou et al.  1991 ). Replacement of the Thy-1 promoter with a 
heterologous promoter does not abolish the tissue-specifi c or developmental expres-
sion profi le (Vidal et al.  1990 ). Thy-1 expression in the mouse thymus and brain 
relies on specifi c sequences in intron 3 and at the 3′ end of intron 1, respectively. 
Deletion of intron 1 eliminates brain expression while leaving thymic expression 
intact (Spanopoulou et al.  1988 ). Interaction of transcription factors with elements 
within the third intron varies among species (Tokugawa et al.  1997 ). 

 A murine  thy1.2  expression cassette has been designed to drive nervous system 
expression. This cassette is void of all Thy-1.2 coding sequences and the thymic 
enhancer in intron 3, while retaining the neural enhancer element in the fi rst intron 
(Campsall et al.  2002 ). 

 Thy-1 functions as a tumor suppressor in nasopharyngeal cancer and is 
 downregulated in some tumors by methylation of its promoter (Lung et al.  2005 ). 
In human and rat lung fi broblasts, CpG (cytosine-guanine) islands in the Thy-1 
promoter are hypermethylated in the Thy-1-negative fi broblast subpopulation, but 
not in the positive. A DNA methyltransferase inhibitor, 5-aza-2′-deoxycytidine, 
restores Thy-1 expression in Thy-1 (−) fi broblasts (Sanders et al.  2008 ). Trichostatin 
A (TSA, a histone deacetylase inhibitor) also restores Thy-1 expression in Thy-1 
(−) cells associated with depletion of trimethylated H3K27, enrichment of trimeth-
ylated H3K4 and acetylated H4, and demethylation of previously hypermethylated 
CpG sites, indicating interaction of the DNA methylation and histone modifi cation 
systems in cell-specifi c epigenetic silencing of Thy-1 (Sanders et al.  2011 ). 

 Posttranscriptional regulation of Thy-1 mRNA also infl uences the temporal 
and spatial expression of Thy-1 protein in developing mouse nervous system, 
though the exact mechanisms are still not well characterized (Xue and Morris 
 1992 ). Heterokaryons generated from fusion of mature Thy-1.1-expressing 
 neurons with immature Thy-1.2-negative neurons become Thy-1 negative within 
16 h of fusion. However, Thy-1.2 expression becomes evident within 3–4 days in 
culture coincident with re-expression of Thy-1.1. The initial inhibition of Thy-1.1 
expression was concluded to be the consequence of a developmentally regulated 
diffusible suppressor molecule (Saleh and Bartlett  1989 ). This lends support to 
developmental regulation of Thy-1 in the nervous system being, at least in part, a 
posttranscriptional event. 

 Soluble Thy-1 has been detected in serum, cerebrospinal fl uid (CSF), wound 
fl uid from skin ulcers, and synovial fl uid from rheumatoid arthritis (Almqvist and 
Carlsson  1988 ; Saalbach et al.  1999 ). Possible methods for production of soluble 
Thy-1 include alternative mRNA splicing, omitting addition of the GPI anchor, or 
enzymatic cleavage of Thy-1 from the cell surface. Interestingly, the soluble Thy-1 
detected in CSF has slightly higher MW than cellular Thy-1 in the cerebral cortex, 
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attributed to unique glycosylation patterns and suggesting that soluble Thy-1 in CSF 
could originate from a region of the brain other than the cerebral cortex. The signifi -
cance and origin of soluble Thy-1 in CSF are unclear. The susceptibility of Thy-1 to 
cleavage by phospholipases varies from one cell type to another (Naquet et al.  1989 ). 
Localization of Thy-1 to cholesterol-rich lipid rafts is thought to protect it from GPI-
PLD present in serum (Bergman and Carlsson  1994 ). Release of Thy-1 could also 
result from proteolysis. The exact mechanism(s) of Thy-1 shedding and possible 
roles of shedding in normal biology and in disease have yet to be determined. It is 
important to note that Thy-1 lacking the GPI anchor very often becomes unrecogniz-
able by antibodies against the membranous form (Kukulansky et al.  1999 ). In the 
human uterine cervix, vascular pericytes expressing Thy-1 appear to secrete Thy-1 
(+) vesicles, which communicate with basal epithelial cells (Bukovsky et al.  2001 ). 
The biological signifi cance of this intriguing phenomenon is uncertain.  

1.6      Thy-1 and Non-neuronal Cell Adhesion Signaling 

 Focal adhesion assembly/disassembly and additional cell–cell and cell–matrix 
interactions are generally regulated by integrin signaling. Thy-1–integrin interac-
tions appear to regulate a number of heterotypic interactions between cells. Thy-1 
expressed on endothelial cells interacts with β 2  and β 3  integrins on leukocytes and 
with melanoma cells (Choi et al.  2005 ; Wetzel et al.  2004 ; Avalos et al.  2002 ; 
Saalbach et al.  2000 ,  2002 ,  2005 ). Thy-1 on endothelial cells interacts with α v β 3     on 
melanoma cells and with leukocyte α X β 2  and α M β 2  (Wetzel et al.  2004 ; Saalbach 
et al.  2000 ,  2002 ,  2005 ; Choi et al.  2005 ), regulating melanoma and leukocyte 
 trans -endothelial migration in vitro (Saalbach et al.  2005 ; Wetzel et al.  2004 ). It is 
unknown whether Thy-1 null mice have abnormal leukocyte recruitment or resis-
tance to melanoma metastases. 

 In Thy-1 (−) fi broblasts, SFK and p190 Rho GTPase-activating protein (GAP) 
activation results in inactive RhoA, promoting focal adhesion (FA) disassembly; 
Thy-1 expression decreases SFK and p190 RhoGAP activation, which activates 
Rho and promotes FA formation (Barker et al.  2004a ). FA are supramolecular com-
plexes containing structural proteins, signaling molecules, and adapter proteins that 
include talin, vinculin, α-actinin, focal adhesion kinase (FAK), SFK, p130CAS, 
paxillin, and tensin, which mediate cell adhesion to the extracellular matrix (ECM) 
[reviewed in Burridge and Chrzanowska-Wodnicka ( 1996 ), Lawson and Schlaepfer 
( 2012 ), Zamir and Geiger ( 2001 )]. 

 Thy-1 expression inhibits fi broblast migration in vitro (Barker et al.  2004a ), 
likely due to enhanced adhesion of cells to the ECM. Thrombospondin-1 promotes 
FA disassembly and induces migration only in Thy-1 (+) lung fi broblasts (Rege 
et al.  2006 ). This differential response may be important in regulating cell migration 
in response to factors present during early wound healing following injury; absence 
of Thy-1 expression, such as in a fi brotic condition or tumor, may promote dysregu-
lated cell migration. 
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 Because the GPI anchor of Thy-1 does not cross the cell membrane, it is unclear 
how Thy-1 activates intracellular kinases. It is possible that Thy-1 GPI interacts 
directly with palmitoylated and myristoylated cysteines on these kinases, as has 
been suggested by Kusumi et al. ( 2004 ). Upon aggregation of a critical number of 
GPI-anchored proteins in rafts of the outer leafl et of the cell membrane, lipid rafts 
present in the inner leafl et and associated proteins are recruited underneath the outer 
leafl et of the bilayer (Kusumi et al.  2004 ). In this manner, communication of two 
proteins that face opposite sides of the cell membrane can associate functionally. 
A different possibility is that a third component of the protein complexes exists and 
that the GPI-anchored protein interacts with intracellular kinases through transduc-
ers as has been demonstrated for other GPI-anchored proteins, such as CD55 and 
CD59 (Shenoy-Scaria et al.  1993 ). Thus, Thy-1 may interact with cytoplasmic 
kinases through an associated transmembrane protein. Thy-1-CD3 co-activation 
engages the lipid raft transmembrane adapter protein linker for activation of T cells 
(LAT) (Leyton et al.  1999 ). Thy-1 is known to interact with an 85–90 kDa trans-
membrane phosphorylated protein possessing binding sites for SH2 domain- 
containing proteins, including Fyn, Csk, PI3K, Ras GAP, Vav, and Lck (Durrheim 
et al.  2001 ). Recently, Thy-1 has been shown to interact with other cell surface and 
membrane-spanning proteins. Endothelial Thy-1 binds to the adhesion G-protein- 
coupled receptor CD97 on leukocytes (Wandel et al.  2012 ). Therefore, the possibil-
ity that Thy-1 signals to the cell interior via the formation of a complex containing 
a transmembrane protein with affi nity for both Thy-1 and SFK is a likely model.  

1.7     Neuronal Thy-1 and Its Interactions with Astrocytes 

 Astrocytes constitute the most abundant cell population of the brain; they are not 
merely associated with neurons serving a supportive function, but also establish 
contacts with the endothelial cells of capillaries and are interconnected through gap 
junctions, facilitating the communication of other cells with neurons [reviewed in 
Benarroch ( 2005 )]. Astrocytes can modulate neuronal excitability and synaptic 
transmission [reviewed in Perea and Araque ( 2002 ) and Fellin and Carmignoto 
( 2004 )]. In addition, Leyton et al. have reported a bidirectional signaling between 
neurons and astrocytes. These fi ndings confi rmed that astrocytes are much more 
dynamic components of the central nervous system than originally thought 
[reviewed in Hansson and Ronnback ( 2003 ) and Volterra and Meldolesi ( 2005 )]. 

 The fi rst identifi ed ligand/receptor for Thy-1 was β 3 -containing integrin (Leyton 
et al.  2001 ). Stimulation of a rat astrocyte cell line with recombinant Thy-1 in vitro 
causes morphological changes of astrocytes; their fi ne-branched processes retract, 
transforming these cells into a fi broblast-type shape. These events involve a number 
of cytoskeletal changes, establishing a higher number of adhesive sites at the tips of 
microfi lament bundles that extend to the central region of the cells, generating ten-
sion and cell contraction. These events were subsequently demonstrated to be 
caused by α v β 3  integrin in astrocytes (Hermosilla et al.  2008 ). 
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 On the other hand, the integrin–Thy-1 interactions also induce changes in 
 neurons. HEK293-generated α v β 3 -Fc integrin has been shown to inhibit the growth 
of neuronal processes and cause the retraction of existing neurites (Herrera-Molina 
et al.  2012 ). Thus, neuron–astrocyte interactions mediated by α v β 3  integrin and 
Thy-1 might represent an important form of bidirectional communication in the 
nervous system that generates signals in both neurons and astrocytes. 

 Integrins are surface receptors known to mediate the formation of FA formed at 
the points of interaction of integrin with the ECM proteins. These FA connect the 
ECM to the cytoskeleton, which facilitates bundling of actin microfi laments to 
 generate stress fi bers (SF) and increase cellular tension (Dubash et al.  2009 ). 

 Interaction between Thy-1 and α v β 3  integrin present in astrocytes promotes (1) 
tyrosine phosphorylation of proteins present in the FA such as FAK and p130Cas; 
(2) recruitment of vinculin, paxillin, and FAK to FA; and (3) formation of FA, adhe-
sion, and spreading of astrocytes over a substratum. The formation of FA and SF in 
astrocytes stimulated with recombinant Thy-1-Fc occurs through the aggregation of 
α v β 3  integrins and activation of PKCα, the small GTPase RhoA, and its effector Rho 
kinase (ROCK) (Avalos et al.  2002 ,  2004 ,  2009 ). 

 Fibroblasts adhering to fi bronectin substrate via interactions mediated by the α 5 β 1  
integrin receptor decrease the activity of Rho to lower the degree of contractility of 
cells in suspension, thus allowing spreading on fi bronectin within 30 min (   Arthur 
and Burridge  2001 ). The cooperative interaction of fi bronectin with integrins and 
the proteoglycan Syndecan-4, through its RGD domain and heparin-binding domain 
(HBD), respectively, leads to the activation of RhoA, increasing the formation of FA 
and SF, thereby strengthening cell adhesion (Couchman and Woods  1999 ). 

 In astrocytes, the interaction of Thy-1 with both integrin and Syndecan-4 is 
required for adhesion and spreading to produce morphological changes in these 
cells (Avalos et al.  2009 ; Leyton et al.  2001 ). Thy-1 sequence possesses an RGD- 
like tripeptide shown to be the integrin-binding region. Thy-1 mutated in the third 
amino acid (aa) of the RLD tripeptide to RLE neither binds the α v β 3  integrin nor 
induces formation of FA (Hermosilla et al.  2008 ); similarly, mutation of the basic 
stretch of aa, REKRK, in the Thy-1 molecule, to AEAAA, renders the protein 
unable to bind heparin, indicating that this region is the HBD of Thy-1 (Avalos et al. 
 2009 ; Leyton et al.  2001 ). Moreover, addition of heparin as a competitive inhibitor 
of Syndecan-4 binding to Thy-1 causes a decrease in the activation of RhoA in 
astrocytes and the pretreatment of astrocytes with heparitinase, which digests hepa-
ran sulfate proteoglycans and reduces the formation of Thy-1-induced FA and SF. 
Enhanced cell adhesion and the activation of Rho are inhibited also by overexpres-
sion of a dominant negative form of Syndecan-4. Altogether, these results suggest 
that the formation of FA and SF in astrocytes requires Thy-1 interaction with both 
integrin and Syndecan-4, through its RLD and REKRK domains, respectively 
[Fig.  1.1 ; Avalos et al. ( 2009 )].

   Thy-1-induced RhoA-GTP formation induces activation of PKCα (Avalos et al. 
 2009 ). PKCα may be activated in response to the aggregation of integrins (Erb et al. 
 2001 ; Vossmeyer et al.  2002 ) or in response to signaling downstream of Syndecan-4 
(Dovas et al.  2006 ). The involvement of PKCα in the activation of RhoA-ROCK in 
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  Fig. 1.1    The conserved RLD 
tripeptide known to interact 
with α v β 3  integrin and the 
heparin-binding domain 
(REKRK) of Thy-1, which 
binds to Syndecan-4, are 
indicated. Thy-1 is shown 
inserted in the outer leafl et 
of the plasma membrane via 
a lipid anchor. The primary 
sequence of amino acids 
27–161 of human Thy-1 was 
used to generate a three- 
dimensional model 
(Accession number: 
AAA61180.1). The PBD 
generated was used to build 
the Thy-1 molecule using 
Autodesk Maya mMaya v.1 
Molecular Maya toolkit. 
Graphics and fi nal images 
were obtained with Adobe 
Illustrator and Photoshop 
(Walter Waymann, Designer)       

astrocytes has been demonstrated using the inhibitor of classical PKCs (α, β, and γ) 
Gö6976 and expressing a dominant negative form of PKCα in astrocytes. Activation 
of RhoA and the formation of  FA and SF decrease in both cases (Avalos et al. 
 2009 ). These results indicate that the formation of FA and SF in astrocytes 
stimulated with Thy-1 depends on PKCα. However, whether PKCα is activated 
downstream of integrin and/or Syndecan-4 remains unresolved. 

 Due to the fact that PKCα is a calcium/diacylglycerol-activated kinase, these 
fi ndings opened new questions that are interesting to explore, e.g., Is the release of 
Ca 2+  from the endoplasmic reticulum, enough to activate and maintain PKCα at the 
membrane? Are there other sources of Ca 2+  involved? How does PKCα activate 
RhoA? What are the GEFs involved in the activation of RhoA? 

 In general, increased intracellular Ca 2+  ([Ca 2+ ] i ) implies either the release of cal-
cium from the endoplasmic reticulum or uptake mediated by channels in the mem-
brane. IP3-R inhibition blocks the effect of Thy-1 in astrocytes, and neither RhoA 
activation nor FA formation is observed in cells treated with this inhibitor (Henriquez 
et al.  2011 ). Surprisingly, this cellular response depends also on Thy-1-induced 
release of ATP from astrocytes, which stimulates infl ux of extracellular Ca 2+  through 
P2X7 purinergic receptors. The increase in [Ca 2+ ] i  is dependent on the interaction of 
Thy-1 with integrins, because the mutant of the wild-type molecule containing an 
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inactive integrin-binding domain, Thy-1(RLE), has no effect. In addition, the 
increase in [Ca 2+ ] i  mediated by the P2X7 receptor is required for the formation of 
FA (Henriquez et al.  2011 ). Taken together, these data indicate that both Ca 2+  from 
the endoplasmic reticulum via activation of IP3-R channels and uptake of extracel-
lular Ca 2+  are required for the formation of FA induced by Thy-1 in astrocytes. Both 
the decrease in the expression of P2X7 and inhibition of IP3-R channel block the 
formation of FA, indicating that both Ca 2+  currents are necessary for the formation 
of FA (Henriquez et al.  2011 ). In retinal ganglion cells, Thy-1 has recently been 
shown to interact with HCN4, a cation channel subunit (Partida et al.  2012 ). 

 It has been suggested that Thy-1 interaction with β 3  integrin may activate bidirec-
tional signaling inducing structural changes in β 3 -expressing astrocytes, thus modulat-
ing neurite outgrowth of Thy-1-expressing neurons (Avalos et al.  2002 ). Indeed, 
recently published studies reported that the α v β 3  integrin serves as a ligand for Thy-1 
in neurons, which upon binding induces Thy-1 to aggregate in the plasma membrane 
and leads to neurite outgrowth inhibition and retraction of already formed processes 
(Herrera-Molina et al.  2012 ). Astrocytes expressing α v β 3 , but not those in which the β 3  
subunit has been reduced by specifi c siRNA, inhibit neurite growth of primary cortical 
neurons maintained for 4–7 days in culture. Recombinant α v β 3  expressed as a fusion 
protein with the Fc portion of IgG1 binds to Thy-1-containing regions of neurons, but 
remains unbound when these cells have had surface Thy-1 removed by PI-PLC treat-
ment. In addition, α v β 3 -Fc has no effect on neurons that do not express Thy-1. On the 
other hand, addition of α v β 3 -Fc to neurons that have been in culture for more than 13 
days, showing a more differentiated phenotype, causes retraction of neuronal pro-
cesses generating bulb-clubbed endings in these cells (Herrera-Molina et al.  2012 ). 

 The mechanisms and consequences of interaction between Thy-1 and α v β 3  and 
modulation of signaling are still unknown and require further investigation, because 
downregulation of Thy-1 expression or inhibition of Thy-1 signaling on mature 
neurons may facilitate nerve regeneration. 

 According to data from antibody cross-linking studies, Thy-1-induced neurite 
outgrowth requires calcium infl ux, activation of L- and N-type calcium channels, 
and G-protein signaling (Doherty et al.  1993 ). Thy-1 interacts with Fyn and Gαi 
family members in avian neurons and with α- and β-tubulin within lipid rafts (Henke 
et al.  1997 ). Thy-1 blocking antibody decreases kinase activity within isolated lipid 
rafts, and these signaling changes may contribute to Thy-1’s effects on neurite out-
growth. In agreement with these data, Thy-1 engaged by its endogenous ligand, 
α v β 3 , triggers intracellular signaling that involves the recruitment and inactivation of 
the non-receptor tyrosine kinase Src (Herrera-Molina et al.  2012 ); see also Sect.  1.6 .  

1.8     Thy-1 Adhesive Signaling 

 Thy-1 can modulate cell signaling “in  trans ” (heterotypically) by Thy-1 on one cell 
engaging a Thy-1 ligand on another cell. This phenomenon is illustrated by human 
dermal microvascular endothelial cell (HDMEC) Thy-1 binding to α X β 2  (p150, 95, 
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CD11c/CD18) or α M β 2  (Mac-1, CD11b/CD18) on leukocytes, promoting their 
 adhesion and transendothelial migration (Choi et al.  2005 ; Wetzel et al.  2004 ; 
Saalbach et al.  2000 ), as well as by melanoma cell α v β 3  binding to Thy-1 on acti-
vated endothelium (Saalbach et al.  2002 ,  2005 ), which may promote melanoma 
metastasis, and by astrocyte–neuron interactions as described above. A number of 
novel fi ndings are reported in the latter case. The β chain of the α v β 3  immunoprecipi-
tated from DI TNC1 rat astrocytes is of smaller-than-expected molecular size, sug-
gesting alternative splicing, posttranslational modifi cation, or increased sensitivity 
to proteolytic enzymes. However, full-length α v β 3  is known to bind Thy-1 in vitro. 
The RLD sequence in Thy-1 is required for binding to α v β 3  integrin and occurs 
within a highly conserved region (Hermosilla et al.  2008 ), similar to RGD, the α M β 2 -
binding region in fi brinogen (Altieri et al.  1993 ). Thy-1 signaling via α v β 3  involves 
FAK and RhoA GTPase, the same pathways activated by “in  cis ” (homotypic) 
Thy-1 signaling in pulmonary fi broblasts (Barker et al.  2004a ,  b ; Rege et al.  2006 ). 
Thy-1  cis  signaling also occurs in neurons [neurite outgrowth inhibition; Herrera-
Molina et al. ( 2012 )]; however, the Thy-1-interacting molecules within neurons, 
and the downstream signaling pathways activated, have yet to be identifi ed. Others 
have shown that neurite outgrowth inhibition requires the Thy-1-specifi c GPI anchor 
and lipid raft integrity (Tiveron et al.  1992 ). 

 Integrity of lipid raft micro- and nano-domains appears important to Thy-1  cis  
signaling. Rafts are microdomains enriched in cholesterol, phosphatidylcholine, 
and sphingolipids that have been associated with the actin cytoskeleton constitut-
ing a platform for signal transduction and communication of the extracellular and 
the cell interior (Chen et al.  2009a ). Thy-1 has been shown to have equal mobility 
in lipid rafts as it does in the rest of the plasma membrane, which facilitates its 
traffi cking into and out of lipid rafts, whereas transmembrane proteins are less 
mobile and more spatially constrained (Zhang et al.  1991 ). Replacement of the 
GPI anchor with a membrane-spanning domain or disruption of lipid rafts by cho-
lesterol depletion abrogates Thy-1-mediated  cis  signaling (Rege et al.  2006 ; 
Tiveron et al.  1992 ). The residence time of Thy-1 within rafts is controlled by 
interaction with the cytoskeleton (Chen et al.  2006 ). To convey messages to the 
cell interior, Thy-1 clusters in the plasma membrane interacting with itself, 
 adaptors, transducers, or signaling molecules, placing Thy-1 as an important part 
of a complex that triggers signaling events to the cell interior. In the early 1990s, 
the presence of multimeric forms of Thy-1 predominantly in differentiated 
 neuron-like cell lines and primary neurons was described. It has been suggested 
also that these multimers might stabilize the complex formed between Thy-1 and 
the cytoskeleton (Mahanthappa and Patterson  1992 ). Thy-1 thus appears to regu-
late the traffi cking and partitioning of signaling molecules into and out of lipid 
raft domains, thereby modulating signaling networks associated with the cytoskel-
eton. In this way Thy-1 may act alternately as an inhibitor of signaling molecules 
such as SFKs, by sequestering them, or as a facilitator of signaling, by regulating 
their traffi cking. 

 Thy-1 also associates with proteins in the inner leafl et of the plasma membrane 
via myristoylated and palmitoylated posttranslational modifi cations, such as the 
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scaffold proteins reggie1 and reggie2 (Neumann-Giesen et al.  2004 ) and SFKs, as 
discussed above (Bradshaw  2010 ). Reggies are key modulators of neuronal process 
extension and the cytoskeleton, whereas SFKs are non-receptor tyrosine kinases 
responsible for initiation of cell signaling via tyrosine phosphorylation in response 
to signals internalized via Thy-1 (Chen et al.  2005 ,  2006 ,  2009b ; Deininger et al. 
 2003 ; Herrera-Molina et al.  2012 ). Therefore, Thy-1 clusters, lipids, and signaling 
proteins such as reggies and SFKs are part of these signaling cascades generating 
signal transduction pathways in  cis . Other important players in these signaling 
 complexes are Thy-1 transmembrane transducers, which, as indicated earlier, can 
establish a communication between proteins present in the outer leafl et of the cell 
membrane with those located in the inner leafl et of the bilayer. 

 Additional studies are required to better characterize Thy-1 interaction with 
other molecules in regulation of signaling, particularly in  cis . Its role in regulating 
Rho GTPases, focal adhesion turnover, and stress fi ber formation is suggestive that 
Thy-1 interacts in  cis  with integrins, but this has not been shown defi nitively. 
Furthermore, the mechanisms regulating Thy-1 localization and traffi cking to 
 specialized and distinct lipid nano-domains have not been defi ned.  

1.9     Conclusions 

 Thy-1 is expressed by a diversity of cell types and has variable effects on cell phe-
notypes. Hematopoietic and stromal stem cells in an undifferentiated state express 
Thy-1, whereas in neurons, Thy-1 is developmentally regulated and associated with 
cessation of neurite outgrowth. In the nervous system, Thy-1 is known to modify the 
phenotypes of neurons and astrocytes and to mediate their interaction, functioning 
as an adhesion molecule via interactions with integrins and Syndecan-4. It is known 
that Thy-1 regulates signaling both in  trans  and in  cis . Thy-1 is known to interact 
also with itself, the reggie proteins, and SFK and to modulate intracellular signaling 
despite lacking a transmembrane domain. Much remains unclear regarding the 
molecular mechanisms by which Thy-1 modulates intracellular signaling. It is clear, 
however, that both the expression of Thy-1 and its effects depend a great deal on the 
cellular and tissue context. Increased understanding of mechanisms of Thy-1 
 signaling and regulated expression could allow therapeutic manipulation of cell 
phenotypes in nerve injury, malignancy, and fi brotic disorders.     
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    Abstract     The coxsackie-adenovirus receptor (CAR) is the prototype of a small 
subfamily of IgCAMs composed of CAR itself, CLMP, BT-IgSF, ESAM, CTX, and 
A33. These six proteins are composed of one V-set and one C2-set Ig domains and 
a single transmembrane helix followed by a cytoplasmic stretch. They are localized in 
several tissues and organs and - except for ESAM, CTX, and A33 - are expressed in 
the developing brain. CAR becomes downregulated at early postnatal stages and is 
absent from the adult brain. CAR, CLMP, and BT-IgSF mediate homotypic aggre-
gation. Interestingly, cell adhesion experiments, binding studies, and crystallo-
graphic investigations on the extracellular domain reveal a fl exible ectodomain for 
CAR that mediates homophilic and heterophilic binding. 

 CAR has been extensively investigated in the context of gene therapy and 
 diseases, while research on BT-IgSF and CLMP is at an early stage. Several mouse 
models as well as studies on patient tissues revealed an essential role for CAR in (1) 
the development of cardiac, renal, lymphatic, and intestinal tissue; (2) muscle 
pathology, remodeling, and regeneration; (3) tumor genesis/suppression and meta-
static progression; and (4) in virus-mediated infections and gene therapy. Although 
the in vivo function of CAR in the brain has not been solved its developmentally 
regulated expression pattern in the brain as well as its function as CAM suggests 
that CAR might be implicated in neuronal network formation.  

    Chapter 2   
 The IgCAMs CAR, BT-IgSF, and CLMP: 
Structure, Function, and Diseases 
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2.1         The CAR Subgroup of IgCAMs 

 The coxsackievirus-adenovirus receptor (CAR) was initially identifi ed as a receptor 
protein for group B coxsackieviruses (CVB) and adenoviruses of the groups A, C, 
D, E, and F (Bergelson et al.  1997 ; Tomko et al.  1997 ; Freimuth et al.  2008 ; Coyne 
and Bergelson  2005 ). It is a prototype of a small structural subgroup of transmem-
brane proteins of the Ig superfamily in vertebrates which was initially founded by 
the thymocyte protein CTX (Chretien et al.  1996 ,  1998 ) and by the small bowel 
protein A33 antigen (Heath et al.  1997 ). Further screens testing endothelial adhe-
sion resulted in the identifi cation of a type I transmembrane protein structurally 
related to CAR, termed ESAM (endothelial cell-selective adhesion molecule), and 
whose expression is limited to endothelial cells and platelets but is not found on 
neural cells (Hirata et al.  2001 ; Nasdala et al.  2002 ). Bioinformatics searches in 
databases then resulted in the cloning of BT-IgSF which is highly expressed in brain 
and testis (therefore named brain- and testis-specifi c immunoglobulin superfamily, 
also termed Igsf11) and CLMP (CAR-like membrane protein) (Suzu et al.  2002 ; 
Raschperger et al.  2004 ; Katoh and Katoh  2003 ). These six IgSF members are 
highly related in their overall domain organization and in their primary sequence 
including the combination of a membrane-distal V-type and a C2-type domain, a 
short junction between both domains, and an extra pair of cysteines in the C2 
domain (Fig.  2.1 ). The junctional adhesion molecules (JAM) whose extracellular 

  Fig. 2.1    ( a ) Schematic representation of CAR and ( b ) its relationship to CLMP and BT-IgSF. ( a ) 
The signal peptide is  shaded ; Ig domains are shown as loops. The junction between the Ig domains 
is indicated as a  small box . SP, signal peptide; extra, extracellular domain containing Ig domains 
D1 and D2; TM, transmembrane segment; cyt, cytoplasmic tail. ( b ) Amino acid identities to CAR 
are given in percentages. Mouse sequences were used for comparison. ESAM and CTX reveal 
29 %, A33 25 %, JAM-A 20 %, JAM-B 21 %, JAM-C 20 %, and JAML 18 % identity to CAR aa, 
amino acid residues. mCAR, murine Coxsackievirus adenovirus receptor; mCLMP, murine CAR-
like membrane protein; mBT-IgSF, murine brain- and testis-specifi c IgSF member       
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  Fig. 2.2    The relationship of 
the CAR and related proteins 
is shown. Proteins are 
grouped according to amino 
acid sequence similarity. 
Mouse (m) and human (h) 
sequences were evaluated. 
Human and murine sequences 
of IgSF members were 
aligned using the Gonnet 250 
matrix in ClustalW 2.0.12. 
Gap-rich columns in the 
multiple sequence alignment 
were deleted using Jalview 
2.7 program and the edited 
alignment was analyzed in 
Protdist 3.67 by the Jones–
Taylor–Thornton matrix in 
order to calculate pairwise 
distances between the 
sequences. Bootstrapping 
was performed to test the 
reliability of the distance 
matrix. A consensus tree 
was computed by Neighbor- 
Joining 3.67 method by 
means of bootstrapping 
and the phylogenetic tree 
was visualized using 
TreeView 1.6.6       

regions are also composed of two Ig domains, in some cases with two V-type 
domains instead of the V- and C2-type combination, appear less related to CAR 
(Weber et al.  2007 ) (Fig.  2.2 ).

    In this review we discuss primarily CAR which has been extensively investigated 
in the context of adenoviral gene therapy and heart development. Recent fi ndings on 
the implication of BT-IgSF and CLMP in diseases are included in our overview of 
this fi eld while ESAM, CTX, and A33 which are not expressed in the nervous 
 system will not be considered further. 

 Orthologs of human and mouse CAR have been described in a variety of species 
including bovine, pig, rat, dog (Fechner et al.  1999 ; Thoelen et al.  2001a ), chick 
(Patzke et al.  2010 ), and zebrafi sh (Petrella et al.  2002 ). High amino acid sequence 
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identity is observed between mouse and human CAR with 91 % identity in their 
extracellular domains and 77 % identity within the transmembrane segment and 
95 % identity within their cytoplasmic stretch (Wang and Bergelson  1999 ). 

 The human  CXADR  gene was initially localized to chromosome 21q11.2 by fl uo-
rescence in situ hybridisation analysis (Bowles et al.  1999 ) and later corrected to 
21q21.1 after sequencing of the long arm of chromosome 21 (Hattori et al.  2000 ). 
The  CXADR  gene was thought to comprise seven exons, but recent fi ndings revealed 
the existence of an eighth exon (Excoffon et al.  2010 ) as found for murine  Cxadr  on 
chromosome 16 (Chen et al.  2003 ). Both human and murine genes are transcribed 
into 6 kb pre-mRNA molecules that are further processed into 2.4 kb and 1.4 kb 
transcripts, respectively, containing open reading frames of similar size. However, 
an additional 3′ untranslated region of 1.2 kb is found in the human transcript 
(Tomko et al.  1997 ). The human gene encoding BT-IgSF is located on chromosome 
3q13.32 while its murine ortholog is found on chromosome 16B4. Two isoforms 
have been described for BT-IgSF generated by alternative splicing (Katoh and Katoh 
 2003 ). The gene of human CLMP was identifi ed on chromosome 11q24.1 and is 
composed of seven exons. A similar genomic organization was found for the murine 
gene of CLMP which is located on chromosome 9A5.1 (Raschperger et al.  2004 ).  

2.2     Structural Features of the Extracellular Region of CAR 

 After cleavage of the signal peptide, the mature CAR exhibits a 218 amino acid extra-
cellular domain, which represents about two-third of the protein and comprises two 
Ig-like domains: one membrane-distal V-type Ig domain and one membrane- proximal 
C2-type Ig domain (termed D1 and D2 in the following). These two domains are 
separated by a short junction and are followed by a linker of fi ve, a transmembrane 
segment of 21, and a cytoplasmic tail of either 107 or 94 amino acid residues, respec-
tively. Differential splicing of the CAR encoding pre-mRNA leads to two isoforms 
which are identical except for the extreme C-terminus, which contain class I PDZ-
binding motifs ending either in amino acid residues SIV or TVV (also termed form 1 
and 2 of CAR, respectively) (Excoffon et al.  2004 ). Isoform 2 is 13 residues shorter 
than mCAR isoform 1 (Chen et al.  2003 ; Excoffon et al.  2010 ). Further splice vari-
ants lacking the transmembrane segment have been described (termed CAR2/7, 
CAR3/7, and CAR4/7) (Dorner et al.  2004 ; Thoelen et al.  2001b ; Dietel et al.  2011 ); 
however, their existence at the protein level has not been confi rmed. 

 In crystallographic investigations the full extracellular region of CAR revealed a 
U-shaped homodimer through the binding of their N-terminal domains which is remi-
niscent of JAM-A homodimers (Fig.  2.3a ) (Kostrewa et al.  2001 ; Prota et al.  2003 ; 
Patzke et al.  2010 ). The D1–D1-binding interface of CAR has a size of 684 Å 2  and is 
formed by side chains in β-strands GFCC′ and C″ as well as the FG-connecting loop. 
Four salt bridges and two hydrogen bonds as well as two hydrophobic interactions are 
implicated in binding (Fig.  2.3b ). Similar observations on the D1 domain were made 
for the complex of D1 with the fi ber knob of the adenovirus and for the homodimer 
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of the single D1 domain (Bewley et al.  1999 ; Seiradake et al.  2006 ; van Raaij et al. 
 2000 ). The D2 domain belongs to the C2 type of Ig domains whose two β-sheets are 
derived from β-strands ABE and CFG, respectively. Two disulfi de bonds link the two 
sheets together, connecting strand A to G and strand B to F. D1 and D2 associate in a 
head-to-tail manner in the CAR polypeptide and form a rod- like, dumbbell-shaped 
structure whose protrusions are formed by the globular Ig domains. The two domains 
are separated by a junction and a linker segment of fi ve residues tethers the 

  Fig. 2.3    ( a ) Crystal structure 
of the extracellular region of 
CAR reveals a U-shaped 
dimer which is stabilized by 
binding of their N-terminal 
D1 domains. D1 domains are 
colored in either  red  or  brown  
and D2 in  green .  C-term  
C-terminus,  N-term  
N-terminus. ( b ) Detailed 
view of interactions inside 
the dimer interface shown in 
( a ). Amino acid residues are 
given in the  single letter code  
and  numbers  indicate their 
positions. ( c ) Scheme of 
putative molecular 
interactions of CAR on the 
neural plasma membrane. 
The D1–D1 association 
observed by the U-shaped 
crystal structure most likely 
occurs between two CAR 
polypeptides associated with 
the same plasma membrane. 
Adhesion and binding 
experiments suggest that 
homophilic interactions of 
two CAR polypeptides 
between neighboring cells 
might result from an 
antiparallel D1–D2 binding. 
Heterophilic bindings of the 
D2 domain of CAR to ECM 
glycoproteins or of D1 to 
JAML are indicated by 
 arrows  [adopted from (Patzke 
et al.  2010 )]       
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extracellular Ig domains of CAR to the cell membrane. Both parts, the junction and 
the linker, might provide some degree of fl exibility to the polypeptide which might 
infl uence the interactions of CAR with other proteins (Patzke et al.  2010 ).

   Structural information as well as detailed binding data using extracellular 
domains is not available for BT-IgSF and CLMP.  

2.3     Molecular Interactions of CAR Subgroup Members 

2.3.1     The Extracellular Domain of CAR Is Implicated 
in Homophilic and Heterophilic Binding 

 CAR functions primarily as a homophilic adhesion molecule as demonstrated by 
aggregation studies using transfected cells (Honda et al.  2000 ; Patzke et al.  2010 ). 
Consistently, the fi ber knob of the adenovirus which binds to the N-terminal Ig 
domain of CAR disrupts the formation of cell–cell contacts (Walters et al.  2002 ; 
Patzke et al.  2010 ). Furthermore, in non-polarized cells and in neurons CAR is dif-
fusely localized over the entire cell surface but accumulates at cell–cell contact 
sites. Crystallographic studies on the single D1 and the complete extracellular 
region of CAR suggested that CAR homophilic binding is mediated by interactions 
of D1 (van Raaij et al.  2000 ; Verdino et al.  2010 ; Patzke et al.  2010 ). However, a 
detailed analysis of binding activities of single extracellular domains of CAR, com-
bined with adhesion assays, indicated that homophilic interactions of CAR are also 
mediated by D1–D2 binding (Patzke et al.  2010 ). 

 CAR is also implicated in heterophilic interactions with extracellular matrix pro-
teins fi bronectin, tenascin-R, and agrin, which appear to be mediated by D2 of CAR 
(Patzke et al.  2010 ). In keratinocytes CAR was found to interact with JAML on γδ 
T cells in the skin to induce co-stimulation, cytokine production, and activation of 
the MAP kinase pathway via recruitment of the phosphoinositide-3-kinase (PI3K) 
to a JAML intracellular sequence motif. The homophilic binding interface of D1 of 
CAR overlaps with the structure required for the heterophilic binding to JAML 
which is mainly based on GFCC′C″-sheets packed face to face, and only the 
A-strand of CAR interacts with the JAML CC′ loop. In contrast to CAR the two 
V-set domains of JAML associate into a compact assembly, making the extracellular 
region of JAML more rigid (Verdino et al.  2010 ). The binding between CAR and 
JAML is essential for the transmigration of neutrophils across tight junctions 
(Verdino et al.  2010 ; Witherden et al.  2010 ; Zen et al.  2005 ; Luissint et al.  2008 ; 
Guo et al.  2009 ). In testis CAR interacts with JAM-C (Mirza et al.  2006 ). 

 Overall, the binding, structural, and adhesion studies using CAR extracellular 
domains predict a fl exible ectodomain of CAR allowing a conformational shift 
resulting in either D1–D1 or D1–D2 homophilic binding. A fl exible ectodomain 
has also been observed for CEACAM1 (Klaile et al.  2009 ) and which might apply 
to other IgCAMs as well (Volkmer et al.  2013 ). On the basis of the binding and 
crystallographic studies a model of molecular interactions of CAR has been 
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 proposed in which CAR self-associates on the same cell via D1–D1 as U-shaped 
dimer and between opposing cells via antiparallel D1–D2 binding (Fig.  2.3c ) 
(Patzke et al.  2010 ). 

 BT-IgSF as well as CLMP—similar to CAR—also mediate homotypic aggregation 
when expressed in heterologous cells, and expression of CLMP increased the transepi-
thelial resistance in MDCK cells, suggesting that CLMP and BT-IgSF might have 
related functions to CAR (Harada et al.  2005 ; Eom et al.  2012 ; Raschperger et al.  2004 ).  

2.3.2     Molecular Interactions of the Cytoplasmic 
Segment of CAR 

 The two forms of CAR with a cytoplasmic segment differ only in their last 26 or 13 
amino acid residues due to alternative splicing. Both isoforms of CAR as well as 
CLMP and BT-IgSF encode class I PDZ-binding domain sequences. Consequently, 
several intracellular PDZ domain containing proteins were identifi ed to interact with 
CAR, suggesting that CAR is part of larger protein complexes. These intracellular 
binding proteins include ZO-1 (zona occludens 1), MUPP-1 (multi-PDZ domain 
protein-1), MAGI-1b (membrane-associated guanylate kinase, WW, and PDZ 
domain containing 1b), and PICK-1 (protein interacting with C kinase 1) and the 
synaptic scaffolding protein PSD-95 (postsynaptic density protein 95) (Cohen et al. 
 2001 ; Raschperger et al.  2006 ; Coyne et al.  2004 ; Excoffon et al.  2004 ; Excoffon 
et al.  2010 ). Using a yeast two-hybrid screen, LNX (Ligand-of-Numb protein-X) 
was found to bind via its second PDZ domain to the cytoplasmic part of CAR. 
Interestingly, the PDZ-binding segment of CAR was not suffi cient for LNX binding, 
but required a C-terminal upstream sequence (Sollerbrant et al.  2003 ). Furthermore, 
LNX2 (Ligand-of-Numb protein-X2) was also discovered as interaction partner by 
the yeast two-hybrid technique and co-immunoprecipitation. On the basis of trunca-
tion and pull-down analyses, the CAR–LNX2 interaction is mediated by the second 
LNX2 PDZ domain and the CAR PDZ-binding motif, but additional CAR residues 
330–339 were also needed for interaction, which is similar to CAR- LNX binding 
(Mirza et al.  2005 ). BT-IgSF and CLMP also contain at their C-terminus PDZ-
binding motifs and might therefore also interact with several PDZ containing pro-
teins. For example, CLMP was found to associate with ZO-1 on Caco-2, MDCK, 
and the mouse Sertoli TM4 cells (Raschperger et al.  2004 ; Sze et al.  2008 ).   

2.4     CAR Is Ubiquitously Expressed but Dominates During 
Developmental Stages 

 CAR has been found in numerous organs and tissues during embryonic development 
including epithelia, myocardium, and the nervous system. Its expression is tightly 
regulated during development and becomes downregulated at early postnatal stages, 
in particular in the brain (Hotta et al.  2003 ; Patzke et al.  2010 ). In non- polarized cells 
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it is diffusely localized over the entire cell surface but accumulates at cell–cell 
 contact sites. In polarized cells CAR has been found to be associated with tight junc-
tions and co-localizes with the tight junction protein ZO-1 (Cohen et al.  2001 ; 
Walters et al.  2002 ; Nagai et al.  2003 ; Raschperger et al.  2006 ). In the developing 
heart CAR is a component of the intercalated disc (Noutsias et al.  2001 ; Kashimura 
et al.  2004 ), a specialized structure composed of gap junctions, desmosomes, and 
adherens junctions. CAR is diffusely localized on the plasma membrane of myo-
blasts and becomes downregulated during skeletal muscle maturation, and in the 
adult muscle, it is restricted to the sarcolemma of the neuromuscular junction (Shaw 
et al.  2004 ; Nalbantoglu et al.  1999 ). In summary, CAR differs from many IgCAMs 
in that it is primarily expressed during developmental stages. Its expression is strong 
on cells with high plasticity. Since CAR is absent from the normal adult nervous 
system and myocardium it appears to be not a structural protein. It serves as a 
 developmental factor which promotes the formation of cell–cell contacts during 
development. The strong re-expression of CAR in cardiac diseases associated with 
heart failure may be considered as an embryonic re-expression (see also below). 

 Only limited information on the localization of BT-IgSF and CLMP is available. 
At the transcript level CLMP was detected in several tissues including brain and cell 
lines (Raschperger et al.  2004 ; Eguchi et al.  2005 ; Van Der Werf et al.  2012 ). 
BT-IgSF mRNA is highly expressed in the brain, testis, intestinal-type gastric can-
cers, and melanophores and their precursors of zebrafi sh (Eom et al.  2012 ; Suzu 
et al.  2002 ; Katoh and Katoh  2003 ).  

2.5     CAR Members and Diseases 

 Although CAR is strongly expressed in the developing nervous system (Patzke et al. 
 2010 ; Hotta et al.  2003 ), its in vivo role in the brain or in the peripheral nervous 
 system is currently unknown. Due to the very early embryonic lethality of the consti-
tutive CAR knockout (Dorner et al.  2005 ; Asher et al.  2005 ; Chen et al.  2006 ) so far 
only investigations on immature cultivated CAR-defi cient neurons were possible. In 
vitro experiments revealed that CAR functions in the nervous system as adhesion 
molecule and might be implicated in the formation of neuronal circuits through homo-
philic and heterophilic interactions (Patzke et al.  2010 ). Due to the lack of in vivo 
studies on CAR, BT-IgSF, and CLMP in the developing brain, we concentrate in the 
following sections of this article on their functions in nonneural tissues and diseases. 

2.5.1     The Interactions of CAR with Adeno- and 
Coxsackieviruses 

 The six coxsackie B virus serotypes (CVB1–CVB6) and adenoviruses from sub-
groups A, C, D, E, and F (but not B) share CAR as a viral receptor; the role of 
CAR in these viral infections, however, is different. For CVBs, CAR functions for 
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both attachment and viral infection (Martino et al.  2000 ), while for adenoviruses 
the major function of CAR is to mediate initial attachment of the virus to the cell 
surface. Subsequent entry of the adenovirus into cells is mediated by the penton 
base protein of the virus and by α V  integrin receptors on the cell surface (Wickham 
et al.  1993 ; Bai et al.  1993 ). Because these two virus families are unrelated, their 
binding specifi city to CAR must have evolved independently. The CAR-binding 
sites on CVB are located in deep crevices or canyons on the capsid surface 
(Muckelbauer et al.  1995 ). By contrast, the structures of the adenovirus binding to 
CAR are surface loops and thus are exposed to immunoselective pressure. 
Interestingly, the JAML and the homophilic D1–D1-binding site on CAR overlap 
with the binding site required for the interaction with both viruses (Bewley et al. 
 1999 ; Roelvink et al.  1999 ; van Raaij et al.  2000 ; Patzke et al.  2010 ; Verdino et al. 
 2010 ). This overlap accounts for the competition of these viruses (and CAR itself) 
on the cell plasma membrane. 

 The adenoviruses bind to the N-terminal Ig domain of CAR, D1, by means of 
trimeric fi bers emanating from the vertices of their icosahedral capsid, which termi-
nate in a globular knob domain, termed the fi ber knob. The D1 domain of CAR is 
suffi cient for binding of the virus (Bewley et al.  1999 ; Roelvink et al.  1999 ). 
Structural studies indicate that up to three CAR D1 monomers are bound per fi ber 
knob trimer. The AB loop, part of the DE loop, and a short segment of the F-strand 
of one fi ber knob monomer and in addition the FG loop of the adjacent knob interact 
with strands CC′C″ and the second half of β-strand F in the D1 domain of CAR 
(Bewley et al.  1999 ). The AB loop contributes over 50 % of interfacial protein– 
protein interactions, including the three hydrogen bonds involving conserved atoms 
in Ad12, Ad2, Ad5, and Ad9 knob and thus may be the key anchor for the complex 
(Law and Davidson  2005 ). 

 The cryo-electron microscopic reconstruction of CVB3 complexes with CAR 
showed that the D1 domain of CAR binds within the canyon of CVB3. The inter-
face between the virus and CAR consists of the BC and FG loops of D1 binding 
to the north rim and the fl oor of the canyon, as well as the A and G β-strands 
interacting with the south rim of the canyon (He et al.  2001 ). CVB3 canyon 
walls are formed by viral structural proteins VP1, VP2, and VP3, and although 
contact residues are contributed by all three subunits, VP1 dominates the inter-
action with CAR D1. Several charged residues line the binding interface and 
provide complementary interactions with CAR. These residues in the virus–
receptor interface are moderately well conserved among the six CVB serotypes 
(He et al.  2001 ).  

2.5.2     CAR as a Viral Receptor 

 Since CAR functions as receptor for both viruses it has been therefore mainly 
related to human diseases on the basis of its role as a viral attachment protein. 
Adenoviruses are non-enveloped DNA viruses, classifi ed into six subgroups (A–F), 
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which are further divided into more than 50 different serotypes based on their 
immunological properties (Bailey and Mautner  1994 ; Law and Davidson  2005 ; Rux 
and Burnett  2004 ). Serotypes A, C, D, E, and F are able to attach to CAR (Tomko 
et al.  1997 ; Roelvink et al.  1998 ; Bergelson et al.  1997 ). The most common, and 
therefore the most extensively studied, human adenoviruses are those that belong to 
group C (Rux and Burnett  2004 ), which predominantly infects the upper respiratory 
tract. Group C, together with groups B and E, which infect the lower respiratory 
tract, causes clinical symptoms ranging from mild pharyngitis to acute respiratory 
disease (common cold syndrome, pneumonia, crop, bronchitis) (Brandt et al.  1969 ; 
Figueiredo  2009 ). Besides respiratory tract infections adenoviruses are recognized 
as etiologic agents of the gastrointestinal, heart and eye infections (Kaufman  2011 ; 
Skevaki et al.  2011 ), hemorrhagic cystitis, hepatitis, hemorrhagic colitis, pancreati-
tis, nephritis, or encephalitis (Hayashi and Hogg  2007 ; Martin et al.  1994 ; Waldman 
et al.  2008 ; Hofl and et al.  2004 ; Lynch et al.  2011 ). More than 80 % of adenovirus 
infections occur in young children (<4 years) due to their lack of humoral immunity 
(Mitchell et al.  2000 ; Lynch et al.  2011 ). Epidemics of adenovirus infections may 
occur in healthy children or adults in closed or crowded settings (e.g., military 
recruits). Additionally adenovirus infections are more severe, and dissemination is 
more likely in patients with impaired immunity (e.g., organ transplant recipients, 
human immunodefi ciency virus infection, and congenital immunodefi ciency 
 syndromes). Although the vast majority of adenovirus infections are mild and self- 
limiting, the clinical spectrums are broad, and dissemination or pneumonia can be 
fatal, in both immunocompetent (particularly infants) and immunocompromised 
patients (Dudding et al.  1972 ; Zarraga et al.  1992 ; Ison  2006 ; Lynch et al.  2011 ; 
Horowitz  2001 ). 

 Coxsackie B viruses are non-enveloped RNA viruses and belong to human 
picornaviruses of the enterovirus group (Melnick  1996 ). CVB causes a wide 
range of human and animal diseases such as local myositis, myocarditis 
(Bergelson et al.  1998 ; Grist et al.  1975 ), pancreatitis (Yoon et al.  1986 ; Imrie 
et al.  1977 ), and meningitis (Godman et al.  1952 ; Melnick  1996 ). Serotype cox-
sackievirus B3 (CVB3) is one of the most common pathogens of myocarditis 
(Bowles et al.  1986 ; Carthy et al.  1997 ; Grist and Reid  1993 ) and its persistent 
infection may lead to dilated cardiomyopathy (DCM) (Carthy et al.  1997 ; Wessely 
et al.  1998 ; D’Ambrosio et al.  2001 ; Liu and Mason  2001 ). Especially in children 
CVB3 accounts for a signifi cant fraction of cases of terminal heart failure (Shi 
et al.  2009 ; Feldman and McNamara  2000 ). A cardiac-inducible CAR knockout 
(Shi et al.  2009 ) provided the fi rst genetic evidence that CAR is the receptor for 
the coxsackievirus in that the heart was protected from virus entry whereas 
 noncardiac tissues were infected. CVB frequently infects the CNS and, together 
with other enteroviruses, is the most common cause of viral meningitis in humans. 
Newborn infants are particularly vulnerable. Moreover, CVB also can infect 
the fetus, causing death, or neurodevelopmental defects in surviving infants 
(Feuer et al.  2005 ).  
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2.5.3     CAR Is Essential for Embryonic Heart Development 

 Besides investigations on the role of CAR in viral infections and pathology its function 
during development as well as its implication in diverse nonviral pathological pro-
cesses such as cancer or heart arrhythmia has been recently deciphered in loss-of- 
function and CAR overexpressing mouse mutants. Four constitutive and six conditional 
CAR knockout mice were generated in different laboratories to gain insight into the 
physiological function of CAR. These mouse models revealed an essential role of CAR 
in heart development and in multiple aspects of cardiac function and disease (Fischer 
et al.  2009 ). All global CAR knockouts that result in the elimination of all CAR iso-
forms lead to lethality at midgestation (between embryonic days 11.5 and 13.5) due to 
cardiac tissue malformation (Asher et al.  2005 ; Dorner et al.  2005 ; Chen et al.  2006 ; 
Lim et al.  2008 ; Lisewski et al.  2008 ; Fischer et al.  2009 ). Although in all of those 
mutants the overall outcome was very similar, slightly diverse cardiac phenotypes were 
reported upon CAR deletion. Dorner et al. ( 2005 ) reported that the absence of CAR 
resulted in enlarged pericards due to edema formation, smaller lumen of the ventricles, 
and an enlarged cushion. Cardiomyocytes showed reduced density and thickness of 
myofi brils and their orientation and bundling were disorganized. Neither proliferation 
nor apoptosis was found to be abnormal in knockout hearts. The authors concluded that 
the early lethality in these embryos is caused by insuffi cient heart function and disor-
ganization of Cardiomyocyte structure affecting their contraction capacity. In the study 
by Asher et al. ( 2005 ) CAR-defi cient cardiomyocytes exhibited regional apoptosis 
causing degeneration of the myocardial wall and thoracic hemorrhaging, leading to 
death at embryonic day 11.5 [see also the reply to (Asher and Finberg  2005 )]. Lim et al. 
( 2008 ) also reported hemorrhage in CAR-defi cient embryos and a large pericardial 
effusion. However, no structural defects, apoptosis, hypertrophy, or ventricular wall 
thinning in the heart of these CAR-defi cient embryos were observed as also described 
by Dorner et al. ( 2005 ). Interestingly, in the study by Chen et al. ( 2006 ) CAR defi -
ciency resulted in regional over-proliferation of cardiomyocytes and hyperplasia of the 
left ventricle. Further analysis revealed that proliferating cardiomyocytes failed to dif-
ferentiate to form normal trabeculae, which together with poorly organized myofi brils 
and ill-formed or absent intercellular junctions caused profound heart  dysfunction and 
death at embryonic day 12.5. Surprisingly, when cardiomyocyte-specifi c deletion 
occurred not until at E11 [by using an inducible MHC (myosin heavy chain promoter)-
Cre recombinase], a signifi cant number (20 %) of conditional mutant animals survived 
to adulthood and did not reveal cardiac abnormalities. This observation might suggest 
that CAR is essential during a specifi c developmental window, and after day 11 when 
trabeculation is well under way, its loss can be compensated. 

 In summary, although the phenotype of CAR-defi cient embryos appears to be 
complex, it is clear that CAR is essential for early cardiac development and CAR- 
mediated signaling is critical for the formation and survival of growing cardiomyo-
cytes (Fechner et al.  2003 ; Noutsias et al.  2001 ; Ito et al.  2000 ).  
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2.5.4     CAR Is Implicated in Electrical Conduction 
in the Developing and Mature Heart 

 Conditional ablation of CAR to circumvent embryonic lethality allows the 
 exploration of CAR function at advanced developmental stages and in adult mice. 
A cardiac- specifi c CAR knockout (CAR-cKO) showed 70–90 % deletion of CAR 
at the intercalated discs of cardiomyocytes (Lim et al.  2008 ). Functional analysis 
of the heart using electrocardiograms (ECG) of 4- to 5-week-old CAR-cKO mice 
demonstrated abnormal atrioventricular conduction. While ventricular depolarisa-
tions showed no signifi cant difference in the QRS morphology the P-wave was not 
detectable in the CAR-cKO mice (Lim et al.  2008 ). A telemetric ECG analysis in 
awake, conscious mice supported the observation that deletion of CAR leads to an 
abnormal atrioventricular conduction. In addition, in an embryonic global CAR 
knockout (CAR-KO) the fl ow of the blood was assessed by Doppler echocardiog-
raphy (between E10.5 and 12.5) to study the function of the heart when CAR is 
absent from the beginning. In CAR-KO embryos the mean PR intervals were sig-
nifi cantly enhanced, consistent with a fi rst-degree AV block as shown in CAR-cKO 
mice (Lim et al.  2008 ). While the atrial and ventricular action potential generation 
analyzed by optical mapping studies was not affected, the disruption of CAR leads 
to a dislocalization of the gap junction protein connexin 45 at the atrioventricular-
node cell–cell junctions and a reduced localization of β-catenin and ZO-1 at the 
ventricular intercalated discs of CAR-cKO at 8 weeks before they developed car-
diomyopathy at 21 weeks of age. Similar  defi ciencies in heart function were 
uncovered by Lisewski et al. ( 2008 ) in a tamoxifen-inducible, cardiac-specifi c 
CAR knockout mouse (CAR-cKO). Although the depolarization and repolariza-
tion of the CAR-cKO  ventricle were normal, the conduction of the electrical activ-
ity from the atrium to ventricle was impaired. This is refl ected by a prolonged PR 
interval in CAR-cKO which corresponds with impairments at the level of the atrio-
ventricular node. The changes in electrical conduction are related to a reduced 
expression and disturbed localization of the gap junction protein connexin 43 
which might result in a  disturbed communication between cardiomyocytes. 
Recently, EGC recordings in CAR-cKO mice  supported the above fi ndings and 
revealed a complete atrioventricular block with a temporal dissociation between 
atrial depolarization (P waves) and ventricular depolarization (QRS complexes) 
(Pazirandeh et al.  2011 ). These defi ciencies in electrical conductance are associ-
ated with a heterogeneous morphology of the intercalated discs in CAR-cKO. 

 Overall, CAR may be required for the formation of a complex with connexin 45 
and 43 at the intercalated discs and might be required for the correct localization of 
β-catenin and ZO-1 and therefore essential for normal atrioventricular-node con-
duction. This novel role of CAR in arrhythmia establishes CAR as a potential diag-
nostic marker for familial cases of atrioventricular block and ventricular dysfunction 
in genetic and acquired diseases and might also help to explain how, e.g., CVB can 
cause arrhythmia. Furthermore, arrhythmia could be a potential side effect of thera-
peutic approaches that target CAR to prevent CVB3-induced myocarditis, pancre-
atitis, or tumor growth and metastases (see also below) (Fischer et al.  2009 ).  
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2.5.5     CAR Re-expression in Diseased Cardiac 
and Skeletal Muscle 

 In contrast to developing mouse tissue expression of CAR in adult tissue is 
strongly reduced or even absent in some organs (Tomko et al.  2000 ); in particular 
in adult rodents and healthy human hearts CAR expression is very low and 
restricted to the intercalated discs of cardiomyocytes (Kashimura et al.  2004 ; 
Sasse et al.  2003 ; Ito et al.  2000 ). Interestingly, a strong CAR re-expression was 
observed in the intercalated discs and sarcolemma in human DCM, in ischemic 
cardiomyopathy (ICM) (Noutsias et al.  2001 ; Poller et al.  2002 ; Mirza et al.  2006 ; 
Tatrai et al.  2011 ), in mitral/aortic valve diseases (Sasse et al.  2003 ), and in animal 
models of cardiac infl ammation and myocardial infarction (Ito et al.  2000 ; Fechner 
et al.  2003 ). Ito et al. proposed that re-expression of CAR in experimental autoim-
mune myocarditis in a rat model is induced by infl ammatory cytokines such as 
interferon-γ, tumor necrosis factor-α, and interleukin-1β and that CAR upregula-
tion might be required for the regeneration of damaged myocardium (Ito et al. 
 2000 ; Noutsias et al.  2001 ). However, induction of CAR re-expression only by 
humoral factors seems to be unlikely, since CAR upregulation does not occur in 
all types of heart failures and is often locally confi ned to, e.g., infarct zone after 
myocardial infarction (Fechner et al.  2003 ). Surprisingly, postnatal overexpres-
sion of murine CAR in the cardiomyocyte under the control of a tetracycline-
responsive α-myosin heavy chain (αMtTA) promoter resulted in infl ammatory 
cardiomyopathy associated with MAPK activation and increased proinfl amma-
tory cytokine expression (Yuen et al.  2011 ). Thus, in contrast to Ito et al. ( 2000 ), 
this study suggests that CAR itself induces infl ammation in the heart unrelated to 
viral infection, rather than just responding to infl ammation and injury with upreg-
ulation. Therefore, CAR might have a dual function in the pathogenesis of myo-
carditis: as viral receptor and in addition induction of signals that activate 
components characteristic of innate immunity. Interestingly, increased CAR 
expression in the adult heart caused a cardiac phenotype distinct from that 
observed following embryonic overexpression of CAR which resulted in dis-
rupted cardiomyocyte junctions (Caruso et al.  2010 ). 

 An active role of CAR re-expression in diseased cardiac tissue is supported by a 
similar observation made in regenerating skeletal muscle. CAR is highly expressed 
in myoblasts and is diffusely distributed on the plasma membrane of immature 
myofi bers. In adult skeletal muscle fi bers CAR is confi ned to the sarcolemma at the 
neuromuscular junction (Nalbantoglu et al.  1999 ; Shaw et al.  2004 ) whereas in dis-
eased muscle with necrosis and regeneration (polymyositis and Duchenne muscular 
dystrophy, DMD) extrasynaptic sarcolemmal and cytoplasmic CAR is found to be 
co-expressed with regeneration markers such as desmin and utrophin (Sinnreich 
et al.  2005 ). Additionally, similar to cardiac overexpression of CAR, homozygous 
transgenic mice, in which CAR is regulated by the muscle creatine kinase (MCK) 
promoter, showed a severe myopathy with a large numbers of necrotic and regener-
ating fi bers and premature death that was associated with an upregulation of caveo-
lin- 3 levels and defi ciencies in dystrophin and dysferlin (Shaw et al.  2006 ). 
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 In summary, the general view that emerges from these studies on cardiac and 
skeletal muscles is that CAR serves as a factor that is transiently expressed during 
development to establish cell–cell contact-mediated signaling. It is strongly down-
regulated in normal adult human tissue and becomes re-expressed in certain dis-
eases or damaged tissues to induce complex processes of tissue remodeling and 
regeneration (Noutsias et al.  2001 ). CAR-overexpression studies suggest that there 
is a threshold level above which CAR expression is detrimental to the muscle tissue. 
Since CAR expression is strictly regulated during development, it might be not 
surprising that its persistent, non-physiological overexpression may be deleterious 
in other tissues too.  

2.5.6     CAR in Renal and Intestinal Tissues 
and in the Lymphatic System 

 Knockdown of CAR gene function by morpholino antisense oligonucleotides in 
zebrafi sh resulted in specifi c ultrastuctural defects in pronephric glomerular matura-
tion and terminal epithelial differentiation. Although podocytes differentiate in 
CAR morphants they were not able to elaborate a regularly patterned architecture of 
foot processes. In the tubules loss of CAR resulted in a clear increase in distance 
between the neighboring membranes of epithelial cells but did not infl uence the 
formation of tight junctions. Additionally, in tubular epithelia lacking CAR apical 
microvilli were very much reduced in number and appear disorganized. These fi nd-
ings established a new role of CAR in the terminal differentiation of renal glomeru-
lar and tubular cell types (Raschperger et al.  2008 ). 

 Detailed analysis of internal organ morphology and physiology revealed several 
abnormalities in a recently developed conditional mouse model of CAR (Pazirandeh 
et al.  2011 ). CAR-depleted mice demonstrated a striking atrophy of the exocrine 
part of the pancreas and small but signifi cant increase in the total number of thymo-
cytes in the thymus. Furthermore, CAR-defi cient mice also displayed dilated intes-
tines along the whole intestinal system which showed normal length. This could be 
either due to exocrine dysfunction of the pancreas or due to an altered neuro/
hormonal regulation of the gut motility. 

 CAR is expressed in neonatal lymphatic endothelial cells where it is found at 
cell–cell junctions (Vigl et al.  2009 ). Deletion of CAR by tamoxifen injections 
in mice containing a conditional allele of CAR at embryonic day 12.5—a devel-
opmental stage when CAR is no longer essential for cardiac development—
resulted in dilated lymphatic vessels. These vessels were fi lled with erythrocytes 
and revealed gaps at lymphatic endothelial cell–cell junctions, indicating that 
CAR is also  essential during the development of the lymphatic vasculature 
(Mirza et al.  2012 ).  
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2.5.7     Loss of CAR Expression Correlates 
with the Aggressiveness of Tumors 

 The application of adenoviral vectors in gene therapy depends strongly on the 
level of CAR expression in targeted tissue (Kim et al.  2002 ; Hemmi et al.  1998 ; 
Li et al.  1999 ). In this context many tumor samples have been exanimated for 
CAR expression. In addition, a number of cell adhesion proteins have been 
linked to cancer progression in that loss of cell–cell contacts allows malignant 
cells to detach from their neighbors and to escape (Okegawa et al.  2002 ). 
Interestingly, in several human cancer tissues CAR expression was signifi cantly 
downregulated during the progression of the malignancy leading to the hypoth-
esis of a tumor-suppressive role for CAR in human cancers. Furthermore, re-
expression of CAR in highly tumorigenic CAR-defi cient human prostate and 
bladder cancer cells suppressed tumor growth (Okegawa et al.  2000 ,  2001 ; 
Rauen et al.  2002 ). Similar results have been reported for glioblastoma cell line 
(Kim et al.  2003 ), malignant glioma, high-grade primary astrocytoma (Huang 
et al.  2005 ), thyroid tumor (Marsee et al.  2005 ), gastrointestinal cancer (esopha-
geal, pancreatic, colorectal, and liver cancer) (Anders et al.  2003b ,  2009 ; Korn 
et al.  2006 ), human endometrial adenocarcinoma (Anders et al.  2003b ), skin 
cancer cell lines (Anders et al.  2003b ), colon cancer cell line adenomas, primary 
colon cancers, and colon cancer metastases (Stecker et al.  2011 ). These observa-
tions suggest that loss of CAR expression increases migration and invasion of 
cancer cells and therefore leads to disease progression with an unfavorable clin-
ical outcome (Korn et al.  2006 ; Rauen et al.  2002 ; Matsumoto et al.  2005 ; 
Buscarini et al.  2007 ; Okegawa et al.  2007 ; Anders et al.  2009 ; Sachs et al. 
 2002 ), whereas forced expression of CAR protein inhibits tumor growth in vitro 
and in vivo. A possible mechanism for the reduced expression of CAR in malig-
nant cells is the activity of the Raf-MEK-ERK pathway, which is frequently 
deregulated in cancer. A series of studies have shown that activation of Raf-1 
decreases CAR expression, and conversely, inhibition of ERK leads to increased 
accumulation of cell surface CAR (Huang et al.  2005 ; Korn et al.  2006 ; Anders 
et al.  2003a ,  2009 ). Since CAR is a cell adhesion molecule, loss of CAR weak-
ens intercellular adhesion and might increase proliferation and migration as 
well as invasion of cancer cells (Okegawa et al.  2000 ,  2001 ; Bruning and 
Runnebaum  2003 ,  2004 ; Huang et al.  2005 ; Wang et al.  2005 ). An impaired 
adhesion of cancer cells is considered as a crucial prerequisite for both invasion 
and metastatic spread (Buda and Pignatelli  2004 ; Kimura et al.  1997 ; Resnick 
et al.  2005 ; Grone et al.  2007 ). Moreover, CAR upregulation was associated 
with an accumulation of the cell cycle regulators p21 and hypophosphorylated 
retinoblastoma (pRb) protein (Okegawa et al.  2001 ) suggesting that CAR can 
inhibit cancer growth by behaving as a membrane receptor, which conveys its 
signal into the nucleus, suppressing the proliferative mechanisms (Okegawa 
et al.  2000 ,  2002 ; Kim et al.  2003 ; Huang et al.  2005 ).   
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2.6     CLMP Is Implicated in Congenital Short-Bowel 
Syndrome 

 Several loss-of-function mutations in the CLMP gene were found in patients with 
congenital short-bowel syndrome (CSBS) (Van Der Werf et al.  2012 ). Patients 
born with CSBS have substantially shorter small intestine, with an average length 
of 50 cm, compared to a normal length at birth of 190–280 cm. They also reveal 
intestinal malrotation. Because CSBS occurs in many consanguineous families, it 
is considered to be an autosomal-recessive disorder. Knockdown of CLMP in the 
zebrafi sh resulted in a similar but more severe phenotype including a signifi cant 
reduction in intestinal length and lack of goblets cells in the mid-intestine. The 
discrete phenotype observed in human CSBS compared to the zebrafi sh CSBS 
model together with the broad expression of CLMP observed in many other tis-
sues argues for functional redundancy of CLMP in human beings. Nevertheless, 
CLMP function is required for normal small intestine development in both fi sh 
and human beings, suggesting a potential evolutionary conservation in this gene’s 
function and its loss of function has a pathological consequence in human beings 
causing CSBS (Van Der Werf et al.  2012 ). In addition, CLMP (known also as 
ACAM, adipocyte adhesion molecule, or ASAM, adipocyte-specifi c adhesion 
molecule) has been suggested to be involved in adipocyte differentiation and 
development of obesity (Eguchi et al.  2005 ). CLMP mRNA was upregulated in 
white adipose tissues (WATs) of Otsuka Long–Evans Tokushima fatty (OLETF) 
rats (an animal model for Type II diabetes and obesity) (Kawano et al.  1992 ) and 
in WATs of genetically obese db/db mice (Koya et al.  2000 ), diet-induced obese 
ICR mice, and human obese subjects. Also in primary cultured mouse and human 
adipocytes, CLMP mRNA expression was progressively upregulated during dif-
ferentiation. These results indicated that CLMP mRNA expression is strongly cor-
related with accumulation of WATs in human and animal obesity state and that the 
intervening CLMP expression or activities may alter the adipocyte differentiation 
status and contribute to therapy of obesity and metabolic syndrome (Eguchi et al. 
 2005 ). A provisional analysis of a CLMP knockout mouse indicated that its 
absence causes hydronephrosis at adult stages (Tang et al.  2010 ).  

2.7     BT-IgSF (Igsf11) Is Implicated in the Migration 
of Melanophores 

 BT-IgSF gene expression is highly restricted to testis and brain. In the brain 
BT-IgSF transcripts are found in both neurons and glial cells, with abundant 
expression especially in pyramidal cell layers of the dentate gyrus and hippocam-
pus and in commissure fi bers of the corpus callosum (Suzu et al.  2002 ). This 
expression pattern of BT-IgSF might suggest a role in spermatogenesis and the 
development or function of the nervous system. Interestingly, so far, three human 
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patients have been reported to have an interstitial deletion of chromosomal 3q 
spanning the region 3q11–3q21—representing the location of the IgSF gene—and 
to have an agenesis of the corpus callosum (Genuardi et al.  1994 ; Mackie et al. 
 1998 ). Although the gene responsible for the corpus callosum agenesis in these 
patients has yet to be identifi ed, the overlay of the BT-IgSF gene localization with 
the deleted region in these patients together with an abundant expression of 
BT-IgSF in the corpus callosum makes BT-IgSF a candidate gene responsible for 
this anomaly. Recent studies using zebrafi sh mutants indicated that BT-IgSF is 
implicated in pigment cell development and patterning (Eom et al.  2012 ). In the 
wild type melanophores form horizontal stripes during the larval-to-adult transfor-
mation while in the absence of BT-IgSF melanophores form an irregularly spotted 
pattern. BT-IgSF mediates cell–cell contact formation and promotes migration and 
survival of melanophores.  

2.8     Perspectives 

 CAR and the CAR-related proteins CLMP and BT-IgSF have recently received 
increased attention due to their role in specifi c disease states. In particular, CAR has 
been shown to be essential during the development of the heart, renal, lymphatic, 
and intestine tissues. Although these three adhesion proteins are expressed in the 
developing nervous system their functions on neural cells are currently not fully 
understood. In vitro experiments suggest that CAR might be implicated in the 
 formation of neuronal circuits. In contrast to many IgCAMs, CAR is preferentially 
expressed in the developing nervous system and becomes downregulated at early 
postnatal stages. This unusual timing and pattern of expression suggest that CAR is 
most likely not a structural protein; in contrast it appears to be a developmental 
 factor that might be essential for the development of the brain. Mouse models that 
allow specifi c inactivation of CAR within the complete or in parts of the brain might 
help to understand the function of CAR on neural cells.     
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    Abstract     GlialCAM (also named HepaCAM) is a cell adhesion molecule expressed 
mainly in glial cells from the central nervous system and the liver. GlialCAM plays 
different roles according to its cellular context. In epithelial cell lines, overexpres-
sion of GlialCAM increases cell adhesion and motility but also inhibits cell growth 
in tumor cell lines, leading to senescence. In glial cells, however, its function is 
quite different. GlialCAM acts a regulator of subcellular traffi c of MLC1, a protein 
with unknown function involved in the pathogenesis of megalencephalic leukoen-
cephalopathy with subcortical cysts (MLC), a rare neurological condition. Moreover, 
GlialCAM itself has been found to be responsible for some of the cases of this dis-
ease. Additionally, GlialCAM also works as an auxiliary subunit of the chloride 
channel ClC-2, regulating its targeting to cell–cell junctions and modifying its func-
tional properties. In summary, GlialCAM has different functions not only related to 
its adhesive nature, and defects in these functions lead to neurological disease.  

3.1         Introduction 

 Glial cells are the most abundant cells in the nervous system. They form a heteroge-
neous group of cells that can be distinguished morphologically and functionally 
(Zhang and Barres  2010 ). Glial cells play numerous and diverse roles in the normal 
neural physiology, tightly linked to neuronal function, and therefore glial alteration 
may lead to neurological disease (Allaman et al.  2011 ; Parpura et al.  2012 ). For 
example, during embryonic development, radial glial cells act as a scaffold for the 
proper migration of neurons from their place of birth to their fi nal location within 

    Chapter 3   
 GLIALCAM, A Glial Cell Adhesion Molecule 
Implicated in Neurological Disease 

             Alejandro     Barrallo-Gimeno      and     Raúl     Estévez     

        A.   Barrallo-Gimeno ,  Ph.D. •       R.   Estévez ,  Ph.D.      (*) 
  Physiology Section, Department of Physiological Sciences II ,  School of Medicine, 
University of Barcelona ,   Av. Feixa Llarga s/n ,  08907   Barcelona ,  Spain   
 e-mail: restevez@ub.edu  



48

the brain. In this way, newborn neurons must recognize glial cells through extracel-
lular matrix proteins or signaling cues (Molofsky et al.  2012 ). Astrocytes, together 
with endothelial cells and pericytes, constitute the blood–brain barrier, effectively 
isolating the brain from the rest of the organism. Astrocyte end feet surround blood 
vessels, taking up nutrients for the neurons and disposing metabolic waste, in order 
to keep brain metabolic homeostasis (Belanger et al.  2011 ). Oligodendrocytes form 
the myelin sheath around axons of the central nervous system, contributing to the 
fast propagation of action potentials along neural pathways (Piaton et al.  2010 ). In 
neural pathways, astrocytes are also fundamental for maintaining the ionic condi-
tions required for neuronal electrical activity, mainly the buffering of the excess of 
extracellular potassium ions produced by action potential propagation, that are con-
ducted away from the nodes of Ranvier (Rash  2010 ). These ionic fl uxes from myelin 
to astrocytic end feet have an osmotically associated water fl ow, and therefore astro-
cytes are important for water homeostasis and osmotic balance in the brain. 
Astrocytes are highly sensitive to changes in extracellular osmolarity and can display 
prominent cell  volume responses that may lead to macroscopic swelling of the brain. 

 Cell adhesion molecules (CAMs) may exhibit different properties depending on 
the context in which they are studied, and their functions may go well beyond the 
mere cell adhesion to other cells or to another substrates. Such is the case of the 
protein we are dealing with in this chapter, initially described as a tumor suppressor 
in the liver, then found to be expressed normally in glial cells, and fi nally involved 
in a rare neurological disease, interacting with and modulating the activity of a 
chloride channel.  

3.2     Initial Identifi cation of HepaCAM in the Liver 

 HepaCAM was fi rst found in a screen for silenced genes in human hepatocellular 
carcinoma (HCC): its mRNA was expressed in normal tissue samples, but downregu-
lated in many carcinoma nodules and in fi ve HCC-derived cell lines (Moh et al.  2003 ; 
Chung Moh et al.  2005 ). HepaCAM turned out to be a 46 kDa transmembrane protein 
of 416 amino acids, comprising two immunoglobulin (Ig)-like domains (one V-set and 
another one of the C2-type) in the extracellular side and an intracellular low- complexity 
proline-rich tail that can be phosphorylated. The extracellular domain can be modifi ed 
through N-glycosylation (Gaudry et al.  2008 ). HepaCAM has been conserved through-
out  vertebrate evolution, especially in its extracellular part, but no evidence of its pres-
ence in invertebrates could be found (our unpublished data). It was found that 
HepaCAM molecules are able to form homodimers on the cell surface, independently 
of the  presence of the intracellular domain (Moh et al.  2005 ). Interestingly, HepaCAM 
 intracellular domain can be cleaved, affecting all its proposed functions (see below), 
suggesting a mechanism of regulation (Zhang et al.  2010 ). 

 HepaCAM distribution within the cells depended on whether the cells were iso-
lated or making cell–cell contacts: in the fi rst case the majority of the protein would 
be diffusely localized in the cytoplasm or concentrated at plasma membrane 
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protrusions, while in the latter case the protein would concentrate at cell junctions, 
suggesting a role in cell adhesion (Moh et al.  2005 ). We will return to this point 
later, when this distribution was found to be physiologically relevant. 

 The role in cell adhesion was confi rmed when transfection of HepaCAM in a 
HCC cell line increased its adherence to the substrate, motility, and invasion proper-
ties (Chung Moh et al.  2005 ). The cell adhesion role may depend on the interaction 
of HepaCAM with the actin cytoskeleton through its intracellular domain, which 
may also be important for its localization. In addition, unknown interactions involv-
ing individual extracellular Ig-like domains were also found to be important for 
HepaCAM localization, adhesion, and motility properties (   Moh et al.  2009a ,  b ). 
Furthermore, it has been suggested that a fraction of HepaCAM molecules resides 
in lipid rafts thanks to its interaction with caveolin-1 (Moh et al.  2009a ,  b ). 

 HepaCAM was downregulated not only in liver tumors, but also in tumors of 
different origin, as well as in several cancer cell lines (Moh et al.  2008 ). Expression 
of HepaCAM on breast cancer MCF7 cells had an anti-proliferative effect depen-
dent on the increased expression of p53 and the cyclin-dependent kinase inhibitor 
p21 and also on the downregulation of cMyc in renal carcinoma cells (Zhang et al. 
 2011 ). Altogether, these data suggest that HepaCAM may act not only as a CAM, 
but also as a tumor suppressor, although the mechanism that mediates this role is not 
yet defi ned.  

3.3     HepaCAM Is Also GlialCAM 

 HepaCAM was rediscovered twice more in different contexts. A screening for cell 
surface molecules expressed in myelinating nerves in the peripheral nervous system 
identifi ed many novel CAMs, one of which was HepaCAM (Spiegel et al.  2006 ). 
Two years later, a bioinformatic screen targeting Ig-like domains identifi ed a 
 molecule identical to HepaCAM. Surprisingly, when its expression in an array of 
adult human normal tissues was analyzed, the highest levels were observed in the 
central nervous system (Favre-Kontula et al.  2008a ,  b ), much higher than in the liver 
where it was initially discovered. 

 When the expression of HepaCAM was analyzed in mouse tissues, it was absent 
from the liver (Favre-Kontula et al.  2008a ,  b ). These data were corroborated by 
protein expression analysis using specifi c antibodies, raising doubts whether the 
downregulation in tumors and cancer cell lines of epithelial origin was an unspecifi c 
consequence of the experimental model. Nevertheless, forced overexpression of 
HepaCAM in the poorly differentiated U373-MG glioblastoma cell line was able to 
induce the re-expression of glial fi brillary acid protein (GFAP), a marker of differ-
entiated astrocytes. HepaCAM overexpression caused additional morphological 
signs of differentiation, as well as growth arrest and increased adhesion but 
decreased motility, as opposed to the epithelial cell lines, in which HepaCAM 
expression increased motility (Lee et al.  2009 ). Thus, in the context of glial cells, it 
was suggested that HepaCAM may function as a glial differentiation factor. 
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 The nervous system expression profi le of HepaCAM was refi ned by western blot 
of different areas using a specifi c antibody, fi nding higher levels in cerebellum, ento-
rhinal cortex, pons, medulla, and spinal cord (Favre-Kontula et al.  2008a ,  b ). These 
authors also generated a lacZ knock-in mouse, allowing the accurate identifi cation of 
which cell types were precisely expressing HepaCAM. Then, it was found that 
HepaCAM was expressed specifi cally in glial cells: ependymal cells, astrocytic end 
feet around blood vessels, and oligodendrocytes in myelin sheaths of the white mat-
ter. Also, HepaCAM expression was found in rat primary astrocytes and oligodendro-
cytes in culture and concentrated in cell–cell contacts or at the tip of processes in 
isolated cells, in a similar manner as it was observed in cancer cell lines as we men-
tioned earlier (Favre-Kontula et al.  2008a ,  b ). Similar results were found by our group 
(Lopez-Hernandez et al.  2011a ,  b ;    Jeworutzki et al.  2012 ). Therefore, HepaCAM was 
appropriately renamed as GlialCAM, and we will use this name from now on.  

3.4     GlialCAM Has a Role in Neurological Disease 

3.4.1     GlialCAM Mutations Originate a White Matter Disorder 

 The interest on GlialCAM increased when it was found responsible for a variant of 
a rare neurological disease: megalencephalic leukoencephalopathy with subcortical 
cysts (MLC), a syndrome characterized by the presence of edema in the white mat-
ter of the nervous system (van der Knaap et al.  2012 ). 

 MLC is an inherited disease, with infantile onset evident as the affected children 
show macrocephaly during the fi rst year of life, but no neurological signs at this 
point. After several years, the patients develop progressive cerebellar ataxia and 
spasticity, mild cognitive deterioration, and autism in some cases. There is a broad 
spectrum in the symptoms presented by the patients: from mild to severe. The most 
evident pathological indication of MLC comes from magnetic resonance imaging 
(MRI) that shows diffuse cerebral white matter abnormality with swelling, com-
pressing the ventricles and subarachnoid spaces. Subcortical cysts are present in the 
anterior temporal region and often also in the frontal and parietal regions. Over the 
years, the white matter swelling decreases, but cysts become larger and more abun-
dant (van der Knaap et al.  1995a ,  b ). Electron microscopy of an affected brain 
biopsy showed that vacuoles were in fact covered with myelin membranes and that 
the vacuoles were present in the outer part of myelin sheaths (van der Knaap et al. 
 1996 ), as well as in astrocytes (Duarri et al.  2011 ). 

 Most MLC patients carry two mutated alleles of the gene  MLC1 , which was identi-
fi ed by linkage analysis (Leegwater et al.  2001 ).  MLC1  codes for an eight transmem-
brane domain protein with very weak amino acid sequence identity to ion channels. 
However, up to now, its function is unknown. Experiments of RNA interference in 
astrocytes and with primary lymphocytic cell lines derived from MLC patients suggest 
that MLC1 function may be related to the volume-regulated anion channel (VRAC). 
VRAC channel activity is very important when cells are exposed to hypoosmotic 
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medium, as this chloride activity coupled to water effl ux is necessary to restore volume 
to its original size (Ridder et al.  2011 ). MLC1 is expressed at the plasma membrane of 
astroglial processes around blood vessels in the cortex and white matter, in Bergmann 
glia in the cerebellum, and also in blood white cells, but not in myelin-forming oligo-
dendrocytes (Teijido et al.  2004 ,  2007 ; Boor et al.  2007 ; Ambrosini et al.  2008 ). 
Disease-causing mutations of different types (missense, null, and frame shift) are 
spread over the entire MLC1 protein (Leegwater et al.  2002 ; Ilja-Boor et al.  2006 ; 
Montagna et al.  2006 ), but there is no correlation between genotype and phenotype. In 
fact, all mutations have the same effect: a reduction on the MLC1 levels at the plasma 
membrane due to reduced protein stability leading to its degradation (Teijido et al. 
 2004 ; Duarri et al.  2008 ). 

 Approximately 20–30 % of the MLC patients carry no mutation on the  MLC1  
gene and do not show genetic linkage to the genomic region where  MLC1  is local-
ized, indicating that other gene or genes must be affected in these patients. Two 
different phenotypes could be described in these patients: the classical MLC presen-
tation and a benign, remitting phenotype characterized by early macrocephaly, but 
no motor or cognitive deterioration later in life (van der Knaap et al.  2010 ). 

 This is the point when GlialCAM comes into the spotlight once more. A biochemi-
cal screen in search of MLC1 interacting proteins as potential candidates for a second 
MLC disease gene revealed that GlialCAM was the most abundant protein co-purifi ed 
with MLC1 antibodies. Subsequent analysis of MLC patients without  MLC1  muta-
tions showed that they did harbor mutations in  GLIALCAM , and these mutations were 
found spread on the entire extracellular domain (Lopez-Hernandez et al.  2011a ). We 
should note that patients with  GLIALCAM  mutations showed no sign of liver malfunc-
tion, reinforcing the notion that the fi rst fi nding of this molecule was serendipitous. 

 GlialCAM met all the requirements to be a MLC1 partner: it not only co-purifi ed 
by immunoprecipitation, interacted directly (as revealed by FRET and split- TEV 
methods) and modifi ed the traffi c of MLC1, but also co-localized in astrocytic end 
feet in the human brain and in cell junctions in rat primary astrocyte cultures    (   Lopez-
Hernandez et al.  2011a ,  b ). Strikingly,  GLIALCAM  mutations do not affect its own 
expression, but do interfere with the formation of homo-complexes and with its 
subcellular localization. Furthermore, as MLC1 localization depends on GlialCAM, 
expression of the mutant variants of GlialCAM induced a more diffused localization 
of both proteins, still at the plasma membrane, but not concentrated at cell–cell 
contact areas (Fig.  3.1 ). However, mutations in  MLC1  do not affect GlialCAM 
expression or targeting (Lopez-Hernandez et al.  2011b ), as it was confi rmed in 
siRNA MLC1 depleted astrocytes (Duarri et al.  2011 ).

   In addition, recent results (Capdevila-Nortes et al.  2013 ) using RNA interference 
of GlialCAM in rat primary astrocytes have shown that the endoplasmatic reticulum 
exit of MLC1 depends on GlialCAM. Therefore, lack of GlialCAM leads to a 
reduced expression of MLC1 (Fig.  3.2 ). In summary, GlialCAM works as an obli-
gate beta subunit of MLC1, stabilizing and escorting it to the plasma membrane in 
cell–cell junctions. As we believe that the localization of MLC1 in tissue at astro-
cytic end feet between astrocytes is crucial for its physiological role, defects in the 
localization of MLC1 caused by  GLIALCAM  mutations may explain why mutations 
in both genes cause the same disease.
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3.4.2        A Dominant Role for GlialCAM in Disease 

 Interestingly, while some MLC patients carried two mutated  GLIALCAM  alleles, 
others showed only one mutated allele, suggesting dominant inheritance (Lopez- 
Hernandez et al.  2011a ). This was correlated with the MLC benign, remitting phe-
notype, only present during early infancy. Dominant mutations were clustered on 
the V-set Ig-like extracellular domain of the protein, although it is not known why 
some mutations behave as dominant and others as recessive. 

 The dominant nature of these  GLIALCAM  mutations was confi rmed with in vitro 
experiments in cell culture: when wild-type GlialCAM was co-transfected with the 
dominant mutated variant, normal MLC1 localization could not be rescued as it was 
the case of the classical recessive mutant GlialCAM variants (Lopez-Hernandez 
et al.  2011a ). 

 Why dominant mutations in GlialCAM lead to a phenotype that remit during 
development? One possibility is that GlialCAM may have additional roles only nec-
essary at early stages of development. In this direction, unpublished data from our 

  Fig. 3.1    MLC-related mutations in  GLIALCAM  abolish the targeting of GlialCAM and MLC1 to 
astrocyte cell junctions. Localization in astrocyte junctions of GlialCAM ( a ) and MLC1 
(co- expressed with GlialCAM) ( b ) after adenoviral-mediated transduction. In contrast, the pres-
ence of an MLC-causing mutation (G89D) caused mislocalization of GlialCAM ( c ) and MLC1 ( d )       
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laboratory show that GlialCAM is expressed during embryonic development, in 
both mice and zebrafi sh embryos. At these stages, GlialCAM is specifi cally 
expressed in radial glia, raising the possibility that it may help neuronal migration 
in a more conventional function according to its adhesion molecule identity. This 
function may not be needed in adult stages. Alternatively, it may be possible that the 
GlialCAM distribution defect caused in vivo by dominant mutations is not as strong 
as the one caused by two recessive mutations. Therefore, the function of GlialCAM, 
MLC1, and other associated proteins (see below) may be required at higher levels at 
early stages of development, and this fact may explain the reversibility of the 
 phenotype as development progresses on.  

3.4.3     GlialCAM and Ion Homeostasis 

 Nevertheless, without a physiological function for MLC1, the pathogenesis of the 
disease remained a mystery. Yet another biochemical screen in search for GlialCAM 
interacting proteins revealed an additional clue. Using specifi c GlialCAM antibod-
ies, the most abundant proteins purifi ed were in this order: GlialCAM itself, MLC1 
as expected, and the chloride channel ClC-2 (Jeworutzki et al.  2012 ). It has been 
proposed that MLC pathogenesis is related to a dysfunction in the regulation of the 
water content of the brain, as the myelin and astrocyte vacuolation suggests, 
 probably due to an impaired ion transport across cellular membranes and osmotic 

  Fig. 3.2    Adenovector-mediated knockdown of GlialCAM caused MLC1 retention and degrada-
tion. Primary astrocytes were transduced with adenovirus expressing a shRNA control (SCR) or a 
shRNA that reduces GlialCAM expression, as detected by western blot. Reduction of GlialCAM 
expression leads to the reduction of MLC1 expression, as assessed by western blot. Actin was used 
as a loading control.  Small lanes  indicate the weight if the molecular markers are used. In an analo-
gous manner, MLC1 localization after GlialCAM knockdown was detected in an intracellular 
localization, probably the endoplasmatic reticulum       
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imbalance. ClC-2 has been involved in these processes, and  Clcn2  knockout mice 
showed myelin vacuolation progressing with age (Blanz et al.  2007 ). In fact,  CLCN2  
was tested as a potential candidate gene for MLC, but no mutations were found in 
MLC patients (Scheper et al.  2010 ). However, recently mutations in  CLCN2  have 
been found in a novel form of leukodistrophy chacterized by the presence of white 
matter edema (Depienne et al.  2013 ), highlighting the relevance of this protein in 
ion and water homeostasis in the brain. 

 GlialCAM co-precipitates and interacts directly with ClC-2, and, as ClC-2 is 
broadly expressed in almost every tissue (   Thiemann et al.  1992 ) and GlialCAM is 
only expressed in the brain, they are expected to interact only in the brain. Both 
proteins co-localized in Bergmann glia, at the astrocytic end feet around blood ves-
sels, as well as in cell contacts in oligodendrocytes (Jeworutzki et al.  2012 ). Indeed, 
transfection of  GLIALCAM  was necessary to target ClC-2 to cell junctions; other-
wise ClC-2 was observed along the entire plasma membrane. Moreover, although 
ClC-2 is functional on its own, interaction with GlialCAM modifi ed ClC-2 activity. 
Co-expression of GlialCAM and ClC-2 in  Xenopus  oocytes, HEK epithelial cells, 
or cultured primary astrocytes greatly increased ClC-2-mediated currents and modi-
fi ed their voltage rectifi cation and kinetics (Jeworutzki et al.  2012 ). It was suggested 
that the effect of GlialCAM on ClC-2 activity may result from the opening of the 
common gate that acts on the two pores of the homodimeric ClC-2 channel. 
Therefore, GlialCAM acts as an auxiliary subunit of ClC-2 in the brain, regulating 
its targeting and modulating its activity (Fig.  3.3 ).

   The effect of GlialCAM on ClC-2 currents depends on its extracellular domain, 
as a mutant lacking the cytoplasmic tail has the same effect as the complete protein 
(Jeworutzki et al.  2012 ). However, although MLC-causing  GLIALCAM  mutants 
failed to target ClC-2 to cell junctions, they did modify ClC-2 activity as the wild- 
type protein, raising the possibility that the most important function of GlialCAM is 
to drive ClC-2 channels to cell–cell contacts, where their activity would be more 
relevant for glial and myelin physiology. 

 Since GlialCAM interacted with and drove to cell junctions both MLC1 and 
ClC-2, it could be possible that the three proteins formed a tripartite complex in the 
same cell. However, MLC1 could not be co-purifi ed with ClC-2, making that 
 possibility less plausible. However, it still could be possible that they could form a 
complex in different cells. 

