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           Introduction 

 Papaya is a popular fruit in the tropics and subtropics that signifi cantly contributes to 
the dietary intake of vitamins A and C (FAO  2009 ; Miller  1926 ). Although abundant 
year-round production of papaya is possible, its susceptibility to numerous diseases 
affects fruit quality and yield (Persley and Ploetz  2003 ) (Table  15.1 ). This may be 
partially attributable to its narrow genetic base. Presumably, papaya diverged from 
other species of the Caricaceae family as a result of being evolutionarily isolated in 
Central America (Aradhya et al.  1999 ). Archeological and paleoethnobotanical evi-
dence indicates the presence of papaya in the region dating back to the Maya Classic 
Period (300–900  ad ). The identifi cation of maximal species richness of its close 
relative, the genus  Vasconcellea , which occurs farther south in Colombia, Ecuador, 
and Peru, supports this hypothesis (Miksicek  1983 ; Lentz  1999 ; Scheldeman et al. 
 2007 ). As a consequence,  C. papaya  is the only member of the genus  Carica  
(Aradhya et al.  1999 ; Kim et al.  2002 ) and is more vulnerable to disease than genera 
with greater genetic diversity.

   Today, from a global production standpoint, papaya is no longer isolated any-
where in the world, and the severity and geographical distribution of some papaya 
diseases is highly variable. For example, papaya meleira virus (PMeV), which 
causes “sticky disease,” is considered among the most severe diseases in Brazil 
(Ventura et al.  2004 ), but it is less prevalent elsewhere. Similarly, the acidic soils of 
Hawaii are thought to promote  Phytophthora  rot (Manshardt and Zee  1994 ), while 
in Malaysia where soil pH is also low, the disease is considered insignifi cant 
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    Table 15.1    Major diseases of papaya   

 Pathogen  Species  Prominent distribution 

 Bacteria 
 Bacterial canker and decline   Erwinia   Caribbean 
 Bacterial leaf spot   Pseudomonas 

caricae-papayae  
 Brazil 

 Internal yellowing   Enterobacter cloacae   Hawaii 
 Mushy canker  Erwinia  Northern Mariana Islands 
 Papaya bunchy top   Rickettsia   Puerto Rico, Caribbean, and 

Central and South America 
 Purple stain fruit rot   Erwinia herbicola   Brazil 

 Fungi and oomycetes 
 Alternaria fruit spot   Alternaria alternate   Israel and Hawaii 
 Anthracnose   Colletotrichum 

gloeosporioides  
 Most production areas 

 Asperisporium black spot   Asperisporium caricae   Australia, Africa, Central 
America, South America, 
India, and the USA 

 Black/dry rot   Mycosphaerella caricae   Most production areas 
 Brown spot/Corynespora 

leaf spot 
  Corynespora cassiicola   Most production areas 

 Cercospora black spot   Cercospora papayae   Most production areas 
 Collar rot   Calonectria ilicicola   Hawaii 
 Fusarium fruit rot   Fusarium solani   Hawaii, India, Israel, and the 

Philippines 
 Lasiodiplodia fruit and stem rot   Diplodia theobromae   Hawaii and India 
 Leaf spot, dry rot, end rot of 

fruits, wet fruit rot 
  Phomopsis caricae-papayae , 

 Phomopsis  sp. 
 Most production areas 

 Phytophthora fruit, root, and 
stem rot 

  Phytophthora palmivora   Most production areas 

 Powdery mildew   Oidium caricae   Most production areas 
 Soft rot   Rhizopus stolonifer   Most production areas 
 Stemphylium fruit rot   Stemphylium lycopersici   Most production areas 

 Nematodes 
 Reniform nematodes   Rotylenchulus reniformis   Most production areas 
 Root-knot nematodes   Meloidogyne incognita, 

Meloidogyne javanica  
 Most production areas 

 Phytoplasmas 
 Papaya dieback   Candidatus  Phytoplasma 

australiense 
 Australia 

 Yellow crinkle and mosaic   Candidatus  Phytoplasma 
australasia 

 Australia 

 Viruses 
 Leaf curl disease   Papaya leaf curl virus   India 
 Meleira or sticky disease  Virus  Brazil 
 Papaya droopy necrosis and 

papaya apical necrosis 
 Rhabdovirus  Florida and Venezuela 

(continued)
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(Personal communication: Dr. Chan Ying Kwok, Malaysian Agrifood Corporation). 
Such disparity in disease prevalence between environments might be explained by 
factors such as pathogen diversity, the concentration of disease vectors, the abun-
dance of alternate hosts, or presence of natural barriers that affect pathogen move-
ment and regional outbreaks, as was the case for papaya ringspot virus (PRSV-P) 
(Gonsalves  1998 ). In the case of pathogen diversity, the evolution of pathogenicity 
factors, including effector proteins, can intensify disease (Birch et al.  2006 ; Walton 
et al.  2009 ). Regardless of the mechanisms involved in a particular disease, local 
cultivars must be developed that can withstand pathogen pressure. To achieve this 
goal, sources of resistance can be obtained within  Carica  or related Caricaceae 
genera or by using bioengineering approaches. 

 Although  Carica  is monotypic, crosses of papaya cultivars have, in some cases, 
demonstrated that disease resistance is additive and selectable (Mosqueda-Vázquez 
et al.  1981 ; Mosqueda-Vázquez and Nakasone  1982 ). Markers linked to resistance 
loci are beginning to be developed (Noorda-Nguyen et al.  2010 ); with the papaya 
genome sequence now available (Ming et al.  2008 ), genetic resistance within the 
species may be more fully determined. Separately, 5 related genera,  Cylicomorpha , 
 Horovitzia ,  Jacaratia ,  Jarilla , and  Vasconcellea , consist of 34 additional species 
(Scheldeman et al.  2007 ) that can be screened for resistance to papaya diseases 
(Tables  15.1  and  15.2 ). Transferring resistance genes from these species to papaya 
is diffi cult since hybrids often produce nonviable seed or parthenocarpic fruit caused 
by postzygotic barriers, such as abnormal endosperm development or ovule and 
embryo abortion (Mekako and Nakasone  1975 ; Manshardt and Wenslaff  1989a ). 
Nevertheless, hybrids have been recovered (Manshardt and Wenslaff  1989b ), and 
recently the introgression of PRSV resistance from a wild relative was successfully 
achieved (Siar et al.  2009 ). This advance provides encouragement that additional 
wild relative traits may be introgressed into papaya in the future.

   Bioengineering has played a major role in securing the production of papaya, 
most notably through coat protein-mediated resistance to ringspot virus (Fitch et al. 
 1992 ; reviewed by Gonsalves in Chap.   7     in this text). New transgenic strategies 
for controlling carmine spider mite and  Phytophthora palmivora  of papaya have 

 Pathogen  Species  Prominent distribution 

 Papaya leaf distortion mosaic   Papaya leaf distortion mosaic 
virus  

 Japan, Saipan, and Taiwan 

 Papaya lethal yellowing disease   Papaya lethal yellowing virus   Brazil 
 Papaya mild yellowing disease   Papaya mild yellowing virus   Venezuela 
 Papaya mosaic   Papaya mosaic virus   USA, Mexico, and South 

America 
 Papaya ringspot   Papaya ringspot virus -type P  Most production areas 
 Tomato spotted wilt   Tomato spotted wilt virus   Hawaii 

  Data from Persley and Ploetz ( 2003 ) and Ventura et al. ( 2004 )  

Table 15.1 (continued)
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also been successful (Zhu et al.  2004 ; McCafferty et al.  2006 ; Zhu et al.  2007 ). 
Characterization of papaya’s resistance genes, and those of its wild relatives, will 
likely provide additional sources of resistance (Porter et al.  2009a ). At the same 
time, ecological control strategies, such as defensive mutualism, wherein a symbi-
ont provides protection against pathogens, must be utilized to promote integrated 
disease management strategies to preserve resistance (Jaizme-Vega et al.  2006 ; 
Newcombe et al.  2010 ). 

