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    Abstract     Mesenchymal stem cells such as bone marrow stromal cells and Adipose- 
derived stem cells are widely being used for clinical applications in regenerative 
medicine. Dental stem cell sources such as dental pulp stem cells, stem cells from 
human exfoliated deciduous teeth, periodontal ligament stem cells, stem cells from 
apical papilla, dental follicle progenitor cells, and tooth germ stem cells have also 
been started to be used for the same purposes. Since most dental-derived stem cells are 
of cranial neural crest origin, their use in the engineering of craniofacial structures 
holds promise in the near future. This chapter will discuss the potential applications 
of adult stem cells in craniofacial tissue engineering. Current knowledge about adult 
stem cells of dental and non-dental origin will be reviewed with respect to their 
regenerative capabilities and therapeutic potentials  
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  Abbreviations 

   MSC    Mesenchymal stem cell   
  BMSC    Bone marrow stromal cell   
  ASC    Adipose-derived stem cell   
  DPSC    Dental pulp stem cell   
  SHED    Human exfoliated deciduous teeth   
  PDLSC    Periodontal ligament stem cell   
  SCAP    Stem cell from apical papilla   
  DFPC    Dental follicle precursor cell   
  TGSC    Tooth germ stem cell   
  hTGSC    Human tooth germ stem cell   
  TGF-β    Transforming growth factor-β   
  BMP    Bone morphogenetic proteins   
  PEGDA    Poly (ethylene glycol) diacrylate   
  PD    Population doubling rate   
  ALP    Alkaline phosphatase   
  BSP    Bone sialoprotein   
  DSP    Dentin sialoprotein   
  NeuN    Neuronal nuclear antigen   
  GAD    Glutamic acid decarboxylase   
  NFM    Neurofi lament M   
  GFAP    Glial fi brillary acidic protein   
  CNPase    2,3-Cyclic nucleotide-3-phosphodiesterase   
  DMP 1    Dentin matrix protein-1   
  EMD    Enamel matrix derivatives   
  CAP    Cementum attachment protein   
  CP-23    Cementum protein-23   

6.1           Introduction 

 In humans, the healing of craniofacial tissues frequently results in limited regeneration 
due to size and character of the defect. Functional replacement of such lost or damaged 
craniofacial tissues is one of the specifi c goals of tissue engineering [ 1 ,  2 ]. Recent 
developments in tissue engineering initiated new alternatives by utilizing biomateri-
als [ 3 ], gene therapy [ 4 ], signaling molecules [ 5 ] and stem cells [ 6 ] to regenerate 
craniofacial structures, aiming at the ideal of restitutio ad integrum. Until now, much 
has been learned about the single use of various biomaterials in the craniofacial 
region [ 7 ]. Various materials, such as natural or synthetic polymers [ 8 ,  9 ], ceramics, 
and composites [ 10 ], were used as tissue engineering scaffolds to promote cell 
migration and differentiation, extracellular matrix synthesis, and vascularization. 
Also, bioactive molecules were added to these scaffolds to enhance cell attachment, 
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new tissue formation, and angiogenesis [ 11 ]. However, none of these cell-free 
approaches were able to establish optimal tissue regeneration. Since mesenchymal 
stem cells (MSCs) play a pivotal role in the development of craniofacial structures, 
tissue engineering approaches using MSCs hold promise of providing a treatment 
for people suffering from craniofacial tissue and organ defi ciencies [ 12 ,  13 ]. 