 The unexpected role of GlialCAM as an auxiliary subunit of an ion channel is not 
uncommon for CAMs. Voltage-gated sodium channels interact with several beta sub-
units that have a single extracellular Ig-like domain. These beta subunits modulate 
sodium currents and enhance cell surface expression of the channel, but they are also 
needed for cellular migration, neurite outgrowth, and axonal fasciculation. These 
functions depend on extracellular interactions with other CAMs and also with intra-
cellular effectors that initiate transduction mechanisms (Brackenbury and Isom 
 2010 ). Another example of this phenomenon is the neuronal adhesion protein AMIGO 
(amphoterin-induced gene and ORF) that contains leucine-rich motifs and an Ig-like 
domain and is able to interact in a homo- or heterotypical fashion (Chen et al.  2006 ). 
AMIGO acts as an auxiliary subunit of the potassium channel Kv2.1, increasing its 
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conductance and helping the delayed rectifi er current regulating neuronal excitability 
(Peltola et al.  2011 ). However, it is not known if AMIGO acts in a similar way to 
GlialCAM directing Kv2.1 cellular traffi c. Other extracellular matrix proteins, like 
integrin receptors, interact physically and functionally with different types of ion 
channels, raising the possibility that ion channels have other functions than creating 
ion currents across the plasma membrane (Arcangeli and Becchetti  2006 ).   

3.5     Perspectives 

 Many questions about GlialCAM biology remain to be answered. It is still not 
known if the adhesion properties shown in epithelial cells are relevant in glial cells. 
It is feasible that, besides being able to form homodimeric complexes in  cis  (in the 
same plasma membrane), GlialCAM could interact in  trans  (between adjacent cells) 
with itself or with other molecules, contributing to keep cell–cell junctions between 

  Fig. 3.3    GlialCAM modifi es the targeting and the activity of the chloride channel ClC-2 in pri-
mary astrocytes. ClC-2 is detected in astrocyte junctions only after adenoviral-mediated transduc-
tion with GlialCAM ( b ), but not when expressed alone ( a ). ( c )  Left : representative trace of 
whole-cell inwardly rectifying chloride currents in dbcAMP-treated cultured rat astrocytes.  Right : 
representative trace of chloride currents of dbcAMP-treated astrocytes transduced with adenovi-
ruses expressing GlialCAM fused to GFP. The inset shows the voltage protocol used. ( d ) Average 
steady-state current–voltage relationship of dbcAMP-treated astrocytes ( circles ) or transduced 
with adenoviruses expressing GlialCAM-GFP ( fi lled circles ) in chloride medium. Recordings 
were performed in symmetrical chloride concentrations       
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astrocytes and/or oligodendrocytes. In addition, GlialCAM could act restraining 
MLC1 and ClC-2 movement in cell junctions, keeping them where their function in 
regulating ion fl uxes to keep water osmosis is needed. Another possibility that needs 
to be explored is that GlialCAM is needed to keep neuronal activity, allowing the 
glial syncytium to restore normal ion concentrations to sustain action potential 
 generation. Some of these questions will be properly addressed when a suitable 
animal model for the loss of function of GlialCAM is available.  

3.6     Conclusion 

 In summary, GlialCAM is a protein that has shown us two different facets: the 
expected from a CAM, regulating adhesion and motility in epithelial cells, and the 
unexpected in glial cells, acting as a chaperone to direct the subcellular traffi c of 
proteins MLC1 and ClC-2, concentrating them at cell–cell junctions, and modulat-
ing ClC-2-mediated chloride currents. Importantly, this latter role has been proven 
as physiologically relevant, as inactivating mutations in GlialCAM lead to a rare 
neurological disease, inducing the vacuolation of astrocytes and myelin sheaths.     
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    Abstract     The neuroplastins np65 and np55 are neuronal and synapse-enriched 
 immunoglobulin (Ig) superfamily cell adhesion molecules that contain 3 and 2 Ig 
domains, respectively. Np65 is    neuron specifi c whereas np55 is expressed in many 
tissues. They are multifunctional proteins whose physiological roles are defi ned by 
the partner proteins they bind to and the signalling pathways they activate. The 
neuroplastins are implicated in activity-dependent long-term synaptic plasticity. 
Thus neuroplastin-specifi c antibodies and a recombinant peptide inhibit long-term 
potentiation in hippocampal neurones. This is mediated by activation of the 
p38MAP kinase signalling pathway, resulting in the downregulation of the surface 
expression of GluR1 receptors. Np65, but not np55, exhibits  trans - homophilic 
binding. Both np65 and np55 induce neurite outgrowth and both  activate the FGF 
receptor and associated downstream signalling pathways. Np65 binds to and co-
localises with GABA A  receptor subtypes and may play a role in anchoring them to 
specifi c synaptic and extrasynaptic sites. Most recently the  neuroplastins have 
been shown to chaperone and support the monocarboxylate transporter MCT2 in 
transporting lactate across the neuronal plasma membrane. 

 Thus the neuroplastins are multifunctional adhesion molecules which support 
neurite outgrowth, modulate long-term activity-dependent synaptic plasticity, regu-
late surface expression of GluR1 receptors, modulate GABA A  receptor localisation, 
and play a key role in delivery of monocarboxylate energy substrates both to the 
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synapse and to extrasynaptic sites. The diverse functions and range of signalling 
pathways activated by the neuroplastins suggest that they are important in modulating 
behaviour and in relation to human disease.  

4.1         Introduction 

 The neuroplastins were originally identifi ed as glycoprotein components of rat brain 
synaptic membrane (SM) and postsynaptic density (PSD) fractions (Hill et al.  1988 ). 
The two glycoproteins were detected by a single monoclonal antibody raised against 
SM glycoproteins and were originally termed gp65 and gp55 on the basis of their 
apparent molecular weights. These early studies showed several striking  differences in 
the localisation of the two glycoproteins. Gp65 is brain specifi c and is enriched in PSD 
preparations. In contrast gp55 is not detectable in PSDs and was originally only detected 
in brain. However, later studies show that it is expressed in a wide range of tissues 
including skeletal muscle, heart, thymus, spleen, kidney, and liver (Langnaese et al. 
 1997 ). Furthermore, whereas gp55 is present in all brain regions gp65 is concentrated 
in subsets of forebrain neurons, is present only in low levels in cerebellum, is barely 
detectable in brain stem regions (pons and medulla), and is not present in spinal cord or 
peripheral nerve. As a result of studies implicating gp65 in particular in long-term activ-
ity-dependent synaptic plasticity the molecules were termed neuroplastin (np) 65 and 
55 (Smalla et al.  2000 ). The neuroplastins were also identifi ed using a signal sequence 
trap method to identify novel and secreted membrane proteins from a bone marrow 
stromal cell line (Shirozu et al.  1996 ) and termed stromal derived receptor 1, SDR1. 

 Sequencing studies (Langnaese et al.  1997 ) confi rmed the close structural  relationship 
of the neuroplastins and identifi ed them as novel members of the Ig superfamily.  

4.2     Expression and Structure of the Neuroplastins 

4.2.1     Primary and Secondary Structure and X-Ray 
Crystallography 

 Np65 and np55 are members of the Ig superfamily comprising 3 and 2 Ig domains, 
respectively (Fig.  4.1 ), followed by a single 24-amino acid (aa) (leu308–tyr331) 
transmembrane-spanning sequence and a short (34 aa) intracellular domain 
(Langnaese et al.  1997 ). The intracellular domain is hydrophobic, but does contain 
several charged aas. A 28-aa signal peptide which is cleaved in the mature proteins 
is present at the N-terminus. The neuroplastins arise from a single gene by alterna-
tive splicing. In humans this is located on chromosome 15q22 and comprises nine 
exons (NCBI; Gene ID 27020).

   The sequence data show that the peptide structure of np65 and np55 is identical 
except with respect to the additional 116 aa np65-specifi c N-terminal Ig1 domain. 
Np65 and np55 comprise 348 and 233 aas, respectively, and contain six sites for 
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  Fig. 4.1    Schematic diagram 
of the neuroplastins. The 3 Ig 
domains (Ig1–3), the 
transmembrane (TM), and 
intracellular domains are 
indicated, together with the 
six putative sites for 
N-glycosylation and the 4-aa 
(DDEP) alternative splice 
insert in the intracellular 
domain. The Ig1 domain is 
np65 specifi c. The Ig2 and 
Ig3 domains are common to 
both np65 and np55       

N-linked glycosylation all located on the extracellular sequence common to both 
neuroplastins. 

 Splice variants (np +DDEP and np –DDEP) of np65 and np55 containing a 4-aa 
acidic 227-Asp-Asp-Glu-Pro-230 insert have been identifi ed (Langnaese et al.  1997 ; 
Kreutz et al.  2001 ). The np65 and np55 +DDEP splice variants are expressed in brain 
and in retina, though they are expressed at much lower levels than the corresponding 
–DDEP splice variants. In general the pattern of expression of the +DDEP variants 
parallels that of the –DDEP isoforms (Kreutz et al.  2001 ). Since both np65 and np55 
+DDEP splice variants are detected it is unlikely that they are synapse specifi c as 
neither neuroplastin shows a specifi c synaptic localisation in either brain or retina. 
However, it is plausible that the 4-aa insert is involved in mediating an intracellular 
binding interaction, though this remains to be established. 

 The X-ray crystal structure for Ig2 and Ig3 has been solved by analysis of a 
recombinant protein, ecto np55, comprising Ig domains 2 and 3 (aas1-193) of np55 
(Owczarek et al.  2010 ). The Ig2 and Ig3 domains are in the extended conformation 
and are oriented at 45° to each other (Fig.  4.2a, b ). The 89-aa Ig2 domain is of the 
intermediate 2 (I2) type comprising the classical two β sheets and eight β strands. 
The A, B, and E β strands form one sheet and the A′, C, C′, F, and G β strands form 
the other. The two β sheets are connected by a cysteine bridge between aas 25 and 
73. Ig3 is linked to Ig2 by only 3 aas (91-Ala-Ala-Pro-93). The β strands are all 
antiparallel with the exception of the A′ strand which is parallel to the C-terminal 
sequence of the G strand.

   The Ig3 domain is 12 aas longer than Ig2. It is an intermediate type 1 (I1) domain 
comprising nine β strands. Here the A, B, D, and E β strands form one β sheet while 
the A′, C, C′, F, and G β strands form the other. The two sheets are connected by the 
disulfi de bond between Cys 114 and Cys 171. As for the Ig2 domain all strands run 
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antiparallel with the exception of the A′ strand which, as for the Ig2 domain, is in 
parallel with the C-terminal sequence of the G strand. 

 Subsequently Owczarek et al. ( 2011 ) have used X-ray crystallography to analyse 
the structure of ecto np65, a recombinant protein encoding all 3 Ig domains of np65. 
The Ig1 domain is predicted to be of the V type. Although part of the Ig2 domain 
and all of the Ig3 domain were disordered the data for the structure of the Ig1 
domain were suffi ciently interpretable to predict contact sites for np65  trans - 
homophilic  binding (Fig.  4.2a ). These data are discussed in more detail in Sect.  4.4.1 .  

  Fig. 4.2    The primary and secondary structure of the neuroplastins. ( a ) Backbone model of the 
secondary structure of np65 indicating the 3 Ig domains. Np65 exhibits  trans  homophilic binding 
and the  dotted circle  indicates the location of the binding site between np65 molecules in opposing 
cell surfaces. ( b ) Linear sequence for the Ig1 domain of np65. The  arrows  indicate the β strands 
with the amino acids predicted to form each strand shown in  red . ( c ) Backbone model of the Ig2 
and Ig3 domains of np55. The 2 Ig domains are oriented at 45° to each other. The putative FGF 
receptor binding site is shown in  green . ( d ) Neuroplastin structure is highly conserved between 
species. This is shown by the sequence alignment of neuroplastin from human, mouse, and rat and 
that for basigin (the nearest Ig superfamily related protein) from human, mouse, rat, and chicken. 
Reprinted from Owczarek and Berezin ( 2012 ) with permission       
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4.2.2     The Neuroplastins Are Members of the Basigin Group 
of the Ig Superfamily 

 Comparison of sequence data (Fig.  4.2d ) shows that the neuroplastins are most 
closely related to basigin/CD147 (also variously termed HT7 antigen, 5A11 anti-
gen, or neurothelin in the chick, M6 antigen or EMPPRIN in the human, and 
MRC OX47 antigen in the rat) and are members of the basigin/CD147 group of 
the Ig superfamily (Langnaese et al.  1997 ). The basigin family comprises three 
members, basigin, embigin (gp70), and the neuroplastins (Huang et al.  1993 ; 
Muramatsu and Miyauchi  2003 ). Basigin, like neuroplastin, is expressed as 2 and 
3 Ig domain isoforms termed basigin 1 and 2, respectively (Miyauchi et al.  1990 ; 
Kanekura et al.  1991 ; Ochrietor et al.  2003 ). Sequence homology between the 
neuroplastins and basigin ranges from 40 to 45 % although specifi c regions show 
much higher homology. The Ig2 domains share only 20 % homology whereas 
homology between the Ig3 domains is much higher, 40 %. The highest degree of 
homology is within and around the transmembrane and intracellular domains. 
Interestingly in this context Sarto-Jackson et al. ( 2012 ) have identifi ed a neuro-
plastin intracellular amino acid sequence which can be recognized by proteins 
containing Src homology domain 3 binding domains though its functional signifi -
cance remains to be established. Regions of highest homology are likely to refl ect 
binding interactions common to both neuroplastins and basigin. Embigin shows 
much lower homology with basigin (28 % with the 2 Ig isoform). All three mem-
bers of the family unusually have a conserved charged  glutamate residue (aa 320 
in neuroplastin) in the middle of the transmembrane domain (Muramatsu and 
Miyauchi  2003 ) and this may be important in mediating cis interactions with 
other membrane proteins, notably monocarboxylate transporters (see Sect.  4.4.3 ). 
As for neuroplastin the intracellular domains of both basigin and embigin are 
short (39 and 47 aas, respectively). 

 Species homology for neuroplastin is much higher than that for basigin. There is 
94 % homology between the human and rodent neuroplastin genes, whereas for 
basigin this is only 58 %. However, the transmembrane region and intracellular 
domains of basigin are completely conserved between human, mouse, and chick, 
suggesting the functional importance of these regions of the molecule (Muramatsu 
and Miyauchi  2003 ).  

4.2.3     Oligosaccharide Structure of the Neuroplastins 

 The neuroplastins contain six potential sites for N-glycosylation all located on the 
common Ig2 and 3 domains (Fig.  4.1 ). These are Asns 142, 168, and 200 in the Ig2 
domain and Asns 255, 267, and 288 in the Ig3 domain (Langnaese et al.  1997 ). Most 
if not all six sites are glycosylated since the apparent molecular weights of np65 and 
55 are reduced from 65 and 55 kDa to 40 and 28 kDa, respectively, following com-
plete chemical or enzymatic deglycosylation (Willmott et al.  1992 ). Indeed X-ray 
crystallographic analysis of the recombinant protein encoding the Ig2 and Ig3 
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domains of np55 (ecto np55) shows clear electron density for  N -acetylglucosamine 
at Asns142 and 255 with additional electron density indicating glycosylation at 
Asns 200 and 267 (Owczarek et al.  2010 ). 

 A full analysis of the oligosaccharide structure of the neuroplastins is not yet 
available. However, a number of np65 and np55 glycoforms have been identifi ed. In 
most brain regions both neuroplastins occur as doublets of apparent molecular 
weights 63 and 67 kDa (np65) and 52 and 57 kDa (np55) (Willmott et al.  1992 ). 
A third novel np65 glycoform of apparent molecular weight 69 kDa is detected only 
in striatum. Both high mannose and complex/hybrid oligosaccharide structures are 
present on the brain glycoforms since they all bind concanavalin A. Neuraminidase 
treatment shows that np65 and np55 contain similar amounts of sialic acid. 
Importantly, using an antibody specifi c for Fucα(1–2) Gal saccharides (Smalla et al. 
 1998 ) show that np65 contains this glycan. It has been suggested that fucosylation 
of terminal galactose residues of brain glycoproteins in the α(1–2) position is cru-
cial for neuronal plasticity, including phenomena such as long-term potentiation 
and long-term memory formation. Several lines of evidence support this suggestion 
(1) task-specifi c learning and long-term potentiation (LTP) induce fucosylation in 
hippocampal neurones; (2) injection of  l -fucose or 2′-fucosyllactose enhances LTP 
in hippocampal slices; (3) injection of 2-deoxygalactose, an inhibitor of formation 
of Fucα(1–2) linkages, causes reversible amnesia and inhibits maintenance of LTP 
(Pohle et al.  1987 ; Matthies et al.  1996 ; Rose and Jork  1987 ; Krug et al.  1991 ). 

 There is considerable tissue variation in the number and molecular weight of 
np55 glycoforms, indicating that the pattern of glycosylation of np55 is dependent, 
at least in part, on cell type (Langnaese et al.  1998 ). Most tissues express a 44 kD 
glycoform. Liver and muscle also express a 61 kD glycoform with up to four sepa-
rate glycoforms being expressed in some tissues, most notably heart. The functional 
signifi cance of the various glycoforms is not clear at present.   

4.3     Localisation and Developmental Expression 
of the Neuroplastins 

4.3.1      Localisation in Rodent and Human Brain 

 Expression of np65, in contrast to np55, is specifi c to the brain with the exception 
that it is also expressed in the retina (Hill et al.  1988 ; Langnaese et al.  1997 ; Smalla 
et al.  2000 ; Kreutz et al.  2001 ). Strikingly and similar to the neuroplastins, the 3 Ig 
domain basigin 2 isoform exhibits a much more restricted expression than the 2 Ig 
basigin 1 isoform (Ochrietor et al.  2003 ) and is solely expressed by photoreceptors 
in the retina where it plays a key role in lactate transport (see Sect.  4.4.3 ). 

 Immunocytochemical, biochemical fractionation, and gene expression studies 
show that np65 levels exhibit an anterior–posterior axis of expression within the 
brain. Thus np65 is predominantly expressed by subsets of forebrain neurons in the 
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cortex, hippocampus, and striatum. It is present in lower amounts in midbrain 
regions such as the thalamus and hypothalamus, is barely detectable in brain stem 
regions such as pons and medulla, and is not detectable in spinal cord or peripheral 
nerve. It is not detected in glial cells. In contrast, although there is variation in the 
expression of np55 between brain regions there is no anterior–posterior axis of 
expression and it is present in readily detectable levels in all brain regions. For 
example, in the adult mouse although comparable levels of np55 to np65 are detected 
in cortex and hippocampus, in cerebellum 95 % of total neuroplastin is np55 
(Marzban et al.  2003 ). Immunocytochemical studies show that expression of np65 
is laminar in both cerebral cortex and in hippocampus. Np65 immunoreactivity 
occurs as punctate deposits concentrated in neuropil regions, i.e., layers II, III, and 
Vb/VI in cerebral cortex and in the stratum radiatum and stratum oriens in hippo-
campus (Hill et al.  1988 ; Smalla et al.  2000 ). The barrel fi elds in layer 1V of the 
somatosensory cortex exhibit particularly strong immunoreactivity. In hippocampus 
punctate deposits of np65 immunoreactivity also surround the somata of the CA1 
pyramidal neurones. Strikingly in rat brain the level of hippocampal np65 immuno-
reactivity is much lower in the CA3 compared to the CA1 region. 

 The punctate nature and localisation of np65 immunoreactivity suggested that it 
is located, at least in part, in postsynaptic structures. Indeed, the initial biochemical 
fractionation studies showed that np65, but not np55, is concentrated in forebrain 
PSDs. A postsynaptic localisation of a fraction of np65 has been confi rmed by 
co- localisation of eGFP-tagged np65 with the postsynaptic density marker PSD95 
on dendritic spines of transfected, cultured hippocampal neurons (Fig.  4.3 ). Although 
a portion of np65 is present in the postsynaptic region it is clear that  punctate depos-
its of immunoreactivity are present in extrasynaptic regions of the neurone. The 
nature of these punctate deposits is unresolved, but they are not lipid rafts (Kraus 
and Beesley, unpublished data).

   The localisation of np55 has been studied in detail in mouse cerebellum (Marzban 
et al.  2003 ) where immunocytochemical studies show that np55 immunoreactivity 
is primarily synaptic and is concentrated at parallel fi bre synapses on Purkinje cells 
in the molecular layer and on synaptic glomeruli in the granule cell layer. This 
localisation suggests that np55, in addition to np65, plays important functional roles 
at the synapse. No glial staining is detected. Strikingly np55 is expressed in parasag-
ittal (zebrin) stripes. These parasagittal bands have been described for numerous 
molecules (Armstrong and Hawkes  2000 ;    Ozol et al.  1999 ) and most thoroughly 
investigated for Zebrin II/aldolase C (Ahn et al.  1994 ; Brochu et al.  1990 ). Np55 is 
enriched in the zebrin II negative stripes. Although the functional signifi cance of 
this pattern of np55 expression is not clear it has been suggested that the differential 
expression of a suite of molecules associated with glutamatergic neurotransmission 
and energy production in parasagittal stripes in cerebellum refl ects differences in 
synaptic effi cacy at both parallel fi bre and climbing fi bre synapses and may be asso-
ciated with LTD, long-term depression (e.g., Ito  2002 ). This in turn may be, at least 
in part, associated with a role of the neuroplastins as accessory proteins for mono-
carboxylate transporters (MCTs) as discussed in Sect.  4.4.3 . 
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 While many features of neuroplastin expression are common to rodent and 
human brain some striking differences have been reported (Bernstein et al.  2007 ). 
In human brain np65 is expressed at comparable levels in human cerebral cortex and 
cerebellum. This is in contrast to mouse brain where expression of np65 in cerebel-
lum is much lower than for cerebral cortex. Furthermore no parasagittal bands of 
neuroplastin immunoreactivity are detected in human cerebellum and the sharp 
demarcation in neuroplastin immunoreactivity observed between CA1 and CA3 
regions of rat hippocampus is not observed in human brain. It is not clear at present 
whether another cell adhesion molecule substitutes for np65/np55 in human hippo-
campus or whether the lack of the CA1/CA3 boundary in neuroplastin expression 
refl ects a functional difference between the two species. However, it is likely that 
these differences refl ect species-specifi c differences in neuroplastin function and 
may, in part, be related to the role of neuroplastins as accessory proteins for the 
monocarboxylate transporter MCT2 (see Sect.  4.4.3 ).  

4.3.2     Developmental Expression of Neuroplastins in Brain 

 Developmental studies show that np55 is expressed in brain earlier than np65. Np55 
is expressed in low levels in embryonic brain, its level increases rapidly during the 
fi rst 2 postnatal weeks, thereafter increasing gradually to reach the stable adult level 
between postnatal weeks 4 and 5 (Hill et al.  1989 ; Langnaese et al.  1997 ; Marzban 
et al.  2003 ). In contrast np65 is not detected in embryonic brain and its levels 
increase rapidly only during the second and third postnatal weeks, thereafter 

  Fig. 4.3    Co-localisation of EGFPnp65 with PSD-95 and synaptophysin. Double immunofl uorescent 
labelling of hippocampal neurones transfected with EGFP-tagged np65 lacking the DDEP insert 
and stained for EGFP ( green ) and either PSD-95 ( red ) ( a ) or synaptophysin ( red ) ( b ). A 
fraction of the EGFPnp65 co-localises with PSD-95 ( arrowheads ,  a ), but appears to be adjacent to 
presynaptic synaptophysin ( arrowheads ,  b ). Primary cultures of hippocampal neurons were 
 prepared from 18-day-old embryonic rats and transfected using the calcium phosphate method. 
Scale bar 10 μm       
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reaching the stable adult level. However, more recent studies have shown that np65 
can be detected in hippocampal neurons prepared from embryonic day 18 rats after 
24 h in culture (Owczarek et al.  2011 ). 

 In mouse cerebellum transient expression of punctate deposits of np55 mmuno-
reactivity is observed outlining the Purkinje cell somata at postnatal day (P)7, but 
this is not detected by P10 (Marzban et al.  2003 ). It is plausible that these corre-
spond to the transient synapses made between the developing climbing fi bres and 
the Purkinje cell somata which are eliminated at later developmental stages (Mason 
 1987 ). The parasagittal stripes of neuroplastin immunoreactivity are detected by 
P5.    However, as cerebellar compartmentation and afferent topography are already 
established by P5 it is unlikely that the neuroplastins are involved in these pro-
cesses although it is likely that they are important in later events leading to refi ne-
ment of connectivity.  

4.3.3     Localisation and Developmental Expression 
of the Neuroplastins in Retina 

 The localisation of the neuroplastins has been studied in detail in the rat retina 
(Kreutz et al.  2001 ). In situ hybridisation studies used four probes which distinguish 
between np65 without the DDEP insert in the intracellular domain (−DDEP), np65 
+DDEP, np55 –DDEP, and np55 +DDEP. As for brain np55 was expressed earlier 
than np65. Np55 transcripts were already detected at P1 whereas np65 transcripts 
were not detected until P4. As for brain the level of expression of both neuroplastins 
increases through development to reach a stable adult level. The pattern of expres-
sion of the +DDEP and –DDEP isoforms is identical. The spatiotemporal pattern of 
np65 expression is consistent with role of np65 in synapse formation and is con-
comitant with synapse development in the outer plexiform layer (OPL). Strong 
np65 expression is detected in the outer nuclear layer (ONL) and the inner half of 
the inner nuclear layer (INL) at day 6. The ONL comprises the cell bodies of the 
photoreceptors, while the INL comprises the cell bodies of the retinal interneurones, 
i.e., horizontal cells, bipolar cells, and amacrine cells. The synapses between the 
retinal neurones are confi ned to the inner and outer plexiform layers, IPL and OPL, 
respectively. The developmental profi le of np65 expression in the INL is consistent 
with the formation of ribbon synapses between photoreceptors and bipolar cells in 
the IPL which occurs between P 11–13 in albino rats. Immunocytochemical studies 
using antibodies specifi c for the np65-specifi c Ig1 domain and for the np65 and 
np55 common Ig2 and Ig3 domains show that immunoreactivity for both neuroplas-
tins is confi ned to the IPL and OPL, the two synaptic layers of the retina. Signifi cant 
co-localisation of np65 and synaptophysin immunoreactivity suggests a partial 
 presynaptic localisation consistent with  trans -homophilic binding of np65 at the 
synapse. However, it is clear that there is a perisynaptic localisation of some neuro-
plastin immunoreactivity and, surprisingly, evidence of some glial staining. Retina 
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is the only tissue for which any glial localisation of neuroplastins has been reported. 
Western blot analysis of microdissected retinal sections showed abundant expres-
sion of both neuroplastins in sections comprising mainly the granule cell layer 
(GCL) and IPL, or INL and OPL or ONL. Strikingly np65 was found to be much 
more abundant than np55 in the OPL section again consistent with a role for np65 
at ribbon synapses. Neuroplastins are also expressed in optic nerve tissue. Overall 
the results are consistent with a role for neuroplastins in retinal synapse develop-
ment and synaptic function.   

4.4     Binding Interactions and Functions of the Neuroplastins 

4.4.1      Homophilic Binding Interactions 

 Ig superfamily adhesion molecules including the NCAMs, L1, and F11 typically 
exhibit both cis- and  trans -homophilic and, in many cases, heterophilic binding 
interactions [for reviews see Brummendorf and Rathjen ( 1996 ), Hansen et al. 
( 2008 ), Walsh and Doherty ( 1997 )]. Binding experiments using covaspheres coated 
with the extracellular domains of np65 and np55 coupled to the human Ig Fc domain 
show that np65 but not np55 exhibits  trans -homophilic binding (Smalla et al.  2000 ). 
Molecular modelling studies suggest that np65 extends some 13–16 nm into the 
synaptic cleft and thus homophilic binding between the Ig1 domains of opposing 
np65 molecules extending from the pre- and postsynaptic membranes can span the 
synaptic cleft which is some 20–30 nm (Gray  1987 ) and indeed evidence supports 
both a pre- and a postsynaptic location for a pool of np65. 

 The np65  trans -homophilic binding site has been identifi ed (Owczarek et al. 
 2011 ). Analysis of the structure of the Ig1 domain of np65 for crystals of ecto-np65 
shows that the F-G loop is oriented perpendicular to the surface and therefore is able 
to bind to the corresponding F-G loop of the Ig1 domain on an opposing np65 mol-
ecule (Fig.  4.2  a, b). The key interacting elements are proposed to be hydrogen 
bonds formed between the side chain amides of lysine, arginine, asparagine, and 
arginine and the backbone carboxyls of the opposing F-G loop. The modelling data 
were confi rmed by surface plasmon resonance studies using ecto np65 and a syn-
thetic peptide, enplastin, containing the putative np65 homophilic binding motif. 
Enplastin (121-DPKRNDLRQNPSITWIR-137) binds to ecto np65 with a Kd 
(1.20 μM) similar to that observed for ecto np65-ecto np65 binding (0. 52 μM). The 
np65  trans -homophilic binding interaction is central to the role of np65 in mediat-
ing neurite outgrowth and in LTP (Owczarek et al.  2011 ; Smalla et al.  2000 ). 

 Unlike np65, np55 does not exhibit  trans -homophilic binding. In contrast to 
np55 the 2 Ig basigin 1 does exhibit  trans -homophilic binding (Belton  et al.   2008 ). 
However, as for basigin, it is likely that both np65 and np55 interact in cis to form 
homodimers. Chemical cross-linking studies (Fadool and Linser  1996 ) and 
co- expression of FLAG- and HA-tagged basigin show that basigin forms homodi-
mers present at the plasma membrane (Yoshida et al.  2000 ). The interaction is 
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mediated through the N-terminal Ig domain of the 2 Ig isoform. Similarly  chemical 
cross- linking studies of SM preparations show that both np65 and np55 can exist 
as homodimers (Beesley and Langnaese, unpublished results) and are consistent 
with both neuroplastins being present in the membrane as homodimers. Recent 
studies (Sarto-Jackson et al.  2012 ) showing FRET between ECFP- and EYFP-
tagged np65 when co-expressed in HEK cells support the formation of cis np65 
homo-oligomers.  

4.4.2      The Neuroplastins Play Important Roles in Synaptic 
Plasticity and Activate P38 MAP Kinase 

 As for a number of other cell adhesion molecules including L1, NCAM, and mem-
bers of the cadherin family (Cremer et al.  1998 : Luthi et al.  1994 ; Tang et al.  1998 ), 
the neuroplastins have been shown to play key roles in activity-dependent synaptic 
plasticity. Several neuroplastin antibodies including one that is specifi c for the 
np65 N-terminal Ig1 domain almost completely suppress the maintenance, but not 
the induction of LTP at CA1 synapses in hippocampal slices (Smalla et al.  2000 ). 
This effect is also observed with a recombinant protein encoding all three neuro-
plastin Ig domains fused to the human Ig Fc domain, np65Ig1–3Fc. The np65-
induced inhibition of the maintenance phase of LTP has been shown to be mediated 
by activation of p38MAP kinase which in turn results in the loss of surface GluR1 
containing glutamate AMPA receptors by internalisation (Empson et al.  2006 ). 
Treatment of organotypic hippocampal slice cultures with np65Ig1–3Fc resulted in 
an increase in phosphorylation of p38MAP kinase concomitant with the inhibition 
of LTP. P38MAP kinase is activated by dual phosphorylation on threonine 180 and 
tyrosine 182 residues in the Thr-Gly-Tyr motif in the activation loop of the kinase 
subdomain VIII (Ono and Han  2000 ; Mielke and Herdegen  2000 ; Paul et al.  1997 ). 
The np65Ig1–3Fc-induced block of LTP was reversed by the p38MAP kinase- 
specifi c inhibitor SB202190, showing that the inhibition of LTP by np65 is medi-
ated by the kinase. 

 The availability of surface glutamate receptors is critical for the induction and 
maintenance of hippocampal LTP (Malinow and Malenka  2002 ) and multiple sig-
nal transduction pathways have been shown to regulate AMPA receptor incorpora-
tion into synapses during LTP including CAM kinase II (Lisman et al.  2002 ), MAP 
kinase (Zhu et al.  2002 ), protein kinase C (Boehm et al.  2006 ), and PI 3 kinase 
(Arendt et al.  2010 ). Strikingly the number of GluR1 receptors at the cell surface, 
but not the total GluR1 receptor number, was reduced following treatment of hip-
pocampal slices with np65Ig1–3Fc. This response was blocked by SB202190 con-
fi rming the role of p38MAP kinase in the downregulation of surface GluR1 
receptors. The mechanism by which np65 activates p38MAP kinase remains 
unclear. However, it is unlikely that np65 directly binds to the enzyme since there 
is no known kinase binding motif on the neuroplastin intracellular domain. 
Owczarek et al. ( 2011 ) report that application of ecto np65 to hippocampal neurons 
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in culture induces an increase in intracellular calcium at hippocampal synapses. 
Thus it is plausible that this triggers a signalling cascade resulting in p38MAP 
kinase activation. 

 A number of paradigms which result in sustained increases in synaptic activity 
alter the level of np65 present in the PSD. Thus kainate seizures result in a signifi -
cant increase in the amount of np65 present in PSDs prepared from seizured com-
pared to kainate-treated non-seizured and control animals (Smalla et al.  2000 ). 
Similarly the level of np65 in a PSD-enriched fraction prepared from hippocampal 
slices showed a marked increase following induction of LTP. Transient global isch-
emia also results in a large increase in the level of PSD-associated np65 (Fig.  4.4a ). 
A dynamic model for np65 translocation into the PSD is supported by recent data 
which suggest that np65 is a loosely bound rather than an integral PSD protein. 
PSDs can be prepared from synaptic membranes either using a double Triton X-100 

  Fig. 4.4    ( a ) Ischemia results in increased association of np65 with the PSD. Forebrain PSDs were 
prepared from ischemic (15 min transient global ischemia induced by four-vessel occlusion) or 
sham-operated animals following 6 h recovery. PSDs were prepared by Triton X-100 extraction of 
SM. Western blotted samples were probed with a monoclonal antibody recognising both neuro-
plastin isoforms. The level of np65 in the PSD was analysed by densitometry and the results shown 
are the mean optical density ± SEM for three samples. The difference was statistically signifi cant 
at the  P  > 0.01 level. ( b ) Np65 is a peripheral PSD protein. Samples of PSDs prepared by the 
double Triton X-100 method (Cho et al.  1992 ) or the phase partitioning method (   Gurd et al.  1982 ), 
PSDs I and II, respectively, were separated by SDS PAGE and Western blotted. The blots were 
probed with antibodies specifi c for the neuroplastins or PSD95. The integral PSD protein PSD95 
was present in high levels in both PSD preparations. However, only low amounts of np65 were 
detected in PSDs prepared using the Triton X-100 method compared to PSDs prepared using the 
phase partitioning method, suggesting that np65 is a peripheral PSD component. No np55 was 
detected in either PSD preparation       
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procedure (Cho et al.  1992 ) or by phase partitioning with  n -octyl glucopyranoside 
and polyethylene glycol (Gurd et al.  1982 ). The former method is more rigorous and 
solubilises a number of loosely bound PSD proteins. The level of np65 in PSDs 
prepared by the more rigorous Triton X-100 procedure is much lower than is 
observed using the milder phase partitioning protocol (Fig.  4.4b ). In contrast the 
level of PSD95, an integral protein component of PSDs at glutamatergic synapses, 
is comparable in PSDs prepared using either method. Taken together these data sug-
gest that np65 is a loosely bound PSD protein which can be rapidly translocated into 
the PSD and strongly support a dynamic model in which the level of np65 associ-
ated with the PSD changes in response to sustained changes in synaptic activity.

4.4.3            The Neuroplastins Are Accessory Proteins for the 
Proton-Linked Monocarboylate Transporter MCT2 

 Monocarboxylates such as lactate, pyruvate, and ketone bodies are important respi-
ratory fuels for the developing and adult nervous system (Bergersen  2007 ). Specifi c 
proteins, the monocarboxylate transporters (MCTs), mediate the rapid uptake of 
these fuels across the cell membrane. The MCT family contains 14 members of 
which only MCT1 to MCT4, MCT8, and MCT10 have been functionally character-
ised. MCT1 to MCT4 mediate the proton-linked transport of monocarboxylates 
such as lactate, pyruvate, and ketone bodies across the plasma membrane [for 
review, see Halestrap and Wilson ( 2012 )] whilst MCT8 is a thyroid hormone 
 transporter (Friesema et al.  2003 ) and MCT10 (TAT1) is an aromatic amino acid 
transporter (Kim et al.  2002 ). MCT1, MCT2, and MCT4 are expressed in the brain. 
MCT1 is predominantly localised in glia and MCT4 in glia and cerebral vasculature 
while MCT2 is the major neuronal MCT in rodents, though not in humans 
(   Debernardi et al.  2003 ; Halestrap and Wilson  2012 ; Karin et al.  2002 ; Koehler-Stec 
et al.  1998 ; Rafi ki et al.  2003 ). Neurons have been shown to use lactate released by 
glial cells as an important respiratory fuel and MCT2 has been implicated as the 
major MCT isoform responsible for this uptake (Pierre and Pellerin  2005 ). 
Furthermore, immunocytochemical studies suggest that MCT2 is concentrated in 
the postsynaptic density (PSD) most probably by virtue of the C-terminal SXI motif 
that is suggested to interact with PDZ domains on PSD 93 (Bergersen et al.  2001 ). 
MCTs 1, 2, 3, and 4 all require ancillary proteins to be expressed in an active form 
at the plasma membrane and the interaction between the two proteins is essential for 
the transport function [for review, see Halestrap and Wilson ( 2012 )]. Basigin is the 
preferred partner for MCT1 (Kirk et al.  2000 ; Wilson et al.  2002 ) while embigin is 
the preferred partner for MCT2 in some tissues and is important in modulating 
MCT2 activity (Ovens et al.  2010 ; Wilson et al.  2005 ). The critical importance of 
lactate transport for some tissues is well illustrated in homozygous basigin knockout 
mice. These mice are blind from the time of eye-opening with subsequent degenera-
tion of the photoreceptors (Hori et al.  2000 ;    Philp et al.  2003 ; Ochrietor and Linser 
 2004 ). This is most likely caused by the observed failure of MCT1 and MCT4 to 
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integrate into the plasma membranes of the Muller glial cells and photoreceptors, 
although the level of MCT1 transcript is unaffected. As a result the export of lactate 
from the Muller cells, which depend primarily on glycolysis for energy production, 
and its subsequent import into the photoreceptors as a source for oxidative phos-
phorylation are disrupted resulting in photoreceptor degeneration. 

 Several observations provide conclusive evidence that the neuroplastins can act 
as the preferred partner to chaperone MCT2 to the cell surface and support its func-
tion in lactate transport across the cell membrane (Wilson et al.  2013 ). COS cells are 
a suitable model system as they do not express either neuroplastin or MCT2. When 
singly transfected with CFP-tagged MCT2 the COS cells show no staining of the 
plasma membrane, the expressed proteins remaining in the perinuclear compart-
ment. Although COS cells singly transfected with EYFP-tagged neuroplastin do 
show staining at the plasma membrane a considerable amount remains within the 
cytoplasm. However, when co-transfected with either np55 or np65 the majority of 
MCT2 is co-expressed with neuroplastin at the plasma membrane. Thus it is clear 
that co-expression of MCT2 and np55 or np65 enables both proteins to be properly 
targeted to the cell surface consistent with their direct interaction. Fluorescence 
resonance energy transfer (FRET) confi rms a direct binding interaction between the 
neuroplastins and MCT2 in doubly transfected COS cells. 

 These results are supported by the use of antisense technology to investigate the 
interaction of neuroplastins and MCT2 in  Xenopus laevis  oocytes. These oocytes do 
not express MCT2 (Broer et al.  1999 ), but do express basigin and neuroplastin. 
Immunofl uorescence studies show, as expected, that MCT2 is concentrated at the 
plasma membrane of control oocytes injected with MCT2 cRNA. However, in 
oocytes treated with neuroplastin antisense RNA there is no signifi cant MCT2 at the 
plasma membrane (Wilson et al.  2013 ). 

 The functional consequences of the reduced transport and localisation of MCT2 
at the oocyte plasma membrane are shown by the fact that lactate transport is sig-
nifi cantly increased in the oocytes injected with MCT2 cRNA. However, if the 
oocytes are also treated with neuroplastin antisense RNA lactate transport is reduced 
to the level observed in control uninjected oocytes. Thus neuroplastins can play a 
key role in delivering MCT2 to the cell surface and supporting lactate transport 
across the plasma membrane. However, a key question is do neuroplastins support 
MCT2 function in neurons? Immunocytochemical studies of cerebellum provide 
supporting evidence for this proposition. MCT2 and neuroplastin show parallel pat-
terns of localisation on Purkinje cell somata and dendrites and most strikingly both 
are  concentrated in the same parasagittal stripes in the cerebellar vermis. These data 
suggest that neuroplastins are the preferred accessory proteins for MCT2 in at least 
some neuronal populations (Wilson et al.  2013 ). 

 Previous electron microscope immunogold studies of MCT2 localisation in 
 cerebellum showed a concentration of MCT2 immunoreactivity at the postsynaptic 
densities of parallel fi bre-Purkinje cell synapses (Bergersen et al.  2001 ,  2002 ). 
Interestingly, the distribution of MCT2 immunoreactivity paralleled that of 
δ2-glutamate receptors. The intracellular domains of both MCT2 and of δ2-glutamate 
receptors have an SXI PDZ binding motif and it was suggested that both proteins 
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could be anchored to the PSD by interaction with one of the PDZ domains of 
PSD93. Lactate is the main monocarboxylate found in the adult brain. Various 
reports show that lactate, mainly released by astrocytes, is used as an important 
energy substrate by neurons and sustains neuronal activity, including action 
 potential propagation (Pierre and Pellerin  2005 ). MCT2 expression is upregulated 
in cultures of cortical neurons treated with noradrenaline (Pierre et al.  2003 ). 
Furthermore Suzuki et al. ( 2011 ) have demonstrated the importance of astrocyte-
neuron lactate transport in long-term memory formation and in LTP. They also 
show that disrupting the expression of MCT1 and MCT4, both of which are 
expressed in astrocytes, leads to amnesia, but this can be rescued by lactate, but not 
glucose. While disruption of the neuronally expressed MCT2 also causes amnesia, 
signifi cantly this  cannot be rescued by lactate. Taken together, these data support a 
role for MCT2 to ensure adequate supply of lactate as a respiratory fuel to energise 
the neurone and the synapse after stimulation. This hypothesis is supported by the 
rapid translocation of np65 into the PSD under conditions of sustained synaptic 
activity as  discussed in Sect.  4.4.2 . At present details of all neuronal populations in 
which neuroplastin is the key accessory protein for MCT2 remain to be established. 
Furthermore there are no defi nitive studies of the detailed localization of embigin, 
the preferred partner for MCT2 in some tissues, in brain although it is expressed in 
neurons (Little  2011 ). 

 As mentioned in Sect.  4.3.1 . it is tempting to speculate that the differences in 
neuroplastin expression and localisation between human and rodent brain may at 
least in part be related to the difference in MCT function, MCT2 being the major 
neuronal MCT in rodents, but not humans. 

 A signifi cant role for np65 in ischemic insult is suggested by the threefold 
increase in np65 in forebrain PSDs following transient ischemia (Fig.  4.4a ). It is 
plausible that this is at least in part related to its function as an accessory protein and 
chaperone for MCT2. The glucose and oxygen deprivation which results from the 
ischemia disrupts cerebral energy metabolism. Lactate is suggested to be an obliga-
tory substrate for recovery following hypoxia (Schurr et al.  1997 ). Furthermore, 
blockade of lactate transport exacerbates delayed neuronal damage in rat brain 
 following ischemia (Schurr et al.  2001 ). These results are consistent with an 
increased PSD level of MCT2 as a neuroprotective mechanism in the rodent brain. 

 The preferential localisation of neuroplastins and MCT2 to subsets of Purkinje 
cells in parasagittal stripes may be related to synaptic plasticity and LTD. LTD 
occurs at parallel fi bre-Purkinje cell and mossy fi bre-granule cell synapses. Although 
the function of the parasagittal stripes is not clearly understood at present the evi-
dence suggests that parallel fi bre synapses have different postsynaptic constituents 
in different Purkinje cell compartments. Certainly parallel fi bres cross the boundar-
ies of and form synapses with Purkinje cell dendrites in different parasagittal stripes. 
Indeed many molecules implicated in LTD are expressed differentially in parasagit-
tal stripes in subsets of Purkinje cells (reviewed in Armstrong and Hawkes  2000 ). 
Furthermore, a suite of molecules associated with glutamatergic transmission and 
with LTD show differential expression between zebrin II positive and negative 
stripes. These include the metabotropic glutamate receptor (Mateos et al.  2001 ), 
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excitatory amino acid transporter 4 (Dehnes et al.  1998 ; Wadiche and Jahr  2005 ), an 
inositol 1,4,5-trisphosphate (IP3) receptor (Furutama et al.  2010 ), phospholipase 
Cβ3/4 (Sarna et al.  2006 ), and protein kinase C (Barmack et al.  2000 ). Importantly 
molecules involved in energy generation notably zebrin II (aldolase C) and now 
MCT2 are present in parasagittal stripes. Taken together differential localisation of 
neuroplastins and MCT2 between subsets of Purkinje cells may at least in part be 
related to a differential requirement for lactate as an energy source, which in turn 
may relate to differences in LTD between the subsets of Purkinje cells.  

4.4.4     Np65 and Np55 Support Neurite Outgrowth 
Via Homophilic Binding and Activation 
of the FGF Receptor Respectively 

 In common with many Ig superfamily cell adhesion molecules including L1 and 
NCAM [for reviews see Hansen et al. ( 2008 ), Walsh and Doherty ( 1997 )] both neuro-
plastins have been shown to support neurite outgrowth (Owczarek et al.  2010 ,  2011 ; 
Owczarek and Berezin  2012 ). Whereas np65-induced neurite outgrowth is dependent 
on  trans -homophilic binding, for np55 neurite outgrowth is mediated by activation of 
the FGF receptor. However, there are similarities in the signalling cascades that are 
activated. p38MAP kinase and ERK 1/2 together with calcium signalling are impli-
cated in both np65- and np55-induced neurite outgrowth. 

 The expression of np55 prenatally with a rapid increase in level in postnatal 
weeks 1 and 2 in rat brain suggested that it may play a role in neurite outgrowth. 
Indeed, recombinant protein encoding the two np55 Ig domains, ecto np55, induces 
neurite outgrowth in cultures of dissociated hippocampal neurones. On the basis of 
the high homology between a 13 aa sequence in the Ig2 domain of np55 and a motif 
in the Ig1 domain of the FGFR1 structure Owczarek et al. ( 2010 ) predicted that 
np55 might bind to and signal through the FGF receptor tyrosine kinase as has been 
reported for other cell adhesion molecules. 

 The proposal by several groups that NCAMs, L1, and cadherins signal through 
the FGF receptor is supported by an overwhelming body of evidence [for reviews, 
see Hansen et al. ( 2008 ), Walsh and Doherty ( 1997 )]. FGF receptors are composed 
of up to 3 Ig domains, D1–D3. The D2 and D3 domains are suffi cient for FGF bind-
ing. FGF receptors contain a specifi c motif of acidic amino acids, the acid box, in 
the linker region between the D1 (Ig1) and D2 (Ig2) domains. Contiguous with the 
acid box is a D2 domain sequence of some 20 amino acids, the CAM homology 
domain, that shares sequence homology with the variable alternatively spliced exon 
(VASE) of NCAM, the sequence between Ig3 and Ig4 of L1, and an HAV contain-
ing sequence in N-cadherin, (Doherty and Walsh  1996 ). Antibodies raised against 
either the acid box or the CAM homology domain and peptide mimetics of the 
CAM homology domain inhibit NCAM- or cadherin-induced neurite outgrowth 
(Williams et al.  1994 ), leading to the suggestion that these CAMs interact directly 
in cis with this region of the FGF receptor. More recent data show that whereas the 
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CAM homology domain is not essential for CAM/FGF receptor interactions the 
acid box is an absolute requirement (Sanchez-Heras et al.  2006 ). The FGF receptor 
has been shown to interact with NCAM through the fi rst and second NCAM fi bro-
nectin type 3 domain (Anderson et al.  2005 ; Kiselyov et al.  2003 ) in addition to the 
acid box and with N-cadherin through the fourth and fi fth cadherin domains 
(Williams et al.  2001 ). 

 In the case of np55 a different binding motif to that for NCAM, L1, and N 
cadherin binding to the FGF receptor, namely, 121RIVTSEEVIIRDS134, corre-
sponding to residues 121–134 (5–17 of ecto np55) has been identifi ed (Fig.  4.2c ). 
This sequence encompasses the A and A′ β strands together with a part of the A-B 
loop of the Ig2 domain of np55. This sequence shows 69 % identity and 77 % 
sequence similarity with residues 80–91 of the FGFR1 receptor Ig1 domain 
(RI-TGEEVEVRDS). Neither of the other two members of the basigin group has 
this homology, suggesting that the interaction with the FGFR is specifi c to the 
neuroplastins (Owczarek et al.  2010 ). 

 The hypothesis that np55 signals by binding to the FGFR was tested by surface 
plasmon resonance experiments. Ecto np55 (np55 Ig2 and Ig3) recombinant protein 
bound to sensor chips coated with recombinant protein comprising the D2 and D3 
domains of the FGFR1 receptor (   Owczarek et al.  2010 ) with a Kd of 11 μM. The D2 
and D3 FGF receptor domains have been shown to be suffi cient for the receptor 
dimerisation essential for activation of the tyrosine kinase domain (Mohammadi 
et al.  2005 ), while the D1 domain is involved in autoinhibition of ligand binding 
affi nity (Kiselyov et al.  2006 ). Although the Kd value indicates relatively weak 
binding it is of the same order as the Kds for NCAM (10 μm) and L1 (3.25 μM) 
binding to the FGF receptor (Kiselyov et al.  2003 ; Kulahin et al.  2008 ). 

 On the basis of these studies a synthetic peptide, narpin, comprising a tetramer 
of the np55 FGF receptor homology sequence, i.e., RIVTSEEVIIRDS, has been 
used as a tool to investigate np55-induced signalling. Treatment of Trex 93 cells 
expressing the FGFR1 IIIc splice variant with either ecto np55 or narpin induced 
FGFR autophosphorylation indicating receptor activation. Activation of the FGF 
receptor by np55 is at least in part responsible for mediating np55-induced neurite 
outgrowth since both the ecto np55- and narpin-induced neurite outgrowths in cul-
tured hippocampal neurones are inhibited by the FGF receptor inhibitor SU5402. 
Furthermore, transfection of hippocampal neurones with a dominant negative 
kinase deleted FGFR1 blocked ecto np55- and narpin-induced neurite outgrowth. 
The binding site for np55 on the FGFR1 receptor overlaps with that for FGF2 since 
the latter inhibited np55-induced neurite outgrowth. This is in contrast to the 
NCAM and L1 binding site on the FGF receptor which shows no overlap with 
the FGF binding site. 

 Given the involvement of p38MAP kinase in np65-mediated inhibition of LTP 
and the report of p38MAP kinase activation by basigin (Lim et al.  1998 ) MAP kinase 
signalling pathways are prime candidates for mediating np55-induced neurite out-
growth. Indeed phosphorylation of p38MAP kinase and ERK 1/2 was observed in 
neurons treated with ecto np55 (Owczarek et al.  2010 ). FGF2, which can also induce 
neurite outgrowth, increased phosphorylation of ERK 1/2, but not p38MAP kinase. 
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The p38MAP kinase inhibitor SB202190 abolished the neurite outgrowth effect of 
np55 indicating its involvement in the mechanism of this response. Signifi cantly 
ecto np55 induced a 30–40 % increase in synaptic calcium concentration which was 
signifi cantly reduced by the FGFR1 receptor inhibitor SU5402 and by lavendustin 
A, a general protein tyrosine kinase antagonist, thus implicating calcium in the 
np55-induced signalling cascade(s) leading to increased neurite outgrowth. 

 Initially the relatively late expression of np65 suggested that it did not play a role 
in neurite outgrowth. Subsequently, however, its expression in hippocampal neu-
rons from E19 rat embryos after 24 h in culture was confi rmed (Owczarek et al. 
 2011 ). As for np55 recombinant protein encoding all three extracellular domains of 
np65 (ecto np65) induces neurite outgrowth in cultures of both hippocampal 
 neurones and cerebellar granule cells. The mechanism involves np65 homophilic 
adhesion since it is blocked by enplastin, the peptide that specifi cally blocks the 
trans np65–np65 interaction. However, enplastin can also act as a partial agonist, 
supporting neurite outgrowth by hippocampal neurons grown on HEK cells, which 
do not express np65. Again as for np55, the np65 homophilic interaction appears to 
activate several signalling cascades. For these experiments hippocampal neurons 
were grown on a layer of HEK cells expressing np65 or on enplastin-coated culture 
dishes. Specifi c inhibitors of the FGFR1 receptor (SU5402), ERK 1/2 (PD98059), 
and p38MAP kinase (SB202190) all inhibited np65-induced neurite outgrowth. The 
involvement of ERK1/2 in this response is in contrast to the mechanism of np65- 
mediated inhibition of LTP since PD8059 did not have any effect on this response 
and no increase in phopho-ERK was detected (Empson et al.  2006 ). It is not clear at 
present whether np65  trans -homophilic binding and activation of the FGF receptor 
are synergistic or sequential events. 

 Ca 2+  infl ux and subsequent activation of CaM kinase II are important in mediat-
ing np65-induced neurite outgrowth as has been shown for many other CAMS 
which exhibit homophilic binding (Hansen et al.  2008 ). Np65-mediated induction 
of neurite outgrowth was inhibited by KN-93, a compound which binds to the cal-
cium binding site of CaM kinase II, thus inhibiting calmodulin binding to the 
enzyme. Application of either ecto np65 or enplastin to hippocampal neurons 
induced an increase in synaptic calcium. However, whereas the ecto-np65 induces a 
transient increase in calcium the enplastin-induced increase is sustained, suggesting 
differences in their mechanisms of activation of calcium infl ux.  

4.4.5     Neuroplastin 65 Binds to GABA A  Receptors 

 From a screen of potential neuroplastin binding partners Sarto-Jackson et al. ( 2012 ) 
have shown that the neuroplastins interact with GABA A  receptor subtypes. GABA A  
receptors comprise fi ve subunits most usually comprising one γ, two α, and two β 
subunits (Olsen and Sieghart  2008 ). Depending on subunit composition the various 
receptor subtypes exhibit different pharmacological properties and different localisa-
tion at synaptic and extrasynaptic sites. GABA A  receptors containing α1, 2, or 3 
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subunits are localised mainly at synaptic sites and interact with the scaffolding protein 
gephyrin (Tretter et al.  2012 ; Kneussel and Loebrich  2007 ). Gephyrin anchors the 
receptor to the underlying postsynaptic complex and prevents lateral diffusion of the 
receptors. Receptors containing the α5 subunit are mainly extrasynaptic and link to 
the actin cytoskeleton via radixin (Loebrich et al.  2006 ). Co-purifi cation experiments 
using affi nity columns of antibody specifi c for the intracellular domain of neuroplas-
tin or for the GABA A  receptor β2 subunit demonstrate a specifi c interaction between 
neuroplastin and GABA A  receptors. Co-immunoprecipitation experiments using 
antibodies directed against neuroplastin or the extracellular domain of GABA A  
receptor α-subunits confi rm the interaction and that the np65-GABA A  complex is 
present on the cell surface. Interestingly three times as much np65 as np55 co-immu-
noprecipates with GABA A  receptors. This is consistent with the selective enrichment 
of np65 at postsynaptic structures (   Hill et al.  1988 ; Smalla et al.  2000 ). A direct 
interaction between np65 and GABA A  receptors is confi rmed by signifi cant FRET 
between ECFP-tagged np65, with either EYFP-tagged α1 subunit and wild- type β2 
and γ2 subunits or EYFP-tagged β2 subunit and wild-type α1 and γ2 subunits. 
Immunocytochemical studies in hippocampal neuronal cultures and sections show 
that np 65 co-localises with α1 and α2, but not α3 subnunits at GABAergic synapses 
and α5 subunits at extrasynaptic sites in cultures. Strikingly the co- localisation is 
often observed at several synaptic sites along the same dendrite, but absent from oth-
ers. The observation that only some 25 % in total of the neuroplastin clusters co-
localise with GABA A  receptors is consistent with co-localisation of a fraction of 
neuroplastin punctae with PSD95, a marker for glutamatergic postsynaptic struc-
tures (see Fig.  4.3 ). Furthermore, only a small proportion of gephyrin co-localised 
with np65 and synaptic clusters of np65 that co-localised with synaptic GABA A  
receptors but not with gephyrin were detected. A functional role for neuroplastin 65 
in the subcellular localisation of specifi c GABA A  receptor subtypes is suggested by 
the neuroplastin 65 shRNA-induced downregulation of α2 containing GABA A  recep-
tors at GABAergic synapses. In the shRNA-treated neurons α2-subunit staining was 
more diffuse and did not co-localise with vesicular inhibitory amino acid transporter, 
a presynaptic marker of GABAergic synapses. These data together with the involve-
ment of neuroplastins in recycling of GluR1 receptors suggest multiple roles for 
these CAMs in modulating synaptic signalling through receptor localisation and 
recycling. Indeed the  trans -homophilic binding of pre- and postsynaptic np65 local-
ised in clusters may play important roles in anchoring key proteins (neurotransmitter 
receptors, monocarboxylate transporters, and enzymes involved in signalling cas-
cades) in their correct synaptic and subcellular compartments.   

4.5     Behavioural Effects of Neuroplastins and Linkage 
to Human Disease 

 Unlike several other CAMs including L1 (De Angelis et al.  2002 ) and basigin 
(Nabeshima et al.  2006 ), no direct role for neuroplastins in human disease and 
neurological disorders has yet been clearly defi ned. Basigin, the nearest Ig 
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superfamily relative to the neuroplastins is directly linked to tumour metastasis 
through upregulation of several extracellular matrix metalloproteinases (Gabison, 
et al.  2005 ; Nabeshima et al.  2006 ; Yan et al.  2005 ). However, the diverse range of 
biological roles, variety of binding interactions, and the multiple signalling path-
ways activated by the neuroplastins all suggest that they are likely to play impor-
tant roles both in regulating behaviour and in human disease. 

4.5.1     Behavioural Effects of Np65 and Np55 Peptide Mimetics 

 Given the role of the neuroplastins in synaptic plasticity and in neurite outgrowth, the 
potential of peptide mimetics to modulate behavioural responses is of considerable 
interest. Np55-mediated activation of FGFR1 coupled with the observation that FGF2 
decreases depressive behaviour in rats (Evans et al.  2004 ) led    Owczarek et al. ( 2011 ) 
to investigate whether narpin has antidepressant activity using the forced swim test as 
a model paradigm. Treatment of rodents with classical antidepressants in this test 
results in decreased immobility and increases in active swimming and climbing behav-
iour (Porsolt et al.  1978 ). Narpin treatment resulted in antidepressant- like changes in 
behaviour, i.e., decreased fl oating behaviour and increased climbing behaviour. The 
possibility that these effects were due to enhanced locomotor activity was excluded by 
testing the effects of narpin in the open fi eld test. Although the mechanism for the 
antidepressant effect of narpin is not clear an NCAM-derived synthetic peptide, FGL, 
and FGF2, both of which exert an antidepressant effect, have been shown to increase 
ERK phosphorylation (Aonurm-Helm et al.  2008 ; Garcia-Maya et al.  2006 ), thus lead-
ing to the suggestion that ligands for the FGF receptor may modulate behaviour via the 
ERK pathway (Owczarek et al.  2011 ). These results raise the question of whether 
narpin may be a useful therapeutic agent for treatment of mental disorders. 

 Np65 has been shown to play a key role in activity-dependent synaptic plasticity. 
This led to Owczarek et al. ( 2011 ) to test the effect of enplastin, the np65-specifi c 
peptide mimetic, on spatial learning behaviour using the Morris water maize para-
digm. Enplastin treatment resulted in increased times for animals to fi nd the hidden 
platform on day 1. However, no effects were observed on subsequent days, suggest-
ing that the peptide has an inhibitory effect on the initial, but not later phases of the 
learning process.  

4.5.2     Linkage of Neuroplastins to Human Disease 

 The neuroplastins have been linked to two very diverse disorders: schizophrenia and 
breast cancer. 

 Treatments of rodents with the psychotomimetics methamphetamine or phency-
clidine are two commonly used animal models for schizophrenia. In humans chronic 
methamphetamine use induces a psychotic state closely resembling schizophrenia 
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(Sato et al.  1983 ) and phencyclidine usage mimics both the positive and negative 
symptoms of schizophrenia (Javitt and Zukin  1991 ). Gene expression profi ling of 
either phencyclidine- or methamphetamine-treated rats revealed that neuroplastin 
and basigin are upregulated in both groups from a total of only 41 genes that were 
up- or downregulated by these treatments (Ouchi et al.  2005 ). Subsequent studies of 
human schizophrenic patients identifi ed four single nucleotide polymorphisms 
(SNPs) in the 5′ upstream putative promoter and 5′ untranslated region (Saito et al. 
 2007 ) of the neuroplastin gene. Of these one (del-G-G) exhibited increased fre-
quency in schizophrenia, while a second (T-G-T) exhibited decreased frequency 
and, from experiments with reporter constructs, signifi cantly lowered neuroplastin 
transcription. Saito et al. ( 2007 ) propose that the T-G-T SNP, through its inhibitory 
role in neuroplastin transcription, could lower the onset risk for schizophrenia. 

 In a screen to select potential tumour antigens in B-cell actively proliferating 
regions of tumour-draining lymph nodes from human breast cancer patients, 
Rodriguez-Pinto et al. ( 2009 ) identifi ed neuroplastin as a potential candidate. 
Subsequent analysis of human breast carcinoma tissue revealed the expression of 
both 55 and 45 kDa np55 glycoforms. Signifi cant neuroplastin immunoreactivity 
was detected in some 20 % of breast tissue showing invasive carcinoma compared 
with only 2.5 % of control breast tissue. Interestingly a larger percentage of neuro-
plastin positive tumours was found in tissue showing distant (50 % neuroplastin 
positive) rather than lymph node (20 % neuroplastin positive) metastasis, leading to 
the suggestion that neuroplastin expression may promote tumour invasion. Strikingly 
neuroplastin overexpression in a breast cancer cell line transplanted into nude mice 
resulted in a signifi cant increase in tumour growth and angiogenesis. The 
neuroplastin- induced increase in angiogenesis observed in vivo is mediated by an 
increase in production of vascular endothelial growth factor. Thus, if aberrantly 
expressed neuroplastin could promote breast tumour growth and metastasis. This 
raises the potential use of neuroplastin as a biomarker for breast tumour screening 
and for development of therapeutic approaches. 

 The pattern of neuroplastin immunoreactivity in cerebellum has been studied in 
relation to a mouse model of the Niemann-Pick type A lysosomal storage disease, 
the acid sphingomyelinase knockout (ASKMO) mouse. In this mouse a targeted 
disruption of the acid sphingomyelinase gene disrupts cholesterol metabolism and 
results in widespread axonal and dendritic abnormalities and Purkinje cell death 
(Otterbach and Stoffel  1995 ; Sarna et al.  2001 ). In homozygous wild-type mice 
neuroplastin immunoreactivity in Purkinje cells is confi ned to the dendrites 
whereas homozygous ASKMO mice frequently exhibit high levels of neuroplastin 
immunoreactivity in surviving Purkinje cell somata (Marzban et al.  2003 ). This 
altered cellular location is thought to be associated with a generalised defect in 
protein traffi cking. Interestingly Purkinje cell neuroplastin expression and locali-
sation are not dependent either upon the normal histotypic organisation of the cer-
ebellum or formation of normal parallel fi bre-Purkinje cell synaptic connections 
since neuroplastin is readily detected in the Purkinje cell dendrites of both the 
 disabled  ( dab ) and  cerebellar folia defi cient  ( cdf ) mice (Marzban et al.  2003 ). In 
the  disabled  mouse there is a targeted disruption of the Reelin signalling pathway 
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resulting in a profound Purkinje cell ectopia as these neurons do not migrate from 
their embryonic clusters, but remain as ectopic clusters among the deep cerebellar 
nuclei and receive little or no parallel fi bre input (Howell et al.  1997 ; Gallagher 
et al.  1998 ). Similarly  cdf  mice also exhibit ectopic Purkinje cells which express 
abundant dendritic neuroplastin immunoreactivity (Marzban et al.  2003 ).   

4.6     Conclusions and Future Perspectives 

 In common with many cell adhesion molecules the neuroplastins exhibit multiple 
homophilic and heterophilic binding interactions and activate several signalling 
pathways, and in vitro studies strongly suggest they play key roles in a wide variety 
of physiological functions (Fig.  4.5 ). A role in cell adhesion has been demonstrated 
only for np65, but not np55, and is mediated by  trans -homophilic binding between 
opposing np65 Ig1 domains. This interaction in turn regulates surface localisation 
of GluR1 receptors so affecting synaptic plasticity. However, the in vivo physiologi-
cal importance of np65 in long-term activity-dependent synaptic plasticity and in 
behavioural responses such as learning and memory is not clear at present.

   Both np65 and np55 can induce neurite outgrowth in vitro. They can bind to and 
activate the FGF receptor together with a resultant regulation of signalling pathways 
including p38MAP kinase, ERK 1/2, and calcium/CaM kinase II. It seems likely 
that these are interrelated signalling networks rather than operating as individual 
discrete pathways. Np65  trans -homophilic binding also induces neurite outgrowth, 
but whether this is sequential or synergistic with FGF receptor activation is not 
clear. The physiological mechanism which initiates neuroplastin binding to the FGF 

  Fig. 4.5    Neuroplastin binding interactions, activation of signalling pathways, and physiological 
responses. The fi gure summarises homophilic and heterophilic neuroplastin binding interactions, 
the signalling pathways activated by  trans  homophilic (np65), and FGF binding together with the 
resultant physiological responses. The actions of neuroplastin peptide mimetics/antagonists are 
also summarised       
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receptor is also not known. Furthermore, given the large number of CAMs that can 
support neurite outgrowth the importance for this role of the neuroplastins in brain 
development and remodelling in vivo again remains to be established. 

 Both np65 and np55 are present at synapses formed by specifi c neuronal 
 subpopulations. These are partially overlapping, but partially separate, e.g., np55 
localisation at parallel fi bre-Purkinje cell synapses. However, only np65 is found in 
PSD preparations and is rapidly translocated into the PSD in response to sustained 
increases in synaptic activity. The traffi cking mechanism does not appear to be 
intrinsic to neuroplastin structure alone since eGFP-tagged np65 and np55 show 
identical localisation when expressed in hippocampal neurons in culture (Kraus and 
Beesley, unpublished observations). 

 The two neuroplastins have multiple but distinct roles at the synapse. For np65 
these include regulation of GluR1 receptor internalisation in relation to synaptic 
plasticity and the recently reported direct binding to GABA A  receptor subtypes with 
a putative role in GABA A  receptor localisation. The functions of np55 at the synapse 
are less clear, but a role in LTD has been suggested. 

 Both np65 and np55 role can chaperone and act as the accessory protein for 
MCT2, thus supporting the import of lactate into neurons. This role is likely to be 
important at the synapse as well as along axons and dendrites. At present the neuro-
nal populations where neuroplastin rather than embigin is the preferred partner have 
not been fully characterised, and the importance of the neuroplastins in MCT2 func-
tion and energy supply to neurons in vivo remains to be established. However, it 
seems likely that translocation of np65 into the PSD under conditions of sustained 
changes in synaptic activity is, in part, directly related to its role in supporting 
MCT2 function and energy supply to the synapse. 

 At present the functions of np55 in tissues other than brain have not been 
investigated, although it seems likely that in some tissues this may be related to 
MCT2 function. 

 Studies defi ning the physiological functions of the neuroplastins in vivo must be 
a prime focus for future research. Use of narpin and enplastin as tools to investigate 
the in vivo functions of the neuroplastins suggests roles in spatial learning and as 
targets for novel antidepressant therapies (Fig.  4.5 ), and a neuroprotective role for 
np65 is suggested by the upregulation of the protein in PSDs following recovery 
from transient global ischemia. Thus a key goal for future research is the develop-
ment of further tools, crucially inducible, regional and np65/55-specifi c neuroplas-
tin knockout mice, to gain further insights into the functions of the neuroplastins 
and to understand their roles in neurological disorders.     
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    Abstract     Nectins are immunoglobulin-like cell adhesion molecules (CAMs) 
constituting a family with four members. They exclusively localize at adherens 
junctions (AJs) between two neighboring cells. Nectins bind to afadin through 
their C-termini and are linked to the actin cytoskeleton. In addition to nectins, 
there are nectin-like molecules (Necls), which resemble nectins in their structures 
and constitute a family with fi ve members. Nectins and Necls are involved in the 
formation of various kinds of cell–cell adhesion and diverse cellular functions 
including cell polarization, movement, proliferation, survival, and differentiation. 
In neuronal tissues, nectins and Necls functionally play crucial roles as CAMs at 
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neuron–neuron and neuron–glia interactions. For example, the members of the 
nectin and Necl families are involved in synapse formation and remodeling in the 
hippocampus, a key brain region for learning and memory. Nectins also play 
important roles in the auditory system. Moreover, nectins and Necls are associated 
with human neurological diseases when mutated or upregulated. Thus, nectins 
and Necls are crucial for physiology and pathology in the nervous system.  

5.1         Introduction 

 Cells in multicellular organisms form cell–cell junctions and contacts that play 
essential roles in various cellular processes, including morphogenesis, differentia-
tion, proliferation, and migration. Cell–cell junctions and contacts can be homo-
typic or heterotypic; for example, the former is formed between two neighboring 
epithelial cells and the latter is formed between differentiating germ cells and their 
supporter Sertoli cells in the testis. Cell–cell junctions are mediated by cell adhesion 
molecules (CAMs). Cadherins, which make up a superfamily with >100 members, 
serve as key Ca 2+ -dependent CAMs in a variety of cell–cell junctions (Hirano and 
Takeichi  2012 ). The members of the immunoglobulin (Ig) superfamily also play 
important roles as Ca 2+ -independent CAMs (Brummendorf and Lemmon  2001 ). 
Nectins have emerged as Ig-like CAMs that contribute to a variety of cell–cell junc-
tions and contacts, acting cooperatively with or independently of cadherins (Takai 
et al.  2008a ,  b ). In addition, nectin-like molecules (Necls), which have domain 
structures similar to those of nectins, have been intensively studied (Takai et al. 
 2008a ,  b ). Nectins and Necls interact in  trans  with each other and in  cis  with growth 
factor receptors and integrins, and regulate a variety of cell functions, including 
polarization, movement, proliferation, survival, and differentiation in addition to 
cell adhesion and contacts. On the other hand, nectins and Necls serve as viral 
receptors and are also associated with human diseases, such as cancer, Alzheimer’s 
disease (AD), and Margarita island ectodermal dysplasia (Hogle  2002 ; Takai et al. 
 2008a ,  b ; Spear et al.  2000 ; Spear and Longnecker  2003 ). Here we fi rst introduce 
the molecular and biological properties of nectins and Necls, then describe their 
roles in the nervous systems, and fi nally address neuropsychiatric diseases caused 
by dysfunction of nectins and Necls.  

5.2     Nectins and Necls 

5.2.1     Molecular Properties of Nectins 

 Nectins comprise a family with four members, nectin-1, nectin-2, nectin-3, and 
 nectin- 4, all of which have an extracellular region with three Ig-like loops, a single 
transmembrane region, and a cytoplasmic tail region (Fig.  5.1 ) (Takai et al.  2008a ,  b ). 
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  Fig. 5.1    Molecular structures and modes of  trans -interactions of nectins, Necls, and their binding 
proteins. Nectins and Necls share three Ig-like extracellular domains comprising an N-terminal 
variable region-like (V) domain and two constant region-like (C2) domains, a transmembrane 
region (TM), and a cytoplasmic domain. The nectin C-terminus contains interaction motifs (E/
AxYV, where x represents any amino acid) that allow interaction with afadin, Par-3, PICK1, 
MUPP1, PATJ, and MPP3. Willin and zyxin interact with the juxtamembrane and cytoplasmic 
regions of nectins, respectively. The C-terminus of Necl-1 and Necl-2 contains interaction motifs 
(EYFI) that allow interaction with Pals2, Dlg3, and CASK. DAL-1 interacts with the juxtamem-
brane regions of Necl-2. Bidirectional arrows indicate the binding       

Nectins have several molecular properties. (1) They show a Ca 2+ -independent 
cell–cell adhesion activity. Each nectin fi rst forms homo- cis -dimers and then homo- 
or hetero- trans -dimers through the extracellular region, causing cell–cell adhesion. 
Heterophilic  trans -interactions of nectins are stronger than their homophilic  trans - 
interactions  (Samanta et al.  2012 ; Satoh-Horikawa et al.  2000 ). By surface plasmon 
resonance analysis, the dissociation constants ( K ds) for the interaction between 
 nectin- 1 and nectin-3 and between nectin-2 and nectin-3 are 2.3 and 360 nM, respec-
tively (Ikeda et al.  2003 ), while those for homophilic binding of nectin-1, nectin-2, 
nectin-3, and nectin-4 are 17.5, 0.4, 228, and 153 μM, respectively (Harrison et al. 
 2012 ) (Fig.  5.2 ). Thus, among various combinations, the heterophilic  trans -interac-
tion between nectin-1 and nectin-3 is the strongest, followed by that between  nectin-3 
and nectin-2. (2) The  trans -interactions of nectins induce the activation of Rap1, 
Cdc42, and Rac small G proteins (Takai et al.  2008a ). (3) Nectins bind through their 
cytoplasmic tails to afadin, an actin fi lament (F-actin)-binding protein which con-
nects nectins to the actin cytoskeleton (Mandai et al.  1997 ; Takai et al.  2008a ,  b ) in a 
manner analogous to the way in which cadherins are connected to the cytoskeleton 
by binding through their cytoplasmic tails to the α- and β-catenin complex (Hirano 
and Takeichi  2012 ). (4) Nectins also bind through their cytoplasmic tails to partition-
ing defective three homologue (Par-3, also known as PARD3 in mammals), a cell 
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polarity protein, which forms a complex with the other cell polarity proteins aPKC 
and Par-6 and regulates cell polarization (Ohno  2001 ; Takai et al.  2008a ,  b ; Takekuni 
et al.  2003 ). (5) Nectins interact  in trans  heterophilically with Necls (Takai et al. 
 2008a ,  b ; Ikeda et al.  2003 ; Shingai et al.  2003 ; Mueller and Wimmer  2003 ) and 
other Ig-like CAMs such as Tactile/CD96, DNAM-1/CD226, and TIGIT through 
their extracellular regions (Fig.  5.2 ) (Bottino et al.  2003 ; Fuchs et al.  2004 ; Pende 
et al.  2005 ,  2006 ; Stanietsky et al.  2009 ; Yu et al.  2009 ). The  K ds for the heterophilic 
interaction between nectin-3 and Necl-5 and between nectin-3 and TIGIT are 17 and 
38.9 nM, respectively (Ikeda et al.  2003 ; Yu et al.  2009 ). (6) Nectins interact with 
growth factor receptors. Nectin-3 interacts  in cis  with the platelet-derived growth 
factor (PDGF) receptor (Kanzaki et al.  2008 ), while nectin-1 interacts  in cis  with the 

  Fig. 5.2     Trans -interactions of nectins, Necls, and other Ig-like molecules. Homophilic ( looped 
arrows ) and heterophilic ( double-headed arrows )  trans -interactions are presented. Heterophilic 
 trans -interaction between nectin-1 and nectin-3 is the strongest followed by that between nectin-3 
and Necl-5 and that between nectin-2 and nectin-3.  Red crossing bars  indicate absence of homo-
philic interaction. DNAM1, DNAX accessory molecule 1; TIGIT, T cell immunoreceptor with Ig 
and ITIM domains; CRTAM, Class I-restricted T-cell associated molecule. Values besides  arrows  
are  K d for hemophilic and heterophilic interactions       
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fi broblast growth factor receptor (Bojesen et al.  2012 ). Nectin-1 and nectin-3, but not 
nectin-2, physically interact  in cis  with integrin α v β 3     at cell–cell adhesion sites 
(Sakamoto et al.  2006 ).

5.2.2         Molecular Properties of Necls 

 Necls, which are structurally similar to nectins, have fi ve members and consist of 
an extracellular region with three Ig-like loops, a single transmembrane region, and 
a cytoplasmic region, but, unlike nectins, they do not bind afadin (Takai et al.  2008a , 
 b ). These include Necl-1/TSLL1/SynCAM3/CADM3, Necl-2/IGSF4/RA175/
SgIGSF/TSLC1/SynCAM1/CADM1, Necl-3/SynCAM2/CADM2, Necl-4/TSLL2/
SynCAM4/CADM4, and Necl-5/poliovirus receptor (PVR)/CD155/Tage4. Necl-1 
homophilically interacts  in trans  and heterophilically interacts  in trans  with nectin-
 1, nectin-3, Necl-2, Necl-3, and Necl-4 (Fig.  5.2 ) (Kakunaga et al.  2005 ; Niederkofl er 
et al.  2010 ; Shingai et al.  2003 ). Necl-2 also homophilically interacts  in trans  and 
heterophilically interacts  in trans  with nectin-3, Necl-1, and Necl-3, as well as 
another Ig-like CAM CRTAM (Boles et al.  2005 ;    Niederkofl er et al.  2010 ; Shingai 
et al.  2003 ). Necl-3 does not homophilically interact  in trans  but heterophilically 
interacts  in trans  with Necl-1 and Necl-2 (Niederkofl er et al.  2010 ; Pellissier et al. 
 2007 ). Necl-4 homophilically interacts  in trans  and heterophilically interacts  in 
trans  with Necl-1 (Maurel et al.  2007 ; Spiegel et al.  2007 ). Necl-5 does not homo-
philically interact  in trans  but heterophilically interacts  in trans  with  nectin- 3 and 
other Ig-like CAMs such as Tactile/CD96 (Fuchs et al.  2004 ), DNAM-1/CD226 
(Bottino et al.  2003 ; Pende et al.  2005 ,  2006 ), and TIGIT (Stanietsky et al.  2009 ; Yu 
et al.  2009 ). The  K ds for the interactions between Necl-5 and TIGIT, between 
Necl-5 and Tactile/CD96, and between Necl-5 and DNAM-1/CD226 are 3.15, 37.6, 
and 114 nM, respectively (Yu et al.  2009 ). Moreover, Necl-1 and Necl-3 interact  in 
cis  with integrin α 6 β 4  (Mizutani et al.  2011 ). Necl-2 interacts  in cis  with the ErbB3 
receptor, the ErbB4 receptor, integrin α 6 β 4 , and integrin α v β 3  (Kawano et al.  2010 ; 
Mizutani et al.  2011 ). Necl-5 interacts  in cis  with integrin α v β 3  and growth factor 
receptors, such as the PDGF receptor and the vascular endothelial growth factor 
(VEGF) receptor (Minami et al.  2010 ; Kinugasa et al.  2012 ). Necl-4 has not been 
reported to bind any growth factor receptors.  

5.2.3     Proteins Associating with Nectins and Necls 

    Nectin-Binding Proteins 

 Some, but not all, members of the nectin family are able to bind various cytoplasmic 
proteins in addition to afadin, including Par-3 (Takekuni et al.  2003 ), protein interact-
ing with PRKCA1 (PICK1) (Reymond et al.  2005 ), multiple PDZ domain protein 
(MUPP1, also known as MPDZ), Pals1-associated tight junction protein (PATJ) 
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(Adachi et al.  2009 ), membrane palmitoylated protein 3 (MPP3) (Dudak et al.  2011 ), 
zyxin (Call et al.  2011 ), and willin (Ishiuchi and Takeichi  2012 ) (Fig.  5.1 ). Afadin has 
multiple domains: from the N-terminus to the C-terminus it has two Ras- associated 
domains, a forkhead-associated domain, a dilute domain, a PDZ domain, three proline-
rich domains, and an F-actin-binding domain (Takai et al.  2008a ,  b ). Afadin binds 
many proteins, including transmembrane proteins such as the Eph receptor tyrosine 
kinases, the synaptic transmembrane protein neurexins, the Notch receptor ligand jag-
ged-1, the junction cell adhesion molecule JAM, and the gap junction protein connexin 
36; peripheral membrane proteins such as the tight junction (TJ) protein ZO-1, the 
afadin- and α-actinin-binding protein ADIP, the actin- binding protein profi lin, the 
 vinculin-binding protein ponsin, the cadherin-binding protein α-catenin, and the Arg/
Abl-interacting protein nArgBp2; and signaling molecules such as Rap1, Ras, Rit, and 
Rin small G proteins, Rap1 GTPase-activating protein SPA-1, Bcr and c-Src protein 
kinases, T-cell oncogene LIM domain only 2 (LMO2), and the tumor suppressor LIM 
domain only 7 (LMO7) (Kawabe et al.  1999 ; Begay-Muller et al.  2002 ; Shao et al. 
 1999 ; Takai et al.  2008a ,  b ; Li et al.  2012 ). The tyrosine kinase Ryk is reported to inter-
act with afadin, but this interaction is controversial (Trivier and Ganesan  2002 ). Thus, 
these proteins are indirectly associated with nectins through afadin. Moreover, the fi rst 
Ras-associated domain of afadin mediates its self-association (Liedtke et al.  2010 ).  

    Necl-Binding Proteins 

 Necls do not directly bind afadin but binds many other proteins. Necl-1 and Necl-2 bind 
the membrane-associated guanylate kinase (MAGUK) family members, Pals2, Dlg3/
MPP3, and calcium/calmodulin-associated Ser/Thr kinase (CASK), while Necl-2 addi-
tionally binds the tumor suppressor gene product DAL1, a band 4.1 family member 
protein, which connects Necl-2 to the actin cytoskeleton (Fukuhara et al.  2003 ; Shingai 
et al.  2003 ; Yageta et al.  2002 ). Pals2 is known to bind Lin-7, which is implicated in the 
proper localization of the Let-23 protein in  Caenorhabditis elegans , the homologue of 
mammalian epidermal growth factor receptor (Kakunaga et al.  2004 ). Although PVR/
CD155, a human homologue of Necl-5, was reported to bind Tctex-1, a subunit of the 
dynein motor complex (Mueller et al.  2002 ), the interaction between a mouse homo-
logue of Necl-5 and Tctex-1 was negligible in our study (Minami et al.  2010 ).    

5.3     Nectins and Necls in Non-neuronal Tissues 

5.3.1     Nectins in a Variety of Cell–Cell Junctions 
of Non- neuronal Tissues 

 Nectins are widely expressed in many types of cells and play roles in the formation 
of cell–cell junctions or contacts, in some cases acting cooperatively with cadherins 
and in other cases independently of them. Mammalian tissues and organs are com-
posed of two or more cell types that can adhere homotypically or heterotypically 
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(Rikitake et al.  2012 ). There are homotypic and heterotypic cell–cell adhesions. 
Nectins and cadherins are involved in the formation of both groups of cell–cell adhe-
sion, but cadherins are important for the formation of homotypic cell–cell adhesion, 
whereas nectins are important for the formation of heterotypic cell–cell adhesions, 
because cadherins interact  in trans  almost exclusively homophilically between the 
same members, whereas nectins interact  in trans  both homophilically and hetero-
philically between the same and different members, and, more importantly, because 
heterophilic  trans -interactions of nectins are much stronger than their homophilic 
 trans -interactions. 

 The typical homotypic cell–cell adhesion is formed between neighboring epithe-
lial cells and endothelial cells. In these cells, there is a junctional complex comprised 
of TJs and adherens junctions (AJs). Nectin-1, nectin-2, and nectin-3 and possibly 
nectin-4 symmetrically localize at AJs and are involved in the formation of AJs, act-
ing cooperatively with E-cadherin, a cadherin superfamily member that serves as a 
key CAM at AJs in epithelial cells (Gumbiner  1996 ; Takeichi  1991 ), and in the sub-
sequent formation of TJs (Takai et al.  2008a ,  b ). The  trans -interactions of nectins 
induce the activation of Rap1, Cdc42, and Rac (Takai et al.  2008a ,  b ), while those of 
E-cadherins induce the activation of Rac (Yap and Kovacs  2003 ). The activation of 
these molecules regulates the reorganization of the actin cytoskeleton, which is 
required for the formation of cell–cell adhesion (Takai et al.  2008a ,  b ). The formation 
of TJs is dependent on the formation of AJs (Tsukita and Furuse  1999 ). The sym-
metric homotypic cell–cell adhesion is also formed in fi broblasts. In these cells, both 
N-cadherin and nectins colocalize at AJs and are involved in the formation of AJs. 

 The typical heterotypic cell–cell adhesion is found between many types of cells, 
such as between Sertoli cells and spermatids during spermatid differentiation in the 
testis, between commissural axons and basal processes of fl oor plate cells in the 
neural tube, between the pigment cell and non-pigment cell layers of the ciliary epi-
thelium, between ameloblasts and stratum intermedium cells in the developing tooth, 
and between hair cells and supporting cells in the cochlea in the inner ear. At the 
Sertoli cell–spermatid junctions, nectin-2 and nectin-3 reside specifi cally in Sertoli 
cells and spermatids, respectively, and serve as essential CAMs (Ozaki- Kuroda et al. 
 2002 ). At the junctions between the apical membranes of pigment and non-pigment 
epithelia in the ciliary body of the eye, nectin-1 and nectin-3 localize at both sides 
and P-cadherin symmetrically localizes at both sides (Inagaki et al.  2005 ). Nectins 
and P-cadherin mediate the apex–apex adhesion between the pigment and non-
pigment epithelia of the ciliary body. At these junctions, nectins, but not cadherins, 
are major CAMs. The roles of nectins in cell–cell adhesion between commissural 
axons and basal processes of fl oor plate cells in the neural tube and between hair 
cells and supporting cells in the cochlea in the inner ear are described below. 

    In addition to the stable adhesion for cell–cell junctions, such as AJs and TJs, 
weak and transient cell–cell adhesions are found between blood cells and between 
blood cells and vascular endothelial cells. Nectin-2 and nectin-3 are expressed in 
blood cells that lack cadherins. The exact roles of nectins in blood cells remain 
unknown, but they may play roles in transiently formed cell–cell contacts, such as 
those between macrophages and lymphocytes and between leukocytes and vascular 
endothelial cells during  trans -endothelial migration.  
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5.3.2     Necls in Cell Adhesion, Migration, and Proliferation 

 Necl-2 is widely expressed in various tissues and localizes at the basolateral plasma 
membrane of epithelial cells, although it is not at the specialized cell–cell junctions 
such as AJs, TJs, and desmosomes (Shingai et al.  2003 ; Takai et al.  2008a ,  b ). The 
ability of nectin-3 to interact  in cis  with Necl-2 suggests that Necl-2 is recruited to 
the nectin-3-based cell–cell adhesion sites during the formation of AJs (Takai et al. 
 2008a ,  b ). After Necl-2 is assembled to the primordial cell–cell adhesion sites, it 
may be translocated from there to the extrajunctional region of the basolateral 
plasma membrane. The mechanism of segregation of Necl-2 from nectin-3 at the 
plasma membrane is currently unknown. 

 Necl-5 physically and functionally interacts  in cis  with integrin α V β 3  and the 
PDGF receptor and stimulates cell movement by enhancing both integrin α V β 3 - 
and PDGF receptor-induced signalings. Necl-5 co-localizes with integrin α V β 3  and 
the PDGF receptor at peripheral ruffl es and with integrin α V β 3  at focal complexes 
(Minami et al.  2010 ). Necl-5 facilitates the integrin α V β 3 -dependent, PDGF receptor- 
induced activation of Rac, which regulates the formation of peripheral ruffl es and 
focal complexes. Necl-5 is also involved in the contact inhibition of cell movement. 
When two moving cells collide with each other, Necl-5 on the surface of one cell 
interacts  in trans  heterophilically with nectin-3, which may be diffusely distributed 
along the adjacent cell surface, initiating the formation of cell–cell junctions (Ikeda 
et al.  2003 ). This  trans -interaction induces the activation of Cdc42 and Rac (Sato 
et al.  2004 ), which enhances the reorganization of the actin cytoskeleton and 
increases the number of cell–cell adhesion sites. However, because the  trans - 
interaction  of Necl-5 with nectin-3 is transient, Necl-5 is downregulated and endo-
cytosed from the plasma membrane in a clathrin-dependent manner (Fujito et al. 
 2005 ), which reduces cell movement. On the other hand, nectin-3 dissociated from 
Necl-5 is retained on the plasma membrane and subsequently interacts  in trans  with 
nectin-1, which most feasibly interacts  in trans  with nectin-3 (Ikeda et al.  2003 ). 
Then, cadherin is recruited to the nectin-based adhesion sites, eventually establish-
ing AJs. Hence, the cell–cell contact-induced  trans -interaction of Necl-5 with nec-
tin- 3 and the subsequent downregulation of Necl-5 are at least one of the mechanisms 
of the contact inhibition of cell movement (Fujito et al.  2005 ). 

 In addition, Necl-5 enhances the PDGF-induced cell proliferation by shortening 
the period of the G 1  phase of the cell cycle (Kakunaga et al.  2004 ). Necl-5 enhances 
the PDGF-induced activation of the Ras-Raf-MEK-ERK pathway and consequently 
upregulates cyclins D2 and E and downregulates p27Kip1. Necl-5 regulates the 
VEGF-induced angiogenesis by controlling the interaction of VEGF receptor 2 with 
integrin α V β 3  and the VEGF receptor 2-mediated activation of downstream proan-
giogenic and survival signals, including Rap1, Akt, and endothelial nitric oxide 
synthase (Kinugasa et al.  2012 ). 

 Necl-5 also heterophilically interacts  in trans  with DNAM-1/CD226, which 
is expressed in human natural killer cells (Bottino et al.  2003 ). DNAM-1 has 
one extracellular region with two Ig-like loops, one transmembrane region, and 
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one cytoplasmic region. Heterophilic  trans -interactions of CD155/hNecl-5 with 
DNAM-1, poliovirus, and an anti-CD155 monoclonal antibody stimulate the 
 phosphorylation of Necl-5 by Src kinases and recruit SH2-domain-containing 
 tyrosine phosphatase-2 (Oda et al.  2004 ).   

5.4     Nectins and Necls in Neuronal Tissues 

5.4.1     Nectins and Necls at Neuron–Neuron Interactions 

    Nectins and Necls in Synapse Formation 

 Interneuronal synapses are asymmetric homotypic cell–cell adhesions. At the synapses, 
at least two types of intercellular junctions with different functions have been recog-
nized: synaptic junctions (SJs) and puncta adherentia junctions (Fig.  5.3 ). Synaptic 

  Fig. 5.3    Puncta adherentia junctions in neurons. Synapse between a mossy fi ber terminal of a 
granule cell and a dendrite of a pyramidal cell in the CA3 region of the hippocampus contains two 
types of junctions: synaptic junctions and puncta adherentia junctions. Nectin-1 and nectin-3 
asymmetrically localize at the mossy fi ber terminal (presynaptic side) and at the dendrite of pyra-
midal cell (postsynaptic side), respectively, and form the puncta adherentia junctions in coopera-
tion with cadherins       
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junctions are associated with synaptic vesicles that are docked at the  presynaptic active 
zone where Ca 2+  channels localize and with postsynaptic densities (PSDs) that are 
regarded as sites of specifi c receptors to which the neurotransmitter binds. Puncta 
adherentia junctions are not associated with synaptic vesicles or PSDs and appear to be 
similar in ultrastructure to the AJs of epithelial cells. They are regarded as mechanical 
adhesion sites between presynaptic axon terminals and PSDs. At the mossy fi ber syn-
apses, synapses between the mossy fi ber terminals and the dendrites of pyramidal cells 
in the CA3 area of the hippocampus, both synaptic and puncta adherentia junctions, are 
highly specialized and are actively remodeled in an activity-dependent manner (Amaral 
and Dent  1981 ). N-Cadherin and αN- and β-catenins localize symmetrically at both the 
presynaptic and postsynaptic sides of puncta adherentia junctions, whereas nectin-1 
and nectin-3 localize asymmetrically at the presynaptic and postsynaptic sides of puncta 
adherentia junctions, respectively (Mizoguchi et al.  2002 ) (Fig.  5.3 ). Puncta adherentia 
junctions have been regarded as symmetrical junctions on the basis of the morphologi-
cal symmetry and symmetrical distribution of N-cadherin (Mueller and Wimmer  2003 ; 
Shingai et al.  2003 ), but their molecular architecture in this region is asymmetrical, at 
least in part, with regard to nectins (Mizoguchi et al.  2002 ).