 The genomics of papaya disease resistance will be discussed in this chapter in 
the context of the major diseases of papaya and the resources available to mitigate 
them. Genetic variation of resistance available within  C. papaya  and its wild relatives 
will be reviewed in addition to past and forthcoming transgenic approaches. Finally, 
pathogen diversity, emerging diseases, and strategies for promoting durable resistance 
will be addressed.  

    Table 15.2    First reports and possible emerging diseases of papaya   

 Disease  Location  Reference 

 Powdery mildew  Taiwan     Tsay et al. ( 2011 ) 
 Bacterial crown rot  Tonga  Fullerton et al. ( 2011 ) 
 Postharvest anthracnose  South Florida  Tarnowski and Ploetz 

( 2010 ) 
 Fruit rot ( Colletotrichum magna )  Brazil  Nascimento et al. ( 2010 ) 
 Scab  Taiwan  Chen et al. ( 2009 ) 
  Erwinia  papayae/papaya dieback  Malaysia  Maktar et al. ( 2008 ) 
 Moroccan watermelon mosaic virus  Democratic Republic 

of Congo 
 Arocha et al. ( 2008 ) 

 Papaya leaf distortion mosaic virus infecting 
transgenic papaya resistant to papaya 
ringspot virus 

 Taiwan  Bau et al. ( 2008 ) 

 Atypical internal yellowing  Hawaii  Keith et al. ( 2008 ) 
 Ringspot virus  Côte d’Ivoire  Diallo et al. ( 2007 ) 
 16SrII group phytoplasma  Ethiopia  Arocha et al. ( 2007 ) 
 16SrII group phytoplasma  Cuba  Arocha et al. ( 2006 ) 
 Nivun Haamir dieback disease  Israel  Gera et al. ( 2005 ) 
 Ringspot virus  Bangladesh  Jain et al. ( 2004 ) 
 Leaf curl virus  Taiwan  Chang et al. ( 2003 ) 
 Phytoplasmas  Cuba  Arocha et al. ( 2003 ) 
 Ringspot virus  Iran  Pourrahim et al. ( 2003 ) 
 Black spot  Hawaii  Ogata and Heu ( 2001 ) 
 Papaya mosaic virus (Mexican isolate)  Mexico  Noa-Carrazana and 

Silva-Rosales ( 2001 ) 
 Collar rot  Baja California Sur, 

Mexico 
 Rodriguez-Alvarado et al. 

( 2001 ) 
 Leaf blight, fruit rot, root rot  American Samoa  Roberts and Trujillo 

( 1998 ) 
 Leaf curl disease  Pakistan  Nadeem et al. ( 1997 ) 
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    Genetic Variation for Disease Resistance in  Carica papaya  

    Papaya Ringspot Virus 

 Papaya ringspot virus exists as multiple strains occurring worldwide and is among 
the most destructive diseases of papaya (see Chap.   7     in this text; Ventura et al.  2004 ). 
 C. papaya  lacks complete resistance to PRSV-P, but conventional breeding has devel-
oped partially resistant cultivars. In Florida, Conover et al. ( 1986 ) derived “Carifl ora” 
from partially resistant dioecious lines (K2 and K3). Another partially resistant culti-
var, Sinta, is an F 1  semidwarf hybrid developed by the Institute of Plant Breeding 
(College of Agriculture, University of the Philippines, Los Baños) (Siar et al.  2009 ). 
The level of resistance provided by “Sinta” is proposed to be suffi cient for viable com-
mercial production in areas where PRSV-P infection occurs (Siar et al.  2009 ). 
Although the resistance of lines developed from germplasm available within the 
 C. papaya  species is only partial, these genetic resources are valuable. The PRSV-P 
resistance of “Carifl ora” (Conover and Litz  1978 ) and, likely, “Sinta” is multigenic 
and now more useful by using genomic tools (Ming et al.  2008 ). Markers for quantita-
tive trait loci (QTLs) controlling PRSV resistance may be developed for breeding. 
New sources of resistance may be used to enhance protection against diverse virus 
isolates and contribute to the durability of deployed transgenic resistance (Fitch et al. 
 1990 ,  1992 ; Fitch  1993 ; Fitch and Manshardt  1990 ).  

    Phytophthora Fruit, Root, and Stem Rot 

  P. palmivora  is the causal organism of  Phytophthora  fruit, root, and stem rot of 
papaya and is thought to have originated in Asia (Persley and Ploetz  2003 ; Mchau 
and Coffey  1994 ).  P. palmivora  is classifi ed as an oomycete which is distinct from 
fungi. Oomycetes are distinguished by being diploid and having nonseptate hyphae 
and cell walls that contain cellulose but little or no chitin (Latijnhouwers et al.  2003 ). 
Many  Phytophthora  species are devastating pathogens, and  P. palmivora , with over 
160 documented hosts (Erwin and Ribeiro  1996 ), is no exception. The pathogen pro-
duces infectious, bifl agellate zoospores that are motile in water, making the disease 
particularly infective during wet conditions (Erwin and Ribeiro  1996 ).  P. palmivora  
is particularly destructive in the southeast part of the island of Hawaii, which can 
receive >120 in. of rainfall per year (NOAA Climate Data  1971 –2000). 

 Partial resistance to  P. palmivora  has been identifi ed within the  C. papaya  
species. After inoculating 1-month-old papaya seedlings with sporangia, Mosqueda- 
Vázquez et al. ( 1981 ) identifi ed four partially resistant lines (Line 8, Waimanalo-23, 
Waimanalo-24, and Line 40) and two moderately resistant lines (Line 45-T 22  and 
Kapoho). Subsequently, “Waimanalo”-23, “Waimanalo”-24, “Line 40,” “Line 
45-T 22, ” and the susceptible cultivar Higgins were crossed in diallel (crosses in all 
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possible combinations) to determine the combining ability of  P. palmivora  resistance 
(Mosqueda-Vázquez and Nakasone  1982 ). F 1  progeny and parents were screened, 
and it was determined that there was signifi cant general combining ability, suggest-
ing that resistance is additive and selectable (Mosqueda-Vázquez and Nakasone 
 1982 ). In a separate study, fi eld and greenhouse screenings identifi ed the cultivars 
Tailandia Roxao and Cross Paris, which are larger “Formosa” types, as partially resis-
tant and a separate group of “Solo” papaya as susceptible (Dianese et al.  2007 ,  2010 ). 
Interestingly, in Hawaii, the emergence of  P. palmivora  occurred when “Solo” (acces-
sion no. 2853) replaced the traditionally grown, more-resistant large-fruited cultivars 
(Parris  1941 ; Takeguchi et al.  1999 ). This suggests that marketing/educational strat-
egies used to promote the production of both large- and small-fruited papaya might 
help overall crop resistance. Finally, molecular resources are being developed for 
marker-assisted selection. A segregating F 2  population derived from a cross of 
“Kamiya” (partially resistant) and “SunUp” (susceptible) was screened using ampli-
fi ed fragment length polymorphism (AFLP) analysis (Noorda-Nguyen et al.  2010 ). 
Several polymorphic DNA fragments linked to resistance were identifi ed (Noorda-
Nguyen et al.  2010 ) and may be converted to cleaved amplifi ed polymorphic 
sequences (CAPS) to be used as markers to breed  Phytophthora  resistance.  