 The craniofacial region involves various components, such as bone, nerves, 
connective tissue, glands, fat, teeth, and muscle. From this perspective, the recon-
struction of these structures using stem cell-based approaches is a complex issue, 
but not impossible. Various attempts to date have been made to engineer the peri-
odontium [ 14 ], cementum [ 15 ], temporomandibular joint [ 16 ], bone, [ 6 ] and fat 
tissue [ 17 ] using stem cells. Especially, MSCs derived from the bone marrow stroma 
(BMSCs) have been used extensively in craniofacial tissue engineering [ 18 ,  19 ]. 
Bone marrow- derived MSCs have the potential to differentiate into various lineages, 
and have therefore, been also clinically applied for treating different tissue disorders 
[ 20 ,  21 ]. Studies have shown that these multipotent adult stem cells are present in 
various tissues and organs, such as the nerve, skin, adipose, tendon, synovial mem-
brane, and liver [ 22 – 26 ]. However, due to some reasons, such as diseases of bone 
marrow or surgical trauma during bone marrow isolation procedures, researchers are 
looking for alternative stem cell sources that require minimally invasive collection 
procedures. 

 Recent studies have revealed the presence of adult stem cells in tissues of dental 
origin as well [ 27 ]. Dental stem cells have the capability to undergo osteogenic, 
odontogenic, adipogenic, and neurogenic differentiation [ 28 ]. Since MSCs from 
dental tissue are obtained during regular orthodontic procedures, usage of that type 
of stem cell is easy, cost-effective, and does not raise additional safety and ethical 
concerns. Six different types of stem cells were isolated from dental tissues, such as 
dental pulp stem cells (DPSCs) [ 27 ], stem cells from exfoliated deciduous teeth 
(SHED) [ 29 ], periodontal ligament stem cells (PDLSCs) [ 30 ], stem cells from 
apical papilla (SCAP) [ 31 ], dental follicle precursor cells (DFPCs) [ 32 ] and tooth 
germ stem cells (TGSCs) [ 33 ]. Indeed, one important feature of these dental-derived 
cells is their ectomesenchymal origin, which makes them a good candidate for tooth 
regeneration studies [ 28 ].  

6.2     Adult Stem Cells of Non-Dental Origin 

 Mesenchymal stem cells (MSCs) are populations of adult cells that reside in various 
tissues and organs, especially in the bone marrow, and maintain their regenerative 
potential through asymmetric mitotic cell division [ 18 ]. In other words, they have 
the ability to renew themselves, while differentiating into several specialized cell 
types of mesenchymal origin, termed as multipotency [ 34 ]. Upon need, tissue- 
specifi c MSCs have the genetic potential to repair or regenerate tissues from which 
they derive [ 12 ]. 
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6.2.1     Bone Marrow-Derived Mesenchymal Stem Cells 

 Among various cell sources, Bone Marrow-Derived Mesenchymal Stem Cells 
(BMSCs) have been extensively studied for regenerating different types of tissues. 
These cells are frequently isolated from bone marrow aspirates from the iliac crest and 
live in close contact with the hematopoietic stem cells that have been successfully 
used in the treatment of leukemia for several decades. Under established culture 
conditions, BMSC is a heterogeneous cell population [ 35 ]. However, these mixed 
populations of BMSCs can be purifi ed and homogenous groups can be immune 
selected using various surface markers [ 36 ]. 

 Although no single marker to date has been shown to identify the MSCs, several 
markers have been reported to be typical for BMSCs. These markers include CD29, 
CD44, CD73, CD90, CD105, CD146, CD166, and STRO-1 as positive, CD11b, CD14, 
CD34, CD45, and HLA-DR as negative [ 35 ,  37 – 39 ]. According to the minimal criteria 
proposed by International Society for Cellular Therapy, human MSCs must at least 
express CD73, CD90, and CD105, and lack expression of CD14 or CD11b, CD79 
alpha or CD19, CD34, CD45, and HLA-DR surface molecules [ 40 ]. 

 BMSCs are plastic adherent and have the ability to produce colonies when 
seeded at very low cell densities, termed as clonogenicity [ 35 ]. Moreover, it has 
been shown that BMSCs are capable of differentiating, at least, into mesodermal 
cell lineages, such as bone, cartilage, tendon, adipose, and muscle [ 18 ]. Besides, 
several studies reported the transdifferentiation potential of BMSCs into cells of 
different germ layers, including neurons [ 41 ], hepatocytes [ 42 ], retinal cells [ 43 ] 
and myofi broblasts [ 44 ]. The plasticity of BMSCs is still controversial since it is not 
clear whether the expression of tissue-specifi c markers is caused by transdifferentiation 
or cell fusion of other bone marrow cells [ 45 ]. 

