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Capacity, Fairness, and QoS Trade-Offs
in Wireless Networks with Applications to LTE
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4.1 Introduction

The design of wireless mobile networks is driven by a multitude of objectives. As
an example, among the requirements for 4th Generation(4G) given by International
Mobile Telecommunications (IMT)-Advanced we can highlight maximum average
cell spectral efficiency and cell border spectral efficiency in bits/s/Hz, maximum
packet latency and minimum number of supported Voice over IP (VoIP) users [15].
In this case we can identify as design objectives spectral efficiency (average cell
spectral efficiency), cell coverage (cell border spectral efficiency), Quality of Service
(QoS) (packet latency), and user satisfaction or user capacity (number of supported
VoIP users). Other objectives could be present in network design such as energy
efficiency and fairness.

One of the most important tools for optimizing wireless mobile networks is Radio
Resource Allocation (RRA). RRA is responsible for managing the available resources
in the radio access interface such as frequency chunks, transmit power, and time slots.
When the system bottleneck is in the radio access instead of the core network, efficient
RRA can dictate the performance of the overall system.
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However, in general all these network design objectives cannot be achieved at
the same time by RRA strategies. A well-known case that illustrates this issue is
the RRA strategies that aim at maximizing spectral efficiency. In order to maximize
spectral efficiency, the system resources should be assigned to the users that can use
them in the most efficient way in terms of b/s/Hz. These users are the ones that have
better channel quality states. However, this RRA solution in general leads to reduced
fairness and poor QoS provision to the other users that do not have the best channel
quality states. Clearly, spectral efficiency is a contradicting objective with regard to
both fairness and QoS provision.

Different RRA strategies can be designed to maximize one objective in detriment
of another as well as to balance them. In this context, RRA strategies can be static or
adaptive. By adaptive RRA strategies we mean solutions that can be configured to
achieve different points in the trade-off between opposing objectives, whereas static
strategies are able to achieve only a fixed point in the trade-off between the system
objectives.

In order to conceive RRA solutions for the existing design objectives, many strate-
gies can be followed. We highlight in this chapter the heuristic and utility-based
approaches. As will be shown in the following sections, the heuristic design provides
simple and quick solutions to the RRA problems, while the utility-based approach
is a flexible and general tool for RRA design.

In this chapter we study important trade-offs in the downlink of modern wireless
mobile networks and show adaptive RRA solutions based on the heuristic and utility-
based approaches. The focus in this chapter is on Non-Real Time (NRT) services
that have as main QoS metric throughput or average data rate. The remainder of
this chapter is organized as follows. In Sect. 4.2 we review important objectives and
trade-offs in wireless networks, whereas in Sects. 4.3 and 4.4 we present the heuristic
and utility-based frameworks for conceiving RRA solutions, respectively. Then, in
Sects. 4.5 and 4.6 we propose adaptive RRA strategies for the capacity versus fairness
and capacity versus QoS trade-offs, respectively. Finally, in Sect. 4.7 we summarize
this chapter with the main conclusions of the presented study.

4.2 Trade-Offs in Wireless Networks

Resource allocation for wireless mobile communications systems can have different
objectives, such as the maximization of system capacity, cell coverage, user QoS (user
satisfaction), fairness in the resource distribution, etc. Unfortunately, in general all
these objectives cannot be achieved at the same time. Below we list some fundamental
compromises that appear in wireless cellular networks:

• Coverage Versus QoS: Due to propagation losses, the QoS of the users located
in the cell edge is usually worse than the one perceived by the users that are close
to the base station. A procedure used in the planning and dimensioning of cellular
systems is to determine the cell radius depending on the required percentage of
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the users that should use the minimum allowed Modulation and Coding Scheme
(MCS). The trade-off is also evident in this dimensioning procedure, because the
higher the minimum QoS requirement, the smaller the cell coverage will be.
• Capacity Versus Coverage: Excessive capacity can have a negative impact on

the coverage of interference-limited systems. This is the case of Third Genera-
tion (3G) systems based on Code Division Multiple Access (CDMA), where the
cells shrink when they become heavily loaded (cell breathing phenomenon) [10].
Another aspect is that base stations with high power provide good coverage, but
also generate excessive interference to the neighbor cells, which can decrease the
overall system capacity.
• Fairness Versus Coverage: The random user location in the coverage area and the