    Other Diseases and Pests 

 Genetic resistance has been reported for many other diseases and pests of papaya. 
Collar rot of papaya, caused by the fungus  Calonectria ilicicola , is of notable con-
cern in wet regions on the island of Hawaii (Persley and Ploetz  2003 ). Greenhouse 
inoculations identifi ed the cultivar Kapoho Solo as partially resistant compared to the 
susceptible cultivars, Sunrise Solo and Waimanalo (Nishijima and Aragaki  1973 ). 
The fungal pathogen,  Colletotrichum gloeosporioides , causes the postharvest disease 
of papaya known as anthracnose. While symptoms occur on the fruit after harvest, 
infection fi rst occurs during fruit development (Alvarez and Nishijima  1987 ). 
“Sunrise Solo” displayed some resistance to  C. gloeosporioides  (Nakasone and 
Aragaki  1982 ). The fungus,  Asperisporium caricae , causes black spot. Leaf infection 
decreases plant development, whereas the blemishes on infected fruit lessen market-
ability (Ventura et al.  2004 ). Dianese et al. ( 2007 ) found genotype Sekati to have the 
lowest severity of  A. caricae  foliage infection and “Sekati,” “Tailandia Roxao,” and 
“Tailandia Verde” to have the lowest levels of fruit infection. 

 In Hawaii, papaya to be exported to California must receive hot water or forced hot 
air disinfestation treatment to control fruit fl ies ( Toxotrypana curvicauda ) (Manshardt 
and Zee  1994 ), which are considered the most damaging insect pests of papaya (Pantoja 
et al.  2002 ). While fruit fl y resistance has not been identifi ed, Aluja et al. ( 1994 ) found 
more fi eld infestation of a variety designated “Hawaiian” than two other cultivars, 
Cera Amarilla and Cera Roja. For all the diseases and pests mentioned previously, a 
genetic basis of resistance is worth exploring, especially as resources become available 
to associate molecular markers with these traits (Ming et al.  2008 ).   

B.W. Porter et al.
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    Genetic Variation for Disease Resistance in Papaya’s Wild 
Relatives 

 Wild relatives of papaya offer a source of genetic variation for traits such as fruit 
quality and disease resistance. The most diverse of the fi ve genera related to  Carica  
is  Vasconcellea . It includes 21 species (Badillo  2000 ). Grown at higher elevations, 
they are commonly referred to as “highland papaya” (National Research Council 
 1989 ).  Vasconcellea  is thought to have originated in the region of Ecuador, 
Colombia, and Peru where maximum species diversity occurs (Scheldeman et al. 
 2007 ). Some  Vasconcellea  spp .  are used in local cuisine for fl avoring or cooked with 
sugar to make jams (National Research Council  1989 ). It may be possible to use 
these species for enhancing or altering papaya’s fl avor. Currently, the only highland 
papaya grown extensively outside of its region of origin is “Babaco,” a sterile hybrid 
( Vasconcellea  ×  heilbornii ) (Kyndt and Gheysen  2007 ) that produces large parthe-
nocarpic fruit that tastes like “strawberry with a hint of pineapple” (National 
Research Council  1989 ). “Babaco” has been evaluated for commercial production 
in a number of countries with some success, including New Zealand, Australia, 
Spain, France, the United Kingdom, Switzerland, Italy, the Netherlands, South 
Africa, and Canada (Scheldeman et al.  2007 ; Kempler and Kabaluk  1996 ). Before 
“Babaco” can be fully commercialized, a reduction in production cost and con-
sumer education must be addressed (Kempler and Kabaluk  1996 ). In addition, 
greenhouse production of “Babaco” is limited by fusarium wilt (Ochoa et al.  2000 ). 
Possible sources of resistance for this pathogen and those affecting papaya are other 
members of  Vasconcellea . 

 In the mid-1960s, a number of  Vasconcellea  species were screened for PRSV-P 
resistance.  V. cundinamarcensis  and  V. quercifolia  were found to be resistant 
(Conove  1964 ). A separate study found  V. caulifl ora  and its F 1  hybrids from a cross 
with a susceptible species ( C. monoica ) resistant to PRSV-P (Horovitz and Jiménez 
 1967 ). Attempts to introgress this resistance into papaya through crosses with  V. 
caulifl ora  have been mostly unsuccessful due to postzygotic barriers, including 
embryo abortion, abnormal endosperm development, and polyembryony (Manshardt 
and Wenslaff  1989a ). In contrast, crosses of  C. papaya  to  V. quercifolia  results in 
fewer postzygotic disruptions and can be grown in the fi eld (Manshardt and Wenslaff 
 1989b ). In an attempt to improve the success rate of  C. papaya  ×  C. caulifl ora  
hybridization, Magdalita et al. ( 1998 ) developed an effi cient hybridization protocol, 
including the use of a more compatible  C. papaya  cultivar, higher quality pollen, 
and embryo isolation time at 90–120 days postfertilization. Combined with an 
improved embryo-rescue technique, this protocol resulted in a 94 % embryo germi-
nation rate, providing 485 hybrid plants with normal morphology (Magdalita et al. 
 1996 ). Unfortunately, although these hybrids were resistant to PRSV-P (Magdalita 
et al.  1997 ), none were fertile (Drew et al.  2005a ). As a result, the focus for a source 
of resistance returned to  V. quercifolia , which is more closely related to  C. papaya  
(Jobin-Décor et al.  1997 ) so that there are fewer postzygotic barriers (Manshardt 
and Wenslaff  1989b ). 
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 Because the Philippine papaya industry was experiencing signifi cant losses due 
to PRSV-P, the Institute for Plant Breeding (College of Agriculture, University of 
the Philippines at Los Baños) established a collaborative project with Griffi th 
University (Nathan, Australia) in 2002 to prioritize the introgression of resistance 
from  V. quercifolia  into elite Philippine inbred lines (Siar et al.  2009 ). To initiate this 
process, a resistant male BC 1  plant (line 54) from a  C. papaya  ×  V. quercifolia  cross 
was developed (Drew et al.  2005b ). Unfortunately, although micropropagated 
clones of this line were resistant in Australia, the clones inoculated with a local 
PRSV-P strain in the Philippines succumbed to disease (Drew et al.  2005b ). In a 
second attempt, a number of inbred lines and F 1  hybrids were crossed, and a BC 1  
line found to be resistant after 12 months in a fi eld in Los Baños was selected (Siar 
et al.  2009 ). Advanced backcrossing was conducted with this line, and the resulting 
plants were found to have only mild or delayed virus symptoms with little or no 
disease progression (Siar et al.  2009 ). This major accomplishment represents the 
fi rst successful transfer of disease resistance from a wild relative to papaya and 
establishes a precedent for developing resistance to other diseases. 

 Signifi cant levels of partial resistance to PRSV-P (Siar et al.  2009 ) and other 
pathogens may be improved by combining sources of resistance from the multiple 
 Vasconcellea  spp .  One way to circumvent compatibility barriers and achieve this 
goal is by using a bridge species.  V. parvifl ora  is closely related to  C. papaya  and 
may be used for this purpose (Jobin-Décor et al.  1997 ). Resistance genes from more 
distantly related incompatible  Vasconcellea  spp .  might be introgressed into  V. par-
vifl ora  and then into  C. papaya  (O’Brien and Drew  2010 ). In addition, to reducing 
the cost and variability associated with manual disease screening, molecular mark-
ers can be used to track the movement of  Vasconcellea  spp .  resistance genes through 
breeding schemes; see Chap.   19     in this text for details of this process. Using an F 2  
 V. cundinamarcensis  ×  V. parvifl ora  mapping population, the PRSV-P resistance of 
 V. cundinamarcensis  was identifi ed as being regulated by a single, dominant gene 
( prsv-1 ) (Dillon et al.  2005a ). Using this population, a codominant marker ( PsiIk4 ) 
linked to  prsv-1  was developed that can now be used to move resistance from 
 V. cundinamarcensis  and  V. pubescens  to papaya (Dillon et al.  2005b ,  2006a ; Drew 
et al.  2007 ; O’Brien and Drew  2010 ). Interestingly, the  PsiIk4  marker is not linked 
to  V. quercifolia  resistance, suggesting that separate gene(s) regulates this trait 
(Dillon et al.  2006b ). This is encouraging because, if multiple sources of PRSV-P 
resistance exist, opportunities will exist for achieving more durable resistance by 
gene pyramiding. Although achieving resistance through interspecifi c and interge-
neric hybridization requires years of work, it avoids the regulatory obstacles associ-
ated with transgenic approaches. 