 The use of BMSCs for promoting the biologic potential of scaffolds in craniofacial 
tissue engineering, especially the hard tissue regeneration, has gained interest within 
last 10 years. Stem cell delivery may be a particularly effective treatment alternative 
for craniofacial bone defects with an impaired healing. However, there is a need for 
optimal carrier materials that enable the delivery and maintenance of stem cells at 
the defect site. Various scaffold materials have been used in combination with 
BMSCs, including ceramics [ 46 ], calcium phosphates [ 47 ], synthetic polymers 
[ 48 ], composites [ 49 ] and titanium meshes [ 50 ] in vitro. Besides, animal studies 
(including rat, dog, pig, sheep species) mostly provided the evidence that the appli-
cation of BMSCs in bony defects increased osteogenesis compared to untreated 
defects without MSCs [ 6 ,  51 – 54 ]. Recently, it has been shown that anatomically 
shaped human bone grafts can be engineered using BMSCs in controlled perfusion 
bioreactor systems [ 55 ]. 

 However, translational research, involving human subjects, is more important for 
the establishment of a human craniofacial cell therapy protocol. The fi rst pioneering 
study came from Warnke et al. 2004 [ 56 ]. They showed the repair of an extended man-
dibular discontinuity defect by growth of a custom bone transplant with bone marrow 
precursor cells inside the latissimus dorsi muscle of an adult male patient. Instead of 
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culture expanded cells, freshly isolated cells were used in this study and the patient 
related outcome was satisfying. In further studies, researchers also tried autologous 
stem cell transplantation for the treatment of maxillofacial defects in human subjects 
(Table  6.1 ). For a detailed understanding of bone regeneration using autologous stem 
cells, there are recent reviews on craniofacial bone tissue engineering [ 57 – 59 ].

   Craniofacial structures also contain cartilage tissues in various regions, such as 
ear, nose, and temporomandibular joint. Since one direction of differentiation for 
BMSCs is the chondrogenic lineage, various attempts, mostly using 3D culture systems, 
have been made to establish cartilage regeneration in vitro [ 60 – 62 ]. The differentiation 
potential of BMSCs towards chondrocytes depends on supplementation with growth 
factors, mainly transforming growth factor-β (TGF-β) and bone morphogenetic 
proteins (BMPs) [ 63 ]. The in vitro regeneration of cartilage using BMSCs have 
been shown by utilizing different scaffold systems, growth factors and gene therapy 
[ 9 ,  64 ,  65 ]. There are also several reports on human subjects about the transplanta-
tion of BMSCs for cartilage repair [ 66 ,  67 ]. Besides, the clinical outcomes of BMSC 
implantation versus autologous chondrocyte implantation have recently been evaluated 
in a cohort study of 72 patients [ 68 ]. 

 In recent years, it has been reported that mandibular condyle can be also 
engineered using BMSCs due to their osteogenic and chondrogenic differentiation 
ability [ 16 ]. BMSCs isolated from adult rats were induced in osteogenic and then 
chondrogenic culture medium, separately. Differentiated cells were photoencapsu-
lated in a poly (ethylene glycol) diacrylate (PEGDA) hydrogel in two separate lay-
ers resembling the natural form of human mandibular condyle and then transplanted 
into immunocompromised mice. Histological results showed that the two stratifi ed 
separate osteogenic and chondrogenic layers maintained their phenotypes after 
transplantation [ 16 ,  69 ]. Especially, the intercellular matrix of the chondrogenic 
layer exhibited a strong staining with cartilage related markers, such as safranin O 
and transplanted cells displayed characteristics of native chondrocytes.  