   The molecular mechanism of synapse formation is thought to be analogous, in 
part, with that of the epithelial junctions in terms of the localization patterns of the 
junctional proteins. At the primitive synapse, synaptic and puncta adherentia junc-
tions are not morphologically differentiated, but during their maturation membrane 
domain specialization is gradually formed (Amaral and Dent  1981 ). This neural 
membrane domain specialization may have some analogy with that found during 
the formation of the junctional complex in epithelial cells, with respect to the 
dynamic localization patterns of the junctional proteins. We speculate, by analogy 
with the formation of the junctional complex in epithelial cells, that nectins fi rst 
form primordial junctions between dendrites and axons in synaptogenesis and that 
this event is followed by the recruitment of N-cadherin. The components of the 
active zones would then be recruited to the primordial junctions to form active zones 
at the presynaptic side. At the postsynaptic side, the components of PSDs would be 
assembled and membrane receptors would be transported there. The nectin and 
 cadherin systems may serve as membrane cues for the assembly of these compo-
nents. The membrane domains, comprising synaptic junctions and puncta adheren-
tia junctions, would then gradually become segregated, followed by a maturation of 
synapses as AJs and TJs are segregated in epithelial cells. Thus, cell–cell adhesions 
in epithelia are symmetric homotypic, while synapses are asymmetric homotypic. 
Of the many molecules involved in synapse formation, afadin is required for syn-
apse formation on dendritic spines in the stratum radiatum of the CA1 region of the 
hippocampus (Beaudoin et al.  2012 ). Afadin regulates spine morphology in coop-
eration with Rap1, which is activated by NMDA receptors (Xie et al.  2005 ). Afadin 
is recruited to the plasma membrane by activated Rap1 and induces spine neck 
elongation, while afadin is dissociated from the membrane by inactive Rap1 and 
induces spine enlargement, suggesting that afadin could be involved in activity-
dependent synaptic plasticity. However, it remains unclear whether these functions 
of afadin are involved in the action of nectins in synapse formation. 
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 ZO-1 associates with TJs in epithelial cells (Stevenson et al.  1986 ) and binds to 
F-actin. ZO-1 belongs to the membrane-associated guanylate kinase-like homo-
logues (MAGUKs) family (Itoh et al.  1993 ; González-Mariscal et al.  2000 ) and 
plays a key role in the formation and maintenance of TJs in epithelial cells and 
endothelial cells (Hartsock and Nelson  2008 ; Wolburg and Lippoldt  2002 ). In neu-
rons, ZO-1 co-localizes with nectins and cadherins at puncta adherentia junctions 
(Inagaki et al.  2003 ), which suggests that ZO-1 plays a role in the segregation of the 
components of synaptic junctions and puncta adherentia junctions, as is described 
for the role of ZO-1 in epithelial cells (Hogle  2002 ). 

 In addition to nectins, afadin, cadherins, and catenins, neuroligins and neurexins 
have been implicated in synapse formation (Biederer et al.  2002 ; Missler et al. 
 1998 ). Neuroligins and neurexins localize at the presynaptic and postsynaptic sides 
of SJs, respectively (Ushkaryov et al.  1992 ; Song et al.  1999 ). Neuroligins induce 
stable junctions with presynapse-like properties between neurons and neuroligin- 
expressing fi broblasts that are co-cultured with dissociated hippocampal neurons 
(Dean et al.  2003 ; Scheiffele et al.  2002 ). N-Cadherin and neuroligin-1 cooperate to 
control vesicle clustering at nascent synapses (Stan et al.  2010 ). They also in con-
cert regulate the formation of glutamatergic synapses (Aiga et al.  2011 ). The rela-
tionship between the nectin–afadin complex and the neurexin–neuroligin complex 
in synaptogenesis is not known. However, there are at least afadin-dependent and/
or neuroligin-dependent signaling pathways in synaptogenesis (unpublished 
observation). 

 Necls have been reported as Ig-like CAMs at synapses and named SynCAM1-3 
(Biederer et al.  2002 ). Biederer et al. reported that SynCAM1/Necl-2 was specifi -
cally synthesized in mouse brain (Biederer et al.  2002 ), whereas we found that 
Necl-2 was ubiquitously expressed (Kakunaga et al.  2005 ) as reported elsewhere 
(Wakayama et al.  2001 ; Fukami et al.  2002 ; Shingai et al.  2003 ). Presumably, the 
reason caused this inconsistency is that the anti-SynCAM1/Necl-2 Ab used by 
Biederer and coworkers (Biederer et al.  2002 ) may recognize Necl-1 but not Necl-
2. Although they reported that SynCAM1 co-localized with synaptophysin and 
localized at synaptic junctions (Biederer et al.  2002 ), we could not repeat these 
results and the reason for this inconsistency remains unknown. SynCAM1/Necl-2 
in particular has been shown to be involved in synapse formation and remodeling. 
Glutamatergic synaptic transmission is reconstituted between cultured neurons and 
non-neuronal cells co-expressing glutamate receptors with SynCAM1/Necl-2, sug-
gesting that a single type of SynCAM1/Necl-2 as well as the glutamate receptor is 
suffi cient for a functional postsynaptic response (Biederer et al.  2002 ; Sara et al. 
 2005 ). SynCAM1/Necl-2 acts in developing neurons to shape migrating growth 
cones and contributes to the adhesive differentiation of their axo- dendritic contacts 
(Stagi et al.  2010 ). In addition to the involvement in the organization of synapses 
SynCAM1/Necl-2 may recruit both the AMPA receptors and the NMDA receptors 
during synapse formation (Hoy et al.  2009 ). Moreover, Necl-2 may be involved in 
neuronal migration, axon growth, path fi nding, and fasciculation on the axons of 
differentiating neurons in addition to cell adhesion in the neuroepithelium and the 
synapses (Fujita et al.  2005 ). The functions of SynCAM1/Necl-2 are modulated by 

5 Roles of Nectins and Nectin-Like Molecules in the Nervous System



102

polysialic acid during integration of proteoglycan NG2-positive glial cells into 
 neural networks (Galuska et al.  2010 ). Overexpression of Necl-2 leads to the upreg-
ulation of CASK and increased Ca 2+ -independent cell adhesion (Giangreco et al. 
 2009 ). CASK is recruited to developing axon terminals by Necl-2 and neurexin/
neuroligin (Kakunaga et al.  2005 ).  

    Nectins and Necls in Synapse Remodeling 

 Spines are dynamic structures that undergo rapid remodeling and experience- 
dependent spine remodeling provides a structural basis for learning and memory 
(Yuste and Bonhoeffer  2001 ). Synaptic activity that induces long-term potentia-
tion, a long-lasting enhancement of synaptic strength, promotes spine enlarge-
ment and new spine formation (Matsuzaki et al.  2004 ). Spine structure and 
synaptic function are closely related (Kasai et al.  2003 ). The mechanisms that 
control the development and remodeling of spiny synapses under normal and 
pathological conditions need to be studied. Immature spines are often thin and 
elongated with fi lopodia; during their maturation, spine length decreases and the 
proportion of mushroom spines increases. The molecular details of how the 
 fi lopodia are formed are still unknown, but they might be formed by the Cdc42 
activated by the  trans -interactions of nectins (Bottino et al.  2003 ; Takai et al. 
 2008a ,  b ). N-Cadherin is involved in the formation of dendritic spines (Amaral 
and Dent  1981 ). It has been reported that scatter factor/hepatocyte growth factor 
and 12- O -tetradecanoylphorbol-13-acetate induce ectodomain shedding of nec-
tin-1, which results in the formation of an extracellular fragment of nectin-1 
(Tsukita et al.  2001 ; Yamada et al.  2004 ). In addition, nectin-1 serves as a sub-
strate for presenilin/γ-secretase in the brain (Kim et al.  2002 ). The extracellular 
fragment of nectin-1 formed by this shedding may bind to dendritic nectin-3 and 
induce the formation of fi lopodia, which would result in changes to spine mor-
phology. In the  afadin  conditionally defi cient mice crossed with camk2a-Cre 
mice, the active zone protein, bassoon, and the postsynaptic density protein, PSD-
95, are accumulated at mossy fi ber-CA3 pyramidal cell synapses, while perfo-
rated PSDs tend to be more frequently observed than in control mice (Majima 
et al.  2009 ). Perforated PSDs are observed in synapses that undergo remodeling 
(Yuste and Bonhoeffer  2001 ). Thus, afadin is likely to regulate the remodeling of 
synapses. Whereas previous studies have advanced our understanding of molecu-
lar mechanisms of synapse formation, molecular mechanisms underlying synaptic 
remodeling remain largely unknown. 

 As the components of heterophilic  trans -synaptic adhesion complexes such as 
a SynCAM1/Necl-2–SynCAM2/Necl-3 complex and a SynCAM3/Necl-1–
SynCAM4/Necl-4 complex, Necls contribute to synapse organization and function 
(Fogel et al.  2007 ). SynCAM1/Necl-2 is also involved in synapse remodeling 
(Robbins et al.  2010 ). Necl-2 contributes to the regulation of synapse number and 
plasticity and impacts how neuronal networks undergo activity-dependent changes. 
Lateral self-assembling of SynCAM1/Necl-2 within the synaptic cleft promotes 
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synapse induction and modulates their structure (Fogel et al.  2011 ). N-Glycosylation 
of SynCAM1/Necl-2 and SynCAM2/Necl-3 differentially affects their binding 
interface and  implicates posttranslational modifi cation as a mechanism to regulate 
 trans -synaptic adhesion (Fogel et al.  2010 ).  

    Nectins and Necls at Contacts Between Commissural 
Axons and Floor Plate Cells 

 In the neural tube, commissural axons grow toward the ventral midline, cross the 
fl oor plate, and then abruptly change their trajectory from the circumferential to the 
longitudinal axis (Fig.  5.4 ). This axon guidance is mediated by the contacts between 
commissural axons and the basal processes of fl oor plate cells. Nectin-1 and nectin-
 3 asymmetrically localize at the commissural axon side and the fl oor plate cell side, 
respectively, of the plasma membranes at their contact sites and play an important 
role in the trajectory of the commissural axons (Okabe et al.  2004a ). In addition to 
the nectin-1 and nectin-3 system, Necls are also involved in the trajectory of com-
missural axons. Necl-3 that is expressed by fl oor plate cells interacts with Necl-2 
that is expressed by commissural axons to mediate a turning response in post- 
crossing commissural axons in the developing chick spinal cord  in vivo  (Niederkofl er 
et al.  2010 ). Cadherins do not localize at the contact sites, while nectins and Necls 
localize there and may serve as CAMs. The weak  trans -interaction between nectins 
and/or Necls, instead of the strong adhesion mediated by cadherins, might be advan-
tageous when commissural axons continuously elongate while they are attached to 
fl oor plate cells.

  Fig. 5.4    Localization and roles of nectins and Necls at the contacts between commissural axons and 
fl oor plate cells in the neural tube. When the commissural axons make cell contacts with the den-
drites of the fl oor plate cells, they extend across the central canal to make shift either to the rostral 
side or to the caudal side. Nectin-3 and Necl-3 on extending axons interact with nectin-1 and Necl-2 
on dendrites of the fl oor plate cells, respectively. Cadherins do not localize at the contact sites       

 

5 Roles of Nectins and Nectin-Like Molecules in the Nervous System



104

5.4.2         Necls at Neuron–Glia Interactions 

 Neurons interact not only with neurons but also with glial cells, such as astrocytes 
and oligodendrocytes. Interaction of neurons with glia is critical for a variety of 
functions in the nervous system, including neural activities and synapse transmis-
sion. Necl-1 is expressed at the contact sites among axons, their terminals, and 
glial cell processes that cooperatively form axon bundles, synapses, and myelin-
ated axons (Kakunaga et al.  2005 ). Necl-1 is likely to serve as a CAM at the non- 
junctional cell–cell contact sites of the nervous tissues. In fact, Necl-1 plays an 
important role in the initial axon-oligodendrocyte recognition and adhesion in 
central nervous system myelination (Park et al.  2008 ). Necl-4 in Schwann cells 
plays an important role in initiating peripheral nervous system myelination as the 
glial binding partner for Necl-1 on the axon (Fig.  5.5 ) (Maurel et al.  2007 ; Spiegel 
et al.  2007 ). Necl-2-mediated glia cell adhesiveness is affected by erbB4 receptor 
activation (Sandau et al.  2011 ). Necl-3 also acts as an adhesion molecule between 
different cell types, interacting with other Necls in the central and peripheral ner-
vous systems (Pellissier et al.  2007 ). Thus, in both the central and peripheral 
nervous systems, Necls are involved in myelination by mediating adhesion among 
different cell type such as neuron and glial cells.

  Fig. 5.5    Myelin sheath of 
the peripheral nerve. Necl-1 
is specifi cally expressed at 
the contact sites among axons 
and glia cell processes that 
form the myelin sheath. 
Necl-4 in the Schwann cells 
plays an important role in 
initiating peripheral nervous 
system myelination as the 
glial binding partner for 
Necl-1 on the axon. At the 
Schwann cell–axon contact, 
Necl-1 on the axon interacts 
 in trans  with Necl-4 on the 
Schwann cell, while at the 
autotypic junctions formed 
between the myelin lamellae 
at the Schmidt–Lanterman 
incisure, Necl-1 interacts  in 
trans  with Necl-4       
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5.5         Nectins in the Auditory Epithelium 

 In the organ of Corti, sensory hair cells and supporting cells are observed. Hair cells 
convert sounds into electrical signals, which are transmitted to the brain. Hair cells 
and supporting cells are highly organized to form a checkerboard-like pattern 
(Kelley  2006 ). However, molecular mechanisms that regulate this characteristic pat-
tern had remained unknown. In the mouse organ of Corti, hair cells and supporting 
cells express nectin-1 and nectin-3, respectively, but both cells possess nectin-2. The 
 trans -interaction between nectin-1 and nectin-3 mediates the heterotypic adhesion 
between these two cell types, as the fi ne mosaic pattern is lost in  nectin - 1 −/− mice 
and  nectin - 3 −/− mice (Togashi et al.  2011 ). Moreover, in these mutant mice, the 
position of the kinocilium and the orientation of stereociliary bundles in hair cells 
are altered (unpublished observation). Thus, the  trans -interaction between nectin-1 
and nectin-3 is critical not only for checkerboard-like pattern formation, but also 
positioning of the kinocilium and stereociliary bundle orientation in hair cells.  

5.6     Nectins and Necls in Diseases 

5.6.1     Nectins and Necls as Viral Receptors 

 Virus interaction with cellular receptors is an essential step for recognition of the 
host cell and for commitment of the virus to initiate infection. Some viruses such as 
herpes virus and poliovirus show a tropism for neurons. Upon peripheral infection 
such viruses may enter the central nervous system and cause massive damage, either 
by direct virus-conferred effects or by immunopathology. Nectin-1 was originally 
isolated as one of the PVR-related proteins and named PRR-1 (Lopez et al.  1995 ). 
Nectin-2 was originally isolated as the murine homologue of human PVR, but 
turned out to be another PVR-related protein and was named PRR-2 (Eberlé et al. 
 1995 ). Neither PRR-1 nor PRR-2 has thus far been shown to serve as a PVR. They 
were later shown to serve as receptors for α-herpes viruses, facilitating their entry 
and intercellular spreading, and renamed HveC and HveB, respectively (Table  5.1 ) 
(Geraghty et al.  1998 ; Spear et al.  2000 ). Human nectin-1 allows entry of all 
α-herpes viruses tested so far, including herpes simplex virus (HSV) types 1 and 2, 
pseudorabies virus, and bovine herpes virus type 1 (Geraghty et al.  1998 ). Human 
nectin-2 can mediate entry of a restricted number of α-herpes viruses (Warner et al. 
 1998 ). The interaction of nectin-1 or nectin-2 with one of the HSV envelope glyco-
proteins recruits other viral glycoproteins to initiate fusion between the viral enve-
lope and a cell membrane, thereby mediating the entry of the viral nucleocapsid into 
the cell (Spear and Longnecker  2003 ). The usual manifestations of HSV disease are 
mucocutaneous lesions. HSV establishes latent infection of neurons in sensory gan-
glia and causes recurrent lesions at the sites of primary infection. In HSV disease, 
the intercellular spreading signifi cantly contributes to the pathogenesis. The interac-
tion of nectin-1 with afadin increases the effi ciency of intercellular spreading, but 
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not the entry, of HSV-1. The E-cadherin–catenin system increases the effi ciency of 
both the entry and intercellular spreading of HSV-1 (Sakisaka et al.  2001 ). Nectin-4 
was recently identifi ed as the epithelial cell receptor for the measles virus (Mühlebach 
et al.  2011 ; Noyce et al.  2011 ). Coupled with recent observations made in measles 
virus-infected macaques, this discovery has led to a new paradigm for how the virus 
accesses the respiratory tract and exits the host. Human Necl-5 (hNecl-5) was origi-
nally isolated as a receptor for poliovirus and was named hPVR (Koike et al.  1990 ; 
Mendelsohn et al.  1989 ). Poliovirus infects susceptible cells through  hNecl-5/
hPVR. It is thought that binding of hNecl-5/hPVR to poliovirus, the outer coat of 
which is an icosahedral protein shell, initiates conformational changes that enable 
the altered virion to bind to membranes and to invade cells even in the absence of 
the receptor (Hogle  2002 ). It is not clear whether the target membrane for entry is 
the plasma membrane or an endosomal membrane. Poliovirus is the causative agent 
of poliomyelitis. The usual manifestations of poliomyelitis disease are the spread 
and replication of virus in the central nervous system, particularly in the motor neu-
rons. The cytoplasmic domain of hNecl-5/hPVR on the surface of endosomes that 
might enclose an intact poliovirion could interact with cytoplasmic dynein and the 
endosomes could be transported in a retrograde direction along microtubules 
through the axon to the neural cell body where replication of poliovirus occurs. It 
remains unknown whether other nectins and Necls serve as viral receptors. Thus, 
nectins and Necls are not only CAMs but also viral receptors and play a critical role 
in the pathogenesis of neurotrophic viral infections. Therefore, nectins and Necls 
could be therapeutic targets or probes as viral receptors. For example, nectin-4 is 
also a tumor cell marker that is highly expressed on the apical surface of many 
adenocarcinoma cell lines, making it a potential target for the oncolytic therapy by 
measles virus (Noyce and Richardson  2012 ).

5.6.2        Nectins in Neurological Diseases 

 Many lines of evidence suggest the association of nectins with pathogenesis of 
various neurological diseases. Mutations in the nectin-1 gene are responsible for 
cleft lip/palate ectodermal dysplasia, Margarita island ectodermal dysplasia and 
Zlotogora-Ogür syndrome, which are characterized by cleft lip/palate, syndactyly, 
mental retardation, and ectodermal dysplasia (Sozen et al.  2001 ; Suzuki et al.  2000 ). 

  Table 5.1    Nectins and Necls 
as viral receptors  

 Nectins/Necls  Viruses 

 Nectin-1  HSV-1, HSV-2, PVR, BHV-1 
 Nectin-2  HSV-2, PVR 
 Nectin-3  Not identifi ed 
 Nectin-4  MV 
 Necl-1, -2, -3, -4  Not identifi ed 
 Necl-5  PVR, BHV-1, PV 
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Impairment of the function of nectin-1 in synapse formation would explain the 
cause of the mental retardation. These phenotypes mainly affect the places where 
nectin-1 is specifi cally expressed (Okabe et al.  2004b ). Mutations in human  nectin- 4 
cause an ectodermal dysplasia–syndactyly syndrome that is characterized by the 
combination of hair and tooth abnormalities, alopecia, and cutaneous syndactyly 
(Brancati et al.  2010 ). Recent genome-wide association studies of various popula-
tions, including Japanese and African Americans, have shown a genetic association 
between single nucleotide polymorphisms (SNPs) in  NECTIN - 2  and late-onset AD 
(Harold et al.  2009 ; Logue et al.  2011 ; Takei et al.  2009 ), and mutations in  NECTIN - 3  
are associated with human ocular disease and congenital ocular defects (Lachke 
et al.  2012 ). A SNP in the 3′UTR region of  NECTIN-2  is one of the 13 genome-
wide signifi cant SNPs that map within or close to the  APOE  (Apolipoprotein E) 
locus on chromosome 19, whose polymorphic expression is widely associated with 
AD (Harold et al.  2009 ). These results suggest that together with a known associa-
tion of APOE with AD, genetic variations in the  NECTIN-2  gene may have implica-
tions for predisposition to this disease. At the synapses in the CA3 area of the 
hippocampus, the number of puncta adherentia junctions is decreased in both  nec-
tin-1 −/− mice and  nectin-3 −/− mice (Honda et al.  2006 ). Furthermore, in the  nectin -
 1 -defi cient mice, there is an abnormal trajectory of mossy fi bers at the stratum 
lucidum of the hippocampus, possibly as a result of impaired puncta adherentia 
junctions. Both the  nectin - 1 −/− mice and  nectin-3 −/− mice show microphthalmia 
and display a separation of the apex–apex adhesion between the pigment and non- 
pigment epithelia of the ciliary body (Inagaki et al.  2005 ).  

5.6.3     Possible Involvement of Nectins and Necls 
in Other Diseases 

 Besides neurological diseases, nectins and Necls may be involved in the pathogen-
esis of various other diseases. Both  nectin-2 −/− mice and  nectin-3 −/− mice exhibit 
the male-specifi c infertility phenotype and have defects in the later steps of sperm 
morphogenesis, exhibiting distorted nuclei and abnormal distribution of mito-
chondria (Bouchard et al.  2000 ; Inagaki et al.  2005 ; Ozaki-Kuroda et al.  2002 ). 
The structure of Sertoli cell–spermatid junctions is severely impaired, and the 
localization of afadin and nectin-3 or nectin-2 is disorganized in the  nectin-2 −/− 
mice and  nectin-3 −/− mice, respectively. In all the cases, the impaired phenotypes 
occur at cell–cell junctions and contacts where the functions of the two nectins are 
not redundant. The heterophilic  trans -interaction of nectins plays a particularly 
important role in maintaining the specialized junctions and contacts between dif-
ferent types of cells. Mice defi cient in nectin-1, nectin-2, or nectin-3 do not appar-
ently show impaired organization of AJs and TJs in tissues where multiple types 
of nectins are expressed, which might indicate that the nectins have overlapping 
functions in these tissues.  Afadin −/− mice are embryonic lethal and show develop-
mental defects at stages around gastrulation, including disorganization of the 
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ectoderm, impaired migration of the mesoderm, and loss of somites and other 
structures that are derived from both the ectoderm and the mesoderm (Ikeda et al. 
 1999 ). In the ectoderm of the mutant mice, the organization of AJs and TJs is 
highly impaired. One reason why  afadin −/− mice show more severe phenotypes 
than nectin- defi cient mice is because afadin does not have family members. Necl-2 
and Necl-5 are likely to contribute to tumorigenesis. Necl-2 serves as a tumor sup-
pressor in human non- small cell lung cancer (Kuramochi et al.  2001 ). Rodent 
Necl-5 was identifi ed as a product of a gene overexpressed in rat and mouse colon 
carcinoma (Chadeneau et al.  1994 ,  1996 ). Necl-5 is expressed at low levels in 
many cells, but its expression level is upregulated in many carcinomas (Ikeda et al. 
 2004 ; Chadeneau et al.  1994 ,  1996 ). Necl-5 is overexpressed in human colorectal 
carcinoma and malignant glioma (Masson et al.  2001 ). Upregulated Necl-5 in can-
cer is responsible at least partly for the enhanced motility and proliferation of 
cancer cells (Ikeda et al.  2003 ,  2004 ).   

5.7     Conclusions and Perspectives 

 Evidence has been accumulated that nectins and Necls are important for various 
aspects of the nervous system physiology, such as synapse formation and remodel-
ing, the trajectory of the commissural axons in the neural tube, myelination, and 
development of the auditory epithelium. However, questions about nectins and 
Necls still remain that include their roles in neuronal circuit formation, synaptic 
plasticity, neuronal cell differentiation, establishment of planar cell polarity in the 
auditory epithelium, and formation of heterotypic cell adhesions in the nervous sys-
tem. Functional analysis combined with fi ne molecular and biological manipula-
tions will answer these questions. For example, the  trans -interaction between 
nectin-1 and nectin-3 may affect the output of the hippocampal mossy fi ber circuit 
by changing the balance of excitatory and inhibitory synaptic transmission. Live 
imaging of hippocampal mossy fi bers by means of a fl uorescent dye will enable us 
to clarify the involvement of nectins and Necls in synapse formation and remodel-
ing after induction of long-term potentiation. Further studies of the relationship 
between structural remodeling and change in functional parameter such as action 
potential fi ring rate and amplitude of synaptic response will provide valuable infor-
mation to help answer how changes in synaptic structures contribute to changes in 
function of neuronal circuits. Moreover, conditional inactivation of afadin, a nectin- 
binding protein, also will help understand further the molecular mechanisms of syn-
apse formation and remodeling. 

 On the other hand, nectins and Necls have been implicated in pathophysiology 
of neurological disorders. Several members of nectins and Necls have been identi-
fi ed as virus receptors. Mutations in the nectin genes can be the causes of heredi-
tary neurological disorders and SNPs in the nectin genes are associated with 
neurodegenerative diseases. To assess the contribution of nectins and Necls in the 
pathogenesis of neuropsychiatric diseases, their signifi cance should be studied at 
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molecular, cellular, and  in vivo  levels. In particular,  in vivo  analysis is important to 
clarify the initiation and progression of disease processes precisely. Fortunately, 
 nectin-1 −/−,  nectin-2 −/−,  nectin-3 −/−,  Necl-2/SynCAM1 −/−,  Necl-4 −/−,  Necl-5 −/− 
mice have been already generated. Such mouse models would be powerful tools to 
advance our understanding of the signifi cance of nectins and Necls in pathophysi-
ology of neurological disorders.     
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    Abstract     The neuron-specifi c intercellular adhesion molecule-5 (ICAM-5, 
 telencephalin) is a member of the ICAM family of adhesion proteins. It has a 
 complex structure with nine external immunoglobulin domains followed by a 
transmembrane and a cytoplasmic domain. The external part binds to β1- and 
β2-integrins and the matrix protein vitronectin, whereas its transmembrane 
domain binds to presenilins and the cytoplasmic domain to α-actinin and the ERM 
family of cytoplasmic proteins. In neurons it is confi ned to the soma and dendrites 
and it is enriched in dendritic fi lopodia with less expression in more mature den-
dritic spines. ICAM-5 strongly stimulates neurite outgrowth. ICAM-5 is cleaved 
by matrix metalloproteases upon activation of glutamate receptors or degraded 
through endocytosis resulting in increased spine maturation. Ablation of ICAM-5 
expression increases functional synapse formation. The cleaved soluble fragment 
of ICAM-5 is immunosuppressive, which may be important in neuronal infl am-
matory diseases.  

6.1         Introduction 

 Cell adhesion is necessary for the distribution of cells during development, for the 
formation of different organs and for the circulation of blood cells. It is absolutely 
pivotal for the development of the brain, but it is also equally important that the 
adhesion is regulated to enable the generation of dynamical changes in synapses and 
plasticity. 
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 Four major families of adhesion proteins are known in mammals. These include 
the integrin family, the selectins, the immunoglobulin superfamily and the cadher-
ins. The integrins are heterodimeric molecules composed of an α-chain and a 
β-chain. They are type I membrane proteins with the N-terminal domains on the 
outside of cells, followed by a transmembrane domain and a cytoplasmic part. There 
are 24 members in mammals which can be divided into different families according 
to their β-chains (Hynes  2002 ; Gahmberg et al.  2009 ; Luo et al.  2007 ). The 
β1-integrins are expressed in several tissues and they bind to extracellular matrix 
proteins such as collagens and fi bronectin, but also to membrane proteins such as 
vascular adhesion protein-1 (VCAM-1). The β2-integrins are confi ned to leukocytes 
and bind to intercellular adhesion molecules (ICAMs) (Gahmberg et al.  2009 ; Luo 
et al.  2007 ). The β3-integrins are expressed for example in endothelial cells and 
platelets and bind to several different types of ligands. β4-integrins on endothelial 
cells bind mainly to laminins, but also to other ligands. 

 Importantly, the integrins need to become activated to be able to bind ligands, 
and it has become evident that conformational changes occur in their structures 
upon activation. Although there may exist exceptions, it is generally agreed that in 
the resting state the integrin ligand binding head is turned back towards the mem-
brane, but when the integrin becomes activated, it straightens out, but the binding 
region remains closed. Further activation results in opening of the ligand binding 
domain with an increase in the affi nity for ligands (Xiong et al.  2001 ; Luo et al. 
 2007 ). The integrins can be activated by ligand binding to non-integrin receptors on 
the cells followed by intracellular signalling to the integrins (inside-out activation). 
For example, different chemokines, which bind to chemokine cell surface receptors, 
are effi cient activators of integrins (Gahmberg et al.  2009 ; Luo et al.  2007 ). But the 
integrins can also be activated by direct binding of ligands to the integrins on the 
outside of the cell followed by signalling (outside-in activation). How the commu-
nication over the membrane takes place is still incompletely understood, but we 
know that at least for β2-integrins, specifi c phosphorylations of the integrin cyto-
plasmic domains are essential. The phosphorylations result in turn in binding of 
intracellular 14-3-3 proteins, followed by binding of the G protein exchange factor 
Tiam1 and activation of the small G protein Rac-1 (Fagerholm et al.  2002 ,  2005 , 
 2006 ; Hilden et al.  2003 ; Nurmi et al.  2007 ; Takala et al.  2008 ; Grönholm et al. 
 2011 ). Interactions with several cytoskeletal proteins such as fi lamin, talin, cytohe-
sin- 1 and the kindlins 1–3 are also important (Gahmberg et al.  2009 ). 

 The selectins are carbohydrate binding proteins recognizing sialyl Le x - 
oligosaccharides on endothelial cells and leukocytes. These oligosaccharides can 
occur on several different glycoproteins and glycolipids. The selectins are active in 
the blood vessels and induce the rolling of leukocytes along the endothelial cell 
surfaces. This is often a prerequisite for the subsequent activation of the integrins. 

 The cadherins are expressed in epithelia and are important in organ formation 
and various adhesion events. They need Ca ++  for activity and interact in a homo-
philic manner. Different cadherins can also bind to each other. They span the plasma 
membrane and bind to catenins in the cytoplasm and also here phosphorylation 
reactions may be important in the regulation of their activity (Takeichi  1991 ). 
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 The large immunoglobulin superfamily of adhesion receptors is composed of 
molecules with one or more immunoglobulin (Ig) domains, which are involved in 
the interactions with integrins or act in homophilic binding events. A subfamily is 
formed by the fi ve ICAM molecules (Gahmberg  1997 ). 

 In this review we focus on ICAM-5 (telencephalin), which is a neuronal cell 
surface protein present on the cell soma and dendrites. It exhibits properties impor-
tant in synapse development and plasticity, but it is also involved in immunological 
reactions in the brain. Recent work has shown that this molecule may serve as a 
model protein in studies on synapse structure and development. It should be pointed 
out, however, that much of our present understanding of ICAM-5 is based on previ-
ous studies of the ICAM family of adhesion proteins and their integrin receptors. 

 No doubt it is necessary to characterize neuronal and glial molecules in detail 
to get an adequate understanding of how cognitive functions arise and develop. 
We realize that we are in the very beginning of this endeavour, but it is already 
apparent that it is possible to obtain informative results using well-defi ned experi-
mental setups.  

6.2     Expression, Structural Properties, and Binding 
Activities of ICAM-5 

 ICAM-5 (telencephalin) was originally identifi ed using a monoclonal antibody, 
which showed an antigenic distribution in the telencephalon region of the brain 
including the hippocampus (Yoshihara and Mori  1994 ). Subsequent isolation and 
cloning of the molecule showed that it belongs to the intercellular adhesion mole-
cule (ICAM) family (Yoshihara et al.  1994 ). Since their discovery (Rothlein et al. 
 1986 ; Patarroyo et al.  1987 ), these molecules were known to bind to the β2-integrin 
family of adhesion receptors, which are confi ned to leukocytes (Gahmberg et al. 
 2009 ; Takeichi  1991 ). The ICAMs are type I membrane proteins and are schemati-
cally drawn in Fig.  6.1 . The external parts are formed by Ig domains, followed by a 
single transmembrane domain and a cytoplasmic part. ICAM-1 and ICAM-3 con-
tain fi ve Ig domains and ICAM-2 and ICAM-4 two Ig domains, whereas ICAM-5 
has nine Ig domains. ICAM-1 is expressed in leukocytes but also in many other 
organs and it is often upregulated by various cytokines (Gahmberg et al.  1998 ), 
whereas ICAM-2 shows a more stable expression (Nortamo et al.  1991 ). It is con-
fi ned to leukocytes, platelets, and endothelial cells. ICAM-3 is leukocyte specifi c 
and it is important in the regulation of immune responses. It binds to the DC-SIGN 
protein (Geijtenbeek et al.  2000 ) through the carbohydrate on DC-SIGN (van Kooyk 
and Geijtenbeek  2003 ; Bogoevska et al.  2007 ). ICAM-4 (Landsteiner–Wiener anti-
gen) is erythroid cell specifi c and it may be important in the turnover of senescent 
red cells (Bailly et al.  1995 ; Toivanen et al.  2008 ). In contrast to these, ICAM-5 is 
neuron specifi c. The much more complex structure of ICAM-5 as compared to the 
other ICAMs indicated already early that it can express functions not associated 
with the other ICAM molecules.
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   In humans the ICAM-5 gene is on chromosome 19 (19p13.2) between the 
ICAM-1 and ICAM-3 genes and close to that of ICAM-4 (Sugino et al.  1997 ; 
Kilgannon et al.  1998 ). In contrast, the ICAM-2 gene is on chromosome 17 
(17q23–25). The mouse ICAM-5 gene is on chromosome 9. 

 ICAM-5 is highly conserved in different mammalian species (Yang  2012 ). Most 
work on the protein has been done with the human, murine, rabbit and rat proteins, 
and the results from one species can in most instances be applied to others 
(Gahmberg et al.  2008 ). ICAM-5 shows a low expression in embryos, but the 
expression rapidly increases after birth. This is the time when large numbers of 
synapses are formed, and as discussed below, ICAM-5 is important during synapse 
formation and maturation. 

 The LFA-1 leukocyte integrin (αLβ2, CD11a/CD18) binds to ICAM-5 and the 
binding region in ICAM-5 is in its fi rst Ig domain where glutamate-37 plays a key 
role (Mizuno et al.  1997 ; Tian et al.  1997 ; Zhang et al.  2008 ). The structure of the 
complex formed by this domain with the binding domain in LFA-1 (I-domain) has 
been determined by X-ray diffraction (Zhang et al.  2008 ). Upon binding, the 
α7-helix of the I-domain is moving away from its normal position enabling the bind-
ing of the corresponding helix from a neighbouring I-domain. Whether this occurs 
in cells is not known, but if so, such a mechanism could facilitate the clustering of 
LFA-1 molecules and in this way increase their avidity. Very recent work shows that 
β1-integrins, notably the α5β1-integrin, also bind to ICAM-5 through the two fi rst 
Ig domains (Conant et al.  2011 ; Ning et al.  2013 ) (Fig.  6.2 ). Furthermore, it was 
recently found that ICAM-5 can bind to the cell matrix protein vitronectin (Furutani 
et al.  2012 ). Vitronectin is a soluble protein, which itself is a β1-integrin ligand 
through its arginine-glycine-aspartic acid (RGD) sequence. This binding site is 
located in the NH 2 -terminal part of the protein, whereas the binding site for ICAM-5 
is in the hemopexin domain COOH-terminal of the RGD sequence. The binding of 
vitronectin to ICAM-5 induced phosphorylation of ezrin–radixin–moesin (ERM) 
proteins resulting in the recruitment of actin fi laments (Furutani et al.  2012 ).

  Fig. 6.1    Schematic structures of the ICAM family proteins. The immunoglobulin domains are 
depicted as  half circles  and the potential N-glycosylation sites are marked ( inverted triangle )       
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   ICAM-5 is heavily N-glycosylated and studies of rat brain ICAM-5 show a high 
proportion of high-mannose oligosaccharides (Ohgomori et al.  2009 ). Ohgomori 
et al. ( 2012 ) mutated all 15 N-glycosylation sites, one at a time, and found that the 
oligosaccharide at asparagine-54 was necessary for the transport of ICAM-5 to the 
cell surface, whereas mutation of the other sites had no effect. The asparagine-54 
mutated molecule could not induce the formation of fi lopodia, which is a character-
istic feature of ICAM-5. 

 The cytoplasmic domain of ICAM-5 is relatively long (Fig.  6.2 ). The proximal 
region contains the KKGEY sequence, which is important for the interaction with 
α-actinin (Nyman-Huttunen et al.  2006 ). It has been shown that ICAM-5-transfected 
Paju neuronal cells exhibit a co-distribution of α-actinin and ICAM-5. Introduction 
of the KKGEY peptide in the Paju neuronal cell line rounded up the cells and trans-
fection with an ICAM-5 KK/AA mutant resulted in loss of the α-actinin/ICAM-5 
co-distribution, indicating that the ICAM-5–α-actinin interaction is needed for cell 
adhesion. The ICAM-5/α-actinin co-distribution was most evident in dendritic 
shafts and fi lopodia (Nyman-Huttunen et al.  2006 ). 

 The cytoplasmic domain of ICAM-5 also interacts with the ERM family of cyto-
plasmic proteins (Furutani et al.  2007 ), and an acidic region in the domain distal to 
the KKGEY sequence was important in ERM protein binding (Fig.  6.2 ). 

 The ICAM-5/ERM co-distribution was most prevalent in fi lopodia (Furutani 
et al.  2007 ). The cytoplasmic domain also contains a long glycine/alanine-rich 
segment, but whether this is functionally important is not known. It could, how-
ever, give a fl exible character to the cytoplasmic domain, which could facilitate 

  Fig. 6.2    Schematic structure of human ICAM-5 and important regions indicated. The binding sites 
of ligands in the external part are shown above. The potential N-glycosylation sites are marked 
( inverted triangle ) and the site important in intracellular transport (Ohgomori et al.  2012 ). Below is 
the sequence of the cytoplasmic domain with the binding sites of α-actinin and ERM proteins indi-
cated. The glycine–alanine-rich region is indicated ( dashed line ) and the phenylalanine important 
in the transport to dendrites (F917). The numbering is from the beginning of the signal sequence       
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interactions with cytoplasmic  molecules. The cytoplasmic domain is important for 
the transport of ICAM-5 to dendrites. Mutation of phenylalanine-905 in murine 
ICAM-5, which corresponds to phenylalanine-917 in human ICAM-5 (Fig.  6.2 ), 
abrogated the specifi c transport to dendrites    (Mitsui et al.  2005 ) (Fig.  6.3 ).

6.3        ICAM-5 Regulates the Maturation of Dendritic Spines 

 ICAM-5 expression is strictly confi ned to dendrites and the soma, and axons do not 
express the protein. It stimulates the formation of neurites and their arborisation 
(Tamada et al.  1998 ; Tian et al.  2000 ). Filopodia and thin spines protruding from the 
dendritic shafts express high levels of ICAM-5, and these are considered to be pre-
cursors of mature spines (Tian et al.  2007 ). During spine maturation ICAM-5 
expression is gradually decreased. Therefore, one could anticipate that ICAM-5 is 
most important early during dendritic development. 

  Fig. 6.3    An EGFP- 
transfected mouse neuron at 
15 DIV. ( a ) The neuron was 
stained with an antibody to 
β1-integrins ( red ) and the 
presynaptic marker Synapsin 
I ( blue ). ( b ) Zoomed view of 
the area marked in ( a ).  Arrow 
heads  indicate β1-integrin 
immunoreactivity 
co-localized with Synapsin I, 
and opposite to EGFP- 
labelled spines       
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 Knock-out of the ICAM-5 gene does not result in any observable changes in the 
gross anatomy of the brain (Nakamura et al.  2001 ). This is in contrast to the results 
obtained with several other adhesion molecules. Ablation of NCAM, cadherin-11, 
contactin and L1 resulted in morphological abnormalities in the brain and loss of 
central functions. However, more detailed studies of neurons showed that knock-out 
of ICAM-5 resulted in a decrease of fi lopodia and an increase in mature spines 
(Ning et al.  2013 ; Matsuno et al.  2006 ). Overexpression, on the other hand, increased 
the number of fi lopodia and thin spines and slowed down the development of mature 
mushroom spines. These results indicate that ICAM-5 acts as an inhibitor of rapid 
spine maturation, which results in the development of more mature spines and the 
formation of functional synapses. An important fi nding was made when it was 
shown that activation of glutamate (NMDA, AMPA) receptors resulted in ICAM-5 
cleavage by matrix metalloproteases (MMPs). Addition of agonists to hippocampal 
neuron cultures activated MMP-2 and -9, which in turn cleaved ICAM-5 close to the 
lipid bilayer on the external side of the membrane (Tian et al.  2007 ). This resulted 
in an increase in the size of the spine heads, characteristic of mature spines. 
Disruption of the cytoskeletal association of ICAM-5 by treatment with agents dis-
rupting the actin cytoskeleton, such as cytochalasin b, promoted the cleavage. 
Furthermore, the resulting soluble ICAM-5 (sICAM-5) increased the number and 
length of fi lopodia in wt neurons but not in ICAM-5 −/−  neurons. This effect could be 
due to homophilic binding or binding to β1-integrins in dendrites, but the exact 
mechanism is not known. 

 An additional mechanism of down-regulation of ICAM-5 resulting in an effect 
on the differentiation of spines was recently reported. The small G protein ADP- 
ribosylation factor 6 (ARF6) and its activator EFA6A induced endocytosis of 
ICAM-5 in fl otillin-positive membrane subdomains (Raemaekers et al.  2012 ). This 
required dephosphorylation/release of ERM protein binding to ICAM-5. The reduc-
tion in ICAM-5, through activation of endocytosis (autophagy), resulted in a 
decrease in fi lopodia and an increase in spines.  

6.4     Functional Synapse Formation Depends 
on ICAM-5–β1-Integrin Interactions 

 The above-mentioned studies showed that a decrease in ICAM-5 levels resulted in 
increased amounts of mushroom spines. Detailed studies have now shown that the 
α5β1-integrin is expressed in presynaptic sites and that it is juxtaposed to immature 
fi lopodia and covers mature mushroom spines (Ning et al.  2013 ). This fi nding indi-
cated that the β1-integrin/ICAM-5 interaction is functionally important. The presynap-
tic and postsynaptic markers Synapsin I and PSD-95, respectively, were used to 
estimate the presence of pre- and postsynaptic contacts. We found that in wt neurons, 
Synapsin I largely distributed along the dendritic shafts, whereas in ICAM- 5  −/−  neurons 
the marker was enriched in spine heads. The overlap between Synapsin I and PSD-95 
was signifi cantly increased in ICAM-5 −/−  neurons as compared to wt neurons. 
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 To study if this increased interaction between presynaptic and postsynaptic 
 elements in ICAM-5 −/−  neurons is functionally important, miniature excitatory post-
synaptic currents (mEPSC) were recorded in wt and ICAM-5 −/−  neurons. Importantly, 
the ICAM-5 −/−  neurons showed an increase in the frequency of mEPSCs as com-
pared to wt neurons whereas the amplitudes remained unchanged. The results show 
that in ICAM-5 −/−  neurons, the ICAM-5 defi ciency increased the release of transmit-
ters by affecting the contacts with the presynaptic sites. 

 A recombinant ICAM-5 molecule consisting of the two N-terminal domains binds 
to the α5β1-integrin (Ning et al.  2013 ). When the interaction between ICAM-5 and 
α5β1 was inhibited in neuron cultures using either ICAM-5- or β1-blocking antibodies, 
the release of the cleaved ICAM-5 molecule (sICAM-5) was increased. Opposite to 
this, strengthening the interaction between ICAM-5 and α5β1 using integrin activating 
antibodies reduced the amount of sICAM-5, and a similar effect was obtained by add-
ing a construct consisting of domains 1–2 of ICAM-5 (Ning et al.  2013 ). Incubation of 
neurons with the ICAM-5 adhesion blocking antibodies resulted in a relative increase 
of mature spines and a similar effect was obtained with a β1-integrin blocking anti-
body. In contrast, when β1-integrin activating antibodies were used an opposite effect 
was seen. Now the relative proportion of fi lopodia increased as compared to mush-
room spines (Ning et al.  2013 ). MMP-2 and MMP-9 were shown to be responsible for 
the generation of sICAM-5 (Tian et al.  2007 ). Evidently, a tight contact between the 
presynaptic and postsynaptic sites inhibited the action of the MMPs on ICAM-5. 

 Further proof of the importance of β1-integrins in synapse formation was 
obtained by down-regulation of their expression using small hairpin RNA. 
Co-culture of transfected neurons with non-transfected ones showed that dendrites 
in contact with axons with down-regulated β1-integrins expressed an increased pro-
portion of mushroom spines. 

 The maturation of synapses, induced by a decrease in ICAM-5-involved adhe-
sion, is associated with LTP (Sakurai et al.  1998 ). Interaction of sICAM-5 with 
β1-integrins resulted in increased LTP-evoked changes in action potential probabil-
ity (Niederingshaus et al.  2012 ). An increase in neuronal excitability was also seen 
after up-regulation of MMP activity by activation of NMDA or AMPA receptors 
(Niederingshaus et al.  2012 ). Interestingly, also reference memory became better in 
ICAM-5 −/−  mice (Nakamura et al.  2001 ), and in experiments on auditory thalamo-
cortical connectivity, it was found that deletion of the ICAM-5 gene increased plas-
ticity (Barkat Rinaldi et al.  2011 ).  

6.5     sICAM-5: A Functionally Important Molecule 
and a Marker of Degradation 

 The release of sICAM-5 by MMPs and the resulting stimulation of the development 
of dendritic spines is a physiological event. However, different drugs may act on 
ICAM-5. It has been shown that the highly addictive drug methamphetamine 
induces an increased cleavage of ICAM-5 by activating MMPs resulting in sICAM- 5. 
An MMP inhibitor prevented the drug-induced cleavage, and administration of 
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methamphetamine in vivo increased ICAM-5 cleavage (Conant et al.  2011 ). This is 
a very exciting result and may explain the changes seen in synaptic plasticity 
induced by methamphetamine. 

 Furthermore, sICAM-5 is immunosuppressive. The T lymphocyte receptor- 
mediated activation of lymphocytes was prevented by sICAM-5, which was shown 
by decreased expression of the activation markers CD69, CD42 and CD25 (Tian 
et al.  2008 ). sICAM-5 seems to act by regulating the synthesis of cytokines. Thus 
sICAM-5 stimulated the synthesis of interferon-γ and transforming growth 
factor-β1, but not that of tumour necrosis factor-α. In contrast, ICAM-1 strongly 
activated the expression of all studied cytokines. The results indicate that ICAM-5 
may be important in the regulation of various brain infl ammatory conditions. 

 Presenilins-1 and -2 are components of the γ-secretase complex, which interacts 
with the amyloid precursor protein (APP) and liberates the amyloid β-peptide, 
which is thought to cause Alzheimer’s disease (Annaert and de Strooper  2002 ; 
Selkoe and Kopan  2003 ). Presenilin-1 has been found to bind both to APP and 
ICAM-5 through the transmembrane domains of these proteins (Annaert et al. 
 2001 ). It does not, however, induce the down-regulation of ICAM-5 by the 
γ-secretase activity but by an autophagic mechanism (Esselens et al.  2004 ; 
Raemaekers et al.  2005 ). The transmembrane domains of presenilins are often 
mutated in patients with Alzheimer’s disease, and defi ciency of presenilin-1 resulted 
in the accumulation of ICAM-5 (Raemaekers et al.  2012 ). Evidently, the ARF6- 
mediated transport of ICAM-5 to autophagic vesicles was inhibited (Raemaekers 
et al.  2012 ; Esselens et al.  2004 ). 

 sICAM-5 production is increased in various clinical conditions affecting the 
brain. In hypoxic–ischemic injury induced by ligation of the carotid arteries in mice, 
there was a strong increase in the serum levels of sICAM-5 (Guo et al.  2000 ). In 
patients with acute encephalitis, sICAM-5 increased in the cerebrospinal fl uid 
(Lindsberg et al.  2002 ). Herpes simplex virus (HSV-1) is a common cause of 
encephalitis and up to 90 % of the human population is exposed to the virus (Whitley 
and Roizman  2001 ). The virus infection is usually latent, but it is periodically reac-
tivated, often during stress. The HSV-1 gene product UOL is involved in the neuro-
virulence, because deletion of the gene improved the outcome of encephalitis (Chan 
et al.  2005 ). It has been shown that the UOL protein binds to ICAM-5 and in wt 
HSV-1-infected mice there was a decrease in ICAM-5 expression (Tse et al.  2009 ). 
The mice infected with wt virus expressed higher levels of cytokines/chemokines 
than mice infected with UOL-deleted virus. The results indicate that sICAM-5 gen-
erated by virus infection increases cytokine production, which would be benefi cial, 
but binding to the UOL protein compromises the outcome.  

6.6     ICAM-5 and Microglia 

 Microglia are macrophage-like cells in the brain, which easily can become acti-
vated by a variety of stimuli. They are important for the innate immune response in 
the brain (Skaper et al.  2012 ). An important function of these cells is to kill infected 
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cells and phagocytize cellular and microbial remnants. But recent work shows that 
in addition, microglia are involved in the regulation of synapse plasticity and 
regeneration of neurons (Hughes  2012 ; Pascual et al.  2011 ). 

 Macrophages are known to contain β2-integrins and they are enriched in the 
αXβ2- and αDβ2-integrins (Gahmberg et al.  1997 ). Microglia are known to express 
the β2-integrins LFA-1 and Mac-1 and most probably they also express the other 
β2-integrins.    Microglia could bind by their β2-integrins to endothelial cell ICAM-1 
and ICAM-2 and astrocyte-expressed ICAM-1 and use their integrins for migra-
tion into the brain parenchyma. On the other hand, LFA-1 expressed in microglia 
could bind to ICAM-5 in dendrites and synapses. Macrophages also express 
β1-integrins, and the recent fi nding that β1-integrins bind ICAM-5 implies that the 
interaction between microglia and ICAM-5 may include both β1-integrin and 
β2-integrin family members. Furthermore, it has been shown that ICAM-5 binding 
results in spreading of microglia. Interestingly, this effect is not seen with ICAM-1 
(Mizuno et al.  1999 ). ICAM-1 and ICAM-5 binding to the LFA-1 I-domain is 
similar, but in contrast to ICAM-1, ICAM-5 can bind to both LFA-1 and α5β1 
(Ning et al.  2013 ). 

 Figure  6.4  shows ICAM-5 (domains 1–2) bound to mouse microglia stained with 
β1- and β2-integrin antibodies. The distribution of β1-integrins is patchy and seen 
in protrusions (Fig.  6.4b ). Higher magnifi cation shows some overlap of bound 
ICAM-5 with β1- and β2-integrins, but most of the added ICAM-5 seems to have a 
different distribution than the integrins. The results indicate that there may exist 
additional, presently unknown receptors for ICAM-5.

  Fig. 6.4    Primary microglia culture from postnatal day 5 C57BL/6j mouse brain. Fixed cells were 
incubated with ICAM-5/D1-D2-Fc. The cells were stained with anti-IgG ( green ), anti-β1-integrin 
antibody ( red ) and β2-integrin antibody ( blue ). ( a ) Microglia culture, ( b ) a microglia in higher 
magnifi cation, ( c ) a segment enlarged from ( b ). Some overlap of ICAM-5 with β1-integrins and 
β2-integrins is seen, but most ICAM-5 staining is separate from the integrin stainings       
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   Recent work has shown that microglia have an infl uence on synaptic functions 
and eliminate or weaken functional synapses during development. This process 
must be important in brain plasticity underlying memory and learning. There is an 
obvious possibility that microglia use ICAM-5 as receptor when interacting with 
synapses. This could disrupt the binding to axonal β1-integrins affecting synapse 
functions. It would now be important to study these interactions in detail to be 
able to understand the mechanisms of synaptic pruning and the development of 
cognitive functions.  

6.7     Perspectives 

 The CNS and the immune systems have much in common. Both exhibit memory 
functions, although they are of course very different. Neurons and immune cells 
share many cell surface molecules and have partially similar signalling systems. 
NCAM, CD200, CD22, CD47, the cadherins, RAGE and Thy-1 are examples of 
cell surface proteins present in both types of cells. In addition, neurons contain 
MHC class I transplantation antigens. 

 In a recent review we put forward the potential importance of neuronal regula-
tion of immune responses in the brain (Tian et al.  2009 ). A number of cytokines are 
secreted by neurons and infl ammatory cells, and direct interactions between immune 
cells such as T cells and microglia with neurons exist. 

 It is in fact highly rewarding to compare classical neuronal synapses with the 
more recently described immunological synapse (Fig.  6.5 ) (Dustin and Colman 
 2002 ). In both cases we have the pivotal specifi c interactions in the centre, i.e. MHC 
class I proteins interacting with the T cell receptor (TCR) in immune cells and glu-
tamate binding to its receptors in neurons. The interaction between MHC proteins 
and TCR is relatively weak and there is of course no direct strengthening by gluta-
mate and its receptors in neuronal synapses. Therefore, a number of additional mol-
ecules are needed to build up and make the synapses stronger (Dityatev et al.  2008 ). 
In neuronal synapses these include NCAM, cadherins, neurexin/neurogilin, syn-
CAM and CD200. NCAM and cadherins exhibit homophilic binding, whereas 
CD200 and its receptor CD200R and ICAM-5 and β1-integrins show heterophilic 
binding. The immune synapses contain binding pairs such as ICAM-1/LFA-1, 
CD22/CD45 and B7/CD28.

   The presence of similar or identical molecules in the neuronal and immunologi-
cal synapses could make extensive crosstalks possible between neurons and immune 
cells. The crosstalks could take place in both directions, not only from immune 
cells to neurons, but also from neurons to immune cells. Several molecular interac-
tions could be important here, but we want to put forward the possibility that 
ICAM-5 is of pivotal and rather unique importance. ICAM-5 is able to interact with 
both neuronal and leukocyte receptors. It is functionally active as a regulator of 
dendritic outgrowth and maturation, and it has an important role in the formation of 
axonal/dendritic contacts. On the other hand, it is able to bind to microglia, it may 
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suppress T cell activation and it can act both as a membrane molecule and as a 
soluble mediator. These functional features are challenging objects of study in 
order to understand how the immunological and neuronal systems could cooperate 
in the CNS, but also for their potential importance in various pathological  conditions 
affecting the brain. These may include Alzheimer’s disease, stroke, encephalitis 
and multiple sclerosis.     

  Fig. 6.5    Schematic comparison of the immunological and neuronal synapses. ( a ) In the antigen- 
presenting cell (APC), the LFA-1 integrin fi rst interacts with ICAM-1 on T cells, but later the 
MHC transplantation antigen binds to the T cell receptor (TCR) and the LFA-1/ICAM-1 complex 
moves to the periphery. ( b ) In the neuronal synapse the initial contact is between axonal α5β1- 
integrin and fi lopodial ICAM-5. In the mature mushroom spines several molecules may bind the 
presynaptic and postsynaptic regions together. The amount of ICAM-5 is decreased and upon 
activation, ICAM-5 is cleaved by metalloproteases generating sICAM-5. The presynaptic 
β1-integrins remain bound to spines probably through the interactions with other adhesion mole-
cules from the postsynaptic membrane       
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    Abstract     Roundabout receptors (Robo) and their Slit ligands were discovered in 
the 1990s and found to be key players in axon guidance. Slit was initially described 
as an extracellular matrix protein that was expressed by midline glia in  Drosophila . 
A few years later, it was shown that, in vertebrates and invertebrates, Slits acted 
as chemorepellents for axons crossing the midline. Robo proteins were originally 
discovered in  Drosophila  in a mutant screen for genes involved in the regulation 
of midline crossing. This ligand–receptor pair has since been implicated in a vari-
ety of other neuronal and non-neuronal processes ranging from cell migration to 
angiogenesis, tumourigenesis and even organogenesis of tissues such as kidneys, 
lungs and breasts.  

7.1         Robo and Slit Structures 

7.1.1      Robo Structure 

 The Robo family belongs to the immunoglobulin (Ig) superfamily of cell adhesion 
molecules (CAM) (Kidd et al.  1998a ; Sundaresan et al.  1998b ). Three  robo  genes 
( robo1-3 ) have been identifi ed in most species including  Drosophila  and birds, 
while a fourth  robo  gene ( robo4 ) was also found in zebrafi sh and in mammals 
(Hao et al.  2001 ; Kidd et al.  1998a ; Lee et al.  2001 ; Rajagopalan et al.  2000 ; 
Simpson et al.  2000 ; Vargesson et al.  2001 ; Yuan et al.  1999 ). In mammals, 
Robo1-3 are expressed in many tissues during development and particularly in the 
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  Fig. 7.1    Structure of Slits and Robos. ( a ) Structure of the prototypical vertebrate Slit protein 
containing four leucine-rich repeat domains, nine EGF repeat domains and a laminin G domain. 
Slit2 can be cleaved proteolytically to yield an inactive C-terminal and a biologically active 
N-terminal. ( b ) Structure of the vertebrate Robo receptors. The archetypal Robo receptor pos-
sesses fi ve Ig-like domains, three fi bronectin type III motifs, a transmembrane spanning region and 
four C-terminal domains (CC0–3). Robo3 lacks the CC1 domain and Robo4 lacks three Ig-like 
domains, one FN3 domain and both the CC1 and the CC3 domains. Alternative isoforms exist for 
Robo1-3: isoforms with variations at the N-terminal are referred to as Robo1-3 A or B whereas 
isoforms differing at the C-terminus are referred to as Robo3.1 or Robo3.2. Finally, Robo1 can be 
proteolytically cleaved to yield a soluble receptor       

nervous system (Kidd et al.  1998b ; Sundaresan et al.  1998a ; Yuan et al.  1999 ). 
Robo4 also known as Magic Roundabout was originally thought to be expressed 
mainly by endothelial cells (Bedell et al.  2005 ; Park et al.  2003 ), but recent 
 evidence indicates that it is also expressed in the central nervous system (CNS) of 
zebrafi sh (Bedell et al.  2005 ) and of mice (Zheng et al.  2011 ). 

 The archetypical Robo receptor possesses an extracellular region containing fi ve 
Ig domains, three fi bronectin type III motifs (FN3), a single and short transmem-
brane region, and a long intracellular tail containing four conserved cytoplasmic 
(CC0–CC3) domains (see Fig.  7.1 ). Still, in the mammalian Robo family, the struc-
ture of Robo3 and Robo4 presents some divergences from the prototypical Robo 
structure. In fact, Robo3 lacks the CC1 domain (Yuan et al.  1999 ; Jen et al.  2004 ). 
Moreover, Robo4 possesses only two conserved Ig domains, contains variants of the 
CC0 and CC2 motifs and lacks the CC1 and CC3 domain (Huminiecki et al.  2002 ). 
In addition, alternative isoforms or splice variants have been described for all Robo 
receptors to date (Camurri et al.  2005 ; Chen et al.  2008 ; Huminiecki et al.  2002 ; Jen 
et al.  2004 ; Kidd et al.  1998a ; Yuan et al.  1999 ). In the majority of cases the 
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biological implication of the alternative splicing remains undetermined, although 
alternative splicing of Robo3 into Robo3.1 and Robo3.2 isoforms was proposed to 
play an important role in the regulation of axonal midline crossing (Chen et al. 
 2008 ). In fact, Robo3.1 and Robo3.2 have opposite functions for commissural axons 
in the spinal cord: whereas Robo3.1 promotes midline crossing, Robo3.2 suppresses 
midline crossing.

   The cytoplasmic domains of Robo receptors do not possess any catalytic activi-
ties and thus exert their effect by interacting with different signalling molecules 
(Chedotal  2007 ). A recent insightful study has suggested that, although specifi c 
Robo receptors have distinct cytoplasmic domains, the specifi c responses encoded 
by different Robos are instructed by differences in the extracellular Ig domain struc-
tures of the receptors (Evans and Bashaw  2010 ). Moreover, specifi c Ig domains in 
Robo receptor subtypes were found to encode different functions such as the Ig1 and 
Ig3 of Robo2 which were important in specifying lateral positioning of longitudinal 
axons whereas the Ig2 domain functions mostly in promoting midline crossing.  

7.1.2     Slit Structure 

 Members of the Slit family have been found in a variety of species including 
 Drosophila ,  Caenorhabditis elegans ,  Xenopus , chicks and mammals (Hao et al. 
 2001 ; Holmes et al.  1998 ; Kidd et al.  1999 ). In mammals, three Slit proteins (Slit1–3) 
are expressed in the nervous system and in other tissues (Holmes et al.  1998 ; Itoh 
et al.  1998 ; Li et al.  1999 ; Marillat et al.  2002 ). Slit proteins are generally large 
(around 200 kDa) secreted glycoproteins which are composed of the following 
domains: an N-terminal signal peptide, four leucine-rich repeats (LRR), seven to 
nine (in  Drosophila  and vertebrates, respectively) EGF-like sequences, a laminin-G 
domain containing agrin, laminin and perlecan homologies (ALP) and a C-terminal 
cysteine-rich region (see Fig.  7.1 ). Slit2 can be cleaved proteolytically in its EGF 
domain, thus generating an inactive C-terminal Slit fragment and a long N-terminal 
fragment (Slit-N) which retains the ability to bind Robo receptors and mediate bio-
logical activity (Battye et al.  2001 ; Brose et al.  1999 ; Chen et al.  2001 ; Nguyen-Ba- 
Charvet et al.  2001 ; Wang et al.  1999 ). 

 The active site of Slit2 was identifi ed as being located on the concave surface of 
the LRR2 domain which mediates binding to the Ig1 domain of Robo1 (Howitt 
et al.  2004 ; Morlot et al.  2007 ). The residues on the binding sites of both the Slit and 
Robo proteins are highly conserved throughout evolution, thus accounting for the 
promiscuous binding of Slit ligands to Robo receptors (Brose et al.  1999 ; Sabatier 
et al.  2004 ). That being said, the aptitude of Robo3 to bind Slits has been inconsis-
tently reported in the literature with some groups detecting binding and others not 
(Sabatier et al.  2004 ; Camurri et al.  2005 ;    Mambetisaeva et al.  2005 ). Moreover, 
recent studies suggest that Robo4 is not a Slit receptor although this remains contro-
versial (Koch et al.  2011 ; Park et al.  2003 ; Suchting et al.  2005 ; Verissimo et al. 
 2009 ; Wang et al.  2003 ; Zheng et al.  2011 ).  
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7.1.3     Regulation of Robo Expression 

 Membrane-bound proteins can be regulated in several ways including transcrip-
tional or translational regulation and the control of receptor transport to the mem-
brane. Robo receptors have been shown to be regulated in a variety of manners 
which will be outlined below. 

    Transcriptional and Translational Regulation 

 At a transcriptional level, Robo expression is regulated by a variety of proteins from 
different families of transcription factors (TFs) (see Fig.  7.2 ). Proteins of the LIM 
homeodomain family such as Lhx2 or Lhx9 have been shown to activate Robo3 in 
a direct manner (Marcos-Mondejar et al.  2012 ; Wilson et al.  2008 ). Moreover, 
Sim1, Sim2 and Arnt2 of the basic-helix-loop-helix-PAS transcription factor family 
are also able to regulate Robo3 expression (Marion et al.  2005 ; Schweitzer et al. 
 2013 ). Likewise, Robo2 and Robo3 are activated by Hoxa2, a member of the Hox 

  Fig. 7.2    Transcriptional and translational regulation of Slit–Robo. Several families of transcrip-
tion factors such as the T-box, the bHLH-PAS, the LIM homeodomains or the Hox homeodomain 
transcription factors regulate the transcription of  Slits  and  Robos . In addition, microRNAs like 
miR-218.1 (which is localised intronically in the  Slit2  gene) negatively regulate translation of 
Robo1 and Robo2. High expression of Slit2 thus leads to low levels of Robo1 and Robo2. Likewise, 
miR-145 is a negative regulator of Robo2 translation. Adapted from Chedotal ( 2011 )       
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family of TFs (Bravo-Ambrosio et al.  2012 ; Di Bonito et al.  2013 ; Geisen et al. 
 2008 ). And fi nally, a few members of the T-box family of TFs such as Midline 
 protein (an orthologue of Tbx20) or Tbx1 are also known to regulate Robo and/or 
Slit expression (Calmont et al.  2009 ; Liu et al.  2009 ).

   Another level of regulation of Robo expression is achieved by regulating Robo 
mRNAs at the translational level. MicroRNAs (miRNAs) are short non-coding RNA 
sequences (roughly 21–22 nucleotides in length) that bind to mRNAs to negatively 
modulate their post-transcriptional expression [Fig.  7.2  and reviewed by Carrington 
and Ambros ( 2003 ) and Carthew ( 2006 )]. It was fi rst shown in tumour cells that 
miR-218, which is downregulated in certain cancer cell lines, can repress Robo1 
expression (Alajez et al.  2011 ; Tie et al.  2010 ). Intriguingly, this study also demon-
strated that the miR-218 is synthesised from two precursors, mir-218-1 and mir-
218-2, located in the intronic sequence of Slit2 and Slit3 genes, respectively. Mature 
mir-218 is mostly derived from the mir-218-2 precursor whose expression is nega-
tively correlated with Slit3 expression, thus creating a negative feedback loop. In 
zebrafi sh heart tube formation, miR-218 negatively regulates both Robo1 and Robo2 
(Fish et al.  2011 ). Furthermore, after sciatic nerve injury, several miRNAs are down-
regulated including miR-145 which can potentially target the 3′-UTR of Robo2 and 
one of its downstream signalling partners, srGAP1 (Zhang et al.  2011 ). Robo2 is 
upregulated prior to sciatic nerve injury and it was shown in vitro that miR-145 can 
downregulate Robo2 expression. Further, miRNAs are strongly downregulated fol-
lowing nerve injury, which could therefore facilitate Robo receptor upregulation by 
decreasing their translational regulation. Many miRNAs are specifi cally enriched in 
neuronal tissues and have been shown to be potent regulators of gene expression 
during development [reviewed by Klein et al. ( 2005 )], thus presaging future discov-
eries in the translational control of Robos, their ligands and their downstream part-
ners by miRNAs. Apart from miRNAs, post-transcriptional regulation can be 
achieved by RNA binding proteins such as Musashi1 which was shown to regulate 
Robo3 expression at the protein level in precerebellar neurons (Kuwako et al.  2010 ).  

    Control of the Subcellular Localisation of Robo 

 Robo function can be modulated by regulating its expression at the plasma mem-
brane (see Fig.  7.3 ). In  Drosophila  the transmembrane protein Comm negatively 
regulates Slit repulsion by preventing the transport of Robo to the cell surface and 
instead favouring the routing of Robo to the endosome for degradation (Keleman 
et al.  2002 ). Interestingly Comm function is not conserved in all insects, and in par-
ticular, in  Tribolium castaneum  (the fl our beetle), Comm does not downregulate the 
expression of Robo2/3 (Evans and Bashaw  2012 ). Furthermore, recently, a  scaffolding 
protein Canoe (Cno) was also demonstrated to form a complex with Robo and stabi-
lise its expression in growth cone fi lopodia (Slováková et al.  2012 ). A comparable 
regulation of the subcellular regulation of Robo proteins appears to exist in mam-
mals. In fact, Robo1 binds directly to the ubiquitin-specifi c protease 33 (USP33) and 
this interaction is necessary for commissural neurons to respond to Slit and for their 

7 ROUNDABOUT Receptors



138

axons to cross the midline (Yuasa-Kawada et al.  2009a ,  b ). USP33 appears to medi-
ate these functions by either preventing Robo1 from being targeted for degradation or 
facilitating its endosomal recycling. Moreover, a component of the vesicular machin-
ery, RabdGI, was also shown to be important for the post- translational regulation of 
Robo1 expression at the membrane on chick commissural axons (Philipp et al.  2012 ).

7.2          How Do Robo Proteins Transduce Their Effect? 

 As previously described, Slits bind to Robos through evolutionarily conserved 
domains and they constitute Robos’ primary ligands. Robo activation at the cell 
surface is then translated within the cell by a number of signalling cascade events. 
Further, Slit–Robo signalling can be modulated by co-receptors, by homodimeric or 
heterodimeric receptor binding or by other ligands. 

7.2.1     Downstream Signalling of Slit and Robo 

 Axon guidance receptors sense the environment around the leading process or the 
growth cone, and based on the attractiveness or repulsiveness of their surround-
ings, they act upon the cell membrane/cytoskeleton in order to mediate the 

  Fig. 7.3    Regulation of Robo at the membrane. ( a ) In  Drosophila , Comm. acts at the midline as a 
negative regulator of Robo by downregulating Robo during midline crossing and thus suppressing 
Robo-induced midline repulsion (Keleman et al.  2002 ). The Netrin receptor, Frazzled, is a positive 
regulator of Comm transcription. In addition, Canoe stabilises Robo expression in growth cone 
fi lopodia. ( b ) Comm has no mammalian homologues, but the ubiquitin-specifi c protease 33 
(USP33) acts to mediate slit responsiveness and ensure commissural axon crossing by either pre-
venting Robo1 from being targeted for degradation or by facilitating its endosomal recycling. 
Moreover, RabGDI acts to promote Robo1 expression at the membrane       
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appropriate movement either towards or away from the outside milieu. In order to 
accomplish this requirement, Robo–Slit signalling relies on two distinct processes: 
the modulation of calcium and cyclic nucleotides by Slit and the recruitment of 
downstream effectors. 

 Slit2 is able to induce an elevation of intracellular concentration of calcium 
(Ca 2+ ) in the growth cone of migrating cerebellar granule neurons (Xu et al.  2004 ) 
and leads to a reversal of migration direction in granular cells and other types of 
migrating neurons (Ward et al.  2005 ; Xu et al.  2004 ). Slit2-dependent direction 
change in cerebellar granule neurons was subsequently shown to cause a redistribu-
tion of RhoA activity towards the new leading front and to require RhoA activation 
(Guan et al.  2007 ). Cyclic nucleotides modulation of Slit signalling can also lead to 
cytoskeletal changes. For instance, the outgrowth that occurs when exposing dorsal 
root ganglia neurons to Slit2 can be inhibited by lowering cGMP concentrations 
using pharmacological inhibitors (Nguyen-Ba-Charvet et al.  2001 ). 

 In addition, Robo receptors rely on a number of proteins involved in cytoskeletal 
dynamics such as the small GTPases of the Rho family which are regulated by the 
guanine nucleotide exchange factors (GEFs) (Bustelo et al.  2007 ; Heasman and 
Ridley  2008 ). A family of RhoGAP proteins, designed as the slit–robo GAPS 
(srGAPS), have been shown to interact with the intracellular domain (CC3) of 
Robo1 especially in the presence of Slit2 (Wong et al.  2001 ). Recent data point to 
the involvement of srGAPs in neuronal migration, neuronal development, cell adhe-
sion, neuronal morphogenesis, axonal regeneration and brain evolution (Bacon 
et al.  2009 ; Charrier et al.  2012 ; Coutinho- Budd et al.  2012 ; Guo and Bao  2010 ; 
Madura et al.  2004 ; Yao et al.  2008 ). Moreover, several Rho-GTPases such as 
RhoA, Rac1 and Cdc42 have been shown to be modulated by Slit–Robo signalling 
(Bashaw et al.  2000 ; Fan et al.  2003 ; Hu et al.  2005 ; Lundström et al.  2004 ; Wong 
et al.  2001 ). Finally, GEFs such as Son of Sevenless (SOS) have been shown to bind 
to the cytoplasmic domains of Robo proteins and this binding is upregulated in the 
presence of Slit (Yang and Bashaw  2006 ). 

 Active research is currently being pursued to understand more completely the 
signalling pathways downstream of Slit–Robo binding. The discovery of new effec-
tor molecules will undoubtedly uncover new functions for Robo–Slit signalling.  

7.2.2     Modulation of Robo–Slit Signalling 

 Both Robos and Slits have other binding partners which can serve to modulate 
Robo–Slit signalling. One of the main modulators of the Robo–Slit signalling is 
another major axon guidance signalling pathway: the Netrin–DCC pathway. 
Interplay between these guidance-signalling pathways has been shown to have 
major functional impacts on axon guidance [reviewed by Killeen and Sybingco 
( 2008 )]. In addition, heparan sulphate proteoglycans (HSPG) have been identifi ed 
as co-receptors for Slit (Conway et al.  2011 ; Lee et al.  2004 ; Pratt et al.  2006 ; Van 
Vactor et al.  2006 ). Finally, Robos are capable of homophilic and heterophilic inter-
actions, thus modulating one another’s functions. 
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    Slit–Robo and Netrin–DCC pathways Intersect at Several Levels 

 Slit–Robo and Netrin–DCC signalling are key components in midline crossing. 
The Robo and DCC pathways modulate one another at several levels. 

 It is known that, in  Xenopus  spinal axons, Robo1 forms heterodimers with the 
Netrin receptor DCC in the presence of Slit in order to silence Netrin1 attraction at 
the midline (Stein et al.  2001 ). Moreover, in  C. elegans,  UNC40/DCC participates 
in SLT-SAX3/Robo signalling in a Netrin-independent manner and this signalling is 
mediated by UNC34/Ena (Yu et al.  2002 ). In addition, the RhoGEF protein UNC73/
Trio (in conjunction with VAB-8 L protein) positively modulates SAX3/Robo as 
well as UNC40/DCC expression and function (Levy-Strumpf and Culotti  2007 ; 
Watari-Goshima et al.  2007 ). In turn, the negative regulation of UNC73/Trio leads 
to a decrease in SAX3/Robo levels (Vanderzalm et al.  2009 ). In addition, in mouse 
neurons, Trio modulates DCC signalling (Briançon-Marjollet et al.  2008 ). Finally, 
another modulator affecting the interplay of the Slit/Robo and Netrin/DCC path-
ways is Presenilin-1, a major component of the γ-secretase complex (see Fig.  7.4 ) 
(Bai et al.  2011 ). Indeed, in motorneurons, DCC is proteolytically cleaved by metal-
loproteases leading to the formation of a cytoplasmic DCC form known as DCC 
stubs which are then normally processed by γ-secretase to release them from the 
membrane. Netrin stimulation leads to metalloprotease activity and inhibits 
γ-secretase, thus leading to the accumulation of DCC stubs. These stubs retain the 
ability to mediate Netrin attraction but cannot interact with Robo receptors. With 
the loss of binding between Robo and DCC, Slit silencing of the Netrin–DCC 
 signalling pathway is therefore reduced. In this way, motorneurons, which are 
 normally unresponsive to Netrin, can over time gain responsiveness to Netrin 
through the release of Slit silencing of Netrin–DCC signalling. Finally, very recent 
data demonstrate that Netrin/DCC signalling modulates Slit/Robo repulsion of 
 callosal axons (Fothergill et al.  2013 ). In fact, it was shown that DCC/Netrin 
 dampens Slit/Robo repulsion of pre-crossing neocortical axons as they approach the 
midline and that this effect is progressively lost as DCC becomes downregulated in 
the cortex from E16 to P0. Interestingly, in this system, Netrin1 does not function as 
an attractant for these callosal axons.

       Other Robo Co-receptors 

 The chemokine SDF1 (CXCL12) and its receptor CXCR4 were originally described 
as regulators of cell–cell interactions in the immune system (Gonzalo et al.  2000 ; 
Nagasawa et al.  1996 ). Recently, they have also been shown to play a role in  neuronal 
cell migration [reviewed by Tiveron and Cremer ( 2008 )]. Slit2 inhibits SDF1- 
induced chemotaxis and transendothelial migration of T lymphocytes and monocytes 
(Prasad et al.  2007 ). This inhibitory effect occurs through the interaction of CXCR4 
to the CC3 domain of Robo1, a binding that is strengthened in the presence of Slit2. 
Slit2 also acts to modulate the SDF1–CXCR4 signalling pathway by decreasing 
phosphorylation of Akt as well as of Src kinase, Lck kinase and Rac activation. 
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In breast cancer, Slit2 blocks a whole host of SDF1-induced signalling involved in 
motility such as the activation MAP kinase or focal adhesion components (Prasad 
et al.  2004 ). Similarly, overexpression of Slit–Robo in breast cancer leads to a down-
regulation of CXCR4 and a suppression of tumour growth (Marlow et al.  2008 ). In 
retinal ganglion cell axons, SDF1 reduces Slit-mediated axonal repulsion by modu-
lating cyclic nucleotide signalling intermediates (Chalasani et al.  2003 ). In vivo, 
reducing SDF1 signalling rescues retinal axon pathfi nding errors in mutants with a 
partial loss of Robo2 but not in full knockouts (Chalasani et al.  2007 ). Last, Slit2 
through Robo1/CXCR4 might be used to modulate HIV infection (Anand et al. 
 2011 ,  2013 ). 

 Mounting evidence suggests that Slit/Robo interact with cell adhesion proteins, 
such as members of the cadherin family (N-cadherin, E-cadherin and P-cadherin), 
during development to modulate cell adhesion in different contexts. For instance, in 
chicken, placode and neural crest cells must interact intimately in order to produce 
proper assembly of the trigeminal ganglion. Here, gangliogenesis relies on the inter-
action of Slit1 expressed by the neural crest cells and Robo2 expressed by the 
incoming placodal ganglion cells (Shiau et al.  2008 ). N-cadherin, found on placode- 
derived sensory neurons, was further required to mediate the aggregation of placode 
cells and Slit2–Robo1 signalling was shown to positively modulate N-cadherin 
expression and function (Shiau and Bronner-Fraser  2009 ). Further, in an oral squa-
mous cell carcinoma cell line (OSCC cells), it was shown that P-cadherin stabilises 
Slit2 expression and that P-cadherin binds to Robo3 with increasing affi nity in the 

  Fig. 7.4    Interplay of Slit–Robo and Netrin-DCC. ( a ) In commissural axons, Netrin1 binding to 
DCC acts to promote attraction. DCC can be proteolytically cleaved by metalloproteases to yield 
DCC stubs which retain their ability to mediate Netrin1 attraction. The stubs are then further pro-
cessed by γ-secretase and thus lose their ability to mediate attraction. Netrin1 positively regulates 
metalloproteases and negatively regulates Presenilin-1, a major component of the γ-secretase com-
plex. ( b ) In spinal cord motorneurons, DCC interaction with Robo1 leads to the inhibition of 
Netrin1-mediated attraction. After metalloprotease cleavage of DCC, DCC stubs are no longer 
able to interact with Robo1 but retain the ability to mediate Netrin1 attraction. Thus motorneurons 
gain responsiveness to Netrin1       
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presence of increasing Slit2 concentrations (Bauer et al.  2011 ). In addition, Slit2 
was shown to have a dose-dependent anti-migratory effect in the presence of 
P-cadherin. Altogether, these data provide evidence that Slit2–Robo3 signalling in 
combination with P-cadherin inhibits cell migration possibly by increasing adhesion 
of neighbouring cells through P-cadherin heterophilic interactions. In contrast, in 
heart formation in  Drosophila , Slit–Robo signalling inhibits E-cadherin-mediated 
cell adhesion, thus enabling lumen formation (Santiago-Martínez et al.  2008 ). 
Similarly, in an in vitro study, Slit–Robo signalling negatively modulated N-cadherin/
β-catenin-mediated cell adhesion through a complex series of secondary signalling 
events leading to the phosphorylation of β-catenin by Cables through a Robo–Abl–
Cables interaction (Rhee et al.  2007 ). A general take-home message in terms of 
Slit–Robo signalling in cell adhesion is that Slit–Robo is able to interact directly or 
indirectly with several regulatory proteins of adhesion and that these interactions 
can lead to either positive or negative regulation of the adhesion machinery depend-
ing on tissue specifi city or the availability of particular secondary effectors. 

 A recent study has shown that Robo modulates the signalling of another major 
family of axon guidance proteins, namely the Semaphorin3–Neuropilin ligand–
receptor couple (Hernández-Miranda et al.  2010 ). Semaphorins are a large family of 
secreted or transmembrane proteins characterised by the presence of a conserved 
“Sema” domain. The fi rst vertebrate Semaphorin discovered was a member of the 
Sema3 family which could induce growth cone collapse in sensory ganglion neu-
rons (Kolodkin et al.  1993 ; Luo et al.  1993 ). Its actions were subsequently found to 
be transduced by the Neuropilin (Nrp) receptors (He and Tessier-Lavigne  1997 ; 
Kolodkin et al.  1997 ).    Since then, more than 30 Semaphorins have been character-
ised and a large family of membrane-bound proteins, the Plexins, have been 
described as their principal receptors or co-receptors [reviewed by Jackson and 
Eickholt ( 2009 )]. However, direct evidence was recently provided, supporting the 
interaction between Slit/Robo and Semaphorin/Plexin signalling (Hernández- 
Miranda et al.  2010 ). In rodents, cortical interneurons originate ventrally from the 
ganglionic eminence and migrate tangentially to the cortical plate. In Robo1 knock-
out mice, the number of interneurons is increased in the cortex and they take a 
shortcut through the normally repulsive striatum (Andrews et al.  2008 ). The stria-
tum secretes chemorepulsive Semaphorin 3 proteins which repel Nrp1- and 
2-expressing cortical interneurons.  Robo1 -defi cient cortical interneurons were 
found to have lost responsiveness to Sema3A and Sema3F and this effect was found 
to be due to a reduction of Nrp1 expression on the cell surface of  Robo1  knockout 
cells (Hernández-Miranda et al.  2010 ). Moreover, it showed that Robo1 can directly 
bind to Nrp1 through its fi rst two IgG domains. 

 Finally, Robos can bind to themselves and other Robo isoforms to form homodi-
mers and heterodimers. For instance, Robo1 binds with both Robo1 and Robo4 
(Sheldon et al.  2009 ), Robo2 with both Robo1 and Robo2 (Hivert et al.  2002 ) and 
Robo3 with both Robo3 and Robo1 (Camurri et al.  2005 ; Liu et al.  2004 ). Many 
cell types co-express several Robo receptors on their membrane and, depending on 
the context, their ability to dimerise could serve to potentiate or counteract one 
another’s effects.  
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    Modulation of Ligand Presentation 

 Slit is not the only ligand for Robo. Indeed, studies have identifi ed HSPG as 
co- receptors of Slit (see Fig.  7.5b ). HSPGs are proteoglycan core proteins attached 
to heparan sulphates (HS). They are polysaccharides that can be divided into differ-
ent categories: the syndecans (Sdc) family and the glypicans family that are associ-
ated with the membrane, as well as secreted forms like perlecan or agrin. 
Investigations into the structural complex formed by Slits and Robos showed that 
the LRR2 domain of Slit and the Ig1–Ig2 domain of Robo could form a ternary 
complex with a heparin/heparan sulphate in order to stabilise Slit–Robo interaction 
(Fukuhara et al.  2008 ; Howitt et al.  2004 ; Hussain et al.  2006 ). Furthermore, struc-
tural work confi rmed that another domain of Slit, the LRR4, binds HSPGs and is 
important for Slit homodimerisation (Seiradake et al.  2009 ).

   Disrupting or removing HSPGs abolishes the repulsive action of Slit2 on  Xenopus  
retinal axons, on olfactory axons and on olfactory precursor interneurons (Hu  2001 ; 
Piper et al.  2006 ). Moreover, in vivo ablation of enzymes involved in HSPGs synthe-
sis, Ext1 and Ext2, induces defects at the optic chiasm similarly to those observed in 
the  Slit1/2- defi cient mice (Inatani et al.  2003 ; Plump et al.  2002 ). Further, knocking 
down  Hs6st1  or  Hs2st , enzymes that are involved in HS sulphonation, leads to telen-
cephalic phenotypes reminiscent of Slit/Robo mutants (Conway et al.  2011 ; Pratt et al. 

  Fig. 7.5    Modulation of Slit expression. ( a ) In  Xenopus , FGF/FGFR signalling and, in z ebrafi sh , 
Hedgehog/Smoothened signalling positively modulate transcriptional regulation of  Slit1 . 
( b ) HSPGs, consisting of a proteoglycan core protein with heparan sulphate chains, stabilise Robo 
and Slit2 binding by forming ternary complexes with Robo receptors and Slit through their HS 
polymers. ( c ) The canonical Wnt signalling pathway forms a feed-forward regulatory loop with 
Slit/Robo signalling. Robo phosphorylates β-catenin through the recruitment of Cables to Abl. 
This leads to β-catenin degradation which relieves β-catenin-mediated inhibition of transcriptional 
regulation on  Slit2 . Therefore in the absence of β-catenin Slit2 expression is increased which pro-
motes the formation of a Robo/Abl complex which ultimately leads to further inhibition of the Wnt 
canonical signalling pathway       
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 2006 ). Hs6st1 was fi rst shown to be necessary for Slit2-mediated  repulsion of RGC 
axons (Pratt et al.  2006 ) and the genetic interaction between Hs6St1 and Slit2 was then 
confi rmed by creating an Hs6st1 and Slit2 compound mutants (Conway et al.  2011 ). 

 In addition to HSPGs, Slit2 has recently been shown to bind to glycosylated 
α-dystroglycan (Wright et al.  2012 ). In the absence of glycosylation by β-1,3-N - 
acetyl-glucosaminyltransferase-1 (B3gnt1) and isoprenoid synthase domain  contain-
ing (ISPD) proteins, several severe developmental phenotypes including axon 
guidance defects in the spinal cord are detected in mutant mice. It appears, there-
fore, that the glycosylated extracellular matrix protein acts to regulate the 
 distribution of Slit protein in the fl oor plate of the spinal cord.  

    Modulation of Slit Expression by Morphogens 

 In addition to the tight regulation of Robo receptor expression, it was found that Slit 
expression itself was modulated by different morphogens and this regulation was 
linked to specifi c phenotypes in several cell types (see Fig.  7.5 ). 

 For example, in zebrafi sh, hedgehog (Hh) is required for correct Slit expression 
at the optic chiasm as well as for specifying positioning of Slit1a-expressing mid-
line glia cells (Barresi et al.  2005 ). In mammals Hh signalling relies on Smoothened 
(Smo), and in a conditional knockout of Smo, cells in which Hh signalling was 
reduced also showed a marked reduction in the expression of Slit1 mRNA (Balordi 
and Fishell  2007 ). 

 Moreover, in  Xenopus , FGF signalling positively regulates the expression of 
Slit1 (and Sema3A) in the optic tract (Atkinson-Leadbeater et al.  2010 ). Inhibiting 
the actions of the FGF receptor (FGFR) leads to a decrease in  Slit1  mRNA and 
phenocopies the retinal axon guidance errors seen in the absence of Slit1, thus 
 suggesting that FGF signalling at the optic tract functions to maintain Slit1 (and 
Sema3A) expression. 

 Finally, a very complex signalling feedback loop appears to exist between Slit2 
and members of the Wnt signalling pathway. Wnts are a large family of secreted 
glycoproteins that play a role in many stages of telencephalon development 
[reviewed by Bowerman ( 2008 ) and Killeen and Sybingco ( 2008 )]. Wnt signalling 
has a canonical pathway whereby Wnt binds to Frizzled receptors and an additional 
receptor, LRP6, to stabilise β-catenin which is translocated into the nucleus and acts 
with the family of Tcf/Lef transcription factors to modulate gene expression. In an 
OSCC cell line, an in vitro experiment showed that after inhibiting β-catenin bind-
ing to the Tcf/Lef transcription factors, Slit2 expression was increased (Bauer et al. 
 2011 ). Slit2 was previously shown to modulate β-catenin phosphorylation through 
the recruitment of Cables to the Robo/Abl complex leading to β-catenin degradation 
(Rhee et al.  2007 ). In this feed-forward regulatory loop, Slit2 expression promotes 
inhibition of β-catenin, which leads to an increase in Slit2 expression. 

 In this section, we have established that both Robo receptors and Slit ligands are 
tightly regulated at several levels including transcriptional, translational and subcel-
lular localisation. Moreover, we have shown that Slit/Robo signalling does not 
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occur in a bubble, but rather that Slits and Robos interact with a variety of other 
signalling systems which allow them to mediate particular effects and which add 
another layer of regulation to Slit/Robo signalling.    

7.3     Roles of Slit and Robo 

 By acting alone or in concert with other molecules, Slits and Robos are involved in 
a multitude of processes. In the CNS, Slit–Robo signalling has been implicated in 
numerous functions such as axon guidance, cell adhesion, axon and dendritic 
branching, cell proliferation and axonal targeting to name but a few. This section 
will focus on describing some of the known functions of Slit/Robo in the CNS using 
a specifi c case study to illustrate the role of Slit–Robo in each instance. For a more 
comprehensive overview of the roles of Slit and Robo signalling, please refer to the 
following reviews [reviewed by Chedotal ( 2007 ), Dickinson and Duncan ( 2010 ), 
Legg et al. ( 2008 ), and Ypsilanti et al. ( 2010 )]. 

7.3.1     Slit–Robo Signalling Regulates the Guidance of Axons 

 The function of Slit and Robo in axon guidance was fi rst discovered in the  Drosophila  
ventral nerve cord and has since been extensively studied in the vertebrate hindbrain 
and in the spinal cord [reviewed by Dickson and Gilestro ( 2006 ), Garbe and Bashaw 
( 2004 ), and O’Donnell et al. ( 2009 )]. In the vertebrate forebrain, Slits and Robos 
have been shown to contribute to the guidance of several commissural tracts includ-
ing the corpus callosum, the optic chiasm, the anterior commissure and the hippo-
campal commissure (Bagri et al.  2002 ; Plump et al.  2002 ). Moreover, longitudinal 
tracts are also regulated by Robo receptors such as the postoptic commissure in 
zebrafi sh or the lateral olfactory tract in mice (Devine and Key  2008 ; Fouquet et al. 
 2007 ). An interesting example of how Robo/Slit signalling regulates axon guidance 
can be illustrated by taking a look at callosal axon guidance. 

 In placental mammals, the corpus callosum (CC) is the main tract that connects 
right and left cerebral hemispheres and allows for the transmission and coordination 
of information originating from both sides of the cortex [reviewed by Chedotal ( 2011 ), 
Lindwall et al. ( 2007 ), and Plachez and Richards ( 2005 )]. The CC is formed by axons 
of cortical pyramidal projection neurons which connect homotypic regions of the two 
hemispheres. As the fi rst cortical axons extend towards the midline, they encounter 
several populations of glial cells that serve as guideposts to steer their growth cones 
across the midline including the glial wedge (GW), the indusium  griseum glia (IGG) 
and the midline zipper glia (Shu et al.  2003b ; Silver et al.  1982 ). A last crucial popula-
tion of cells encountered by callosal axons at the midline is the subcallosal sling that 
is formed by a transient population of neurons and that is required for proper callosal 
development (Shu et al.  2003a ; Silver and Ogawa  1983 ; Silver et al.  1982 ). 
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 In the vicinity of the CC, Slit2 is expressed by the GW and the IGG, thus 
 surrounding the Robo1- and Robo2-expressing callosal axons (Shu et al.  2003c ). 
In  Slit2  knockout (KO) animals, a large proportion of callosal fi bres misprojected 
ventrally prior to the midline and formed large swirls of axons known as Probst 
bundles (Bagri et al.  2002 ).  Slit1  KOs displayed a normal CC, whereas  Slit1;Slit2  
double KOs, which die at birth, exhibited complete agenesis (Unni et al.  2012 ). 
Similar defects could also be observed in  Robo1  KO and  Robo1;Robo2  double KO 
mice in which callosal fi bres were misrouted at the midline into huge fasciculated 
bundles that ectopically extend into the septum (Andrews et al.  2006 ; Lopez-
Bendito et al.  2007 ). It is worth noting that in the absence of Robo1, axons showed 
an increase in fasciculation whereas in the absence of Slit2 the converse phenotype 
(i.e. defasciculation) was observed. This indicates that additional mechanisms are 
at play in this system. 

 Interestingly, several Robo and Slit partners have also been shown to regulate the 
guidance of callosal axons. The interaction between Slits and HSPGs is likely to be 
important at the corpus callosum. Mutants for Hs6st1, a structural modifi er of hepa-
ran sulphates, showed a callosal phenotype with Probst bundles and growth of axons 
into the septum which was reminiscent of that of  Slit/Robo  mutants albeit more 
severe (Conway et al.  2011 ). Moreover, neither  Hs6st1   +/−   nor  Slit2   +/−   cortical axons 
exhibited any growth of cortical axons into the septum, but  Hs6st1   +/−   ;Slit2   +/−   com-
pound mutants exhibit the same phenotype as  Slit2  or  Hs6st1  full knockouts, thus 
indicating a synergistic genetic interaction between Slit2 and Hs6st1. Similarly, 
knocking down  EXT1  in mouse leads to profound axon misguidance of the main 
forebrain axon commissures reminiscent of phenotypes found in  Slit/Robo  mutants 
(Inatani et al.  2003 ). Moreover, the CC is totally absent in a percentage of  Mena  
KOs as well as in all double mutants for  Mena  and  VASP , which are downstream 
effector proteins of Slit–Robo signalling (Lanier et al.  1999 ; Menzies et al.  2004 ).  