 In addition to PRSV-P resistance, the diverse  Vasconcellea  species offer resistance 
for other pathogens as well. Black rot spore inoculation of green and ripened fruit 
in the fi eld demonstrated that  V. goudotiana  has some resistance to  Mycosphaerella 
caricae  (Sanchez et al.  1991 ).  V. monoica ,  V. goudotiana , and  V. caulifl ora  are cited as 
being resistant to  Cercospora papayae  (black spot), while  V. quercifolia  is noted as 
being resistant to  Ascochyta caricae-papayae  (Ascochyta leaf spot). After conducting 
pathogenicity tests, Nishijima and Aragaki ( 1973 ) found a low incidence of collar rot 

B.W. Porter et al.

http://dx.doi.org/10.1007/978-1-4614-8087-7_19


285

( Calonectria ilicicola ) on  V. goudotiana . As for “Babaco’s” previously mentioned 
susceptibility to  Fusarium oxysporum ,  V. weberbaueri  and  V. monoica  offer a source 
of potential resistance (Scheldeman et al.  2003 ).  V. goudotiana  may be a possible 
source of  Phytophthora  resistance (Drew et al.  1998 ). In preliminary experiments, 
 V. goudotiana  exhibited rate-limiting resistance, characterized by mild symptoms 
associated with  P. palmivora  infection that was later outgrown (Zhu and Porter, 
unpublished data). This reaction is similar to that afforded by the nucleotide binding 
site-leucine-rich repeat (NBS-LRR) resistance gene,  RB , isolated from wild potato 
( Solanum bulbocastanum ) (Song et al.  2003 ). Additional studies must be conducted 
to further characterize this response. Finally,  V. caulifl ora  may have another source 
of  Phytophthora  resistance (Erwin and Ribeiro  1996 ; Zentmyer and Mitchell 
 1985/1986 ). 

 High-throughput next-generation sequencing offers a means to survey transcrip-
tomes for genes regulating this resistance, while microarray technology can monitor 
expression changes. We emphasize that because  Vasconcellea  spp .  are an invaluable 
sources of diversity for papaya, it is of utmost concern that 5 of the 21 species are 
considered threatened (Scheldeman et al.  2007 ). Others suggest the number of threat-
ened  Vasconcellea  spp .  might be even higher due to the rate of deforestation, espe-
cially in the species-rich “hybrid zones” that exhibit high morphological variability 
(Kyndt and Gheysen  2007 ).  

    Transgenic Resistance in  C. papaya  

    Coat Protein-Mediated Resistance to Virus 

 In papaya, coat protein-mediated resistance (CP-MR) has been remarkably effective; 
reviewed by Gonsalves  1998 ; see also Chap.   7     in this text. Preceding the develop-
ment of this technology, one strategy for virus control involved exposing plants to 
a mild or ”weaker” virus strain to achieve “cross protection” (Yeh et al.  1988 ). 
The exact mechanisms of cross protection are still being revealed (reviewed by 
Ziebell and Carr  2010 ), but the added labor costs, risk of mild symptom develop-
ment, and risk of virus reversion to a more virulent strain led to low adoption rates 
(Gonsalves  1998 ). At the time, Sanford and Johnston ( 1985 ) proposed an alternative 
strategy, that if host cells themselves were engineered to produce key pathogen gene 
products, either in excess or in a dysfunctional form, pathogenicity could be dis-
rupted. The laboratory of Dr. Roger Beachy validated this hypothesis in plants by 
expressing a tobacco mosaic virus coat protein gene in tobacco, resulting in delayed 
disease development and resistance (Abel et al.  1986 ). Like cross protection, the 
exact mechanism of CP-MR was unknown at the time, but the results were encour-
aging enough to justify evaluation of the strategy in papaya for controlling PRSV-P. 
Ultimately CP-MR was shown to be highly successful in papaya (discussed in 
Chap.   7     in this text), and, conceivably, such an analogous strategy could be applied 
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to control other diseases. However, before expanding the application of this approach, 
there are several lessons that can be learned from papaya CP-MR that must fi rst be 
considered. 

 Of the two cultivars developed, SunUp, which is homozygous for the transgene, 
was found to be more resistant than Rainbow, an F 1  hybrid from SunUp which is 
hemizygous for the PRSV-P coat protein gene (Tennant et al.  2001 ; see Chap.   6     
in this text for a historical discussion). The mechanism of resistance was discovered 
to be RNA-mediated homology-dependent posttranscriptional gene silencing 
(PTGS), which targets the virus in a dose-dependent manner (Tennant et al.  2001 ; 
Baulcombe  1996 ). While CP-MR has worked well for the virus strain in Hawaii, 
sequence divergence of the CP gene among p-type viruses was found to be as high 
as 12 % (Gonsalves  1998 ) so the same construct may not provide the same level of 
protection against other PRSV strains. When challenged with a virus isolate from 
Thailand having only 89.5 % homology to the Hawaii strain, “SunUp” resistance 
broke down (Tennant et al.  2001 ). 

 In addition to the problems associated with CP sequence divergence, potyvirus 
helper component-proteinase (HC-Pro) also contributes to the suppression of 
PTGS, providing another mechanism for resistance breakdown (Mangrauthia 
et al.  2010 ). Fortunately, PTGS is only one of many mechanisms of CP-MR. 
Expression of tobacco mosaic virus CP prevents the virus from uncoating and 
regulates viral movement protein production (Register and Beachy  1988 ; Ling 
et al.  1991 ; Bendahmane et al.  2002 ; Asurmendi et al.  2004 ). The CP-MR of 
potato virus X is not signifi cantly dependent on PTGS (Bazzini et al.  2006 ). 
Therefore, a better understanding of the many control mechanisms will allow the 
design of multimodal virus protection constructs in the future. Meanwhile, con-
structs that target local strains and multiple virus types are providing resistance. 
Using the sequence of local PRSV isolates, CP-MR has been deployed in a number 
of countries including Jamaica, Venezuela, and Brazil (Tennant et al.  2005 ; Fermin 
et al.  2004 ; Júnior et al.  2005 ). In Taiwan, papaya lines have been developed with 
double resistance to PRSV and papaya leaf distortion mosaic virus (Kung et al. 
 2009 ; Kung et al.  2010 ). 

 In Hawaii, CP-MR currently targets a relatively homogeneous PRSV population 
(Tripathi et al.  2006 ,  2008 ). If a viral strain emerges that breaks down this resis-
tance, additional transformation, perhaps combined with what has already been 
used, may be needed. As coevolution between transgenic systems and viruses 
occurs, resources such as selectable markers will need to be managed, especially 
when combining multiple constructs into the same plant line. 