6.2.2     Adipose-Derived Stem Cells 

 In recent years, Adipose-Derived Stem Cells (ASCs) have become an alternative 
multipotent cell source for use in craniofacial tissue engineering [ 13 ]. ASCs share 
some similarities with BMSCs by means of immunophenotype, differentiation 
potential, and clonogenicity [ 70 ,  71 ]. In vitro differentiation of ASCs into osteo-
genic, chondrogenic, adipogenic, and myogenic lineages have been confi rmed in 
various studies [ 72 ,  73 ]. Especially, the osteogenic potential of ASCs has been 
intensively studied through the combination of various grafting materials both in 
vitro and in vivo [ 73 – 76 ]. Also, animal [ 74 ,  75 ] and human [ 77 ] studies utilizing 
ASCs have demonstrated the bone regenerative potential of these cells in different 
conditions. In a recent clinical study, Thesleff et al. 2011 [ 77 ] have successfully 
repaired large calvarial defects with the combination of beta-tricalcium phosphate 
graft material and autologous culture expanded ASCs in four patients. 

6 Potential Use of Dental Stem Cells for Craniofacial Tissue Regeneration
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 Another potential application of ASCs is the reconstruction of soft tissues for 
facial cosmetic purposes due to their adipogenic properties. Although the number of 
published articles on this area is very few, ASC enriched fat grafts hold promise for 
the repair of mastectomy defects [ 85 ] and facial defects due to abnormalities, such 
as the progressive hemifacial atrophy [ 86 ]. Recently, several animal studies have 
suggested that ASCs could also be used for the repair of the facial nerve [ 87 ,  88 ]. 
Decellularized allogenic artery conduits seeded with ASCs were used for the recon-
struction of transected facial nerves of rats and these tissue engineered constructs 
provided benefi cial effects on functional facial nerve regeneration, but the fi ndings 
were inferior to the nerve autografts [ 87 ]. 

 In vitro differentiation of stem cells towards different lineages is usually performed 
with the use of various supplementations and growth factors. It is well established 
that both these exogenous factors [ 88 ] and the tissue environment [ 89 ] play a crucial 
role in the differentiation potential and extracellular matrix production of these 
cells. Recent knowledge also suggests that MSCs, either cultured in conditioned 
media [ 90 ] or co-cultured with other cell types [ 91 ], improve their differentiation 
ability towards the desired lineage. Although this evidence favors the use of non-
cranial-derived MSCs (BMSCs, ASCs, etc.) in craniofacial tissue engineering [ 92 ], 
important differences exist between the characteristics and therapeutic potential of 
MSCs from different sources. BMSCs from iliac bone and alveolar bone have been 
shown to have different characteristics in terms of cellular activities. For example, 
iliac BMSCs formed more compact bone in vivo and were more responsive to 
osteogenic and adipogenic differentiation in vitro and in vivo, whereas alveolar 
BMSCs proliferated faster, expressed increased levels of ALP and deposited more 
calcium in vitro [ 93 ]. 

 These data provide the evidence that the origin of MSCs must be taken into account 
when planning a differentiation route of MSCs for treating craniofacial discrepancies. 
Since the neural crest cells are thought to contribute to the development of most 
craniofacial tissues and organs, a regeneration protocol that utilizes stem cells of 
cranial neural crest origin might be more benefi cial to achieve this goal.   

6.3     Adult Stem Cells of Dental Origin 

6.3.1     Stem Cells from Mature Dental Tissues 

 Although quite limited, human dental pulp has the ability to repair itself when either 
caries or trauma does not involve the pulp cavity [ 94 ]. This means that ectomesen-
chymal progenitor cells remain in the pulp tissue after the eruption of human teeth 
and are also responsible for the formation of new dentin. Previous studies reported 
that these progenitors can be induced to differentiate into odontoblast-like cells and 
are capable of producing dentin-like mineralized nodules [ 95 ,  96 ]. Using a human 
wisdom teeth model, the characterization of these heterogeneous populations of 
dental pulp stem cells (DPSCs) was fi rst performed by Gronthos et al. 2000 [ 27 ]. 