7.3.2      Cell Migration and Motility 

 In most developing organs, cells migrate in a precise direction, following stereo-
typed pathways under the infl uence of repulsive and attractive factors. Slit–Robo 
signalling has been shown to control the migration of several neuronal subtypes in 
mice including cortical interneurons (Andrews et al.  2006 ; Hernández-Miranda et al. 
 2010 ), cerebellar granule neurons (Guan et al.  2007 ; Xu et al.  2004 ) and inferior 
olivary neurons (Di Meglio et al.  2008 ). Studies suggest that Slit/Robo can control 
two properties in migrating cells, namely their directionality as well as their motility. 
This is best exemplifi ed in migrating subventricular zone-derived precursors. 

 The subventricular zone (SVZ) located along the walls of the lateral ventricle is 
composed of mitotically active cells that can migrate over long distances along the 
rostral migratory stream (RMS) to the olfactory bulb (OB) to generate two types of 
olfactory interneurons (Lois and Alvarez-Buylla  1994 ). Simplistically, the SVZ 
contains three types of cells: type A, type B and type C cells as well as ependymal 
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cells which line the ventricle (Doetsch et al.  1997 ). Type    B cells are the neural stem 
cells that give rise to the rapidly dividing “transit-amplifying” cells or type C cells 
which in turn generate migratory postmitotic neuroblasts known as type A cells 
(Doetsch et al.  2002 ). Type A cells migrate a long distance from the walls of the 
lateral ventricle to reach the olfactory bulb along the rostral migratory stream (RMS) 
in chain formation (Jankovski and Sotelo  1996 ; Lois et al.  1996 ). During this long 
migration, the neuroblasts are protected from the surrounding brain parenchyma by 
an astrocytic sheath which acts as a sort of tunnel to channel them to the OB. Upon 
reaching the OB, the neuroblasts disperse and start migrating radially as they 
 differentiate into two types of OB interneurons which integrate into the existing 
circuitry (Carleton et al.  2003 ; Kelsch et al.  2007 ). 

 The tangential migration of neuroblasts along the RMS depends mostly on 
repulsive cues. One of the main families of axon guidance molecules implicated 
in regulating the migration of SVZ-derived progenitors is the Slit–Robo ligand-
receptor couple. Type A cells express Robo2 and Robo3 receptors (Kaneko et al. 
 2010 ), and in vitro, molecules secreted by the septum and the choroid plexus repel 
SVZ-derived neural progenitors (Wu et al.  1999 ). This repulsive effect was shown 
to be dependent on Slit1 and Slit2 which are produced in brain regions which 
neighbour the SVZ and the RMS and this repellent activity is lost in  Slit1;Slit2  
knockouts animals (Nguyen-Ba-Charvet et al.  2004 ; Wu et al.  1999 ). Moreover, 
Slit1 is expressed by migrating neuroblasts along the RMS and appears to have 
both a cell-autonomous and cell-non-autonomous role in their migration (Nguyen-
Ba-Charvet et al.  2004 ). Indeed, in  Slit1 -defi cient mice, a portion of the SVZ-
derived neuroblasts migrates caudally and migration defects are observed in 
 Slit1- defi cient explant and neurosphere cultures. In fact, both in culture and in 
situ, Slits are capable of reversing the direction of migrating SVZ neurons (Ward 
et al.  2003 ). In addition, these neurons turn away from Slit sources through recur-
ring rounds of extending and retracting their processes leading to the selection of 
a dominant process that formed preferentially on the side of the cell body farthest 
away from the Slit source (Ward et al.  2005 ). Interestingly, the application of Slit 
to the leading edge of the migrating cells leads to a repositioning of the centro-
some apparatus which is accompanied by a switch in cell directionality 
(Higginbotham et al.  2006 ). Moreover, RMS astrocytes of the glial tube express 
Robo receptors and are able to respond to repulsive Slits secreted by migrating 
neuroblasts by forming and maintaining glial tubes (Kaneko et al.  2010 ). In these 
ex vivo experiments, as well as in vivo, the astrocytic glial sheath surrounding 
neuroblasts showed a perturbed organisation. Slit1 expressed by neuroblasts is 
actually thought to act by repelling the Robo-expressing processes of neighbour-
ing astrocytes, thus creating corridors within the brain parenchyma which can 
facilitate neuroblast migration. In the lateral ventricles, Slit2 is produced by the 
choroid plexus located caudally (Sawamoto et al.  2006 ). The beating of ependy-
mal cilia on the walls of the lateral ventricle creates a high-caudal low-rostral 
concentration gradient of CSF molecules (including Slit2), which is postulated to 
drive the migration of SVZ neuroblasts rostrally towards the OB. In the absence 
of ependymal fl ow of the CSF, directional migration of neuroblasts is actually 
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compromised. Slit/Robo not only controls the directionality of SVZ- derived 
 neuroblasts but also their motility. In fact,  Slit1- defi cient neuroblasts in organo-
typic cultures migrate slower than control neuroblasts (Kaneko et al.  2010 ). This 
same effect is observed when placing wild-type neuroblasts on an organotypic 
brain slice derived from a  Slit1  KO brain, demonstrating that Slit1 also acts in a 
cell non-autonomous manner.  

7.3.3     Dendritic and Axonal Arbourisation/Branching 

 Slit and Robo play a role in regulating the dendritic and axonal branching in a 
variety of systems. It was found that Slit2N, the amino terminal fragment of Slit2, 
was fi rst characterised as a factor capable of inducing elongation and promoting 
branch formation of rat sensory axons (Wang et al.  1999 ). Slit–Robo signalling in 
axonal branching has since been studied in other models. For instance, applying 
ectopic Slit2 to trigeminal axonal tracts caused rapid axon branching and arbouri-
sation (Ozdinler and Erzurumlu  2002 ). Moreover, an interesting study explored 
the role of Slit2 addition on cortical interneurons derived from an E13.5 medial 
ganglion eminence (MGE) explant (Sang et al.  2002 ). This study uncovered a dual 
role for Slit2 depending on the age of the cortical interneurons. In fact, newly 
generated interneurons were repelled by Slit2 addition and showed no branching 
effect, whereas 5-day-old interneurons responded to Slit2 addition by neurite 
branching and elongation. This switch in responsiveness to Slit2 underlines the 
fact that as neurons mature, their signalling pathways evolve to match their cur-
rent environment and the new stage in their lives. Indeed, new interneurons must 
migrate away from the MGE towards the cortex, while old interneurons must send 
out neurites in order to integrate into the cortex. Moreover, adding Slit1 to cul-
tured cortical neurons stimulated axon growth in wild-type but not 
 Robo1   −/−   ;Robo2   −/−   cultures (Round and Sun  2011 ). This effect was mediated by 
the adaptor protein Nck2 which was previously shown to be an effector in EphB1 
signalling (Stein et al.  1998 ). 

 The differential effects of Robo–Slit signalling on dendritic growth and 
 branching, in different cell types and species, illustrate the specifi city of Robo–Slit 
signalling.   

7.4     Slits and Robos in Neurological Disease 

 Together with basic research implicating Robo/Slit signalling in a variety of 
functions in proper brain development, recent genetic screens conducted on 
pools of patients suffering from neurological diseases have uncovered a few 
mutations in Robo genes which suggest that Slit–Robo signalling may be 
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important for proper brain function. The study of Slit–Robo in human diseases 
is in its infancy, but indications suggest that these proteins may play a role in 
several diseases. 

7.4.1     Horizontal Gaze Palsy and Progressive Scoliosis 

 In mammals, Robo3 was discovered as a receptor upregulated in retinoblastoma- 
defi cient mice (Yuan et al.  1999 ). Sequence analysis showed that it belongs to the 
Robo family of receptors although it lacks some amino acids and domains con-
served in other Robos (see Sect.  7.1.1 ). Interestingly, parallel studies in human 
revealed that ROBO3 is mutated in patients suffering from a rare neurological syn-
drome named horizontal gaze palsy and progressive scoliosis (HGPPS) (Jen et al. 
 2004 ). HGPPS patients are unable to perform conjugate lateral eye movements and 
develop after birth a very severe scoliosis (Abu-Amero et al.  2009 ,  2011 ; Amouri 
et al.  2009 ; Jen et al.  2004 ). They do not have any other neurological symptoms. 
However, diffusion tensor imaging and the measure of evoked potentials revealed 
that in HGPPS patients, the corticospinal tract (which connects the motor cortex to 
neurons in the spinal cord) fails to cross the CNS midline at the pyramid level and 
projects to the ipsilateral side of the spinal cord instead. Likewise, ascending sen-
sory projections activate the ipsilateral cortex instead of the contralateral one. 
Patients have a normal corpus callosum but otherwise seem to lack commissural 
connections at the level of the hindbrain and spinal cord. Likewise, Robo3 knockout 
mice lack all commissural connections in the caudal brain but have normal commis-
sures in the forebrain (Marillat et al.  2004 ; Sabatier et al.  2004 ). 

 Although neurological defi cits are similar in all HGPPS patients, the mutations 
(which are autosomal recessive) are distinct in all families identifi ed so far and 
affect amino acids localised in various domains of the protein, from the most 
N-terminal region to the cytoplasmic domain. Most are just missense and their con-
sequence on receptor function or expression is still unknown. 

 The neuronal defects underlying the horizontal gaze palsy is unclear as the abdu-
cens nerve, which plays a key role in lateral eye movement, is present in HGPPS 
patients. However, the eye movement defects can be mimicked in a Robo3 condi-
tional mouse where the brainstem commissural projection which connects the abdu-
cens nucleus to the contralateral oculomotor nucleus is suppressed, suggesting that 
this also contributes to the defects in humans (Renier et al.  2010 ). Likewise, the 
severe hypoplasia of the basilar pons, one of the key feature of HGPPS brain, is 
most likely due to an abnormal migration of pontine neurons as is the case in Robo3 
knockout mice (Geisen et al.  2008 ; Marillat et al.  2004 ). By contrast, the cause of 
the scoliosis is still unknown. How Robo3 functions to control axon guidance at the 
midline of the nervous system is still debated, but the current model suggests that 
Robo3 interacts with Robo1/Robo2 receptors and thereby blocks Slit-mediated 
repulsion before commissural axons have reached the CNS midline (Jaworski et al. 
 2010 ; Sabatier et al.  2004 ).  
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7.4.2      Diabetic Retinopathy 

 Diabetic retinopathy (DR) remains the fi rst cause of new cases of blindness in adults 
in America (Zhang  2010 ). In fact, no fewer than 28.5 % of adults with diabetes 
 present with DR. The disease is thought to be triggered by damage of small blood 
vessels in the retina (probably due to hyperglycemia) which results in ischemia in 
the retina and ultimately leads to the neovascularisation of the retinal surface. The 
proliferation of endothelial cells and the associated vascular growth further damage 
the retina as well as cause a decrease in visual acuity. In fact retinal damage leads to 
the neurodegeneration of several neuronal and glial cell types in the retina and 
forms a crucial component of the aetiology of DR (Barber  2003 ). Moreover, neuro-
degeneration contributes partially to the loss of vision that occurs in diabetes. Loss 
of vision resulting from neovascularisation occurs in several diseases other than DR 
and several lines of evidence suggest that Robo4 is a strong therapeutic candidate to 
modulate pathogenesis. 

 Axonal guidance molecules including Slit and their receptors have been demon-
strated to regulate the growth and branching of blood vessels (Klagsbrun and 
Eichmann  2005 ). Robo4 and to a lesser extent Robo1 are the main Robo proteins 
expressed by blood vessels (Park et al.  2003 ). Moreover, Robo4, Robo1 and Slit2 
are highly expressed by retinal pigment epithelium cells in patients with prolifera-
tive diabetic retinopathy (Huang et al.  2009b ; Zhou et al.  2011a ). Studies have dem-
onstrated that Robo4 contributes to stabilising the vasculature in the retina whereas 
Robo1 is associated with neovascularisation (Huang et al.  2009a ). That being said, 
a soluble form of the extracellular portion of Robo4 was shown to inhibit angiogen-
esis and block the migration of endothelial cells in vivo (Suchting et al.  2005 ). 
In addition, activation of Robo4 by Slit2 was shown to inhibit pathologic angiogen-
esis while its deletion promoted the pathobiology of vascular diseases (Jones et al. 
 2008 ,  2009 ). Moreover, Robo4 binds to the vascular Netrin receptor, UNC5B, 
which counteracts VEGF signalling, thus maintaining vascular integrity (Koch et al. 
 2011 ). In this case, Robo4 seems to act as a ligand for UNC5 and not as a receptor.  

7.4.3     Dyslexia 

 ROBO1 was lately identifi ed as a candidate gene for developmental dyslexia 
(Hannula-Jouppi et al.  2005 ; Mascheretti et al.  2012 ). Developmental dyslexia is a 
hereditary neurological disorder characterised by impairments in reading which can-
not be explained by other factors such as lack of intelligence, motivation or opportu-
nity. Interestingly, dyslexia is often associated in post-mortem studies with a mild 
disorganisation of cortical layering (Ramus  2004 ). In dyslexics, polymorphisms in 
the  ROBO1  gene have also been associated with language defi cits (Bates et al.  2010 ). 

 Robo/Slit signalling has been implicated in several aspects of cortical develop-
ment. As indicated previously, recent studies have shown that in the absence of 
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Robo1, the proliferation and migration of cortical interneurons are perturbed 
(Andrews et al.  2006 ,  2008 ; Hernández-Miranda et al.  2010 ). This defect was in 
part attributed to a Slit-independent mechanism whereby  Robo1 -defi cient neurons 
lose responsiveness to Sema3A and Sema3F given that Robo1 can bind directly to 
the Sema3 receptor, Nrp1. In addition, knocking down Robo1, by in utero  electro-
poration  of an shRNA construct during embryogenesis, was recently found to lead 
to an accumulation of layer II/III cortical neurons in the marginal zone of the cortex 
just below the pia (Gonda et al.  2012 ). Interestingly this defect in cortical lamina-
tion occurred when Robo1 was silenced at E15.5 and E16.5 but not at E14.5, lead-
ing the authors to conclude that different cortical subtypes are more or less responsive 
to Robo signalling. Robo1 was previously shown to play a role in dendritic growth 
and branching in cortical neurons in vivo (Whitford et al.  2002 ) and Slit protein was 
shown to induce branching of mature cortical interneurons but not projection neu-
rons (Sang et al.  2002 ). In addition, Robo1 was previously found to bind to Robo4 
(Sheldon et al.  2009 ). Interestingly, a recent study reported that Robo4 was expressed 
in the developing cortex and that acute removal of Robo4 by in utero electropora-
tion of a Robo4 siRNA led to the suppression of cortical migration (Sundaresan 
et al.  1998b ; Zheng et al.  2011 ). This implies that timing of cortical radial migration 
might be dependent on Robo1–Robo4 signalling. Robo4 also caused a reduction of 
migration in an in vitro model of cell migration, but no defects were obvious in a 
Robo4 knockout mouse. The authors argued that perhaps other Robo receptors had 
a compensating effect. Finally, it was also recently shown that Slit–Robo signalling 
is implicated in the modulation of progenitor cell proliferation during brain devel-
opment (Borrell et al.  2012 ). In fact, in the absence of Robo1/2 or Slit1/2, the sec-
ondary progenitor pool of intermediate precursor cells is expanded in the ventricular 
zone of mutant mice. 

 It will be interesting to determine whether the cortical phenotypes discovered in 
 Slit/Robo  mutant mice are contributing factors in developmental dyslexia. Another 
hypothesis for the role of Robo1 in dyslexia is based on a clinical study which found 
that dyslexic family members in a Finnish family were carriers of a weakly express-
ing haplotype of  ROBO1  (Lamminmaki et al.  2012 ). Moreover, the auditory path-
way of the dyslexic family members showed some impairment upon testing of 
binaural suppression. Here, the strength of the interaural commissures was signifi -
cantly correlated to the expression levels of ROBO1 in the blood of the dyslexics. 
One of the hypotheses put forward by the authors of this clinical investigation was 
that, Robo1 being important for axon commissural crossing, dyslexic patients most 
likely presented with defects in the crossing of axons along the auditory pathway.  

7.4.4     Involvement in Brain Cancer 

 Angiogenesis is an important component of cancer metastasis and as discussed in 
Sect.  7.4.2 , there is evidence that Slit–Robo signalling might be implicated in this 
component of cancer progression (Ballard and Hinck  2012 ; Mehlen et al.  2011 ). 
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Further, there is evidence that Slits and Robos are differentially regulated in many 
types of cancers in the body ( Beggs et al. 2012 ; Biankin et al.  2012 ; Ito et al.  2006 ; 
Sundaresan et al.  1998b ). The evidence does not point to a clear role of Slits and 
Robos in cancer where they appear to function as tumour suppressors in certain 
types of cancer (Alajez et al.  2011 ; Bauer et al.  2011 ; Marlow et al.  2008 ; Stella 
et al.  2009 ; Yuasa-Kawada et al.  2009a ) and oncogenes in others (Schmid et al. 
 2007 ; Zhou et al.  2011b ). A few studies point to a role of Slit–Robo in different 
types of brain cancer. For instance, in vitro, breast cancer cell lines were strongly 
attracted to Slit2, leading the researchers to hypothesise that Slit2 in the brain acts 
an attractant to metastatic breast cancer cells (Schmid et al.  2007 ). However, an in 
vitro study of medulloblastoma cancer cells demonstrated that Slit2 inhibited 
medulloblastoma cell invasion (Werbowetski-Ogilvie et al.  2006 ). In this study, 
although glioma tumours overexpress Slit and Robo, Slit2 had no effect on glioma 
cell invasion. Nonetheless, another study showed that Slit2 was overexpressed by 
glioma cells which mediated Slit2-induced chemorepulsion through Robo1 
(Mertsch et al.  2008 ). Further studies are therefore required to support or not a role 
for Slit–Robo signalling in brain tumours.  

7.4.5     Conclusion: Prospects of Slit–Robo Signalling 
in Neurological Diseases 

 Considering the brain phenotypes observed in various Slit/Robo mutant mice, one 
would expect Slit and Robo mutations to be present in a large variety of neurologi-
cal diseases. It is therefore quite unexpected that, as of now, these molecules have 
not been implicated in more pathologies in the CNS. It is possible that, as is the 
case for mutant mice, humans with mutations in either Robos or Slits have 
decreased viability. However, as genetic screens of patients become more routine 
and cost- effective, we can speculate that an increasing number of mutations in 
SLIT and ROBO genes will be uncovered in diseases. These genetic screens will 
undoubtedly yield false positives and therefore further analysis will be warranted 
to ensure that Slit and Robo actually play a function in CNS regions affected in the 
disease using transgenic animals or that Slit–Robo signalling is affected in patients. 

 Analysis of ROBO receptors in autism, a severe neurodevelopmental disorder char-
acterised by social and behavioural defi cits, demonstrated an association between 
SNPs in ROBO3 and ROBO4 and autism as well as a reduction of ROBO1 and ROBO2 
mRNA in autistic patients (Anitha et al.  2008 ). The decrease in ROBO2 mRNA and 
protein levels in autistic patients was subsequently confi rmed in a  post- mortem study 
(Suda et al.  2011 ). Moreover, a recent genetic screen of neurons differentiated from 
induced pluripotent stem cells obtained from schizophrenic patients showed that Slit–
Robo genes were deregulated in schizophrenia (Brennand et al.  2011 ). In addition, 
ROBO1 and ROBO2 were picked up as risk genes in a study which integrated genetic 
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data with brain imaging to identify new risk factors for schizophrenia (Potkin et al. 
 2010 ). This would indicate a new avenue of research to pursue in understanding the 
aetiology of schizophrenia, a severe and debilitating psychiatric disorder affecting 
approximately 1 % of the population. While its causes remains poorly understood, the 
prevailing theories point to schizophrenia as being a developmental disorder or a disor-
der linked to a dysregulation of dopamine (Murray et al.  2008 ). The neurodevelopmen-
tal hypothesis postulates that the specifi c pathological hallmarks of the disease are laid 
out during brain development but that the onset of the associated symptoms manifests 
in early adulthood. 

 This new research prospect is further supported by the fact that several other 
Slit–Robo binding partners have also been implicated in schizophrenia. For 
instance, a DCC single nucleotide polymorphism was shown to be implicated in 
schizophrenia (Grant et al.  2012 ). Moreover, a duplication in the  srGAP3  gene 
was recently found to segregate with psychosis in the family of a child with an 
early-onset heritable form of the disease (Wilson et al.  2011 ). This fi nding was 
further confi rmed in a mouse knockout for  srGAP3  which revealed schizophrenia-
related phenotypes (Waltereit et al.  2012 ). Interestingly, srGAP3 can bind to both 
Robo1 and Robo2 and a knockout mouse for srGAP3 showed mild guidance 
defects of spinal cord commissural axons at the fl oor plate as in the Robo2 KO 
(though ventral funiculus axons do not express high levels Robo2) (Bacon et al. 
 2011 ). Finally and quite interestingly DISC1 mutants have similar callosal defects 
as seen in Slit–Robo mutants and DISC1 has been known to be implicated in 
 psychiatric disorders ranging from bipolar disorder to schizophrenia (Millar et al. 
 2000 ; Osbun et al.  2011 ). 

 Finally, further basic research into the role of Slit–Robo in the development of 
the CNS will not only serve to gain insights into pathologies but will undoubtedly 
also have a signifi cant therapeutic impact. Upon brain injury or damage, such as in 
stroke or Huntington’s disease, some neuroblasts of the SVZ are coopted out of 
their normal migratory pathway towards the olfactory bulb, and instead, they appear 
to be able to migrate to the zone of injury (Saha  2012 ). In a mouse model of brain 
injury, known as cryoinjury, Slit2 mRNA was upregulated surrounding the lesion 
(Hagino et al.  2003 ). In Sect.  7.3.2 , we have highlighted the fact that neuroblasts are 
responsive to Slit–Robo signalling. In fact, in the presence of a dominant-negative 
Robo2 fusion protein, SVZ-derived cells were no longer repelled by Slit molecules 
(Lu et al.  2007 ). Such experiments are required in vivo to lessen the chemorepulsive 
upregulation of  Slits  upon brain injury, thus enabling neuroblasts to migrate to the 
area of brain injury and potentially repair the lesions. In other systems, controlling 
Slit–Robo signalling has already shown promises of therapeutic benefi ts, for 
instance, in reducing the migration of melanoma cells (Denk et al.  2011 ).      
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    Abstract     In vertebrates, the contactin (CNTN) family of neural cell recognition 
 molecules includes six related cell adhesion molecules that play non-overlapping roles 
in the formation and maintenance of the nervous system. CNTN1 and CNTN2 are the 
prototypical members of the family and have been involved, through  cis - and  trans -
interactions with distinct cell adhesion molecules, in neural cell migration, axon guid-
ance, and the organization of myelin subdomains. In contrast, the roles of CNTN3–6 
are less well characterized although the generation of null mice and the recent identifi -
cation of a common extracellular binding partner have considerably advanced our 
grasp of their physiological roles in particular as they relate to the wiring of sensory 
tissues. In this review, we aim to present a summary of our current understanding of 
CNTN functions and give an overview of the challenges that lie ahead in understanding 
the roles these proteins play in nervous system development and maintenance.  

8.1         Introduction 

 The proper development of the nervous system is the culmination of several com-
plex and coordinated processes that include the proliferation and differentiation of 
neural cells, cellular migration, axon growth and guidance, the formation of 
 synapses, and myelination of axons to permit effi cient saltatory conduction. 
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  Fig. 8.1    Domain 
organization of vertebrate 
CNTNs. The architecture 
shared by all six vertebrate 
CNTNs is shown here. They 
include six N-terminal 
immunoglobulin domains 
and four fi bronectin type III 
domains and are attached to 
the cell surface by a 
glycophosphatidylinositol 
anchor. Specifi c roles for the 
six CNTNs that have been 
identifi ed from mouse studies 
are highlighted here       

The information necessary for the appropriate coordination of these events is 
encoded in the interactions between growth factors, receptor tyrosine kinases, 
receptor protein tyrosine phosphatases, components of the extracellular matrix, and 
cell adhesion molecules. It is the precise interplay between these receptors and 
intracellular signaling machineries that underpins the organization and complexity 
of neural tissues, and alterations of these binding events are linked to developmental 
defects as well as the pathologies of human mental disorders. 

 Cell adhesion molecules (CAMs) represent one of the most diverse groups of 
cell surface proteins involved in neural development. Among them, members of the 
immunoglobulin (Ig) superfamily have a prominent role in shaping the nervous sys-
tem. The extracellular regions of these proteins include almost exclusively Ig and 
fi bronectin type III repeats (FNIII) and yet this seemingly simplistic modular archi-
tecture underpins a great variety of distinct neurodevelopmental processes. The 
contactins (CNTNs) represent one such group of neural CAMs and are involved in 
all major aspects of neural development. In vertebrates, the family is represented by 
CNTN1 (F3), CNTN2 (TAG-1/TAX-1/axonin), CNTN3 (PANG/BIG-1), CNTN4 
(BIG-2), CNTN5 (NB-2), and CNTN6 (NB-3) (Shimoda and Watanabe  2009 ; Zuko 
et al.  2011 ) whereas a single family member called CONT has been described in 
 Drosophila  (Faivre-Sarrailh et al.  2004 ). The vertebrate CNTNs include six Ig and 
four FNIII modules, are tethered to the cell membrane by a glycophosphatidylino-
sitol (GPI) anchor (Fig.  8.1 ), and share 40–60 % amino acid sequence identity 
(Zuko et al.  2011 ). Recent excellent reviews have focused mostly on subgroups of 
CNTNs (Shimoda and Watanabe  2009 ; Zuko et al.  2011 ) or on one particular devel-
opmental aspect (Stoeckli  2010 ). Here we aim to give an overview of the functions 
played by members of the CNTN gene family across different species as well as 
discuss recent results about the structures and functions of these proteins.
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8.2        Insights into Contactin Function 
from  Drosophila  and Zebrafi sh 

8.2.1     The Formation of Septate Junctions 
in  Drosophila  Peripheral Nerves 

 In  Drosophila melanogaster , the CNTN gene family is represented by a single gene 
named  cont  (Faivre-Sarrailh et al.  2004 ). The gene product is a GPI-anchored pro-
tein (CONT), which shares a similar domain organization as its vertebrate counter-
parts though it also includes an N-terminal C-type lectin-like domain of unknown 
function (Fig.  8.2 ). CONT is found on epithelial cells originating from the ectoderm 
and importantly on the surface of glial cells called perineurial glial cells. These 
perineurial cells encase inner glial cells that ensheath the axons of  Drosophila  
peripheral nerves. The role of these cell layers is to isolate the nerves from the elec-
trolytes in the hemolymph, thus allowing the propagation of saltatory impulses 
along the axons (Banerjee et al.  2006b ). Specialized cell contacts called septate 
junctions (SJs) functioning as permeability barriers form between the inner glial 
cells and the perineurial cells. The expression of CONT on perineurial cells over-
laps with that of two other neural CAMs and SJ markers called neuroglian (NRG) 
and neurexin IV (NRX IV) (Faivre-Sarrailh et al.  2004 ), which are the  Drosophila  
representatives of the L1 and contactin associated-like proteins (CNTNAPs) fami-
lies, respectively.  Cont  mutant fl ies do not form SJs, as is the case for  nrg  and  nrx IV  
mutants (Banerjee et al.  2006a ) and the three proteins only localize correctly at SJs 
when all three are present. In other words, removal of NRG, NRX IV, or CONT 
prevents the appropriate localization of the two other cell surface receptors at SJs. 
The evidence accumulated thus far suggest that NRG, NRX IV, and CONT form a 
tripartite complex, with NRX IV and CONT associating on the same cell ( cis - 
interaction ) and binding to NRG expressed on an apposing cell ( trans -interaction) 
(Banerjee et al.  2006a ; Faivre-Sarrailh et al.  2004 ) and a clearer picture of how this 
complex controls the formation of SJs is starting to emerge.

   Most of the biochemical insights into the CONT/NRX IV/NRG complex come 
from domain deletion studies performed on NRX IV (Banerjee et al.  2011 ). As is 
the case for the vast majority of CAMs, NRX IV is a modular protein; it includes an 
N-terminal discoidin domain, a laminin G module, and two laminin G/epidermal 
growth factor/laminin G repeats followed by a transmembrane region and a cyto-
plasmic segment (Baumgartner et al.  1996 ). Deletion of the NRX IV intracellular 
region has no effect on the localization of the tripartite complex members NRG and 
CONT, but appears to impair the association of NRX IV with CONT and leads to 
formation of defective SJs. This deletion phenocopies the effects observed in fl ies 
that do not express the cytoplasmic organizer Coracle (Genova and Fehon  2003 ), 
consistent with the notion that anchoring NRX IV, and by extension the tripartite 
complex, to the cytoskeleton is essential for the formation of SJs (Banerjee et al. 
 2011 ). Moreover, module deletion in the extracellular region of NRX IV has 
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identifi ed the fi rst laminin G/epidermal growth factor/laminin G as essential for 
associating with CONT since a mutant form of NRX IV containing only this repeat 
in its ectodomain was able to associate with CONT and led to the correct localiza-
tion of CONT and NRG at SJs (Banerjee et al.  2011 ). This mutant NRX IV could 
not support the formation of functional SJs, however, demonstrating that mere asso-
ciation of NRX IV with CONT is not enough for the correct organization of the 
junctions. Less is known about the biochemical roles of the two other complex 
members, NRG and CONT. NRG is a homophilic binding protein, capable of induc-
ing aggregation of non-adherent S2 cells when expressed on their surface (Hortsch 
et al.  1995 ), but the identities of the domains required for association with CONT 
and NRX IV remain unclear. The same is true for CONT since domain deletion 
studies have yet to be performed so that the molecular details of how it forms a 
complex with both NRX IV and NRG are yet to be uncovered. 

 The fi ndings accumulated so far in  Drosophila  mirror earlier results obtained in 
vertebrates. Indeed the wrapping of peripheral axons by glial cells and the forma-
tion of SJs in  Drosophila  is reminiscent of the ensheathment of vertebrate axons by 
myelin and the formation of SJs in paranodal regions (Banerjee et al.  2006b ). As is 
the case in  Drosophila , mice lacking the  CNTN1  gene have disrupted junctions in 
paranodal regions (Boyle et al.  2001 ). The parallel between the roles of CONT 

  Fig. 8.2    Architecture of the 
single  Drosophila  CNTN 
homologue. The domain 
organization of CONT is 
identical to the one described 
for vertebrate CNTNs save 
for the presence of a C-type 
lectin-like domain at its 
N-terminus       
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and CNTN1 is made stronger when considering that a  cis -complex of CNTN1 
and contactin- associated protein 1 (CNTNAP1) expressed on axons associates 
 specifi cally with the 155 kDa glial isoform of neurofascin designated NF155, a 
member of the L1 family and homologue of NRG (Charles et al.  2002 ). The role of 
the tripartite complex of CNTN1/CNTNAP1/NF155 in mice neuronal development 
is considered in more detail below, but it is important to note the evolutionary con-
served roles of CONT and CNTN1 as we start considering the more intricate roles 
of CNTN family members and additional binding partners in the development and 
maintenance of the vertebrate nervous system.  

8.2.2     Axonogenesis and Oligodendrocyte 
Development in Zebrafi sh 

 Zebrafi sh is an ideal model system for analysis of gene function and is increasingly 
being used to model human diseases (Lieschke and Currie  2007 ). Two paralogues 
of CNTN1 called  Cntn1a  and  Cntn1b  exist in zebrafi sh. Both are expressed during 
development although  Cntn1a  transcripts are present earlier than those of  Cntn1b  
(Haenisch et al.  2005 ). Expression of Cntn1a is fi rst detected during axonal growth 
in the trigeminal neurons that innervate jaw muscles and in Rohon–Beard sensory 
neurons, which extend into the spinal cord and the epidermis where they function in 
the detection of information about the environment (Gimnopoulos et al.  2002 ). 
Axons from these neurons are the fi rst to grow out indicating that Cntn1a expression 
occurs concomitantly with axonogenesis. In contrast, Cntn1b expression coincides 
with later neurodevelopmental events such as pathfi nding, synapse formation, and 
myelination (Haenisch et al.  2005 ). The role of Cntn2 has also been examined in the 
development of the zebrafi sh nervous system and in particular in the nucleus of the 
medial longitudinal fascicle (nucMLF). Axons from nucMLF grow out and extend 
into the midbrain where they essentially form a major tract from which axons that 
develop at a later stage will extend (Wolman et al.  2008 ). Axons must grow out in 
the appropriate direction and converge onto an axon tract. Loss of  Cntn2  results in 
nucMLF axons extending in incorrect directions along with a reduction in the axo-
nal growth rate and a decrease in axon–axon interactions (Wolman et al.  2008 ). 
Cntn2 expression is also necessary for the guidance of central axons from Rohon–
Beard sensory neurons into the spinal cord to the epidermis as knockdown of Cntn2 
using morpholinos induces extensive branching of central Rohon–Beard neurons 
while their forward advance is drastically reduced (Liu and Halloran  2005 ). Taken 
together, these results indicate that expression of Cntn1 and Cntn2 is required dur-
ing axonal growth in zebrafi sh and as such underline an additional role in axonal 
growth compared to fl y CONT. 

 In addition to their involvement in axonal growth and pathfi nding, the two para-
logues of CNTN1 in zebrafi sh participate in the differentiation of myelinating glial 
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cells during development as well as in optic nerve regeneration. Indeed, both  Cntn1a  
and  Cntn1b  mRNAs have been detected in oligodendrocytes in the developing optic 
pathway of zebrafi sh (Haenisch et al.  2005 ; Schweitzer et al.  2007 ). Furthermore, 
 Cntn1a  expression is increased following lesion of the optic nerve in dedifferentiat-
ing and re-differentiating oligodendrocytes, a process required for the remyelin-
ation of regenerating axons (Ankerhold and Stuermer  1999 ), yet  Cntn1a  mRNA is 
absent during remyelination. Interestingly, the regulation of the two CNTN1 para-
logues in the lesioned optic nerve is inversely correlated since  Cntn1b  is reduced 
during the de- and re-differentiation phases, but returns to normal levels during 
remyelination in goldfi sh (Haenisch et al.  2005 ). The reasons underlying these dif-
ferences in expression levels are unclear, but the sum of these fi ndings links CNTN1 
to oligodendrocyte differentiation and myelination, which is consistent with recent 
work on performed in mice (see below).   

8.3     Insights into CNTN Function from Mice Studies 

8.3.1     The Roles of CNTN1 and CNTN2 in Cerebellum 
Development 

 The work performed in  Drosophila  and zebrafi sh has identifi ed roles for the con-
tactin gene family in the formation of axoglial junctions, myelination, and axono-
genesis. However, the most comprehensive view of CNTN function is afforded by 
almost two decades of work using mice. In particular, the mouse cerebellum is an 
excellent system to elucidate the role of CNTN1 and CNTN2 in guiding neural cell 
development as they are expressed in the postnatal cerebellar cortex (Faivre-
Sarrailh et al.  1992 ; Lee et al.  2000 ; Yoshihara et al.  1994 ) and because the ana-
tomical organization and the postnatal development of this structure are already 
well characterized. Briefl y, the cerebellar cortex is made up of four types of neu-
rons: the granule cells, Purkinje cells, and two types of inhibitory neurons: the 
Golgi cells and the stellate/basket cells (Voogd and Glickstein  1998 ). The cerebel-
lum is involved in motor control and learning and the coordination of body position 
and limb movement; more recently it has also been described to contribute to cog-
nitive processes, with impaired function in humans linked to autism, schizophre-
nia, and mental retardation (Schmahmann  2004 ). Therefore, studies of the roles 
played by CNTNs in cerebellar tissues may shed light on their involvement in 
human mental disorders. 

 Overall, the presence of CNTN1 and 2 is critical for normal development of the 
cerebellum. Because these two proteins are closely related (they share 48 % amino 
acid sequence identity overall), one could speculate that they play redundant roles 
in cerebellar development. However, expression of CNTN1 under the gene pro-
moter of CNTN2 results in reduced cerebellum size, due to a reduction in granule 
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cell number and a reduction in the growth and fasciculation of their axons (Bizzoca 
et al.  2003 ), indicating the importance of proper spatial and temporal regulation for 
the expression of these two CNTNs. During development of the cerebellum, CNTN2 
is expressed by granule cell progenitors as they differentiate; it is present on the cell 
bodies and elongating parallel fi bers of the granule cells (Pickford et al.  1989 ; 
Yamamoto et al.  1990 ). CNTN2 expression is then replaced by that of CNTN1 with 
the onset of radial cellular migration (Bizzoca et al.  2003 ; Faivre-Sarrailh et al. 
 1992 ; Wolfer et al.  1994 ). The distinct roles of CNTN1 and CNTN2 are further 
highlighted by a recent study by Xenaki and colleagues ( 2011 ) in which the authors 
describe opposing roles for these two receptors in the regulation of cerebellar gran-
ule neuron (CGN) progenitor proliferation. After birth, expansion of CGN precur-
sors occurs prior to their migration and differentiation and this proliferation is in 
particular regulated by the Sonic hedgehog (Shh) signaling pathway. In this context, 
Xenaki and colleagues demonstrated that Shh-promoted CGN proliferation was 
inhibited when these cells were cultured in the presence of soluble CNTN1, which 
in turn favored differentiation. However, culture of CGNs in the presence of CNTN2 
antagonized the effect of CNTN1 and restored Shh-induced CGN proliferation. 
How can CNTN1 and CNTN2 produce such distinct outcomes for the proliferation 
of CGNs? It appears that the inhibitory effect of CNTN1 on CGNs is mediated 
through interactions with the L1 family NrCAM expressed on the surface of these 
cells (Xenaki et al.  2011 ). However, because CNTN2 has also been shown to bind 
to NrCAM, it would compete with CNTN1 and antagonize its effect on CGNs 
(Brümmendorf and Lemmon  2001 ). In addition to underlining the non-overlapping 
functions of CNTN1 and CNTN2 in cerebellar development, these results highlight 
an important link between L1 and CNTN family members, further examples of 
which are mentioned below. 

 CNTN2 is considered to play a critical role in neuronal migration (Denaxa et al. 
 2001 ,  2005 ), yet its exact function in this process has remained unclear. Studies 
using blocking antibodies and  CNTN2  −/−  mice have attempted to bring some clarity 
to this process. Incubation of P5 cerebellar slices with anti-CNTN2 serum resulted 
in decreased radial migration between cerebellar layers and accumulation of CGNs 
in the external germinal layer of the cerebellum (Wang et al.  2011 ). This fi nding 
suggests that CNTN2 promotes cellular migration. Strikingly, Wang and col-
leagues also remarked that treatment of isolated CGNs by an anti-CNTN2 anti-
body resulted in increased migration in a Boyden chamber assay, suggesting that 
CNTN2, in this context, is an inhibitor of cellular migration. These contradictory 
results may stem from differences in the maturation of the CGNs used in the exper-
iments, yet they may also highlight the complex function of CNTN2 in neuronal 
migration and that CNTN2-mediated migration might depend on additional pro-
teins in the microenvironment of CGNs. On the other hand, although CNTN2-
defi cient mice present alterations in subsets of neural cell types (Denaxa et al. 
 2005 ; Fukamauchi et al.  2001 ; Traka et al.  2003 ), studies of the cerebella of these 
mice at P2 and P10 revealed no obvious phenotype for granule neurons and no 
signifi cant differences in parallel fi bers or in the thicknesses of various regions of 
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the cerebella (Fukamauchi et al.  2001 ). Taken together with the antibody-blocking 
experiments, these observations likely suggest the presence of compensatory 
mechanisms that cannot be identifi ed in vitro in the blocking studies (Fukamauchi 
et al.  2001 ). In addition, although the gross morphology of the brain and cerebel-
lum seems unaffected by the loss of CNTN2, a more detailed analysis indicates 
differences at the cellular level. For instance, Xenaki et al. ( 2011 ) remarked the 
presence of ectopic clusters of small granule-like cells, possibly due to impaired 
migration. Further experiments demonstrated that the presence of these clusters is 
not due to a delay in radial migration, but rather that the loss of CNTN2 results in 
a reduction in CGN production so that production continues longer in compensa-
tion (Xenaki et al.  2011 ). Thus, the sum of these investigations indicates that 
migration defects observed using anti- CNTN2 antibodies or in  CNTN2  −/−  mice 
may stem from defects in CGN proliferation and maturation. 

 Axon guidance and pathfi nding depend on the interaction between neuronal cell 
surface molecules and cues from the environment. It was realized soon after its 
identifi cation that CNTN1 was involved in neurite extension (Gennarini et al. 
 1991 ), repulsion (Pesheva et al.  1993 ), and later in fasciculation (Buttiglione et al. 
 1996 ). Its importance in guiding axonal growth was confi rmed in mice lacking 
CNTN1. At P10, these mice display marked ataxia, which increases in severity 
until P18, at which point the mutation is lethal (Berglund et al.  1999 ). A similar 
phenotype was observed in mice from a distinct genetic background 
(129SVJ × C57BL/6 × Black Swiss vs. BALB/c) with a spontaneous mutation in the 
 CNTN1  gene (Cui et al.  2004 ; Davisson et al.  2011 ). Analyses of the brains dis-
sected from  CNTN1  mutants show that the parallel fi bers extending from the gran-
ule cells project parallel rather than perpendicular to the dendritic branches of 
Purkinje cells, which is indicative of guidance defects; the compaction of axons 
within fascicles (in vitro) and the tightness of parallel fi ber fascicles (in vivo) are 
also disrupted (Berglund et al.  1999 ), suggesting that CNTN1 mediates neurite–
neurite interactions. Axonal growth is not the sole purview of CNTN1 and CNTN2 
also mediates this process. As a substrate, CNTN2 was shown to promote neurite 
extension from CGNs and, accordingly, blocking CNTN2 with an antibody impairs 
axon growth (Wang et al.  2011 ). Furthermore, during additional anti-CNTN2-
blocking experiments, Wang et al. ( 2011 ) observed short processes emerging from 
immature CGNs instead of the long axon fi bers that typically extend from them. In 
line with a possible role in axonal growth, experiments using rat dorsal root gan-
glion explants expressing chicken CNTN2 showed that newly synthesized CNTN2 
molecules are delivered to the tip of the axon where they are placed into the growth 
cone membrane (Vogt et al.  1996 ). After fulfi lling their functions, CNTN2 mole-
cules are removed from the growth cone and held at the axon shaft where they may 
mediate axon–axon contacts and thus fasciculation (Vogt et al.  1996 ). Interestingly, 
although the localization of CNTN2 at growth cones indicates a role in axon guid-
ance,  CNTN2  knockout mice appear to have normal axonal pathways (Fukamauchi 
et al.  2001 ), which might indicate that the absence of CNTN2 is compensated for 
by an as of yet unknown mechanism.  
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8.3.2     The Organization of Axonal Subdomains: An 
Evolutionary Conserved Role for CNTN1 and CNTN2 

 Reminiscent of the role of fl y, CONT, CNTN1, and CNTN2 are involved in the 
organization of axonal subdomains in the central and peripheral nervous systems. 
Myelinated axon fi bers are divided into three distinct domains (1) the node of 
Ranvier, where sodium channels are segregated and are involved in the propagation 
of action potentials along the axons, (2) the paranodes, which ensure electrochemi-
cal insulation from adjacent domains, and (3) the juxtaparanodes, characterized by 
the clustering of Shaker-type voltage-gated potassium channels (Fig.  8.3 ) (Salzer 
 1997 ; Wang et al.  1993 ). Effi cient saltatory conduction is crucially dependent on the 
presence of the myelin sheath produced by oligodendrocytes in the central nervous 
system (CNS) and Schwann cells in the peripheral nervous system (PNS), but also 
on the segregation of ion channels and CAMs expressed at the paranodes and jux-
taparanodes as well as the subsequent interactions among them.

   In this context, it is particularly noteworthy that CNTN1 is expressed on the 
axolemma at the paranodes in peripheral nerves and that paranodal junctions are dis-
rupted in mice lacking the  CNTN1  gene (Boyle et al.  2001 ). The cell surface recep-
tors present at paranodal axon–glia contacts have been identifi ed and involve 
CNTN1 and contactin-associated protein (CNTNAP1/CASPR/Paranodin), a verte-
brate orthologue of  Drosophila  NRX IV (Bellen et al.  1998 ) expressed on the axo-
lemma and NF155, an isoform of neurofascin expressed on glial cells (Menegoz 
et al.  1997 ; Rios et al.  2000 ; Tait et al.  2000 ). These three receptors form a tripartite 
complex, with CNTN1 and CNTNAP1 interacting in  cis  on the surface of axons and 
binding in  trans  to NF155 (Charles et al.  2002 ) (Fig.  8.3 ). Interestingly, CNTN1 and 
CNTNAP1 do not interact in solution and interactions between these two proteins 
are only detected in vitro when they are coexpressed, indicating that they likely 
associate intracellularly and are transported to the cell membrane together (Peles 
et al.  1997 ). Consistent with this notion, CNTNAP1 is not transported to the cell 
membrane in CNTN1-defi cient mice (Boyle et al.  2001 ). The presence of the 
CNTN1/CNTNAP1 complex on axons does not appear necessary for the appropri-
ate localization of NF155 at paranodal loops (Boyle et al.  2001 ), but in the absence 
of NF155 neither CNTN1 nor CNTNAP1 could be identifi ed at the paranodes 
(Sherman et al.  2005 ). As could be expected from these fi ndings, paranodal junc-
tions and the distribution of Shaker-type potassium channels are disrupted in 
CNTN1-, CNTNAP1-, or NF155-defi cient mice, and nerve conduction velocity is 
greatly reduced in mice lacking either  CNTN1  or  CNTNAP1  (Bhat et al.  2001 ; Boyle 
et al.  2001 ). 

 Interestingly, the role of CNTN2 at juxtaparanodes mirrors the one played by 
CNTN1 at the paranodes. Indeed, CNTN2 is expressed both on axons (Karagogeos 
et al.  1991 ) and on glial cells at the juxtaparanodal junctions (Traka et al.  2002 ). As 
described above in the case of CNTN1, CNTN2 is engaged in a ternary complex at 
the paranodes involving a homologue of CNTNAP1 called CNTNAP2. This protein 
is expressed on the axolemma and found in a  cis -complex with axonal CNTN2 and 

8 New Insights into the Roles of the Contactin Cell Adhesion Molecules…



174

an apposing CNTN2 expressed on oligodendrocytes and Schwann cells (Fig.  8.3 ) 
(Traka et al.  2002 ,  2003 ). In essence, the glial-expressed CNTN2 replaces NF155 in 
the ternary complex of CNTN1, CNTNAP1, and NF155 necessary for formation of 
paranodal contacts. In contrast to  CNTN1 -null mice, there were no observable dif-
ferences in nerve conduction in the CNS or the PNS between wild-type and CNTN2- 
defi cient mice, but shaker-type potassium channels and CNTNAP2 were aberrantly 
localized in the absence of CNTN2 (Traka et al.  2003 ). This disrupted localization 
is explained by the  cis -interactions between CNTN2, CNTNAP2, and the K +  chan-
nels that occur as early as P8. Satisfyingly, the analysis of  CNTNAP2 -null mice 
published concomitantly as that of  CNTN2 -null mice indicates that there is no alter-
ation in nerve conduction in the absence of CNTNAP2 whereas the distribution of 
CNTN2 and K +  channels is also disrupted (Poliak et al.  2003 ). The mechanism that 
accounts for the assembly of the tripartite complex at juxtaparanodal junctions also 
resembles that of CNTN1. The two groups that generated the  CNTN2 - and 
 CNTNAP2 -null mice independently reported that CNTN2 does not interact with 
CNTNAP2 in  trans  and association between these proteins is observed only when 
they are coexpressed in cells (Poliak et al.  2003 ; Traka et al.  2003 ). An unexpected 
twist came from recent work by Savvaki and colleagues who were able to rescue the 
localization of CNTNAP2 and potassium channels by expressing CNTN2 only in 
oligodendrocytes (Savvaki et al.  2010 ). The authors suggest that interaction between 
CNTN2 and CNTNAP2 in  trans  is suffi cient to drive the correct distribution of 

  Fig. 8.3    CNTN1 and CNTN2 are involved in the organization of myelin subdomains. CNTN1, 
CNTNAP1, and NF155 form a ternary complex that is essential for the axon–glia contacts at the 
paranode. Similarly, glial- and neuron-expressed CNTN2 associates with CNTNAP2 and Shaker- 
type potassium channels at the juxtaparanode       
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juxtaparanodal components at least in the CNS. This  trans -interaction would be 
unexpected in light of previous studies showing that CNTN2 cannot bind in  trans  
with CNTNAP2 (Traka et al.  2003 ), but the authors surmise that such an interaction 
could involve release of CNTN2 from the surfaces of oligodendrocytes and forma-
tion of a complex between membrane-anchored CNTN2 and released CNTN2. This 
released CNTN2 would then serve as an adaptor to mediate the interaction with 
CNTNAP2, thus allowing for proper distribution of juxtaparanode components 
(Savvaki et al.  2010 ). The authors also suggest that juxtaparanodal complex forma-
tion may differ in the CNS and PNS and that the strict requirement for expression of 
CNTN2 on the axolemma might remain in the PNS, but whether this is the case or 
not remains unclear.  

8.3.3     The Role of CNTN1 in Oligodendrocyte 
Development and Myelination 

 In addition to its role in the organization of axonal regions, CNTN1 is an important 
player in the development of oligodendrocytes. A key fi nding was the demonstra-
tion that Notch expressed by oligodendrocyte precursor cells (OPCs) is a functional 
ligand for CNTN1. The  trans -interaction between these two cell surface molecules 
triggers cleavage of the Notch intracellular region and its translocation to the 
nucleus, which results in activation of genes involved in myelination such as myelin- 
associated glycoprotein (Hu et al.  2003 ). On the other hand, CNTN1 is also 
expressed on the surface of OPCs where it associates with integrin α6β1 to form a 
complex that functions in oligodendrocyte survival and in myelination (Laursen 
et al.  2009 ). According to the authors of the study, this CNTN1–integrin complex is 
activated by the extracellular matrix (ECM) component laminin and the presence of 
a soluble form of L1, which binds to CNTN1 expressed on OPCs (White et al. 
 2008 ). Activation of the CNTN1–integrin complex alters the phosphorylation state 
of the Src tyrosine kinase Fyn, a key regulator in oligodendroglial development 
(Czopka et al.  2010 ; Krämer et al.  1999 ; Laursen et al.  2009 ; White et al.  2008 ). 

 More recently, a layer of complexity was added when it was demonstrated that a 
complex between CNTN1 and receptor protein tyrosine phosphatase zeta (PTPRZ) 
controls critical aspects of oligodendrocyte maturation. In particular, binding of a 
soluble form of PTPRZ to CNTN1 expressed on OPCs is suffi cient to arrest OPC 
proliferation and initiate their differentiation into mature, myelinating oligodendro-
cytes (Lamprianou et al.  2011 ). These results are consistent with the fi ndings that 
PTPRZ is involved in remyelination (Harroch et al.  2002 ) and that PTPRZ-null 
mice present altered oligodendroglial populations with a signifi cant increase in the 
number of OPCs concomitant with reduction of mature cell numbers (Lamprianou 
et al.  2011 ). One of the most intriguing results from this work is that the binding of 
a soluble form of PTPRZ to CNTN1 could repress OPC proliferation. Indeed, since 
CNTN1 is a GPI-anchored molecule, signals to stop cellular proliferation would be 
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likely transduced by a CNTN1 co-receptor. A good candidate for this role would be 
receptor protein tyrosine phosphatase alpha (PTPRA). Indeed, this receptor binds to 
CNTN1 expressed on the same cell and increased proliferation of OPCs is observed 
in mice lacking  PTPRA  (Wang et al.  2012 ), thus resembling the phenotype of 
 PTPRZ -null mice. Although PTPRA could be the CNTN1 co-receptor needed to 
stop OPC proliferation, its role in promoting differentiation of OPCs into mature, 
myelinating oligodendrocytes remains in doubt. Instead, it has been proposed that 
the binding of PTPRZ to CNTN1 is necessary to recruit additional CAMs and/or 
ECM components to mediate glial cell maturation (Lamprianou et al.  2011 ). The 
identities of these proteins are not known, but tenascin-R is believed to be one such 
partner as it binds both PTRPZ and CNTN1 (Lamprianou et al.  2011 ). The sum of 
these fi ndings indicates that CNTN1 mediates critical aspects of oligodendrocyte 
proliferation and maturation, yet specifi c defects in oligodendrocyte populations 
have yet to be reported in  CNTN1 -null mice. A second interesting aspect is that the 
results highlighted above implicate CNTN1 and several distinct  cis - or  trans - binding  
partners in the development of oligodendroglial cells. Thus, the question remains 
whether these fi ndings are linked and represent snapshots along the path of oligo-
dendrocyte development and myelination or if distinct processes involving Notch, 
integrins, and PTPRZ are all necessary for the correct development of these cells.  

8.3.4     Initial Insights into the Functions of CNTN3, 4, 5, and 6 

 Although insights on the functions of CNTN3, 4, 5, and 6 are still limited, the 
results accumulated so far indicate that they are also implicated in the proper devel-
opment of the brain. Because these molecules have been the topic of a recent com-
prehensive review (Zuko et al.  2011 ), we will only briefl y consider here their sites 
of expression and their roles. Northern blot analyses demonstrated that CNTN3 is 
not present in signifi cant amounts during embryogenesis, but is expressed as early 
as postnatal day 2 and is found in the adult brain. Using in situ hybridization in adult 
rat brains, CNTN3 expression was detected in the granule cell layers of the olfac-
tory bulb and in neurons in superfi cial layers of the cerebral cortex.  CNTN3  mRNA 
was also detected moderately in the granule cells of the dentate gyrus and much 
more strongly in the Purkinje cells of the cerebellum. However, no  CNTN3 -null 
mouse has been reported to date so it remains diffi cult to discern what its possible 
function in neural development could be. More is known about the closely related 
CNTN4 (CNTN3 and 4 share 64 % amino acid sequence identity overall). As is the 
case for CNTN3, expression of CNTN4 increases from birth and is maximal during 
adulthood while its expression is also limited to specifi c subsets of neurons in the 
hippocampus, the hypothalamus, and the cerebellum (Yoshihara et al.  1995 ). In 
particular, CNTN4 is expressed strongly in subsets of olfactory sensory neurons and 
in subsets of glomeruli in the olfactory bulb. Perhaps not surprisingly, CNTN4-null 
mice exhibit guidance defect in the olfactory system, suggesting that CNTN4 medi-
ates neuronal wiring in this sensory region (Kaneko-Goto et al.  2008 ). 
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 The expression of CNTN5 in brains of mice is restricted in time. It can be 
detected by Western blotting soon after birth in the cerebellum and the cerebrum. 
CNTN5 expression stops at P3 in the cerebellum, but is still found in the cerebrum 
during adulthood though maximal levels are reached at P14 (Ogawa et al.  2001 ). 
In situ hybridization and immunohistochemistry analyses were used to detect 
strong CNTN5 expression in regions involved in the auditory pathway and mice 
lacking CNTN5 exhibit altered responses to acoustic stimuli (Li et al.  2003 ). This 
receptor is expressed at glutamatergic synapses in regions of the auditory pathway 
and this sensory defect was later attributed to a decrease in the formation of syn-
apses as well as an increase in apoptosis in the ventral cochlear nucleus and medial 
nucleus of the trapezoid body (Toyoshima et al.  2009a ,  b ). An interesting aspect of 
CNTN5 biology is that it forms a  cis -complex with amyloid precursor-like protein 
1 at presynaptic membranes in the auditory system (Osterfi eld et al.  2008 ; Shimoda 
et al.  2012 ) though the physiological signifi cance of these interactions remains 
unclear. Finally, the last member of the CNTN family, CNTN6, is detected in the 
cerebellum and cerebrum after birth. Expression in the cerebrum reaches its peak 
at P7 after which levels decline (Lee et al.  2000 ). In contrast, expression in the 
cerebellum increases until adulthood. As with CNTN3, 4, and 5, expression of 
CNTN6 is restricted to neurons in clearly defi ned regions of the brain (Lee et al. 
 2000 ). The brains of  CNTN6 -null mice look normal, but these animal exhibit 
defects in motor coordination (Takeda et al.  2003 ). This phenotype is consistent 
with expression of CNTN6 in a specifi c region of the cerebellum called vestibulo-
cerebellum, which in involved in the control of balance and eye movements. 
Furthermore, CNTN6 is expressed in granules cells in the cerebellum during its 
development and is involved in the formation of glutamatergic synapses between 
parallel fi bers and Purkinje cells (Sakurai et al.  2009 ). The involvement of CNTN6 
in the formation of glutamatergic synapses is not restricted to the cerebellum, how-
ever, and extends to the hippocampus (Sakurai et al.  2010 ). Interestingly, and simi-
larly to CNTN1, CNTN6 was also shown to bind Notch during the maturation of 
oligodendrocytes (Cui et al.  2004 ), but no abnormality in myelination or oligoden-
drocyte function was reported in  CNTN6 -null mice, though it may be revealed in 
future phenotypic analyses. 

 Overall, we still have limited knowledge about the functions of the “other” 
CNTNs, but the picture that emerges is that, contrary to CNTN1 and 2, CNTN3, 4, 
5, and 6 are expressed mostly at postnatal stages as well as during adulthood and in 
very specifi c subsets of neurons. The involvement of CNTN4 and CNTN5 in the 
olfactory and auditory systems, respectively, is an interesting twist in the functions 
of the CNTN gene family and it will be informative to analyze the phenotype of 
 CNTN3 -null mice to determine to which extent this molecule participates in the wir-
ing of sensory systems. Interestingly, receptor protein tyrosine phosphatase gamma 
(PTPRG), a homologue of PTPRZ, is a potential physiological ligand for CNTN3–6 
and is also expressed in sensory neurons, indicating that PTPRG/CNTN complexes 
may participate in the development and maintenance of these tissues (Bouyain and 
Watkins  2010 ; Lamprianou et al.  2006 ).   
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8.4     The CNTN Family in Human Pathologies 

8.4.1     A Form of Congenital Myopathy Is Linked to CNTN1 

 There is, thus far, only a single report of a mutation in  CNTN1  in humans. It results 
in the introduction of a premature stop codon in the third Ig domain and is believed 
to cause a lethal form of congenital myopathy (Compton et al.  2008 ) in four patients 
from a consanguineous family. These infants were born prematurely and three out 
of the four died shortly after birth. The surviving patient died after 1 month and had 
low birth weight, reduced muscle mass, and an absence of spontaneous movement. 
Although the morphology of all organs was normal, detailed examination of the 
skeletal muscle revealed several abnormalities including the absence of integrin α7 
(Compton et al.  2008 ). Because  CNTN1  is expressed at the neuromuscular junction 
(Compton et al.  2008 ), it was suggested that the muscle defects stemmed from aber-
rant neuromuscular transmission and in particular that the absence of functional 
CNTN1 affects the dystrophin-associated protein complex. Interestingly, this myo-
pathic phenotype is related to the severe ataxia observed in  CNTN1 -null mice, 
although there are no observable defects in muscle tissues in the two existing 
CNTN1-defi cient mice (Berglund et al.  1999 ; Davisson et al.  2011 ). This lack of 
similarity between the mouse and human myopathic phenotypes may be due to dif-
ferences in the expression pattern of CNTN1 between the two species. Nevertheless, 
it remains that this work has linked a mutation in  CNTN1  to a human disease and 
suggests that further investigation of the role of CNTN1 in the formation of neuro-
muscular junctions is warranted.  

8.4.2     Autoimmune Disorders and CNTN2 

 Multiple sclerosis (MS) is a complex autoimmune disorder characterized by a deg-
radation of the myelin sheath in the CNS. In the past, analyses of brains from 
deceased patients have identifi ed lesions to the white matter. However, in recent 
years, lesions to the cortical gray matter have also been observed (Rudick and Trapp 
 2009 ), and it was demonstrated that axonal injury correlates with the disability of 
those affl icted with the disease (Bjartmar et al.  2003 ). Importantly, a proteomic 
screening of potential autoantigens identifi ed CNTN2 as an autoimmune target in 
MS (Derfuss et al.  2009 ). In particular, Derfuss and colleagues ( 2009 ) established 
that CNTN2 was recognized by autoantibodies and that T cells from MS patients 
had a signifi cantly higher proliferative response to CNTN2, which was also associ-
ated with secretion of interferon-gamma and interleukin-17. Furthermore, transfer 
of CNTN2-specifi c T cells into rats induced experimental autoimmune encephalo-
myelitis characterized by infl ammation of cortex and spinal cord gray matter. No 
demyelination or axonal lesions were identifi ed in these animals, however, but they 

A.N. Mohebiany et al.



179

could be induced if antibodies to myelin oligodendrocyte glycoprotein were also 
injected in the rats. The importance of CNTN2 autoimmunity to the etiology of MS 
was dampened by a recent study in which antibodies against CNTN2 were only 
detected in a small number of patients and the authors could fi nd little correlation 
between the presence of these antibodies and the clinical presentation of the disease 
(Boronat et al.  2012 ). Nonetheless, these recent investigations indicate that an auto-
immune response against CNTN2 might be a contributing factor to the gray matter 
lesions observed in MS. 

 In addition to MS, the presence in serum of autoantibodies against juxtaparano-
dal components, including CNTN2 and in particular CNTNAP2 or potassium 
channels, has been linked to disorders such as limbic encephalitis (characterized by 
cognitive impairment and seizures), neuromyotonia (characterized by muscle 
hyperactivity or stiffness), or the extremely rare Morvan’s syndrome (characterized 
by CNS hyperexcitability) (Vincent et al.  2006 ; Irani et al.  2010 ,  2011 ; Quek et al. 
 2012 ). Importantly, improvement of symptoms is often observed in patients fol-
lowing immunosuppressive therapy, thus emphasizing the immune causes of these 
conditions. Although these recent studies fall far from providing a clear mechanis-
tic link between the presence of antibodies to CNTN2 or CNTNAP2 in neurologi-
cal disorders, they indicate that additional work is warranted to determine how 
antibodies to juxtaparanodal components contribute to the diverse pathologies 
mentioned here.  

8.4.3     A Link Between CNTNs and Autism 
Spectrum Disorders? 

 Perhaps one of the most interesting fi ndings on the roles of CNTNs in human 
pathologies has been the association between several CNTN family members and 
autism spectrum disorders (ASDs) (Burbach and van der Zwaag  2009 ). One of the 
fi rst implications of a CNTN family member in ASD came in 2009 when Roohi and 
colleagues identifi ed copy number variations [CNVs, a structural variation charac-
terized by an aberrant number of copies of a DNA region (Stankiewicz and Lupski 
 2010 )] that resulted in an interruption of in the gene encoding CNTN4 in three ASD 
patients (Roohi et al.  2009 ). These fi ndings were particularly interesting because 
they came on the heels of a previous report in which a homozygous deletion was 
identifi ed in the 5′ untranslated region of CNTN3 in an autistic patient (Morrow 
et al.  2008 ). A disruption of  CNTN4  in a child suffering from 3p deletion syndrome 
and exhibiting verbal and nonverbal developmental delays consistent with an ASD 
diagnosis has also been identifi ed (Fernandez et al.  2004 ,  2008 ). CNVs in  CNTN5  
and  CNTN6  have since been identifi ed in ASD patients (Burbach and van der Zwaag 
 2009 ) although the exact impact that these variations have on disease etiology 
remains to be determined (van Daalen et al.  2011 ).   
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8.5     Structural Insights into CNTN Function 

8.5.1     The Horseshoe Motif: A Hallmark of Vertebrate CNTNs 
and in Other Neural CAMs 

 The six vertebrate CNTNs share a common domain organization. Each of their 
extracellular regions includes six Ig domains and four FNIII repeats followed by a 
GPI anchor that tethers them to the cell membrane. Structural information on 
CNTNs is limited to their N-terminal Ig repeats, which include a structural arrange-
ment called a horseshoe-like motif that mediates protein–protein interactions. This 
motif was fi rst identifi ed in the crystal structure of domains Ig1 to Ig4 of axonin, the 
chicken orthologue of CNTN2 (Freigang et al.  2000 ). In this structure, the domain 
pairs Ig1–Ig2 and Ig3–Ig4 are arranged in antiparallel fashion and extensive con-
tacts between Ig1 and Ig4 on the one hand and between Ig2 and Ig3 on the other 
hand occlude in excess of 2,100 Å 2 , which in essence locks this protein fragment in 
a compact U-shaped structure (Fig.  8.4 ). Residues participating in the interdomain 
interface are conserved in vertebrate CNTNs, indicating that this motif could be 
found in additional family members, which was confi rmed by recent structural work 
(Bouyain and Watkins  2010 ; Lamprianou et al.  2011 ). Importantly, the arrangement 
of Ig domains found in the horseshoe-like motif found in CNTN2 is not unique to 
this family. It was fi rst reported in the insect protein hemolin (Su et al.  1998 ) and 
similar structures were found in the extracellular regions of the neural CAMs Dscam 
(Meijers et al.  2007 ; Sawaya et al.  2008 ) and the L1 family member neurofascin 
(Liu et al.  2010 ). What is particularly striking about the horseshoe motif is that it 
accommodates several distinct binding modes using the same domain arrangement, 
from the homophilic interactions mediated by CNTN2, neurofascin, and Dscam to 
the heterophilic interactions mediated by CNTN1, 3, 4, 5, and 6.

8.5.2        Homophilic Interactions Mediated by CNTN2 

 The expression of CNTN2 in non-adherent myeloma cells leads to the formation of 
cell aggregates consistent with its role promoting cell–cell contacts via homophilic 
interactions between two CNTN2 molecules expressed on apposing cells (Freigang 
et al.  2000 ). As indicated above, neuronal CNTN2 binds in  cis  to CNTNAP2 and 
interacts in  trans  with glial CNTN2 to drive the formation of CNTN2–CNTNAP2 
heterotrimers that are necessary for the correct localization of Shaker-type K +  chan-
nels in myelinated axons (Poliak et al.  2003 ). A fi rst glimpse into the homophilic 
interactions mediated by CNTN2 came more than a decade ago when the crystal 
structure of Ig1–Ig4 from chicken CNTN2 was determined (Freigang et al.  2000 ). 
Perhaps more important than the identifi cation of a horseshoe motif in the N-terminal 
region of CNTN2 was the realization that contacts between symmetry-related mol-
ecules that bury 1,260 Å 2  could represent the arrangement of homophilic dimers of 
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CNTN2 (Fig.  8.5a ). In this structure, a loop in the third Ig domain of a protomer 
nestles against the second Ig domain of a second protomer. In particular, the inter-
face includes a second loop linking two strands in the second Ig domain. Mutation 
of two residues to alanine in this loop prevented the aggregation of chicken CNTN2- 
expressing myeloma cells, indicating that this region was involved in homophilic 
cell interactions (Fig.  8.5c ) (Freigang et al.  2000 ). Furthermore   , this loop corre-
sponds to a two-residue insertion in the CNTN2 sequence compared those of 
CNTN1, 3, 4, 5, and 6, which have not been reported to form  trans  homodimers and 
are instead involved in heterophilic interactions with the ectodomains of the tyro-
sine phosphatases PTPRG and PTPRZ (Bouyain and Watkins  2010 ; Lamprianou 
et al.  2011 ) as will be detailed below (Fig.  8.5c ).

   However, these fi ndings were put in question when the same group determined 
the crystal structure of human CNTN2 (Fig.  8.5b ) (Mörtl et al.  2007 ). Although the 
Ig1–Ig4 fragment of human CNTN2 adopted the same horseshoe-like arrangement, 
contacts between two horseshoes were different than the ones found in chicken. 
Analysis of this structure suggested that the homophilic contacts involved interac-
tions between an Ig1–Ig2 pair in one protomer and a symmetry-related Ig1–Ig2 pair 
from another protomer. Contacts between these two molecules occur at and near the 
Ig1–Ig2 interface, bury a much larger surface area of 2,240 Å 2 , and, interestingly, 
include the same residues that prevented the dimerization of chicken CNTN2 when 
they were mutated (Fig.  8.5b, c ) (Freigang et al.  2000 ). These structural discrepan-
cies are puzzling because one would expect chicken and human CNTN2 to share a 
similar dimerization mode based on the high amino acid conservation between 
these two proteins (77 % sequence amino acid sequence identity in the 

  Fig. 8.4    The horseshoe-like motif in chicken CNTN2. The structure of the fi rst four Ig domains 
of chicken CNTN2 is shown here in a ribbon diagram (Freigang et al.  2000 ). The four domains are 
arranged in a  U-shape  form reminiscent of a horseshoe. The letters  N  and  C  denote the N- and 
C-termini, respectively       
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  Fig. 8.5    Homophilic interactions mediated by the horseshoe-like motif in chicken CNTN2. 
( a ) The CNTN2 dimer identifi ed from the structure of chicken CNTN2 is shown here in a  ribbon 
diagram  (Freigang et al.  2000 ) in two different views along with a  cartoon  that aims to provide a 
simpler view of the dimer. Residues mutated to alanine that disrupt dimer formation are shown as 
 spheres  and are indicated by the  black arrows . This CNTN2 dimer is not symmetrical, unlike the 
human CNTN2 dimer shown in panel ( b ). The two subunits are colored  salmon  and  light blue , 
respectively. The letters  N  and  C  denote the N- and C-termini, respectively. ( b ) The CNTN2 dimer 
identifi ed from the structure of human CNTN2 is shown here in a  ribbon diagram  (Mörtl et al. 
 2007 ) in two different views along with a cartoon that aims to provide a simpler view of the dimer. 
Residues mutated to alanine in chicken CNTN2 that disrupt dimer formation are shown as spheres 
and are indicated by the two  black arrows . ( c ) Sequence alignment of vertebrate CNTNs at the 
potential dimerization interface in Ig2. The  black arrows  denote the two residues that were mutated 
to alanine in chicken CNTN2, which disrupted dimer formation (Freigang et al.  2000 ). These resi-
dues are not conserved in CNTN1, 3, 4, 5, or 6.  Red discs  denote conserved residues       

 



183

horseshoe- like region). One possible reason would be that both proteins were 
 purifi ed from bacterial lysates, which may have led to incorrect association in the 
case of the chicken molecule because of the lack of protein glycosylation (He et al. 
 2009 ) though it would be unclear why such a problem would have been avoided in 
the case of the human protein. More importantly, questions remain as to whether 
these interactions are physiologically relevant given the differences in the chicken 
and human dimer arrangement. Recent structural results obtained for the L1 family 
member neurofascin tip the balance towards the arrangement observed in human 
CNTN2. As is the case for CNTN2, neurofascin forms homodimers and the horse-
shoe-like regions of two neurofascin molecules associate similarly to human 
CNTN2 (Liu et al.  2010 ), suggesting that the dimerization mode observed for 
human CNTN2 may represent the physiologically relevant homodimers that drive 
the homophilic interactions between apposing cells and that this dimerization mode 
is shared with L1 family members.  

8.5.3     Contactins and Their Receptor Protein Tyrosine 
Phosphatase-Binding Partners 

 In contrast to CNTN2, the other fi ve members of the CNTN family do not partici-
pate in homophilic interactions and instead engage in heterophilic interactions with 
two homologous receptor protein tyrosine phosphatases called PTPRZ and PTPRG. 
Binding between PTPRZ and CNTN1 on the one hand and between PTPRG and 
CNTN3, 4, 5, and 6 on the other hand are also mediated by the horseshoe motif 
(Fig.  8.6a ). However, the interfaces involve a fl at surface formed by the juxtaposi-
tion of domains Ig2 and Ig3, thus illustrating the versatility of the horseshoe motif 
as it supports both homophilic and heterophilic interactions. These interactions also 
involve the inactive N-terminal carbonic anhydrase (CA) of PTPRG and PTPRZ, a 
unique feature among the family of receptor protein tyrosine phosphatases (Bouyain 
and Watkins  2010 ; Peles et al.  1995 ). As mentioned above, the in vivo role of the 
PTPRZ/CNTN1 complex is to control the development of oligodendrocyte precur-
sor cells, but it is suspected that this complex may also participate in neurite out-
growth (Peles et al.  1995 ; Sakurai et al.  1997 ). In contrast, roles for complexes 
involving PTPRG with CNTN3, 4, 5, and 6 have yet to be uncovered, but, given the 
expression of these proteins in sensory systems, a plausible hypothesis is that these 
receptor complexes are involved in the development of regions of the nervous sys-
tem associated with sensory functions.

   The crystal structures of the PTPRZ/CNTN1 (Lamprianou et al.  2011 ) and 
PTPRG/CNTN4 (Bouyain and Watkins  2010 ) complexes have provided satisfying 
insights into the heterophilic interactions mediated by these CNTNs. These com-
plexes are, overall, arranged similarly (Fig.  8.6b–d ). In both CNTN1 and CNTN4, 
the binding sites for PTPRG and PTPRZ consist essentially of two discrete 9–14 
amino acid segments, one in Ig2 and the other in Ig3 (Fig.  8.6e ). These segments 
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  Fig. 8.6    Heterophilic interactions mediated by the horseshoe-like regions of CNTN1 and CNTN4. 
( a ) Domain organization of the receptor protein tyrosine phosphatases PTPRG and PTPRZ and 
overview of their distinct CNTN-binding specifi cities. ( b )  Ribbon diagram  depicting the complex 
between Ig2 and Ig3 of human CNTN1 ( salmon ) and the carbonic anhydrase (CA) domain of 
human PTPRZ ( light blue ). The letters  N  and  C  denote the N- and C-termini, respectively. 
( c )  Ribbon diagram  depicting the complex between Ig2 and Ig3 of mouse CNTN4 ( orange ) and 
CA domain of mouse PTPRG ( dark blue ). ( d ) Overlay of the structures shown in panels ( b ) and 
( c ) illustrating the closely related arrangements of the two complexes. ( e ) Sequence alignment of 
human CNTNs in the regions of Ig2 and Ig3 found at the heterophilic interfaces.  Red discs  and  red 
circles  denote conserved and similar residues, respectively.  Light blue  and  dark blue arrows  indi-
cate contact residues that are specifi c for the CNTN1/PTPRZ and CNTN4/PTPRG interfaces, 
respectively.  Black arrows  indicate residues that are found at both interfaces       
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contact the N-terminal CA domain and in particular a β-hairpin loop that includes 
residues that mediates about 75 % of the contacts between the CA domain and its 
associated CNTN. The presence of this loop is critical since a form of PTPRZ lack-
ing it is not able to prevent the binding of a fl uorescently labeled form of PTPRZ to 
OPCs expressing CNTN1 (Lamprianou et al.  2011 ). Analysis of the non-covalent 
interactions in the PTPRZ/CNTN1 and PTPRG/CNTN4 complexes has highlighted 
the residues that were important in providing specifi city to the interactions as con-
tact residues in CNTN4 are not conserved in CNTN1, but are strictly conserved in 
CNTN3, 5, and 6 (Fig.  8.6e ). Finally, sequence alignments show that, as could be 
expected from its different binding properties, CNTN2 shares little resemblance 
with either CNTN1, 3, 4, 5, or 6 in the PTPRZ- or PTPRG-binding sites.   

8.6     New Perspectives in CNTN Biology 

8.6.1     A Family of Extracellular Organizers? 

 The neurodevelopmental functions fulfi lled by CNTNs are, unsurprisingly, gov-
erned by their binding to other cell surface receptors. However, because the CNTNs 
do not span the cell membrane and are instead tethered to it by a GPI anchor, they 
cannot transduce signals across the membrane without associating with a trans-
membrane protein expressed on the same cell. A good illustration of that is provided 
by the formation of SJs in  Drosophila  where CONT associates with NRX IV, but it 
is NRX IV that is linked to the intracellular machinery because its intracellular 
region binds to the synaptic organizer Coracle. For example, neither CONT nor 
NRX IV can localize to SJs if the cytoplasmic domain of NRX IV is deleted 
(Banerjee et al.  2011 ). This example serves as a reminder that CNTNs must be 
associated with other cell surface receptors in  cis  and in  trans  for bidirectional sig-
naling events to occur. In essence, the dependency of NRG and NRX IV on CONT 
for their localization at SJs indicates that CONT can be seen as an extracellular 
organizer that is necessary for the assembly of a multi-protein complex. 

 Seen through this lens, it appears that CNTNs would provide a versatile scaffold 
onto which complexes could be assembled. Indeed, past investigations of CNTN1 
provide at least three different complexes that are involved in distinct aspects of 
neural development (1) the tripartite complex of CNTN1/CNTNAP1/NF155 at 
paranodal junctions (Boyle et al.  2001 ; Charles et al.  2002 ), (2) a complex of 
CNTN1/NrCAM/PTPRZ that supports neurite outgrowth (Sakurai et al.  1997 ), and 
(3) a complex of CNTN1/PTPRZ that likely involves PTPRA and/or tenascin-R 
during the maturation of oligodendrocytes (Lamprianou et al.  2011 ; Wang et al. 
 2012 ). The ability of CNTN1 to recruit such a diverse array of cell surface receptors 
or ECM components poses an interesting structural question: how can one protein, 
albeit a large modular one, interact with so many partners? Thus far, the only com-
plex that has been characterized structurally is the one formed by PTPRZ and 
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CNTN1 (Lamprianou et al.  2011 ). Although there is no information on how NF155 
may associate with CNTN1,  trans -associations between L1 and CNTN1 and 
between NrCAM and CNTN1 have been reported for the chicken homologues of 
these proteins and involve CNTN1 domains Ig1–Ig2 and Ig2–Ig3, respectively 
(Brümmendorf et al.  1993 ; Morales et al.  1993 ). Since these two L1 family mem-
bers bind to the horseshoe-like region of CNTN1, NF155 may also bind to CNTN 
in this region. Because PTPRZ also associates with the horseshoe-like region of 
CNTN1, it will be of interest to determine to which extent the binding sites for 
PTPRZ and L1 family members overlap. Furthermore, CNTN1 associates with 
NrCAM in  cis  and in  trans  with PTPRZ to mediate neurite outgrowth (Sakurai et al. 
 1997 ), but CNTN1 also binds to NrCAM to mediate axonal growth of embryonic 
tectal cells (Morales et al.  1993 ) as well as the proliferation of Shh-induced prolif-
eration of progenitor CGNs (Xenaki et al.  2011 ). It remains to be determined, 
 however, if CNTN1 and NrCAM use the same sites to associate in  cis  and  trans  
and, more generally, a systematic in vitro characterization of CNTN/L1 family 
interactions would be a tremendous resource to elucidate the functions played by 
these receptors during neural development. Similar work is also needed to investi-
gate the known interactions between CNTN1 and CNTN2 and CNTNAP1 and 
CNTNAP2, but also determine to which extent additional members of the CNTN 
family, namely, CNTN3–6, interact with the fi ve homologous CNTNAPs (Spiegel 
et al.  2002 ; Traut et al.  2006 ) and, if appropriate, what the physiological outcomes 
of these interactions may be.  

8.6.2     A Likely Involvement of CNTNs in Synapse Formation 

 Although great strides have been made in understanding the specifi c roles CNTNs 
play in nervous system formation and maintenance, exploration of their involve-
ment in synaptic function has only begun. Early evidence for a potential CNTN role 
in synapse biology came from analysis of CNTN1-defi cient mice (Murai et al.  2002 ) 
and has been confi rmed by microarray analysis showing that expression of CNTN1 
is upregulated during synapse formation (Brusés  2010 ). Although synaptic mor-
phology and basal synaptic transmission were unchanged in  CNTN1  −/−  animals, spe-
cifi c defects in long-term depression (a weakening of synaptic strength) were 
identifi ed in the hippocampal CA1 region of mutant mice. Mechanistically, this 
change in synaptic plasticity was associated with altered distribution of the CNTN1- 
binding proteins CNTNAP1 and PTPRZ and a proposed role for CNTN1 was to 
guide PTPRZ to its proper location (Murai et al.  2002 ). The involvement of a tripar-
tite complex that includes both CNTN1 and CNTNAP1 draws parallel with the for-
mation of paranodal SJs and would suggest that mice lacking either PTPRZ or 
CNTNAP1 exhibit similar defects in long-term depression. However, although mice 
lacking PTPRZ exhibit altered synaptic plasticity, the phenotype is different as long-
term potentiation (an increase of synaptic strength) was enhanced in these mice 
(Niisato et al.  2005 ). In addition, phenotypic analysis of  CNTNAP1  −/−  mice did not 
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reveal alterations in synaptic plasticity (Pillai et al.  2007 ) even though recent work 
has shown that CNTNAP1 controls the synaptic content of AMPA receptors in cul-
tured hippocampal neurons (Santos et al.  2012 ). Thus, although the defects in syn-
aptic plasticity in  CNTN1  −/−  mice may involve PTPRZ and CNTNAP1, the specifi c 
contributions of these receptors are still nebulous and the importance of CNTN1 at 
synapses may refl ect the formation of a hitherto undetermined molecular complex. 
As explained above, CNTN1 is not the only family member involved in synaptic 
function. Microarray analyses in chicken have shown that expression of CNTN5 is 
upregulated during synaptogenesis (Brusés  2010 ) and participates in synapse for-
mation in the auditory pathway (Toyoshima et al.  2009b ). Finally, CNTN6 also 
participates in the formation of glutamatergic synapses in the cerebellum and hip-
pocampus. Although these fi ndings clearly suggest a role for CNTNs in synaptic 
function, it is unclear whether all CNTNs take part in this process. This likely awaits 
additional analyses of mice lacking single CNTN proteins and further mechanistic 
studies designed to identify their complete array of binding partners at synapses.  

8.6.3     A Clearer Link with Neuropsychiatric Disorders? 

 Aside from the form of lethal myopathy that has been linked to the absence of func-
tional CNTN1 in humans, the few known examples of alterations in the expression 
of human CNTNs have all been linked to ASDs (Burbach and van der Zwaag  2009 ). 
The rise in the number of reported ASD cases, combined with the burden to the 
patients and those who care for them, has prompted many research groups to focus 
their attention to the CNTN family. However, there is thus far no clear mechanistic 
link between aberrant expression of the CNTNs or mutation in their coding 
sequences and the etiology of ASDs. Perhaps this is not entirely surprising given the 
heterogeneous nature of ASDs, yet the absence of ASD-related behavioral defects 
in the various CNTN-defi cient mice created so far has undoubtedly frustrated our 
grasp of the roles these proteins may play in the disease. The search for such a 
clearer link is not far-fetched as the causes of ASDs are presumably linked to neu-
rodevelopmental processes such as neuronal migration, axon guidance, or synaptic 
function, which have all been linked to CNTNs. Although current and future 
genomic analyses of ASD patients will certainly help delineate the functions played 
by CNTNs, this task will be greatly helped by renewed behavioral analyses of exist-
ing CNTN-defi cient mice or a change in the genetic background of these animals 
such as the one that helped confi rm the role of CNTNAP2 in certain forms of ASDs 
(Peñagarikano et al.  2011 ). Progress will also come from the systematic investiga-
tion of interactions between CNTNs and CNTNAPs as CNTNAP2 has provided 
many clues on the causes of ASD, but also because CNTNAP5 has been recently 
linked to the disease (Pagnamenta et al.  2010 ). Finally, schizophrenia is another 
neuropsychiatric disorder of particular interest because two of the known CNTN1- 
binding proteins, namely, PTPRA and PTPRZ, have been linked to the disease 
(Buxbaum et al.  2008 ; Takahashi et al.  2011a ,  b ). Thus far, there is no patient data 
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to support a role of CNTN1 in this disorder and schizophrenic-like phenotypes have 
not been reported for mice lacking  CNTN1 . However, a specifi c defect could be 
 hidden by the dramatic alterations seen in  CNTN1  −/−  mice, which could be circum-
vented by analyzing mice in which the expression of CNTN1 is limited to specifi c 
regions of the nervous system.      
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    Abstract     L1-type proteins are transmembrane cell adhesion molecules with an 
evolutionary well-conserved protein domain structure of usually six immunoglobu-
lin and fi ve fi bronectin type III domains. By engaging in many different protein–
protein interactions they are involved in a multitude of molecular functions and are 
important players during the formation and maintenance of metazoan nervous 
 systems. As a result, mutations in L1-type genes cause a great variety of pheno-
types, most of which are neurological in nature. In humans, mutations in the  L1CAM  
gene are responsible for L1 syndrome and other L1-type genes have been impli-
cated in conditions as varied as mental retardation, autism, schizophrenia, multiple 
sclerosis, and other disorders. Equally, the overexpression of L1-type proteins 
appears to have deleterious effects in various types of human tumor cells, where 
they generally contribute to an increase in cell mobility and metastatic potential.  

9.1         Introduction 

 L1-type proteins are transmembrane cell adhesion molecules (CAMs) and belong to 
the immunoglobulin superfamily (IgSF) (Moos et al.  1988 ; Hortsch  1996 ). Most 
L1-type proteins contain 13 distinct protein domains, usually six Ig (immunoglobulin) 
and three to fi ve FN III (fi bronectin type III) protein domains (see Fig.  9.1 ). L1-CAM 
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  Fig. 9.1    Vertebrate L1-type protein structures. This fi gure shows the protein domain structure of the 
four vertebrate L1-type proteins: L1-CAM, Neurofascin, CHL1, and NrCAM. Indicated are several 
specifi c protein sequence features, such as conserved integrin-binding RGD motifs, a basic protease 
target site (KR) in one of the FN III protein domains, the presence of a conserved cysteine residue 
at the end of the transmembrane segment, which is the target of palmitoylation modifi cation (Ren 
and Bennett  1998 ), and the three conserved tyrosine-containing motifs in the cytoplasmic domain. 
The fi rst two diagrams depict the two putative L1-CAM conformations, extended and horseshoe-
shaped, which have been predicted for the L1-CAM ectodomain (Schürmann et al.  2001 )       

was not only the fi rst L1-type CAM to be identifi ed, characterized, and cloned, but 
also yielded its name to the entire gene family (Rathjen and Rutishauser  1984 ; Rathjen 
and Schachner  1984 ; Moos et al.  1988 ).

   In this review we will focus on pathological mutations in L1-type genes, which 
have been described not only in humans, but also in a number of different experimen-
tal model systems. The phenotypes caused by L1 mutations reveal an amazingly com-
plex picture refl ecting a wide range of biological functions that are associated with 
L1-type proteins in various species and organs. Although our knowledge about the 
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complex biological functionalities of L1-type proteins is still expanding, we will try 
to provide a timely overview about our current understanding, how this family of 
adhesive proteins plays crucial roles in the nervous and other organ systems, and how 
mutations in and also the overexpression of these proteins cause a variety of 
phenotypes.  

9.2     Structure, Functions, and Genetics of L1-Type CAMs 

9.2.1     The Structure of L1-Type Proteins 

 All L1-type proteins are predominantly, but not exclusively, expressed in the  nervous 
system and belong to the immunoglobulin superfamily. They share a common 
arrangement of six amino terminal Ig-protein domains, followed by three to fi ve FN 
III domains and a single transmembrane segment (Fig.  9.1 ). In humans, the mature 
L1-CAM protein has 1,256 amino acids with an extracellular part consisting of six 
Ig-like domains and fi ve FN III-like domains, a single-pass transmembrane domain 
and a short cytoplasmic C-terminal tail (Wolff et al.  1988 ; Kobayashi et al.  1991 ). 
Genes encoding proteins with this characteristic domain structure form a unique 
gene family, now referred to as the L1 family of neural cell adhesion molecules 
(Hortsch  1996 ,  2000 ). 

 Gene duplication events in various metazoan phyla have resulted in multiple 
L1-type genes per genome (Mualla et al.  2013 ), and in most chordate species, 
including humans, four paralogous L1-type genes have been identifi ed. These are 
now referred to as L1-CAM, CHL1 (Close Homolog of L1), Neurofascin, and 
NrCAM (neuron–glia-related cell adhesion molecule) (Fig.  9.1 ) (Hortsch  2000 ). 
In the case of Neurofascin and NrCAM proteins, alternative splicing of the initial 
transcript is responsible for multiple different protein isoforms (Hassel et al.  1997 ; 
Wang et al.  1998 ). The expression of the alternatively spliced Neurofascin protein 
isoforms is cell and tissue specifi c and also developmentally regulated (Hassel et al. 
 1997 ; Collinson et al.  1998 ). In some Neurofascin protein isoforms several of the 
FN III domains are either deleted or substituted by a PAT domain (Fig.  9.1 ) (Davis 
et al.  1993 ; Volkmer et al.  1992 ). This Neurofascin protein domain is rich in the 
amino acids proline, alanine, and threonine (thus termed “PAT”) and appears to be 
the target of O-linked glycosylation. These Neurofascin splice variants exhibit sig-
nifi cant functional differences, not only in their interactions with various extracel-
lular ligands (Volkmer et al.  1992 ), but also in their cell-specifi c expression and 
subcellular localization in neuronal cells (Davis et al.  1996 ; Zonta et al.  2008 ). 

 The Ig domains found in L1-type molecules were originally assigned to the C2 
set of Ig-like domains. However, a comparison with other Ig domain proteins 
revealed that the domains in L1-type proteins belong to a novel structural subset of 
the Ig superfamily, now referred to as the I set (Harpaz and Chothia  1994 ; Bateman 
et al.  1996 ). Although the homophilic adhesive function of L1-type proteins 
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involves multiple extracellular protein domains, it appears to be centered around 
the second Ig domain (Zhao et al.  1998 ). A number of vertebrate L1-type proteins 
(specifi cally L1-CAM and Neurofascin) also contain RGD motifs in their ectodo-
mains, which functionally interact with RGD-specifi c integrins (Ruppert et al. 
 1995 ; Montgomery et al.  1996 ; Felding-Habermann et al.  1997 ; Yip et al.  1998 ; 
Koticha et al.  2005 ). Based on a general domain homology to the insect Ig domain 
protein Hemolin, Su et al. ( 1998 ) postulated that the 11 extracellular protein 
domains of L1-CAM exist in two different conformational states, one being 
extended and the other in a horseshoe shape (Fig.  9.1 ). Subsequently, structural 
analyses of the L1-CAM ectodomain gave some support to this notion (He et al. 
 2009 ; Schürmann et al.  2001 ; Wei and Ryu  2012 ). However, how these two postu-
lated conformational states of the L1-CAM protein correlate with its functional 
interactions and activities remains unclear. 

 The size of the cytoplasmic domain in L1-type proteins ranges from 85 to 148 
residues with several segments containing characteristic tyrosine-containing 
amino acid motifs that exhibit the highest degree of sequence conservation 
throughout the entire L1 gene family (Fig.  9.1 ). Two of these tyrosine-containing 
motifs are part of the cytoplasmic Ankyrin-binding site of L1-type proteins 
(Hortsch et al.  1998a ; Zhang et al.  1998 ). The phosphorylation of the FIGQY 
motif is downstream of FGFR signaling and abolishes Ankyrin binding (Garver 
et al.  1997 ; Jenkins et al.  2001 ; Whittard et al.  2006 ). Interestingly, the entire L1 
cytoplasmic domain is not required for homophilic L1–L1 interactions to occur 
(Hortsch et al.  1995 ; Wong et al.  1995 ). Nevertheless, extracellular and intracel-
lular interactions involving L1-type proteins often infl uence and regulate each 
other (Hortsch et al.  1998a ) and Ankyrin binding is important for a number of 
different L1 functions (Hortsch et al.  2009 ; Ooashi and Kamiguchi  2009 ; Guan 
and Maness  2010 ; Nakamura et al.  2010 ; Chen and Hing  2008 ; Buhusi et al.  2008 ; 
Ango et al.  2004 ; Nishimura et al.  2003 ). 