 Transgene insertions occurred in three locations in the “SunUp” genome (Ming 
et al.  2008 ). If all three insertions contribute to resistance, this may allow for loss of 
function of some copies over time. In addition, gene divergence may occur, including 
alterations in promoter regions that could result in changes in gene regulation. These 
scenarios are interesting to consider from a plant–pathogen evolutionary standpoint 
and may be more plausible than expected considering the worldwide distribution of 
the technology.  
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    Stilbene Synthase 

 For the control of root rot, transgenic expression of the grapevine stilbene synthase 
(a resveratrol synthase) gene ( Vst1 ) was evaluated in papaya (Zhu et al.  2004 ). 
Using the native grapevine pathogen-inducible promoter, transgenic lines produced 
the phytoalexin resveratrol and displayed increased resistance (Zhu et al.  2004 ). 
However, these plants failed to set fruit (unpublished data). Similar deleterious 
effects associated with excessive stilbene production have been previously reported, 
including abnormal pollen development, parthenocarpy, and male sterility (Ingrosso 
et al.  2011 ; Fischer et al.  1997 ). These effects are the result of resveratrol synthase 
competing for the same substrates as chalcone synthase, 4-coumaroyl CoA, and 
malonyl CoA (Fischer et al.  1997 ). Chalcone synthase requires these precursors to 
synthesize the scaffold required for the production of all fl avonoids (Ferrer et al. 
 2008 ). In addition, these substrates are required in other pathways for the produc-
tion of structural compounds, including lignin and sporopollenin (Ingrosso et al. 
 2011 ).    Because of overproduction or mislocalization of resveratrol, synthase has the 
potential to impact other pathways. Genes encoding these enzymes are frequently 
pathogen/stress inducible and regulated in specifi c tissues. The stilbene synthase 
gene of sorghum,  SbSTS1,  is induced by host and nonhost pathogens (Yu et al. 
 2005 ). In grapevine, stilbene synthase is found in infected cells and in the exocarp 
of the berry where infection is likely to occur (Schnee et al.  2008 ; Fornara et al. 
 2008 ). Successful heterologous production of resveratrol synthase in papaya, there-
fore, will in part require tissue-specifi c, pathogen-inducible promoters. Expression 
characterizations of a number of papaya genes with promoters fi tting these criteria 
have been identifi ed (Porter et al.  2008 ,  2009b ). 

 Heterologous expression of grapevine stilbene synthase for the control of  Botrytis 
cinerea  infection of tobacco was fi rst demonstrated more than 18 years ago (Hain 
et al.  1993 ). Since then, the strategy has been evaluated in a number of crops, includ-
ing tomato, for the control of  Phytophthora infestans  (Thomzik et al.  1997 ), rice for 
the control of  Pyricularia oryzae  (Stark-Lorenzen et al.  1997 ), wheat and barley for 
a number of fungal pathogens (Leckband and Lörz  1998 ; Serazetdinova et al.  2005 ), 
alfalfa for the control of  Phoma medicaginis  (Hipskind and Paiva  2000 ), and other 
plant species (reviewed by Delaunois et al.  2009 ). However, to date, no crops trans-
formed with stilbene synthase have received regulatory approval (CERA  2010 ). 
This may be due to the fact that the current state of the technology has only achieved 
partial resistance and failed to prove effective in the fi eld. Transformation of tomato 
with grapevine stilbene synthase resulted in a range of disease reduction for  P. infes-
tans  (between 38 and 68 %) but provided no signifi cant control of  B. cinerea  and 
 Alternaria solani  (Thomzik et al.  1997 ). Control of  P. medicaginis  in alfalfa trans-
formed with a cDNA encoding resveratrol synthase was demonstrated using leaf 
inoculations (Hipskind and Paiva  2000 ) but will require larger trials to determine 
production-scale disease control. Disease symptoms of wheat transformed with 
stilbene synthase following inoculation with  Puccinia recondita  f. sp.  tritici  were 
reduced by 19 ± 9 % to 27 ± 8 % (Serazetdinova et al.  2005 ). Finally, in papaya 
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expressing  Vst1 , 50 % of transgenic plants remained healthy following inoculation 
with  P. palmivora , while 25 % of the untransformed controls remained healthy 
(Zhu et al.  2004 ). 

 Looking to the future, the use of stilbene synthases to control fungal and oomycete 
pathogens holds promise. Resveratrol synthase generates the backbone molecule, 
resveratrol, from which its derivatives, piceid, viniferins, and pterostilbene, are 
derived. Pterostilbene, a dimethylated derivative of resveratrol, was found to have 
threefold the activity of resveratrol and rapidly destroys the plasma membrane of 
 B. cinerea  (Adrian et al.  1997 ; Pezet and Pont  1990 ). Recently, a gene encoding a 
pathogen-regulated resveratrol O-methyltransferase (ROMT) for pterostilbene 
biosynthesis was isolated from grapevine (Schmidlin et al.  2008 ). Therefore, the use 
of  ROMT  in combination with resveratrol synthase is suggested to be a more effec-
tive strategy (as described next). 

 Genes encoding stilbene synthases are thought to have evolved independently 
from chalcone synthases in a diverse but relatively small number of plant species 
(Tropf et al.  1994 ; Austin and Noel  2003 ). Examples include peanut (Schöppner 
and Kindl  1984 ), pine (Schanz et al.  1992 ), grapevine (Sparvoli et al.  1994 ), whisk 
fern (Yamazaki et al.  2001 ),  Rheum tataricum  (Samappito et al.  2003 ), sorghum (Yu 
et al.  2005 ),  Polygonum cuspidatum  (Liu et al.  2011 ), and spruce (Hammerbacher 
et al.  2011 ). In the majority of cases, these genes are pathogen-inducible (Preisig- 
Müller et al.  1999 ; Yu et al.  2005 ; Hammerbacher et al.  2011 ). Regulation of this 
pathway, however, does not end at the production of resveratrol (or pinosylvin) 
backbone molecules. In  V. vinifera  and  Arachis hypogaea , differential accumulation 
of resveratrol derivatives between genotypes demonstrates that regulation of enzy-
matic modifi cations, such as glycosylation, oxidation, and methylation (in the case 
of ROMT), is critical for effective defense responses (Pezet et al.  2004 ; Sobolev 
et al.  2007 ; Schmidlin et al.  2008 ). A transgenic approach involving multiple genes 
will likely be required to maximize disease resistance from stilbenes. This approach 
has begun to be evaluated in tobacco and  Arabidopsis  through the co-expression of 
genes for O-methyltransferase and stilbene synthase (Rimando et al.  2012 ). For the 
control of  P. palmivora  of papaya, an attractive model for evaluating early-stage 
multigene regulation of stilbenes might be  Arabidopsis  and  Hyaloperonospora ara-
bidopsidis , an oomycete pathogen (Chou et al.  2011 ).  

     Dahlia merckii  Antimicrobial Peptide 1 (Dm-AMP1) 

 First recognized in mammalian granulocytes, defensins are small, cysteine-rich, 
amphipathic peptides that permeabilize pathogen membranes, particularly those of 
fungi (   Zeya and Spitznagel  1963 ; reviewed by Ganz  2003 ). Similar peptides have 
been identifi ed in invertebrates, plants, and fungi, suggesting these ubiquitous com-
ponents of innate immunity likely evolved from a common, ancient progenitor 
(reviewed by Wilmes et al.  2011 ; Zhu  2007 ). The defensin,  D. merckii  antimicrobial 
peptide 1 (Dm-AMP1), was fi rst isolated from  D. merckii  (bedding dahlia) seed 
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(Osborn et al.  1995 ). Bioassays conducted using this defensin inhibited germ tube 
elongation rate, reduced hyphal thickness, and destroyed the cytoplasm of some fungi 
and inhibited the growth of  Bacillus subtilis  (Osborn et al.  1995 ). Interestingly, the 
binding of radioactively labeled Dm-AMP1 to  Neurospora crassa  and  Saccharomyces 
cerevisiae  cells can be blocked by preincubation with “cold” Dm-AMP1, but not by 
unrelated defensins (Thevissen et al.  2000a ). This suggested that Dm-AMP1 binds a 
specifi c site on the target plasma membrane, a hypothesis supported by the identifi ca-
tion of mutant  S. cerevisiae  that is resistant to Dm-AMP1 and demonstrates ten-fold 
less binding effi ciency relative to wild type (Thevissen et al.  2000a ). To determine the 
genetic basis of this loss of binding, a genomic library was constructed from suscepti-
ble, wild-type yeast and used to transform resistant mutants (Thevissen et al.  2000b ). 
A clone encoding an enzyme that catalyzes the formation of sphingolipids (terminal 
sphingolipid mannosyldiinositolphosphosphoceramide) was able to restore suscepti-
bility in the mutants, suggesting this plasma membrane component is the Dm-AMP1 
binding site (Thevissen et al.  2000b ). This was confi rmed using an enzyme-linked 
immunosorbent assay (ELISA), which demonstrated that Dm-AMP1 directly interacts 
with sphingolipids (Thevissen et al.  2003 ). 