6 Potential Use of Dental Stem Cells for Craniofacial Tissue Regeneration
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DPSCs have some similar characteristics with BMSCs such as high proliferation 
rate, colony-forming ability, differentiation potential under normal culture condi-
tions [ 37 ] and also express several important mesenchymal markers, such as CD44, 
CD90, and CD105 (Table  6.2 ) [ 28 ]. Besides their dentinogenic potential, DPSCs 
have been reported to differentiate into osteogenic, chondrogenic, adipogenic, and 
myogenic lineages [ 97 – 99 ]. Recently, CD117 positive DPSCs have been reported to 
differentiate into high-purity hepatocyte-like cells [ 100 ].

   Additionally, ecto-mesenchymal stem cells can also be isolated from the pulp of 
resorbing milk teeth, termed as stem cells from exfoliated deciduous teeth (SHED) 
[ 29 ]. When compared with DPSCs and BMSCs (Table  6.2 ), SHEDs are highly pro-
liferative with an increased population doubling (PD) rate [ 101 ]. These cells have 
been shown to express STRO-1 and Oct-4, two important cell surface markers of 

       Table 6.2    Immuno phenotyping of adult stem cells from different sources   

 BMSCs  ASCs  DPSCs  SHED  PDLSCs  SCAP  DFPCs  TGSCs 

 CD3  −  −  −  −  −  n/a  −  n/a 
 CD9  +  +  +  n/a  +  n/a  +  n/a 
 CD10  +  +  +  +  +  n/a  +  n/a 
 CD13  +  +  +  +  +  +  +  n/a 
 CD14  −  −  −  −  −  −  − 
 CD29  +  +  +  +  +  +  +  + 
 CD31  −  −  −  −  −  n/a  −  n/a 
 CD33  −  −  −  −  −  n/a  −  n/a 
 CD34  −  −  −  −  −  −  −  − 
 CD44  +  +  +  +  +  +  +  + 
 CD45  −  −  −  −  −  −  −  − 
 CD56  −  −  +  n/a  n/a  +  n/a 
 CD59  +  +  +  n/a  +  n/a  +  n/a 
 CD73  +  +  +  +  +  +  +  + 
 CD90  +  +  +  +  +  +  +  + 
 CD105  +  +  +  +  +  +  +  + 
 CD106  +/−  +/−  +  +  +  +/−  +/−  n/a 
 CD117  −  −  −  −  −  −  −  n/a 
 CD133  −  −  −  n/a  n/a  n/a  +  − 
 CD146  +  +  +  +  +  +  +  n/a 
 CD166  +  +  +  +  +  +  +  + 
 STRO-1  +  +  +  +  +  +  +  + 
 SSEA-4  +  +  +  +  +  +  +  + 
 HLA-DR  −  −  −  −  −  −  −  − 
 OCT4  +  +  +  +  +  +  +  + 
 NANOG  +  +  +  +  +  +  +  + 
 Nestin  +  +  +  +  +  +  +  + 
 Sox2  +/−  +  +  +  +  +  +  + 
 Rex-1  +  +  +  +  +  +  +  n/a 
 ALP  +  +  +  +  +  +  +  + 

  +/− contradictory results in the literature,  n/a  not available  
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multipotent stem cells (Table  6.2 ) [ 102 ]. As seen in DPSC cultures, SHEDs express 
osteo/odontogenic cell markers, including alkaline phosphatase (ALP), bone sialo-
protein (BSP), Cbfa1, and dentin sialoprotein (DSP) [ 29 ,  103 ]. SHEDs also express 
several neural markers, such as β III-tubulin, neuronal nuclear antigen (NeuN), glu-
tamic acid decarboxylase (GAD), nestin, neurofi lament M (NFM), glial fi brillary 
acidic protein (GFAP) and 2,3-cyclic nucleotide-3-phosphodiesterase (CNPase) 
[ 29 ]. In a previous study, SHED-derived neural-like spheres were transplanted into 
the striatum of parkinsonian rats and an improvement in the behavioral impairment 
was achieved [ 104 ]. Also, it has been recently reported that tooth-derived stem cells, 
SHEDs [ 105 ] and DPSCs [ 106 ], could be a useful tool for functional recovery after 
spinal cord injury. Adipogenic, myogenic, and chondrogenic differentiation have 
also been reported from SHED [ 107 ]. 