 Most vertebrate L1-type genes contain a well-conserved 12-nucleotide miniexon, 
which encodes an RSLE amino acid motif in the cytoplasmic L1 protein domain. 
Only in CHL1 proteins has the presence of an RSLE miniexon not been demon-
strated. Due to differential splicing, these amino acids are not included in non- 
neuronal L1-type molecules (Reid and Hemperly  1992 ; Takeda et al.  1996 ). The 
insertion of this RSLE motif into the cytoplasmic domain of L1-type proteins gener-
ates a tyrosine-based signal (YxxL) that results in the sorting of L1-CAM protein to 
the growth cone and induces the AP-2-mediated endocytosis of L1-CAM and pre-
sumably other L1-type paralogous proteins via Clathrin-coated pits (Kamiguchi 
et al.  1998 ; Kamiguchi and Lemmon  1998 ). Non-vertebrate L1-type genes do not 
contain an RSLE-encoding miniexon. As reported for the  Drosophila  L1 molecule 
Neuroglian (Bieber et al.  1989 ), some of their transcripts undergo rather different, 
neuron-specifi c splicing processes (Hortsch et al.  1990 ), the functional ramifi ca-
tions of which are currently unknown. Therefore, the AP-2-mediated endocytosis of 
L1-type proteins, which regulates their cell surface expression, appears to be 
restricted to vertebrate species or non-vertebrate L1-type proteins contain other, yet 
unidentifi ed, endocytosis-inducing signals.  
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9.2.2     The Evolutionary Origin of the L1 Gene Family 

 Figure  9.2  indicates that genes belonging to the L1 family of CAMs can be identi-
fi ed in most metazoan phyla and probably arose together with the appearance of fi rst 
primitive nervous systems in evolution about 1,200–1,500 million years ago (Mualla 
et al.  2013 ). The genomes of several metazoan phyla, such as arthropods, only con-
tain one L1-type gene, whereas other phyla, including most chordate species, appear 
to harbor multiple different L1-type genes in their genomes. With the exception of 
tunicates, all chordate genomes contain at least four L1-type paralogs, which are 
now known as L1-CAM, CHL1, Neurofascin, and NrCAM (Hortsch  2000 ). As 
shown in Fig.  9.1 , these paralogous proteins all exhibit the typical L1-type protein 
structure and other L1 typical features. Consequently, these proteins share many 
similarities, including six Ig domains, three to fi ve FN III domains, a transmem-
brane region, and a highly conserved cytoplasmic domain (Hortsch  2000 ). The exis-
tence of four paralogous genes in chordate species is now believed to be the result 
of two sequential genome-wide duplication events, which occurred during early 
chordate evolution (Kappen et al.  1989 ; Schughart et al.  1989 ). An additional 
genome-wide duplication event has occurred in the teleost lineage (Amores et al. 
 1998 ; Christoffels et al.  2004 ) resulting in two genes for each vertebrate L1 paralog 
for a total of eight L1-type genes per genome (Mualla et al.  2013 ).

9.2.3        Biological Functions of L1-Type CAMs 

 The identifi ed biological functions of the L1-type CAMs cover a wide range and 
are mostly, but not exclusively, a result of their predominant expression in the ner-
vous system (Hortsch  1996 ; Wiencken-Barger et al.  2004 ; Maness and Schachner 
 2007 ). Foremost, L1-CAM and other L1-type CAMs have been reported to induce 
neurite outgrowth (Lemmon et al.  1989 ; Harper et al.  1994 ; Hillenbrand et al. 
 1999 ; Volkmer et al.  1996 ; Pruss et al.  2004 ; Koticha et al.  2005 ) and to support 
axon guidance and pathfi nding (Hall and Bieber  1997 ; Wiencken-Barger et al. 
 2004 ; Imondi et al.  2007 ; Demyanenko and Maness  2003 ); neuronal cell migration 
(Anderson et al.  2006 ; Demyanenko et al.  2001 ; Asou et al.  1992 ), axonal fascicu-
lation (Wiencken-Barger et al.  2004 ), and neuronal differentiation (Dihne et al. 
 2003 ; Demyanenko et al.  2009 ; Turner et al.  2009 ); as well as cell survival 
(Nishimune et al.  2005 ; Hulley et al.  1998 ; Jakovcevski et al.  2009 ). L1-type pro-
teins also play a prominent role during nervous system regeneration (Becker et al. 
 2004 ) and appear to be involved in synapse formation and plasticity (Godenschwege 
et al.  2006 ; Saghatelyan et al.  2004 ; Triana-Baltzer et al.  2006 ). Several studies 
also indicate that L1-type CAMs participate in the formation of the myelin sheath 
that surrounds many axons (Bartsch  2003 ; Itoh et al.  2005 ; Wood et al.  1990 ). 
These biological functions, which have been attributed to L1-type CAMs, make 
them promising pharmaceutical agents for aiding regeneration processes after 
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  Fig. 9.2    Shown is an unrooted phylogenetic tree of the L1 family in several animal phyla. The 
species highlighted by gray ovals indicate L1-type paralogs that are only found in chordate species. 
Whereas many sequences were taken from complete open reading frames, which conform to the 
six Ig plus fi ve FN III consensus L1 protein domain structure, others were translated from partial 
cDNA and genomic sequences that were downloaded from GenBank (  http://www.ncbi.nlm.nih.
gov/genbank/    ) or the JGI Genome Sequence Database (  http://www.jgi.doe.gov    ). Sequences, which 
cover the region starting with the basic amino acids following the transmembrane segment to the 
conserved FIGQY motif, were used for a multiple sequence alignment. This alignment was per-
formed using the online version of the MAFFT program (http://align.bmr.kyushu-u.ac.jp/mafft/
online/server/). An unrooted phylogenetic tree was constructed using the Promlk and the Drawtree 
subroutines of the Phylip v3.65 program package (Felsenstein  1981 ). Species included in the 
 fi gure represent 11 different metazoan phyla and include  Schistosoma japonicum/ blood-fl uke or 
 bilharzias fl atworm (BU799663),  Strongylocentrotus purpuratus /California purple sea urchin 
(XP_784933),  Lottia gigantea /giant owl limpet (JGI Genome Sequence Database scaf-
fold_226:99499–99582),  Helobdella robusta/ Californian leech (JGI Genome Sequence Database 
scaffold_43: 1086463:1087596, 1086816–1086905 and 1087447–1087596),  Caenorhabditis 
 elegans /nematode or roundworm (NP_001033395),  Daphnia pulex /water fl ea (ACJG01004335), 
 Tribolium castaneum /red fl our beetle (AAJJ01000894),  Drosophila melanogaster /fruit fl y 
(NP_727274),  Trichoplax adhaerens/ hairy plate or fl at animal (XM_002117949),  Nematostella 
vectensis/ starlet sea anemone (XM_001637356),  Danio rerio /zebrafi sh (CABZ01014841, 
CABZ01052948, CABZ01022026, NM_001044805, and XM_002662518),  Gallus gallus /chicken 
(AADN03013871 and AADN03006373),  Monodelphis domestica /gray short-tailed opossum 
(AAFR03023046 and AAFR03020961), and  Homo sapiens /human (NP_076493, NP_055905, 
NP_005001, and NP_006605)       
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spinal tract and other neuronal injuries. Several studies using animal models 
 support this assertion (Chen et al.  2007 ; Becker et al.  2004 ; Roonprapunt et al. 
 2003 ; Bernreuther et al.  2006 ). 

 In arthropod species, the Neuroglian protein represents the product of the single 
L1-type gene that is present in the genome of species belonging to this phylum. 
Neuroglian has an additional essential function in stabilizing epithelial integrity as 
they are part of septate junction complexes (Genova and Fehon  2003 ; Laval et al. 
 2008 ; Wei et al.  2004 ; Faivre-Sarrailh et al.  2004 ; Banerjee et al.  2006 ). Although 
in vertebrate species the sealing function of epithelial septate junctions has been 
replaced by tight junctions, two L1-type proteins, Neurofascin and NrCAM, are still 
components of paranodal septate junctions where they stabilize the molecular archi-
tecture of nodes of Ranvier in myelinated nerves (Charles et al.  2002 ; Jenkins and 
Bennett  2002 ; Sherman et al.  2005 ; Koticha et al.  2006 ; Davis et al.  1996 ; Hortsch 
and Margolis  2003 ). In addition, L1-CAM is also expressed in many vertebrate 
epithelia outside the nervous system (Nolte et al.  1999 ). The physiological role of 
L1-CAM expression in these epithelia remains unknown, but the addition of anti-L1 
antibodies to kidney organ cultures indicates a role in kidney branching morphogen-
esis (Debiec et al.  1998 ). Maddaluno et al. ( 2009 ) published another interesting 
fi nding about the function of L1-type proteins in epithelia. They reported that 
L1-CAM regulates the transendothelial traffi cking of dendritic cells in mice. 

 Equally, the expression of L1-CAM protein in mammalian leukocytes still 
remains a mystery (Hubbe et al.  1993 ; Kowitz et al.  1992 ; Ebeling et al.  1996 ) and 
a topic of speculation (Kadmon et al.  1998 ). It has been suggested that L1-CAM 
functions as a co-stimulatory molecule during T-cell activation (Balaian et al.  2000 ). 
Another publication reports that a monoclonal antibody specifi c for L1-CAM dis-
rupts the normal remodeling of lymph node reticular matrix during an immune 
response in vivo (Di Sciullo et al.  1998 ). Interestingly, the L1-type protein 
Neuroglian is also expressed in the moth  Manduca sexta  (tobacco hornworm) plas-
matocytes where it contributes to the primitive innate immune functions, which 
these cells carry out by encapsulating foreign material (Williams  2009 ; Zhuang 
et al.  2007 ; Nardi et al.  2006 ).  

9.2.4     L1 Syndrome: A Wide Spectrum of Phenotypes 

 The human  L1CAM  gene is located on the X-chromosome at Xq28 (Dietrich et al. 
 1992 ). It consists of 29 exons with the fi rst exon of 125 base pairs being part of the 
5′ untranslated region (Kallunki et al.  1997 ). Similar to other L1-type genes, the 
human  L1CAM  gene is primarily expressed in the nervous system and encodes a 
protein of 1,257 amino acids, comprising a signal peptide of 19 amino acids and a 
fi nal processed product of 1,238 amino acids. In non-neural tissue, alternative 
RNA splicing generates mRNA molecules, which lack exons 2 and 27 of the gene 
(Jouet et al.  1995 ; De Angelis et al.  2001 ) and results in a protein that is 9 amino 
acids shorter. 
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 Mutations in the human  L1CAM  gene manifest themselves in a wide range of 
dysfunctions that are usually neurological in origin and appearance. Therefore, the 
phenotype caused by mutations in the  L1CAM  gene was originally described as four 
distinct neurological disorders, namely, X-linked hydrocephalus, which is caused 
by a stenosis of the aqueduct of Sylvius (HSAS) (Rosenthal et al.  1992 ; Jouet et al. 
 1994 ; Bickers and Adams  1949 ; Finckh et al.  2000 ; Gu et al.  1996 ; Fransen et al. 
 1997 ), MASA (  mental retardation    ,   aphasia    ,   shuffl ing gait    , and   adducted       thumbs    ) 
syndrome (Winter et al.  1989 ; Schrander-Stumpel et al.  1990 ; Fryns et al.  1991 ), 
X-linked complicated hereditary spastic paraplegia type 1 (SPG1), and X-linked 
complicated corpus callosum agenesis (X-linked ACC) (Kaplan  1983 ). The allelic 
nature of these disorders remained unrecognized until the pathological mutations 
were identifi ed as affecting the same gene (Fryns et al.  1991 ; Jouet et al.  1994 ; 
Fransen et al.  1994 ; Vits et al.  1994 ). Also the term CRASH syndrome (  corpus 
 callosum       hypoplasia    ,   retardation    ,   adducted       thumbs    ,   spastic paraplegia    , and   hydro-
cephalus     syndrome) has been proposed as a collective name for these disorders 
(Fransen et al.  1995 ). Now these terms are usually summarized under the name L1 
syndrome (Panicker et al.  2003 ). 

 L1 syndrome is an X-linked recessive disorder with an incidence of 1:30,000 
newborn males and is caused by mutations in the  L1CAM  gene. Well over 200 
 different pathogenic  L1CAM  mutations have been identifi ed and reported in the 
 literature. 130 were reviewed by Weller and Gartner ( 2001 ). Since then, many addi-
tional L1-CAM mutations were reported (Simonati et al.  2006 ; Senat et al.  2001 ; 
Sztriha et al.  2002 ; Silan et al.  2005 ; Felsenstein  1981 ; Okamoto et al.  2004 ; Hübner 
et al.  2004 ; Moya et al.  2002 ; Panayi et al.  2005 ; Tegay et al.  2007 ; Knops et al. 
 2008 ; Griseri et al.  2009 ; Nakakimura et al.  2008 ; Wilson et al.  2009 ; Kanemura 
et al.  2006 ; Piccione et al.  2010 ; Rodriguez Criado et al.  2003 ; Rehnberg et al.  2011 ) 
and another 52 new  L1CAM  mutations were recently reported in an online L1-CAM 
mutations databank (Vos and Hofstra  2010 ). As mentioned above, the individual 
phenotype associated with different mutations in the  L1CAM  gene varies consider-
ably, but usually includes various degrees of mental retardation. 

    The Diversity of Pathogenic L1-CAM Mutations 

 The mutations affecting the L1-CAM protein have been subdivided into four differ-
ent classes (Fransen et al.  1998b ). Class I mutations lead to a truncation and thereby 
to a complete absence of L1-CAM protein. These include frameshift mutations 
(small deletions or insertions) or point mutations resulting in a premature stop 
codon (nonsense mutations). Class II includes missense mutations resulting in an 
amino acid substitution in the extracellular part of the L1-CAM protein. Class III 
includes any mutation in the L1-CAM cytoplasmic domain. Class IV mutations 
comprise extracellular mutations that result in an aberrant splicing of the L1-CAM 
pre-mRNA. 

 The different types of L1-CAM mutations generally correlate with the severity 
of the observed phenotype. Class 1 mutations in the extracellular part of L1-CAM 
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cause a more severe phenotype; Class 2 extracellular missense mutations, which 
affect amino acids located on the surface of protein, usually cause a milder pheno-
type than those affecting amino acids, which are predicted to be buried in the core 
of an L1-CAM protein domain (Fransen et al.  1998b ; Bateman et al.  1996 ). 
Mutations affecting the cytoplasmic domain of L1-CAM generally result in a milder 
phenotype than extracellular mutations (Fransen et al.  1998b ; Yamasaki et al.  1997 ).  

    L1-CAM Missense Mutations and Functional Defects 

 In the past, a large number of L1-CAM missense mutations have been published 
that cause a wide spectrum of neurological abnormalities, including mental retarda-
tion, hydrocephalus, shuffl ing gait, and agenesis of corpus callosum (Finckh et al. 
 2000 ; Gu et al.  1996 ; Rosenthal et al.  1992 ; Fransen et al.  1995 ; Jouet et al.  1994 ; 
Vits et al.  1994 ,  1998 ; Ruiz et al.  1995 ). Interestingly, almost every family with an 
identifi ed L1-CAM mutation has its own individual mutation. The pathogenic 
potential of L1-CAM missense mutations varies considerably and depends on the 
exact location of the affected residue and the type of amino acid exchange involved. 
Therefore, these L1-CAM mutations have also been classifi ed as disease-causing, 
likely disease-causing, likely non-disease-causing polymorphisms, or as unknown 
(Vos et al.  2010 ). 

 L1-CAM missense mutations have been identifi ed in all extracellular protein 
domains, as well as the cytoplasmic region of the L1-CAM protein (Fig.  9.3 ). 
Specifi cally, disease-causing mutations have been reported in Ig1, Ig2, Ig3, Ig4, and 
Ig5 and Fn1, Fn2, and Fn5 protein domains of extracellular region of the L1-CAM 
and also in the cytoplasmic domain. In addition, likely disease-causing mutations 
have been identifi ed in the L1-CAM Ig6 and Fn1 protein domains. A more complete 
list of currently known and previously published human L1-CAM mutations can be 
accessed at the “L1CAM Mutation Database,” which is being maintained by the 
University Medical Center Groningen at   http://www.l1cammutationdatabase.info     
(Vos and Hofstra  2010 ).

   However, the severity of the phenotype and the clinical features vary between 
different L1-CAM mutations. Certainly the location of the mutated amino acid resi-
due and the affected protein domain (Ig, FN III, or cytoplasmic) do infl uence and 
partially determine the severity of the phenotype. This has been analyzed for the 
severity of L1-CAM-related hydrocephalus and the mortality rate caused by indi-
vidual L1-CAM mutations (Yamasaki et al.  1997 ; Bertolin et al.  2010 ). In general, 
mutations in the extracellular part of L1-CAM that led to truncation or absence of 
L1-CAM protein cause a most severe phenotype. In contrast, L1-CAM mutations 
affecting the cytoplasmic region result in a milder phenotype (Fransen et al.  1998b ; 
Yamasaki et al.  1997 ). In addition, extracellular mutations affecting amino acids 
situated on the surface of a domain cause a milder phenotype than those affecting 
amino acids situated in the core of the protein domains (Bateman et al.  1996 ; Fransen 
et al.  1998b ). Equally, L1-CAM mutations interfering with homophilic and/or 
 heterophilic protein–protein interactions usually cause more signifi cant neuronal 
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dysfunctions (De Angelis et al.  2002 ). In addition, the variance of the phenotype 
between affected siblings, who share an identical L1-CAM mutation, suggests a 
strong epigenetic infl uence on the expression of specifi c phenotypic aspects. Using 
an L1-CAM knockout mouse model, Tapanes-Castillo et al. ( 2009 ) identifi ed such a 
modifi er locus for X-linked hydrocephalus on mouse chromosome 5.   

  Fig. 9.3    Selection of human 
pathogenic L1-CAM 
missense mutations. This 
fi gure depicts the position of 
several pathogenic L1-CAM 
mutations that have been 
determined to cause L1 
syndrome in humans and that 
have been experimentally 
analyzed in various in vitro 
and in vivo assay systems for 
their ability to perform 
specifi c L1-CAM-associated 
functions (De Angelis et al. 
 1999 ; Nagaraj et al.  2009 ; 
Rünker et al.  2003 ; 
Michelson et al.  2002 ; 
Needham et al.  2001 ; 
Moulding et al.  2000 ; Zhao 
and Siu  1996 ; Godenschwege 
et al.  2006 )       
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9.2.5     Molecular Mechanisms by Which L1-CAM Mutations 
Cause Neurological Dysfunctions 

 The phenotypic diversity that is observed for L1-CAM mutations is well docu-
mented and it has been speculated that the multitude of L1-CAM interactions with 
itself and its various binding partners may play an important role in this heterogene-
ity. Many extracellular L1-CAM mutations have been demonstrated to disrupt 
L1-CAM’s homophilic interaction and have a reduced ability to stimulate neurite 
outgrowth in vitro (De Angelis et al.  1999 ; Zhao and Siu  1996 ) (Fig.  9.3 ). As 
L1-CAM exerts many of its physiological functions by its strong homophilic adhe-
sive ability, the relative contribution of homophilic versus heterophilic L1-CAM 
interactions to the phenotypic expression of mutational defects remains an interest-
ing question. Regardless, it appears reasonable to assume that alterations in ligand- 
specifi c L1-CAM binding properties represent one central pathological mechanism, 
which is at play in L1 syndrome (De Angelis et al.  2002 ). 

 As evidenced by two studies that used a transgenic mouse model expressing 
L1-6D, which lacks the sixth Ig domain of L1-CAM and as a result has no homo-
philic and RGD-dependent integrin interactions, the homophilic adhesive function 
of L1-CAM is involved in some phenotypic aspects of L1 syndrome, specifi cally 
hydrocephalus. However, its severity is also infl uenced by other genetic modifi ers 
(Tapanes-Castillo et al.  2009 ; Itoh et al.  2004 ). Based on their observations these 
authors hypothesize that a co-receptor for L1-CAM-mediated neurite outgrowth is 
involved and some pathogenic mutations affect neurite outgrowth or branching by 
disrupting the interaction with this co-receptor. 

 Not surprisingly, some pathogenic L1-CAM mutations also disrupt some of 
L1-CAM’s known heterophilic interactions. For example, many pathological 
L1-CAM mutations infl uence the heterophilic interaction with TAX-1/Axonin-1 
(De Angelis et al.  1999 ,  2002 ) (Fig.  9.3 ). Similarly, the functional interaction 
between L1-CAM and EGFR (epidermal growth factor receptor) interaction is 
impaired by some L1-CAM missense mutations (Nagaraj et al.  2009 ). In the cyto-
plasmic domain, two pathogenic L1-CAM mutations (S1124L and Y1229H, 
Fig.  9.3 ) affect the binding of the L1-CAM cytoplasmic domain to the Spectrin–
Actin cytoskeleton and abolish endocytosis of L1-CAM (Buhusi et al.  2008 ; 
Needham et al.  2001 ). It appears reasonable to hypothesize that other heterophilic 
L1-CAM interactions, such as the binding of Neuropilin-1 that partially mediates 
L1-CAM’s axon guidance function (Soker et al.  1998 ; Castellani et al.  2000 ) and 
the interaction with RGD-specifi c integrins that leads to cell migration and myelina-
tion (Haney et al.  1999 ; Mechtersheimer et al.  2001 ), are equally changed by some 
pathogenic L1-CAM mutations. Finally, some mutations appear to infl uence the 
tertiary structure of the L1-CAM protein, which in turn disrupts protein–protein 
interactions involving L1-CAM indirectly (Cheng and Lemmon  2004 ). 

 Another mechanism by which mutations infl uence or abrogate L1-CAM func-
tion is their effect on the cell surface expression of the L1-CAM protein (De Angelis 
et al.  1999 ,  2002 ; Michelson et al.  2002 ; Moulding et al.  2000 ). Particularly, the 
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pathological missense mutations I179S and Y194C affect L1-CAM’s neurite 
 outgrowth inducing capability by decreasing the cell surface localization of the 
mutant L1-CAM protein (Michelson et al.  2002 ) (Fig.  9.3 ). The missense mutation 
C264Y in the extracellular domain of L1-CAM, which is known to cause HSAS 
(hydrocephalus with stenosis of aqueduct of Sylvius) in affected humans, impairs 
cellular L1-CAM protein traffi cking (Rünker et al.  2003 ) (Fig.  9.3 ). Transfection 
studies in vitro demonstrate that this mutant L1-CAM protein is not expressed at the 
cell surface, but instead is located intracellularly, most likely within the endoplas-
mic reticulum. This was further confi rmed by an in vivo analysis using a transgenic 
mouse line that expresses the C264Y mutant L1-CAM protein (Rünker et al.  2003 ). 

 There are also multiple lines of evidence that pathogenic L1-CAM mutations 
alter interactions with the intracellular Actin–Spectrin membrane skeleton and the 
cytoplasmic machinery that regulates L1-CAM-mediated axonal branching. The 
L1-CAM cytoplasmic domain (L1CD) is involved in axonal branching and 
the interaction between L1-CAM and the Actin cytoskeleton is also critical for this 
activity (Cheng et al.  2005a ). Some extracellular mutations, such as I219T and 
W1036L (Fig.  9.3 ), alter the interaction between L1-CAM and the Actin cytoskel-
eton by changing L1-CAM’s conformation. This observation might simply be a 
refl ection of extracellular adhesive events regulating the binding of Ankyrin to the 
cytoplasmic L1 domain (Dubreuil et al.  1996 ; Hortsch et al.  1998b ). Ankyrin acts as 
the linker between the L1 cytoplasmic domain and the Actin–Spectrin network. 
Alternatively, Cheng et al. speculated that axonal branching is regulated by L1-CAM 
interacting extracellularly in  cis  with an unknown co-receptor. The pathogenic 
mutations I219T and W1036L may disrupt this interaction. The S542P mutation 
(Fig.  9.3 ), which exhibits a reduction in both L1-CAM protein surface expression 
and homophilic adhesion, also elicits a decrease in the number of axonal branching 
(Cheng and Lemmon  2004 ). 

 Some pathogenic L1-CAM mutations have also been reported to affect L1-CAM- 
associated signaling processes. Using in vitro as well as in vivo  Drosophila  assay 
systems, we demonstrated that two pathogenic human L1-CAM mutations (E309K 
and Y1070C, Fig.  9.3 ), which exhibit wild-type levels of homophilic adhesion, have 
a reduced ability to induce L1-CAM-dependent EGFR signaling in vitro and are 
unable to rescue L1 loss-of-function conditions in vivo (Nagaraj et al.  2009 ). 

 Pathogenic L1-CAM mutations have various effects on the L1-CAM protein. 
Many missense L1-CAM mutations are predicted to distort the structure of indi-
vidual domains and as a result to affect the intracellular processing of the L1-CAM 
protein and potentially reduce its cell surface expression. A recent study by Bertolin 
et al. ( 2010 ) demonstrated that some frameshift mutations and all nonsense muta-
tions result in truncated L1-CAM proteins, which have carboxy termini in different 
extracellular L1-CAM protein domains. The observed neurological dysfunctions 
that are associated with these  L1-CAM  mutations give support to the notion that the 
severity of the L1 syndrome phenotype correlates with the severity of the molecular 
effect of the individual mutation and is also dependent on the epigenetic context into 
which a particular mutation is placed (Yamasaki et al.  1997 ).  

K. Nagaraj et al.



207

9.2.6     Mutational Defects of L1-Type Genes in Various 
Model Animal Systems 

     Drosophila melanogaster  

 L1-type genes and proteins have been identifi ed in many other metazoan species 
(Mualla et al.  2013 ).  Drosophila  Neuroglian (Nrg) was the second L1-type protein 
identifi ed and described (Bieber et al.  1989 ). Coincidentally, the  neuroglian  ( nrg ) 
gene is localized on the fl y’s X-chromosome at cytological location 7F1. Hall and 
Bieber (Hall and Bieber  1997 ) have analyzed and described three mutant lines. All 
are late embryonic lethal mutations that alter or abolish  Drosophila  Neuroglian 
expression during development. The  nrg   1   mutation is a protein null allele that is 
caused by an inversion with breakpoints at chromosomal locations 6E-7F1 the prox-
imal breakpoint residing in the  nrg  transcription unit (Bieber et al.  1989 ; Hall and 
Bieber  1997 ). The mutation  nrg   2   represents a hypomorphic mutation with markedly 
reduced expression levels of both Neuroglian protein isoforms. The mutation  nrg3  
is temperature sensitive and also represents a late embryonic lethal allele when 
raised at a nonpermissive temperature (Hall and Bieber  1997 ). At a nonpermissive 
temperature the Nrg protein in homozygous  nrg   3  -mutant animals is mislocalized 
inside Nrg expressing cells and is not transported to the cell surface. 

 Neuroglian is also expressed in two protein isoforms, one being restricted to 
neuronal cells (Nrg 180 ) and the other to non-neuronal cells (Nrg 167 ) (Hortsch et al. 
 1990 ). However, the differential cell-specifi c splicing of the  nrg  transcript in 
 Drosophila  differs considerably in its effect on the resulting L1 protein isoforms 
from that described for L1-CAM in vertebrates (De Angelis et al.  2001 ; Miura 
et al.  1991 ). Although the Neuroglian protein is predominantly expressed in the 
nervous system throughout the life cycle of the fl y (Bieber et al.  1989 ), the non-
neuronal Nrg 167  isoform also exhibits a high level of expression in most, if not all, 
 Drosophila  epithelia. In arthropod epithelia Neuroglian is an essential part of sep-
tate junction protein complexes and thereby stabilizes epithelial integrity (Genova 
and Fehon  2003 ; Laval et al.  2008 ; Wei et al.  2004 ; Faivre-Sarrailh et al.  2004 ; 
Banerjee et al.  2006 ). 

 The lack of Neuroglian expression in vivo causes abnormalities in embryonic 
motor neuron projections of both the intersegmental and the segmental nerves (Hall 
and Bieber  1997 ). Temperature shift experiments using homozygous nrg 3 -mutant 
animals also revealed axonal pathfi nding defects in the larval ocellar sensory sys-
tem, which are mediated by EGFR and FGFR (fi broblast growth factor receptor) 
signaling (Garcia-Alonso et al.  2000 ; Kristiansen et al.  2005 ). Similarly, Neuroglian 
appears to mediate sensory axon advances in the  Drosophila  embryonic nervous 
system (Martin et al.  2008 ). Neuroglian is also an important player during the devel-
opment of the adult mushroom body where it controls axonogenesis, axon bundling, 
axon branching, and guidance through signaling mechanisms that are different from 
the ocellar sensory system (Goossens et al.  2011 ). However, the physiological role 
of the fl y’s sole L1-type protein is not restricted to neuronal cells and to axonal 
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pathfi nding. It is also involved in dendritic arborization (Yamamoto et al.  2006 ) and 
in the proper differentiation of certain glial cells (Chen and Hing  2008 ). In addition, 
by using a S213L Neuroglian missense mutation, Godenschwege et al. uncovered 
an essential role of this  Drosophila  L1-type protein at the pupal giant synapse, 
which is independent of Neuroglian’s role in axonal pathfi nding (Godenschwege 
et al.  2006 ). A different Neuroglian missense mutation (G92R, designated as  ibx  for 
 icebox ) not only causes a nonlethal central brain morphology phenotype, but when 
homozygous in female fl ies results in a specifi c defi ciency in female mating behav-
ior (Carhan et al.  2005 ). Male fl ies show no behavioral defects, nor are other female 
behaviors visibly affected. 

 Although the  Drosophila  Neuroglian protein only exhibits a moderate level of 
amino acid identity when compared with mouse or human L1-CAM (Bieber et al. 
 1989 ; Zhao and Hortsch  1998 ), all major L1 features, including the characteristic 
L1 protein domain structure and a highly conserved intracellular Ankyrin binding 
domain, are preserved in the fl y ortholog. In contrast to vertebrate species, arthro-
pod genomes have only one L1-type gene in their genome. However, the similarities 
between human L1-CAM and  Drosophila  Neuroglian extend to several functional 
aspects. The expression of human L1-CAM in transgenic fl ies rescues some of  nrg  
loss-of-function axonal pathfi nding defects (Kristiansen et al.  2005 ). Similarly, 
human L1-CAM expression rescues a central nervous system synaptic phenotype in 
the fl y that is caused by the lack of Neuroglian protein (Godenschwege et al.  2006 ). 
This surprising functional conservation between two members of the L1 gene fam-
ily that are separated by more than 600 million years of evolution has made it pos-
sible to analyze pathogenic human L1-CAM proteins under in vivo conditions for 
specifi c functional aspects (Godenschwege et al.  2006 ; Nagaraj et al.  2009 ).  

     Caenorhabditis elegans  

 The nematode  Caenorhabditis elegans  genome encodes two L1-type genes,  sax-7/
lad-1  and  lad-2  (Chen et al.  2001 ; Wang et al.  2008 ), which appear to serve differ-
ent, nonoverlapping functions (Chen and Zhou  2010 ). The SAX-7/LAD-1 protein 
has all the hallmarks of L1-type proteins (Chen et al.  2001 ) and when mutated or 
deleted causes a pleiotropic phenotype, which includes embryonic and gonadal 
malformations (Chen et al.  2001 ), the misorganization of ganglia and abnormal 
positioning of neuronal cells in the adult (Sasakura et al.  2005 ), as well as embry-
onic lethality, inappropriate axon trajectories, and uncoordinated movements 
(Wang et al.  2005 ). In contrast, the LAD-2 protein, which is expressed in only a 
subset of nematode neurons, has a traditional L1-type ectodomain, but is truncated 
at its cytoplasmic tail and is missing the Ankyrin-binding domain (Wang et al. 
 2008 ). Animals that are mutant for the  lad-2  gene primarily exhibit axonal path-
fi nding defects. These defects are caused when the LAD-2 protein is unable to ful-
fi ll its function as a co-receptor together with PLX-2/Plexin to bind MAB-20/Sema 
2 protein (Wang et al.  2008 ).  
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    Mus musculus 

 In mice, knockouts of the  L1CAM  gene (L1-KO mice) exhibit a phenotype similar 
to that observed in humans with L1 syndrome. These phenotypic aspects include a 
reduced corticospinal tract, abnormal pyramidal decussation, decreased axonal 
association with non-myelinating Schwann cells, ventricular dilation, and hypopla-
sia of the cerebellar vermis (Itoh et al.  2004 ; Dahme et al.  1997 ; Fransen et al. 
 1998a ; Demyanenko et al.  1999 ,  2001 ). Using a co-culture in vitro assay with cells 
isolated from an L1-CAM-defi cient mouse line, Castellani et al. revealed a role for 
L1-CAM in the Sema3A signaling pathway of axonal guidance (Castellani et al. 
 2000 ). Their fi nding suggests that some L1-CAM mutations may also disrupt 
Sema3A’s chemorepulsive signaling activity in the growth cone (Castellani et al. 
 2000 ). This situation is reminiscent of the phenotype that has been observed for the 
L1-type protein LAD-2 in nematodes (Wang et al.  2008 ).   

9.2.7     L1-CAM Expression in Cancer Cells: 
The Multidimensional Nature of L1-CAM Function 

    Expression of L1-CAM in Various Human Tumors 

 As described above, L1-CAM and other vertebrate L1-type proteins are primarily 
expressed in the nervous system (Rathjen and Schachner  1984 ; Sanes et al.  1986 ). 
Not surprisingly, L1-CAM expression has been reported in a number of human 
tumors of neuroectodermal origin, specifi cally gliomas and neuroblastomas 
(Figarella-Branger et al.  1990 ; Izumoto et al.  1996 ; Tsuzuki et al.  1998 ). L1-CAM 
expression in gliomas correlates with increased tumor invasion (Izumoto et al. 
 1996 ) and the downregulation of L1-CAM expression decreases glioma growth in a 
mouse model (Bao et al.  2008 ). Whereas L1-CAM expression in adult gliomas is 
associated with reduced survival, the opposite was reported for pediatric gliomas 
(Wachowiak et al.  2007 ). This suggests that L1-CAM expression has different 
effects in different types of neuroectodermal tumors. 

 Some recent publications have reported an aberrant expression of L1-CAM in 
several non-neuronal types of human cancer (Gavert et al.  2008 ). For example, 
L1-CAM protein is often expressed during advanced stages of colon cancer devel-
opment (Raveh et al.  2009 ; Gavert et al.  2005 ). In addition, L1-CAM was found in 
certain ovarian cancers (Zecchini et al.  2008 ), renal cell carcinoma (Allory et al. 
 2005 ), human cutaneous malignant melanoma (Thies et al.  2002 ; Fogel et al.  2003 ; 
Linnemann et al.  1989 ), pancreatic adenocarcinomas (Sebens Müerköster et al. 
 2007 ), breast cancers (Valladares et al.  2006 ; Shtutman et al.  2006 ; Gutwein et al. 
 2000 ), and various lung cancer cell lines (Katayama et al.  1997 ). This suggests that 
the expression of L1-type proteins might play an important role in the development 
and progression of different types of cancers. The study by Gavert et al. also 
 demonstrates that when transfected into LS174T human colon carcinoma cells, 
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L1-CAM expression results in an increased growth rate and cell motility and in an 
enhancement of the cells’ tumorigenic capacity (Gavert et al.  2008 ). When injected 
into the spleen of nude mice, L1-CAM-transfected LS174T cells gained the ability 
to form liver metastases (Gavert et al.  2007 ). In colon cancer tissue samples, 
L1-CAM expression is correlated with higher levels of nuclear β-catenin and these 
cells are exclusively localized at the invasive front of the tumor tissue (Gavert et al. 
 2005 ). The authors provide ample evidence that in human colon carcinoma cells, 
L1-CAM is a target of aberrantly activated β-catenin–TCF signaling and increases 
their metastatic potential (Gavert et al.  2008 ). 

 Similar to colon carcinoma, L1-CAM has been detected at the invasive front of 
epithelial ovarian carcinoma tissue cells and its expression is associated with a poor 
clinical prognosis and increased levels of metastasis (Zecchini et al.  2008 ). Also in 
renal cell carcinoma (RCC), the presence of L1-CAM is linked to a propensity to 
develop metastasis, and when coupled with the loss of Cyclin D1 expression, 
L1-CAM was defi ned as an independent prognostic factor for metastasis occurrence 
in a multivariate analysis (Allory et al.  2005 ). 

 Other studies show that L1-CAM is also expressed in a signifi cant portion of 
various histological subtypes of human cutaneous malignant melanomas. Again it is 
a good predictor for metastatic ability and indicates a poor prognosis in melanoma 
patients (Thies et al.  2002 ; Fogel et al.  2003 ; Linnemann et al.  1989 ). Furthermore, 
the downregulation of L1-CAM expression reduces the migration and invasiveness 
of metastatic B16 cells in vitro (Meier et al.  2006 ). A gene array analysis of malig-
nant melanoma tissues demonstrated that L1-CAM RNA is expressed at more than 
tenfold higher levels when compared with benign lesions or normal skin samples 
(Talantov et al.  2005 ). L1-CAM expression has also been reported in neuroendo-
crine carcinomas of the skin (Deichmann et al.  2003 ). 

 For pancreatic adenocarcinomas, one study reported that L1-CAM was expressed 
in 80 % (16 of 20 samples) of all tissue sections analyzed (Sebens Müerköster et al. 
 2007 ). However, other studies reported L1-CAM expression to be less common in 
pancreatic adenocarcinoma (2 of 111 samples) (Kaifi  et al.  2006a ) and 5 out of 63 
pancreatic neuroendocrine tumors (Kaifi  et al.  2006b ). Again L1-CAM expression in 
pancreatic adenocarcinomas is a valid indicator for a poor clinical prognosis (Tsutsumi 
et al.  2011 ; Chen et al.  2011 ). L1-CAM is also detectable in some breast cancers 
(Valladares et al.  2006 ; Shtutman et al.  2006 ; Gutwein et al.  2000 ). In MCF7 breast 
cancer cells, L1-CAM expression disrupts E-cadherin-containing adherens junctions 
and increases cell scattering and motility (Shtutman et al.  2006 ). This correlates with 
the observation that L1-CAM expression is more abundant in metastatic breast cancer 
cells and lower in non-metastatic breast cancer cells (Valladares et al.  2006 ). 

 L1-CAM and Neurofascin proteins both contain an RGD motif in their sixth Ig 
or third FN III domain, respectively, both of which have been shown to interact with 
RGD-specifi c integrins (Ruppert et al.  1995 ; Montgomery et al.  1996 ; Felding- 
Habermann et al.  1997 ; Blaess et al.  1998 ). The RGD motif in the sixth L1-CAM Ig 
domain appears to increase the incident of metastasis formation in some tumor cells 
expressing L1-CAM. An investigation by Duczmal et al. showed that the L1-CAM- 
mediated migration of human MED-B1 tumor cells is RGD dependent and can be 
blocked by αγβ3 integrin-specifi c antibodies (Duczmal et al.  1997 ). The evidence 
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that RGD motifs in Neurofascins and L1-CAMs can serve as ligands for integrins 
has led researchers to argue for a functional signifi cance of this interaction in 
L1-mediated tumor progression (Duczmal et al.  1997 ; Montgomery et al.  1996 ).  

    L1-Type Protein Expression Affects Signaling 
Pathways in Cancer Cells 

 L1-CAM and other vertebrate L1-type proteins play an active role in cancer devel-
opment by affecting different signaling pathways and thereby contributing directly 
to tumor progression. Several groups have demonstrated that in ovarian cancer cells 
L1-CAM-dependent ERK activation is associated with increased FGFR, EGFR, 
and hepatocyte growth factor receptor (HGFR) activity (Zecchini et al.  2008 ; Stoeck 
et al.  2007 ; Novak-Hofer et al.  2008 ). These and a number of other studies suggest 
that L1-CAM plays a role in carcinogenesis by its ability to activate the ERK signal-
ing pathway (Gast et al.  2008 ; Schaefer et al.  1999 ; Silletti et al.  2004 ; Schmid et al. 
 2000 ). L1-CAM itself is also phosphorylated by Erk2 and interacts with different 
components of the ERK pathway (Silletti et al.  2004 ; Schmid et al.  2000 ). This 
ultimately results in the expression of proteins that contribute to cell motility and 
cell invasion. In addition, L1-CAM-mediated ERK activation was shown to involve 
Src (Gast et al.  2008 ; Silletti et al.  2004 ). The reported association of the L1-CAM 
cytoplasmic domain with RamBPM also indicates a direct link between L1-CAM 
expression and the MAPK/ERK signaling pathway (Cheng et al.  2005b ). 

 The co-expression of ADAM10 (A Disintegrin and Metalloproteinase domain- 
containing protein 10) and L1-CAM in invasive colon cancer tumor cell indicates 
that the proteolytic processing of L1-CAM may have a role in invasive tumor devel-
opment (Gavert et al.  2007 ). The L1-CAM protein is often cleaved by MMPs and 
the shedded L1-CAM ectodomain can interact with integrins, RTKs, or L1-CAM on 
the surface of the same or of neighboring cells (Gavert et al.  2007 ). Similarly, the 
ectodomain of the Nr-CAM protein is cleaved by matrix metalloproteinases, which 
results in an enhancement of cell motility, proliferation, ERK and AKT activation, 
and ultimately oncogenesis (Conacci-Sorrell et al.  2005 ).    

9.3     Mutant Phenotypes Associated with Vertebrate 
L1-CAM Paralogs 

9.3.1     Neurofascin 

 Neurofascin is one of three vertebrate L1-CAM paralogs and is also primarily 
expressed in the nervous system (Rathjen et al.  1987 ). The multiple protein iso-
forms that are expressed from the  neurofascin  gene vary in the number of their FN 
III extracellular domains (Hassel et al.  1997 ). Some Neurofascin protein isoforms 
also contain an unusual PAT domain, which is usually positioned close to the trans-
membrane segment (see Fig.  9.1 ) (Volkmer et al.  1992 ). 
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 Two major Neurofascin isoforms, Nfasc155 and Nfasc186, are expressed at 
nodes of Ranvier in myelinated axons (Tait et al.  2000 ). The neuronal isoform 
Nfasc186 is required for the clustering of voltage-gated Na +  channels at nodes of 
Ranvier (Howell et al.  2006 ). It thereby controls rapid impulse conduction in these 
axons (Zonta et al.  2008 ). In contrast, Nfasc155 is a glia cell-specifi c protein iso-
form and is required for the correct assembly of paranodal junctions (Sherman et al. 
 2005 ). In  neurofascin  null mice, neither paranodal adhesion junctions nor nodal 
complexes are formed (Sherman et al.  2005 ). This demonstrates the essential func-
tion of these two major Neurofascin protein isoforms for the formation of these 
structures. Nfasc155 null mutant mice exhibit severe ataxia, motor paralysis, and 
death before the third postnatal week (Pillai et al.  2009 ). In the absence of glia cell- 
specifi c Nfasc155, paranodal axonal junctions fail to form, axonal domains do not 
segregate, and myelinated axons undergo degeneration. Furthermore, in vivo dele-
tion of Neurofascin Ig domains 5 and 6 reveals a requirement for specifi c Neurofascin 
protein domains in myelinated axons (Thaxton et al.  2010 ). 

 In cases of multiple sclerosis, a disruption of Neurofascin localization at nodes 
of Ranvier often appears to precede subsequent demyelination (Howell et al.  2006 ; 
Lonigro and Devaux  2009 ). Both Nfasc186 and Nfasc155 proteins have been found 
in areas of infl ammation, demyelination, and remyelination in postmortem brains of 
multiple sclerosis patients (Howell et al.  2006 ). Mathey et al. identifi ed Neurofascin 
as an autoimmune target in patients with multiple sclerosis (Mathey et al.  2007 ). 
This suggests a direct involvement of Neurofascin in immune-mediated axonal 
injury. The alteration of oligodendrocyte Nfasc155 expression that accompanies 
infl ammation and demyelination processes indicates a chronic disruption of the 
axon–glia cell interaction. This will eventually result in the destruction of the 
Nfasc186/Na +  v  nodal complexes (Howell et al.  2006 ). Recently, the involvement in 
the progression of multiple sclerosis of two newly described protein isoforms of 
Nfasc155 has been analyzed in more detail (Pomicter et al.  2010 ). Using conditional 
knockout mice the authors show that Nfasc155 high and Nfasc155 low are exclu-
sively expressed by oligodendrocytes within the CNS. The timing and expression 
levels of these two Nfasc155 isoforms are distinctly regulated. Nfasc155 low is 
incapable of preserving paranodal structures, thus indicating that Nfasc155 high is 
required for paranodal stability. Comparisons between Nfasc155 high and Nfasc155 
low in human samples revealed signifi cant alterations in multiple sclerosis plaques 
(Pomicter et al.  2010 ).  

9.3.2     NrCAM 

 NrCAM (neuron–glia-related cell adhesion molecule) was the third vertebrate 
L1-type gene/protein to be identifi ed and like its paralogs is primarily expressed in 
the nervous system (Grumet et al.  1991 ; Grumet  1997 ). In mice, lack of NrCAM has 
been implicated in the formation of lens cataracts (More et al.  2001 ). It is also 
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involved in the formation of nodes of Ranvier (Custer et al.  2003 ) and in addiction 
vulnerability (Ishiguro et al.  2006 ). In humans, NrCAM has been associated with 
autism (Sakurai et al.  2006 ; Bonora et al.  2005 ) and is overexpressed in papillary 
thyroid carcinomas (Gorka et al.  2007 ). 

 The absence of NrCAM causes the formation of cataracts in murine lenses (More 
et al.  2001 ). In NrCAM-defi cient mice, the authors observed a general disorganiza-
tion of lens fi bers with ensuing cellular disintegration and an accumulation of cel-
lular debris. This mirrors the phenotype found in Ankyrin-B-defi cient mice and 
points to an important interaction between NrCAM and Ankyrin-B in lens fi ber 
cells (More et al.  2001 ). Similar to Neurofascin, NrCAM is also expressed at nodes 
of Ranvier and is implicated in node formation and maintenance (Custer et al. 
 2003 ). Na +  channels and Ankyrin G sequestration at developing nodes is delayed in 
NrCAM null mutant mice. 

 The genetic mapping of a locus involved in substance abuse vulnerabilities to 
mouse chromosome 7 identifi ed a positive linkage with several NrCAM haplo-
types (Ishiguro et al.  2006 ). Differential gene display identifi ed the  NrCAM  gene 
as a drug-regulated gene that is expressed in neurons linked to reward and memory 
(Ishiguro et al.  2006 ). NrCAM knockout mice exhibit reduced opiate- and 
stimulant- conditional preferences. These observations suggest that in humans 
NrCAM may also be a drug-regulated gene, whose variants are likely linked to 
vulnerabilities in drug addiction and reward. In another study, wild-type, hetero-
zygous, and NrCAM null mice were tested for a cognitive and behavioral pheno-
type (Matzel et al.  2008 ). These different genotypes were assessed using fi ve 
different learning tasks (such as Lashley maze, odor discrimination, passive avoid-
ance, spatial water maze, and fear conditioning). NrCAM null mutant mice are 
viable, have normal body weight, and exhibit normal levels of general activity. 
However, they display an increased propensity to enter stressful areas of novel 
environments, exhibit higher sensitivity to pain (hot), and are more sensitive to the 
aversive effects of foot shock. This behavioral phenotype suggests that NrCAM 
might play a central role in the regulation of general cognitive abilities and might 
serve a critical function in regulating impulsivity as well as susceptibly to drug 
abuse and addiction. In humans, two genetic linkage studies have identifi ed the 
 NrCAM  gene as a potential candidate to be associated with autism susceptibility 
and with substance abuse (Sakurai et al.  2006 ; Bonora et al.  2005 ). Together with 
the results obtained from the mouse models, which are cited above, this indicates 
that NrCAM has an important function in the formation and/or maintenance of the 
brain’s reward circuitry. 

 Like L1-CAM and Neurofascin, NrCAM is also overexpressed in at least one 
type of human cancer, specifi cally papillary thyroid carcinomas (PTCs) (Gorka 
et al.  2007 ). The level of NrCAM mRNA and protein overexpression in tumor 
tissues appears to be independent of the primary tumor stage (PT) or its size. 
How NrCAM induction and upregulation might potentially infl uence the patho-
genesis and the behavior of papillary thyroid cancer cells still remains to be 
evaluated.  
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9.3.3     CHL1 

 The Close Homologue of L1, CHL1 (or  CALL  for Cell Adhesion L1-Like), is the 
fourth vertebrate L1-type paralog (Holm et al.  1996 ) and is located on human chro-
mosome 3p26.1 (Wei et al.  1998 ). CHL1 protein promotes neurite outgrowth 
(Holm et al.  1996 ; Hillenbrand et al.  1999 ), and the gene expression of  CHL1  and 
 L1CAM  in the mouse and rat nervous system shows overlapping but distinct pat-
terns in neuronal and glia cell populations (Hillenbrand et al.  1999 ). In contrast to 
the other three vertebrate L1 paralogs, relatively little is known about CHL1’s 
physiological and molecular functions. Nevertheless, the  CHL1  gene appears to be 
associated with several interesting genetic conditions and phenotypes. 

 In cortical slices from CHL1 knockout mice the migration of cortical neurons 
proceeds at a slower rate of radial migration and migratory cells accumulate in the 
intermediate and ventricular/subventricular zones (Demyanenko et al.  2004 ). In 
neocortical areas, especially in the visual and somatosensory cortex, CHL1 appears 
to regulate neuronal connectivity (Demyanenko et al.  2004 ). CHL1 also has a role 
in regulating the uncoating of Clathrin-coated synaptic vesicles (Leshchyns’ka et al. 
 2006 ). CHL1 defi ciency or disruption of the CHL1/Hsc70 complex results in an 
accumulation of abnormally high levels of Clathrin-coated synaptic vesicles. These 
observed abnormalities of Clathrin-dependent synaptic vesicle recycling have the 
potential to cause or to contribute to brain malfunctions in humans and mice that 
carry mutations in their  CHL1  gene. 

 Nikonenko et al. ( 2006 ) reported an enhanced perisomatic inhibition and 
impaired long-term potentiation in the CA1 region of juvenile CHL1-defi cient 
mice. These authors analyzed the functional role of CHL1 in the synaptic transmis-
sion in the CA1 region hippocampus comparing juvenile CHL1-defi cient and wild- 
type mice. The inhibitory postsynaptic currents evoked in pyramidal cells by 
minimal stimulation of perisomatically projecting interneurons were increased in 
mice lacking CHL1 when compared with wild-type littermates. Also, the long-term 
potentiation (LTP) at CA3–CA1 excitatory synapses was reduced under physiologi-
cal conditions in CHL1-defi cient mice. A quantitative immunohistochemical analy-
sis revealed that CA1 interneurons usually express CHL1 protein. This suggests that 
CHL1 is important for the regulation of inhibitory synaptic transmission in this and 
potentially other interneuron populations. This observed enhancement of inhibitory 
transmission in CHL1-defi cient mice contrasts with the previous fi nding of a 
reduced inhibition in L1-CAM-defi cient mice and illustrates a functional difference 
between these two paralogous L1-type adhesion molecules (Nikonenko et al.  2006 ). 

 Mutations in the murine  CHL1  gene have been found to alter the connectivity 
and morphology of several brain regions (Heyden et al.  2008 ). In addition, CHL1 
acts in a gene dosage-dependent manner to control murine brain development and 
to infl uence behavior and cognitive abilities. Mice defi cient for CHL1 display alter-
ations in emotional reactivity and motor coordination (Pratte et al.  2003 ). These 
mice also display signs of decreased stress and a modifi cation of exploratory behav-
ior and show impairments in a Rotarod test. However, they were able to move as fast 
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as control mice in a T-maze test. The observed changes have been attributed to an 
attention defi cit. CHL1-defi cient mice have normal learning abilities, but exhibit a 
widespread impairment in working memory duration (Kolata et al.  2008 ). Montag- 
Saliaz et al. demonstrated that the absence of CHL1 in mice results in aberrant hip-
pocampal mossy fi ber and olfactory nerve projections, which might explain the 
reduced reactivity towards novel environments that is exhibited by these mice 
(Montag-Sallaz et al.  2003 ). Together, these observations that have been made using 
CHL1-defi cient mouse models suggest an important role for CHL1 in short-term 
memory retention in the adult brain. 

 Similar to the other three vertebrate L1-type CAMs, mutations in the  CHL1  gene 
and protein have been implicated in several human disease conditions.  CHL1  has 
been identifi ed as a prime candidate gene for an autosomal form of mental retarda-
tion and a translocation breakpoint in intron fi ve of the  CHL1  gene at 46,Y, t(X;3)
(p22.1;p26.3) was described in a man with nonspecifi c mental retardation (Frints 
et al.  2003 ). In addition, a haploinsuffi ciency for the  CHL1  gene has been reported 
in a mentally retarded patient with 3p-syndrome (Angeloni et al.  1999 ). A missense 
mutation (Leu17Phe) in the signal peptide of CHL1 exhibits a positive association 
with the occurrence of schizophrenia in a group of 282 Japanese patients (Sakurai 
et al.  2002 ). This association of CHL1 with schizophrenia was later confi rmed by a 
second study of 560 schizophrenia cases and 576 controls in a Han Chinese popula-
tion (Chen et al.  2005 ). These two reports indicate that CHL1 might somehow be 
involved in the etiology of schizophrenia.   

9.4     Conclusions 

 L1-type genes and their protein products appeared rather early during metazoan 
evolution when the fi rst primitive neuronal nets became part of animal body plans. 
From the beginning, the overall L1-type protein domain structure, a predominant 
expression of L1-type genes in neural cells, and many characteristic protein–protein 
interactions (both homo- as well as heterophilic) and molecular functions have been 
remarkably well conserved. However, gene duplication events have allowed for 
some variations in the L1 protein structure and for the development of novel 
 molecular interactions and physiological functions (Mualla et al.  2013 ). Vertebrate 
species usually contain four L1-type genes in their genome, designated as  L1-CAM , 
 Neurofascin ,  NrCAM , and  CHL1 . Loss-of-function conditions have been studied in 
several animal model systems and usually include a broad range of neurological 
dysfunctions. In humans, mutations in the  L1CAM  gene have been analyzed in great 
detail as they cause an X-linked recessive disorder, now known as L1 syndrome. 
Well over 200 different  L1-CAM  mutations have been identifi ed in individual fami-
lies. The severity of the phenotype usually correlates with the impact of the specifi c 
mutation on the structure of the L1-CAM protein and its interactions with other 
proteins. However, epigenetic effects also contribute to a signifi cant variability of 
specifi c phenotypic aspects. 
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 Though L1-type genes are predominantly expressed in the nervous system, their 
protein products have also been identifi ed in a number of other tissues, specifi cally 
leukocytes and epithelia. Their physiological functions in these non-neural tissues 
still remain poorly understood. Overexpression of L1-type proteins has been 
reported in a wide range of different human tumors, where they affect different 
signaling pathways and contribute to tumor progression and metastasis. As our 
understanding of the multifaceted normal physiological role of these important pro-
teins is still incomplete and as both loss-of-function and gain-of-function conditions 
for L1-type genes/proteins cause clinically relevant disorders, the published fi nd-
ings paint a complex and sometimes confusing picture. Certainly, more research is 
needed for a more complete insight into the physiological role of L1-type CAMs 
and how they are implicated into various pathological processes.     
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    Abstract     The neuronal cell adhesion molecule neurofascin is expressed in highly 
complex temporally and spatially regulated patterns. Accordingly, many different 
functions have been described including control of neurite outgrowth, clustering of 
protein complexes at the axon initial segments as well as at the nodes of Ranvier and 
axoglial contact formation at paranodal segments. At the molecular level, neurofas-
cin provides a link between extracellular interactions of many different interaction 
partners and cytoskeletal components or signal transduction. Such interactions are 
subject to intimate regulation by alternative splicing and posttranslational modifi ca-
tion. The versatile functional aspects of neurofascin interactions pose it at a central 
position for the shaping and maintenance of neural circuitry and synaptic contacts 
which are implicated in nervous system disorders.  

10.1         Introduction 

 The cell adhesion protein neurofascin was fi rst discovered in chick brain by Rathjen 
et al. ( 1987 ). This seminal work provided a fi rst hint on a new cell adhesion molecule 
implicated in the fasciculation of axons. Later on, in V. Bennetts group, neurofascin 
was identifi ed as an ankyrin-binding glycoprotein together with the related cell adhe-
sion molecule NrCAM (Davis and Bennett  1994 ). Soon it became clear that neuro-
fascin is an extraordinary molecule due to its highly complex expression patterns. 
Complexity is achieved by extensive alternative splicing and posttranslational modi-
fi cation. This goes in parallel with temporally and spatially controlled expression. 
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It is therefore not a surprise that neurofascin is implicated in a wide spectrum of 
different functions including regulation of neurite outgrowth, assembly and stabilisa-
tion of protein clustering in postsynapses and nodes of Ranvier as well as the control 
of myelination. In this regard, neurofascin acts as a classical cell adhesion molecule 
which links extracellular interaction to the intracellular cytoskeleton. On the other 
hand, it also serves as a co-receptor that is linked to signal transduction via interac-
tion with the receptor phosphotyrosine kinase fi broblast growth factor receptor 
1(FGFR1). 

 It is therefore conceivable that neurofascin might be involved in disorders of the 
nervous system. First indications were reported for demyelinating diseases which 
coincides with the well-documented role of neurofascin in the stabilisation of 
axoglial contacts. We shall discuss further lines of evidence that may relate neuro-
fascin functions to neurodevelopmental disorders.  

10.2     Four Major Neurofascin Isoforms Become Selectively 
Expressed in the Nervous System 

 As a part of the L1 subgroup of the immunoglobulin superfamily of cell adhesion 
molecules (IgCAMs), neurofascin consists of four types of major structural compo-
nents (listed from N- to C-terminus): Six Ig-like repeats of the C2 subgroup (Ig1–
Ig6), fi ve fi bronectin type III-like repeats (FN 1–FN 5), a transmembrane domain 
and a cytoplasmic domain of 113 amino acid residues in length, the latter being 
highly conserved within the L1 subgroup (Volkmer et al.  1992 ; Davis et al.  1993 ). 
A further structural element is represented by the so-called PAT/mucin-like domain, 
which is specifi c for a subset of neurofascin isoforms and mostly consists of proline, 
alanine and threonine amino acid residues (Volkmer et al.  1992 ). The threonine resi-
dues in the PAT domain may serve as a target of O-linked glycosylation. 

 The chick  NFASC  gene of about 72 kb gives rise to an mRNA of 8.5 kb in length 
(Hassel et al.  1997 ; Volkmer et al.  1992 ). Exons 2–29 refer to the extracellular 
domains; the transmembrane domain is encoded by exon 30 while exons 31–33 
account for the cytosolic domain. Alternative splicing of ten exons generates a large 
variety of different neurofascin isoforms. Alternatively spliced exons encode three 
larger domains including the third as well as the fi fth FNIII-like domains and the 
PAT domain. Four minor alternatively spliced sequences are located at the NH 2 - 
terminus (exon 3), between Ig-like domains 2 and 3 (exon 8) and at the junction 
between the Ig-like and the FNIII-like domains (exon 17), and within the cytosolic 
domain (exon 32). In an unbiased screen using a chick brain cDNA library, 50 
 different possible neurofascin isoforms have been identifi ed. So far, four major 
 isoforms NF155, NF166, NF180 and NF186 have been studied in detail (Kriebel 
et al.  2012 ). These isoforms can be categorised according to selective expression of 
alternatively spliced sequences (Fig.  10.1 ). NF155 harbours FNIII-like repeats 1–4, 
NF166 is built up of FNIII-like repeats-1, -2, -3, NF180 is a version of NF166 
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  Fig. 10.1    Domain structures of neurofascin isoforms—Immunoglobulin (Ig)-like domains and 
fi bronectin type III (FNIII)-like repeats are represented in the neurofascin (NF) isoforms NF155, 
NF166, NF180 and NF186 as indicated. Constitutively expressed sequences are represented by 
 fi lled symbols  while alternatively spliced sequences are depicted as  open symbols . The FNIII-like 
repeats are numbered according to their appearance in the  NFASC  gene. PAT refers to proline– 
alanine–threonine-rich sequence (also termed mucin-like domain)       

extended by the PAT domain and NF186 is further extended by FNIII-like repeat 5. 
Three small alternatively spliced sequences (exons 3, 8, 17) are expressed in mutu-
ally exclusive patterns and can be sorted into two distinct categories: exons 3 and 17 
are coexpressed in NF166, 180 and 186 while exon 8 is unique for NF155. 
Expression of neurofascin isoforms is developmentally regulated and may also be 
restricted to specifi c cell types.

   Neurofascin NF166 discovered in chicken is the fi rst major isoform to emerge 
in the embryonic brain. It was found on extending axons in developing fi bre tracts 
in both the central and peripheral nervous systems (Rathjen et al.  1987 ; Hassel 
et al.  1997 ; Pruss et al.  2006 ). The expression pattern suggests that NF166 is 
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mainly involved in early developmental mechanism like neurite outgrowth. Later 
in development, NF180 and NF186 become upregulated (Hassel et al.  1997 ). In the 
CNS of rodents, NF180 was found on axon initial segments (AIS) of developing 
hippocampal neurons where it regulates the organisation of postsynaptic compo-
nents (Burkarth et al.  2007 ; Kriebel et al.  2011 ). NF180 expression becomes down- 
regulated in the adult brain when it is replaced by NF186 as the most abundant 
neurofascin isoform (Kriebel et al.  2011 ). NF186 is located at the AIS and at the 
axonal surface of nodes of Ranvier (Davis et al.  1996 ). NF186 is involved in the 
maintenance and stabilisation of the AIS and the nodal protein complexes as well 
as in the stabilisation of axo-axonic input. In contrast to the neuronal isoforms 
mentioned above, NF155 is mainly expressed by myelinating cells at the axoglial 
contact site, the paranodal segments (Poliak and Peles  2003 ). Accordingly, NF155 
becomes upregulated in parallel with the onset of myelination (Collinson et al. 
 1998 ; Basak et al.  2007 ). Here, neurofascin expression is crucial for the develop-
ment of paranodal septate-like junctions. Nevertheless NF155 was also found on 
ummyelinated axons as well as on granule and Purkinje cell somata in the cerebel-
lum (Davis et al.  1996 ). 

 As a cell adhesion molecule, neurofascin is involved in a large variety of extra-
cellular interactions (Table  10.1 ). Neurofascin undergoes homophilic interactions  in 
trans  between opposing cellular membranes, which is a common feature of the L1 
subgroup of cell adhesion molecules (Grumet  1997 ; Lemmon et al.  1989 ; Pruss 
et al.  2004 ). Likewise, heterophilic interactions have been shown between neurofas-
cin and NrCAM, contactin-1 or contactin-2 (Volkmer et al.  1996 ,  1998 ; Pruss et al. 
 2006 ). Further interactions were documented with components of the extracellular 
matrix including tenascin-R and brevican (Hedstrom et al.  2007 ).

   Neurofascin also links extracellular interactions to intracellular mechanisms. 
One type of interaction is represented by binding to cytoskeletal components anky-
rin G  and doublecortin (Davis and Bennett  1994 ; Kizhatil et al.  2002 ). On the other 

   Table 10.1    Summary of neurofascin interaction partners   

 Interaction partner  Function  References 

 Extracellular 
interactions 

 Tenascin-R  Cell adhesion  Volkmer et al. ( 1998 ) 
 Brevican  Link to perineural net  Hedstrom et al. ( 2007 ) 
 NrCAM  Neurite outgrowth  Volkmer et al. ( 1996 ) 
 Contactin-1  Stabilisation of septate-like 

junctions at paranodes 
 Volkmer et al. ( 1998 ), 

Gollan et al. ( 2003 ) 
 Contactin-2  Neurite outgrowth  Pruss et al. ( 2006 ) 

 Signal 
transduction 

 FGFR1  Neurite outgrowth 
 Gephyrin clustering 

 Kirschbaum et al. ( 2009 ), 
Kriebel et al. ( 2011 ) 

 Intracellular 
interactions 

 AnkyrinG  Assembly and stabilisation 
of nodal and AIS protein 
complexes 

 Davis et al. ( 1993 ) 

 Doublecortin  Endocytosis  Kizhatil et al. ( 2002 ), 
Yap et al. ( 2012 ) 

 Syntenin-1  Unknown  Koroll et al. ( 2001 ) 
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hand, neurofascin interacts with the submembrane scaffold protein syntenin-1 
which recognise a PDZ motif at the COOH-terminus of neurofascin (Koroll et al. 
 2001 ). Neurofascin is also linked to signal transduction via interaction with FGFR1 
(Kirschbaum et al.  2009 ). Interestingly, neurofascin binds FGFR1 with both the 
extra- and the intracellular domain independently of each other. 

 In summary, the four neurofascin isoforms NF155, NF166, NF180 and NF186 
are expressed in selected brain areas. The neuronal isoforms are dynamically regu-
lated from NF166 to NF180 to NF186 while so far only one glial isoform, NF155, 
has been characterised.  

10.3     NF166 and NF180 Promote Neurite Outgrowth 
and Postsynaptic Differentiation 

 For neurodevelopmental as well as neurodegenerative diseases, axon guidance mol-
ecules and synaptic adhesion molecules appeared as candidate disease genes in gen-
eral (Mitchell  2011 ; Stoeckli  2012 ). NF166 and NF180 are implicated in neurite 
outgrowth and the formation as well as stabilisation of synaptic structures. 
Neurofascin may therefore represent an interesting candidate gene due to its pivotal 
role in nervous system development and plasticity. Here, we discuss the function of 
both NF166 and NF180 which are functionally equivalent (Trinks et al., unpub-
lished results). 

 In the course of neuronal development, specifi c circuits are generated by neurite 
outgrowth and subsequent interaction of pre- and postsynaptic membranes. Neurite 
outgrowth is controlled by repulsive and attractive guidance cues which direct extend-
ing neurites towards appropriate target regions. Neurofascin NF166 is expressed on 
extending neurites and was shown to be required for axonal fasciculation (Rathjen 
et al.  1987 ). Neurite outgrowth is induced by both homophilic and heterophilic inter-
actions (Volkmer et al.  1996 ; Pruss et al.  2004 ). However, interactions were found to 
be specifi c for different neurons of the developing nervous  system. Neurite outgrowth 
of central tectal neurons is regulated via interaction with NrCAM, while peripheral 
dorsal root ganglion neurons make use of contactin-2 (Pruss et al.  2006 ). A further 
aspect of neurofascin-dependent neurite outgrowth is the temporal regulation of such 
interactions. NF166 expressed in dorsal root ganglion neurons becomes replaced 
by NF186 later in development. While NF166 is permissive for neurite outgrowth, 
NF186 is not permissive or even inhibitory (Pruss et al.  2006 ; Koticha et al.  2005 ). 
NF186 differs from NF166 and NF180 by the additional expression of the FNIII-like 
repeat 5. Inclusion of this motif shifts the FNIII- like repeats off the membrane plane 
which may result in a perpendicular dislocation of domains required for the interac-
tion with other receptors  in cis . One crucial interaction partner is FGFR1. FGFR1 is 
a receptor tyrosine kinase which interacts with a variety of IgCAMs including neuro-
fascin, NCAM or L1 (Saffell et al.  1997 ; Kirschbaum et al.  2009 ). FGFRs are impor-
tant for many different cellular processes including migration, proliferation and 
differentiation (Ornitz and Itoh  2001 ). In addition to canonical FGF stimulation, cell 
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adhesion molecules activate FGFRs by non-canonical interactions (Murakami et al. 
 2008 ). Accordingly, FGFR1 activity is required for neurofascin-dependent neurite 
outgrowth. Unlike NF186, NF166 was shown to interact with FGFR1. Hence, a pos-
sible explanation for the functional difference between NF166 and NF186 relies on 
selective interaction with FGFR1 (Kirschbaum et al.  2009 ). Neurite outgrowth via 
neurofascin–FGFR1 interactions involves activation of protein kinase C (PKC) and 
phosphatidylinositol 3-kinase (PI3K). Protein kinase signalling is therefore a hall-
mark of neurofascin-dependent signal transduction. In this line, a further requirement 
for neurofascin-dependent neurite outgrowth is phosphorylation of serine residues 56 
and 100 within the cytosolic domain. 

 In addition to neurite outgrowth, neurofascin is also implicated in the formation 
and clustering of the postsynaptic scaffold protein gephyrin. Gephyrin is a scaffold 
protein, located on the postsynaptic site of inhibitory synapses which is involved in 
the clustering of glycine receptors and GABA A  receptors (Fritschy et al.  2008 ; 
Kneussel et al.  1999 ; Jacob et al.  2005 ; Yu et al.  2007 ). The transport of gephyrin to 
the submembrane compartment depends on its association with collybistin II, a 
GTP exchange factor (GEF) specifi c for cdc42 (Kins et al.  2000 ; Harvey et al. 
 2004 ). Gephyrin is a phosphoprotein and phosphorylation of Ser270 by GSK3β has 
been shown to regulate gephyrin functions (Tyagarajan et al.  2011 ). Therefore, pro-
tein kinase signalling is an important mechanism to control gephyrin clustering. 

 In immature neurons, NF180 induces the formation of gephyrin clusters which 
initially become localised to the axon hillock (Burkarth et al.  2007 ). Transfection of 
different mutants of neurofascin revealed that neurofascin is required both for the 
formation of the gephyrin clusters and that it is necessary for the translocation to the 
axon hillock of hippocampal neurons in vitro. Heterochronic expression of NF186 
which is specifi c for later stages of development interferes with gephyrin clustering, 
indicating that the switch from neurofascin isoforms expressed early in develop-
ment to NF186 is accompanied by a shift in functionality. 

 Later on in development, NF180 redistributes to the axon initial segment (Kriebel 
et al.  2011 ). The AIS is a special subcellular compartment with dense clusters of 
voltage-gated sodium channels required for the initiation of axon potentials 
(Hedstrom and Rasband  2006 ). GABAergic innervation of the axon initial segment 
is conferred by axonal terminals of axo-axonic chandelier cells which represent a 
subclass of parvalbumin-positive interneurons (Somogyi et al.  1983 ). At the AIS, 
NF180 regulates the size of gephyrin clusters opposed to axo-axonic terminals. As 
for neurite outgrowth, this process relies on activation of the receptor tyrosine kinase 
function of FGFR1 (Kriebel et al.  2011 ). Since gephyrin in turn is linked to the 
assembly of GABA A  receptors, neurofascin may be implicated in the control of 
GABAergic innervation at the axon initial segment of hippocampal neurons. 
Accordingly, neurofascin increases gephyrin and GABA A  receptor clustering in vitro. 

 So far, these fi ndings show a contribution of neurofascin to the organisation of axo-
axonic synapses at the axon initial segment. Axo-axonic synapses seem to be involved 
in schizophrenia which is grouped to the neurodevelopmental disorders (Lewis  2011 ). 
In the dorsolateral prefrontal cortex (DLPFC) of patients suffering from schizophre-
nia, the number of GAT-1-positive terminals at the axon initial segment is reduced 

J. Ebel et al.



237

while GABA A  receptors are up-regulated. Altered synaptic connectivity in the DLPFC 
may be related to working memory defi cits found in schizophrenia. Interestingly, 
expression of the neurofascin interaction partner ankyrin G  is also altered in human 
patients suffering from schizophrenia (Cruz et al.  2009 ). It is therefore conceivable 
that neurofascin may also be implicated in schizophrenia although demonstration of a 
direct contribution of neurofascin still remains elusive. 

 In conclusion, NF166 and NF180 are involved in neurite outgrowth and the for-
mation of GABAergic differentiation. Therefore, it is conceivable that they might 
play a role in neurodevelopmental disorders.  

10.4     Glial NF155 Stabilises Paranodal Segments 

 Rapid conduction of axon potentials relies on the process of myelination (Hartline 
and Colman  2007 ). Myelin of oligodendrocytes and Schwann cells ensheathes the 
axons in central nervous system (CNS) and peripheral nervous system (PNS) of 
vertebrates, thereby establishing nodes of Ranvier as subcellular compartments as 
defi ned by distinct molecular markers. Rapid propagation of action potentials relies 
on the expression and clustering of voltage-gated sodium channels (Na v ) at the 
nodes of Ranvier (Fig.  10.2 ). At the fl anking paranodal segments, the myelin sheath 
closely attaches to the axons at both sides of the nodes of Ranvier, thereby restrict-
ing the ion channels from diffusion and creating an adhesion zone called paranodal 
septate-like junction. The juxtaparanodal region is a further important axonal sub-
compartment which is characterised by shaker-type voltage-gated potassium 
(K v  1.1/1.2) (Salzer  2003 ).

   NF155 becomes up-regulated in Schwann cells and in oligodendrocytes at the 
onset of myelination suggesting neurofascin as a candidate molecule mediating the 
axoglial interaction (Collinson et al.  1998 ; Tait et al.  2000 ; Basak et al.  2007 ). 
NF155 on myelinating glia thereby interacts with axonal membrane proteins in 
order to form axoglial septate-like junctions (Tait et al.  2000 ). The axonal mem-
brane at the paranodal septate-like junction contains two different cell recognition 
molecules forming a complex  in cis : contactin-1, a GPI-anchored protein of the 
immunoglobulin superfamily and the neurexin-like molecule contactin-associated 
protein (Caspr), also known as paranodin (Rios et al.  2000 ). Glial NF155 recruits 
axonal contactin-1 to the paranodal segment (Gollan et al.  2003 ; Sherman et al. 
 2005 ). The contactin-1–Caspr interaction is required for the transport and intracel-
lular processing of contactin-1 (Gollan et al.  2003 ). Blocking the interaction 
between NF155 and the Caspr/contactin-1 complex inhibits myelination (Charles 
et al.  2002 ) and genetic ablation of genes encoding Caspr, contactin-1 or NF155 
results both in the disruption of the paranodal septate-like junctions and in loss of 
ion channel segregation and impaired nerve conduction (Boyle et al.  2001 ; Bhat 
et al.  2001 ; Thaxton et al.  2010 ). In conclusion, interaction of glial NF155 with the 
axonal Caspr/contactin-1 complex is required for both nodal and paranodal 
stability. 
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 The paranodal complex has an important role not only in the stabilisation of the 
paranodal region, but also in nodal development. Paranodal septate-like junctions 
restrict the diffusion of nodal complexes. In the CNS, but not in the PNS, reconstitu-
tion of the paranodal septate-like junction in neurofascin null mice by glial expres-
sion of NF155 is suffi cient to rescue the clustering of Nav channels at the nodes of 
Ranvier in the CNS (Zonta et al.  2008 ), further supporting a role for the paranodal 
septate-like junction in node formation (Feinberg et al.  2010 ).  

10.5     Neurofascin NF186 as an Organiser 
of Axonal Protein Complexes 

 While glial NF155 mainly accounts for the stabilisation of paranodal septate-like 
junctions, axonal NF186 is implicated in the assembly and stabilisation of protein 
complexes at the AIS and the nodal segments. 

  Fig. 10.2    Molecular composition of the node of Ranvier. NF155, NF186, neurofascin isoforms as 
described; Cont-1, contactin-1; Na v  voltage-gated sodium channels; Kv voltage-gated potassium 
channels; Caspr, contactin-associated protein       
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 Neurofascin has been originally identifi ed as an ankyrin-binding glycoprotein in 
adult brain (Davis et al.  1993 ). Immunohistological analysis indicated that NF186 
colocalises with ankyrin G  on the AIS of Purkinje neurons and in the nodes of Ranvier 
of peripheral axons (Davis et al.  1996 ). Ankyrin G  is a component of the cortical cyto-
skeleton which links membrane molecules to the actin-based cytoskeleton via spec-
trins (Bennett and Healy  2009 ). Ankyrin G  binds to an ankyrin G - binding motif in the 
cytosolic domain of neurofascin (Davis and Bennett  1994 ). This motif is shared with 
other members of the L1 subgroup of neuronal cell adhesion molecules including L1, 
CHL1 and NrCAM. However, only neurofascin and NrCAM have so far been shown 
to interact with ankyrin G . NrCAM also colocalises with neurofascin and ankyrin G  at 
axon initial segments and axonal membranes of the nodes of Ranvier (Davis et al. 
 1996 ). In addition to spectrin βIV, ankyrin G  was shown to interact with voltage-gated 
sodium channels (Na v ) and voltage-gated potassium channels (K v  7.2, KCNQ2) 
which form a functional protein complex for the organisation of the AIS and nodal 
regions together with neurofascin (Hedstrom and Rasband  2006 ). Therefore, the 
molecular composition of the AIS and of nodal segments is quite similar. 

 Neuronal voltage-gated sodium channels are composed of a large pore-forming 
α subunit and auxiliary β subunits (β1–β4) (Catterall et al.  2005 ). While Na v  are 
targeted to the AIS and to nodal segments by ankyrin G  (Lemaillet et al.  2003 ; 
Garrido et al.  2003 ; Gasser et al.  2012 ), a further interaction has also been reported 
between Na v  and neurofascin. In particular, the β1 subunit was shown to interact 
with neurofascin NF186 in nodal segments within the same membrane plane 
(Ratcliffe et al.  2001 ). Interestingly, the fi rst Ig-like and second FNIII-like repeat of 
NF186 may interact with the β1 subunit independently of each other suggesting 
some kind of a hairpin structure to enable the neurofascin–β1 subunit interaction. 

 Taken together, neurofascin is part of large protein complex specifi cally located 
at the AIS and nodal segments. This complex may link the ankyrin-based cytoskel-
eton to extracellular interactions. Accordingly, neurofascin was shown to interact 
with components of the extracellular matrix including brevican and tenascin-R 
(Volkmer et al.  1998 ; Hedstrom et al.  2007 ). 

 In the PNS, nodal assembly relies on Schwann cells which extend microvilli to 
the nodal segment (Hedstrom and Rasband  2006 ). Schwann cells express gliomedin 
which assemble nodal complexes through interaction with axonal neurofascin 
(Eshed et al.  2005 ). Neurofascin becomes fi rst localised to the presumptive nodal 
region while ankyrin G  becomes clustered only later in development (Lambert et al. 
 1997 ). Interference with neurofascin leads to impaired nodal assembly of Na v , spec-
trin βIV and ankyrin G , suggesting that neurofascin is downstream of gliomedin clus-
tering and upstream of ankyrin G  clustering (Koticha et al.  2006 ). Neurofascin 
isoforms NF186, NF180 and NF166 are expressed in commonly used cultured neu-
rons in vitro and in immature neurons in vivo (Kriebel et al.  2011 ). It remains there-
fore elusive which of these axonal isoforms account for nodal assembly. At least 
NF186 has been shown to rescue the nodal phenotype of a neurofascin knockout 
mouse (Zonta et al.  2008 ). 

 While initial assembly of peripheral nodes of Ranvier relies on neurofascin, this 
is not the case for the AIS. AIS protein complex assembly is mainly triggered by 
ankyrin G . Deletion of ankyrin G  leads to dispersal of neurofascin and Na v  (Zhou et al.  1998 ) 
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while interference with neurofascin expression did not impair the assembly of Na v , 
ankyrin G  and spectrin βIV (Hedstrom et al.  2007 ). 

 Tyrosine kinase signalling is associated with many mechanisms of development 
and plasticity. Activation of tyrosine kinase signalling induces the phosphorylation of 
the ankyrin G -binding motif of neurofascin (Garver et al.  1997 ). The phosphorylation 
state of neurofascin selectively regulates the interaction with intracellular compo-
nents. Phosphorylation abrogates neurofascin–ankyrin G  binding and thereby releases 
neurofascin from the cytoskeletal tether as implied by enhanced lateral mobility. 
Phosphorylated neurofascin interacts with doublecortin (Kizhatil et al.  2002 ) which is 
a tubulin-binding protein involved in the early organisation of the nervous system. 
The doublecortin–neurofascin interaction was shown to contribute to the internalisa-
tion of neurofascin at somatic and dendritic sites (Yap et al.  2012 ). While nodal 
NF186 remains unphosphorylated at the nodal segment as required for ankyrin G  inter-
actions, glial NF155 is phosphorylated suggesting an ankyrin G - independent mecha-
nism of localisation (Jenkins et al.  2001 ). In addition to alternative splicing, a further 
degree of complexity is thereby added to neurofascin species by phosphorylation. 

 It is important to distinguish initial developmental assembly of nodal or AIS 
protein complexes which may be controlled by NF166, NF180 or NF186, from the 
maintenance in adult animals which almost exclusively express NF186. Recent 
experiments using shRNA knockdown technologies in adult rats or inducible condi-
tional knockout mice have greatly expanded our insight into NF186 functions in 
adult animals (Zonta et al.  2011 ; Kriebel et al.  2011 ). At the AIS of cerebellar 
Purkinje cells, interference with neurofascin expression disintegrates Na v , ankyrin G  
and spectrin βIV (Zonta et al.  2011 ). As a consequence, spontaneous tonic dis-
charge of axon potentials becomes impaired. Apparently, NF186 is required for 
long-term stabilisation of the Purkinje cell AIS. By contrast, no impact on the local-
isation of Na v  has been observed after reduced expression of NF186 at the AIS of 
dentate gyrus granule cells. Instead, loss of NF186 results in reduced synaptic mark-
ers and therefore decreased axo-axonic input (Kriebel et al.  2011 ). The function of 
NF186 therefore seems to differ in these two systems. Accordingly, differences in 
the local organisation of these AIS have been reported. While granule cell AIS are 
contacted by multiple chandelier cell terminals, the AIS of Purkinje cells is only 
sparsely innervated. Here, the AIS is mainly contacted by astrocytes (Iwakura et al. 
 2012 ). Extracellular adhesion via interaction of neurofascin with extracellular com-
ponents may be considered as possible mechanisms of how protein complexes at the 
AIS may trigger stabilisation of presynaptic input. Interaction partners of neurofas-
cin at the AIS are represented by components of the extracellular matrix including 
tenascin-R and brevican (Hedstrom et al.  2007 ; Bruckner et al.  2006 ; Volkmer et al. 
 1998 ). Alternatively, neurofascin may homophilically interact with neurofascin as 
suggested for basket cell terminals (Buttermore et al.  2012 ; Pruss et al.  2004 ). 

 NF186 was also discussed to contribute to the stabilisation of nodal complexes. 
However, reduction of neurofascin expression in adult animals does not impair 
long-term nodal clustering of Na v , spectrin βIV and ankyrin G  which is in contrast to 
the situation at the AIS (Zonta et al.  2011 ). Therefore, NF186 appears not to be 
important for the long-term stabilisation of nodal complexes while it is more impli-
cated in their initial assembly.  
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10.6     Impaired Neurofascin Functions 
in Demyelinating Disorders 

 The localisation of distinct neurofascin isoforms at the nodes of Ranvier as entities 
of fast saltatory conduction (Davis et al.  1996 ; Tait et al.  2000 ) and their corre-
sponding functions in assembling and maintaining this multicellular functional 
complex (Poliak and Peles  2003 ) have raised questions about a potential involve-
ment or impairment of neurofascin in the development of associated neurological 
diseases like multiple sclerosis (MS). 

 A correlative study in spinal cords of myelin-defi cient (md) rats, characterised by 
severe demyelination of axonal tracts, postnatal death of oligodendrocytes, absence 
of paranodes and obvious tremor and gait diffi culties at postnatal stages, revealed 
mislocalisation of NF155, normally clustered at septate-like junctions at the 
paranode. This observation also applied for NF155 interaction partners like Caspr. 
Moreover juxtaparanodal K v  were not spatially segregated from nodal Na v  underlin-
ing the importance of the NF155-containing paranodal protein complex in nodal 
organisation (Arroyo et al.  2002 ). 

 Based on NF155’s well-described functions in establishing and maintaining 
paranodal regions, differences in submembranous localisation of NF155 in 
chronic relapsing experimental allergic encephalomyelitis (EAE), an animal 
model displaying characteristics of human MS, pointed towards a need for NF155 
in remyelination. Here, lipid raft association of NF155, positively correlating with 
the differentiation of oligodendrocytes, was found to be perturbed by factors of 
the extracellular matrix, i.e. fi bronectin, infi ltrating lesion sites in EAE (Maier 
et al.  2005 ). 

 The importance of NF155 not only for the set-up and maintenance of paranodal 
subdomains but also for remyelination in the context of demyelinating diseases was 
further exemplifi ed in a study of post-mortem tissue from MS patients (Howell et al. 
 2006 ). Besides loss and alterations of NF155 in actively demyelinating areas of 
white matter, ectopic expression of NF155 was observed at locations morphologi-
cally judged as sites of remyelination, i.e. at contact sites between oligodendrocytes 
and axons. 

 First hints towards neurofascin as a target in autoimmune diseases leading to 
increased infl ammation and impairment of saltatory conduction during MS came 
through the identifi cation of autoantibodies specifi c for the extracellular domains of 
both NF155 and NF186 in the plasma of MS patients (Mathey et al.  2007 ; Hohlfeld 
et al.  2008 ). These antibodies when applied to hippocampal tissue slices impaired 
saltatory conduction, an effect dependent on the complement system as effects only 
occurred in the presence of fresh sera and could be abolished by heat inactivation of 
serum components. Testing of corresponding immunglobulins in an EAE mouse 
model revealed specifi c detection of the neuronal and nodal isoform NF186 and 
caused exacerbation of associated clinical symptoms. Pathological signs were 
accompanied by an increase in ß-amyloid precursor protein, a marker of acute 
 axonal injury, underlining the neuronal character of deterioration. 
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 In this context, the Guillain Barré syndrome, summarising a group of 
infl ammatory neuropathies including acute infl ammatory demyelinating poly-
neuropathy (AIDP), represents another indication characterised by the occur-
rence of autoantibodies against neurofascin in sera from affected patients (Pruss 
et al.  2011 ). By analysing the temporal sequence of nodal and paranodal disor-
ganisation in animal models of AIDP, disorganisation of the nodal factors neuro-
fascin and gliomedin targeted by immunoglobulins and concomitant disruption 
of sodium channels were identifi ed as an early step in disease progression, pre-
ceding obvious morphological alterations of the nodal compartment (Lonigro 
and Devaux  2009 ). 

 The described clinical observations in combination with data derived from ani-
mal models for demyelinating diseases further strengthen the notion that an auto-
immune response targeting neurofascin as a key player in nodal/paranodal 
organisation causes initiation of a cascade of pathological alterations ultimately 
resulting in a failure of fast saltatory conduction and manifestation of clinical 
symptoms.  

10.7     Conclusion 

 We are at the beginning of an understanding of neurofascin functions for nervous 
system disorders. While the impact of neurofascin in demyelinating disorders is 
evident, further studies are required to pinpoint neurofascin functions for neurode-
velopmental diseases. Meanwhile it is accepted that a variety of psychiatric disor-
ders like autism spectrum disorders and schizophrenia correlate with altered 
neuronal circuitry and synaptic connectivity. As a consequence such disorders may 
be classifi ed as synaptopathies (Brose et al.  2010 ). This concept may provide a new 
framework for the understanding of nervous system diseases that is distinct from 
common theories of chemical imbalance in terms of disturbed neurotransmitter 
release as a possible cause (Insel  2009 ). In this line, neurofascin serves as major 
regulator of neuronal circuitry for both the development of fi bre tracts and the 
 stabilisation of synapses. It can therefore be expected that further insight into neu-
rofascin-related functions and signal transduction will increase the understanding of 
CNS diseases opening new alleys for therapeutical approaches.     
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    Abstract     DSCAMs (Down syndrome cell adhesion molecules) are a group of 
immunoglobulin-like transmembrane proteins that contain fi bronectin III domains. 
The founding member of the family was isolated in a positional cloning study that 
sought to identify genes located on chromosome 21 at the locus 21q22.2–q22.3 that 
is implicated in the neurological and cardiac phenotypes associated with Down’s 
syndrome. In  Drosophila , Dscam proteins are involved in neuronal wiring, while in 
vertebrates, the role of these cell adhesion molecules in neurogenesis, dendritogen-
esis, axonal outgrowth, synaptogenesis, and synaptic plasticity is only just  beginning 
to be understood. In this chapter, we will review the functions ascribed to the two 
paralogous proteins found in humans, DSCAM and DSCAML1 (DSCAM-like 1), 
based on fi ndings in knockout mice. The signaling pathways downstream of 
DSCAM activation and the role of  DSCAM  miss-expression in disease will be also 
discussed, particularly with regard to the intellectual disability in Down’s 
syndrome.  

11.1         Introduction 

 DSCAM (Down syndrome cell adhesion molecule) is a neural cell adhesion mole-
cule belonging to the immunoglobulin superfamily (Yamakawa et al.  1998 ). It is 
strongly expressed in the central nervous system (CNS), especially during develop-
ment (Agarwala et al.  2001a ; Barlow et al.  2001a ), and it mediates neuron-to- neuron 
recognition events that are important for neural circuit formation. This molecule has 
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attracted considerable attention for two main reasons. First, the  DSCAM  gene is 
located on the human chromosome 21, specifi cally in the so-called Down syndrome 
critical region (DSCR), trisomy of which is considered a determinant for the intel-
lectual disability associated with Down’s syndrome (Delabar et al.  1993 ; Korenberg 
et al.  1994 ; Olson et al.  2007 ; Belichenko et al.  2009 ). Second, in  Drosophila , 
 Dscam  is alternatively spliced to generate up to 38,016 different isoforms 
(Schmucker et al.  2000 ). This impressive molecular variability regulates neuronal 
connectivity, as Dscam isoforms have isoform-specifi c homophilic binding 
 properties (Wojtowicz et al.  2004 ) that are responsible for neurite self-avoidance. 
Intriguingly, although vertebrate  DSCAM  genes are not subjected to extensive splic-
ing, they also participate in neuronal wiring. A  DSCAM  paralogue has been 
 identifi ed in vertebrates,  DSCAML1  ( Down Syndrome Cell Adhesion Molecule-Like 
1 ), which is also expressed in the CNS, although its function remains poorly 
characterized. 

 Many excellent reviews have been published on  Drosophila  Dscams (Schmucker 
 2007 ; Hattori et al.  2008 ; Millard and Zipursky  2008 ;    Schmucker and Chen  2009 ), 
and therefore, in this chapter we will only briefl y refer to the key aspects of 
 Drosophila  Dscams that are important to analyze the functions and molecular 
mechanisms underlying the activity of vertebrate DSCAMs. The potential role of 
 DSCAM  miss-expression in several human diseases will also be discussed.  

11.2     Molecular Features of DSCAMs 

 As mentioned, two  DSCAM  genes exist in humans that both encode transmem-
brane proteins of about 200 kDa: the founding member of the family,  DSCAM , 
located on chromosome 21, and  DSCAML1 , on chromosome 11. As deduced from 
the cDNA sequence (Yamakawa et al.  1998 ; Agarwala et al.  2001a ), the N-terminal 
extracellular region of the human DSCAM protein contains ten immunoglobulin-
like C2-type (Ig-C2) domains and six fi bronectin type III domains, arranged as 
shown in Fig.  11.1 . The Ig-C2 domains each contain about 100 amino acids and 
they include a pair of conserved cysteines 49–56 amino acids apart that are pre-
dicted to form intrachain disulfi de bonds. A single transmembrane domain, fol-
lowed by the intracellular portion of the protein, is also present. Although the 
cytoplasmic domain lacks known motifs, homology with the Epsin and Shank pro-
teins is observed in two specifi c regions, suggesting functional links with clathrin-
mediated endocytosis and interactions with postsynaptic density proteins (Barlow 
et al.  2001a ). Interestingly, alternative splicing of the transmembrane domain 
appears to occur, producing an isoform lacking the transmembrane and cytoplas-
mic domains that may be targeted to the extracellular matrix (Yamakawa et al. 
 1998 ). DSCAML1 has a similar domain organization: the extracellular portion of 
the protein contains nine tandem repeat Ig-C2 domains, and the tenth Ig-C2 domain 
is located between domains 4 and 5 of the following set of 6 repeated fi bronectin 
type III domains (Agarwala et al.  2001b ). However, the transmembrane region of 
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  Fig. 11.1    Structure of vertebrate DSCAM protein. Positioned after a signal peptide (SP), the 
extracellular portion of the protein is formed by several immunoglobulin-like (Ig) and fi bronectin 
type III (FN) domains. The position of the Ig-10 domain between FN domains 4 and 5 is charac-
teristic of DSCAM proteins. The protein also contains a transmembrane (TM) and cytoplasmic 
(CP) domain. Each Ig domain contains two cysteines (S) that form an intrachain disulfi de bond. 
Kinases known to interact with the cytoplasmic domain are indicated       

DSCAML1 is not subjected to alternative splicing, but rather two splice variants 
are generated involving the region encoding the second Ig-C2 domain (Barlow 
et al.  2002 ). In both variants an in-frame deletion of 49 amino acids occurs, affect-
ing either the N-terminal or the C-terminal half of the second Ig-C2 domain. 
Consequently, the resulting protein lacks this Ig-C2 domain as the appropriate 
disulfi de bond does not form (Barlow et al.  2002 ).

   DSCAMs are highly homologous proteins, with 64 % sequence identity in the 
extracellular domains and 45 % in the cytoplasmic domains (Agarwala et al.  2001b ). 
Moreover, human and mouse DSCAM proteins share 98 % amino acid identity 
(Agarwala et al.  2001a ; Barlow et al.  2001a ) and the domain organization of 
 Drosophila  Dscam is identical to that of mice and humans (Schmucker et al.  2000 ). 
Indeed, the extracellular domain of  Drosophila  Dscam shares 33 % amino acid 
identity with that of human DSCAM and DSCAML1, although no signifi cant 
homology has been described for the cytoplasmic domain (Agarwala et al.  2001b ; 
Barlow et al.  2001a ). 