 Constitutive expression of  Dm-AMP1  in papaya provided resistance to  P. palmi-
vora  (Zhu et al.  2007 ). Leaf protein extract containing Dm-AMP1 inhibited hyphae 
growth by 35–50 %, and inoculated leaf discs from transformed plants had 40–50 % 
less infected area than controls (Zhu et al.  2007 ). The disease ratings of papaya 
plants expressing  Dm-AMP1  were signifi cantly less than that of controls following 
root-drench inoculation (Zhu et al.  2007 ). Similarly,  Dm-AMP1  expressed in rice 
signifi cantly suppressed the growth of  Magnaporthe oryzae  and  Rhizoctonia solani  
(Jha et al.  2009 ). In  Solanum melongena , Dm-AMP1 inhibited  Botrytis cinerea  in 
leaves, and root exudates containing the protein reduced the growth of  Verticillium 
albo-atrum  (Turrini et al.  2004a ). Field trials will need to be conducted to evaluate 
the effi cacy of  Dm-AMP1  in larger-scale production, with particular attention paid 
to gene durability. 

 Previously, plant defensins were evaluated in other crop–pathogen systems 
(Terras et al.  1995 ). Expression of a pea defensin ( DRR230 ) in Canola targeted 
 Leptosphaeria maculans  (Wang et al.  1999 ). Monsanto Company successfully 
demonstrated the use of an alfalfa defensin ( alfAFP ) in potato for the control of 
 Verticillium dahliae  (Gao et al.  2000 ). Although  alfAFP  proved particularly effective 
in controlling  V. dahliae , Monsanto’s potato biotechnology program was halted in 
2001 due to lack of market support (Gao et al.  2000 ; Kilman  2001 ). Nevertheless, 
as Dm-AMP1 and other defensins progress toward production-scale applications, 
strategies to promote durability should be prioritized. These peptides play a key role 
in innate immunity.  S. cerevisiae  mutants were resistant to Dm-AMP1 (Thevissen 
et al.  2000a ), so defensin vulnerability to pathogen mutation under high selection 
pressure could undermine endogenous resistance in papaya and other species. For 
long-term durability, simply expressing defensins constitutively at high levels may 
be found to be too simplistic an approach. 

 Natural expression is more complex. The radish defensin genes  Rs-AFP3  and 
 Rs-AFP4 , for example, are pathogen-inducible in leaves, while Rs-AFP1 and 
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Rs-AFP2 accumulate in specifi c cell layers of the seed and are released during 
germination (Terras et al.  1995 ). Similarly,  PDF1.2 , an  Arabidopsis  pathogen- 
inducible defensin gene, is regulated by a jasmonate-dependent/salicyclic acid-
independent pathway (Penninckx et al.  1996 ; Thomma et al.  1998 ). This suggests 
that, in nature, defensins are highly regulated and that avoiding resistance breakdown 
may require regulated expression and/or more complex multigene strategies.  

     Manduca sexta  Chitinase 

 Chitin is an abundant biological polymer found in many organisms including fungi, 
arthropods, and crustaceans. Modifi cation and destruction of this structural polysac-
charide occurs in part by hydrolysis of its glycosidic bonds, catalyzed by chitinases. 
Chitinases are near ubiquitous in nature, occurring in organisms with and without 
endogenous chitin, including mammals, amphibians, arthropods, nematodes, fungi, 
bacteria, and baculoviruses. In organisms with chitin, chitinases are generally used 
for developmental purposes, whereas other organisms have evolved chitinases for 
defense or pathogenicity. Chitotriosidase, for example, is a human chitinase secreted 
from phagocytes as part of the immune system for the degradation of chitin- 
containing pathogens (   Boot et al.  2001 ). Examples of chitinases contributing to 
pathogenicity come from the malaria parasite and a baculovirus.  PfCHT1 , a gene 
from the human malaria parasite ( Plasmodium falciparum ), encodes a chitinase that 
contributes to disease transmission by allowing the pathogen to escape the midgut 
of mosquitoes (   Vinet et al.  1999 ). Cathepsin (a cysteine protease) and chitinase A 
from the baculovirus AcMNPV act together in the liquefaction of insect hosts 
(Hawtin et al.  1997 ). Finally, in insects, chitinase activity is highly regulated in pre-
cise fashion for elaborate developmental processes such as molting. Recently, in the 
red fl our beetle ( Tribolium castaneum ), it was shown that Knickkopf protein protects 
new cuticle formation from chitinase found in molting fl uid (Chaudhari et al.  2011 ). 
Disruption of such processes can be deleterious. Downregulation of the gene encod-
ing Knickkopf protein is lethal, making it a potential target for biocontrol 
(Chaudhari et al.  2011 ). Similarly, ectopic expression of chitinase in plants can be 
used as a control strategy as demonstrated by overexpression of  M. sexta  (tobacco 
hornworm) chitinase in tobacco for the control of tobacco budworm and hornworm 
(Ding et al.  1998 ). 

  C. papaya  was transformed with  M. sexta  chitinase (MSCH) under the control of 
the constitutive (CaMV 35S) promoter (McCafferty et al.  2006 ). Ten weeks post- 
inoculation in the laboratory with carmine spider mites ( Tetranychus cinnabarinus  
Boisd.), all transgenic lines had a signifi cantly higher number of leaves relative to 
the susceptible donor cultivar “Kapoho” (McCafferty et al.  2006 ). However, only 
one transgenic line (T-24) had signifi cantly fewer mites per leaf than the control. 
This most likely occurred as a result of the control having fewer leaves, forcing the 
mites to migrate to the transgenic plants (McCafferty et al.  2006 ). Conversely, in the 
fi eld, all transgenic lines expressing  MSCH  had fewer mites than the control, which 
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suggests that when the mites have a choice, they prefer to avoid chitinase- expressing 
lines (McCafferty et al.  2006 ). These results are particularly encouraging. Rather 
than functioning as an insecticide, MSCH appears to deter feeding and encourage 
migration. Because  T. cinnabarinus  has a large host range, including many weed 
species (Goff  1986 ), movement of mites from transgenic plants to alternate hosts 
could, in theory, occur with minimal selection pressure, effectively promoting 
 MSCH  durability. 

 Recently, corn plants engineered to express the insecticidal  Bacillus thuringiensis  
(Bt) toxin Cry3Bb1 for the control of western corn rootworm ( Diabrotica virgifera 
virgifera ) were found to be susceptible in some fi elds in Iowa, illustrating the 
consequences of high selection pressure (Gassmann et al.  2011 ). Plants expressing 
Cry34/35Ab1 were found to be resistant to the problem rootworm, but pathogen 
resistance could emerge for this line as well (Gassmann et al.  2011 ). A combination 
of resistance sources combining Cry3Bb1 and Cry34/35Ab1 (SmartStax) may delay 
the evolution of pathogen resistance (Gassmann et al.  2011 ; EPA  2009 ). Strategies 
such as combining genes for chitinase and scorpion toxin, which have been deter-
mined to cause high larvae mortality, should be evaluated to determine if this selective 
combination is durable (Wang et al.  2005 ). Finally, the environmental impact of trans-
formations using chitinase genes should be considered. In papaya, confi rmation is 
needed to ensure that pollinating insects are unaffected by  MSCH . In addition, papaya 
expressing  MSCH  should be evaluated for resistance to fruit fl ies and mites other than 
 T. cinnabarinus . Although aphids do not colonize papaya, they transmit PRSV-P to 
papaya in a nonpersistent manner by conducting exploratory probes (Pantoja et al. 
 2002 ; Kalleshwaraswamy and Kumar  2008 ). The possible infl uence that MSCH may 
have on this behavior should be explored as well.   