 One treatment strategy in the craniofacial region using dental pulp-derived stem 
cells (DPSC and SHED) might be the regeneration of tooth structures, including 
pulp and dentin. When transplanted into immunocompromised mice, DPSCs dis-
played an ability to form dentin pulp-like complexes [ 108 ]. However, transplanted 
SHEDs were capable of establishing dentin pulp-like tissue [ 29 ]. Additionally, it 
has been shown that SHEDs have a higher capacity of osteogenic and adipogenic 
differentiation compared to DPSCs [ 101 ,  109 ]. Two recent studies demonstrated the 
osteogenic potential of SHED in critical size bone defects in pig mandibular [ 110 ] 
and mouse calvaria [ 111 ] in vivo. Using DPSCs, endodontic perforations were suc-
cessfully repaired with a tissue engineering approach, involving dentin matrix pro-
tein 1 (DMP1) signaling molecule and a collagen scaffold, in immunocompromised 
mice [ 112 ]. Especially, the transplantation of CD31 − /CD146 −  side populations of 
DPSCs into an amputated in vivo pulp model resulted in complete pulp regeneration 
with vascular and neuronal compartments [ 113 ]. 

 The periodontal ligament (PDL) is an interfacial connective tissue between alveo-
lar bone and cementum, and contains progenitor cell populations that are responsible 
for the maintenance of the tooth in the alveolar socket against mastication forces. 
These progenitor cells have long been known to differentiate into cementoblasts and 
osteoblasts [ 114 ]. A previous study reported that these periodontal- derived stem cells 
display characteristics (osteogenic, adipogenic, and chondrogenic) similar to mes-
enchymal and other dental stem cells (Table  6.2 ), and termed them as periodontal liga-
ment stem cells (PDLSCs) [ 30 ]. Especially, the expression of chondrogenic genes, 
early osteoblastic and adipogenic markers were enhanced in STRO- 1 + /CD146 +  immu-
noselected PDLSC cultures [ 115 ]. Besides their osteogenic potential, PDLSCs 
express important markers for tendo/ligamentogenesis, including scleraxis and 
tenomodulin [ 116 ]. Moreover, a periodontium-like structure, including cementum 
and PDL, can be regenerated following transplantation of PDLSCs into immunocom-
promised mice [ 30 ,  117 ]. Several animal studies [ 118 ,  119 ] reported that autologous 
PDLSCs transplanted into surgically created periodontal defects were able to regener-
ate periodontal tissues and differentiate into functional osteoblasts and fi broblasts, 
thereby providing a treatment alternative for periodontitis. 

 Another treatment strategy using PDLSCs is the formation of a periodontal-like 
tissue around dental implants, in order to challenge the concept of osseointegration 
with biointegration. An organized periodontal tissue was found around titanium 
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implants seeded with PDLSCs and placed into maxillary molar sites of rats [ 120 ]. 
A similar approach involving human subject also revealed that new tissue with PDL 
characteristics, such as lamina dura and motility similar to teeth, was established at 
the bone implant interface [ 121 ]. Recently, it has been shown that heterogenous 
cultures of PDLSCs contain stem cells of neural crest origin, thus making them a 
useful tool in neuroregenerative and/or neurotrophic medicine [ 122 ].  