 An important difference between  Drosophila  and vertebrate  DSCAM  genes is the 
startling number of isoforms produced by alternative splicing in  Drosophila , as well 
as in other arthropods. As many as 12, 48, and 33 alternative isoforms can be gener-
ated for the second, third, and seventh Ig-C2 domains of  Drosophila  Dscam1 pro-
tein, giving rise to 19,008 different ectodomains. Moreover, two transmembrane 
domains can be produced, resulting in a total of 38,016 potential isoforms 
(Schmucker et al.  2000 ). These isoforms bind homophilically via their ectodomains, 
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with little or no heterophilic binding (Wojtowicz et al.  2004 ,  2007 ). Interestingly, 
each neuron expresses a unique set of about 14–50  Dscam  isoforms (Neves et al. 
 2004 ), resulting in a cell surface signature that forms the molecular basis of self- 
avoidance, the tendency of neurites from the same cell to repel one another in order 
to ensure correct arborization (Wang et al.  2002 ; Zhu et al.  2006 ; Hattori et al.  2007 ; 
Hughes et al.  2007 ; Matthews et al.  2007 ; Soba et al.  2007 . See Fig.  11.2 ).

   Despite exhibiting little (DSCAML1) or no (DSCAM) ectodomain variability, 
some functionally conservation appears to exist between vertebrate DSCAMs and 
 Drosophila  Dscam. Using transfected cells in a cell aggregation assay, it was dem-
onstrated that both vertebrate DSCAM (Agarwala et al.  2000 ) and DSCAML1 
(Agarwala et al.  2001b ) mediate cell adhesion via homophilic interactions. 
Importantly, no cell adhesion occurs between cells transfected with  DSCAM  and 
those expressing  DSCAML , indicating that heterophilic interactions between these 
cell types do not occur (Yamagata and Sanes  2008 ). 

 High levels of  DSCAM  mRNA expression have been observed in fetal and adult 
brain, in which at least three transcripts (9.7, 8.5, and 7.6 kb) can be detected 
(Yamakawa et al.  1998 ). Pioneering mouse in situ hybridization studies pointed to a 
role for DSCAM in early development and differentiation, as suggested by the 

  Fig. 11.2    Dendritic self-avoidance and tiling. ( a ) Sister dendrites of a given neuron repel one 
another (self-avoidance), as do dendrites of neighboring neurons (tiling). ( b ) Impaired self- 
avoidance causes dendrites to fasciculate and crossover. ( c ) Impaired tiling mechanisms result in 
the overlapping of the dendritic arbors of neighboring neurons       
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coincidence of  DSCAM  expression with the period of neurite outgrowth (Yamakawa 
et al.  1998 ). Although  DSCAM  levels in the brain decrease in adulthood (Agarwala 
et al.  2001a ), relatively high expression is observed in the cortex, the granule cells 
of the  dentate gyrus , and the pyramidal cells of CA1, CA2, and CA3, and in cerebel-
lar Purkinje cells, suggesting roles for DSCAM in learning and memory in adult-
hood (Barlow et al.  2001a ). A single 7.6 kb  DSCAML1  transcript is detected in both 
fetal and adult brain, with expression peaking in adulthood, suggesting distinct 
developmental roles for DSCAML1 and DSCAM proteins (Agarwala et al.  2001b ). 
In addition,  DSCAM  and  DSCAML1  exhibit complementary expression patterns in 
some developing CNS regions, including the spinal cord and cortex. For example, 
 DSCAM  is expressed ventrally in spinal cord, mostly in developing motor neurons, 
while  DSCAML1  is expressed dorsally in sensory cells (Barlow et al.  2002 ). 
Similarly, in the adult cortex and cerebellum,  DSCAM  transcripts predominate in 
pyramidal cells of cortical layers 3/5 and in cerebellar Purkinje cells, whereas 
 DSCAML1  expression is stronger in granule cells of cortical layer 2 and in cerebel-
lar granule cells (Barlow et al.  2002 ).  

11.3     Roles of DSCAMs in the Vertebrate Nervous System 

11.3.1     Lessons from  Drosophila  

 Four  Drosophila Dscam  genes exist ( Dscam 1–4). Only  Dscam1  is subjected to 
extensive alternative splicing, while  Dscam2  encodes two splice variants in the sev-
enth Ig-C2 domain, and  Dscam3  and  Dscam4  encode single ectodomains (Millard 
et al.  2007 ). Dscam1 participates in axon guidance (Schmucker et al.  2000 ; Hummel 
et al.  2003 ; Zhan et al.  2004 ) and dendritic self-avoidance (Hughes et al.  2007 ; 
Matthews et al.  2007 ; Soba et al.  2007 ), thereby fulfi lling both axonal and dendritic 
functions. Interestingly, the subcellular localization of Dscam1 is dependent on its 
transmembrane domain and the two potential splice variants that can be generated, 
TM1 and TM2, are targeted to dendrites and axons, respectively (Wang et al.  2004 ; 
Shi et al.  2007 ). Furthermore, Dscam2 controls neuronal tiling (Millard et al.  2007 ), 
the tendency of neurites from neighboring neurons not to overlap (Fig.  11.2 ). 

 Self-avoidance and tiling are mediated by repulsive forces between neurites from 
the same or different neurons, respectively. To explain how these processes may be 
mediated by molecules that bind homophilically, a model has been proposed based 
on the following observations. Binding is possible only between identical Dscam1 
ectodomains (Wojtowicz et al.  2004 ,  2007 ), and since sister neurites from a given 
cell may express the same combination of Dscam1 isoforms, they can interact and 
bind to one other, activating the corresponding cytoplasmic domains. This initiates 
a signaling cascade that promotes repulsion by modifying cytoskeletal proteins 
(Hughes et al.  2007 ; Matthews et al.  2007 ). Tiling may be mediated by a similar 
stepwise process, although in this case neurites of neighboring cells would express 
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the same Dscam isoform. Since Dscam2, 3, and 4 do not suffer extensive molecular 
diversifi cation, they could fulfi ll this requirement, and in fact, Dscam2 can regulate 
axonal tiling of a specifi c neuronal class (Millard et al.  2007 ). 

 Despite the molecular differences discussed, some functional conservation 
between  Drosophila  and vertebrate DSCAMs appears to exist. This will become 
more evident as the known functions of vertebrate DSCAMs are discussed in the 
following sections.  

11.3.2     The Role of DSCAMs in Self-Avoidance, Tiling, 
and Synaptic Connectivity in the Vertebrate Retina 

 Four different  DSCAM  mutant mice have been characterized in recent years: 
 Dscam  del17 ,  Dscam  tm1.1Kzy ,  Dscam  2J , and the conditional mutant  Dscam  F  (Table  11.1 ). 
Despite exhibiting neurological phenotypes, no gross histological defects were 
detected in most cases, although retinal disorganization was evident (Fuerst et al. 
 2008 ,  2010 ,  2012 ). DSCAM is normally expressed in some subtypes of retinal ama-
crine cells, which exhibit arborization defects in mutant mice. Although the total 
length of the neurites and the number of branches per unit length are unaffected, the 
number of self-crossing neurites increases, indicating impaired self-avoidance. The 
cell bodies that normally form regularly spaced mosaics become randomly distrib-
uted or clumped, suggesting a role for DSCAM in tiling (Fuerst et al.  2008 ). A simi-
lar phenotype was also described in other DSCAM-expressing retinal neurons, such 
as ganglion cells (RGCs; Fuerst et al.  2009 ; see below).

   DSCAM and DSCAML1 exhibit non-overlapping expression patterns in the 
mouse retina. Retinal rod bipolar cells normally express DSCAML1, and interest-
ingly, these cells exhibit fasciculated dendrites in  DSCAML1  knockout mice. Mosaic 
spacing of a subset of DSCAML1-expressing amacrine cells is also disrupted in 
these mice (Fuerst et al.  2009 ). Together, these observations suggest a role for 
DSCAML1 in self-avoidance and tiling in specifi c retinal cell types. 

 Some light was shed on how DSCAMs might mediate self-avoidance without 
ectodomain variability by analyzing three types of RGCs in the  DSCAM  mutant 
retina (Fuerst et al.  2009 ). Using specifi c markers to label each RGC type, dendritic 
fasciculation and cell aggregation were detected in all three subpopulations, 
although no combination of the different RGC types was observed in these aggre-
gates and fascicles. Based on these fi ndings, the authors proposed that DSCAMs 
may act as “nonstick coatings,” masking other cell-type adhesive tags and passively 
preventing adhesion between neurons of the same class. In the mutant, this “DSCAM 
coat” is lost, resulting in the formation of homotypic clumps. Thus, DSCAM does 
not confer cell-type identity, but rather it prevents cell-type-specifi c adhesion medi-
ated by other molecules. 

 Interestingly, protocadherins were recently shown to promote dendritic self- 
avoidance in mouse retinal and cerebellar Purkinje cells (Lefebvre et al.  2012 ). 
Protocadherins are encoded by a complex locus from which 58 proteins are 
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produced that differ in their extracellular domains. These genes are expressed 
 stochastically and combinatorially in single neurons, and they can promote isoform- 
specifi c homophilic adhesion [Kohmura et al.  1998 ; Wu and Maniatis  1999 ; 
Schreiner and Weiner  2010 , reviewed by Zipursky and Sanes ( 2010 )]. Thus, proto-
cadherins may represent the cell-type adhesive tag masked by DSCAMs, at least in 
some neuronal types. Clearly, the potential functional relationship between 
DSCAMs and protocadherins (and probably other cell adhesion molecules) requires 
further investigation. 

 The role of the DSCAM, DSCAML, and Sidekick proteins (which are structur-
ally related to DSCAMs as they contain immunoglobulin and fi bronectin type III 
domains) has been analyzed in the chick retina (Yamagata and Sanes  2008 ). 
Amacrine and bipolar cells make synapses with dendrites of RGCs in the inner 
plexiform layer of the retina (IPL), a layer that is organized into distinct sublaminae 
(Fig.  11.3 ). As in the mouse retina, DSCAM, DSCAML, and Sidekick proteins 
(collectively referred to as Immunoglobulin Superfamily (IgSF) adhesion mole-
cules) are expressed in non-overlapping sets of cells (Yamagata et al.  2002 ; 
Yamagata and Sanes  2008 ). Interestingly, pre- and postsynaptic cells that synapse in 
the IPL express the same IgSF (Fig.  11.3 ). Using interfering RNAs and gain-of- 
function approaches, IgSF proteins were shown to direct sublamina-specifi c synap-
tic connections in the chick retina via homophilic recognition and adhesion 
(Yamagata and Sanes  2008 ). Therefore, DSCAMs appear to promote adhesion 
rather than repulsion in appropriate contexts.

   Although initial studies in the retina of  Dscam  del17  mice failed to demonstrate a 
similar role for DSCAM or DSCAML1 in synaptic connectivity (Fuerst et al.  2008 , 
 2009 ), recent analyses of new DSCAM knockout mice generated on a different 
genetic background demonstrated the requirement of DSCAM for synaptic lamina-
tion of some amacrine cell types (namely, bNOS-positive and cholinergic amacrine 
cells; Fuerst et al.  2010 ). Moreover, specifi c spatial and/or temporal ablation of 
 DSCAM  expression in the conditional knockout  Dscam  F  mice (Table  11.1 ) revealed 
that while cell spacing and dendritic arborization are mediated by cell-autonomous 
activity of DSCAM, synaptic connectivity is mediated via a non-cell-autonomous 
mechanism (Fuerst et al.  2012 ). Thus, lamination defects in bNOS-positive ama-
crine cells require the disorganization of non-amacrine cells. Moreover, although 
 DSCAM  is not expressed by cholinergic amacrine cells, these cells exhibit lamina-
tion defects (Fuerst et al.  2012 ). The precise mechanisms involved in these non-cell- 
autonomous DSCAM activities remain to be elucidated.  

11.3.3     Role of DSCAM in Hippocampal Dendritic 
Morphogenesis 

 Given the reported dose-dependent effects of DSCAM (Fuerst et al.  2008 ,  2012 ; 
Amano et al.  2009 ; Blank et al.  2011 ) and its overexpression in Down’s syndrome 
brains (Saito et al.  2000 ), it is essential to better understand not only the effects of 
DSCAM mutation but also those of DSCAM overexpression. Dendritic arborization 
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is dramatically inhibited in transfected hippocampal neurons overexpressing 
DSCAM, and total dendrite length is reduced (Alves-Sampaio et al.  2010 ). While 
the mechanism responsible for this phenotype remains unknown, it is possible that 
excessive cell surface coating due to DSCAM overexpression impedes other molec-
ular interactions necessary for dendritic branching. Interestingly, dendritic arboriza-
tion defects are a hallmark of Down’s syndrome brains (discussed in Sect.  11.5.1 ).  

11.3.4     Role of DSCAM in Axon Guidance 

 Dscam is not only known to be involved in axon guidance in  Drosophila  (Schmucker 
et al.  2000 ; Hummel et al.  2003 ; Zhan et al.  2004 ; Andrews et al.  2008 ), but in ver-
tebrates it also drives axon guidance in at least some specifi c neurons. Spinal com-
missural axons express DCC (Deleted in Colorectal Carcinomas), a receptor 
involved in axonal guidance in response to Netrin-1, a chemoattractant molecule 
derived from spinal cord fl oor-plate cells (Keino-Masu et al.  1996 ). Commissural 
axons also express  DSCAM  during development, and pathfi nding of these axons is 
impaired in mouse embryos by  DSCAM  knockdown using siRNAs (Ly et al.  2008 ). 

  Fig. 11.3    Synaptic lamination in the retinal inner plexiform layer (IPL) is mediated by IgSF 
molecules. The retinal IPL is subdivided into fi ve sublaminae (S1–S5). Pre- and postsynaptic cells 
expressing the same IgSF molecule (DSCAM, DSCAML, Sidekick 1, or Sidekick 2) form syn-
apses in specifi c IPL sublamina [modifi ed from Yamagata and Sanes ( 2008 )]       
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Similar results were obtained in chick embryos electroporated  in ovo  with  DSCAM -
specifi c siRNAs (Liu et al.  2009 ). To fulfi ll its axon guidance function, DSCAM 
binds Netrin-1 (Ly et al.  2008 ; Liu et al.  2009 ), demonstrating the ability of DSCAM 
to interact heterophilically with non-related ligands. Interestingly, DSCAM and 
DCC can form a receptor complex that is disrupted by Netrin-1, although the func-
tional consequences of these interactions remain unclear (Ly et al.  2008 ). In any 
case, the role of DSCAM as a Netrin-1 receptor in commissural axon pathfi nding 
appears clear (Ly et al.  2008 ; Liu et al.  2009 ), although some confl icting data have 
also been reported (Palmesino et al.  2012 ). Strikingly, in  Dscam  tm1.1Kzy  mutant mice 
(Table  11.1 ), the dorsal root ganglion (DRG) cells that normally express  DSCAM  
exhibit reduced neurite extension on DSCAM-coated dishes, suggesting a role of 
homophilic DSCAM binding in neurite outgrowth (Amano et al.  2009 ). 

 To further complicate the scenario, DSCAM also appears to participate in Netrin-
1- induced axon repulsion (Purohit et al.  2012 ), as this bifunctional guidance cue 
also acts as a chemorepellent in specifi c cell contexts. In cerebellar neurons, UNC5 
protein functions as a Netrin-1 receptor to induce axonal chemorepulsion (Ackerman 
et al.  1997 ; Leonardo et al.  1997 ; Przyborski et al.  1998 ). Interestingly, attraction 
promoted by DCC in response to Netrin-1 switches to repulsion when the cytoplas-
mic domains of UNC5 and DCC interact (Hong et al.  1999 ). DSCAM and UNC5 
were seen to interact via their extracellular domains, an interaction that is enhanced 
by Netrin-1 (Purohit et al.  2012 ). In addition, knockdown of  DSCAM  or  UNC5 , or 
partial simultaneous knockdown of both genes, abolishes the growth cone collapse 
induced by Netrin-1 in cerebellar granule cells, suggesting that axonal repulsion is 
mediated by the coordinated action of DSCAM and UNC5 (Purohit et al.  2012 ). 
Recently, DSCAM has been shown to physically interact with Draxin, a guidance 
molecule that mediates the repulsion of spinal commissural axons (Islam et al. 
 2009 ) and that inhibits axonal outgrowth of cortical and olfactory bulb neurons 
(Ahmed et al.  2011 ). 

 In summary, vertebrate DSCAM appears to acts as a receptor for heterophilic 
(and possibly homophilic) axonal guidance cues, mediating either attraction or 
repulsion.  

11.3.5     A Role for DSCAM in Neurogenesis? 

 Neurogenesis during adulthood is restricted to the subventricular zone (SVZ) and 
the hippocampal  dentate gyrus  (DG), where progenitor cells are located in the sub-
granular zone (SGZ). There is evidence that DSCAM may participate in adult hip-
pocampal neurogenesis. Cerebral ischemia is used as an experimental model to 
induce DG neurogenesis, as this condition increases the proliferation of SGZ pro-
genitor cells (Liu et al.  1998 ). Global brain ischemia in monkeys ( Macaca fuscata ) 
induces a decrease in DSCAM labeling in DG granule cells (probably due to the 
ischemic injury itself), accompanied by an increase in DSCAM immunoreactivity 
in cells of the SGZ (Yamashima et al.  2006 ). Using PSA-NCAM as a marker of 
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newly generated SGZ progenitor cells, it was established that about 50 % of 
DSCAM-positive cells in the SGZ are also positive for PSA-NCAM and that many 
of these cells are also BrdU positive (indicative of dividing cells), suggesting that 
they are progenitor cells (Yamashima et al.  2004 ). These cells were shown to project 
dendrites later and to express βIII-tubulin, a marker of immature neurons 
(Yamashima et al.  2006 ). The remaining 50 % of PSA-NCAM-negative, DSCAM- 
positive cells in the SGZ were positive for S100β, a marker of immature astrocytes 
(Boyes et al.  1986 ). 

 Although there is no direct proof that DSCAM is involved in neurogenesis (either 
during development or in adulthood), several observations suggest that DSCAM 
can interfere with cell cycle progression and/or developmental apoptotic processes. 
The number of retinal cells expressing DSCAM increases by 250–300 % in 
 Dscam  del17  knockout mice (Table  11.1 ) due to decreased cell death rather than 
increased proliferation (Fuerst et al.  2008 ). Moreover, cell death during retinal 
developmental is regulated by DSCAM in a dose-dependent manner, and it is inde-
pendent of other processes regulated by DSCAM in the retina, such as self- avoidance 
and cell body spacing, ruling out the possibility that cell death is a secondary con-
sequence of dendrite fasciculation or cell clumping due to loss of  DSCAM  function 
(Fuerst et al.  2012 ). Interestingly,  Dscam  tm1.1Kzy  mutants (Table  11.1 ) also exhibit 
more medulla neurons, although this phenotype has not been investigated in detail 
(Amano et al.  2009 ). It is tempting to speculate that DSCAM is involved in cell 
proliferation and/or neuronal cell death during brain development via its interaction 
with PAK (p21-activated kinase) proteins, which have been implicated in both these 
processes (see Sect.  11.4 ). 

 The putative role of DSCAM in neurogenesis is particularly interesting in the 
context of Down’s syndrome (DS), as defective neurogenesis appears to be involved 
in this intellectual disability (Contestabile et al.  2007 ; Guidi et al.  2008 ,  2011 ; dis-
cussed further in Sect.  11.5.1 ).  

11.3.6     A Possible Role of DSCAM in Synaptic Plasticity 

 Although the number of vertebrate  DSCAM  isoforms is limited, additional unex-
pected complexity was recently described by our group (Alves-Sampaio et al.  2010 ) 
as we found that at least fi ve different isoforms produced by alternative polyadenyl-
ation expressed in the mouse hippocampus. These isoforms bear motifs in the 3′ 
untranslated regions (3′UTRs) that regulate local dendritic translation of the corre-
sponding transcript. In fact,  DSCAM  mRNA is dendritically localized in the hippo-
campus and it associates with CPEB1 (Cytoplasmic Polyadenylation Element 
Binding Protein 1) (Alves-Sampaio et al.  2010 ). CPEB1 is a key regulator of local 
dendritic translation and it also facilitates the transport of specifi c mRNAs into den-
drites (Richter  2007 ). CPEB1 is phosphorylated in response to the activation of 
NMDA receptors (NMDARs), which results in polyadenylation and concomitant 
translation of target mRNAs (   Huang et al.  2002 ) known to participate in dendritic 
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morphogenesis during development and in synaptic plasticity in adulthood (   Richter 
 2007 ). Using a heterologous reporter system in  Xenopus  oocytes, we demonstrated 
that the translation of some  DSCAM  3′UTR isoforms is mediated by CPEB. 
Moreover, incubation of hippocampal neurons with NMDA increased local den-
dritic translation of DSCAM (Alves-Sampaio et al.  2010 ). Although it remains 
unclear whether locally translated DSCAM can activate PAK proteins, such an inter-
action may be relevant to the modulation of synaptic plasticity, particularly as PAK1 
knockout mice exhibit impaired long-term potentiation (LTP) in the hippocampal 
CA1 region (Asrar et al.  2009 ). Together these results suggest that DSCAM could 
be involved in hippocampal synaptic plasticity (Fig.  11.4 ) and that some DSCAM 
developmental functions could be mediated by locally translated protein isoforms.

  Fig. 11.4    Role of DSCAM in synaptic plasticity: a working model. Postsynaptic DSCAM is 
 activated by unknown mechanisms and it signals through its interaction with PAK1 and FYN 
kinases, which play important roles in LTP and learning (Grant et al.  1992 ; Asrar et al.  2009 ). 
 DSCAM  mRNA is locally translated in dendrites of hippocampal neurons in response to NMDA 
receptor (NMDAR) activation by glutamate (Glu), via CPEB1 activation (Alves-Sampaio et al. 
 2010 ). This locally translated DSCAM may be inserted into the activated postsynaptic element, 
thereby enhancing the effects of PAK1 and FYN kinases. Moreover, by positively regulating 
NMDARs through its phosphorylation (Kojima et al.  1998 ; Tezuka et al.  1999 ; Nakazawa et al. 
 2001 ), the FYN kinase may enhance this effect via a positive feedback loop       
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11.4          Signaling Cascades Downstream of DSCAM 

 Several proteins that interact with Dscam have been identifi ed in  Drosophila . While 
the cytoplasmic domain of Dscam interacts with Pak via the adaptor protein Dock 
(Schmucker et al.  2000 ), the sorting nexin DSH3PX1 forms a complex with Dscam 
and Dock (Worby et al.  2001 ). Moreover, DSH3PX1 interacts with Wasp, a regula-
tor of the actin cytoskeleton that is also involved in endocytosis, and with AP-50, a 
clathrin-coat adaptor protein (Worby et al.  2001 ), suggesting that Dscam can regu-
late the actin cytoskeleton via Pak and/or Wasp, and that like other cell surface 
receptors, it may be internalized when activated. 

 The cytoplasmic domain of  Drosophila  Dscam, which is necessary to transduce 
homophilic binding into repulsion (Matthews et al.  2007 ) shows little homology 
with the cytoplasmic domains of vertebrate DSCAMs, although they appear to 
engage similar signaling cascades. Human DSCAM interacts directly with PAK1, 
inducing its activation by phosphorylation (   Li and Guan  2004 ). In mammals, the 
PAK family is made up of three proteins that share more than 90 % amino acid iden-
tity [reviewed by Kreis and Barnier ( 2009 )]. While PAK1 is expressed in the brain 
and spleen, PAK2 is ubiquitously expressed and PAK3 is predominantly expressed 
in the brain. Thus, although DSCAM interactions have only been formally described 
for PAK1, it is possible that other members of the PAK family can mediate DSCAM 
functions in specifi c brain regions or subcellular compartments. For example, PAK1 
is located in the dendrites and axons of hippocampal and cortical neurons, while 
PAK3 accumulates in the cell bodies (Hayashi et al.  2002 ; Ong et al.  2002 ). Moreover, 
only PAK1 can shuttle to the nucleus and consequently regulate gene transcription 
(Li et al.  2002 ; Singh et al.  2005 ). PAKs bind to Rho family GTPases (RhoA, Rac1, 
and Cdc42) and they participate in a number of processes associated with cytoskel-
etal reorganization, including the regulation of cell proliferation and migration, neu-
rogenesis, developmental apoptosis, neuronal polarity, neurite outgrowth, dendritic 
branching, spine formation, axonal guidance, and synaptic plasticity [reviewed by 
Kreis and Barnier ( 2009 )]. The signaling pathways that lie downstream of DSCAM/
PAK activation remain largely unknown. Netrin-1, which is involved in axonal path-
fi nding, enhances the DSCAM-mediated phosphorylation of PAK1, and it is suffi -
cient to stimulate tyrosine phosphorylation of the DSCAM cytodomain (Liu et al. 
 2009 ). The FAK and Fyn kinases that mediate Netrin-1-induced phosphorylation of 
UNC5 (Li et al.  2006 ) can also interact with DSCAM, and Netrin-1 enhances these 
interactions (Purohit et al.  2012 ). Finally, DSCAM binds to and activates JNK and 
p38 kinases (Li and Guan  2004 ). In summary, vertebrate DSCAM appears to interact 
with and activate a number of different kinases, although the functional conse-
quences of these interactions require further investigation. 

 The cytoplasmic domains of vertebrate DSCAMs and Sidekicks have also been 
shown to interact with postsynaptic scaffolding proteins, in particular with members of 
the MAGI (membrane-associated guanylate kinase with inverted orientation) and PSD-
95 (postsynaptic density-95) families (Yamagata and Sanes  2010 ). Interestingly, these 
interactions appear to be necessary for the synaptic localization and function of the cor-
responding IgSF adhesion molecule in retinal lamination (Yamagata and Sanes  2010 ).  
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11.5     DSCAM in Disease 

 Initial interest in  DSCAM  was related to its potential role in Down’s syndrome (DS). 
Although the underlying causes of this complex disorder are largely unknown, some 
evidence implicates DSCAM overexpression in DS neuronal and cardiac defects. 
As discussed below, in recent years  DSCAM  has also emerged as a candidate gene 
implicated in other diseases, including neurological and respiratory disorders. 

11.5.1       DSCAM in Down’s Syndrome: Intellectual Disability 
and Cardiac Defects 

 DS is caused by the partial or total trisomy of human chromosome 21 (HSA21). In 
addition to intellectual disability, DS-affected individuals often exhibit craniofacial 
dysmorphism, congenital heart defects, and early onset of Alzheimer-like disease 
(Contestabile et al.  2010 ). DSCAM dysfunction has been linked with at least two 
features of DS brains associated with intellectual disability: dendritic abnormalities 
and defective neurogenesis. As in other intellectual disabilities, morphological 
defects of dendrites are observed in the cortex and hippocampus of DS-affected 
individuals, whereby dendrites are shorter and less branched, and the number of 
dendritic spines is reduced (Marin-Padilla  1972 ; Suetsugu and Mehraein  1980 ; 
Ferrer and Gullotta  1990 ). As previously discussed, DSCAM overexpression in 
transfected hippocampal neurons clearly inhibits dendritic branching (Alves- 
Sampaio et al.  2010 ). Therefore, overexpression of DSCAM in DS (Saito et al. 
 2000 ) may mediate the associated reduction in dendritic complexity. 

 Neurogenesis during development is also impaired in DS and fewer neurons are 
found in the cortex, hippocampus, and other regions of DS fetuses and children 
(Wisniewski  1990 ; Guidi et al.  2008 ; Larsen et al.  2008 ), and there are fewer divid-
ing cells in the DG and neocortical germinal matrix of DS fetuses (Contestabile 
et al.  2007 ). These and other defi cits in neurogenesis, including defective adult neu-
rogenesis, are also observed in DS models such as Ts65Dn and Ts1Cje mice, and 
they appear to be due to cell cycle alterations (Clark et al.  2006 ; Chakrabarti et al. 
 2007 ; Contestabile et al.  2007 ; Bianchi et al.  2009 ; Ishihara et al.  2009 ). Impaired 
proliferation of cerebellar precursors and increased cell death have also been 
reported in Ts65Dn mice (Contestabile et al.  2009 ), and this may account for the 
reduced cerebellar size of DS-affected individuals. Given that DSCAM loss of func-
tion results in decreased cell death and an increase in the number of neurons in 
specifi c regions (Fuerst et al.  2008 ,  2012 ; Amano et al.  2009 ), overexpression 
should produce the opposite effect (i.e., reduced neuronal number, as is the case in 
DS), and this may contribute to the defective neurogenesis in DS. 

 In addition to impaired neurogenesis and dendrite morphogenesis, the Ts65Dn 
mouse model of DS exhibits excessive eye-specifi c segregation of retinal axons in 
the dorsal lateral geniculate nucleus (LGN) (Blank et al.  2011 ). This developmental 
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process is normally regulated by both retinal activity and molecular guidance cues 
[reviewed by Huberman et al. ( 2008 )]. Interestingly, retinogeniculate synaptic 
refi nement is regulated by the DSCR in a dose-dependent fashion, DSCAM playing 
a critical role in that process (Blank et al.  2011 ). Accordingly, the axonal guidance 
capacity of DSCAM may be determinant for this DS phenotype. 

 Several forms of synaptic plasticity are impaired in DS mouse models, including 
NMDAR-dependent LTP and LTD (long-term depression) in the CA1 of the hip-
pocampus (Costa and Grybko  2005 ; Siarey et al.  2005 ; Scott-McKean and Costa 
 2011 ). Interestingly, local dendritic translation of DSCAM occurs in hippocampal 
neurons after NMDAR activation, suggesting a possible role of DSCAM in synaptic 
plasticity (Alves-Sampaio et al.  2010 ). Thus, DSCAM trisomy may contribute to 
the memory and learning impairments associated with DS. Indeed, we found that 
dendritic levels of  DSCAM  mRNA and protein were increased in the hippocampus 
of Ts1Cje mice and that the infl uence of NMDA on local  DSCAM  translation was 
lost in Ts1Cje neurons, probably due to saturated signaling via NMDAR (Alves- 
Sampaio et al.  2010 ; Troca-Marin et al.  2012 ). 

 In addition to the neuronal phenotypes discussed, congenital heart defects (CHD) 
are frequent in DS-affected individuals. DSCAM is expressed in the heart during 
cardiac development and has been long proposed as a candidate gene for DS con-
genital heart disease based on the molecular characterization of partial HSA21 tri-
somies (Barlow et al.  2001b ; Kosaki et al.  2005 ). Recently, DSCAM and COL6A2 
(an extracellular matrix component also encoded by the HSA21) were shown to 
cooperate in producing CHD in mice (Grossman et al.  2011 ). Thus, while trans-
genic mice overexpressing either  DSCAM  or  COL6A2  under the control of a heart- 
specifi c promoter were viable, double transgenic mice exhibited cardiac hypertrophy. 
Interestingly, co-expression of  DSCAM  and  COL6A2  in cardiomyocytes induced a 
transcriptional response that preferentially affected the expression of genes impli-
cated in cell adhesion and cardiomyopathies, suggesting that excessive adhesion 
contributes to cardiac defects (Grossman et al.  2011 ). Finally, it is also noteworthy 
that  DSCAML1  is located at the 11q23 locus associated with Jacobsen syndrome 
(Agarwala et al.  2001b ), which also causes intellectual disability and cardiac defects 
(Mattina et al.  2009 ).  

11.5.2     DSCAM in Other Diseases: Epilepsy, Hydrocephalus, 
Respiratory Disorders, Idiopathic Scoliosis, and Bipolar 
Disorder 

  DSCAM  has been proposed as a candidate gene that infl uences the development of 
other diseases. For example,  DSCAM  overexpression has been reported in the tem-
poral lobe of patients with intractable epilepsy and in an experimental murine model 
of epilepsy (Shen et al.  2011 ). Patients with intractable epilepsy do not respond to 
antiepileptic drugs, and the mossy fi ber sprouting and hippocampal synaptic 
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reorganization they exhibit are thought to underlie their recurrent epileptic seizures. 
Interestingly, upregulation of  DSCAM  expression in pilocarpine-induced epileptic 
rats is dependent on seizure frequency (Shen et al.  2011 ). Given the role of DSCAM 
in axonal outgrowth and guidance, and the observed upregulation of Netrin-1 in the 
rat hippocampal DG after pilocarpine-induced epilepsy (Lin et al.  2007 ), a role for 
DSCAM was proposed in mediating the mossy fi ber sprouting and aberrant cir-
cuitry linked to chronic epilepsy (   Shen et al.  2011 ). 

 Detailed phenotypic characterization of  DSCAM  knockout mice also suggests a 
role for DSCAM in central respiratory disorders, such as congenital central 
hypoventilation syndrome and sudden infant death syndrome (Amano et al.  2009 ). 
Thus,  Dscam  tm1.1Kzy  mice (Table  11.1 ) die shortly after birth due to dysfunction of 
the medullar neurons responsible for generating the respiratory rhythm. A role for 
DSCAM in the formation of the neuronal circuits involved in controlling the respi-
ratory pattern was proposed (Amano et al.  2009 ). Moreover, the dose dependence of 
the respiratory  Dscam  tm1.1Kzy  phenotype suggests that overexpression of  DSCAM  in 
DS may contribute to the central respiratory defects frequently observed in this 
syndrome (Ferri et al.  1997 ,  1998 ). 

 Recent characterization of the  Dscam  del17  mutant mouse (Table  11.1 ) revealed 
severe hydrocephalus due to enlargement of lateral ventricles, although the mech-
anisms underlying this phenotype remain unknown (Xu et al.  2011 ). Finally, the 
fi ndings of association studies have led  DSCAM  to be proposed as a candidate 
gene that participates in bipolar disorder (Amano et al.  2008 ) and idiopathic sco-
liosis (Sharma et al.  2011 ), although its role in these diseases remain to be 
confi rmed.   

11.6     Perspectives 

 The fi rst  DSCAM  gene was cloned in 1998, and since then, the analysis of  Drosophila  
Dscams has produced a number of important discoveries, highlighting the func-
tional importance of these adhesion molecules in neuronal wiring. These advances 
have formed the basis for vertebrate DSCAM research, which surprisingly suggests 
that they share similar functions, despite the molecular differences between the ver-
tebrate and invertebrate molecules. Although a number of exciting functions have 
been proposed for DSCAMs, including dendritic morphogenesis, axon guidance, 
neurogenesis, and synaptic plasticity, we are now only just beginning to understand 
the importance of DSCAMs in these processes, and further research effort is 
required. Perhaps the most intriguing questions relate to the molecular mechanisms 
engaged by DSCAMs when performing their physiological functions and to the 
functional relationships between DSCAMs and other cell adhesion molecules. 
Indubitably, the roles of DSCAMs in a number of neurological, respiratory, and 
cardiac diseases constitute issues of the utmost importance, which are currently in 
their infancy.     
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    Abstract     Anosmin-1 is the glycoprotein encoded by the  KAL1  gene and part of the 
extracellular matrix, which was fi rst identifi ed as defective in human Kallmann syn-
drome (KS, characterised by hypogonadotropic hypogonadism and anosmia); bio-
chemically it is a cell adhesion protein. The meticulous biochemical dissection of 
the anosmin-1 domains has identifi ed which domains are necessary for the protein 
to bind its different partners to display its biological effects. Research in the last 
decade has unravelled different roles of anosmin-1 during CNS development (axon 
pathfi nding, axonal collateralisation, cell motility and migration), some of them 
intimately related with the cited KS but not only with this. More recently, anosmin-
 1 has been identifi ed in other pathological scenarios both within (multiple sclerosis) 
and outside (cancer, atopic dermatitis) the CNS.  

12.1         Introduction 

 Anosmin-1 is the protein encoded by the  KAL1  gene. This is a glycoprotein of the 
extracellular matrix which was fi rst identifi ed as defective in human Kallmann 
 syndrome (KS) characterised by hypogonadotropic hypogonadism and anosmia. 
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Its biochemical characteristics allow for its classifi cation as a cell adhesion protein. 
Beyond all these classical facts about anosmin-1, research in the last decade has 
involved the protein in different aspects of central nervous system (CNS) develop-
ment, some of them related with the cited KS but not only with this and, more 
recently, anosmin-1 has been identifi ed in other pathological scenarios, outside the 
CNS, too. In parallel, the meticulous biochemical dissection of the anosmin-1 
domains has substantially unravelled which are necessary for the protein to bind 
receptors and other partners and which are indispensable for anosmin-1 to display 
its biological effects.  

12.2     The  KAL1  Gene and the Protein Anosmin-1: 
Structure, Expression and Regulation 

12.2.1     The  KAL1  Gene 

 The gene responsible for the X-linked form of KS,  KAL1 , was fi rst identifi ed in 
1991 (Franco et al.  1991 ; Legouis et al.  1991 ). The  KAL1  gene    comprises 14 exons, 
is located on the X chromosome (Xp22.3), and has an inactive homologous gene on 
the Y chromosome (del Castillo et al.  1992 ), which together with the fact that this 
gene partially escapes X-chromosome inactivation (Franco et al.  1991 ; Shapiro 
et al.  1979 ) would explain the higher prevalence of the disease in males (Dode et al. 
 2003 ; Laitinen et al.  2011 ). Orthologs have been identifi ed in a variety of inverte-
brate and vertebrate species, from the nematode worm  C .  elegans  to rodents and 
primates, but despite the high degree of sequence identity among species shown by 
the protein anosmin-1 coded by the gene  KAL1 ; no ortholog has been identifi ed in 
mouse or rat. The  KAL1  locus is adjacent to the pseudoautosomal region 1 (PAR1) 
from where a 9 Mb block has been removed or translocated from a common ances-
tor of mouse and rat (Ross et al.  2005 ) and while the addition of genes to the PAR1 
region from autosomes seems to have occurred in eutherians, macropodid marsupi-
als and monotremes; the loss of PAR1 genes from the mouse X-chromosome is 
evident (Mangs and Morris  2007 ). Additionally, this genomic region is not stably 
propagated in bacteria (Perry et al.  2001 ) and may, in fact, be highly variable 
(Church et al.  2009 ). A high proportion of the genes located in the human PAR1 and 
the proximal Xp22.3 region has not been identifi ed in the mouse genome or is 
located on autosomal chromosomes (Gläser et al.  1999 ). The development of the 
olfactory system is a well-conserved process throughout evolution, from amphibi-
ans to primates, requiring a similar molecular mechanism in all of them and, instead 
of losing the  KAL1  gene during evolution, it has been suggested that the  KAL1  
ortholog in mouse is extremely divergent from the human one, or a compensating 
mechanism has been originated (Lutz et al.  1993 ).  
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12.2.2     The Protein Anosmin-1 

 The protein encoded by the  KAL1  gene is anosmin-1, which is secreted to the extra-
cellular matrix (ECM). Anosmin-1 is a 680 amino acid glycoprotein that presents a 
modular disposition of different domains. It contains a cysteine rich region 
(CR domain), a whey acidic protein-like (WAP) domain similar to that found in 
serin protease inhibitors, four fi bronectin type III domains (FnIII) present in several 
other ECM and cell-adhesion molecules and a C-terminal region with a high con-
tent of basic residues histidines and prolines (Legouis et al.  1993 ). There are fi ve 
potential heparan sulphate binding motifs along the protein sequence that seem to 
be important for the proper localisation of the protein within the ECM (Robertson 
et al.  2001 ) and 6 putative  N -glycosylation sites (Rugarli et al.  1996 ) whose func-
tionality and role in anosmin-1 function remains to be elucidated. The proposed 
extended domain arrangement and fl exible interdomain connections would make 
anosmin-1 present large basic charged surfaces within the FnIII repeats that could 
be important in the binding to heparan sulphates and to other interacting proteins 
(Robertson et al.  2001 ).  

12.2.3     Expression of  KAL1  and Anosmin-1. Regulation 
of the Expression of the  KAL1  Gene 

 In humans, the pattern of expression of the  KAL1  gene and anosmin-1 has been 
established by in situ hybridisation and immunohistochemistry.  KAL1  transcripts 
are detected as early as 5 weeks of development, and the expression of the protein 
has been described as restricted to basement membranes and interstitial matrices of 
discrete embryonic areas, as should be expected for an ECM protein. Structures that 
express  KAL1  include the developing olfactory bulb (OB), retina, cerebellum, spinal 
cord, inner ear and kidney, correlating with the distribution of clinical signifi cant 
abnormalities in KS patients (Duke et al.  1995 ; Hardelin et al.  1999 ; Lutz et al. 
 1994 ). Although in GnRH + -neurons  KAL1  transcripts and anosmin-1 have not been 
detected, both are present in the olfactory nerve fi bres and migratory pathways fol-
lowed by GnRH + -neurons in their way to the hypothalamus, in close association 
with these cells (Hardelin et al.  1999 ). 

  KAL1  expression within the developing olfactory system has been observed in 
different species. In humans, expression can be seen in the outer olfactory nerve 
layer of the OB, in olfactory and granule cells as well as in glial cells (Duke et al. 
 1995 ; Lutz et al.  1994 ). In other species such as rat, chicken or zebrafi sh, expression 
has been described in the mitral cell layer of the OB, the lateral olfactory tract 
(LOT) and the olfactory cortex (Ardouin et al.  2000 ; Ayari and Soussi-Yanicostas 
 2007 ; Ayari et al.  2012 ; Clemente et al.  2008 ; Dellovade et al.  2003 ; Lutz et al. 
 1993 ; Soussi-Yanicostas et al.  2002 ; Yanicostas et al.  2009 ). 
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 Expression has also been described in the cerebellum in human foetus (Lutz 
et al.  1994 ) and in several species such as chick, the Asian musk shrew, rat and 
zebrafi sh, associated to Purkinje cells, neurons in deep nuclei, the internal granu-
lar layer and astrocytes (Ardouin et al.  2000 ; Ayari et al.  2012 ; Clemente et al. 
 2008 ; Dellovade et al.  2003 ; Gianola et al.  2009 ; Legouis et al.  1993 ; Rugarli 
et al.  1993 ; Soussi-Yanicostas et al.  1996 ,  2002 ). More recently  KAL1  expression 
has been shown in muscle, cultured human skeletal muscle cells, basal layer of the 
skin, dermal cells such as vascular endothelial cells, fi broblasts and cultured 
human keratonicytes (Raju and Dalakas  2005 ; Tengara et al.  2010 ). Anosmin-1 
expression has been shown in the germ cells of the testis during spermatogenesis 
and in the granulosa cells and oocytes in mature ovaries in the marsupial tammar 
wallaby, which suggests that in addition to the regulatory role in GnRH migration 
and therefore in the onset of hypogonadotropic hypogonadism,  KAL1  could also 
work locally in the gonads regulating spermatogenesis and folliculogenesis (Hu 
et al.  2011 ). 

 Apart from the fact that  KAL1  partially escapes X-chromosome inactivation 
(Franco et al.  1991 ; Shapiro et al.  1979 ), little is known regarding the regulation and 
control of the expression of this gene. In recent years regulation of  KAL1  expression 
in different tumour tissues and cell lines and infl ammatory disorders has been 
observed, suggesting a possible role of anosmin-1 in the pathogenesis of some of 
them. Different factors such hypoxia, the methylation of CpG islands in the pro-
moter of the gene and molecules involved in infl ammatory processes could be 
involved in the regulation of the expression of the  KAL1  gene (Arikawa et al.  2011 ; 
Jian et al.  2009 ; Kawamata et al.  2003 ; Mihara et al.  2006 ; Raju and Dalakas  2005 ; 
Tengara et al.  2010 ).  

12.2.4     Mechanisms of Action of Anosmin-1 

 Despite recent signifi cant advances, the mode of action of anosmin-1 is not com-
pletely comprehended and interactions with different proteins of the ECM, as 
well as with membrane receptors, have been suggested as major events in the 
regulation of the activity of this protein. The best known mechanism of action of 
anosmin-1 is the interaction with the fi broblast growth factor receptor 1 (FGFR1) 
and the modulation of the activation of this receptor, linking two of the genes 
responsible for KS (Ayari and Soussi-Yanicostas  2007 ; Bribián et al.  2006 ; Dode 
et al.  2003 ; García- González et al.  2010 ; González-Martínez et al.  2004 ; Hu et al. 
 2009 ; Murcia- Belmonte et al.  2010 ). Interaction between anosmin-1 and FGFR1 
has been reported by co-immunoprecipitation (CoIP) (Ayari and Soussi-
Yanicostas  2007 ; Bribián et al.  2006 ; González-Martínez et al.  2004 ), and it has 
been determined that the WAP and FnIII.1 domains together and the FnIII.3 
domain by itself interact with FGFR1 (Hu et al.  2009 ; Murcia-Belmonte et al. 
 2010 ). Not surprisingly, some of the missense mutations in the  KAL1  gene found 
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in KS patients lie within the FnIII domains involved in the interaction with 
FGFR1 (N267K, E514K, F517L), impeding or greatly reducing the interaction 
with the receptor and rendering non- functional proteins (Cariboni et al.  2004 ; Hu 
et al.  2009 ; Murcia-Belmonte et al.  2010 ). Mutations within the WAP domain 
have also been reported in KS patients, mainly missense mutations replacing 
some of the cysteine residues and presumably disrupting the formation of disul-
phide bonds and the correct folding or structure of the domain. An intact WAP 
domain seems to be required for anosmin-1 biological activity (Bülow et al.  2002 ; 
González-Martínez et al.  2004 ; Hu et al.  2004 ), but in some scenarios the muta-
tions in the WAP domain do not have a negative effect on the activity of the pro-
tein (Bülow et al.  2002 ; Hu et al.  2004 ). 

 Approximately two-thirds of the mutations described in the  KAL1  gene are 
deletions or frameshift or nonsense mutations that could affect the overall length 
or composition of the protein, suffi cient to account for the disease (Hu and 
Bouloux  2011 ), what confl icts with the fact that a truncated N-terminal protein 
comprising the CR-WAP-FnIII.1 domains, behaves as the full-length protein in 
some scenarios regarding some of the biological functions of anosmin-1 involv-
ing FGFR1 (Bülow et al.  2002 ; González-Martínez et al.  2004 ; Hu et al.  2004 ; 
Murcia-Belmonte et al.  2010 ). It has been suggested that the function of the 
 different anosmin-1 domains could be determined or conditioned by the extracel-
lular environment and that the protein could be involved in different phenotypic 
effects, depending on the cell type or the interaction with different receptors or 
binding proteins (Andrenacci et al.  2006 ; Bülow et al.  2002 ). Therefore, it could 
be speculated that the biological response exerted by the mutated forms of 
 anosmin-1, could be different from that elicited by the full-length protein or the 
truncated N-terminal protein lacking the last three FnIII domains, since these 
proteins could present a different binding capacity to FGFR1 and to other recep-
tors or molecules of the ECM. 

 The interaction of anosmin-1 with heparan sulphates (HS) present in the ECM 
seems to be important for the localisation and binding of anosmin-1 to the ECM 
(Hu et al.  2004 ; Rugarli et al.  1996 ; Soussi-Yanicostas et al.  1996 ), and interaction 
between anosmin-1 and syndecan-1 and glypican-1 regulates the migration of neu-
roblasts in the  C .  elegans  embryo (Hudson et al.  2006 ). In fact, it has been shown 
that the action of anosmin-1 in  C .  elegans  is dependent on the presence of HS that 
contain iduronic-acid and 6O-sulphate groups, but not on HS containing 2O-sulphate 
groups (Bülow and Hobert  2004 ). Both FGFR1 and anosmin-1 require heparan 
sulphate proteoglycans (HSPGs) for their biological functions, since HS are essen-
tials for FGF-FGFR complex formation and receptor activation (Guimond and 
Turnbull  1999 ; Hu et al.  2004 ; Rugarli et al.  1996 ; Soussi-Yanicostas et al.  1996 ). 
It has been hypothesised that due to its diffusible nature, anosmin-1 would exert 
opposing effects depending on the binding dynamics to FGF2–FGFR1–HS com-
plexes. HS-bound anosmin-1 will associate with pre-formed FGF2–FGFR1 pairs 
and facilitate FGF2–FGFR1–HS signalling enabling FGFR1-mediated cell migra-
tion, the role of anosmin-1 being the presentation of the appropriate HS to the complex. 
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In this scenario, the nature of the cell surface HS could be important in determining 
the anosmin-1-mediated responses. On the other hand, when anosmin-1 levels are 
high, HS-unbound anosmin-1 could diffuse freely and bind directly to FGFR1 on 
the cell surface, hampering the formation of the FGF2–FGFR1–HS complex (Hu 
et al.  2009 ). 

 Anosmin-1 has been also shown to interact with other components of the ECM 
such as uPA (Hu et al.  2004 ), fi bronectin, laminin and anosmin-1 itself (Bribián 
et al.  2008 ; Murcia-Belmonte et al.  2010 ) (Fig.  12.1 ). Although some of the domains 
involved in the interaction with FGFR1 participate in the binding to these proteins, 
the mutations found in FnIII.3 that impede anosmin-1 binding to FGFR1 have little 
or no effect in the binding to fi bronectin and laminin. This, together with the fact 
that the FnIII.4 domain also participates in the binding to anosmin-1, suggests a 
mechanism of action independent of FGFR1 (Bribián et al.  2008 ; Murcia-Belmonte 
et al.  2010 ).

  Fig. 12.1    Anosmin-1 interaction map. The WAP-FnIII.1 and FnIII.3 domains allow anosmin-1 to 
interact with specifi c sites within FGFR1 and mutations within these domains (N267K in FnIII.1, 
 orange asterisk ; E514K and F517L in FnIII.3,  red  and  pink asterisk , respectively) impede this 
union. The N-terminal truncated protein comprising the CR-WAP-FnIII.1 domains, A1Nt, is still 
able to bind to the receptor through the WAP and FnIII.1 domains and is biologically functional. 
On the contrary, in the full-length protein both E514K and F517L substitutions impede the FnIII.3 
interaction with FGFR1 and produce a non-functional protein. The N-terminal region would not be 
able to exert its function correctly, maybe due to the induction by these mutations of conforma-
tional changes or to an unstable coupling to the receptor. Mutations in the WAP domain (C172R, 
 green asterisk ) give rise to functional or non-functional proteins depending on the cellular environ-
ment. The FnIII.1 and FnIII.3 domains interact with fi bronectin, but only FnIII.3 does interact with 
laminin. Unlike in the case of FGFR1, the E514K and F517L substitutions do not hinder these 
interactions and only the F517L mutation reduces the binding to fi bronectin. Homophilic anosmin-
 1/anosmin-1 interactions occur via the FnIII.1 and FnIII.4 domains       
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12.3         Anosmin-1 Biological Effects 

12.3.1     Anosmin-1 in Cell Migration 

 As a classical ECM protein, anosmin-1 is involved in substrate adhesion and cell 
migration. This is the case of GnRH-1 neurons, over which anosmin-1 plays a che-
moattractive role. Assays performed in GN11 cells (immortalised migrating 
GnRH-1 human neurons) demonstrated that anosmin-1 with mutations found in KS 
patients is unable to induce the migration of these cells (Cariboni et al.  2004 ). This 
protein is also a chemoattractant cue for neuroblasts migrating out of the subven-
tricular zone (SVZ) on their way to the OB during perinatal development and, 
together with FGF2, which exerts a motogenic effect; both regulate the migration of 
these neuronal precursors (García-González et al.  2010 ). Interestingly, this che-
moattraction is mainly mediated through FGFR1 (García-González et al.  2010 ; 
Murcia-Belmonte et al.  2010 ). This fact renders anosmin-1 as one of the fi rst, to 
date, identifi ed molecules that are involved in the migration of neuroblasts from the 
SVZ to the OB, before the rostral migratory stream has reached its mature confor-
mation (García-González et al.  2010 ; Peretto et al.  2005 ; Petreanu and Álvarez- 
Buylla  2002 ). The arrival to the OB of newly generated neuroblasts from the SVZ 
is crucial for the maintenance of the olfactory function in rodents (Lois and Alvarez- 
Buylla  1994 ; Lois et al.  1996 ). Related to this, anosmin-1 has been shown to play a 
different role in glial cells: in oligodendrocyte precursors cells (OPC), the relative 
concentration of anosmin-1 and FGF-2 modulates OPC migration through their 
interaction with FGFR1 in the optic nerve during development and in the adult brain 
in mice (Bribián et al.  2006 ; Clemente et al.  2011 ). More specifi cally, anosmin-1 
inhibits the motogenic effect of FGF-2 via FGFR1 (Bribián et al.  2006 ; Clemente 
et al.  2011 ). But this effect on migration is tightly related to cell adhesiveness and, 
in this cell type, anosmin-1 has a stronger adhesive effect than laminin and fi bronec-
tin, reducing cell motility in consequence (Bribián et al.  2006 ,  2008 ). In OPCs, 
anosmin-1 mechanism of action is FGFR1 independent and only due to interactions 
with other ECM proteins (laminin or fi bronectin), including anosmin-1 itself in a 
homophilic way (Bribián et al.  2008 ). The OPC migration from oligodendrogenic 
sites to their fi nal emplacement is fundamental for the correct myelination and func-
tion of the CNS (de Castro and Bribián  2005 )   .  

12.3.2     Axon Outgrowth and Collateral Formation 

 The fi rst biological effect described for anosmin-1 was its role as a substrate pro-
moting neurite growth in postnatal mouse cerebellar neurons (Soussi-Yanicostas 
et al.  1998 ). In that study, cerebellar neurons that co-culture with anosmin-1- 
expressing CHO cells showed a reduction in neurite growth and an induction in 
neurite fasciculation. The implication of anosmin-1 has also been found in other 
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CNS developmental processes in mammals. In rats, anosmin-1 fi nely attracts OB 
projection neuron axons (mitral and tufted cells) forming the LOT during a precise 
developmental time frame (Soussi-Yanicostas et al.  2002 ). Besides, anosmin-1 
enhances collateral branching of LOT axons and exerts a chemoattractive effect on 
its collateral branches within the piriform cortex (Soussi-Yanicostas et al.  2002 ). 
Similar effects are observed in the cerebellum, where anosmin-1 promotes neuritic 
elongation and strongly increases the budding of collateral branches and the exten-
sion of terminal arbours in Pukinje cells from embryonic (E17) and newborn (P0) 
rats and in axonal regeneration after axotomy (Gianola et al.  2009 ). In human 
embryonic GnRH olfactory neuroblasts (FNC-B4 cells), anosmin-1 induces neurite 
outgrowth and cytoskeletal rearrangements through FGFR1-dependent mechanisms 
(González- Martínez et al.  2004 ).   

12.4     Anosmin-1 Effects in Other Vertebrates 

    Two orthologs of the  KAL1  gene have been found in teleosts:  kal1a  and kal1b, 
encoding anosmin-1a and anosmin-1b, respectively. It has been demonstrated to be 
an essential requirement for anosmin-1a, but not for anosmin-1b, in GnRH cell 
migration in zebrafi sh and medaka (Okubo et al.  2006 ; Whitlock et al.  2005 ). In 
addition, while  kal1a  and  kal1b  display distinct transcription patterns during zebraf-
ish development, both genes are strongly expressed in another migrating cell popu-
lation from the posterior lateral line primordium (Ardouin et al.  2000 ), for which 
migration anosmin-1 is crucial (Yanicostas et al.  2008 ). More precisely, anosmin-1 
seems to play a key role for proper activation of the CXCR4b/SDF1a and/or 
CXCR7/SDF1a signalling pathways (Yanicostas et al.  2008 ). Regarding olfactory 
system development in zebrafi sh, anosmin-1a depletion impairs the fasciculation of 
olfactory axons and their terminal targeting within the OB. In this sense,  kal1a  inac-
tivation induces a severe decrease in the number of GABAergic and dopaminergic 
OB neurons (Yanicostas et al.  2009 ). 

 Related to anosmin-1/FGF-2/FGFR1 signalling, a recent study developed in 
chick embryos has described the effect of anosmin-1 on FGF-8 signalling (Endo 
et al.  2012 ). This work highlights the strong infl uence of anosmin-1 on three mor-
phogen agents, belonging to some well-known families, such as FGF, BMP and 
WNT, known as key actors in the formation of the neural crest and craniofacial 
development (Sauka-Spengler and Bronner-Fraser  2008 ; Trainor et al.  2002 ) More 
specifi cally, Endo et al. ( 2012 ) show that anosmin-1 is synthesised locally in the 
neural crest microenvironment, up-regulating  FGF8  and  BMP5  gene expression. 
Anosmin-1 also enhances FGF8 activity, while inhibiting both BMP5 and WNT3a 
activities, being therefore crucial for the formation of cranial neural crest. This 
study supports the idea of the relevance of this ECM protein at temporally and spa-
tially regulating growth factor activities during embryonic development (Endo et al. 
 2012 ) as we and others have suggested (See above). 
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12.4.1     Anosmin-1 Function in Invertebrates 

 In  C .  elegans , anosmin-1 ortholog is  kal - 1 . In this nematode  kal - 1  is involved in two 
important events in the epithelial morphogenesis: ventral enclosure and male tail 
formation (Rugarli et al.  2002 ). Thus, as well as in rodents,  kal - 1  affects neurite 
outgrowth in vivo by modulating neurite branching (Rugarli et al.  2002 ) and also 
promotes migration of ventral neuroblasts prior to epidermal enclosure (Hudson 
et al.  2006 ). However, in this case,  kal - 1  does not modulate FGF signalling in neu-
roblast migration but it seems that  kal - 1  interacts with multiple HSPGs to promote 
cell migration.   

12.5     Anosmin-1 in Kallmann Syndrome 

 KS is a genetically heterogeneous developmental disease, characterised by hypogo-
nadotropic hypogonadism and anosmia, and its prevalence has roughly been esti-
mated to be from 1:8,000 to 1:10,000 in men (Seminara et al.  1998 ) and around 
1:40,000 in women (Dodé and Hardelin  2009 ). The presence of a defective sense of 
smell, whether partial (hyposmia) or complete (anosmia), distinguishes KS from 
normosmic idiopathic hypogonadotropic hypogonadism with a normal sense of 
smell (nIHH), which can be associated with mutations in the  GnRHR  and  GPR54  
genes. Due to hypothalamic GnRH-1 defi ciency, males with KS show cryptorchi-
dism, testicular atrophy and microphallus at birth and then subsequent failure to 
undergo a normal puberty during adolescence. Females with KS usually present 
primary amenorrhea or infertility. 

 First described by the Spanish pathologist Aureliano Maestre de San Juan in 
1856, KS is defi ned by the association of the presence of small testes (hypogonado-
tropic hypogonadism) with complete (anosmia) or incomplete (hyposmia) olfaction 
disturbance (Maestre de San Juan  1856 ). A more detailed description of the syn-
drome was reported almost a century later using patients from different affected 
pedigrees with hypogonadism and anosmia (Kallmann et al.  1944 ). They hint at a 
broader spectrum of clinical defects and identify the familial nature in the clinical 
syndrome that was seen in both sexes and accompanied by multiple congenital 
anomalies. In 1954, de Morsier fi rst noted the link between hypogonadism and neu-
roanatomical defects, including agenesis of the olfactory bulb and tract and other 
midline neuroanatomical defects (de Morsier  1954 ). Since then, it is commonly 
accepted that hypogonadotropic hypogonadism in KS is caused by the migratory 
arrest of GnRH-1 neurons, failing to enter the telencephalon and lack of GnRH 
secretion leads to a complete or partial failure of pubertal development (Wray et al. 
 1989 ; Hayes et al.  1998 ; Schwanzel-Fukuda et al.  1989 ). However, in the case of 
hyposmia/anosmia a wide array of anatomical defects could be responsible for the 
lack of smell ranging from the agenesis/hypoplasia of the OBs to defects in the 
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formation of the olfactory nerve or the lateral olfactory tract and including other 
causes that may explain this sensory problem. 

 There are different modes of KS transmission described to date, that include X 
chromosome-linked recessive, autosomal recessive, autosomal dominant with 
incomplete penetrance, and most probably digenic/oligogenic inheritance [for more 
details, see Dodé and Hardelin ( 2009 )]. Multiple genetic causes have been identifi ed 
so far in the development of this disorder:  KAL1 ,  FGFR1 ,  PROK2 ,  PROKR2 ,  NELF , 
 KISSR1 ,  CHD7 ,  SEMA3A  and  FGF8  (Young et al.  2012 ; Legouis et al.  1991 ; Dode 
et al.  2003 ,  2006 ; Kim et al.  2008 ; Pitteloud et al.  2007 ; Falardeau et al.  2008 ). 

 As described above,  KAL1 , the gene causing the X-linked form was the fi rst to be 
identifi ed in KS (Franco et al.  1991 ; Legouis et al.  1991 ).  KAL1  is localised in the 
Xp22.3 region and encodes anosmin-1, protein that shows a strong homology with 
adhesion molecules involved in neuronal migration and axonal pathfi nding. As pre-
viously exposed in this work,  KAL1  has been extensively studied along the last 
decades, although the absence of an identifi able murine ortholog has denied 
researchers the opportunity to create and study  Kal1  knock-out mice (see above). 
Other gene related to KS is  KAL2 , responsible for the autosomal dominant variant 
of KS, which encodes FGFR1 (Dode et al.  2003 ). Numerous mutations on  FGFR1  
have been described in several functional domains of this receptor. Genotype- 
phenotype correlations have shown that some clinical features associated with KS 
satellite symptoms, such as loss of nasal cartilage, hearing impairment, and anoma-
lies of the limbs seem to be mainly associated with  KAL2  mutations. The role of 
FGFR1 in the normal development of the olfactory bulb explains the association of 
anosmia with GnRH-1 defi ciency in FGFR1-mutated patients. Phenotype analysis 
indicates that FGFR1 is involved in normal migration of GnRH-1 foetal neurons, 
but this is clearly not the whole story as a substantial proportion of  KAL2 -mutated 
individuals have normosmic GnRH-1 defi ciency (Martin et al.  2011 ). 

 Finally, recent works indicate that FGFR1 signalling is important for the genera-
tion of GnRH-1 neurons via the neurotrophic molecule FGF8 (Chung et al.  2010 ). 
Interestingly, FGFR1 is expressed by GnRH-1 cells (Gill et al.  2004 ), and FGFR1 
hypomorphic animals show a dramatic reduction in the number of GnRH-1 neurons 
(Chung and Tsai  2010 ). Even more, FGF8 is involved in the induction and differen-
tiation of the mouse nasal placode (Kawauchi et al.  2005 ), and the loss of this mor-
phogen results in the absence of the vomeronasal organ and GnRH-1 neurons 
(Chung and Tsai  2010 ). Together with this, the region of the nasal placode from 
which the GnRH-1 cells emerge is missing in the homozygous FGF8 hypomorphs 
(Kawauchi et al.  2005 ). In this sense, recent fi ndings have shown that anosmin-1 
promotes the neural crest formation and controls, among other growth factors, 
FGF8 activity in chick embryo (Endo et al.  2012 ). However, it is noteworthy that 
since the entire region in the nasal placode is missing in these mice (homozygous 
FGF8 hypomorphs), the actual impact of these molecules on the development of 
GnRH-1 neurons and their precursors is not clear and therefore remains to be eluci-
dated. All these observations together, focused on the description of FGFR1 and 
FGF8 mutations, shed light on the pathogenesis of GnRH-1 defi ciency in general, 
not just KS (Martin et al.  2011 ; Villanueva and de Roux  2010 ).  

F. de Castro et al.



283

12.6     Roles of Anosmin-1 in Other Diseases 

12.6.1     Anosmin-1 in Multiple Sclerosis 

 Multiple sclerosis (MS) is the most frequent demyelinating disease in young adults. 
MS lesions are characterised by demyelination, infl ammation, axonal loss and reac-
tive gliosis (Frohman et al.  2006 ). Accompanying these events, a spontaneous, and 
sometimes extensive remyelination, is also possible under specifi c circumstances 
(Patani et al.  2007 ; Patrikios et al.  2006 ). However, in chronic MS lesions remyelin-
ation is absent or limited to the plaque border (Barkhof et al.  2003 ; Bramow et al. 
 2010 ; Prineas and Connell  1979 ). It is plausible that the permissive environment 
that allows the migration of OPCs during development should be present in this 
kind of demyelinating diseases, including MS, to produce an effective remyelin-
ation (Dubois-Dalcq et al.  2005 ). Nonetheless, the blockade of oligodendroglial 
progenitor differentiation is a major determinant of remyelination failure in chronic 
MS lesions (Kuhlmann et al.  2008 ). Associated to demyelinated plaques, alterations 
have been described in the expression pattern of several molecules involved in OPC 
biology during development such as CXCL1/GRO-α (Omari et al.  2005 ), semapho-
rin 3A and 3 F (Williams et al.  2007 ) and sonic hedgehog (Wang et al.  2008 ). 
Regarding the FGF2/anosmin-1 system, the distribution of FGF2 and anosmin-1 
varies between the different kinds of demyelinated plaques in MS patients, showing 
a complementary spatial pattern (Clemente et al.  2011 ). In areas with active remy-
elinating activity, i.e. active lesions and the periplaque of chronic-active plaques 
(Frohman et al.  2006 ), FGF2 is up-regulated in infi ltrating as well as microglia- 
derived macrophages, whereas anosmin-1 is absent (Clemente et al.  2011 ). In con-
trast, where the remyelination process is completely compromised i.e. demyelinated 
area of chronic-active and chronic-inactive plaques (Frohman et al.  2006 ), FGF2 is 
totally absent but Anosmin-1 appears fi lling the entire extension of both regions 
(Clemente et al.  2011 ). Although not ascribed to any cell type, anosmin-1 may be 
synthesised by astrocytes in these two particular regions, as it occurs in the cerebel-
lum during development (Gianola et al.  2009 ). In addition, anosmin-1 is present in 
13–14 % of the nude axons that pass through the demyelinated area but not in the 
periplaque or in its adjacent normal appearing white matter (Clemente et al.  2011 ). 
Therefore, up-regulated anosmin-1 during remyelination shows a similar profi le to 
that found during human and other mammal development (Dellovade et al.  2003 ; 
Duke et al.  1995 ; Lutz et al.  1994 ; Soussi-Yanicostas et al.  2002 ). This is a striking 
functional histopathological observation and confi rms that, in adult MS patients, 
axons acquire developmental features (Bribián et al.  2008 ; Soussi-Yanicostas et al. 
 2002 ). Similar re-expressions of ECM proteins in MS plaques have been previously 
shown. PSA-NCAM is re-expressed on 14 % of demyelinated axons in the plaques 
of chronic lesions but not in the periplaque or in the normal appearing white matter 
(Charles et al.  2002 ), and the glycosaminoglycan hyaluronan, as well as its binding 
transmembrane glycoprotein CD44, also accumulates in the core of chronic MS 
lesions (Back et al.  2005 ). 
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 The up-regulation of different adhesion molecules in those regions where 
 remyelination does not occur spontaneously could be interpreted in different ways. 
It may represent a part of a more general developmental programme reinitiated by 
neurons in order to protect themselves after the demyelinating injury. But it repre-
sents a non-desirable consequence since this neuroprotective activity possibly could 
render the axon non-permissive to remyelination. However, the mechanism by 
which adhesion molecules interfere with re-myelination is not well understood. 
A negative regulation of myelination by this kind of molecules could involve three 
different and hypothetical mechanisms (1) by triggering negative signals that 
impede oligodendrocyte maturation; (2) by steric inhibition, preventing a close con-
tact between axons and oligodendrocytes; (3) by strengthening the adhesion of 
OPCs and inhibiting their migration. In the case of PSA-NCAM, it acts as a nega-
tive signal for myelination, probably by preventing adhesion of OPC processes to 
axons (Charles et al.  2000 ), but it also should be down-regulated to allow OPC dif-
ferentiation (Decker et al.  2002 ). In this sense, PSA-NCAM expression persists in 
those regions containing unmyelinated fi bres, such as the mossy fi bres of the den-
tate gyrus and axons from the supraoptic and paraventricular nuclei, which remain 
unmyelinated throughout life (Seki and Arai  1991 ,  1993 ). During human foetal 
forebrain development, myelination starts in those areas where PSA-NCAM is 
down-regulated (Jakovcevski et al.  2007 ), which reinforces the data observed in 
mice. Hyaluronan also impedes remyelination in the corpus callosum by inhibiting 
OPC maturation when injected 5 days after lysolecithin-mediated demyelination 
(Back et al.  2005 ), but there are no data about its selective persistence in different 
tracts of the adult brain. The lack of data about anosmin-1 distribution in adulthood 
(of either human or other mammals) does not allow the consideration of similar 
roles of this molecule in adulthood or MS lesions. On the other hand, there are data 
suggesting that PSA-NCAM is not necessary for OPC motility but for the direc-
tional movement of OPCs in response to PDGF (Zhang et al.  2004 ), while anosmin-
 1 has been shown to antagonise FGF2 motogenic effect (Clemente et al.  2011 ; 
Bribián et al.  2006 ). Attending to developmental data about anosmin-1 actions on 
OPCs, two putative roles for axonal anosmin-1 in MS lesions could be considered 
(1) anosmin-1 may interfere with the FGF2 effects on OPC migration (Clemente 
et al.  2011 ; Bribián et al.  2006 ); (2) since homophilic interactions are important for 
axon-OPC recognition during development (Bribián et al.  2008 ), anosmin-1 may 
facilitate OPC recognition/adhesion and thereby facilitate remyelination. 

 Therefore, to mimic developmental conditions and induce effective remyelin-
ation, several aspects are needed in the FGF2/anosmin-1 system. First, FGF2 should 
be present and anosmin-1 absent in areas of successful remyelination (Clemente 
et al.  2011 ). Second, not only axons, but adult OPCs, should acquire embryonic 
characteristics (Clemente et al.  2011 ; Bribián et al.  2006 ,  2008 ), as it has been previ-
ously shown in MS for other OPC-specifi c genes (Arnett et al.  2004 ; Capello et al. 
 1997 ). Third, OPCs may express the fundamental receptor involved in anosmin-1 
actions, FGFR1 (Hu et al.  2009 ; Murcia-Belmonte et al.  2010 ; Clemente et al. 
 2011 ). The fi rst circumstance is present in areas with spontaneous remyelination 
(active lesions and the periplaque of chronic-active lesion). However, in the 
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demyelinated area of MS chronic lesions, FGF2 is totally absent and the lack of 
anosmin-1 in OPCs could affect their recognition of the nude anosmin-1-expressing 
axons and thus compromise their ability to repair the damage. Finally, a subpopula-
tion of OPCs within areas where FGF2 is up-regulated expresses FGFR1, which 
suggests that FGFR1 + -OPCs are the cells recruited by this growth factor into these 
zones or it might up-regulate FGFR1 in OPCs, as observed previously in vitro 
(Bansal et al.  1996 ). 

 In the last years, a new concept about the relationship between the shape of the 
oligodendrocyte and the ECM content has emerged. Kippert et al. ( 2009 ) showed 
that the cell surface area of this cell type is critically dependent on actomyosin con-
tractility and is regulated by physical properties of the supporting matrix. These 
authors also demonstrated that the presence of ECM proteins with known non- 
permissive growth properties within the CNS blocks oligodendrocyte surface 
spreading, which is accompanied by changes in the rate of endocytosis (Kippert 
et al.  2009 ). An implication of these fi ndings would be that changes in the rigidity 
of the scarred MS lesion due to reactive astrocyte protein secretion may unbalance 
the intracellular and extracellular forces and inhibit oligodendrocyte differentiation. 
As has been described along this chapter, the core of MS chronic lesions presents an 
astrocyte-mediated deposition of different extracellular matrix proteins (anosmin-1, 
PSA-NCAM and hyaluronan). A fi rst implication of their presence in this specifi c 
area could be an increase in the rigidity of the demyelinated area compared to the 
surrounded periplaque, and therefore, an unbalance in the cellular forces that drive 
the inhibition of remyelination. Another possibility unexplored to date is that, 
although these extracellular cues would not alter the physical properties of the 
demyelinated area, they would change the activity of signalling molecules that regu-
late intracellular force (specifi cally those related with RhoA) and could also inhibit 
remyelination (Baer et al.  2009 ; Bauer and Ffrench-Constant  2009 ). As described 
above, anosmin-1 is a fi rm candidate for this, since it induces cytoskeletal rear-
rangements through FGFR1-dependent mechanisms involving Cdc42/Rac1 activa-
tion, two members of the Rho family of small GTPases (González-Martínez et al. 
 2004 ). However, further experiments are needed to establish whether anosmin-1 
also participates in controlling actomyosin contractility and, therefore, oligodendro-
cyte cell shape and differentiation.  

12.6.2     Anosmin-1 in Other Pathologies 

 Besides their above-mentioned different roles in pathologies affecting the CNS (KS 
and MS), anosmin-1 has been also involved in totally different diseases. For exam-
ple, anosmin-1 produced by epidermal keratinocytes in response to calcium concen-
trations or anti-infl ammatory cytokines may modulate epidermal nerve density in 
atopic dermatitis (Tengara et al.  2010 ) and it has been also implicated in the response 
to immunoglobulin therapy in dermatomiositis (Raju and Dalakas  2005 ). 
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 Finally, a relationship between anosmin-1 and cancer has also been reported. 
For instance, up-regulation of  KAL1  in breast tumour tissue compared to normal 
breast tissue has been described (Arikawa et al.  2011 ), while in a metastasising 
human oesophageal squamous cell carcinoma cell line,  KAL1  is down-regulated 
when compared to the non-metastasising parental line (Kawamata et al.  2003 ). Jian 
et al. ( 2009 ) demonstrated that  KAL1  gene expression plays an important role in 
cancer metastasis and protection from apoptosis of the tumoural cell (Jian et al. 
 2009 ). Screening of colon, lung and ovarian cancer cDNA panels indicated a signifi -
cant decrease in  KAL1  expression in comparison to corresponding uninvolved tis-
sues. However,  KAL1  expression increased with the progression of cancer from 
early stages (I and II) to later stages (III and IV) of the cancer, and a direct correla-
tion between the TGF-β and  KAL1  expression in colon cancer cDNA has been 
reported. In colon cancer cell lines, TGF-β induces  KAL1  gene expression and 
secretion of anosmin-1 protein. Interestingly, hypoxia induces anosmin-1 expres-
sion that, in turn, protects cancer cells from apoptosis activated by hypoxia and 
increases cancer cell motility (Jian et al.  2009 ).   

12.7     Concluding Remarks 

 The new roles of anosmin-1 in different biological processes, as well as in pathol-
ogy, outline a scenario far beyond the olfactory system and Kallmann syndrome. 
Anosmin-1 plays relevant direct roles in cell adhesion, cell migration, axonal out-
growth and collateralisation, but the indirect effects of the protein, modulating FGF- 
signalling (via FGFR1), have been recently complemented by other morphogenic 
pathways like BMP and Wnt. Research has progressed signifi cantly in the last years 
regarding anosmin-1: we have dissected the different domains of the protein which 
are relevant for its binding to the different known partners (FGFR1, laminin, fi bro-
nectin, anosmin-1 itself, HS, others), and it has been pointed as an important actor 
in the pathogenesis of MS, cancer metastasis and allergic processes. In this sense, 
anosmin-1 would be considered as one of the most actively studied ECM proteins, 
and its binding properties describe a panoply of biological effects which should be 
increasingly considered in development and in adulthood and in physiological and 
pathological scenarios, biasing the scientifi c community by the meaning of its 
name, undoubtedly linked to olfaction: nowadays, if a scientist smells anomin-1 in 
the air, she/he should consider this protein as a relevant actor in physiology and 
pathology, specially, in the nervous system.     
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    Abstract     Cadherins were originally isolated as calcium-dependent cell adhesion 
molecules and are characterized by their cadherin motifs in the extracellular domain. 
In vertebrates, including humans, there are more than 100 different cadherin-related 
genes, which constitute the cadherin superfamily. The protocadherin (Pcdh) family 
comprises a large subgroup within the cadherin superfamily. The Pcdhs are divided 
into clustered and non-clustered Pcdhs, based on their genomic structure. Almost all 
the  Pcdh  genes are expressed widely in the brain and play important roles in brain 
development and in the regulation of brain function. This chapter presents an over-
view of Pcdh family members with regard to their functions, knockout mouse phe-
notypes, and association with neurological diseases and tumors.  

13.1         Introduction 

 Cadherins are calcium-dependent adhesion molecules that constitute a superfamily 
and play crucial roles in cell signaling, development, and other processes. The 
 cadherin superfamily includes classical cadherins, desmosomal cadherins, and pro-
tocadherins. All the cadherin superfamily members are transmembrane proteins and 
include an approximately 110-amino-acid region containing several repeats, desig-
nated the extracellular cadherin (EC) domain (Fig.  13.1a ). In vertebrates, over 100 
cadherin superfamily members have been identifi ed.

   A novel cadherin-like protein family isolated from rat and human brain cDNA by 
the PCR method was termed the “protocadherin” family by Dr. Shintaro Suzuki and 
colleagues (Sano et al.  1993 ). Subsequent studies have identifi ed additional 
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  Fig. 13.1    Structure and classifi cation of the Pcdh protein family. ( a ) Pcdh protein structure. Pcdh 
proteins are type I transmembrane proteins, like classical cadherins, containing an approximately 
110-amino-acid region containing several repeats, designated the extracellular cadherin (EC) 
domain. ( b ) Classifi cation of Pcdhs. The Pcdh family is classifi ed into two groups, clustered Pcdhs 
and non-clustered Pcdhs, based on genomic organization. Non-clustered Pcdhs are divided into 
two subgroups, Pcdh-δ and other Pcdhs. Pcdh-δ  members contain two highly conserved motifs, 
designated CM1 and CM2, in their cytoplasmic domain. The Pcdh-δ  family can be further subdi-
vided into Pcdh-δ1 and Pcdh-δ2, based on the presence or absence of a CM3 motif       

protocadherin (Pcdh) family members. To date, more than 70 Pcdh molecules have 
been reported, and they constitute the largest subgroup within the cadherin super-
family. All the Pcdh proteins, like classical cadherins, are single-pass type I mem-
brane proteins. The  Pcdh  genes are classifi ed into clustered  Pcdh  and non-clustered 
 Pcdh  genes based on their genomic structure (Fig.  13.1b ). 

 The clustered  Pcdh  genes consist of three subfamilies,  Pcdh-α ,  Pcdh-β , and 
 Pcdh-γ , which have a clustered genomic organization similar to that of the 
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immunoglobulin ( Ig ) and T-cell receptor ( TCR ) genes. The  Pcdh  gene locus 
has been described in human (chromosome 5q31) (Wu and Maniatis  1999 ), 
mouse (chromosome 18c) (Wu et al.  2001 ), rat (chromosome 18) (Yanase 
et al.  2004 ), chicken (Sugino et al.  2004 ), and zebrafish (Tada et al.  2004 ). In 
humans, a total of 52 genes are arranged in the  Pcdh-α ,  Pcdh-β , and  Pcdh-γ  
clusters, which have 15 ( α1–α13 ,  αC1 , and  αC2 ), 15 ( β1 – β15 ), and 22 ( γA1–
γA12 ,  γB1–γB7 , and  γC3–γC5 ) genes, respectively (Wu and Maniatis  1999 ) 
(Fig.  13.2 ). In mice, 14  Pcdh-α , 22  Pcdh-β , and 22  Pcdh-γ  genes are arrayed 
in the same direction (Wu et al.  2001 ).

   In contrast, the non-clustered  Pcdh  genes are scattered throughout the genome. 
Non-clustered  Pcdh  genes can be classifi ed into two subgroups. The  Pcdh -δ family 
proteins contain two highly conserved motifs, designated CM1 (27 amino acids) 
and CM2 (17 amino acids), in the cytoplasmic domain; all other non-clustered 
 Pcdh s fall into a separate group. The  Pcdh -δ family can be further subdivided into 
the  Pcdh-δ1  and  Pcdh-δ2  groups, based on the presence or absence of a CM3 motif 
(5 amino acids), which is essential for their interaction with protein phosphatase-1α 
(PP1α) (Fig.  13.2b ).  

  Fig. 13.2    Genomic structure of the clustered  Pcdh s. The clustered  Pcdhs  consist of three subfamilies, 
 Pcdh-α ,  Pcdh-β , and  Pcdh-γ , which are organized in a unique genomic arrangement on human 
chromosome 5q31. The human  Pcdh-α  and  Pcdh-γ  clusters consist of variable-region exons and a 
set of common constant-region exons. Each variable-region exon has a promoter and is  cis -spliced 
to the constant-region exons. The  Pcdh-β  genes lack constant exons and consist of unspliced 
single- exon genes. In humans, a total of 52 genes are encoded by the clustered  Pcdh s: 15 by 
 Pcdh-α  ( Pcdh1-α1–α13 , - αC1 , and - αC2 ), 15 by  Pcdh-β  ( β1–β15 ), and 22 by  Pcdh-γ  ( Pcdh-γA1–
γA12 , - γB1–γB7 , and  -γC3–γC5 )       
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13.2     Non-clustered Pcdh Functions and Association 
with Neurological Disease 

13.2.1     Pcdh1 

 [Other designations: Axial protocadherin, protocadherin 42] 
  Pcdh1 , formerly named protocadherin 42, was the fi rst  Pcdh  gene to be discov-

ered. The Pcdh1 protein has homophilic adhesive activity, which is calcium depen-
dent, like that of classical cadherins, but weaker (Sano et al.  1993 ).  Pcdh1  is 
expressed in various tissues, including the brain, airway, and skin epithelium, and it 
has been identifi ed as a susceptibility gene for bronchial hyper-responsiveness 
(BHR), a key pathophysiological feature of asthma (Koppelman et al.  2009 ). In 
addition,  Pcdh1  polymorphisms are associated with eczema (Koning et al.  2012 ). 
However, no association of  Pcdh1  with neurological diseases has been reported.  

13.2.2     Pcdh7 

 [Other designations: BH-protocadherin, NF-protocadherin] 
  Pcdh7  was fi rst identifi ed in a human gastric adenocarcinoma cell line by a trans-

membrane domain trapping method for isolating the cDNAs of putative membrane 
proteins (Sugano et al.  1998 ) and showed overall signifi cant homology with  Pcdh1  
(Yoshida et al.  1998 ). Its mRNA is predominantly expressed in the brain and heart; 
thus, it is also called  BH  (brain, heart)- Pcdh . There are three isoforms of  Pcdh7 , 
named  BH-Pcdh-a ,  -b , and  -c , which have different cytoplasmic tails.  Pcdh7  is clas-
sifi ed into the  Pcdh-δ1  subgroup, although only the BH-Pcdh-c isoform binds to 
PP1α (Yoshida et al.  1999 ). Xenopus  NF-Pcdh , an ortholog of  Pcdh7 , associates with 
the cellular cofactor TAF1, and both NF-Pcdh and TAF1 are required for formation 
of the embryonic ectoderm (Bradley et al.  1998 ) and neural tube (Rashid et al.  2006 ). 
MeCP2, the responsible gene for Rett syndrome, binds to an upstream region of the 
 Pcdh7  gene and downregulates the expressions of  Pcdh7  and  Pcdh-β1  (Miyake et al. 
 2011 ); however, the physiological relevance of this relationship is not understood.  

13.2.3     Pcdh8 

 [Other designations: Arcadrin, Paraxial protocadherin] 
  Pcdh8  was identifi ed as a neural activity-regulated cadherin-like molecule by 

differential cloning from a rat brain cDNA library. The Pcdh8 protein is expressed 
at synapses and has homophilic binding activity that is calcium dependent, like that 
of classical protocadherins. An inhibitory anti-Pcdh8 antibody reduces the excit-
atory postsynaptic potential (EPSP) amplitude and blocks long-term potentiation 
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(LTP) in rat hippocampal slices, suggesting that  Pcdh8  is involved in synaptic 
plasticity (Yamagata et al.  1999 ). Moreover,  Pcdh8  is induced by neural activity and 
causes the endocytosis of N-cadherin through the TAO2b and p38 MAP kinase 
pathway, resulting in a reduction in spine number (Yasuda et al.  2007 ).  Pcdh8 - 
knockout  mice show no visible defects during development and are viable and fer-
tile (Yamamoto et al.  2000 ), but they have an abnormally high number of dendritic 
spines (Yasuda et al.  2007 ). 

 In humans, the  Pcdh8  gene maps to chromosome 13q (Strehl et al.  1998 ) where 
there is a reported linkage to schizophrenia (Shaw et al.  1998 ). Screening of the 
 Pcdh8  gene in schizophrenia patients revealed several single-nucleotide polymor-
phisms (SNPs). However, the genotyping of  Pcdh8  polymorphisms in case–control 
and proband–parent trio samples revealed no strong association with schizophrenia. 
These results suggested that any contribution of  Pcdh8  polymorphisms to schizo-
phrenia susceptibility is likely to be weak (Bray et al.  2002 ).  

13.2.4     Pcdh9 

 [Other designation: cadherin superfamily protein VR4-11] 
  Pcdh9  was discovered by a database search. The  Pcdh9  gene is predominantly 

expressed in the brain, and its expression pattern changes during development 
(Strehl et al.  1998 ). Structural variations (i.e., copy number variations) of chromo-
somes have been found in patients with autism spectrum disorders (ASDs), which 
include autistic disorder, Asperger syndrome, pervasive developmental disorders 
not otherwise specifi ed, childhood disintegrative disorder, and Rett syndrome. 
These disorders are characterized by impairments in social interaction and commu-
nication and by unusual interests and behaviors. Genome-wide analyses for struc-
tural abnormalities by single-nucleotide microarray and karyotyping in autism 
spectrum patients have shown an increased copy number of the  Pcdh9  intronic gene 
in some of them (Marshall et al.  2008 ).  

13.2.5     Pcdh10 

 [Other designation: OL-protocadherin] 
  Pcdh10  was cloned by screening mouse brain cDNA libraries using a cDNA frag-

ment of human  Pcdh2  as a probe.  Pcdh10  is expressed in various regions of the 
nervous system, especially in the olfactory and limbic systems; thus, it is also called 
 OL  (olfactory, limbic)- Pcdh . Pcdh10 has homophilic adhesive activity, which is 
weaker than that of classical cadherins (Hirano et al.  1999 ). In the chicken, Pcdh10 
is strongly expressed along developing axonal fi bers and the path of the brachial 
nerves, suggesting that Pcdh10 may be involved in axon navigation (Nakao et al. 
 2005 ,  2008 ). Pcdh10’s cytoplasmic domain interacts with Nck-associated protein 1 
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(Nap1), a component of the WAVE complex, which regulates actin assembly and cell 
migration.  Pcdh10  gene-defi cient mice show abnormalities in neural projections of 
the ventral telencephalon, including the thalamocortical, corticothalamic, corticospi-
nal, nigrostriatal, and striatonigral projections.  Pcdh10  gene defi ciency also causes 
striatal axon growth failure in the ventral telencephalon (Uemura et al.  2007 ). These 
results suggest that Pcdh10 is essential for neural circuit formation in the ventral 
telencephalon. In families with autism spectrum disorders, homozygous deletions, 
including those of the  Pcdh10  gene, have been found (Morrow et al.  2008 ).  

13.2.6     Pcdh11X and Pcdh11Y 

 [Other designation of protocadherin 11X: protocadherin-X] 
 [Other designations of protocadherin 11Y: protocadherin-Y, protocadherin22] 
  Pcdh11X  (Yoshida and Sugano  1999 ) and then  Pcdh11Y  (Blanco et al.  2000 ) 

were cloned in a database search. These  Pcdh  genes are located within the hominid- 
specifi c Yp11.2/Xq21.3 block of homology between the sex chromosomes. 
 Pcdh11X  and  11Y  have 98.1 % nucleotide and 98.3 % amino acid identity. Both 
mRNAs are expressed about equally in all subregions of the brain except for the 
cerebellum, where  Pcdh11X  expression is predominant. In other organs, both 
mRNAs are expressed in the heart and other tissues, except for the kidney, liver, 
muscle, and testis, in which  Pcdh11Y  expression predominates (Blanco et al.  2000 ). 

 Late-onset alzheimer’s disease (AD) is a neurodegenerative disease and the most 
common form of dementia, appearing in approximately 50 % of all people over the 
age of 85. Because late-onset AD is not associated with a genetic factor or family 
link, it is also called “sporadic AD.” In early-onset familial AD, multiple rare muta-
tions are found in responsible genes, such as amyloid beta precursor protein, prese-
nilin 1, and presenilin 2. In late-onset AD, the APOE epsilon 4 allele and a SNP on 
Xq21.3 in the  Pcdh11X  gene (in patients of European descent living in the USA) 
have been identifi ed as susceptibility markers (Carrasquillo et al.  2009 ). However, 
two subsequent studies demonstrated that the  Pcdh11X  polymorphism is not associ-
ated with late-onset AD (Miar et al.  2011 ; Beecham et al.  2011 ). Finally,  Pcdh11X  
and  Pcdh11Y  have been suggested as possible candidate genes for roles in schizo-
phrenia and schizoaffective disorder, based on genomic analyses of patients 
(Giouzeli et al.  2004 ).  

13.2.7     Pcdh12 

 [Other designations: vascular endothelial protocadherin 2 (VE-cadherin-2), proto-
cadherin 14] 

  Pcdh12  was originally identifi ed in murine endothelial cells by RT-PCR, by 
using degenerate primers to amplify the highly conserved cytoplasmic and 

T. Hirabayashi and T. Yagi



299

extracellular region of cadherins, as Vascular Endothelial cadherin 2 
(VE-cadherin-2), a homolog of VE-cadherin, a classical cadherin (Telo’ et al. 
 1998 ).  Pcdh12  is strongly expressed in highly vascularized tissues, such as the 
lung, kidney, liver, spleen, placenta, and heart (Ludwig et al.  2000 ).  Pcdh12  
gene-defi cient mice are viable, fertile, and show no obvious histomorphological 
defects (Rampon et al.  2005 ). To investigate the possible association between 
brain morphology and DNA polymorphisms in schizophrenia patients, compari-
son analyses of brain structural data obtained with MRI and DNA from the 
peripheral blood cells of patients were performed. These analyses revealed a 
putative association between a  Pcdh12  polymorphism involving a Ser/Asn sub-
stitution at EC6 and cortical folding, suggesting that  Pcdh12  may be important 
for the development of specifi c brain areas (Gregório et al.  2009 ).  

13.2.8     Pcdh15 

 [Other designation: Usher syndrome 1F (USH1F)] 
  Pcdh15  was cloned as the responsible gene for the phenotype in Ames waltzer 

mutant mice, which are deaf and have abnormal stereocilia on the outer and inner 
hair cells of the cochlea (Alagramam et al.  2001 ).  Pcdh15  is expressed in the 
developing sensory epithelia of the inner ear, the central nervous system, and ret-
ina (Ahmed et al.  2001 ) and in the epithelia of the kidney, lung, gastrointestinal 
tract (Murcia and Woychik  2001 ). This Pcdh protein is exceptionally large, with 
an extracellular domain containing 27 EC motifs. The functions of Pcdh15 have 
been extensively studied in relation to Usher syndrome (or Usher’s syndrome), a 
genetic disorder inherited as an autosomal recessive trait that causes hearing and 
vision loss in school-age children. Usher syndrome is classifi ed clinically into 
three subtypes: I, II, and III. Usher syndrome type I is the most common and most 
severe. It is characterized by congenital deafness, disequilibrium owing to prob-
lems in the vestibular system, and retinitis pigmentosa. By genetic linkage analy-
sis, seven loci have been mapped for Usher syndrome type 1, termed  USH1A  to 
 USH1G . Patients with Usher syndrome type 1F show various mutations in the 
 Pcdh15  gene, including substitutions causing abnormal splicing or truncation 
(Ahmed et al.  2001 ) and a missense mutation in a highly conserved domain 
   (Doucette et al.  2009 ) (Table  13.1 ).

   Hair cells in the cochlea have bundles of stereocilia (hair bundles) at the api-
cal surface, and these bundles function as a mechanosensor for sound-evoked 
vibrations. The stereocilia in the hair bundles are connected to one another with 
tip-link fi laments. Pcdh15 and cadherin 23, a classical cadherin, are localized to 
the lower and upper part of the tip links, respectively, and Pcdh15 homodimers 
associate with cadherin 23 homodimers to form the tip-link fi laments 
(Kazmierczak et al.  2007 ). In  Pcdh15- knockout mice, cochlear and vestibular 
hair cells show defects in mechanotransduction similar to those of patients with 
Usher syndrome (Senften et al.  2006 ). 
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 The Kyoto Circling (KCI) rat, which is deaf and shows abnormal, constant 
circling behavior, was generated by a spontaneous mutation found in the F3 generation 
of a Sprague–Dawley rat purchased from a breeder in 2003. Histological examina-
tion revealed severe defects in the stereocilia in the cochlea, accompanied by a 
mutation in  Pcdh15  (Naoi et al.  2009 ). 