    Papaya Mutualistic and Protective Endophytes 

 To ensure that benefi cial microbes are not affected by transgenic modifi cations 
for disease resistance, it is sometimes necessary to survey and select for lines that 
maintain compatibility with mutualistic endophytes. Up to 90 % of terrestrial plants 
form mycorrhizal-root associations (Fitter and Moyerson  1996 ), but some, including 
papaya, are considered highly dependent upon arbuscular mycorrhizal fungi (AMF) 
for inorganic phosphorus (P i ) uptake (Miyasaka and Habte  2001 ). In addition, some 
endophytes also provide protection against insects, nematodes, and other pathogens 
(Vega et al.  2008 ; Jaizme-Vega et al.  2006 ; Stein et al.  2008 ). 

 There are instances of transgenes affecting AMF. Tobacco constitutively express-
ing a pathogenesis-related protein (PR-2) delayed  Glomus mosseae  colonization, 
whereas  G. mosseae  was resistant to constitutive chitinase expression in tobacco 
and  Nicotiana sylvestris  (Vierheilig et al.  1993 ,  1995 ). Because defensins can inhibit 
a range of fungi (   Osborn et al.  1995 ), transformations using genes such as  Dm-AMP1  
might inhibit endophytes. Fortunately, Dm-AMP1’s inhibition of pathogen growth 
has been shown to spare some benefi cial mycorrhizae.  Solanum melongena  
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transformed with  Dm-AMP1  inhibited the pathogenic fungi,  Botrytis cinerea  and 
 Verticillium albo-atrum,  while the arbuscular mycorrhizal fungus  G. mosseae  was 
able to established host recognition, initiate symbiosis, and promote host plant 
growth (Turrini et al.  2004a ,  b ). Examination of the possible effects of Dm-AMP1 
on other benefi cial, nontarget microorganisms in other host systems, such as papaya 
and rice (Zhu et al.  2007 ; Jha et al.  2009 ), will determine if the observed AMF resis-
tance is an exception or trend. In papaya,  G. mosseae  not only contributes signifi -
cantly to plant phosphorus uptake but, along with  G. manihotis , signifi cantly reduces 
the reproduction of the parasitic nematode  Meloidogyne incognita  (Jaizme- Vega 
et al.  2006 ;    Rodriguez-Romero et al.  2011 ). A comprehensive study of these AMF 
in papaya expressing  Dm-AMP1  will require phosphorus evaluations and nematode 
bioassays. In maize, one line ( Bt  176) with high expression of  CryIAb  toxin nega-
tively affected  G. mosseae  pre-symbiotic hyphal growth and appressoria develop-
ment, but another line,  Bt  11, was indistinguishable from the non-transgenic control 
(Turrini et al.  2004b ). 

 This suggests that selection for AMF-compatible lines is possible. The next step 
is the development of more rapid high-throughput monitoring. Arnold et al. ( 2000 ) 
used plating techniques to isolate endophytes representing 347 genetically distinct 
taxa from the leaves of two tropical tree species,  Heisteria concinna  (Olacaceae) 
and  Ouratea lucens  (Ochnaceae). Screening techniques have been developed for 
evaluating the impact of transgenes on AMF (Turrini et al.  2004b ), but a compre-
hensive DNA-based screen that captures diffi cult-to-culture microorganisms may 
be needed (Mlot  2004 ). While the elimination of endophytes is one concern, another 
possible consequence of transgene selection pressure is conversion of endophytes 
from mutualists to pathogens. Mutation of a single NADPH oxidase gene was 
shown to disrupt reactive oxygen species (ROS) production in the endophyte 
 Epichloë festucae , causing the death of its host  Lolium perenne  (perennial ryegrass) 
(Tanaka et al.  2006 ). Conversely, Freeman and Rodriguez ( 1993 ) used UV muta-
genesis to demonstrate conversion of the pathogen  Colletotrichum magna  into a 
protective endophyte (Freeman and Rodriguez  1992 ; Freeman and Rodriguez  1993 ; 
Redman et al.  1999 ). In the future, transgenic strategies designed to promote mutual-
istic and protective endophytes in papaya may enhance yield and pathogen resistance. 
One particularly attractive candidate for this application is  Piriformospora indica . An 
AMF isolated from woody shrubs from Rajasthan’s Thar Desert,  P. indica , has been 
associated with disease resistance and higher yield (Verma et al.  1998 ; Verma and 
Sharma  1999 ; Waller et al.  2005 ; Shahollari et al.  2007 ; Stein et al.  2008 ).  

    The Nucleotide Binding Site-Leucine-Rich Repeat (NBS-LRR) 
Gene Family and  P. palmivora  Resistance 

  Solanum  spp .  and  P. infestans  provide an analogous host–pathogen system for 
guiding the development of  P. palmivora  resistance in papaya. Wild potatoes and 
 Vasconcellea  spp .  both occur in the tropical highlands at average altitudes of 
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~1,500 m and ~2,800 m, respectively, with overlapping geographical regions of 
species richness (Hijmans and Spooner  2001 ; Scheldeman et al.  2007 ). The diversity 
of  Solanum  species is highest in Mexico, Peru, Bolivia, and Argentina, while the 
maximum diversity of  Vasconcellea  spp .  is found in Ecuador, Colombia, and Peru 
(Hijmans and Spooner  2001 ; Scheldeman et al.  2007 ). To date, 21  P. infestans  resis-
tance genes have been cloned from  Solanum  spp . , refl ecting extensive coevolution 
with a pathogen that shares a center of origin in the central highlands of Mexico 
(Vleeshouwers et al.  2011 ; Grünwald and Flier  2005 ). Eighteen of these genes 
originate from species found in Mexico, and four originate from species from 
Argentina (Vleeshouwers et al.  2011 ). 

 The story of  P. palmivora  is somewhat more complex in that the duration of its 
coevolution with papaya’s wild relatives (i.e.,  Vasconcellea  spp . ) is uncertain. It has 
been suggested that  P. palmivora  originated from Central or South America 
(Zentmyer  1988 ), but the diversity of isolates identifi ed from coconut ( Cocos 
nucifera ), durian ( Durio zibethinus ), and other Southeast Asia hosts points instead 
to a Southeast Asia center of origin (Mchau and Coffey  1994 ). If this is true, 
 P. palmivora  may have only recently spread from Asia, and the evolution of 
 Vasconcellea  spp .  resistance gene(s) specifi city may be the result of more modern 
selection pressure. Nevertheless, what appears to be a rate-reducing form of resis-
tance similar to that of  Rpi-blb1  ( RB ) (Song et al.  2003 ; van der Vossen et al.  2003 ) 
has been identifi ed in  V. goudotiana  (Zhu and Porter, unpublished data).  Rpi-blb1  is 
generally considered a broad-spectrum, durable source of resistance, and it would 
be encouraging to fi nd similar resistance for papaya. The only exceptions are two 
 P. infestans  isolates from Mexico (PIC99189 and PIC99177) lacking an effector 
variant (class I  ipiO ) that were recently determined to be virulent in the presence of 
 Rpi-blb1  (Champouret et al.  2009 ). Although resistance can break down and  P. 
infestans  has the reputation of being an “R gene destroyer” (Fry  2008 ), the  P. palmi-
vora  resistance observed in  V. goudotiana  is worth exploring and if isolated, perhaps 
combined with known sources of partial resistance (Noorda-Nguyen et al.  2010 ; 
Dianese et al.  2007 ,  2010 ). 