6.3.2     Stem Cells from Immature Dental Tissues 

 During tooth development, ectomesenchyme-derived dental papilla cells are known to 
be responsible for root formation. While the root is being formed, dental papilla is 
entrapped by dentin that is produced by odontoblasts of dental lamina origin [ 123 ]. 
So, the dental pulp takes its fi nal form and dental papilla protrudes more apically 
forming a cell rich zone at the apex. Previous studies have indicated that stem cells are 
also present in this apical part of dental papilla of the developing permanent teeth 
[ 31 ]. Therefore, these stem cells derived from the apical papilla (SCAP) can only be 
isolated from the apex of immature teeth at a certain development stage [ 124 ]. 

 SCAP expresses several mesenchymal markers and lack hematopoietic markers 
similar to DPSCs and SHED (Table  6.2 ) [ 125 ]. Interestingly, SCAP expresses CD24 
that is normally not present in DSPC and SHED cultures [ 28 ,  126 ]. Besides, when 
stimulated, these cells can undergo osteogenic and odontogenic differentiation in 
vitro [ 125 ]. Although the expression levels of osteo/dentinogenic markers in SCAP 
are lower than in DSPCs, SCAP have been reported to exhibit an increased prolif-
eration rate, higher PD, better tissue regeneration capability, higher telomerase 
activity, and migration capacity in a scratch assay [ 127 ]. Additionally, ex vivo 
expanded SCAP was also found to differentiate into adipogenic and neurogenic 
lineages, as seen in DPSC and SHED [ 31 ]. A recent data suggested that canonical 
Wnt/β-catenin signaling favored the proliferation and odonto/osteogenic differenti-
ation of SCAP [ 128 ]. Additionally, it has been reported that both SCAP and PDLSC 
could be used together in the regeneration of a root/periodontal complex capable of 
supporting a porcelain crown [ 127 ]. 

 Dental follicle is a loose connective tissue and it surrounds the developing tooth 
(including enamel organ and dental papilla) before eruption. It is believed that DF 
is responsible for the establishment of periodontium, cementum, and alveolar bone 
until the tooth takes its fi nal place [ 129 ]. This ectomesenchyme-derived sac-like 
tissue can be easily isolated during the extraction of impacted teeth. Recent evi-
dence suggested that progenitor cells in the dental follicle (DFPCs) are plastic 
adherent and form clonogenic colonies similar to other dental stem cells when cul-
tured in vitro [ 32 ]. DFPCs display fi broblastic morphology and express putative 
stem cell markers Notch-1 and Nestin [ 130 ]. Under specifi c culture conditions, 
DFPCs differentiated into osteogenic, neurogenic, and adipogenic lineages [ 32 ,  131 ]. 
When stimulated with enamel matrix derivatives (EMD) or BMP-2/-7, DFPCs 
expressed cementoblast markers, such as cementum attachment protein (CAP) and 
cementum protein 23 (CP-23) [ 132 ]. 
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 When supplemented with dexamethasone and/or insulin, human DFPSCs have 
been found to produce mineralized nodules in vitro. During osteogenic differen-
tiation, the expression of some related genes (Osx, DLX-5, runx2, and MSX-2) 
remained unaffected [ 133 ]. However, the upregulation of DLX-3 as a response 
to osteogenic induction was found to infl uence the cell viability and osteogenic 
differentiation in DFPSC cultures [ 134 ]. Besides, bovine-derived DFPCs formed 
fi brous tissue surrounded by a mesothelium-like structure, but not cementum or 
bone, when transplanted into immunodefi cient mice [ 32 ]. DFPCs are also capable of 
differentiating towards neurogenic lineage. After cultivation in serum replacement 
medium, containing culture supplement for glial cells, neurosphere-like cell clusters 
were established from DFPCs, and these cells were further differentiated into 
neuron-like cells by subculturing them on laminin and poly- l -ornithine substrates 
[ 135 ]. On the other hand, TGF-β was demonstrated to improve glial-like differentia-
tion of DFPCs, but not neural like [ 136 ]. Recently, DFPC cell sheets were shown to 
have a better regeneration potential for periodontal tissues than PDLSC sheets, 
when subcutaneously transplanted into nude mice [ 137 ].  