 Cadherin 23 has also been identifi ed as a responsible gene in Usher syndrome 
type1D (Bolz et al.  2001 ). In the Ames waltzer mouse, a model for Usher syndrome 
type1D, various mutations of cadherin 23 have been found, including mutations that 
create a premature stop codon and an ectopic splice donor site (Di Palma et al. 
 2001 ). Mutations in  Pcdh15  have also been reported in patients with nonsyndromic 
deafness DFNB23 (Ahmed et al.  2003 .  2008 ). Together, these results suggest that 
Pcdh15 is essential for the development and function of the mechanically sensitive 
hair bundle through its interactions with cadherin 23. 

 Besides neurological diseases, Pcdh15 is implicated in familial combined hyper-
lipidemia: nonsynonymous SNPs are found within the  Pcdh15  gene in families with 
this disease, and signifi cant decreases in plasma triglyceride and total cholesterol 
concentration were observed in  Pcdh15 -defi cient mice compared with wild-type 
mice (Huertas-Vazquez et al.  2010 ). However, the biological role of Pcdh15 in lipid 
abnormalities has not been identifi ed.  

13.2.9     Pcdh17 

 [Other designation protocadherin 68] 
  Pcdh17 , formerly named protocadherin 68, was cloned as a cadherin-related 

molecule expressed in rat glomeruli, by RT-PCR with degenerate primers. 
Postmortem expression analysis of Brodmann’s area 46, part of the frontal cortex, 
in schizophrenia patients revealed that the  Pcdh17  transcript is increased in patients 
with schizophrenia of short but not long duration. These differences in gene expres-
sion may be associated with changes in the symptom profi le of schizophrenia (Dean 
et al.  2007 ).  

13.2.10     Pcdh18 

 [Other designation: protocadherin 68-like protein] 
  Pcdh18  was fi rst identifi ed, together with  Pcdh19 , as a novel Pcdh molecule 

containing a CM-2 motif and is expressed in the brain, heart, kidney, lung, and tra-
chea (Wolverton and Lalande  2001 ). In a boy with an intellectual disability charac-
terized by severe developmental delay, seizures, microcephaly, hypoplastic corpus 
callosum, internal hydrocephalus, and dysmorphic features, a single gene deletion 
was found on chromosome 4q28.3, and the  Pcdh18  gene is considered a possible 
candidate for the responsible gene (Kasnauskiene et al.  2012 ).  
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13.2.11     Pcdh19 

 [Other designation: epilepsy female-restricted with mental retardation (EFMR)] 
  Pcdh19  was fi rst identifi ed together with  Pcdh18  (Wolverton and Lalande  2001 ). 

 Pcdh19  is expressed in the central nervous system and neural retina, and the Pcdh19 
protein has a cell adhesive property in chicken (Tai et al.  2010 ). In zebrafi sh, Pcdh19 
and N-cadherin form a  cis -complex, which controls cell movements during mor-
phogenesis of the anterior neural tube (Biswas et al.  2010 ). Although homophilic 
interactions of Pcdh19 alone are only weakly adhesive, the adhesion mediated by 
the Pcdh19 and N-cadherin complex appears strong (Emond et al.  2011 ), suggesting 
that Pcdh19 may regulate the adhesive property of N-cadherin. 

 Epilepsy in females with mental retardation (EFMR, also called epilepsy and 
mental retardation limited to females) is an X-linked disorder characterized by sei-
zure with onset in infancy or early childhood and cognitive impairment. It is unusual 
in that most X-linked genetic disorders affect males, but in the case of EFMR the 
carrier males are phenotypically normal, and only females are affected. Various 
mutations within the  Pcdh19  gene have been identifi ed in families with EFMR, 
including a mutation resulting in the introduction of premature stop codon, and a 
missense mutation affecting the adhesive property of  Pcdh19  (Dibbens et al.  2008 ). 

 Dravet syndrome (also known as Severe Myoclonic Epilepsy of Infancy, SMEI) 
is an intractable epilepsy, characterized by severe, uncontrolled seizures, usually 
triggered by fever, in the fi rst year of life. Dravet syndrome is mainly caused by a 
heterozygous de novo mutation in the  SCN1A  gene, which encodes the voltage- 
gated neuronal sodium channel alpha I subunit (Nav1.1). In a large study of a series 
of patients with Dravet syndrome, 27 % completely lacked or showed rearrange-
ments in one copy of the  SCN1A  gene. Mutations in  Pcdh19  were also found in 
these patients, suggesting that  Pcdh19  is also a responsible gene for Dravet-like 
syndrome (Depienne et al.  2009 ). In addition, because autism is a common symp-
tom in EFMR,  Pcdh19  is considered a possible responsible gene for autism 
(Camacho et al.  2012 ).  

13.2.12     Pcdh20 

 [Other designation: protocadherin 13] 
  Pcdh20  was cloned as an olfactory sensory neuron-specifi c cadherin in a genome-

wide microarray screen. Pcdh20 protein is expressed in the brain, especially in the 
olfactory epithelium and olfactory bulb, and in the pancreas (Lee et al.  2008 ). 
Huntington disease is a hereditary neurological disorder that causes early selective 
neuronal cell death in the striatum and cortex, resulting in a progressive loss of 
cognitive, physical, and emotional function. The causative mutation is an expansion 
of the CAG tract in exon 1 of the  huntingtin  gene, which encodes a polyglutamine 
tract in the huntingtin protein. The CAG tract is normally repeated 10–35 times 
within the gene, but patients with Huntington disease have from 36 to more than 120 
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CAG repeats. Polyglutamine-expanded huntingtin protein accumulates in large 
aggregates that are found in various regions of the brain, and these proteins are con-
sidered toxic to neurons. 

 The YAC 128 transgenic mouse, which expresses the human HTT gene with 128 
CAG repeats, is a Huntington disease model. These transgenic mice display a pro-
gressive neurological phenotype similar to that of patients with Huntington disease. 
To analyze transcriptional changes in Huntington disease, a comparative genome- 
wide expression profi le of striatal tissue from YAC128 transgenic mice and wild- 
type mice was performed. The results revealed 13 genes that showed differential 
expression between these mice, including that of  Pcdh20 , whose mRNA level is 
increased in YAC128 transgenic mice as early as 3 months after birth. However, the 
 Pcdh20  mRNA is downregulated in the caudate nucleus of humans with Huntington 
disease. These results suggest that a change in Pcdh20 expression level may lead to 
impaired synaptic connections in the striatum (Becanovic et al.  2010 ).  

13.2.13     Pcdh21 

 [Other designations: MT-protocadherin, Photoreceptor cadherin] 
  Pcdh21 , originally named photoreceptor cadherin (prCAD), was fi rst identifi ed in 

bovine retina. Using subtractive hybridization with bovine brain cDNA, cDNAs 
expressed specifi cally in the retina were obtained. In situ hybridization of the retina 
showed  Pcdh21  transcripts only in photoreceptors, and Pcdh21 protein localized to the 
base of the outer segment of both rods and cones (Rattner et al.  2001 ).  Pcdh21- knockout  
mice are viable, are fertile, and do not display any anatomic abnormalities. However, by 
electron microscopy, their outer segments appear disorganized and fragmented, and a 
progressive loss of photoreceptor cells via apoptosis is observed over 5 months. These 
results indicate that Pcdh21 is necessary for outer segment integrity (Rattner et al.  2001 ). 

 Retinitis pigmentosa is an inherited eye disease in which the progressive dys-
function and degeneration of rod photoreceptors are followed by the degeneration 
of cone photoreceptors. It is characterized by progressive peripheral vision loss, 
night blindness (nyctalopia), and eventual blindness. In families with an autosomal 
recessive retinitis pigmentosa, two separate homozygous single-base deletions of 
the  Pcdh21  gene have been found, leading to a frameshift and a premature stop 
codon. These deletions are located within the extracellular cadherin domains, which 
are highly conserved in various species (Henderson et al.  2010 ). 

 In addition, a homozygous 1-bp duplication in the  Pcdh21  gene is found in families 
with autosomal recessive cone-rod dystrophy. The symptoms of this disorder are simi-
lar to those of retinitis pigmentosa, although it is characterized by the early loss of cone 
receptors accompanied by the loss of rod receptors. These mutations in families result 
in a frameshift and a premature stop codon (Ostergaard et al.  2010 ). Prominin 1 is a 
pentaspan transmembrane glycoprotein that associates with Pcdh21 at the base of pho-
toreceptor outer segments. Mutations in prominin 1 have also been reported in patients 
with autosomal dominant cone-rod dystrophy and with autosomal recessive retinitis 
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pigmentosa (Yang et al.  2008 ). These results suggest that an association of Pcdh21 with 
prominin 1 is essential for photoreceptors to function normally.   

13.3     Genomic Structure of Clustered  Pcdh  Genes 

 The clustered  Pcdh  genes were fi rst identifi ed as the cadherin-related neuronal 
receptor (CNR) family, which weakly interacted with the N-terminus of Fyn tyro-
sine kinase in a yeast two-hybrid screen with mouse brain cDNA (Kohmura et al. 
 1998 ). Subsequently, a large gene cluster was found in the human genome project 
data by a BLAST search for the  Cnr  gene (Wu and Maniatis  1999 ). For both the 
human  Pcdh-α  and  Pcdh-γ  clusters the genomic organization of consists of a set of 
variable-region exons followed by a set of common constant-region exons. The 
variable-region exons encode six EC domains, a transmembrane domain, and a 
short cytoplasmic domain. The constant-region exons encode the rest of the cyto-
plasmic domain. Each individual variable-region exon has a promoter and is  cis - 
spliced  to the constant-region exons (Wang et al.  2002a ). Moreover, there are 
alternative splicing forms (types A and B) in the constant-region exons of the 
 Pcdh-α  genes (Sugino et al.  2000 ). The  Pcdh-β  cluster lacks constant exons and is 
instead composed of unspliced single-exon genes that are equivalent to the variable- 
region exons of the other two clusters. The molecules named protocadherin 2, pro-
tocadherin 3, and protocadherin 13 by Sano et al. ( 1993 ) are identical to  Pcdh-γC3 , 
 Pcdh-β12 , and  Pcdh-γA12 , respectively.  

13.4     Clustered Pcdh Function and Association with 
Neurological Disease 

 The clustered  Pcdh  genes are widely expressed in the central nervous system 
(Morishita et al.  2004 ; Frank et al.  2005 ; Junghans et al.  2008 ). The most unique 
feature of the clustered  Pcdh  family is its expression pattern in individual neurons. 
Single-cell RT-PCR analyses of mouse cerebellar Purkinje cells showed that each 
Purkinje cell randomly expresses ~2 members of the 12  Pcdh-α  isoforms ( α1–α12 ) 
(Esumi et al.  2005 ), ~4 members of the 22  Pcdh-β  isoforms (Hirano et al.  2012 ), and 
~4 members of the 19  Pcdh-γ  isoforms ( γA1–γA12 ,  γB1 ,  γB2 , and  γB4–γB8 ) 
(Kaneko et al.  2006 ). Similar results were demonstrated by in situ hybridization 
using specifi c probes for each isoform. These expression patterns of clustered  Pcdhs  
can generate approximately 3 × 10 10  variations for each neuron (Yagi  2012 ). In addi-
tion, in any given Purkinje cell, some isoforms of these genes are derived from the 
maternal allele and others from the paternal one. In contrast, the C-type isoforms in 
 Pcdh-α  ( αC1  and  αC2 ) and  Pcdh-γ  ( γC3–γC5 ) are constitutively expressed and are 
derived from both alleles (Kaneko et al.  2006 ). Thus, the clustered  Pcdh  members 
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have unique monoallelic and combinatorial expression patterns in individual 
neurons. 

 DNaseI hypersensitivity (HS) assays revealed long-range  cis -regulatory elements 
in  Pcdh-α  and  Pcdh-γ  that enhance some of the promoter activities (Ribich et al. 
 2006 ; Yokota et al.  2011 ). The  Pcdh-α  enhancer, termed HS5-1, is located down-
stream of the  Pcdh-α  gene cluster, and its deletion results in strong downregulation of 
the most 3′  Pcdh-α  variable-region exons in mice (Ribich et al.  2006 ). A SNP within 
HS5-1 is associated with susceptibility to bipolar disorder (Pedrosa et al.  2008 ). 

 The CpG methylation state of promoter regions affects gene expression. The 
 Pcdh  promoters for the expressed  Pcdh  genes are hypo-methylated, and those of 
unexpressed  Pcdh  genes are hyper-methylated. The promoters for the stochastically 
expressed isoforms of  Pcdh-α  ( α1–α12 ) show mosaic and mixed methylation states, 
whereas those for the constitutively expressed isoforms ( αC1  and  αC ) are hypo- 
methylated in the mouse brain (Kawaguchi et al.  2008 ). Methyl-CpG-binding pro-
tein 2 (MeCP2) is a DNA-binding protein that binds 5-methylcytosine residues in 
CpG dinucleotides and represses the transcription from methylated gene promoters. 
The perturbation of MeCP2 can lead to the misregulation of clustered  Pcdh  tran-
scription (Chahrour et al.  2008 ). To identify the neuronal MeCP2 target gene, 
genome microarray and chromatin immunoprecipitation analyses were performed 
and revealed that MeCP2 binds to the upstream region of  Pcdh-β1 , an isoform of the 
 Pcdh-β  gene expressed in human neuroblastoma cells. A luciferase assay showed 
that the transcriptional activity of the  Pcdh-β1  promoter was downregulated by the 
binding of MeCP2 (Miyake et al.  2011 ). These results suggest that the expression of 
 Pcdh  is affected by DNA methylation. 

 Rett syndrome is a neurological and developmental disorder caused by mutations 
in MeCP2 (Amir et al.  1999 ). Its clinical features include seizures, ataxic gait, lan-
guage dysfunction, autistic behavior, small hands and feet, and slow head growth; it 
occurs almost exclusively in females (   Chahrour and Zoghbi  2007 ). The  Pcdh-β1  
mRNA level is increased in the postmortem brain from Rett syndrome patients 
(Miyake et al.  2011 ), suggesting an association between  Pcdh-β1  expression and 
Rett syndrome. Moreover, a de novo mutation of the  Pcdh-β4  gene is found in 
patients with sporadic autism (O’Roak et al.  2012 ); however, little is known about 
the relationship between these neurological diseases and the  Pcdh-β  genes. 

 Pcdh-α and Pcdh-γ proteins are localized to both axonal and dendritic synaptic 
regions (Kohmura et al.  1998 ; Phillips et al.  2003 ). Pcdh-α proteins associate with 
Pcdh-γ proteins in  cis , and Pcdh-γ enhances the cell surface expression of Pcdh-α 
(Murata et al.  2004 ). In addition, Pcdh-α, Pcdh-β, and Pcdh-γ proteins form a tri-
meric protein complex (Han et al.  2010 ). 

 Pcdh-γ proteins have a strictly homophilic adhesive property, and a heteromulti-
meric  cis -tetramer functions as a homophilic binding unit (Schreiner and Weiner 
 2010 ). The cytoplasmic domain of Pcdh-α and Pcdh-γ associates with two tyrosine 
kinases, proline-rich tyrosine kinase 2 (PYK2) and focal adhesion kinase (FAK), 
and the interaction with Pcdh-α or Pcdh-γ inhibits these kinase activities (Chen 
et al.  2009 ). The overexpression of PYK2 induces cell death via apoptosis, suggest-
ing that Pcdh-α and Pcdh-γ contribute to neuronal cell survival by inhibiting the 
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PYK2 pathway. Moreover, Pcdh-γ regulates dendritic arborization in cortical 
neurons by inhibiting the FAK pathway (Garrett et al.  2012 ). 

  Pcdh - α  gene-defi cient mice are viable, are fertile, and have no apparent abnor-
mality, but their olfactory sensory neurons (Hasegawa et al.  2008 ) and serotonergic 
neurons (Katori et al.  2009 ) display an axon projection defect. Mice in which the 
Pcdh-αA isoform is downregulated are also viable and fertile, but they show behav-
ioral changes in contextual fear conditioning and spatial working memory (Fukuda 
et al.  2008 ). On the other hand,  Pcdh-γ  gene-defi cient mice die within 12 h of birth 
and have a hunched posture, shallow and irregular breathing, and repetitive limb 
tremors (Wang et al.  2002b ). In addition, their spinal cord is smaller than that of 
wild-type mice, and they have severe neurological defects, including massive cell 
death via apoptosis and decreased numbers of synapses. 

 Analyses of knockout mice of the CTCF (CCCTG-binding factor) gene, a key 
molecule for chromatin conformational change, suggested that CTCF regulates the 
expression of clustered  Pcdhs . These mice display neuronal abnormalities, such as 
decreased dendritic arborization, lack of somatosensory barrel formation, and 
decreased spine numbers in hippocampal neurons (Hirayama et al.  2012 ). 

 The cohesin complex, a key molecule in chromosomal interactions, colocalizes 
with CTCF. Mice heterozygous for Nipped-B-like (NIPBL), a subunit of the cohe-
sin DNA loading complex, show a signifi cant decrease in  Pcdh-β  gene expression 
(Kawauchi et al.  2009 ). Ablation of the cohesin complex subunit SA1 (cohesin-
 SA1) causes the downregulation of clustered  Pcdh  genes (Remeseiro et al.  2012 ). 
Moreover, the cohesin complex subunit Rad21 binds to the promoter and enhancer 
regions of the clustered  Pcdh s and may regulate their expression (Monahan et al. 
 2012 ). These fi ndings suggest that complex chromatin organization plays an impor-
tant role in the regulation of  Pcdh  gene expression. 

 Overall, these results suggest that the diversity of the clustered P cdh  genes may 
contribute to selective interactions between neurons and be required for neural cir-
cuit formation. However, their detailed functions and disease associations still need 
to be elucidated.  

13.5      Pcdhs  as Tumor Suppressor Genes 

 The loss or reduction of classical cadherin expression has been demonstrated in a 
variety of tumors and may affect cell invasion and metastasis. By large-scale 
genome analysis, some of the  Pcdhs  have also been reported to act as tumor sup-
pressor genes in various tissues. Microarray-based methylation analysis of astro-
cytoma showed aberrant methylation of a CpG island within the fi rst exon of a 
clustered  Pcdh  isoform,  Pcdh-γA11 , compared to normal brain tissue. There is a 
signifi cant inverse relationship between gene expression and methylation in astro-
cytoma. After treating astrocytoma cells with 5-aza-2′-deoxycytidine, a demeth-
ylating agent, DNA methylation is signifi cantly increased, and the expression of 
 Pcdh-γA11  gene is reduced. These fi ndings suggest that the adhesive property of 
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Pcdh-γA11 may play a role in the invasion of astrocytoma cells into the normal 
brain (Waha et al.  2005 ). However, the molecular diversity of the  Pcdh s expressed 
in astrocytoma is not known, and whether other clustered  Pcdh  isoforms are aber-
rantly expressed remains to be investigated. 

 Genome-wide analyses of glioblastoma samples from patients revealed that the 
non-clustered  Pcdh9  is downregulated in glioblastoma (de Tayrac et al.  2009 ). 
Furthermore, patients with  Pcdh9 -expressing glioma have longer survival times 
than patients with  Pcdh9 -non-expressing glioma. In this study, the  Pcdh9  expres-
sion was an independent prognostic factor, and no signifi cant associations were 
found for gender, chemotherapy, or radiotherapy. Subgroup analysis according to 
tumor subtype showed that both patients with  Pcdh9 -expressing astrocytoma and 
 Pcdh9 -expressing oligodendrocytoma have longer survival times than patients with 
 Pcdh9- non-expressing tumors. These fi ndings indicate that  Pcdh9  might be a useful 
biomarker for predicting the prognosis of patients with glioma (Wang et al.  2012 ). 

 Collagen XVI, a member of the fi bril-associated collagens with interrupted triple 
helices (FACIT), is upregulated in glioblastoma cells and may affect the migration 
and invasiveness of glioma cells. Human glioblastoma cells in which the gene for 
Collagen XVI is knocked down by siRNA show decreased invasiveness and adhe-
sion potential and increased  Pcdh18  mRNA and Pcdh18 protein (Bauer et al.  2011 ). 
These results suggest that  Pcdh18  may act as a tumor suppressor in glioma. 

 In some other tumors,  Pcdh  expressions are decreased, and Pcdh proteins may 
play a variety of roles in specifi c tumor types. For example, reduced expression of the 
clustered  Pcdh s ( Pcdh-α ,  Pcdh-β , and  Pcdh-γ ) may be associated with breast cancer 
(Novak et al.  2008 ), Wilms’ tumor, a pediatric tumor of the kidney (Dallosso et al. 
 2009 ), and colorectal tumor (Dallosso et al.  2012 );  Pcdh7  and  Pcdh20  with non-
small-cell lung cancer (Huang et al.  2009 );  Pcdh8  with mantle cell lymphoma 
(Leshchenko et al.  2010 ) and breast cancer (Yu et al.  2008 ). Among the non- clustered 
 Pcdh s,  Pcdh10  may be associated with breast cancer (Miyamoto et al.  2005 ), hema-
tologic cancer (Ying et al.  2007 ), gastric, colorectal, and pancreatic cancers (Yu et al. 
 2010 ), cervical cancer (Narayan et al.  2009 ), testicular cancer (Cheung et al.  2010 ), 
and nasopharyngeal and esophageal carcinomas (Ying et al.  2006 );  Pcdh11Y  with 
prostate cancer (Terry et al.  2006 ); and  Pcdh17  with esophageal carcinoma (Haruki 
et al.  2010 ), bladder cancer, renal cell tumors, and prostate cancer (   Costa et al.  2011 ). 

 In early-stage non-small-cell lung cancer (NSCLC) patients, two SNPs of the 
 Pcdh7  gene were identifi ed by genome-wide analysis (Huang et al.  2009 ). Similarly, 
in VMRC-LCR cells, an NSCLC cell line, a homozygous loss of the  Pcdh20  gene 
was identifi ed.  Pcdh20  mRNA is expressed in normal lung tissue but contains a 
homozygous deletion in other NSCLC cell lines (Imoto et al.  2006 ). 

  Pcdh8  is inactivated by mutation or epigenetic silencing, and  Pcdh8  point muta-
tions are found in various breast carcinoma cells. These point mutations cause 
defects in  Pcdh8 ’s ability to inhibit cell growth and migration. In addition, the trans-
fection of a human normal mammary epithelial cell line with  Pcdh8  containing one 
of these mutations causes the cells’ transformation (Yu et al.  2008 ). Similarly, 
 Pcdh10  is silenced or downregulated in gastric cancer cell lines. The re-expression 
of  Pcdh10  in gastric cancer cell lines reduces colony formation in vitro, and less 
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tumor growth is observed in vivo when the transfected cells are injected into mice 
(Yu et al.  2010 ). Interestingly, the  Pcdh8 ,  Pcdh9 ,  Pcdh17 , and  Pcdh20  genes are 
located on chromosome 13q14–21, which is conserved between humans and mice; 
thus, their expressions might be regulated by common factors in cellular and brain 
function (Kim et al.  2011 ).  

13.6     Conclusion 

 This chapter introduces the  Pcdh  family, which is associated with various neuro-
logical diseases, such as bipolar disorder, autism, schizophrenia, and Usher syn-
drome, as well as a number of tumor types. While the functions of classical cadherins 
such as E-cadherin and N-cadherin have been extensively studied, the roles of the 
 Pcdh  family remain poorly understood. In the future, it will be important to deter-
mine the functions of the  Pcdh s to elucidate the mechanisms of neurological dis-
eases and brain functions.     
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    Abstract     Leucine-rich repeats (LRRs) are motifs that form protein–ligand interaction 
domains. There are approximately 140 human genes encoding proteins with extra-
cellular LRRs. These encode cell adhesion molecules (CAMs), proteoglycans, 
G-protein-coupled receptors, and other types of receptors. Here we give a brief 
description of 36 proteins with extracellular LRRs that all can be characterized as 
CAMs or putative CAMs expressed in the nervous system. The proteins are involved 
in multiple biological processes in the nervous system including the proliferation 
and survival of cells, neuritogenesis, axon guidance, fasciculation, myelination, and 
the formation and maintenance of synapses. Moreover, the proteins are functionally 
implicated in multiple diseases including cancer, hearing impairment, glaucoma, 
Alzheimer’s disease, multiple sclerosis, Parkinson’s disease, autism spectrum disor-
ders, schizophrenia, and obsessive–compulsive disorders. Thus, LRR-containing 
CAMs constitute a large group of proteins of pivotal importance for the development, 
maintenance, and regeneration of the nervous system.  

    Chapter 14   
 Neural Cell Adhesion Molecules Belonging 
to the Family of Leucine-Rich Repeat Proteins 

             Malene     Winther      and     Peter     S.     Walmod    

        M.   Winther ,  M.Sc.    
     Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, 
Faculty of Health Sciences ,  University of Copenhagen ,   Copenhagen, Denmark     

    P.  S.   Walmod, M.Sc.     (*)  
     Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, 
Faculty of Health Sciences ,  University of Copenhagen, Copenhagen ,   Denmark    

  Laboratory of Neural Plasticity ,  University of Copenhagen, Copenhagen ,   Symbion, Box 39, 
Fruebjergvej 3 ,  2100   Copenhagen Ø ,  Denmark    
 e-mail: psw@sund.ku.dk  



316

14.1         Introduction 

 Traditionally, cell adhesion molecules (CAMs) have been divided into four 
groups: cadherins, selectins, integrins, and members of the immunoglobulin (Ig) 
superfamily. However, within recent years several other protein families with 
members able to mediate homo- or heterophilic cell adhesion have been identi-
fi ed. These include for instance Neurexins and Neuroligins (Bottos et al.  2011 ). 
Moreover, the family of leucine-rich repeat (LRR)-containing proteins includes 
numerous CAMs (Nam et al.  2011 ; Woo et al.  2009a ; Karaulanov et al.  2006 ; 
Hohenester  2008 ). 

 The LRR is a protein–ligand interaction motif. It was discovered in 1985 as part 
of the primary sequence of leucine-rich α2-glycoprotein, which is named thus 
because 66 of the 312 amino acids constituting the protein are leucine residues 
(Takahashi et al.  1985 ). Subsequently, LRRs have been identifi ed in a large group of 
functionally diverse proteins, and in the human genome alone, 375 genes are known 
to express LRR-containing proteins (Ng et al.  2011 ). 

 LRR-containing proteins are not restricted to mammals, but are found in  numerous 
organisms including bacteria, plants, and yeast (Kobe and Kajava  2001 ). Moreover, 
the LRR motif is located in intracellular, transmembrane, as well as extracellular 
proteins (Dolan et al.  2007 ) with a large variety of functions. For instance, LRR-
containing proteins include homo- and heterophilically interacting CAMs (Nam 
et al.  2011 ; Woo et al.  2009a ; Karaulanov et al.  2006 ; Hohenester  2008 ; Chen et al. 
 2006 ), proteoglycans (McEwan et al.  2006 ; Park et al.  2008 ; Dellett et al.  2012 ), 
virulence factors (Bierne et al.  2007 ; Niemann et al.  2004 ), ribonuclease inhibitors 
(Kobe and Deisenhofer  1996 ), scaffold proteins (Thalhammer et al.  2009 ), cytoskel-
eton-binding proteins (Kopecki and Cowin  2008 ; Kostyukova  2008 ), phosphatases 
(Brognard and Newton  2008 ),  phosphatase inhibitors (Santa- Coloma  2003 ), cyto-
solic kinases (Tsika and Moore  2012 ), receptor kinases and receptor tyrosine kinases 
(Skaper  2012b ; Dievart et al.  2011 ), G-protein-coupled receptors (Barker and Clevers 
 2010 ; Kong et al.  2010 ), as well as other non- catalytic receptors and modulators of 
cell signaling (Botos et al.  2011 ; Matilla and Radrizzani  2005 ; Wadelin et al.  2010 ). 

 LRRs mediate protein–protein interactions, and from the examples of LRR- 
containing protein types listed above, it is clear that this protein family is involved 
in a variety of biologically processes including immune responses (Botos et al. 
 2011 ), disease resistance and pathogen recognition in plants (Bonardi et al.  2012 ), 
platelet aggregation (Wijeyewickrema et al.  2005 ), extracellular matrix (ECM) 
assembly (McEwan et al.  2006 ; Park et al.  2008 ; Dellett et al.  2012 ), cell adhesion 
(Nam et al.  2011 ; Woo et al.  2009a ; Karaulanov et al.  2006 ; Hohenester  2008 ; Chen 
et al.  2006 ), activation and modulation of intracellular signal  transduction (Brognard 
and Newton  2008 ; Santa-Coloma  2003 ; Tsika and Moore  2012 ; Skaper  2012b ; 
Matilla and Radrizzani  2005 ), cytoskeletal organization and dynamics (Kopecki 
and Cowin  2008 ; Kostyukova  2008 ; Matilla and Radrizzani  2005 ; Yamashiro et al. 
 2012 ), and RNA processing (Kobe and Deisenhofer  1996 ). 
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14.1.1     Structural Organization of Leucine-Rich Repeats 

 LRRs are composed of 20–29 amino acids long hydrophobic motifs that contain a 
highly conserved sequence and a variable sequence. The conserved sequence is 
characterized by 11 residues, LxxLxLxxNxL, or 12 residues, LxxLxLxxCxxL, 
where x can be any amino acid, N is either an asparagine, threonine, cysteine, or 
serine, C is a cysteine or a serine, and L is a leucine (sometimes replaced by a valine, 
isoleucine, or phenylalanine) (Kobe and Kajava  2001 ; Kajava  1998 ). 

 Ribonuclease inhibitor was the fi rst LRR-containing protein for which a crystal 
structure was obtained (PDB ID: 2BNH; Fig.  14.1 ). The structure revealed that an 
LRR consists of an α-helix (formed by the variable sequence) connected by a loop 
to a β-strand (formed by the conserved sequence) (Kobe and Deisenhofer  1996 ). 
Generally, LRRs exist in tandem arrays of 2–52 repeats, which results in an overall 
horseshoe-like shape, where all the β-strands are on the concave side and the 
α-helices are on the convex side (Kobe and Kajava  2001 ; Kajava  1998 ; Matsushima 
et al.  2005 ).

   To prevent that the hydrophobic core of an LRR domain is exposed to the 
 surroundings, extracellular LRR domains are typically fl anked by cysteine-
rich domains. There is at least one type of cysteine-rich domain fl anking the 
N-terminal of extracellular LRRs (N-fl anking; NF) and at least four cysteine-rich 
domains fl anking the C-terminal (C-fl anking; CF1–4) [reviewed in Kobe and 
Kajava ( 2001 )]. 

 When LRR domains form homodimers they seem to dimerize through the 
 concave surface, as demonstrated for the proteoglycan decorin (PDB ID: 1XKU), 
the D4 domain of the ROBO1 and -2 ligand SLIT2 (PDB ID: 2WFH) (Seiradake 
et al.  2009 ), and the ectodomains of AMIGO1 (PDB ID: 2XOT; see below). 
Likewise, the majority of LRR domains bind to heterophilic ligands with the con-
cave surface, as demonstrated for the ribonuclease inhibitor binding to ribonuclease 
[PDB ID: 1Z7X; Johnson et al. ( 2007 )] or Netrin-G1 and -G2 in complex with the 
Netrin-G ligands (NGLs) NGL1 and NGL2, respectively (PDB IDs: 3ZYJ and 
3ZYI; see below). However, there are also examples of LRR-containing proteins 
that mediate interactions with the convex surface of the LRR domain, for example, 
the platelet cell surface protein GPIBA in complex with Thrombin (PDB ID: IP8V) 
[reviewed in Bella et al. ( 2008 )]. 

 As mentioned above, typical LRR domains consist of β-strands, α-helices, and 
interconnecting loops. However, variations from this general composition exist, and 
based on differences in their consensus sequences, length, etc. LRR motifs can be 
classifi ed into at least seven subfamilies (RI-like, SDS22-like, cysteine-containing, 
bacterial, typical, plant-specifi c, and TpLRR). Four of the seven subfamilies include 
proteins expressed in animals, and of these four families, three (RI-like, SDS22- 
like, and cysteine-containing) include proteins with intracellular LRRs, whereas the 
fourth (the “typical” subfamily) exclusively includes proteins with extracellular 
LRRs [reviewed in Kobe and Kajava ( 2001 )].  
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14.1.2     Subfamilies of Proteins with Extracellular 
Leucine- Rich Repeats 

 Bioinformatical analysis has shown that ~140 human proteins contain extracellular 
LRRs. For comparison,  Caenorhabditis elegans, Drosophila melanogaster , and  Mus 
musculus , respectively, express 29, 66, and 135 proteins with extracellular LRRs. 

  Fig. 14.1    Structural model of Ribonuclease inhibitor.  Top : Cartoon drawing of the structural 
model of porcine ribonuclease inhibitor (PDB ID: 2BNH). The model reveals that the protein 
consists of 16 α-helices ( blue ) connected to β-strands with the overall sequence LxxLxLxxNxL, 
where x ( yellow ) can be any amino acid, N ( red ,  sticks ) is either an asparagine, threonine, cysteine, 
or serine, and L ( green ,  sticks ) is a leucine, valine, or an isoleucine. The conserved polar amino 
acids are located in the loop regions connecting the β-sheets with the α-helices, whereas the con-
served nonpolar residues are in the loop regions, and β-sheets, facing toward the α-helices, away 
from the concave surface.  Bottom : Structural model of the interaction between human ribonuclease 
inhibitor ( green ;  cartoon ) and human pancreatic ribonuclease [ purple ;  cartoon  and  surface ; PDB 
ID: 1Z7X; Johnson et al. ( 2007 )]. The structure demonstrated how the ribonuclease interacts with 
the concave surface of the LRR domain. The fi gures were created with PyMOL (DeLano Scientifi c)       
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These proteins have been subdivided into four classes: LRR-only (consisting of 
 proteins that contain only LRRs), LRR-Ig/Fn3 (consisting of proteins that in addi-
tion to LRRs also contain Ig and/or Fn3 modules), LRR-Tollkin (consisting of 
 proteins that contain a cytoplasmic Toll/interleukin 1 receptor domain or cluster with 
the Toll proteins), and LRR-other (consisting of proteins that contain other types of 
domains, e.g., epidermal growth factor (EGF) repeats or a G-protein- coupled recep-
tor domain [see Dolan et al. ( 2007 ), for details]. As shown in Table  14.1  proteins 
with extracellular LRRs can be further subdivided into secreted, lipid-anchored, and 
various types of transmembrane proteins.

   The proteins with extracellular LRRs include several families of CAMs with 
members that demonstrate a dynamic expression in the developing and adult  nervous 
system (Nam et al.  2011 ; Woo et al.  2009a ; Karaulanov et al.  2006 ; Hohenester 
 2008 ; Chen et al.  2006 ; Wright and Washbourne  2011 ). 

 Of the ten LRR-containing families of CAMs described below, seven families (the 
AMIGO/Alvin, FLRT, LINGO, LRIT, NGL, NLRR, and SALM families) belong to 
the LRR-Ig/Fn3 class, two families (the LRRTM and SLITRK families) belong to the 
LRR-only class, and LRRC15/Lib belongs to the LRR-Tollkin class (Fig.  14.2 ).

14.1.3        LRR-Containing Non-cell Adhesion Molecules in Diseases 

 Since LRR-containing proteins constitute a large family of structurally and func-
tionally diverse proteins that are implicated in multiple biological processes, it is not 
surprising that they are implicated in a number of diseases [reviewed in Matsushima 
et al. ( 2005 )]. 

 Mutations in the cytoskeleton-regulating SDS22-like LRR-containing protein 
LRRC50 has been linked to human cystic kidney disease and primary cilia dyskinesia 
(Zariwala et al.  1993 ; van Rooijen et al.  2008 ). 

 Mutations in the cytoplasmic kinase LRR kinase-2 (LRRK2, also known as 
Parkinson disease (autosomal dominant) 8 [PARK8], and dardarin) are related to 
the development of Parkinson’s disease (PD). Thus, the LRRK2 mutant G2019S 
alone has been identifi ed in up to 40 % of the cases of familial PD [reviewed in 
Tsika and Moore ( 2012 )]. 

   Table 14.1    Human proteins with extracellular LRRs   

 Class of protein with 
extracellular LRR 

 Type I 
transmembrane 

 GPI 
anchored  Secreted 

 Multi- 
transmembrane   Total 

 LRR-Ig/Fn3  35  1   2   0   38 
 LRR-Tollkin  17  0   2   0   19 
 LRR-other   1  0   9  16   26 
 LRR-only  32  6  19   0   57 
 Total  85  7  32  16  140 

  Human proteins with extracellular LRRs have been divided into four classes according to their 
predicted characteristics [modifi ed from Dolan et al. ( 2007 )]  
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  Fig. 14.2    Schematic drawing of the LRR-containing CAMs. The fi gure shows schematic drawings 
of the general structural organizations of the LRR-containing CAMs described in the text. The 
general structure of the proteins within a single family is presented as a single drawing. If there 
are variations in the general organization of the proteins within the family, this is indicated by a 
 pale coloring  of the domains in question. Differences in the lengths of the cytoplasmic domains 
between members within a single family are indicated with an  uneven coloring  of the cytoplasmic 
domain. The relative lengths of the cytoplasmic domains refl ect differences in the number of 
amino acids constituting the cytoplasmic domains in the respective protein families. The fi gures 
were created with CorelDraw 11 (Corel Corporation)         

 Several LRR-containing proteins are pathogen recognition receptors. Intracellular 
pathogen recognition receptors include the CATERPILLER (also called NOD-LRR 
and NACHT-LRR) family of proteins, which has been shown to be important regu-
lators of cell death, cell growth, and immunity. The family also contains proteins 
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associated with several immunological disorders including bare lymphocyte 
 syndrome (MHC class II defi ciency), Blau syndrome, Crohn’s disease, familial-
cold autoinfl ammatory syndrome, familial Mediterranean fever, multiple sclerosis 
(MS), myocardial infarction, Muckle–Wells syndrome, neonatal-onset multisystem 
infl ammatory disease, and rheumatoid arthritis [reviewed in Inohara and Nunez 
( 2003 ) and Ting et al. ( 2006 )]. Pathogen recognition receptors with extracellular 
LRRs include Toll-like receptors that recognize pathogen-associated molecular 
 patterns and danger-associated molecular patterns. Toll-like receptors are involved 
in numerous diseases including Alzheimer’s disease (AD) and MS [reviewed in 
Hanamsagar et al. ( 2012 )]. 

Fig. 14.2 (continued)
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 An absence of the small leucine-rich proteoglycans (SLRPs) biglycan, decorin, 
fi bromodulin, and lumican affects collagen fi brillogenesis, and SLRP-defi cient 
mice exhibit several defects including the connective tissue disease Ehlers–Danlos 
syndrome, osteoporosis, osteoarthritis, muscular dystrophy, and corneal opacifi ca-
tion (Ameye and Young  2002 ). Mutations in another SLRP, nyctalopin, can cause 
night blindness (Bech-Hansen et al.  2000 ). 

 In the brain, the protein leucine-rich, glioma-inactivated 1 (LGI1)/Epitempin 
exists in two isoforms of which one isoform that is secreted has been shown to regulate 
synaptic transmission through binding to protein ADAM 22. Data suggest that 
mutations in  LGI1  are implicated in the pathogenesis of epilepsy, and at least 22 
mutations in  LGI1  have been identifi ed in people with autosomal epilepsies (Sirerol- 
Piquer et al.  2006 ; Fukata et al.  2006 ; Staub et al.  2002 ). 

 Several LRR-containing proteins are important for the pathogenesis of cancer, 
and within the group of non-CAMs in particular the LRIG family has received 
attention. The mammalian LRIG family consists of three members, LRIG1-3 (Guo 
et al.  2004 ), that are structurally related to the  Drosophila  protein Kekkon, and like 
Kekkon, LRIGs modulate receptors tyrosine kinases. Thus, LRIG1 has been found 
to bind Ret, MET, EGF receptors, and ErbB receptors directly and thereby prevent 
receptor activation while enhancing receptor downregulation (Gur et al.  2004 ; 
Laederich et al.  2004 ; Shattuck et al.  2007 ; Ledda et al.  2008 ). In contrast, reduced 
expression of LRIG1 can lead to overexpression of ErbB2 (Miller et al.  2008 ). 
LRIG1 modulation of receptor tyrosine kinases has implications for the pathogenesis 
of several types of cancer (Wu et al.  2012 ; Ghasimi et al.  2012 ; Powell et al.  2012 ; 
Xie et al.  2013 ). In breast cancers, LRIG1 seems to function as an estrogen- regulated 
growth suppressor (Krig et al.  2011 ) and the protein has been suggested as a poten-
tial prognostic indicator of, e.g., cutaneous squamous cell carcinoma (Tanemura 
et al.  2005 ), prostate cancer (Thomasson et al.  2011 ), and cervical adenocarcinomas 
(Muller et al.  2013 ). LRIG3 also acts as a tumor suppressor by reducing EGF 
 receptor activity in, e.g., gliomas (Cai et al.  2009a ,  b ) and cervical adenocarcinomas 
(Muller et al.  2013 ). In contrast, the expression of LRIG2 seems to correlate with 
EGF receptor activity (Wang et al.  2009a ), and LRIG2 is a prognostic marker for 
poor survival for patients with oligodendrogliomas and early- stage squamous cell 
carcinoma of the uterine cervix (Holmlund et al.  2009 ; Hedman et al.  2010 ).  

14.1.4     Cell Adhesion Molecules with Extracellular 
LRR Domains 

 In the following sections the members of ten different families of CAMs or potential 
CAMs with extracellular LRR domains will be described. Although many of the pro-
teins have only been identifi ed recently the combined literature regarding the members 
of the ten protein families is extensive, and the descriptions are therefore in many cases 
somewhat sketchy. To compensate for this superfi ciality we have tried to highlight 
review and key articles where specifi c topics are described in more detail. 
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 Some sections will reveal that a given family of proteins has no, or only a minor, 
known relationship with neurological diseases or that the family members upon a 
closer inspection may turn out not to be CAMs. However, since the knowledge 
about the individual proteins in many cases is limited, we have prioritized to include 
several of the protein families not because they are CAMs related to neurological 
diseases, but because they are potential CAMs with a potential relationship to 
 neurological diseases. 

 On the other hand it should be emphasized that the included protein families do 
not constitute a complete list of LRR-containing CAMs. For instance, Slit proteins 
and their Robo counter-receptors are excluded from this chapter, but are described 
in a separate chapter (Ypsilanti and Chedotal  2013 ). Proteins that might have been 
included but which we decided to omit include Densin-180 and other members of 
the LAP family (Thalhammer et al.  2009 ) and Trk receptors (Zhou et al.  1997 ).   

14.2     Cell Adhesion Molecules Belonging 
to the LRR-Only Class 

14.2.1     The LRRTM Family 

 The LRR transmembrane neuronal (LRRTM) family consists of four proteins, 
LRRTM1-4. The family was identifi ed in 2003 (Lauren et al.  2003 ) and has also 
been detected in a number of large-scale studies (Ishikawa et al.  1997 ; Clark et al. 
 2003 ; Ota et al.  2004 ; Gerhard et al.  2004 ; Bechtel et al.  2007 ). The proteins have 
been suggested to be implicated in human handedness and a number of diseases 
including AD, autism spectrum disorders (ASDs), and schizophrenia (Majercak 
et al.  2006 ; Francks et al.  2007 ; Sousa et al.  2010 ). 

    Genes and Proteins 

 LRRTM1-4 are encoded by separate genes (Table  14.2 ) that constitute a family with 
conserved orthologues in vertebrates, but not invertebrates. Interestingly, three of the 
genes are located within introns of genes encoding different α-Catenin proteins 
[known to facilitate interactions between cadherins and actin fi laments, Pokutta et al. 
( 2008 )], and in all cases the  LRRTM  genes are transcribed in the opposite direction as 
the  CTNN  genes, suggesting coevolution of the of two families;  LRRTM1  is located 
within  CTNNA2 ,  LRRTM2  is located within  CTNNA1 , and  LRRTM3  is located within 
 CTNNA3  (Lauren et al.  2003 ); [see also Smith et al. ( 2011b )]. Recently it was dem-
onstrated that  CTNNA1  and  CTNNA2  contain alternative bidirectional promoters that 
are used for the transcription of  CTNNA1  and  CTNNA2  as well as  LRRTM2  and 
 LRRTM1 , respectively. Both promoters predominantly facilitate the transcription of 
the  LRRTM  genes, but their existence nevertheless points toward a functional 
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relationship between the expression of LRRTM-family proteins and α-Catenins 
(Kask et al.  2011 ).

   All four LRRTM proteins have an identical structural organization consisting of 
an ectodomain composed of 10 LRRs with NF and CF1 domains, followed by a 
transmembrane domain, and a cytoplasmic domain. Originally, all four LRRTMs 
were reported to have ~72 amino acids long cytoplasmic domains (Lauren et al. 
 2003 ). However, later it has been shown that alternative splicing of LRRTM3 and-4 
can also generate isoforms with ~140 amino acids long cytoplasmic domains (Clark 
et al.  2003 ; Ota et al.  2004 ; Gerhard et al.  2004 ; Bechtel et al.  2007 ). The human 
proteins exhibit amino acid identities of 43–63 %, LRRTM2 and -4 demonstrating 
the lowest degree of identity, and LRRTM3 and -4 the highest degree of identity 
(Lauren et al.  2003 ).  

    Expression 

 In adult humans, LRRTM1, -2, and -4 are expressed in numerous tissues. However, 
levels of LRRTM-encoding mRNAs are highest in the brain, and LRRTM3 is almost 
exclusively located in the central nervous system (CNS). The four proteins are 
expressed throughout the brain including the amygdala, caudate nucleus, cerebel-
lum, corpus callosum, hippocampus, the olfactory system, and thalamus. See Lauren 
et al. ( 2003 ), Majercak et al. ( 2006 ), Francks et al. ( 2007 ), Haines and Rigby ( 2007 ) 
and Linhoff et al. ( 2009 ) for detailed studies of human and mouse LRRTM expres-
sion patterns. 

 In mouse, the expression of LRRTM1 has been shown to be regulated by the 
homeobox transcription factor Dlx5, a protein that in humans is associated with 
the development of, e.g., ASD and hearing loss (Sajan et al.  2011 ). Human  LRRTM3  
has been shown to be transactivated by the DNA-binding protein storkhead box 1 
(STOX1) (van Dijk et al.  2010 ). 

 At the subcellular level LRRTMs localize to synapses, and several studies 
 demonstrate LRRTMs to be components of the postsynaptic density (Linhoff et al. 
 2009 ; Dosemeci et al.  2007 ; de Wit et al.  2009 ). 

   Table 14.2    The human LRRTM family   

 Gene symbol 
 Chromosomal 
location 

 Synonyms and 
previous names  Recommended protein name 

  LRRTM1   2P12  FLJ32082  Leucine-rich repeat transmembrane 
neuronal protein 1 

  LRRTM2   5q31  KIAA0416, LRRN2, 
leucine-rich repeat 
neuronal 2 protein 

 Leucine-rich repeat transmembrane 
neuronal protein 2 

  LRRTM3   10q22.1  Leucine-rich repeat transmembrane 
neuronal protein 3 

  LRRTM4   2p12  FLJ2568  Leucine-rich repeat transmembrane 
neuronal protein 4 
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 When expressed in HEK293 cells LRRTM2, -3, and -4 localize to the plasma 
membrane (de Wit et al.  2009 ), whereas LRRTM1, when overexpressed in several 
cell types, predominantly localize to intracellular organelles including the ER 
(Francks et al.  2007 ; de Wit et al.  2009 ). These observations suggest that LRRTM1 
mainly plays a role for the regulation of intracellular processes, whereas the remaining 
members of the family serve as receptors located in the plasma membrane. LRRTM1 
overexpressed in cerebellar granule neurons localize to cell soma, neurites, and 
growth cones (Francks et al.  2007 ), and when overexpressed at low levels in hip-
pocampal neurons LRRTM1 and -2 localize to dendrites, where they co- localize 
with markers for excitatory, but not inhibitory, synapses (Linhoff et al.  2009 ).  

    Interactions 

 The postsynaptic scaffolding protein PSD-95 binds to the four most C-terminal 
amino acids of the cytoplasmic domain of LRRTM2 [-ECEV], which resemble a 
class I PDZ-domain-binding motif. PSD-95 can be immunoprecipitated with 
LRRTM2 containing the [-ECEV]-sequence, but not with LRRTM2 lacking the 
motif, suggesting a direct interaction between the C-terminal part of LRRTM2 and 
one of the three PDZ domains of PSD-95. As a result of the interaction LRRM2 
seems to facilitate the recruitment PSD-95 to the cytoplasmic side of the postsynap-
tic plasma membrane (Linhoff et al.  2009 ; de Wit et al.  2009 ). The [-ECEV]-
sequence is found in human LRRTM1, -2, and -4, but not LRRTM3 (Uniprot entries 
Q86UE6, O43300, Q4KMX1, and Q86VH5, respectively), suggesting similar func-
tions for LRRTM1 and -4. 

 A study of LRR-containing proteins from zebrafi sh suggests that all four LRRTM 
proteins can form homophilic interactions as well as heterophilic interactions within 
the family (Soellner and Wright  2009 ). However, no mammalian LRRTM-family 
proteins have been demonstrated to form homophilic interactions. In contrast, 
LRRTM2 has been shown to mediate cell adhesion by  trans -interacting with 
Neurexins (Ko et al.  2009 ). Thus, if LRRTM-family proteins do form homophilic 
interactions, these interactions are most likely  cis -interactions. 

 In mammals, Neurexins constitute a family of three presynaptic transmembrane 
proteins, Neurexin-1, -2, and -3, located in the plasma membrane. Alternative 
 promoters permit the generation of α-Neurexins (that extracellularly contain six 
LNS domains with three interspersed EGF-like domains) and the much shorter 
β-Neurexins (that extracellularly contains only a single LNS domain). In addition, 
α-Neurexins contain fi ve sites for alternative splicing in the region encoding the 
ectodomain, two of which are also present in β-Neurexins. These splice sites enable 
the generation of multiple splice variants of both α- and β-Neurexins [reviewed in 
Craig and Kang ( 2007 ) and Knight et al. ( 2011 )]. 

 LRRTM2 binds both Neurexin-1α- and -β. Like for another family of postsynaptic 
Neurexin ligands, the Neuroligins, LRRTM2-Neurexin binding requires the binding 
of Ca 2+  to Neurexins. However, in contrast to Neuroligins, which bind to Neurexins 
irrespective of the presence of an insert at splice site 4, LRRTM2 binds only 
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Neurexins lacking an insert in splice site 4. Moreover, LRRTM2 and Neuroligin-1 
cannot bind Neurexin-1 simultaneously (de Wit et al.  2009 ; Ko et al.  2009 ; Siddiqui 
et al.  2010 ). In one study, LRRTM2 was found to bind Neurexin-1, but not 
Neurexin-2α or -3α, whereas another study has demonstrated binding of LRRTM2 
to Neurexin-2 and -3 as well as Neurexin-1 (de Wit et al.  2009 ; Siddiqui et al.  2010 ). 
For a recent review, see Wright and Washbourne ( 2011 ). 

 The LRR domain of LRRTM2 mediates  cis- interactions with the glutamate 
receptor subunits GluR1/GluA1, GluR2/GluA2 (both AMPA receptor subunits), 
and NR1 (an NMDA receptor subunit). Knockdown of LRRTM2 causes a 33 % 
decrease in GluR1-containing glutamate receptors in hippocampal neurons, sug-
gesting that LRRTM2 regulates the amount of AMPA receptors in the plasma 
 membrane, and thereby glutamatergic neurotransmission (de Wit et al.  2009 ). 
Similar interactions probably exist between LRRTM1 and glutamate receptor sub-
units (see below).  

    Functions 

 The interactions between LRRTM2 and glutamate receptor subunits seem to 
 facilitate the development and function of excitatory synapses, and also LRRTM1 
and -4, and to a lesser degree LRRTM3, are able to stimulate excitatory synaptogen-
esis (Linhoff et al.  2009 ). 

 Knockdown of LRRTM2 in hippocampal neurons leads to a decrease in the den-
sity of excitatory but not inhibitory synapses, whereas overexpression of LLRTM2 
increases the density of excitatory but not inhibitory synapses (de Wit et al.  2009 ; 
Ko et al.  2009 ). At the molecular level, studies with various chimeric LRRTM2 
proteins have demonstrated that the LRR domain of LRRTM2 is both necessary and 
suffi cient for the formation of excitatory synapses (Linhoff et al.  2009 ). 

 Knockdown of Neurexin-1, one of the presynaptic binding partners for LLRTM2, 
prevents LLRTM2-mediated presynaptic differentiation (de Wit et al.  2009 ), sug-
gesting that LRRTM2–Neurexin  trans -interactions are required for the development 
of excitatory synapses. Consistently, it has also been reported that a reduction in 
excitatory synapses is most pronounced, when both the Neurexin ligands LRRTM1, 
LRRTM2, and Neuroligin1 and -2 are absent. This further suggests a degree of 
functional redundancy between LLRTM and Neuroligins in relation to synapse for-
mation. Moreover, the loss of synapses requires synaptic activity. Thus, no synaptic 
loss is observed if synaptic activity is prevented by administration of neurotransmit-
ter receptor inhibitors or by inhibition of postsynaptic CaM kinase activity (Ko et al. 
 2011 ; Soler-Llavina et al.  2011 ). Interestingly, in vivo studies in mouse suggest that 
LLRTMs seem to be important for the development of excitatory synapses but not 
for the maintenance of the synaptic transmission in the mature synapses that in 
contrast requires the presence of Neuroligins (Soler-Llavina et al.  2011 ). 

  Lrrtm1 -knockout mice are fertile, they display no obvious phenotype different 
from that of wild-type mice, and their overall brain morphology is largely  unaffected 
by the LRRTM1 defi ciency (Linhoff et al.  2009 ). However, LRRTM1 defi ciency 
does cause a reduction in the volume of the hippocampus and a reduction in the 

M. Winther and P.S. Walmod



327

thickness of the somatosensory cortex (but not the motor cortex, auditory cortex, or 
prefrontal cortex). In some regions of the hippocampus, the LRRTM1 defi ciency 
results in an increase in spine length, but a decrease in synaptic density, whereas no 
changes have been observed for the width or density of dendritic spines, the length 
and thickness postsynaptic densities, or the size of synaptic clefts (Takashima et al. 
 2011 ). Synaptic defects in some regions of the hippocampus, defi ned as changes in 
the distribution of the vesicular glutamate transporter 1 (VGLUT1]), have also been 
demonstrated. Interestingly, these effects of LRRTM1 defi ciency are most pro-
nounced in the regions of the hippocampus exhibiting the lowest levels of LRRTM2 
expression (Linhoff et al.  2009 ), suggesting a degree of functional redundancy 
between LRRTM1 and -2. 

 Two  Lrrtm1 -knockout mice with slightly different genetic backgrounds have 
been extensively investigated in a number of behavioral tests (Takashima et al. 
 2011 ; Voikar et al.  2013 ). Takashima et al. ( 2011 ), but not Voikar et al. ( 2013 ), 
found that  Lrrtm1 -knockout mice demonstrate reduced spontaneous locomotor 
activity, defi cits in spatial memory, and increased freezing (an index of fear memory), 
whereas only Voikar et al. ( 2013 ) observed that  Lrrtm1 -knockout mice avoid small 
enclosures. However, in both studies it is concluded that  Lrrtm1- knockout mice 
demonstrate a reduced ability to adjust or adapt to novel or stressful environments 
(Takashima et al.  2011 ; Voikar et al.  2013 ). 

 To test whether the behavioral alterations in  Lrrtm1 -knockout mice are related to 
the observed alterations in the function of excitatory synapses, the effects of the 
NMDA receptor blocker MK-801 on the behavior of  Lrrtm1 -knockout and wild- 
type mice have been investigated. Both Takashima et al. and Voikar et al. report that 
MK-801 administration leads to different locomotor activity in  Lrrtm1 -knockout 
and wild-type mice, supporting the notion that the abnormal behavior of  Lrrtm1 - 
knockout  mice is related to changes in glutamatergic neurotransmission (Takashima 
et al.  2011 ; Voikar et al.  2013 ). 

  Lrrtm1- knockout mice demonstrate some of the same characteristics as patients 
with schizophrenia, including changes in glutamatergic neurotransmission and a 
reduction in the volume of the hippocampus (Harrison et al.  2003 ; Adriano et al. 
 2012 ). Moreover, as described below, human  LRRTM1  single-nucleotide polymorphism 
(SNP) alleles have been associated with schizophrenia (Francks et al.  2007 ). 
Consequently, the behavior of  Lrrtm1 -knockout and wild-type mice has been observed 
in response to administration with clozapine, a known drug for the  treatment of 
schizophrenia (Sherwood et al.  2012 ). However, no difference between the behavior 
of  Lrrtm1 -knockout and wild-type mice has been found in response to  clozapine 
administration (Takashima et al.  2011 ). In contrast, the abnormal behavior of  Lrrtm1-
 knockout mice is reduced in response to administration of the selective serotonin 
reuptake inhibitor fl uoxetine, a widely prescribed antidepressant (Takashima et al. 
 2011 ; Mandrioli et al.  2012 ). 

 In summary,  Lrrtm1 -knockout mice demonstrate some characteristics related 
to schizophrenia, but without exhibiting a pharmacobehavioral phenotype similar to 
other schizophrenia animal models. Nevertheless, the apparent relationship between 
LRRTM1 and schizophrenia (see below) suggests that  Lrrtm1 -knockout mice may 
be useful in future studies of schizophrenia.  
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    Diseases 

 β-site APP cleaving enzyme 1 (BACE1) is the main protease responsible for 
 cleaving Amyloid precursor protein (APP) to generate Aβ-peptides, and the level of 
BACE1 is increased in around 50 % of all patients with AD (Tan and Evin  2012 ). 
In an attempt to identify proteins responsible for the secretion of Aβ, Majarcak et al. 
( 2006 ) screened 15,200 genes by siRNA treatment of cells followed by detection of 
N-terminal APP cleavage products. The screen revealed that expression of LRRTM3 
increases BACE1-mediated cleavage of APP, whereas downregulation of LRRTM3 has 
no effects on the expression of APP, BACE1, or γ-secretase components. However, 
changes in LRRTM3 expression have no signifi cant effect on BACE1 activity, nor 
do LRRTM3 and APP demonstrate a high degree of co-localization (Majercak et al. 
 2006 ). Another study performed with several different shRNA constructs revealed 
that knockdown of LRRTM3 results in a reduced processing of APP (Reitz et al. 
 2012 ). Recently, the effect of LRRTM3 on APP processing was investigated in in 
vivo studies employing  Lrrtm3 -knockout mice and AβPPswe/PS1dE9 transgenic 
mice (mice containing the “Swedish” double point mutations in APP along with a 
mutation causing mis-splicing of exon 9 of mRNA encoding presenilin 1; all muta-
tions associated with early-onset familial forms of AD). Surprisingly, these studies 
were unable to detect any effects of LRRTM3 on the processing of APP (Laakso 
et al.  2012 ). The potential relationship between LRRTM3 expression and the 
 generation of Aβ-peptides is therefore still unclear. 

 However, there are other potential factors linking LRRTM3 to AD. A large 
region of chromosome 10, including the region encoding LRRTM3, has received 
attention in relation to the development of late-onset AD. Investigations of SNPs 
potentially related to late-onset AD, as well as other statistical and genetic studies, 
have observed SNPs in  LRRTM3  as well as  CCTNNA3  (the α-Catenin-encoding 
gene in which  LRRTM3  is nested in an intron) and identifi ed  LRRTM3  as a potential 
late-onset AD candidate gene (Reitz et al.  2012 ; Liang et al.  2007 ; Thornton-Wells 
et al.  2008 ; Edwards et al.  2009 ). 

 A family-based association study of four candidate genes,  LRRTM1 ,  LRRTM3 , 
 LRRN1 , and  LRRN3 , in combination with a case–control analysis suggests that 
common genetic variants of  LRRN3  and  LRRTM3  are associated with a susceptibil-
ity to the development of ASDs (Sousa et al.  2010 ). 

 Around 10 % of humans are left handed (Sun and Walsh  2006 ). Interestingly, 
handedness correlates with left–right asymmetries in relation to the progression of 
PD (van der Hoorn et al.  2012 ) and a relationship between non-right handedness 
and schizophrenia has also been proposed (Dragovic and Hammond  2005 ). 

 Francks et al. ( 2007 ) have, following experiments including genetic association 
mapping and gene-functional analysis, proposed that  LRRTM1  is a maternally sup-
pressed gene and that SNP alleles located within  LRRTM1  (and a 80 kb region 
upstream of  LRRTM1 ) are associated with paternally inherited handedness and 
 susceptibility to schizophrenia (Francks et al.  2007 ). The study received worldwide 
media attention [as described by McManus et al. ( 2009 )], but also strong criticism 

M. Winther and P.S. Walmod



329

by Crow et al. ( 2009 ), criticism that was published together with a response by 
Francks ( 2009 ). The notion that there is a relationship between  LRRTM1  SNPs and 
paternally inherited handedness and schizophrenia as proposed by Francks et al. 
( 2007 ) has been strengthened by additional data published more recently (Ludwig 
et al.  2009 ). 

 In summary, the LRRTM family consists of four members, of which at least 
some member can form heterophilic  trans -interactions with postsynaptic Neurexins, 
heterophilic  cis -interactions with glutamate receptor subunits, and intracellular 
interactions with PSD-95. All members of the family seem to facilitate excitatory 
synaptogenesis, and the individual members of the family may be related to inher-
ited handedness, susceptibility to schizophrenia ASD, and AD. However, in many 
respects the individual members of the family are still poorly characterized, both 
with respect to their basic biochemical properties and their importance for the 
pathogenesis of various diseases.   

14.2.2     The SLITRK Family 

 The SLIT and NTRK-like (SLITRK) family consists of six members, SLITRK1-6. 
The family was identifi ed in a search for genes differentially expressed in humans 
and mice with neural tube defects (Aruga and Mikoshiba  2003 ). Subsequently, all 
six proteins constituting the family have been shown to be expressed in the nervous 
system, and the members of the family have been related to several diseases includ-
ing cancer, schizophrenia, myotonic dystrophy 1/Steinert disease, Gilles de la 
Tourette syndrome (TS), and other obsessive–compulsive disorders (OCDs). See 
also Proenca et al. ( 2011 ) and Ko ( 2012 ) for recent reviews. 

    Genes and Proteins 

 The human and mouse members of the SLITRK gene family ( SLITRK1-6  and 
 Slitrk1-6 , respectively; Table  14.3 ) have been identifi ed in several studies between 
1998 and 2007 (Clark et al.  2003 ; Ota et al.  2004 ; Gerhard et al.  2004 ; Bechtel et al. 
 2007 ; Aruga and Mikoshiba  2003 ; Nagase et al.  1998 ,  2001a ; Strausberg et al.  2002 ; 
Aruga et al.  2003 ). In both human and mouse the genes are restricted to three 
 different regions: SLITRK1, -5, and -6 are located on chromosome 13 (chromosome 
14 in mouse), SLITRK3 on chromosome 3, and SLITRK2 and -4 on the X chromo-
some (Aruga et al.  2003 ).

   So far, the SLITRK-encoding gene receiving the most attention has been 
 SLITRK1 . The protein-coding region of this gene is located within a single exon 
(Aruga et al.  2003 ). Moreover, this gene has been found to contain tissue-specifi c 
differentially methylated regions, a phenomenon that is particularly enriched in 
relation to genes encoding proteins involved in neurodevelopment and neurodiffer-
entiation (Davies et al.  2012 ). 
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 Structurally, all six members of the family are transmembrane proteins containing 
an ectodomain composed of a tandem of six LRR motifs that are surrounded 
by both NF and CF domains (Aruga and Mikoshiba  2003 ). The ectodomain of 
SLITRK1 has been shown to be  N -glycosylated and the subcellular localization 
of SLITRK1 is dependent on the glycosylation of SLITRK1 and/or SLITRK1 transport 
proteins (Kajiwara et al.  2009 ). The ectodomain is followed by a single transmem-
brane domain and a cytoplasmic domain with a length ranging from ~53 to 273 
amino acids, depending on the SLITRK (Aruga and Mikoshiba  2003 ). 

 SLITRK ectodomains demonstrate high homologies to SLIT proteins, whereas 
the cytoplasmic domains (with the exception of the cytoplasmic domain of SLITRK1, 
which is shorter than those of the other SLITRK proteins) contain conserved tyro-
sines located in sequences homologous to cytoplasmic regions of Trk neurotrophin 
receptor tyrosine kinases (Aruga and Mikoshiba  2003 ; Aruga et al.  2003 ).  

    Expression 

 The knowledge of SLITRK protein expression in humans is limited, but studies of 
mouse, monkey, and human brain tissues suggest a high degree of conservation in 
the expression of SLITRK1 across mammalian species (Stillman et al.  2009 ). 
Moreover, all SLITRKs have been suggested as potential markers of hematopoietic 
stem cells and progenitor cells, as well as embryonic stem cells (Milde et al.  2007 ). 

 In the developing murine nervous system SLITRKs are expressed in several 
regions in overlapping but distinct expression patterns (Aruga and Mikoshiba 
 2003 ; Beaubien and Cloutier  2009 ). SLIT1-5 are predominantly expressed in the 
brain (Aruga et al.  2003 ), whereas SLITRK6 is expressed in numerous tissues 
including the lung and liver (Aruga  2003 ). In the brain of 20-week-old human 
fetuses, SLITRK1 expression has been detected in the developing neocortical 
plate,  subplate zone, striatum, globus pallidus, thalamus, and subthalamus (Abelson 
et al.  2005 ). In the adult, all SLITRK transcripts are mainly detected in neural tissues. 

   Table 14.3    The human SLITRK family   

 Gene symbol 
 Chromosomal 
location  Synonyms and previous names 

 Recommended 
protein name 

  SLITRK1   13q31.1  KIAA1910, leucine-rich 
repeat- containing 12, 
LRRC12 

 SLIT and NTRK-like 
protein 1 

  SLITRK2   Xq27.3  KIAA1854, CXorf2, slit-like 1 
(Drosophila), SLITL1 

 SLIT and NTRK-like 
protein 2 

  SLITRK3   3q26.1  KIAA0848  SLIT and NTRK-like 
protein 3 

  SLITRK4   Xq27.3  DKFZp547M2010  SLIT and NTRK-like 
protein 4 

  SLITRK5   13q31.1  bA364G4.2, KIAA0918, 
leucine-rich repeat-containing 
11, LRRC11 

 SLIT and NTRK-like 
protein 5 

  SLITRK6   13q31.1  FLJ22774  SLIT and NTRK-like 
protein 6 
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Briefl y, in the adult mouse, SLITRK1-5 are expressed throughout the brain, but with 
different expression patterns. Regions expressing SLITRKs include the cerebral 
 cortex, the ventricular layer (strong SLITRK2 expression), the subventricular zone 
(SLITRK1, -2, -4, and -5), the subplate (SLITRK1 and -4), and the CA3 region of the 
hippocampus (SLITRK3 and -4). Moreover, SLITRK1-5 are expressed in the thala-
mus, hypothalamus, the  cortical plate, and the pyramidal cell layer of the hippocam-
pus. SLITRK6 expression is restricted to the ventral thalamus, lateral geniculate 
nucleus, and suprafascicular nucleus (Aruga and Mikoshiba  2003 ; Aruga et al.  2003 ) 
as well as the inner ear (Katayama et al.  2009 ). For detailed descriptions of the expres-
sion of SLITRKs in mouse, see Aruga and Mikoshiba ( 2003 ), Stillman et al. ( 2009 ), 
Beaubien and Cloutier ( 2009 ), Aruga ( 2003 ) and Katayama et al. ( 2009 ). 

 SLITRK1 and -2 overexpressed in PC12 cells localize to the trans-Golgi network 
in the cell body as well as to the plasma membrane (Aruga and Mikoshiba  2003 ), 
and in cortical neurons endogenous SLITRK1 localizes to soma, dendrites, and 
growth cones (Kajiwara et al.  2009 ). When    expressed at low levels in cultured 
 hippocampal neurons SLITRK3 can be detected on dendrites, but not axons, as a 
punctate staining that co-localizes with inhibitory, but not excitatory, synapses, sug-
gesting that the protein clusters at presynaptic terminals (Takahashi et al.  2012 ). 
SLITRK5 has in striatal neurons been found to localize to PSD-95-positive  dendritic 
spines (Shmelkov et al.  2010 ).  

    Interactions 

 In a cell-based screening assay, protein tyrosine phosphatase δ (PTPδ) was found to 
interact with the ectodomain of all six SLITRK proteins in a Ca 2+ -independent man-
ner. In contrast, no interactions were found between SLITRKs and Casprs, CHL1, 
Leukocyte common antigen related (LAR), NCAM, Neurexins, Neurofascin, or 
TrkB, and no interactions were found between SLITRK proteins. In the assay, the 
SLITRK–PTPδ interactions promoted the adhesion of SLITRK-expressing axons to 
PTPδ-expressing COS cells (Takahashi et al.  2012 ). This study suggests that all 
SLITRK proteins mediate cell adhesion through heterophilic  trans- interactions 
with PTPδ. 

 The SLITRK1 intracellular domain (SICD) was used in yeast two-hybrid screen-
ings to scan adult mouse and fetal human brain cDNA libraries for intracellular 
interaction partners to SLITRK1. Both screens identifi ed 14-3-3 proteins as ligands, 
and subsequently the SLITRK1-14-3-3 interaction has been confi rmed in vivo, and 
all seven isoforms of 14-3-3 have been found to bind SLITRK1 (Takahashi et al. 
 2012 ). The 14-3-3 protein family consists of members that can bind different 
phospho- motifs [reviewed in Smith et al. ( 2011a )]. The Ser-695 residue near the 
C-terminal end of SLITRK1 is situated within one of these 14-3-3-binding motifs, 
and by performing Ala substitutions in combination with phosphorylation studies, it 
has been shown that protein kinase A, protein kinase C, and, more specifi cally, 
casein kinase 2 can phosphorylate human SLITRK1 Ser-695 (NCBI Ref. Seq. 
NP_443142.1) and that this phosphorylation strongly promotes SLITRK1–14-3-3 
interactions (Kajiwara et al.  2009 ). 

14 Neural Cell Adhesion Molecules Belonging to the Family…



332

 As mentioned above, SLITRK2-6 have longer cytoplasmic domains than 
SLITRK1, and the C-terminal ends of these SLITRK proteins contain putative Tyr- 
phosphorylation sites homologous to Tyr-phosphorylation sites in Trk receptors. The 
phosphorylation sites lie within a phospholipase C (PLC)γ1-binding motif, suggest-
ing that SLITRK2-6 may facilitate PLCγ1-mediated signal transduction (Aruga and 
Mikoshiba  2003 ).  

    Functions 

 Transient transfection of PC12 and N2a cells with vectors encoding SLITRK1-6, 
respectively, has demonstrated that the expression of SLITRK2 and -3, and to a 
lesser extent SLITRK4, -5, and -6, leads to a reduction in NGF-stimulated neurite 
outgrowth, whereas expression of SLITRK1 leads to a stimulation of neurite out-
growth in a manner that is additive to and qualitatively different from NGF- 
stimulated neurite outgrowth (Aruga and Mikoshiba  2003 ). Accordingly, a reduced 
expression of SLITRK2 and -4 observed in the neural cells of patients with myo-
tonic dystrophy 1 is accompanied by increased neuritogenesis (Marteyn et al.  2011 ), 
and whereas SLITRK1 has been found to stimulate neuritogenesis in cortical 
 neurons (Kajiwara et al.  2009 ; Abelson et al.  2005 ), a loss-of-function frameshift 
mutant of SLITRK1 identifi ed in a patient with TS has no effect on neuritogenesis 
(Abelson et al.  2005 ). 

 The different effects of SLITRK proteins on neuritogenesis are related to differ-
ences in their cytoplasmic domains. Thus, expression of a SLITRK2 mutant lacking 
the cytoplasmic domain is able to stimulate neurite outgrowth in a manner compa-
rable to SLITRK1, whereas expression of the cytoplasmic domain of SLITRK2 
alone inhibits neurite outgrowth. These observations suggest that sequences in cyto-
plasmic domain of SLITRK2-6 that are missing in the shorter cytoplasmic domain 
of SLITRK1 (SICD) somehow can prevent the stimulation of neurite outgrowth 
(Aruga and Mikoshiba  2003 ). However, it has also been demonstrated that the 
 phosphorylation of Ser-695 of human SLITRK1 (a residue not conserved between 
SLITRK1 and -2 [compare, e.g., SLITRK1 NCBI Ref. Seq. NP_443142.1 vs. 
SLITRK2 GenBank: AAI13013.1]) is necessary for the stimulation of neurite 
 outgrowth (Kajiwara et al.  2009 ). 

 The ectodomain of SLITRK1 is secreted in vitro and in vivo in response to cleav-
age by an ADAM family α-secretase. The process is stimulated by Protein kinase C 
and inhibited by the ADAM inhibitor TAPI-2. Subsequently, SICD is cleaved by 
γ-secretase. However, in contrast to APP, which also is cleaved by α- and γ-secretases, 
causing the cytoplasmic domain of APP to be released as a soluble cytosolic pro-
tein, the γ-secretase-cleaved SICD remains attached to the intracellular part of the 
plasma membrane as peripheral proteins (Kajiwara et al.  2009 ). The functional rela-
tionship between protein kinase C-stimulated SLITRK1 Ser-695 phosphorylation 
and SLITRK1 α-secretase cleavage remains to be determined, and it is not clear 
whether there is a functional difference between full-length SLITRK1 and SICD in 
neurite outgrowth stimulation. 
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 All SLITRK proteins have synaptogenic activity. As mentioned above, all SLITRK 
proteins are also able to form  trans- interactions with PTPδ, and these SLITRK–PTPδ 
interactions seem to be a prerequisite for SLITRK-mediated synaptogenesis. SLITRK2 
expression induces the clustering of both GABA vesicular transporter (VGAT), a 
marker of inhibitory synapses, and VGLUT1, a marker of excitatory synapses, whereas 
SLITRK3 induces clustering of only VGAT, suggesting that it specifi cally promotes 
synaptic differentiation of inhibitory synapses. Moreover, knockdown of SLITRK3 in 
cultured hippocampal neurons reduces the density of inhibitory synapses, and whereas 
SLITRK3-knockout mice demonstrate no gross defects in brain morphology, they do 
demonstrate a reduction in inhibitory synapses in, e.g., the CA1 region of the hippo-
campus. Consistent with the observed reduction in inhibitory synapses, SLITRK3 
knockdown mice demonstrate an increased sensitivity to seizures induced by pentylene–
tetrazol (a GABA receptor antagonist) (Takahashi et al.  2012 ). 

 To study the effects of SLITRK proteins in vivo ,  knockout mice have so far been 
generated for three of the six SLITRKs (Katayama et al.  2009 ,  2010 ; Shmelkov 
et al.  2010 ; Matsumoto et al.  2011 ). 

 SLITRK1-knockout mice demonstrate no external abnormalities or anatomical 
or histological brain defects. However, they do seem to have a slightly increased 
postnatal mortality leading to a fraction of homozygous animals at weaning ~20 % 
lower than the expected Mendelian ratio, and male homozygous SLITRK1-knockout 
mice have a slightly reduced body weight when compared to wild-type mice. 
In addition, SLITRK1-knockout mice do exhibit behavioral defects, including an 
elevated anxiety-like behavior (as determined from, e.g., open-fi eld and elevated 
plus maze tests) and depression-like behavior (as determined from forces swim-
ming and tail suspension tests). The animals also demonstrate increased levels of 
norepinephrine and its metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG) in 
the prefrontal cortex and nucleus accumbens, respectively (Katayama et al.  2010 ). 

  SLITRK1  mutations have been related to OCDs like TS and trichotillomania 
(self-induced hair loss) (see below). Consequently, experiments were performed 
where SLITRK1-knockout mice were administered with clonidine (Katayama et al. 
 2010 ), an α2-adrenergic agonist reported to, e.g., reduce tics, anxiety, hyperactivity/
impulsivity, and inattentiveness related to TS and attention-defi cit hyperactivity dis-
order (ADHD) (Sandor  2003 ; Croxtall  2011 ). It was found that clonidine reduces 
the anxiety-like behavior of SLITRK1-knockout mice, suggesting that changes in 
the noradrenergic system as a result of SLITRK1 defi ciency contribute to the 
anxiety- like behavior of these animals and potentially also are related to the patho-
genesis of TS and related neuropsychiatric diseases (Katayama et al.  2010 ). 

 Homozygous SLITRK5-knockout mice are born at the expected Mendelian ratio 
and demonstrate no gross abnormalities. However, a few months after birth both 
homo- and heterozygous SLITRK5-knockout mice demonstrate facial hair loss 
 followed by skin lesions that turn to chronic wounds; effects believed to be the 
result of excessive grooming. SLITRK5-knockout mice also demonstrate other 
signs of OCD (as defi ned by a marble-burying behavior) as well as anxiety-like 
behavior (as determined from, e.g., open-fi eld and elevated plus maze tests). 
Moreover, the volume of the striatum of SLITRK5-knockout mice is smaller than 
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that of wild-type mice, and whereas there is no change in cell soma areas, the 
 dendritic arbors of medium spiny neurons of the striatum are decreased. Finally, 
the expression of the glutamate receptor subunits NR2A, NR2B, GluR1, and GluR2 
is all decreased in the striatum (Shmelkov et al.  2010 ). The drug Fluoxetine 
(“Prozac,” “Fontex,” etc.) is a selective serotonin reuptake inhibitor (Sghendo and 
Mifsud  2012 ) used for the treatment of, e.g., OCDs (Choi  2009 ). Results suggest 
that Fluoxetine can also prevent the OCD-like behavior of SLITRK5-knockout 
mice. Thus, treatment of these mice with Fluoxetine leads to a reduction in the dura-
tion of grooming to a level similar to wild-type mice (Shmelkov et al.  2010 ). See 
also Mah ( 2010 ) and Yang and Lu ( 2011 ) for reviews. 

 Homozygous SLITRK6-knockout mice are also born at the expected Mendelian 
ratio and do not have gross abnormalities (Katayama et al.  2009 ) or any apparent 
behavioral abnormalities related to mood, anxiety, learning, or memory, although 
they do show altered adaptive responses to a novel environment (as determined by 
open-fi eld and hole-board tests) (Matsumoto et al.  2011 ). However, as mentioned 
above, SLITRK6 is expressed in the inner ear, and consistently, SLITRK6-knockout 
mice demonstrate a loss of neurons in the spiral and vestibular ganglia, a reduction in 
the cochlear innervation (Katayama et al.  2009 ), and hearing loss in the mid- frequency 
range, and SLITRK6-knockout mice can therefore serve as a model for hereditary 
deafness (Matsumoto et al.  2011 ). In addition to the decreased neuronal survival of 
SLITRK6-knockout mice, the sensory epithelia of these mice demonstrate a reduced 
ability to stimulate neurite outgrowth from spinal ganglion neurons. Consistent with 
these observations, there is a decreased expression of the neurotrophins Brain-derived 
neurotrophic factor (BDNF) and Neurotrophin-3 (NT-3) in the inner ear of E14.5 
SLITRK6-knockout mice (Katayama et al.  2009 ).  

    Diseases 

 TS is a neurodevelopmental disorder with a strong hereditary element that is 
 characterized by involuntary movements and vocalizations (tics) (Paschou  2013 ). 
In a screening of 174 predominantly Caucasian individuals with TS, 3 individuals 
were found to have mutations in  SLITRK1 , whereas no  SLITRK1  mutations were 
found in >3,600 control chromosomes. One mutation was a single-base deletion 
leading to the predicted expression of a mutated and truncated form of SLITRK1 
consisting of the 421 N-terminal amino acids (incl. the signal peptide) followed by 
27 nonsynonymous amino acid substitutions and a premature stop codon. This 
mutated protein lacks a part of the ectodomain, as well as the transmembrane and 
cytoplasmic domains, and as mentioned above, it results in loss of function with 
respect to stimulation of neuritogenesis. Another mutation (observed in two indi-
viduals) was a single- nucleotide substitution (var321) in a part of the 3′ untranslated 
region of the  SLITRK1  transcript predicted to be a binding site for the miRNA hsa-
mir-189. The substitution strengthens the binding of hsa-miR-189 to the  SLITRK1  
transcript, hence potentially increasing the degradation of the transcript, reducing 
the level of SLITRK1, and consequently potentially reducing neuritogenesis in the 
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affected regions (Abelson et al.  2005 ). The described study by Abelson et al. ( 2005 ) 
has led to several subsequent studies and an intense debate regarding the potential 
association between  SLITRK1 and TS. 

 Briefl y, in later screens of 82 Caucasian TS patients (Deng et al.  2006 ), and two 
families with TS (Fabbrini et al.  2007 ; Pasquini et al.  2008 ; Orth et al.  2007 ), no 
mutations were observed in  SLITRK1 , and although a study of 92 Austrian TS 
patients revealed six SNPs in the 3′ untranslated region of  SLITRK1 , fi ve of these 
were also detected among 192 controls, and only a single variant could potentially 
be related to the development of TS (Zimprich et al.  2008 ). Moreover, in a screen 
that detected six independent occurrences of var321 among a population of 
Ashkenazi Jews (Keen-Kim et al.  2006 ), and in a large screening including 989 TS 
patients (Scharf et al.  2008 ), it was not possible to correlate the occurrence of var321 
mutation to the development of TS. 

 However, a recent investigation has provided further support for a relationship 
between the var321 and TS (O’Roak et al.  2010 ), and a study including 154 nuclear 
families with TS also suggests an association between  SLITRK1  polymorphisms and 
the development of TS, although the polymorphisms originally reported by Abelson 
et al. ( 2005 ) were not identifi ed (Miranda et al.  2009 ; Karagiannidis et al.  2012 ). 

 In summary, the potential relationship between  SLITRK1  polymorphisms and the 
TS pathogenesis is still controversial. The pathogenesis of TS likely includes 
 environmental as well as multiple genetic factors, and although  SLITRK1  polymor-
phisms seem to be unable to account for many TS cases, it remains one of the 
 candidate genes related to TS pathogenesis. 

 TS patients often also suffer from OCD or ADHD (see Paschou  2013 , for a 
recent review), and as mentioned above,  SLITRK1  has also been associated with the 
pathogenesis of trichotillomania. Indeed, two trichotillomania-related  SLITRK1  
polymorphisms have been identifi ed. They both lead to amino acid substitutions in 
the membrane-proximal region of the ectodomain of SLITRK1 (Zuchner et al. 
 2006 ). In contrast, the  SLITRK1  var321 has been reported not to be associated with 
OCD (Wendland et al.  2006 ). 

 Results from genome-wide association studies reveal  SLITRK2  to be a candidate 
gene for bipolar disorder (Smith et al.  2009 ), and the gene has also been associated 
with schizophrenia, where two missense mutations (V89M in the second LRR and 
S549F in the CF domain) have been observed in girls with schizophrenia and in 
their affected siblings (Piton et al.  2011 ). Moreover, copy number variations of 
 SLITRK2  have been associated with X-linked high myopia (near/shortsightedness) 
(Metlapally et al.  2009 ), and  SLITRK2  is also a potential candidate gene for devel-
opment of dyslexia (Huc-Chabrolle et al.  2013 ). However, all these potential 
 relationships need to be confi rmed or deconfi rmed    with further investigations. 

 As mentioned above, SLITRK2 and -4 have been found to be downregulated in 
patients with myotonic dystrophy 1 (Marteyn et al.  2011 ), a chronic multisystem 
 disease causing, e.g., muscle dystrophy (Romeo  2012 ). The reduced expression of 
SLITRK2 and -4 is accompanied by increased neuritogenesis of motor neurons in 
vitro, leading to a fi ve- to tenfold decrease in the formation of neuromuscular contacts 
in cocultures of neurons and primary myotubes. Myotonic dystrophy 1 is generally 
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described as a trinucleotide repeat disorder caused by CTG-triplet expansion in the 
3′ untranslated leader region of the gene  DMPK  (Romeo  2012 ) and any relationship 
between the CTG-triplet expansion and the changes in the expression of SLITRK2 and 
-4 remains to be determined. 

 Finally, genome-wide transcriptional profi ling has revealed that  SLITRK4  expres-
sion is downregulated in the decidua of women with preeclampsia (Loset et al. 
 2011 ). However, also in this case, the relationship between changes in gene expression 
and disease progression remains to be determined. 

 In summary, the SLITRK family consists of six members, which probably are 
not able to form homophilic interactions, but which all form heterophilic  trans- 
interactions  with PTPδ. All members of the family appear to be important for the 
modulation of neuritogenesis and synaptogenesis, and consequently the respective 
genes may turn out to be related to a number of diseases. However, biochemically 
and biologically the proteins are not well characterized and therefore an understand-
ing of the relationships between a given disease and mutations or transcriptional 
alterations in SLITRK genes is still incomplete.    

14.3     Cell Adhesion Molecules Belonging 
to the LRR-Tollkin Class 

14.3.1     LRRC15/Lib 

 LRR-containing 15 (LRRC15)/LRR protein induced by β-amyloid treatment (Lib) 
(see Table  14.4 ) was in 2002 originally described as a protein upregulated in 
 astrocytes in response to treatment of cells with Aβ-peptides or pro-infl ammatory 
cytokines (Satoh et al.  2002 ). Later, the protein has been identifi ed in several large-
scale studies (Gerhard et al.  2004 ; Muzny et al.  2006 ). However, subsequent to 
the fi rst description of the protein, LRRC15 has predominantly been observed to be 
upregulated in several types of cancer (Reynolds et al.  2003 ; Satoh et al.  2004 ; 
Schuetz et al.  2006 ; Williams et al.  2008 ; Reddy and Balk  2006 ; Stanbrough et al. 
 2006 ; Bierkens et al.  2013 ; Klein et al.  2009 ), and its relationship to AD and other 
neuronal diseases remains to be determined.

   Table 14.4    Human LRRC15   

 Gene symbol 
 Chromosomal 
location 

 Synonyms and 
previous names 

 Recommended 
protein name 

  LRRC15   3q29  Leucine-rich repeat protein 
induced by β-amyloid 
homologue, LIB 

 Leucine-rich 
repeat- containing 
protein 15 
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      Gene and Protein 

 Human LRRC15 was originally identifi ed as a protein upregulated in response to 
transcriptional activation by the chimeric transcription factor EWS–WT1 (+KTS) 
characteristic for desmoplastic small round cell tumor (Reynolds et al.  2003 ). Later, 
the expression of  LRRC15  has also been shown to be strongly upregulated in the 
absence of TBP-associated factor 4, a component of the transcription factor TFIID 
(Fadloun et al.  2007 ). Loss of TBP-associated factor 4 has also been shown to 
 stimulate Transforming growth factor β (TGFβ) signaling (Davidson et al.  2005 ), 
suggesting that  LRRC15  expression in part is regulated by TGFβ. 

 Human  LRRC15  is located on chromosome 3 (Gerhard et al.  2004 ; Reynolds 
et al.  2003 ; Muzny et al.  2006 ) and consists of three exons with the entire coding 
region confi ned within a single exon. Two other genes,  CPN2  (encoding carboxy-
peptidase N, subunit 2) and  GP5  (encoding Glycoprotein V/CD42d), are located in 
the same region of chromosome 3, share structural similarities with  LRRC15 , and 
encode proteins with a high sequence identity to LRRC15, suggesting that the three 
genes have originated from genomic duplications (Reynolds et al.  2003 ). 

 Mammalian LRRC15 is composed of ~580 amino acids forming an ectodomain of 
15 LRR motifs with NF and CF domains, a single transmembrane region, and a short 
(~20 amino acids) cytoplasmic domain. The protein is both N- and O-glycosylated 
(Satoh et al.  2002 ; Reynolds et al.  2003 ).  

    Interactions 

 Results from in vitro studies, where LRRC15 was transiently expressed in COS-7 
cells, suggest that the protein is able to form  trans- homophilic interactions (Satoh 
et al.  2004 ). Moreover, the protein has been demonstrated to bind to Fibronectin and 
to a lesser degree to Matrigel, Collagen IV, and Laminin, but not Aggrecan (Satoh 
et al.  2005 ). Thus, LRRC15 may be a CAM mediating cell–cell as well as cell–
ECM interactions through  trans- homo- and heterophilic interactions. 

 The notion that LRRC15 mediates cell–ECM interactions is supported by the 
fact that the protein promotes Matrigel invasion of glioma and breast carcinoma 
cells; a phenomenon that is strongly reduced in response to knockdown of LRRC15 
(Reynolds et al.  2003 ; Satoh et al.  2005 ).  

    Expression, Functions, and Diseases 

 In accordance with the notion that LRRC15 is a CAM, it predominantly localizes to 
the cell surface upon overexpression in C6 gliomas (Satoh et al.  2002 ). 

 Under non-pathological conditions LRRC15 is mainly expressed in the cytotro-
phoblast cell layer of the placenta and is expressed at very low levels in the brain 
(Satoh et al.  2002 ; Reynolds et al.  2003 ). 
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 In the cerebral cortex of humans without AD, LRRC15 is expressed in neurons, 
but not in astrocytes. In contrast, the protein is in AD patients expressed in ~50 % 
of the reactive astrocytes surrounding senile plaques, whereas it is not expressed in 
the neurons (Satoh et al.  2005 ). Moreover, in vitro studies have demonstrated that 
the expression of  LRRC15  can be upregulated 13-fold in astrocytes in response to a 
15-h treatment with pre-aggregated Aβ-peptides (Satoh et al.  2002 ). 

 LRRC15 expression is also increased in response to treatment with pro- infl ammatory 
cytokines like tumor necrosis factor α, interleukin 1β, and interferon γ (IFNγ) (Satoh 
et al.  2002 ). Since, pro-infl ammatory cytokines are known to be involved in the 
 pathogenesis of AD (Rubio-Perez and Morillas-Ruiz  2012 ) these observations further 
strengthen the potential relationship between LRRC15 expression and AD progression. 

 In addition to the modulation of LRRC15 expression in AD patients, the proteins 
have also been found to be upregulated in a number of cancer types including breast 
cancer (mammary ductal carcinomas), where  LRRC15  transcripts in most tumors 
demonstrate a >2-fold increase (Satoh et al.  2004 ; Schuetz et al.  2006 ; Williams 
et al.  2008 ), prostate cancer (Reddy and Balk  2006 ; Stanbrough et al.  2006 ), desmo-
plastic small round cell tumor (Reynolds et al.  2003 ) (a rare cancer originating in 
the peritoneum (Hayes-Jordan and Anderson  2011 )), and cervix cancer (Bierkens 
et al.  2013 ). Moreover LRRC15 is highly expressed in breast-cancer-derived metas-
tases in bone, but not in the brain (Klein et al.  2009 ). 

 Interestingly, the expression of LRRC15 seems to be accompanied by a down-
regulation of the cell surface-localized fraction of Coxsackievirus-adenovirus 
receptor (CAR). This can be a problem in relation to adenoviral-based cancer 
 treatment, because the downregulation of CAR obstructs treatment by adenoviral 
infection (O’Prey et al.  2008 ). Finally, LRRC15 is highly expressed in carious dis-
eased pulpal tissue, further relating the expression of the protein to pro-infl ammatory 
signals (Cooper et al.  2011 ). 

 In summary, LRRC15 is a protein upregulated in cancers and in response to 
Aβ-exposure and pro-infl ammatory signals. However, the effect of LRRC15 expres-
sion on the pathogenesis of AD remains to be determined.    

14.4     Cell Adhesion Molecules Belonging to the LRR-Ig/Fn3 
Class 

14.4.1     The AMIGO/Alivin Family 

 The “Amphoterin-induced gene and ORF” (AMIGO) family also known as “alive” 
or “activity-dependent LRR and Ig superfamily survival-related protein” (Alivin) 
family was in 2003 identifi ed independently by two research groups (Kuja-Panula 
et al.  2003 ; Ono et al.  2003 ). Moreover, the different members of the family have 
been identifi ed in several large-scale studies (Clark et al.  2003 ; Ota et al.  2004 ; 
Gerhard et al.  2004 ; Bechtel et al.  2007 ; Hirosawa et al.  1999 ; Nagase et al.  2001b ; 
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Gregory et al.  2006 ). The family consists of three proteins: AMIGO1/Alivin2/Ali2, 
AMIGO2/Alivin1/Ali1/DEGA, and AMIGO3/Alivin3/Ali3 (Table  14.5 ).

    AMIGO1  was originally identifi ed in a differential display analysis of hippo-
campal neurons treated with the neuritogenic, heparin-binding protein High mobility 
group box-1/Amphoterin, and subsequently the two homologues  AMIGO2  and  -3  
were cloned (Kuja-Panula et al.  2003 ). In addition,  AMIGO2  was independently 
identifi ed in a differential display analysis of genes involved in depolarization-  and/
or NMDA-dependent survival of cerebellar granule neurons (Ono et al.  2003 ), and 
later it was identifi ed as a gene differentially expressed in human gastric adenocar-
cinomas (DEGA) (Rabenau et al.  2004 ). 