 All  P. infestans  resistance genes cloned to date belong to the nucleotide binding 
site-leucine-rich repeat (NBS-LRR) gene family (Vleeshouwers et al.  2011 ). 
   Possibly, the  P. palmivora  resistance genes observed in  V. goudotiana  and some 
papaya genotypes (Zhu and Porter, unpublished data; Noorda-Nguyen et al.  2010 ; 
Dianese et al.  2007 ,  2010 ) are also members of this family. From the draft genome of 
 C. papaya , 54 NBS class resistance genes have been identifi ed (Ming et al.  2008 ; 
Porter et al.  2009a ). This is substantially fewer than the number found in other plant 
genomes (Table  15.3 ), including  Arabidopsis , which has 174 NBS genes ( Arabidopsis  
Genome Initiative  2000 ).

   While few in number, papaya’s NBS genes represent both Toll/interleukin-1 
receptor (TIR) and non-TIR subclasses found as clusters and single genes through-
out the genome (Fig.  15.1 ) (Porter et al.  2009a ). Unlike  Arabidopsis , whole genome 
duplication has not occurred in the papaya lineage since its divergence from 
 Arabidopsis  (Ming et al.  2008 ; Sémon and Wolfe  2007 ; see also discussion in 
Chap.   11     of this text). The lack of genome duplication may partially explain the 
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   Table 15.3    The total number of predicted NBS-encoding genes identifi ed in fi ve sequenced 
angiosperm genomes   

 Species 

 Total number of 
predicted protein-
encoding genes 

 Total number of 
predicted NBS-
encoding genes 

 Genome 
size (Mb)  Source 

  Carica papaya   24,746  54  372  Ming et al. ( 2008 ) 
  Arabidopsis 

thaliana  
 25,498  174  125  Arabidopsis Genome Initiative 

( 2000 ) 
  Vitis vinifera   30,434  535  487  Jaillon et al. ( 2007 ) 
  Oryza sativa   37,544  519  389  International Rice Genome 

Sequencing Project ( 2005 ) 
  Populus 

trichocarpa  
 45,555  416  485  Tuskan et al. ( 2006 ) 

  Values for  Arabidopsis thaliana ,  Vitis vinifera ,  Oryza sativa , and  Populus trichocarpa  were 
 previously summarized by Yang et al. ( 2008 ). The total number of predicted protein-encoding 
genes and the genome size of each species are also provided (see source column for references)  

  Fig. 15.1    Distribution of predicted  Carica papaya  NBS-encoding genes across linkage groups. 
The papaya genome sequence was anchored to the 12 papaya linkage groups as described by Ming 
et al. ( 2008 ) [reproduced with kind permission of Springer Science+Business Media from Porter 
et al. ( 2009a )]       
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scarcity of NBS-LRR genes, but it is also possible that papaya preferentially 
relies upon surveillance, or “guarding,” of common effector targets to detect 
large numbers of pathogens with relatively few NBS genes (van der Biezen and 
Jones  1998 ; Dangl and Jones  2001 ; DeYoung and Innes  2006 ; McDowell and 
Simon  2006 ). Papaya also has a lower total number of genes than other sequenced 
angiosperms (Ming et al.  2008 ;  Arabidopsis  Genome Initiative  2000 ; Jaillon 
et al.  2007 ; International Rice Genome Sequencing Project  2005 ; Tuskan et al. 
 2006 ), so it is possible that fewer NBS genes are required for surveillance (Porter 
et al.  2009a ).

   Finally, some NBS genes may reside in the limited portion of the genome lacking 
sequence coverage, but because 90 % of the euchromatic chromosomal regions 
have been sequenced, fi nding a signifi cant number of additional NBS genes is con-
sidered unlikely (Ming et al.  2008 ; Porter et al.  2009a ). Now that papaya’s NBS 
genes have been mapped (Fig.  15.1 ), susceptible and partially resistant cultivars 
(Noorda-Nguyen et al.  2010 ; Dianese et al.  2007 ,  2010 ) may be compared using 
targeted sequencing techniques (reviewed by Mamanova et al.  2010 ). 

 In the future, native R-genes may be ineffective for the control of  P. palmivora , 
but a better understanding of the molecular basis of  Phytophthora  pathogenicity 
may provide opportunities to modify NBS genes or effector targets to achieve 
resistance. A fi rst step in this process is determining pathogen host recognition and 
translocation of effectors from  Phytophthora  haustoria into the plant cell. Two 
N-terminal-conserved motifs identifi ed in  P. infestans  effectors are RXLR and 
EER, which serve as a host cell uptake (penetration) signal. In  P. infestans , 425 
genes of this protein class have been identifi ed (Birch et al.  2006 ; Whisson et al. 
 2007 ). The exact mechanism of effector entry is uncertain, and recent studies have 
reached contradictory conclusions (Ellis and Dodds  2011 ). Kale et al. ( 2010 ) sug-
gest that phospholipid, phosphatidylinositol-3-phosphate (PI3P), found on the sur-
face of plant cell plasma membranes mediates effector entry. Yaeno et al. ( 2011 ) 
suggest that PIP binding contributes intracellularly, promoting effector stabiliza-
tion, accumulation, and virulence function. Resolving the exact mechanism of this 
process is important as it may lead to upstream resistance strategies to block effec-
tor entry. The virulence functions of  P. infestans  effectors are beginning to be 
revealed. AVR3a, for example, has been shown to act upstream at the plasma mem-
brane by inhibiting the host ubiquitin E3-ligase, CMPG1, required for plant immu-
nity (Bos et al.  2010 ; Gilroy et al.  2011 ). Interestingly, in papaya,  P. palmivora  
infection is associated with reduction of a transcript encoding a putative aquaporin 
(   Porter et al.  2009a ,  b ). Similar aquaporin repression has been reported in other 
plant systems, including cotton following  Fusarium oxysporum  f. sp.  vasinfectum  
inoculation (Dowd et al.  2004 ). Aquaporins play a role in hydraulic permeability 
and have been shown to be targets of bacterial effector regulation in animal dis-
ease (Guttman et al.  2007 ). Further investigation will be required to determine if 
 P. palmivora  effectors regulate papaya aquaporins, either directly or indirectly. 
Regardless, once effector targets are determined, they may be modifi ed for 
resistance.  
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    Emerging Diseases of Papaya 

 Adaptation and evolution increase pathogen diversity, a process that often begins 
with the spread of disease into new environments. The fi rst reports of disease in 
papaya (Table  15.2 ) suggest that this phenomenon is active. In 2001, for example, 
black spot disease of papaya [ A. caricae  (Speg.) Maulbl.] was discovered on the 
island of Maui and subsequently on other Hawaiian Islands (   Ogata and Heu  2001 ). 
Outbreaks of black spot now require the application of costly fungicides. Early 
detection of emerging diseases can provide an opportunity to implement cultural 
practices to help delay the spread of disease until tolerant cultivars are obtained for 
production. Maintaining genetic diversity in the fi eld will hedge against losses and 
slow disease spread. Expanding niche markets, such as those that utilize larger- 
fruited papaya, is one example of how diversifi cation may be achieved. The man-
agement of alternate hosts, including weeds, provides another means to mitigate 
and monitor pathogen movement (Chin et al.  2007 ). Genetic characterization of 
pathogen diversity can also be used to predict the likelihood of disease outbreaks 
(Gibb et al.  1998 ; Maoka and Hataya  2005 ). Ultimately, however, an understanding 
of the molecular basis of host–pathogen interaction will be needed to allow for 
resistance to be engineered or selected for. 

 Recently, a proteinase (NIaPro) of the virus nuclear inclusion body was shown to 
regulate PRSV host specifi city (Chen et al.  2008 ), which offers insight for the pos-
sible disruption of host recognition. Separately, PRSV helper component-proteinase 
(HC-Pro) was found to interact with papaya calreticulin, suggesting the involve-
ment of calcium signaling in infection or defense (Shen et al.  2010 ). This and other 
host–pathogen interactions may be regulated for creating resistance.     
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