6.3.3     Tooth Germ Stem Cells 

 Until now, most studies cultured stem cells derived from immature tooth tissues in 
two portions by dissecting the dental follicle and apical papilla, separately. So, either 
DFPC or SCAP cultures were established. However, adult stem cells, that are 
responsible for tooth development, are derived from both ectoderm and the under-
lying mesenchyme. Therefore, reciprocal signaling pathways between these cell 
groups should be considered in designing a culture system from third molars [ 138 ]. 
The hypothesis of our studies was that the whole tooth germ should be used for 
preserving the stemness of the culture when isolating stem cells from immature 
third molars. Besides, the perfect dissection of the tooth germ tissue into dental 
follicle and apical papilla portions is impossible at the stage of early crown forma-
tion (unpublished data), thereby leaving some remnants from the adjacent tissue. 
Thus, in our cultures we have decided to isolate stem cells from the whole develop-
ing tooth organ, as done in the literature [ 139 ], and termed them as tooth germ-
derived stem cells (TGSCs) (Fig.  6.1 ).

   Human tooth germ tissues are derived from third molars and they are quite unique 
since embryonic tissues remain quiescent and undifferentiated until around age 6. 
Thus, human TGSCs are considered to be an ectomesenchymal source for isolating 
primitive pluripotent stem cells that could differentiate into multiple lineages. In our 
previous studies, we were able to isolate and characterize MSCs from human dental 
follicle (DFPCs) [ 140 ] and human tooth germ (hTGSCs) [ 33 ]. In the later study, 
we showed the differentiation of hTGSCs into osteogenic, adipogenic, and neurogenic 
cells, as well as tube-like structures in Matrigel assay [ 33 ]. Signifi cant levels of sox2 
and c-myc messenger RNA (mRNA) and a very high level of klf4 mRNA expres-
sions were observed when compared with human embryonic stem cells. Recently, 
another group reported that stem cells derived from third molars of young donors 
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(10, 13, and 16 years old) could be reprogrammed to a pluripotent state (induced 
pluripotent stem (IPS) cells) by using retroviral vectors containing oct3/4, sox2, and 
Klf4 [ 141 ]. Expression of developmentally important transcription factors could 
render hTGSCs an attractive candidate for autologous transplantation since they can 
differentiate into various tissue types, such as osteoblasts, neurons, and vascular 
structures [ 33 ]. 

 Interestingly, primary cultures of TGSCs readily express early neural stem cell 
markers, including nucleostemin, nestin, vimentin, and β-III tubulin [ 33 ]. 
Furthermore, the cryopreservation did not lead to a major change in the undifferen-
tiated state of TGSCs [ 142 ]. According to the expression of neurogenic markers 
(β-III tubulin, nestin, and neuronal intermediate fi lament NFL), TGSCs also protect 
their neurogenic potential following long term cryopreservation [ 142 ], thereby 
making them a potential source for the treatment of neurodegenerative disorders. In a 
similar study [ 139 ], the neurogenic and hepatogenic characteristics of human tooth 
germ precursor cells (TGPCs) were evaluated. Especially, the transplantation of 
undifferentiated TGPCs into immunocompromised rats with experimentally estab-
lished liver fi brosis led to improvement of liver function [ 139 ]. 

 Although the number of published articles about TGSCs is extremely low, cur-
rent fi ndings provide important clues about the primitive characteristics of these 
cells. Thus, further studies, including transplantation protocols, needed to evaluate 
their regenerative potential in the craniofacial tissue engineering.   

6.4     Conclusion 

 Stem cell sources have extensively been used for the treatment of craniofacial tissue 
defects since they have the capacity to originate a wide range of tissues. Generally, 
MSCs are preferred for such tissue regenerations. However, dental stem cells have also 
a self renewal and multilineage differentiation capacity. Besides, they are originated 
from cranial neural crest. Therefore, they have great potential to get used in cranio-
facial tissue engineering applications.     

  Fig. 6.1    Dissection of tooth germ tissue and morphology of TGSCs derived from pig (10× obj)       
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