 AMIGO2 has been suggested to be implicated in the pathogenesis of AD, PD 
(Ono et al.  2003 ; Peltola et al.  2011 ), and cancer (Rabenau et al.  2004 ), but the func-
tions of AMIGO-family proteins under normal as well as pathological conditions 
are still poorly described. 

    Genes and Proteins 

  AMIGO1-3  are conserved in mammals, and the genes encode proteins that are 
 structurally related to the  Drosophila  proteins Kekkon 1–3 (Kuja-Panula et al.  2003 ; 
Ono et al.  2003 ). 

 AMIGO proteins are transmembrane proteins localized in the plasma membrane. 
They are composed of a ~400 amino acids long ectodomain consisting of six 
N-terminal LRRs with NF and CF domains, and a membrane-proximal Ig module, 
a transmembrane domain, and a ~100 amino acids long short cytoplasmic domain 
(Kuja-Panula et al.  2003 ; Ono et al.  2003 ; Chen et al.  2012 ). The ectodomain of 
AMIGO1 contains fi ve sites for  N- linked glycosylation: two in the LRR domain and 
three in the Ig module. The pronounced glycosylation of the Ig module has been 
proposed to ensure that the LRR domain is oriented away from (perpendicularly to) 
the plasma membrane (see below) (Kajander et al.  2011 ). 

   Table 14.5    The human AMIGO family   

 Gene symbol 
 Chromosomal 
location 

 Synonyms and 
previous names 

 Recommended 
protein name 

  AMIGO1   1p13.3  Alivin-2, ALI2, amphoterin-
induced gene and open 
reading frame, AMIGO, 
KIAA1163 

 Amphoterin-induced 
protein 1 

  AMIGO2   12q13.11  Alivin-1, ALI1, amphoterin-
induced gene and open 
reading frame 2, DEGA 

 Amphoterin-induced 
protein 2 

  AMIGO3   3p21  Alivin-3, ALI3, amphoterin-
induced gene and open 
reading frame 3, 
KIAA1851 

 Amphoterin-induced 
protein 3 
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 Human AMIGO proteins are highly homologous, exhibiting ~50 % similarity; 
the most conserved regions are the parts of the LRRs encoding the concave parts of 
the repeats (Kajander et al.  2011 ), the transmembrane region, and parts of the 
 cytoplasmic domain (Kuja-Panula et al.  2003 ; Ono et al.  2003 ). Additionally, the 
proteins are highly conserved between species (Kuja-Panula et al.  2003 ).  

   Expression 

 During mouse development,  AMIGO1  expression can be detected at E13, and 
 subsequently, the expression becomes pronounced in the brain, especially in the 
hippocampus. At the protein level, AMIGO1 is detectable from around E14. The 
level of expression decreases postnatally to the lowest levels around P10, but then 
increases to higher levels throughout adulthood (Kuja-Panula et al.  2003 ). 

 In adult mouse, AMIGO1 is mainly expressed in the nervous system, including the 
cerebellum, cerebrum, and retina (Kuja-Panula et al.  2003 ). In the cerebrum the expres-
sion of AMIGO1 overlaps with the expression of the potassium channel α-subunit 
Kv2.1, and the two proteins co-localize in cultured neurons (Peltola et al.  2011 ). 
AMIGO2 is mainly expressed in the cerebellum, retina, liver, and lung (Kuja-Panula 
et al.  2003 ), but a detailed in situ hybridization study has also revealed a pronounced 
expression of  AMIGO2  in the CA2 and CA3 regions of the hippocampus (Laeremans 
et al.  2013 ). AMIGO3 is ubiquitously expressed and demonstrate no apparent varia-
tions in expression between the tissues investigated (Kuja-Panula et al.  2003 ). 

 The expression of AMIGO proteins in humans is poorly characterized, but all 
three proteins are expressed in primary cultures of human microvascular endothelial 
cells and brain pericytes (Hossain et al.  2012 ). 

 In accordance with the way human AMIGO1 was discovered (Kuja-Panula et al. 
 2003 ), the expression of  AMIGO1  has in zebrafi sh been demonstrated to be regu-
lated by Amphoterin (Zhao et al.  2011 ). Moreover, the expression of AMIGO2 has 
been shown to be regulated at the transcriptional level by Ca 2+  infl ux through 
voltage- dependent L-type Ca 2+  channels (Ono et al.  2003 ). 

 At the cellular level AMIGO1 was in hippocampal neurons originally found to 
be located in both the soma and in fasciculated and nonfasciculated axonal but not 
dendritic processes (Kuja-Panula et al.  2003 ). However, recently it has been reported 
that AMIGO1 is also expressed in astroglia and oligodendroglia and that the protein 
in neurons localizes mainly to dendrites but not axons. Interestingly, an AMIGO1 
mutant lacking the LRR domain is mis-allocated to axons rather than dendrites and 
is transported to the cell surface faster than wild-type AMIGO1 or an AMIGO1 
mutant lacking the Ig module (see below)(Chen et al.  2012 ).  

   Interactions 

 All three AMIGO proteins form homophilic as well as heterophilic interactions 
within the family (Kuja-Panula et al.  2003 ). The homophilic interactions result in 
dimerization of the proteins, with the concave side of the LRR domain forming the 
dimer interface (Kajander et al.  2011 ) (Fig.  14.3 ). Dimerization as well as proper 
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glycosylation has been shown to be necessary for correct cell surface expression of 
AMIGO1, suggesting that chaperones in the ER ensure that only dimeric AMIGO 
molecules are transported to the cell surface (Kajander et al.  2011 ). Mutant AMIGO 
molecules lacking the LRR domain may be able to circumvent this quality check, 
which would explain why such mutants are able to be transported to the plasma 
membrane faster than wild-type proteins (Chen et al.  2012 ).

   It has been suggested that the dimerization interface used for the direction of 
AMIGO  cis- dimers to the cell surface subsequently is used to establish cell–cell 
interactions via AMIGO  trans- dimer formation (Kajander et al.  2011 ).  

   Functions and Diseases 

 A downregulation of  AMIGO1  expression in cortical neurons decreases the number, 
length, and branching of dendrites, but has little effect on axon morphology (Chen 
et al.  2012 ), whereas neurite outgrowth is stimulated in hippocampal neurons grown 
on a coat of recombinant AMIGO1 (Kuja-Panula et al.  2003 ). Moreover, exposure 
to the ectodomain of AMIGO1 in solution inhibits the formation of neuritic bundles 
in cultures of hippocampal neurons, suggesting that AMIGO1 plays a role in 
 fasciculation (Kuja-Panula et al.  2003 ). 

  Fig. 14.3    Structural model 
of an AMIGO1 homodimer. 
Cartoon drawing of a 
structural model of two 
ectodomains of murine 
AMIGO1 [PDB ID: 2XOT; 
amino acids 28–372; 
Kajander et al. ( 2011 )]. The 
same structure is shown from 
two different angles (90° 
rotation). Each ectodomain 
includes an LRR domain 
composed of six LRRs with 
NF and CF domains 
( dark / light green ) that is 
followed by a single Ig 
module ( red / orange ). The 
ectodomains form 
homodimers through 
interactions between the 
concave sides of the LRR 
domains. See text for details. 
The fi gures were created with 
PyMOL (DeLano Scientifi c)       
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 AMIGO2 is, as mentioned above, in mouse expressed in the CA2 and CA3a 
regions of the hippocampus. These areas are reported to be relatively resistant to 
neuronal injury and neurotoxicity and therefore it has been suggested that AMIGO2 
has neuroprotective properties (Chen et al.  2012 ). Indeed, overexpression of 
AMIGO2 in cerebellar granule neurons reduces the fraction of cells undergoing 
KCl-induced apoptosis (Ono et al.  2003 ), and an overexpression of AMIGO1 
reduces the fraction of SH-SY5Y neuroblastoma cells undergoing Staurosporine or 
H 2 O 2 -induced apoptosis (Chen et al.  2012 ). 

 The voltage-dependent potassium channel subunit, Kv2.1, that can be immuno-
precipitated with AMIGO1 is expressed by most neurons in the CNS. AMIGO1 
modulates the function of Kv2.1, shifting the voltage-dependent activation of the 
channel to more hyperpolarized potentials (Peltola et al.  2011 ). A biological func-
tion of the AMIGO1-regulated modulation of Kv2.1 has not been determined, but 
since potassium channels have been proposed as potential therapeutic target for the 
treatment of epilepsy (Wickenden  2002 ), AMIGO1 is also a potential drug target for 
diseases related to neuronal excitability. 

 Human  AMIGO2  has been mapped to 12q13.11 (Ono et al.  2003 ). This locus is 
located within a region (12p11.23-12q13.12) related to AD type 5, a late-onset type 
of AD (Pericak-Vance et al.  1997 ). Another gene,  LRRK2 , is located at the same 
locus and as mentioned earlier  LRRK2  encodes a protein that plays a pivotal role in 
the pathogenesis of PD (Tsika and Moore  2012 ). Whether AMIGO2 is related to the 
pathogenesis of AD or PD has not been determined, but a reported case of mental 
retardation caused by a 1.3 Mb deletion at 12q13.11 has been related to haploinsuf-
fi ciency of AMIGO2, suggesting that the proper level of AMIGO2 expression is of 
central importance for cognitive functions (Gimelli et al.  2011 ). 

 AMIGO2 is differentially expressed in ~45 % of gastric adenocarcinomas when 
compared to normal tissue. Knockdown of  AMIGO2  expression in a gastric adeno-
carcinoma cell line leads to a downregulation of cancer cell migration in vitro and a 
reduced tumorigenesis in vivo, suggesting that AMIGO2 expression is related to the 
development or progression of gastric adenocarcinomas (Rabenau et al.  2004 ). 

 In summary, the AMIGO family consists of three members, which all can  interact 
with each other, and is believed to form both homophilic  cis- and  trans- interactions . 
The individual members are involved in processes like neuritogenesis, bundling, 
fasciculation, and neuronal cell survival and may be implicated in the pathogenesis 
of, e.g., AD or PD. However, all AMIGO proteins are still poorly characterized.   

14.4.2     The LRRC4/NGL Family 

 The family of LRR-containing protein 4 (LRRC4) or Netrin-G ligands (NGLs) 
includes three members: NGL-1/LRRC4C, NGL-2/LRRC4, and NGL-3/LRRC4B 
(Table  14.6 ). The NGLs were cloned in 2003 (Lin et al.  2003 ) and have also been 
identifi ed in several large-scale studies and other types of investigations (Clark et al. 
 2003 ; Ota et al.  2004 ; Gerhard et al.  2004 ; Bechtel et al.  2007 ; Nagase et al.  2000b ; 
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Scherer et al.  2003 ; Grimwood et al.  2004 ; Kim et al.  2006 ). As the name implies, 
some NGLs bind Netrin-G proteins. Netrins are a group of Laminin-related axon 
guidance molecules including three secreted proteins (Netrin-1, -3, and -4) and 
two glycosylphosphatidylinositol (GPI)-anchored proteins: Netrin-G1 and –G2 (see 
Moore et al.  2007  for reviews; Rajasekharan and Kennedy  2009 ). NGLs have been 
associated with hearing impairment and the formation or progression of cancer.

     Genes and Proteins 

 The respective NGLs are ~640–709 amino acids long proteins and are composed of 
an ectodomain containing 9 LRRs with NF and CF domains, followed by one Ig 
module, a transmembrane domain, and a ~92–116 amino acids long cytoplasmic 
domain with a conserved C-terminal PDZ-domain-binding motif (Clark et al.  2003 ; 
Ota et al.  2004 ; Gerhard et al.  2004 ; Bechtel et al.  2007 ; Lin et al.  2003 ; Nagase 
et al.  2000b ; Scherer et al.  2003 ; Grimwood et al.  2004 ). 

 The primary sequences of NGL-1, -2, and -3 are highly similar. For instance, the 
primary sequence of the Ig module of NGL-1 is 72 % identical to that of NGL-2 
(Zhang et al.  2005a ). Moreover, NGLs are conserved among vertebrates. For 
instance, the primary sequence of mouse NGL-2 is 97 % and 99 % similar to human 
and rat NGL-2, respectively (Wu et al.  2007 ). 

 The general regulation of NGL expression has not been investigated, but the 
expression of NGL-2 is reported to be downregulated by the microRNA hsa-miR- 381, 
which in turn is downregulated by NGL-2 (Tang et al.  2011 ).  

   Expression 

 In E10 mouse embryos  NGL1  is expressed in post-mitotic neurons in the telencepha-
lon, in the optic cup, and in motor neurons in the spinal cord (Homma et al.  2009 ). 

   Table 14.6    The human NGL/LRRC4 family   

 Gene symbol 
 Chromosomal 
location 

 Synonyms and 
previous names 

 Recommended 
protein name 

  LRRC4   7q31  Brain tumor-associated protein 
BAG, nasopharyngeal 
carcinoma- associated gene 
14 protein, NAG14, 
Netrin-G2 ligand, NGL-2 

 Leucine-rich 
repeat-containing 
protein 4 

  LRRC4B   19q13.33  DKFZp761A179, HSM, 
leucine-rich repeats and 
immunoglobulin-like 
domains 4, LRIG4, 
Netrin-G3 ligand, NGL-3 

 Leucine-rich 
repeat-containing 
protein 4B 

  LRRC4C   11p12  KIAA1580, Netrin-G1 ligand, 
NGL-1 

 Leucine-rich 
repeat-containing 
protein 4C 
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At E14, it is highly expressed in the developing cerebral cortex and the striatum 
(Lin et al.  2003 ), and at P2 it is expressed in the brain, eye, and inner ear, but also 
outside the CNS (e.g., heart, lung, kidney, and intestine) (Delprat et al.  2005 ). In fetal 
and adult human tissue,  NGL1  is predominantly expressed in neocortical areas, 
but is also found in the putamen, amygdala, hippocampus, and medulla oblongata 
(Lin et al.  2003 ). 

  NGL2  is mainly expressed in the brain (Kim et al.  2006 ). In mouse, the expres-
sion of  NGL2  increases during development, peaks around P2, and subsequently 
maintains a relatively stable level (Zhang et al.  2005a ). At E12.5, it is expressed 
throughout the CNS including the cerebrum, cerebellum, spinal cord, pons, and 
medulla oblongata. The expression is highest in the dorsal root ganglion (DRG), the 
dentate gyrus, the CA1 and CA2 regions of the hippocampus, and the cerebellum 
(Wu et al.  2007 ). In adult rat brain,  NGL2  expression is restricted to the cerebellum, 
hippocampus, olfactory bulb, and cortex (Kim et al.  2006 ). In humans,  NGL2  
expression has been detected in the brain, but not in 15 other tissues (Zhang et al. 
 2005a ). The expression is highest in the cerebellum, but can also be detected in the 
cerebral cortex, occipital pole, frontal lobe, temporal lobe, and putamen (Zhang 
et al.  2005a ). 

  NGL3  is predominantly expressed in the brain (Kim et al.  2006 ), where it is more 
ubiquitously expressed than  NGL1  and - 2  (Homma et al.  2009 ). 

 At the cellular level, NGL-1 has been found to localize to the cell surface (Lin 
et al.  2003 ; Zhang et al.  2005a ). In cultured neurons NGLs are located at synapses, 
where they co-localize with the pre- and postsynaptic markers Synaptophysin and 
PSD-95 and with the excitatory presynaptic marker VGLUT1, but not the inhibitory 
synaptic markers VGAT and Gephyrin. Subcellularly, the proteins are located in 
dendritic spines and at the center of synapses. Moreover, they seem to be more 
 postsynaptically than presynaptically expressed (Kim et al.  2006 ; Woo et al.  2009b ). 
In Netrin-G1- and -G2-knockout mice, where axon pathfi nding is normal, the 
 dendritic distribution of NGL-1 and -2 is more diffuse than in wild-type animals 
(Nishimura- Akiyoshi et al.  2007 ).  

   Interactions 

 Originally, NGL-1 was found not to form homophilic interactions (Lin et al.  2003 ), 
but later the ectodomains of NGL-1 have been reported to interact in a Ca 2+ -
dependent manner (Delprat et al.  2005 ). However, there are no data suggesting that 
NGLs form  trans -homophilic interactions (Woo et al.  2009b ). Instead, NGLs form 
cell–cell interactions through specifi c  trans -heterophilic interactions. Postsynaptic 
NGL-1 binds specifi cally and Ca 2+  independently to Netrin-G1, NGL-2 binds spe-
cifi cally to Netrin-G2 (Kim et al.  2006 ), and NGL-3 binds specifi cally to Leukocyte 
common antigen-related (LAR) (Woo et al.  2009b ). Accordingly, NGL-1 and -2 are 
expressed on dendrites interacting with Netrin-G1- and -2-expressing axons, respec-
tively (Nishimura-Akiyoshi et al.  2007 ). The NGL–Netrin-G complexes have been 
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crystallized, and the structural models show that the convex part of the NGL LRR 
domains interacts with the Ig module of the same molecule. Consequently, the 
 concave part of the NGL LRR domains is exposed to the surrounding environment, 
allowing it to interact with the N-terminal Laminin domains of Netrin-G proteins 
(Seiradake et al.  2011 ; Brasch et al.  2011 ) (Fig.  14.4 ).

   The C-terminal PDZ-domain-binding motifs in the cytoplasmic domain of 
NGLs bind to the fi rst two PDZ domains of PSD-95, and in the brain, NGL-2 
forms a complex with PSD-95 and NMDA receptors, but not AMPA receptors. 
The NGL-2–PSD-95 interaction facilitates the clustering of both PSD-95 and 
NGL-2 in dendritic spines (Kim et al.  2006 ). Moreover, the C-terminal end of 
NGL-1 has been shown to bind the PDZ domains of the protein Whirlin/USH2D 
(Delprat et al.  2005 ). 

  Fig. 14.4    Structural model of an NGL1-Netrin1 dimer. Cartoon drawing of a structural model of 
the ectodomain of human NGL1 (amino acids 44–444) in interaction with a part of the ectodomain 
of human Netrin-G1 [amino acids 30–360; PDB ID: 3ZYJ; Seiradake et al. ( 2011 )]. The ectodo-
main of NGL1 includes an LRR domain composed of nine LRRs with NF and CF domains ( green ) 
that is followed by a single Ig module ( red ). The modeled part of the ectodomain of Netrin-G1 
includes the Laminin N-terminal domain and the fi rst Laminin EGF-like domain ( blue ). The pre-
sented interaction represents a heterophilic  trans- interaction, where the Laminin N-terminal 
domain of Netrin-G1 interacts with the concave part of the LRR domain of Netrin-G1. See text for 
details. The fi gures were created with PyMOL (DeLano Scientifi c)       
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 A membrane-proximal serine residue located in a 5 amino acids long sequence 
in the cytoplasmic domains of NGLs is phosphorylated by cyclin-dependent kinase- 
like 5 (CDKL5), and in hippocampal neurons the proteins co-localize at dendritic 
spines. The CDKL5-mediated phosphorylation of NGLs promotes the interaction 
between NGLs and PSD-95 (Ricciardi et al.  2012 ).  

   Functions and Diseases 

 NGL proteins have neuritogenic properties. Thus, when used as a coat for thalamic 
neurons, NGL-1 promotes neuritogenesis in a Netrin-G-dependent manner (Lin 
et al.  2003 ), and in a similar way, neurite outgrowth is promoted in neurons grown 
on top of NGL-2-expressing cells (Wu et al.  2007 ). 

 NGL proteins are also important for synaptogenesis (Ricciardi et al.  2012 ; Berg 
et al.  2010 ). NGL-2 is important for the formation and maintenance of excitatory 
synapses through mechanisms that include extracellular  trans- interactions with 
Netrin-G2 and intracellular interactions with PSD-95. Thus, knockdown of NGL-2 
in the hippocampus disrupts synaptic interactions in the CA1 region (DeNardo et al. 
 2012 ), and in hippocampal neurons, a lack of NGL-2 reduces the number of excit-
atory, but not inhibitory, synapses and reduces the amplitude of miniature excitatory 
postsynaptic currents, but not miniature inhibitory postsynaptic currents (Kim et al. 
 2006 ). Likewise, NGL-3 expression stimulates postsynaptic differentiation and the 
formation of excitatory synapses, whereas knockdown of NGL-3 in hippocampal 
neurons leads to a reduction in the number of excitatory synapses. When expressed 
in HEK293 cells, NGL-3 stimulates the clustering of the presynaptic markers 
Synapsin I and VGLUT1 (a marker of excitatory synapses),and to a lesser extent 
VGAT (a marker of inhibitory synapses) in the axons of cocultured hippocampal 
neurons. In that setup, NGL-3 is a more potent inducer of synaptogenesis than 
NGL-1 and -2. Postsynaptically, NGL-3 expression induces the clustering of the 
scaffolding proteins PSD-95 and Shank, the AMPA receptor subunit GluR2, and the 
NMDA receptor subunit NR1 (Woo et al.  2009b ). 

 One of the proteins known to bind to the PDZ-domain-binding motif of NGL-1, 
Whirlin, is expressed in stereocilia of hair cells in the inner ear. The gene encod-
ing Whirlin is one of three genes associated with human Usher syndrome type 2, 
a severe sensorineural hearing impairment (Pan and Zhang  2012 ), and defects in 
Whirlin can lead to abnormally short stereocilia. Whirlin exists in two isoforms: 
a long isoform containing 3 PDZ domains and a proline-rich domain and a short 
isoform containing only the proline-rich domain and a single PDZ domain. 
Interestingly, expression of the short Whirlin isoform is suffi cient to rescue both 
the length of stereocilia and the hair cell degeneration observed in response to 
lack of Whirlin expression (Mburu et al.  2003 ). NGL-1 binds to the PDZ domains 
located in the long isoform of Whirlin (Delprat et al.  2005 ). Therefore, defects in 
NGL-1 may play only a minor or no role in Usher syndrome type 2, and the func-
tional  signifi cance of Whirlin–NGL-2 interactions remains to be determined. 

M. Winther and P.S. Walmod



347

 NGL-2 has also been reported to act as a tumor suppressor. The expression of 
 LRRC4  is downregulated in brain tumor biopsies when compared to normal brain 
tissue (Zhang et al.  2005a ), whereas a forced expression of NGL-2 in glioblastoma 
cells reduces tumor growth (Zhang et al.  2005b ). Moreover, the expression of 
NGL-2 inhibits cell migration (Zhang et al.  2005c ; Wu et al.  2006 ) and cell cycle 
progression, causing an increase in the fraction of cells in the G1 phase of the cell 
cycle, an increase in the amount of G1-phase proteins cyclin D1 and E, p21, and 
p27, and a decrease in the amount of cyclin A, proliferating cell nuclear antigen 
(PCNA), Oncoprotein 18/stathmin 1, and phosphorylated Erk1/2 (Zhang et al. 
 2005a ,  b ; Wang et al.  2011 ). The expression of NGL-2 is also reported to inhibit the 
expression of cytokines, cytokine receptors, and downstream signaling molecules 
including the CXC chemokine receptor 4 (CXCR4) (Wu et al.  2008 ). 

 The small regulatory microRNA, hsa-miR-381, reduces the expression of NGL- 2, 
and consequently hsa-miR-381 increases the proliferation of glioma cells, whereas 
the expression of NGL-2 inhibits the expression of hsa-miR-381, cell proliferation, 
and tumor growth (Tang et al.  2011 ). The expression of another regulatory microRNA, 
miR-185, is upregulated by NGL-2, and overexpression of miR-185 inhibits glioma 
cell invasion (Tang et al.  2012 ). 

 A study of copy number variations in gastric cancers revealed a case of  LRRC4C  
amplifi cation (Vauhkonen et al.  2007 ), suggesting that NGL-1 might also have func-
tions related to carcinogenesis or cancer progression. 

 In summary, the NGL family consists of three members, which form  trans- 
interactions  with Netrin-G1, Netrin-G2, and LAR, respectively. Moreover, the 
 individual members can form  cis- complexes with, e.g., NMDA receptors through 
cytoplasmic interactions with PSD-95 and other PDZ-containing proteins. The proteins 
have neuritogenic and synaptogenic properties and are related to the development 
of, e.g., Usher syndrome and cancer.   

14.4.3     The LINGO Family 

 The fi rst member of the “LRR and Ig domain-containing Nogo receptor-interacting 
protein” (LINGO) family was identifi ed in 2003 during an  in silico  gene content anal-
ysis of a part of human chromosome 15. The gene was named  LRRN6A  (Carim- Todd 
et al.  2003 ), but now the offi cial gene name is  LINGO1  (Table  14.7 ). The following 
year the same gene together with two additional members of the family was identifi ed 
during a database search for homologues to the axon guidance molecule SLIT (Mi 
et al.  2004 ), and subsequently a fourth member of the family was cloned (Chen et al. 
 2006 ; Haines and Rigby  2008 ). Moreover, the different members of the family have 
been detected in several large-scale studies (Clark et al.  2003 ; Ota et al.  2004 ; Gerhard 
et al.  2004 ; Bechtel et al.  2007 ; Gregory et al.  2006 ; Grimwood et al.  2004 ).

   LINGO-1    has been suggested to be implicated in MS, PD, AD, and the recovery 
after spinal cord injury (Mi et al.  2004 ; Rudick et al.  2008 ; McDonald et al.  2011 ). 
However, the remaining members of the family are still poorly characterized, and 
their functions largely remain unknown. 
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   Genes and Proteins 

 LINGO proteins are highly homologous, exhibiting 44–61 % pairwise primary 
sequence identity (Carim-Todd et al.  2003 ; Mi et al.  2004 ). Moreover, all the LINGO 
proteins are highly conserved in mammals, especially LINGO-1 for which the pri-
mary sequence for the ectodomain is ~93–100 % identical between human, mouse, 
rat, monkey, and chicken. However, there are no known invertebrate homologues to 
 LINGO1  (Carim-Todd et al.  2003 ; Mi et al.  2004 ; Mosyak et al.  2006 ). 

 LINGO proteins are transmembrane proteins localized in the plasma membrane. 
The proteins are composed of a ~520 amino acids long ectodomain containing 11-12 
LRRs with NF and CF domains, followed by an Ig module, a single transmembrane 
domain, and a short ~40 amino acids long cytoplasmic domain (Mi et al.  2004 ; 
Haines and Rigby  2008 ). In the ectodomain of LINGO-1, there are eight potential 
sites for  N -linked glycosylation; six of these are located in the LRR domain, and the 
remaining two are located in the Ig module (Mosyak et al.  2006 ). The cytoplasmic 
tail of LINGO-1 contains a canonical EGF receptor tyrosine phosphorylation site 
(Mi et al.  2004 ; Inoue et al.  2007 ). The phosphorylation site is conserved between 
LINGO-1-3, but is not present in LINGO-4 (Llorens et al.  2008 ). 

   Table 14.7    The human LINGO family   

 Gene symbol 
 Chromosomal 
location 

 Synonyms and 
previous names  Recommended protein name 

  LINGO1   15q24  Leucine-rich repeat and 
immunoglobulin 
domain- containing 
protein 1, leucine-rich 
repeat neuronal 
protein 1, leucine-rich 
repeat neuronal 
protein 6A, LERN1, 
LRRN6A 

 Leucine-rich repeat and 
immunoglobulin-like 
domain-containing Nogo 
receptor-interacting 
protein 1 

  LINGO2   9p21.2  Leucine-rich repeat 
neuronal protein 3, 
leucine-rich repeat 
neuronal protein 6C, 
LERN3, LRRN6C 

 Leucine-rich repeat and 
immunoglobulin-like 
domain-containing Nogo 
receptor-interacting 
protein 2 

  LINGO3   19p13.3  Leucine-rich repeat 
neuronal protein 2, 
leucine-rich repeat 
neuronal protein 6B, 
LERN2, LRRN6B 

 Leucine-rich repeat and 
immunoglobulin-like 
domain-containing Nogo 
receptor-interacting 
protein 3 

  LINGO4   1q21.3  Leucine-rich repeat 
neuronal 6D, 
LRRN6D 

 Leucine-rich repeat and 
immunoglobulin-like 
domain-containing Nogo 
receptor-interacting 
protein 4 
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 The regulation of LINGO expression is not well characterized, but nerve growth 
factor (NGF) has been reported to regulate the expression of LINGO-1 though the 
activation of the NGF receptor TrkA (Lee et al.  2007 ).  

   Expression 

 In chicken embryos,  cLINGO1  is expressed in the developing spinal cord and brain. 
In the spinal cord it is expressed in motor neurons and in the dorsal and ventral root 
ganglia. In the developing brain it is fi rst detected in the prosencephalon and ventral 
mesencephalon and later in the mesencephalon, telencephalon, and parts of the 
hindbrain. Moreover, it is expressed in the trigeminal and facial nerves and in the 
ventral part of the neural retina (Okafuji and Tanaka  2005 ). 

 During early development in mouse embryos,  LINGO1  initially exhibits a broad 
 pattern of expression, but gradually the expression becomes restricted to the brain. 
 LINGO-2  is expressed adjacent to the epithelial lining of the olfactory pit, whereas 
 LINGO-3  is more widely expressed, especially in mesodermal tissues where it is highly 
expressed in regions of the brachial arches, head mesoderm, and developing limbs. 
Lastly,  LINGO-4  is expressed in the cells along the neural tube (Haines and Rigby  2008 ). 

 In the adult mouse, the expression of  LINGO1  is especially enriched in the limbic 
system and the cerebral cortex (Carim-Todd et al.  2003 ; Haines and Rigby  2008 ), but 
generally the expression levels of  LINGO1  and - 2  are low in the brain, and no expres-
sion of  LINGO3  and - 4  has been detected (Haines and Rigby  2008 ). In stem cells 
from embryonic mouse forebrain, LINGO-1 is co-expressed with Reticulon-
4/NogoA, the Reticulon 4 receptor/Nogo-66 receptor (NgR), the Neurotrophin 
receptor p75, and the tumor necrosis factor receptor TROY (Mathis et al.  2010 ). 

 In rat, LINGO-1 is reported to be widely expressed in the brain. In a rostral-
to- caudal gradient  LINGO1  was found to be expressed in the CNS, with the highest 
level of expression in the cortex and the lowest levels of expression in the spinal 
cord. The expression of  LINGO1  peaks at P1 and subsequently decreases. 
Immunohistochemically, LINGO-1 has been shown to be expressed in cerebellar 
granule neurons of P7 rats, but to be more strongly expressed in Purkinje neurons in 
adult rats (Mi et al.  2004 ). 

 In adult human tissues,  LINGO1  is highly expressed in the brain, especially in 
the cerebral cortex, amygdala, hippocampus, and thalamus, whereas the transcript 
has not been detected in non-neural tissues (Carim-Todd et al.  2003 ; Mi et al.  2004 ). 

 In rat, the remaining members of the LINGO family have been found to be ubiq-
uitously expressed, but only to be expressed at low levels in the nervous system, 
when compared to  LINGO1  (Mi et al.  2004 ).  

   Interactions 

 Structural studies of LINGO-1, both when crystallized and in solution, have 
shown that the protein forms homophilic tetramers, where the individual tetramers 
create a closed, circular structure around a central hole with a diameter of ~45 Å 
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(see Fig.  14.5 ). According to the structural model, the Ig modules of the four 
 molecules are positioned perpendicularly to the cell surface, whereas the LRR 
domains are positioned in parallel to the cell surface (Mosyak et al.  2006 ). Soluble 
LINGO-1 ectodomains have been shown to bind cell surface-localized LINGO-1 
molecules in vitro, hence demonstrating that LINGO-1 molecules can form homo-
philic interactions under physiologically relevant conditions, and the molecules are 
also believed to be able to form homophilic  trans- interactions (Jepson et al.  2012 ).

   In addition to the homophilic  cis- interactions, LINGO-1 might interact with APP 
(Bai et al.  2008 ), and LINGO-1 is one of the components of the Nogo receptor com-
plex, which also includes the GPI-anchored receptor NgR1 and either p75 or TROY. 
In this heterophilic  cis- complex NgR1 serves as the ligand-binding part, whereas p75 
and TROY serve as signal transducing co-receptor subunits (Mi et al.  2004 ; Shao et al. 
 2005 ; Park et al.  2005 ; Fournier et al.  2001 ; Yamashita et al.  2002 ; Wang et al.  2002 ). 

  Fig. 14.5    Structural model of a Lingo1 tetramer. Cartoon drawing of a structural model of four 
ectodomains of human LINGO1 [PDB ID: 2ID5; 477 amino acids; Mosyak et al. ( 2006 )]. Each 
ectodomain includes an LRR domain composed of 12 LRRs with NF and CF domains ( dark / light 
green ) that is followed by a single Ig module ( red / orange ). The ectodomains form homodimers 
through interactions between the concave sides of the LRR domains. In the model there is a near- 
90° angle between the LRR domain and the Ig module. This creates a cleft where the N-terminal 
part of the neighboring LINGO1 molecule binds. The structural model is believed to represent 
homophilic  cis- interactions where the Ig modules are facing the plasma membrane, and the con-
cave surfaces of the LRR domains (including glycosylations that are not included in the fi gure) are 
facing away from the cell surface. However, LINGO molecules are also believed to be able to form 
homophilic  trans- interactions [see Mosyak et al. ( 2006 ), for details]. The fi gures were created with 
PyMOL (DeLano Scientifi c)       
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NgR1 is the receptor for myelin-associated inhibitor (MAI) proteins implicated in 
axonal regeneration. These include NogoA, myelin-associated glycoprotein (MAG), 
and oligodendrocyte myelin glycoprotein (OMgP), and binding of NgR1 to either of 
these MAIs induces intracellular signaling through LINGO-1 and p75/TROY (Rudick 
et al.  2008 ; Wang et al.  2002 ; Bandtlow and Dechant  2004 ; GrandPre et al.  2000 ; 
Domeniconi et al.  2002 ; Oertle et al.  2003 ). Recently, olfactomedin 1 (Olfm1), a 
secreted glycoprotein, has been found also to bind to NgR1 and thereby to interfere 
with the binding between NgR1, p75, and LINGO-1 (Nakaya et al.  2012 ). 

 In retinal ganglion cells LINGO-1 is co-expressed with the BDNF receptor, and 
TrkB and the two receptors can be co-precipitated, suggesting that they form direct 
or indirect  cis- interactions (Fu et al.  2009 ,  2010 ). 

 As mentioned above, LINGO-1 contains an EGF receptor tyrosine phosphoryla-
tion site (Mi et al.  2004 ), and using different methods, LINGO-1 has been shown to 
interact with the EGF receptor. Interestingly, LINGO-1 expression decreases EGF 
receptor expression in a dose-dependent manner, whereas the absence of LINGO-1 
or the abrogation of extracellular LINGO-1 interactions leads to an increase in the 
levels of EGF receptor and phosphorylated Akt. It has been proposed that LINGO-1 
either directly prevents EGF receptor activation or that it reduces EGF receptor- 
mediated signal transduction by promoting 0EGF receptor internalization and 
 degradation (Inoue et al.  2007 ). 

 In yeast two-hybrid screenings using the intracellular part of LINGO-1 as bait, 
the serine–threonine kinase WNK lysine-defi cient protein kinase 1 (WNK1) and the 
post-mitotic neuronal-specifi c zinc fi nger protein Myelin transcription factor 1-like 
(Myt1l) were identifi ed as possible interaction partners (Llorens et al.  2008 ; Zhang 
et al.  2009 ). Subsequent studies have shown that the expression of LINGO-1 and 
WNK1 co-localizes in cortical neurons (Zhang et al.  2009 ) and that Myt1l can be 
co-precipitated with LINGO-1, suggesting that LINGO-1 regulates Myt1l transcrip-
tion factor activity by modulating its subcellular localization (Llorens et al.  2008 ).  

   Functions 

 Neuronal expression of LINGO-1 promotes growth cone collapse and inhibition of 
neuritogenesis. The effect requires the indirect  trans- interactions with MAI 
 proteins (NogoA, MAG, or OMgP), the presence of the LINGO-1 EGF receptor 
tyrosine phosphorylation site, and the expression of WNK1. Thus, the expression 
of dominant negative LINGO-1 (lacking the phosphorylation site), or the down-
regulation of WNK1, leads to an increase in neurite outgrowth (Mi et al.  2004 ; 
Zhang et al.  2009 ). 

 Both in vitro and in vivo, LINGO-1 is expressed in oligodendrocytes, and this 
expression inhibits oligodendrocyte differentiation and axon myelination, whereas 
LINGO-1 knockdown in oligodendrocyte–neuron cocultures in vitro enhances 
 oligodendrocyte differentiation and increases myelination (Lee et al.  2007 ; Jepson 
et al.  2012 ; Mi et al.  2005 ). Moreover, the spinal cords of  LINGO1 -knockout mice 
exhibit an increased amount of myelinated axon fi bers and an increased fraction of 
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mature oligodendrocytes when compared to the spinal cords of wild-type mice 
(Mi et al.  2005 ). 

 The effects of LINGO-1 expression on oligodendrocyte differentiation have been 
suggested to be facilitated by  trans- homophilic LINGO-1 interactions, which sub-
sequently lead to the stimulation of intracellular signal transduction involving the 
inhibition of the Src-family kinase Fyn and the activation of the small GTPase 
RhoA (Jepson et al.  2012 ; Mi et al.  2005 ; Liang et al.  2004 ). 

 Recently, LINGO-1 expression was reported to regulate the differentiation of 
neuronal stem and progenitor cells, but not of astrocytes (Loov et al.  2012 ). Cortical 
neural stem cells from E14 mouse embryos express LINGO-1, but if the protein is 
neutralized with anti-LINGO-1 antibodies in vitro it leads to an increased fraction 
of immature neurons as a result of a decrease in neuronal maturation. The effect is 
probably caused by an increased proliferation of neural progenitors and is accompa-
nied by a decrease in cell death (Loov et al.  2012 ). Abrogating LINGO-1 interac-
tions with addition of recombinant LINGO-1-Fc protein to in vitro cultures of 
cerebellar granule neurons also leads to a rescue of apoptosis induced by low potas-
sium concentrations in a manner involving the inhibition of glycogen synthase 
kinase-3β (GSK3β) (Zhao et al.  2008 ). 

 The long-term and in vivo effects of abrogating the function of LINGO-1 are not 
known, but the phenomenon may have clinical implications in relation to the effect 
of LINGO-1 on neurodegenerative diseases (Inoue et al.  2007 ; Bai et al.  2008 ; 
Mi et al.  2007 ).  

   Diseases 

 Glaucoma is an eye disease that can lead to blindness. It is characterized by the 
slow, progressive degeneration of retinal ganglion cells and their axons (Zhang et al. 
 2012 ). The presence of LINGO-1 in the adult retina has led to the notion that 
LINGO-1 antagonists might have protective effects on neurons following retinal 
injury (Fu et al.  2008 ; Bessero and Clarke  2010 ). To test this hypothesis, LINGO-1 
antagonists were applied to retinal ganglion cells following ocular hypertension and 
optic nerve transection, and it was found that LINGO-1 antagonists signifi cantly 
reduce the loss of retinal ganglion cells after ocular hypertension and promote the 
survival of retinal ganglion cells after optic nerve transections. 

 The neurotrophins BDNF, NGF, and neurotrophin 4 (NT-4) have neuroprotective 
effects on retinal ganglion cells compromised by experimentally induced glaucoma 
or intraorbital optic nerve crush (Parrilla-Reverter et al.  2009 ; Colafrancesco et al. 
 2011 ); reviewed in Johnson et al. ( 2009 ) and Weber et al. ( 2008 ). BDNF and NT-4 
preferentially bind TrkB, whereas NGF preferentially binds the related receptor, 
TrkA, and as mentioned above, LINGO-1 is co-expressed with TrkB, whereas 
TrkA-mediated signaling stimulates the expression of LINGO-1 (Lee et al.  2007 ; 
Fu et al.  2009 ; Skaper  2012a ). Interestingly, LINGO-1 antagonists promote BDNF- 
induced activations of TrkB and the neuroprotective effect of BDNF in the retina, 
suggesting that LINGO-1 antagonists can be used for the treatment of glaucoma. 
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Intracellularly, LINGO-1 antagonists reduce RhoA and JNK activities and increase 
the activity of the anti-apoptotic kinase Akt (Fu et al.  2008 ). 

 In mouse brain, APP and LINGO-1 demonstrate comparable expression patterns 
with respectively high and low expression levels in the CA1-3 regions and dentate 
gyrus of the hippocampus. Furthermore, a reduction in LINGO-1 expression results 
in a decrease in the amount of the β-cleavage C-terminal fragment of APP (βCTF)/
C99 and the 40–42 Aβ-peptide fragments, in combination with an increase in the 
secretion of the α-cleavage C-terminal fragment of APP (αCTF)/C83. These fi nd-
ings suggest that LINGO-1 might affect the cleavage of APP as a result of a direct 
interaction (Bai et al.  2008 ). However, p75 and NgR1 can also affect APP process-
ing (Costantini et al.  2005 ; Park et al.  2006 ), so the effect of LINGO-1 could also be 
the result of an indirect interaction. Surprisingly, NgR1 expression demonstrates an 
inverse relationship with Aβ-peptide levels, whereas LINGO-1 appears to promote 
Aβ-peptide secretion (Bai et al.  2008 ; Park et al.  2006 ). 

 In mice, LINGO-1 expression is elevated in response to damages of midbrain 
dopaminergic nerve terminals, and in some PD patients increased expression levels 
of LINGO-1 have been found in the substantia nigra. Moreover, results obtained 
with primary cell cultures in vitro and with PD in vivo animal models show that the 
survival, growth, and function of midbrain dopaminergic neurons improve when 
LINGO-1 expression is reduced, suggesting that LINGO-1 is a potential target for 
the design of new drug against PD (Inoue et al.  2007 ). 

 Surprisingly, genome-wide association studies of LINGO-1 and LINGO2 
 variations in PD have generally produced negative results, arguing against a role of 
 LINGO1  variations as a contributing factor in the development of PD [for a recent 
review, see Deng et al. ( 2012 )]. However, genome-wide association studies of 
 LINGO1  and - 2  variations have revealed an association with essential tremor, a 
progressive neurological disorder characterized by symmetric postural or kinetic 
tremor of the hands and forearms [see Deng et al. ( 2012 ), Stefansson et al. ( 2009 ), 
Zeuner and Deuschl ( 2012 ) and Vilarino-Guell et al. ( 2010 )]. 

 In rat spinal cord, the axonal expression of LINGO-1 is increased after spinal 
cord injury (Mi et al.  2004 ,  2007 ; Inoue et al.  2007 ; Bandtlow and Dechant  2004 ; 
Ji et al.  2006 ). Furthermore, LINGO-1 antagonists that block the interaction between 
LINGO-1 and NgR1 cause a decrease in RhoA activation, promote axonal sprout-
ing in the spinal cord, and improve forelimb and hindlimb function following spinal 
cord injury (Ji et al.  2006 ), suggesting that a modulation of  LINGO1  expression 
following spinal cord injury may be benefi cial for the recovery [see Mi et al. ( 2008 ) 
and Gerin et al. ( 2011 ), for recent reviews]. 

 Oligodendrocyte precursor cells can give rise to mature oligodendrocyte, Schwann 
cells, and neurons. However, in MS patients oligodendrocyte precursor cells seem to 
be prevented from differentiating into remyelination oligodendrocytes (Rivers et al. 
 2008 ; Fancy et al.  2009 ; Zawadzka et al.  2010 ; Huang and Franklin  2011 ). LINGO-1 
expression has a negative effect on oligodendrocyte differentiation and myelination, 
and since LINGO-1 is upregulated in humans with MS, the protein has been 
proposed as a possible target for antagonistic drugs intended to promote remyelin-
ation in MS patients (Rudick et al.  2008 ; McDonald et al.  2011 ; Inoue et al.  2007 ). 
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Indeed, results obtained with experimental autoimmune encephalomyelitis (EAE; 
the standard animal model for MS) show that the disease course is less severe in 
 LINGO1 -knockout mice, when compared to wild-type mice (Mi et al.  2007 ; Wekerle 
 2008 ). Likewise, EAE is less severe in animals treated with anti-LINGO-1 antibod-
ies, when compared to control animals (Mi et al.  2007 ), and the pharmaceutical com-
pany Biogen Idec is investigating the safety of anti-LINGO-1 treatment in humans 
(McDonald et al.  2011 ). LINGO-1 antagonist seems to promote CNS remyelination 
by stimulating oligodendrocyte precursor cells directly (Mi et al.  2009 ). For more 
information about LINGO-1 in relation to treatment of MS, see Rudick et al. ( 2008 ), 
Huang and Franklin ( 2011 ), Pepinsky et al. ( 2010 ,  2011a ,  b ). 

 In addition to the above-mentioned diseases and pathological conditions, the 
expression of NgR, TROY, LINGO-1, and RhoA, but not p75, is upregulated in 
the cortices of pediatric patients with tuberous sclerosis and focal cortical dysplasia 
type llb (Yu et al.  2012 ). These pathological conditions are characterized by devel-
opmental abnormalities in the cytoarchitecture of the cortex and are often associated 
with intractable focal epilepsies (Blumcke et al.  2009 ). Consequently, it has been 
suggested that NgR/TROY/LINGO-1 complexes play a more important role than 
NgR/p75/LINGO-1 complexes in regulating glial–neuronal and neuronal–neuronal 
interactions during these pathological conditions (Yu et al.  2012 ). 

 Finally, LINGO-1 is, through the interactions with NgR1 and MAIs, potentially 
implicated in, e.g., schizophrenia, temporal lobe epilepsy, and amyotrophic lateral 
sclerosis (Bandtlow and Dechant  2004 ; Llorens et al.  2011 ). For more information 
on MAIs and NgR1, see McDonald et al. ( 2011 ), Llorens et al. ( 2011 ) and Lee and 
Petratos ( 2013 ). 

 In summary, the LINGO family consists of four members, of which LINGO-1 
has been the focus of most investigations. All members of the family are believed to 
form both homophilic  cis-  and  trans- interactions. Moreover, LINGO-1 has been 
found to form direct or indirect heterophilic  cis- interactions with numerous other 
proteins including APP, NgR1, p75, TROY, TrkB, and EGFR. LINGO-1 promotes 
growth cone collapse, inhibits neuritogenesis, oligodendrocyte differentiation, axon 
myelination, and neuronal cell survival, and has been related to several diseases 
including glaucoma, AD, PD, and MS.   

14.4.4     The FLRT Family 

 Fibronectin leucine-rich transmembrane protein 1 (FLRT1) was discovered in 1999 
in a screen for novel ECM proteins in human adult skeletal muscles. A subsequent 
search through the human EST database revealed two additional members of the 
family, FLRT2 and -3 (Lacy et al.  1999 ) (Table  14.8 ). In addition, the three members 
of the family have been detected in several large-scale studies (Ishikawa et al.  1997 ; 
Clark et al.  2003 ; Ota et al.  2004 ; Gerhard et al.  2004 ; Nagase et al.  2000a ; Otsuki 
et al.  2005 ; Taylor et al.  2006 ; Deloukas et al.  2001 ). The proteins have been sug-
gested to be implicated in cirrhosis, lupus, schizophrenia, and ASDs (Lesch et al. 
 2012 ; Anney et al.  2010 ; Ahmad et al.  2012 ; Shirai et al.  2012 ,  2013 ).
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     Genes and Proteins 

  FLRT1, -2 , and  -3  are conserved in vertebrates, but have no orthologues in 
 Drosophila melanogaster  or  Caenorhabditis elegans  (Haines et al.  2006 ; Bottcher 
et al.  2004 ; Smith and Tickle  2006 ). In vertebrates,  FLRT3  expression is activated 
by the TGFβ-protein Activin (Ogata et al.  2007 ) and by Fibroblast growth factor 
(FGF) (Bottcher et al.  2004 ). 

 FLRT proteins are composed of an extracellular domain consisting of 10 LRRs 
with NF and CF domains, followed by one Fn3 module, a transmembrane domain, 
and an ~100 amino acids long cytoplasmic domain (Lacy et al.  1999 ; Tsuji et al. 
 2004 ; Robinson et al.  2004 ). All three proteins contain sites for potential  N -linked 
glycosylation: two in FLRT1, fi ve in FLRT2, and four in FLRT3 (Lacy et al.  1999 ), 
and FLRT2 has been demonstrated to be glycosylated on at least one of these sites 
(Chen et al.  2009 ). 

 All three proteins are highly conserved among vertebrates. Thus, mouse and 
human FLRTs demonstrate similarities of 96–97 % (Haines et al.  2006 ). In contrast, 
the primary sequences of human FLRT1, -2, and -3 exhibit similarities of only 
16–20 % (Lacy et al.  1999 ). Despite these moderate homologies FLRT2 and -3 are 
reported to be functionally interchangeable (Muller et al.  2011 ).  

   Expression 

 During mouse development  FLRT1  expression is initially detected in the midbrain 
and later in the eye, DRG, trigeminal ganglia, near the urogenital ridge, and the 
facio-acoustic ganglion.  FLRT2  is highly expressed around the ventral midbrain, 
the developing heart, and the stomach and later in the eye, branchial arches, and 
limbs.  FLRT3  is expressed in the developing brain, somites, and around the devel-
oping heart (Haines et al.  2006 ). In mouse brain, FLRT3 is around P14 highly 
expressed in the dentate gyrus (DG) and the CA3 region, but not the CA1 region, of 

   Table 14.8    The human FLRT family   

 Gene symbol 
 Chromosomal 
location 

 Synonyms and 
previous names 

 Recommended 
protein name 

  FLRT1   11q12-q13  Fibronectin-like domain- 
containing leucine-rich 
transmembrane protein 1, 
MGC21624 

 Leucine-rich repeat 
transmembrane protein 
FLRT1 

  FLRT2   14q24-q32  Fibronectin-like domain- 
containing leucine-rich 
transmembrane protein 2, 
KIAA0405 

 Leucine-rich repeat 
transmembrane protein 
FLRT2 

  FLRT3   20p11  Fibronectin-like domain- 
containing leucine-rich 
transmembrane protein 3, 
KIAA1469 

 Leucine-rich repeat 
transmembrane protein 
FLRT3 
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the hippocampus (O’Sullivan et al.  2012 ). For detailed studies of FLRT3 expression 
during chicken limb development and FLRT2 during mouse heart and craniofacial 
development, see Smith and Tickle ( 2006 ), Tomas et al. ( 2011 ) and Muller et al. 
( 2011 ), Maretto et al. ( 2008 ) and Gong et al. ( 2009 ), respectively. 

 In adult rat brain  FLRT3  is ubiquitously expressed. Highest levels of expression 
are found in basal ganglia, in pyramidal and dentate granular neurons in the CA3 
and CA4 regions of the hippocampus, in the granular layer and Purkinje cells of 
the cerebellum, and in the granular layer and mitral cells of the olfactory bulb 
(Tsuji et al.  2004 ). 

 Northern blot analyses of adult human tissues have identifi ed low levels of 
 FLRT1  expression in kidney, skeletal muscle, and brain;  FLRT2  is expressed at high 
levels in the pancreas and at lower levels in skeletal muscle, brain, and heart, and 
 FLRT3  is highly expressed in kidney, skeletal muscle, lung, and brain and at lower 
levels in pancreas, liver, placenta, and heart (Lacy et al.  1999 ). 

 At the cellular level FLRT cells localize to the plasma membrane (Haines et al. 
 2006 ; Tsuji et al.  2004 ). In mouse hippocampal neurons FLRT3 enriched in postsyn-
aptic membranes localizes to puncta that partially co-localizes with glutamatergic, but 
not GABAergic synapses (O’Sullivan et al.  2012 ).  

   Interactions 

 Immunoprecipitation data demonstrate that FLRT proteins form direct or indirect 
homophilic and heterophilic interactions within the family (Karaulanov et al.  2006 ). 
Moreover, FLRT2 and -3 have been shown to mediate cell–cell interactions (Haines 
et al.  2006 ) and to promote homotypic cell sorting in a Ca 2+ -dependent manner 
(Karaulanov et al.  2006 ). However, other studies suggest that FLRT3 does not 
 mediate homophilic cell adhesion (Robinson et al.  2004 ; Yamagishi et al.  2011 ). 
Instead, as described below, FLRT proteins are believed to be able to form several 
heterophilic interactions that may help to explain their effects on cell adhesion and 
cell sorting even in the absence of  trans -homophilic interactions. 

 The ectodomain of  Danio rerio  FLRT3 is reported to bind the IgSF members, 
MAG and Brother of CDO (BOC) (Soellner and Wright  2009 ). MAG is known 
to enhance the myelin stability (Schnaar and Lopez  2009 ) and BOC is an axon 
 guidance molecule (Connor et al.  2005 ), but their potential interplay with FLRT3 
function is not known. Moreover, it was in a recent study not possible to demon-
strate an interaction between mouse FLRT3 and MAG (Yamagishi et al.  2011 ). 

 In  Xenopus  and mouse, the ectodomain of FLRT2 binds with high affi nity to the 
Netrin receptor Unc5D in a Netrin-1-independent manner. Likewise, FLRT3 binds 
with high affi nity to Unc5B, and FLRT1 binds with low affi nity to Unc5B (Yamagishi 
et al.  2011 ; Karaulanov et al.  2009 ). There are four Netrin receptors, Unc5A-D, but 
no FLRT proteins have been found to bind with a high affi nity to Unc5A, or -C. The 
Netrin receptors have ectodomains composed of two Ig modules and two thrombo-
spondin type 1 repeats and are known to be involved in Netrin-1-induced axon 
 chemorepulsion (Larrieu-Lahargue et al.  2012 ). A splice variant of Unsc5D that 
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lacks one of the thrombospondin type 1 repeats does not interact with FLRT2 
(Yamagishi et al.  2011 ), suggesting that the binding site includes this part of the 
molecule. 

 Recently, it was shown that mammalian FLRT3 binds a small family of synaptic 
G-protein-coupled receptors called latrophilins (LPHNs). LPHNs are presynaptic 
proteins, and they are believed to form  trans- interaction with postsynaptic FLRT3 
molecules (O’Sullivan et al.  2012 ). 

 Finally, FLRTs are reported to interact with FGF receptors. In one study, the 
interaction was found to be extracellular, involving the FLRT Fn3 module (Bottcher 
et al.  2004 ), but another study has reported interactions also between the cytoplasmic 
domains of FLRT2 and FGF receptor 2 (Wei et al.  2011 ). Surprisingly, it was in a 
recent study not possible to demonstrate an interaction between FLRT2 and FGF 
receptor 2 (Yamagishi et al.  2011 ).  

   Functions 

 FLRT3 seems to play important roles in relation to neuronal development. 
Overexpression of the protein promotes neuritogenesis in, e.g., cerebellar granule and 
DRG neurons (Tsuji et al.  2004 ; Robinson et al.  2004 ), and during chicken develop-
ment the protein plays a role in the regulation of cell adhesion and establishment of 
the dorsal–ventral position of the apical ectodermal ridge (Smith and Tickle  2006 ). 
In mouse, knockout of  FLRT2  or  -3  during development leads to a disorganized 
 basement membrane in the anterior visceral endoderm region and defects in, e.g., 
headfold fusion and heart development (Muller et al.  2011 ; Maretto et al.  2008 ; Egea 
et al.  2008 ). Moreover, studies in mouse and rat have shown that  FLRT3  expression is 
increased considerably in response to nerve injury, suggesting that FLRT3 plays a 
part in neuronal recovery and regeneration (Tsuji et al.  2004 ; Tanabe et al.  2003 ). 

 The interaction between FLRT3 and Unc5B regulates cell adhesion in a manner 
involving the small GTPase Rnd1, which can bind to the cytoplasmic domain of both 
FLRT3 and Unc5B (Yamagishi et al.  2011 ; Karaulanov et al.  2009 ). In  Xenopus  an 
increased expression of FLRT1, -2, or -3 leads to a reduction in cell–cell interactions, 
and for FLRT3 this has been demonstrated to be a result of an endocytosis- mediated 
downregulation of the amount of C-cadherin at the cell surface. This de-adhesion func-
tion of FLRT3 is induced by Activin stimulation, but not by FGF (Ogata et al.  2007 ). 

 Soluble ectodomains of FLRT1, -2, and -3, produced by extracellular membrane- 
proximal cleavage, have been detected in conditioned media from embryonic 
 cortical and hippocampal neurons and from HEK cells overexpressing the proteins. 
The process seems to require metalloprotease, but not γ-secretase, activity 
(Yamagishi et al.  2011 ), but FLRT1 has also been proposed as a novel substrate for 
the extracellular serine protease Thrombin (Gallwitz et al.  2012 ). The soluble 
ectodomains of FLRT2 and -3 serve as repulsive axon guidance molecules for 
 neurons expressing Unc5, and for instance the proper migration of neurons from the 
subventricular zone to the cortical plate is regulated by the expression levels of both 
FLRT2 and Unc5D (Yamagishi et al.  2011 ). 
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 LPHNs are the main receptors for the black widow spider venom α-latrotoxin, and 
activation of the receptors leads to an increase in the intracellular concentration of 
Ca 2+  and the subsequent exocytosis of neurotransmitters (Silva and Ushkaryov  2010 ). 

 Experiments with hippocampal neurons have demonstrated that abrogation of 
the  trans- interaction between postsynaptic FLRT3 molecules and presynaptic 
LPHNs (either by incubation in the presence of excess soluble chimeric ecto-LPHN 
proteins or by knockdown of FLRT3 or LPHNs) leads to a reduction in glutamater-
gic synapse formation and glutamatergic excitatory postsynaptic currents. Moreover, 
in utero knockdown of FLRT3 leads to a reduction in the density of dendritic spines 
in dentate gyrus granule neurons (which express FLRT3), but not in pyramidal 
 neurons (which do not express FLRT3) (O’Sullivan et al.  2012 ). 

 There seems to be a strong interplay between FGF and FLRT function. FLRTs 
are reported to bind to FGF receptors, and the expression of FLRTs overlaps with 
that of some FGFs. Moreover, FGF receptor–FLRT interactions stimulate intracel-
lular FGF receptor-mediated signal transduction pathways, including the Ras- 
MAPK pathway, which in turn leads to an increased expression of FLRTs (Haines 
et al.  2006 ; Bottcher et al.  2004 ). FGF receptor activity leads to the phosphorylation 
of FLRT1 in an indirect manner involving Src-family kinase activity. The FLRT1 
phosphorylation in turn enhances FGF receptor-mediated Ras-MAPK-dependent 
stimulation of neurite outgrowth (Wheldon et al.  2010 ). Despite this apparent inter-
relationship between FGF receptor and FLRT signaling, FLRT-dependent homo-
typic cell sorting is independent of FGF receptor-mediated signaling (Karaulanov 
et al.  2006 ), and in mouse, FLRT3 knockout does not seem to affect FGF receptor- 
mediated signaling (Maretto et al.  2008 ).  

   Diseases 

 Despite the many apparent functions of FLRT proteins there are still few known 
relationships between FLRTs and diseases.  FLRT1  was originally identifi ed in a 
search for possible gene candidates for laminin 2-positive congenital muscular dys-
trophies (CMD), a heterogeneous group of muscle disorders (Lacy et al.  1999 ), but 
it is still unclear whether FLRTs are implicated in the pathogenesis of this disease. 

 In a recent microarray analysis,  FLRT1  was shown to be upregulate during 
 cirrhosis, a chronic degenerative disease, where normal liver cells are damaged and 
replaced by scar tissue (Ahmad et al.  2012 ). 

 FLRT2 has been identifi ed as a target for anti-endothelial cell antibodies 
(AECAs) in patients with the autoimmune disease systemic lupus erythematosus, 
suggesting that the proteins are potential therapeutic drug targets for the treatment 
of this disease and potentially other autoimmune diseases (Shirai et al.  2012 ,  2013 ; 
Renaudineau et al.  2002 ). 

  FLRT3  is embedded within the  MACROD2  gene, and genome-wide studies have 
identifi ed  MACROD2  copy number variation in individuals with schizophrenia, brain 
infarct, ASDs, and MS [see Anney et al. ( 2010 ) for references]. Furthermore, both 
LPHN3 and FLRT3 have been identifi ed as risk genes for  attention-defi cit/
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hyperactivity disorder (ADHD) [reviewed by Lesch et al. ( 2012 )]. However, a direct 
relationship between changes in the function or expression of  FLRT3  and these 
 diseases remains to be determined. 

 In summary, the FLRT family consists of 3 members. All members of the family 
are believed to form  cis -interactions, whereas FLRT-mediated cell adhesion is facil-
itated by direct or indirect heterophilic interactions with, e.g., FGF receptors, Netrin 
receptors, or LPHNs. The different parts of FLRT proteins have different roles that 
are suggested to be as follows: the extracellular LRRs play a role in homotypic cell 
sorting and in binding to Netrin receptors and LPHNs; the Fn3 modules are involved 
in binding to FGF receptors, and the intracellular domains are responsible for 
 modulation of FGF receptor -  and Rnd1-mediated signaling. 

 FLRTs stimulate neuritogenesis and may be involved in neuronal regeneration, 
but they can also act as soluble repulsive axon guidance molecules. Moreover, 
FLRT–LPHN interactions seem to affect the formation and function of glutamatergic 
synapses. However, any relationship between FLRT proteins and neuronal diseases 
remains to be determined.   

14.4.5     The LRIT Family 

 The LRR, Ig-like, and transmembrane domains (LRIT) family has three members, 
LRIT1-3. The genes have been cloned by several groups independently, and 
 consequently the proteins are known by several names (Ota et al.  2004 ; Gerhard et al. 
 2004 ; Bechtel et al.  2007 ; Homma et al.  2009 ; Gomi et al.  2000 ; Deloukas et al.  2004 ; 
Hillier et al.  2005 ; Munfus et al.  2007 ) (Table  14.9 ).

   Biochemical studies suggest that LRIT1 can form homodimers (Gomi et al. 
 2000 ), but the interaction has not been characterized, and LRIT proteins have not 
been demonstrated to mediate cell adhesion. Thus, they may fall outside the scope 
of this book and will therefore only be briefl y described. 

 All LRIT proteins are composed of an N-terminal domain containing an LRR 
domain with fi ve LRRs with NF and CF domains, one Ig module, and one Fn3 
module, followed by a transmembrane domain and a ~64–76 amino acids long 
 cytoplasmic domain (Homma et al.  2009 ; Gomi et al.  2000 ; Munfus et al.  2007 ). 

 Apart from being expressed in the retina, LRIT proteins are generally reported not 
to be expressed in the nervous system (Homma et al.  2009 ), although LRIT1 recently 
was reported to be expressed in the pineal gland (Bustos et al.  2011 ). In the retina, 
LRIT1 localizes to the outer segments of the photoreceptor cells, where the N-terminal 
part of the protein is presumed to face the intradiscal space (Gomi et al.  2000 ), 
whereas LRIT3 localizes to the dendritic tips of bipolar cells (Zeitz et al. 
 2013 ). Surprisingly, a large fraction of LRIT1 proteins are localized not in the plasma 
membrane, but in the ER with the N-terminal domain facing the ER lumen (Gomi 
et al.  2000 ), and based on the function of LRIT3 described below, a similar localiza-
tion can be expected for LRIT1. 
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 Because of its prominent expression in the retina, LRIT1 has been proposed as a 
potential candidate disease gene for inherited retinal degenerations. Moreover, the 
gene is located in a region of chromosome 10 containing genes implicated in Usher 
syndrome, a rare disease combining hearing loss and visual impairment (Gomi et al. 
 2000 ), but a relationship between LRIT1 and Usher syndrome has not been 
established. 

 LRIT3 has been shown to bind FGF receptor 1 (Kim et al.  2012 ), and the protein 
is believed to facilitate exit of FGF receptor 1 from the ER in a regulated manner. 
Co-expression of LRIT3 and FGF receptor 1 in HEK293 cells leads to a relative 
increase in the amount of FGF receptor 1 and facilitates the activation of PLCγ- 
mediated signaling in an FGF-independent manner (Kim et al.  2012 ). Moreover, an 
analysis of patients with the developmental disease non-syndromic craniosynostosis 
has led to the identifi cation of two LRIT3 mutants, LRIT3-S494T (a mutation located 
in the Fn3 module) and LRIT3-C592Y (a mutation located in the transmembrane 
domain), which when expressed in HEK293 cells also facilitate a relative increase in 
FGF receptor 1 expression and lead to an increase in FGF receptor- mediated and 
PLCγ-mediated signaling in an FGF-independent manner    (Kim et al.  2012 ). FGF 
receptor gain-of-function mutations and PLCγ-mediated signaling are known to be 
related to craniosynostosis (Miraoui and Marie  2010 ), and therefore the identifi ed 
LRIT3 mutants suggest a relationship between LRIT3-mediated changes in FGF 
receptor signaling and craniosynostosis. In addition to the craniosynostosis- related 

   Table 14.9    The human LRIT family   

 Gene symbol 
 Chromosomal 
location 

 Synonyms and 
previous names  Recommended protein name 

  LRIT1   10q23  DKFZP434K091, 
fi bronectin type III, 
immunoglobulin, and 
leucine-rich repeat 
domains 9, FIGLER9, 
leucine-rich 
repeat-containing 21, 
LRRC21, photorecep-
tor-associated LRR 
superfamily protein, 
PAL, retina-specifi c 
protein PAL 

 Leucine-rich repeat, 
immunoglobulin-like 
domain, and transmem-
brane domain-containing 
protein 1 

  LRIT2   10q23.2  AC022389.4, leucine-
rich repeat- containing 
22, LRRC22 

 Leucine-rich repeat, 
immunoglobulin-like 
domain, and transmem-
brane domain-containing 
protein 2 

  LRIT3   4q25  Fibronectin type III, 
immunoglobulin, and 
leucine-rich repeat 
domains 4, FIGLER4, 
FLJ44691 

 Leucine-rich repeat, 
immunoglobulin-like 
domain, and transmem-
brane domain-containing 
protein 3 
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mutations, four mutations in the region encoding the Ig and Fn3 modules of LRIT3 
have been identifi ed in patients with congenital stationary night blindness (Zeitz 
et al.  2013 ). These observations suggest that both LRIT1 and -3 have important 
 functions in the retina.  

14.4.6     The SALM/LRFN Family 

 Synaptic adhesion-like molecules (SALMs) also known as LRR and Fn3 domain 
 containing (LRFN) constitute a protein family that originally was identifi ed in 1999 in 
a screening of human adult and fetal brain cDNA libraries (Kikuno et al.  1999 ). 
Subsequently, the different members of the family have been detected in various 
 large-scale screenings (Clark et al.  2003 ; Ota et al.  2004 ; Gerhard et al.  2004 ; Nagase 
et al.  1999 ,  2000a ; Grimwood et al.  2004 ; Mungall et al.  2003 ), but a paper elaborating 
on the function of the proteins was not published until 2006 (Wang et al.  2006 ). 

 The family consists of fi ve members: SALM1/LRFN2, SALMs2/LRFN1, 
SALMs3/LRFN4, SALMs4/LRFN3, and SALMs5/LRFN5 (Nam et al.  2011 ), which 
all are expressed in the nervous system. Pathologically, SALMs have so far been 
 suggested to be implicated in ASD and schizophrenia (Wang et al.  2009b ; Xu et al. 
 2009 ; de Bruijn et al.  2010 ; Mikhail et al.  2011 ). 

   Genes and Proteins 

 In both mouse and human, the fi ve genes encoding the respective members of the 
SALM family are located on four different chromosomes [SALM2 and -4 being 
located on the same chromosome; Table  14.10 ; Nam et al. ( 2011 )].

   All fi ve members of the SALM family are conserved between mammalian 
 species, and fi sh have homologues of at least some mammalian SALMs (Morimura 
et al.  2006 ). In contrast, no homologues to SALMs have been found in inverte-
brates, although they, like members of the LRIG family, share a high sequence 
 identity with the  Drosophila  Kekkon protein family (Gur et al.  2004 ; Wang and 
Wenthold  2009 ). 

 Structurally, all fi ve members of the family are composed of an ectodomain 
 containing six LLRs with NF and CF domains, followed by an Ig module and a 
membrane- proximal Fn3 module. The ectodomain is followed by a single trans-
membrane domain and a ~68–234 amino acids long cytoplasmic domain, which in 
three members of the family, SALM1-3, includes a PDZ-domain-binding motif at 
the distal C-terminus (Wang et al.  2006 ). 

 SALMs have pairwise amino acid sequence identities of 50–60 %. The identities 
are predominantly restricted to the extracellular regions, whereas the sequences in the 
C-terminals are highly variable, demonstrating virtually no amino acid sequence iden-
tities except for the PDZ-domain-binding motifs, suggesting that the individual 
SALMs have distinct functions (Nam et al.  2011 ; Seabold et al.  2012 ; Mah et al.  2010 ). 
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Moreover, the cytoplasmic domains are highly variable in lengths, ranging in human 
SALMs from ~68 amino acids (SALM4) to ~234 amino acids (SALM1) (UniProtKB 
accession numbers: Q9ULH4, Q9P244, Q9BTN0, Q6PJG9, and Q96NI6). 

 A phylogenetic analysis utilizing the N-terminal parts of the SALM LRR 
domains has shown that SALMs are closely related to NgR, and to members of the 
SLIT, and AMIGO families. Thus, the amino acid identities between SALM1 and 
SLIT1-3, AMIGO1-3, and NgR, respectively, are ~24–28 % (Wang et al.  2006 ). 

 SALMs contain several potential sites for  N -glycosylation, and treatment of cells 
with tunicamycin (an  N -glycosylation inhibitor) or treatment of rat brain homoge-
nates with N-glycosidase F (cleaving  N- linked glycosylations) results in a reduction 
of apparent molecular weight of SALMs, demonstrating that at least some of the 
potential sites for  N -glycosylation are glycosylated (Morimura et al.  2006 ; Mah 
et al.  2010 ).  

   Expression 

 In embryonic mice a weak expression of  SALM3  and - 4  is detected before 
E10.5. Around E10.5 an increased expression of SALM2-4 is seen, and a weak 
expression of  SALM1  and - 5  is observed around E11.5-12.5 (Morimura et al.  2006 ). 

   Table 14.10    The human SALM/LRFN family   

 Gene 
symbol 

 Chromosomal 
location  Synonyms and previous names 

 Recommended 
protein name 

  LRFN1   19q13.2  KIAA1484, synaptic adhesion-
like molecule 2, SALM2 

 Leucine-rich repeat and 
fi bronectin type III 
domain-containing 
protein 1 

  LRFN2   6p21.2-p21.1  KIAA1246, fi bronectin type III, 
immunoglobulin, and 
leucine-rich repeat domains 2 
FIGLER2, Synaptic adhesion-
like molecule 1, SALM1 

 Leucine-rich repeat and 
fi bronectin type-III 
domain-containing 
protein 2 

  LRFN3   19q13.13  Fibronectin type III, immuno-
globulin, and leucine-rich 
repeat domains 1, FIGLER1, 
MGC2656, synaptic adhesion-
like molecule 4 SALM4 

 Leucine-rich repeat and 
fi bronectin type-III 
domain-containing 
protein 3 

  LRFN4   11q13.1  Fibronectin type III, immuno-
globulin and leucine-rich 
repeat domains 6″, FIGLER6, 
MGC3103, synaptic adhesion-
like molecule 3, SALM3 

 Leucine-rich repeat and 
fi bronectin type III 
domain-containing 
protein 4 

  LRFN5   14q21.1  C14orf146, fi bronectin type III, 
immunoglobulin, and 
leucine-rich repeat domains 8, 
FIGLER8, synaptic adhesion-
like molecule 5, SALM5 

 Leucine-rich repeat and 
fi bronectin type-III 
domain-containing 
protein 5 
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From a whole-mount in situ hybridization study of E10 embryos,  SALM1  has been 
found to be expressed in the forebrain, midbrain, spinal cord, and DRG.  SALM2-4  
are expressed in the same regions as  SALM1  as well as in the hindbrain, nasal 
 placode, optic cup (only  SALM3 ), otocyt (only  SALM2  and  -3 ), cranial ganglia, 
branchial arches, limb buds, and somites. Furthermore,  SALM3  is expressed in the 
heart, and  SALM3  and  -4  are expressed in the liver, gut, and mesonephros. Finally, 
 SALM5  is expressed in the hindbrain, spinal cord, cranial ganglia, and DRG (Homma 
et al.  2009 ). 

 In adult mouse, northern blot analysis has demonstrated the family to be strongly 
expressed in the brain, and  SALM1 ,  -2 , and  -5  are exclusively detected in the brain. 
 SALM3  and  -4  are also found in the testis, and  SALM4  is additionally expressed in 
the gastrointestinal tract and the kidneys. In situ hybridization investigations of 
adult mouse forebrain have shown that  SALM1  and  -5  are strongly expressed in the 
pyramidal layer and dentate gyrus of the hippocampus. Furthermore, the family 
members all exhibit a broad but weak level of expression in the cerebral cortex and 
diencephalic nuclei (Homma et al.  2009 ; Morimura et al.  2006 ). 

 Immunoblotting analyses have shown that the expression levels of all SALMs 
gradually increase during the fi rst three weeks of embryonic rat brain development, 
and SALM2, -3, and -5 are predominantly expressed in the brain (Mah et al.  2010 ; 
Ko et al.  2006 ). 

 Subcellularly, SALMs are located both intracellularly and at the cell surface, 
where they generate a punctate staining as a result of clustering. They are expressed 
on both axons, dendrites, growth cones, and the soma of neurons (Wang et al.  2006 , 
 2008 ; Ko et al.  2006 ; Seabold et al.  2008 ).  

   Interactions 

 Members of the SALM family form both homophilic and heterophilic extracellular 
interactions, and they generate complexes that are probably dimers or larger. Results 
from studies with SALM-overexpressing cells suggest that all members of the 
 family can be co-precipitated with any other member of the family as a result of 
 cis- interactions  between their extracellular domains. However, only SALM4 and -5 
form  trans -homophilic interactions. These interactions are Ca 2+  independent and 
highly specifi c. Thus, SALM4 does not interact with SALM5 and vice versa 
(Seabold et al.  2012 ). 

 Reticulon 3 (RTN3) was in a yeast two-hybrid screening identifi ed as a binding 
partner for SALM1, and in subsequent immunoprecipitation experiments the 
N-terminal part of RTN3 was found to interact with the LRR domains of SALM1-4 
expressed in the brain (Chang et al.  2010 ). RTN3 is a transmembrane protein 
abundant in the ER that is involved in the regulation of ER structure and intracel-
lular traffi cking (Oertle and Schwab  2003 ; Dodd et al.  2005 ; Yang and Strittmatter 
 2007 ). Not surprisingly, the interactions have therefore been found not to mediate 
cell adhesion, and indeed they most likely do not exist extracellularly (Chang 
et al.  2010 ). 
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 The extracellular part of SALM1 has also been shown to interact with the NMDA 
receptor subunit NR1/GluN1, and overexpression of SALM1 in cultured neurons 
promotes surface expression and clustering of NMDA receptors on dendrites and 
stimulation of neurite outgrowth. However, overexpression of SALM1, where the 
PDZ-domain-binding motif is deleted, does not affect NMDA receptor clustering or 
neurite outgrowth, suggesting that the PDZ-domain-binding motif is also required 
for the SALM1-mediated clustering of NMDA receptors (Wang et al.  2006 ). 

 The cytoplasmic domains of SALM1-3, which all contain PDZ-domain-binding 
motifs, have by yeast two-hybrid screenings been found to bind PSD-95 (Wang 
et al.  2006 ). In the brain, co-immunoprecipitation experiments have demonstrated 
that SALM1 not only can interact with PSD-95, and thereby promote a subcellular 
redistribution of PSD-95 (Morimura et al.  2006 ), but can also interact with the 
related synaptic proteins SAP102 and SAP97 (Wang et al.  2006 ). SALM2 also 
interacts with PSD-95 family proteins, including PSD-95, Chapsyn-110/PSD93, 
and SAP97, and SALM3 binds PSD-95. These observations have led to the sugges-
tion that the expression of SALM1-3 can affect the function of PSD-95 family 
 proteins (Mah et al.  2010 ; Ko et al.  2006 ). 

 SALM2 has been found to induce clustering of guanylate kinase-associated 
 protein (GKAP)/Disks large-associated protein 1 (DAP-1) (a postsynaptic protein 
located in excitatory synapses, which also interacts with PSD-95 family proteins 
(Kim et al.  1997 )) and to a lesser extent the AMPA receptor subunit GluR1 and the 
NMDA receptor subunit NR1. The clustering requires the presence of the PDZ-
domain- binding motifs in the C-terminal of SALM2, suggesting that the interac-
tions are indirect and mediated by PSD-95 family proteins (Ko et al.  2006 ).  

   Function 

 The expression of SALMs affects both neurite outgrowth and the formation and 
maintenance of synapses (Wang et al.  2008 ). 

 When overexpressed, SALMs all stimulate neuritogenesis, outgrowth of dendrites 
and axons, and of neurite branching, but each SALM produces distinct cellular phe-
notypes. For instance, SALM4 promotes the formation of many primary neurites 
and induces more neurite branching than other SALMs, whereas the mean process 
length of SALM4-overexpressing neurons is lower than for neurons overexpressing 
other SALMs (Wang et al.  2008 ). Knockdown of the protein Flotilin-1 specifi cally 
abrogates SALM4-mediated neurite branching, and it has been suggested that 
SALM4 works upstream of Flotilin-1, activating signaling pathways that facilitate 
the localization of Flotilin-1 in lipid raft, from where it can contribute to the branch-
ing process (Swanwick et al.  2010 ). 

 Overexpression of SALM2 leads to an increase in the formation of dendrite 
spines and excitatory synapses (Ko et al.  2006 ), and the SALM1-mediated cluster-
ing of NMDA subunits (Wang et al.  2006 ) also suggests a role for SALM1 in the 
formation as well as the maintenance of synapses. In contrast, SALM3 and -5 
induce presynaptic differentiation, but do not induce the clustering of postsynaptic 
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proteins (like NMDA receptor subunits) in contacting dendrites. Moreover, an 
 overexpression of SALM3 or -5 increases the number of both excitatory and inhibi-
tory presynaptic contacts, suggesting that they have a more general synaptogenic 
potential than SALM2 (Mah et al.  2010 ).  

   Diseases 

 In one study, a patient with developmental delay, microcephaly, receding forehead, 
learning disabilities, seizures, and narcolepsy was found to have an apparent  de 
novo  ~890 kb deletion in chromosome 14 encompassing several exons of  LRFN5  
(Mikhail et al.  2011 ). In another study, a patient with severe autism and mental 
retardation was found in part to have a balanced t(14;21)(q21.1;p11.2) transloca-
tion. This translocation only affected the expression level of  LRFN5 , which in fi bro-
blasts was reduced by 10-fold in the patient when compared to control fi broblasts 
(de Bruijn et al.  2010 ). Moreover, SNPs have in genome-wide association studies 
been identifi ed in  LRFN5  of patients with ASD (Wang et al.  2009b ), and investiga-
tions of copy number variants have led to the suggestion that  LRFN5  expression 
might be related to schizophrenia (Xu et al.  2009 ). Together these studies suggest 
that a modulated expression or function of SALM5 can have serious effects on the 
development and function of the nervous system. 

 RTN3, the protein believed to interact with the extracellular domain of SALM1-4 
when the proteins are located in intracellular compartments, belongs to a family 
of four proteins. All four members of the RTN family have been found to be 
 co- immunoprecipitated with BACE1, and when an RTN3 is overexpressed, the levels 
of Aβ are decreased, whereas a downregulation of RTN3 has been observed in the 
temporal lobes of AD patients. Moreover, RTN proteins also affect apoptosis 
through an interaction with Bcl-2 [see Yang and Strittmatter ( 2007 ) for review]. 
However, whether the interaction between SALM1 and RTN3 affects any of these 
RTN3-regulated processes has not been investigated. 

 In summary, the SALM family consists of fi ve members, which all are believed 
to be able to interact with each other through  cis- interactions. Moreover, SALM4 
and -5 can form  trans- homophilic interactions. Intracellularly, SALM1-3 bind 
PSD- 95 family proteins and thereby facilitate clustering of, e.g., glutamate receptors. 
The expression of SALMs affects neuritogenesis and the formation and mainte-
nance of synapses, and alterations in the expression levels can potentially contribute 
to mental retardation, ASD, or schizophrenia.   

14.4.7     The LRRN/NLRR Family 

 The LRR neuronal (LRRN) or neuronal LRR (NLRR) protein family consists of 
four members: LRRN1-4/NLRR1-4 (Table  14.11 ).  LRRN1  and  -2  were identifi ed 
already in 1996 (Taguchi et al.  1996 ), and later  LRRN1 ,  -2 , and  -3  have been cloned 
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by different groups (Munfus et al.  2007 ; Ohira et al.  2003 ; Almeida et al.  1998 ; 
Haines et al.  2005 ) and identifi ed in several large-scale studies (Clark et al.  2003 ; 
Ota et al.  2004 ; Gerhard et al.  2004 ; Bechtel et al.  2007 ; Gregory et al.  2006 ; Nagase 
et al.  2000a ; Deloukas et al.  2001 ).

   LRRN1, -2, and -3 belong to the Fn3, Ig, and LRR domain (FIGLER) proteins 
(named FIGLER3, -7, and -5, respectively) (Munfus et al.  2007 ). However, the last 
member of the family,  LRRN4 , which was not cloned until 2005 (Bando et al.  2005 ), 
has a slightly different structural organization. Consequently, it does not belong to 
the FIGLER group and should maybe not even be classifi ed as a member of the 
LRRN family (Bando et al.  2012 ). The LRRN family has only been the topic of 
few studies, but the proteins have been related to neuronal development, memory 
formation, carcinogenesis, and, potentially, ASD. 

   Genes and Proteins 

 In contrast to most other genes encoding FIGLER proteins, human  LRRN1 ,  -2 , and 
 -3  are encoded by a single exon, suggesting that they have been incorporated in the 
genome following reverse transcription (Munfus et al.  2007 ). 

  LRRN1  transcription can be activated by the transcription factor N-Myc (Hossain 
et al.  2008 ) and the homeobox transcription factor Nkx2.5 (Barth et al.  2010 ). N-Myc 
is essential during neurogenesis and is known to be hyperactive in, e.g., neuroblasto-
mas, medulloblastomas, and retinoblastomas (Pession and Tonelli  2005 ). Nkx2.5 is 
expressed during heart development (Scott  2012 ). 

  LRRN2  has in chicken been shown to be regulated by the transcription factor 
homeobox B1 (Hoxb1) (Andreae et al.  2009 ). 

   Table 14.11    The human LRRN/NLRR family   

 Gene 
symbol 

 Chromosomal 
location  Synonyms and previous names 

 Recommended 
protein name 

  LRRN1   3p26.2  Fibronectin type III, immunoglobulin, 
and leucine-rich repeat domains 3, 
FIGLER3, KIAA1497, neuronal 
leucine-rich repeat protein 1 

 Leucine-rich repeat 
neuronal protein 1 

  LRRN2   1q32.1  Fibronectin type III, immunoglobulin, 
and leucine-rich repeat domain 7, 
FIGLER7, glioma amplifi ed on 
chromosome 1 protein, GAC1, 
leucine-rich and ankyrin repeats 1, 
LRANK1, leucine-rich repeat 
neuronal 5, LRRN5 

 Leucine-rich repeat 
neuronal protein 2 

  LRRN3   7q31.1  Fibronectin type III, immunoglobulin, 
and leucine-rich repeat domains 5, 
FIGLER5, FLJ11129, neuronal 
leucine-rich repeat protein 3, NLRR3 

 Leucine-rich repeat 
neuronal protein 3 

  LRRN4   20p12.3  C20orf75, neuronal leucine-rich repeat 
protein 4, NLRR4 

 Leucine-rich repeat 
neuronal protein 4 
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 Structurally, LRRN proteins are composed of an ectodomain followed by a  single 
transmembrane domain and a cytoplasmic domain. LRRN1, -2, and -3 have an ectodo-
main composed of 11-12 LRRs within NF and CF domains, one Ig module, and 
one Fn3 module (Almeida et al.  1998 ; Haines et al.  2005 ; Fukamachi et al.  2001 ). The 
ectodomain of LRRN4 contains only 10 LRRs and supposedly lacks an Ig  module 
(Bando et al.  2005 ) (although the number of amino acids between the Fn3 module and 
the transmembrane domain is approximately the same as for LRRN1-3). 

 The cytoplasmic domain of LRRN1 and -3, but not LRRN2, contains motifs for 
regulated Clathrin-mediated endocytosis (Haines et al.  2005 ; Fukamachi et al. 
 2001 ) and has been found to be essential for endocytosis of LRRN3 (Fukamachi 
et al.  2002 ).  

   Expression 

 In mouse, the expression of  LRRN1  and  -2  has been detected from E11.5 throughout 
development to adulthood. During development  LRRN1  is expressed in the CNS 
(forebrain, hindbrain, but not midbrain), DRG, and cartilage, whereas  LRRN2  is 
restricted to the CNS (Taguchi et al.  1996 ; Haines et al.  2005 ). 

 During mouse development,  LRRN3  is around E10.5 expressed in the trigeminal 
and facio-acoustic ganglia, in the migrating germ cells in the tail, the DRG, the 
developing motor horn in the neural tube, the hindbrain, eye, and the olfactory 
 system (Haines et al.  2005 ). Moreover,  LNRR1  and  -3 , but not  LNRR2 , are during 
mouse development expressed in bone marrow cells (Munfus et al.  2007 ). 

 During adulthood  LRRN1  and  -2  are expressed throughout the brain.  LRRN1  
is predominantly expressed in the granular cell layer of the dentate gyrus of the 
 hippocampus, in granule neurons and Purkinje cells in the cerebellum, and in 
regions of the entorhinal cortex, whereas  LRRN2  predominant is expressed in the 
pyramidal cell layer of the hippocampus and Purkinje cells in the cerebellum 
(Taguchi et al.  1996 ; Haines et al.  2005 ). 

 Interestingly, in whole blood samples an increase in  LRRN3  expression is the 
most signifi cant genetic change associated with smoking, and the gene retains a high 
level of expression even in nonsmoking previous smokers (Beineke et al.  2012 ). 

 Mouse  LRRN4  is expressed mainly in the lungs, heart, and ovaries. In the CNS it 
is expressed in the CA1 and CA3 regions, the dentate gyrus of the hippocampus, 
layers V and VI of the neocortex, the piriform cortex, cerebellum, hypothalamus, 
spinal cord, and DRG (Bando et al.  2005 ).  

   Interactions 

 In  Danio rerio  the ectodomain of Lrrn1 has been found to interact with the Netrin-G 
ligands Lrrc4a and Lrrc4c (Soellner and Wright  2009 ). No extracellular interac-
tions have been demonstrated for mammalian versions of LRRN1, -2, or -3, but in 
a  large-scale proteomic screening LNRR4 was reported to form homophilic 
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interactions and to bind dickkopf1 (DKK1), a secreted inhibitor of WNT signaling, 
and  tubulointerstitial nephritis antigen-like 1 (TINAGL1), another secreted protein 
(Rual et al.  2005 ). 

 Intracellularly, LRRN3, and probably also LRRN1, can interact with the Clathrin-
adaptor protein β-Adaptin via the endocytosis-regulating sequences mentioned above 
(Fukamachi et al.  2002 ).  

   Functions and Diseases 

 The expression of LRRN1, -2, and -3 is related to carcinogenesis. Since  LRRN1  
expression in part is regulated by N-Myc, it is not surprising that  NLRR1  is highly 
expressed in neuroblastomas and that the expression levels of  NLRR1  correlate with 
a poor clinical prognosis. However, in addition increased levels of NLRR1 seem to 
promote serum-independent cell proliferation, whereas decreased levels of NLRR1 
reduce proliferation (Hossain et al.  2008 ). NLRR1 is therefore probably not just a 
marker of malignant neuroblastomas, but contributes directly to the cancer patho-
genesis.  LRRN1  expression can together with the expression levels from 18 other 
genes also be used for the detection of, and discrimination between, different types 
of primary lung tumors. However, surprisingly  LRRN1  expression is generally 
downregulated in these tumors (Dmitriev et al.  2012 ). 

  LRRN2  was originally called Glioblastoma amplifi cation on chromosome 1 (GAC1) 
and is, as the name implies, sometimes overexpressed in gliomas (Almeida et al.  1998 ; 
Arjona et al.  2005 ). 

  LRRN3  is differentially expressed in pheochromocytomas, and the expression of 
 LRRN3  together with the expression of four other genes has been suggested as a 
diagnostic marker enabling the identifi cation of benign versus malignant pheochro-
mocytomas (Suh et al.  2009 ). In COS-7 cells overexpression of LRRN3 increases the 
sensitivity of the cells to EGF, leading to EGF-dependent sustained activation of 
the Ras-MAPK pathway in a manner independent of EGF receptor phosphorylation. 
The process is dependent on the cytoplasmic domain of LRRN3 and has been suggested 
to be a result of LRRN3-mediated internalization of EGF (Fukamachi et al.  2002 ). 

 Consistent with their expression in the CNS, LRRN1 and -2 affect neuronal 
 development. In rat hippocampal neurons LRRN1 has been found to act as a negative 
regulator of neuritogenesis (Buchser et al.  2010 ), and in chicken abnormal expres-
sion of LRRN2 can result in axonal rerouting, suggesting that the protein is involved 
in axon guidance (Andreae et al.  2007 ). 

  LRRN1  is a candidate gene for ASD. Thus, an analysis of copy number variations 
in children from the Autism Genetic Resource Exchange (AGRE) revealed a dupli-
cation of a part of chromosome 3 including  LRRN1 . However, the breakpoint was 
inside  LRRN1 , suggesting that the duplication may in fact lead to an LRRN1 loss of 
function (Davis et al.  2009 ). 

  LRRN4 -knockout mice develop normally, are fertile, and demonstrate no 
increased mortality. However, the animals suffer several cognitive defects, including 
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defects in contextual fear conditioning (electrical shock) and spatial memory 
 (hidden-platform Morris water maze test), tasks known to involve the hippocampus. 
In contrast, LRRN4 defi ciency has no effect on auditory cued fear conditioning 
(a tone combined with electrical shock), a task known to be hippocampus indepen-
dent. Consistent with the fact that LRRN4 is expressed in the hippocampus, these 
observations suggest that LRRN4 is important for hippocampus-dependent memory 
formation (Bando et al.  2005 ). Moreover, in DRG neurons of wild-type mice, approx-
imately 42 % and 58 % of the LRRN4-expressing cells are TrkA-positive, peptidergic 
nociceptors, and Ret-positive nonpeptidergic nociceptors, respectively. After unilat-
eral sciatic nerve axotomy, the expression of LRRN4 is signifi cantly reduced in the 
injured side, leading to the suggestion that LRRN4 is involved in the maintenance of 
nociceptive circuits (Bando et al.  2012 ). 

 In summary, the LRRN family consists of four members. The extracellular and 
intracellular interactions mediated by the proteins are not well characterized, but the 
expression of the individual members has been related to carcinogenesis, neurito-
genesis, axon guidance, and memory formation, and at least one member of the 
family might be related to the autism.    

14.5     Conclusion 

 The ten protein families described above all contain members that are CAMs or 
potential CAMs with extracellular LRR domains, which in part or exclusively are 
expressed in the nervous system. Another common characteristic for many of the 
described proteins is that they were identifi ed recently; most members of the 
AMIGO, FLRT, LINGO, LRIT, LRRC15, LRRTM, NGL, SALM, and SLITRK 
were cloned between 1999 and 2003 (Lauren et al.  2003 ; Aruga and Mikoshiba 
 2003 ; Satoh et al.  2002 ; Kuja-Panula et al.  2003 ; Ono et al.  2003 ; Lin et al.  2003 ; 
Carim-Todd et al.  2003 ; Lacy et al.  1999 ; Gomi et al.  2000 ; Kikuno et al.  1999 ), and 
whereas some members of the LRRN family were identifi ed already in 1996 
(Taguchi et al.  1996 ), some members of the LRIT family were not cloned until 2009 
(Homma et al.  2009 ). Consequently, many of the proteins are not well character-
ized, and the information regarding their functions and characteristics will in the 
following years most likely increase considerably. However, already now it is clear 
that many LRR-containing CAMs play pivotal roles in the development and main-
tenance of the nervous system and that they are implicated in numerous functions in 
the nervous system as well as in the pathogenesis of several diseases ranging from 
neurodegenerative diseases like AD, PD, and MS to ASD, schizophrenia, and 
obsessive–compulsive disorders. The fact that the LRR-containing CAMs within 
~10 years of their cloning have been demonstrated to be involved in so many bio-
logical processes and diseases suggests that the list of functions is far from complete 
and that further research in the fi eld will reveal additional important functions of 
this interesting group of proteins.     
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