wireless channel variability cause differences in the channel quality perceived by
the users. This quality variability is directly proportional to the cell coverage: the
larger the cell size, the higher the variability. Normally, resource allocation algo-
rithms take into account the Channel State Information(CSI) of the users. So, the
higher the variability of the users’ CSI, the lower the fairness of the corresponding
resource allocation.
• Fairness Versus QoS: Since the wireless resources are limited, the QoS of the

users cannot be improved indefinitely. If the QoS of few users is maximized, the
others will feel the lack of resources. This imbalance is translated into a fairness
decrease. On the other hand, if a high fairness is assured and consequently the users
have more or less the same QoS, the maximum achievable QoS in this situation is
lower.
• Capacity Versus Fairness: This compromise is also known as the efficiency versus

fairness trade-off. In order to maximize system capacity, the wireless resources
must be allocated in the most efficient way possible. This is accomplished by
using opportunistic resource allocation algorithms, which assign the resources to
the users who have the best channel conditions with respect to these resources.
As commented before, mobile cellular systems present a high variability on the
channel quality experienced by the users. The use of opportunistic RRA in order
to maximize capacity will inevitably concentrate the resources among the users in
good propagation conditions, while the ones in worse channel conditions would
starve. This situation is characterized by low fairness. On the other hand, if a high
fairness is required, the system is forced to cope with the bad channel conditions of
the worst users and allocate resources to them. Since this allocation is not efficient
in the resources’ point-of-view, the overall system capacity will be degraded.
• Capacity Versus QoS: This is also known as the capacity versus satisfaction

trade-off. A clear compromise between system capacity and user QoS is the fact
that the existence of more users in the system decreases the QoS per capita, because
less resources would be available for each of the users. Furthermore, the use of
opportunistic resource allocation in order to maximize capacity can degrade the
QoS of the worst users, which decreases the total percentage of satisfied users in
the system. On the other hand, system capacity is decreased if the users with bad
channel conditions are contemplated in order to increase total user satisfaction.
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Notice that the compromises described above are fundamental trade-offs found
in mobile cellular systems and most of them are technology-independent. System
design, the deployment of specific technologies and the use of suitable RRA tech-
niques can help the network operators to decrease the gap between these opposing
factors. If these compromises cannot be solved in a “win-win” approach, adaptive
RRA strategies are still very useful at finding an appropriate trade-off between these
objectives.

In this chapter, we are interested in studying and evaluating two of the aforemen-
tioned trade-offs: capacity versus fairness and capacity versus QoS.

4.3 Heuristic-Based Resource Allocation Framework

In general, the RRA problems that address the capacity versus fairness and capacity
versus QoS trade-offs can be represented in a mathematical form as optimization
problems. Basically, optimization problems are composed of an objective, constraints
and variables to be optimized. The variable to be optimized in the RRA problems are
the resources in mobile networks such as frequency chunks and transmit power. The
objective of an optimization problem consists in the aspect of mobile networks that
should be improved. Common objectives in RRA are the maximization of transmit
data rate and minimization of transmit power. In this chapter we focus on the former
objective. Finally, the constraints in optimization problems are restrictions imposed
by mobile systems and users. Constraints are able to limit the search space of all
possible solutions, i.e., a given RRA solution that leads to an improved objective is
infeasible when it does not comply with the problem constraints. We call optimal
solution the solution that best improves the objective of the optimization problem
and obeys the problem constraints.

The RRA problems studied in this chapter assume that the variable to be optimized
is the frequency resource assignment. As the frequency resources are discrete, the
optimization problems to be solved belong to the class of combinatorial or integer
optimization problems. Furthermore, the mathematical expressions that appear in
the objective and constraints of the RRA optimization problems studied here are
nonlinear functions of the optimization variable. The combination of combinatorial
problems with nonlinear objective and constraints in general turns the task of finding
the optimal solution or best RRA solution impractical. Often, the optimal solution
can be found only by exhaustive search that enumerates all possible solutions and
tests the attained objective in order to find the best one, or other techniques that are
able to discard part of the search space but still have exponential-order worst case
complexity [29].

In order to find good-enough RRA solutions with reduced computational effort
we can use heuristic solutions. Heuristic solutions are simple solutions found by
methods, techniques, or algorithms that are conceived based on experience and com-
mon sense. In general, the outputs of heuristic methods are suboptimal but accept-
able solutions for practical deployments. These solutions are especially suitable for
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Fig. 4.1 Illustration of the problems to be solved in the capacity versus fairness and capacity versus
QoS trade-offs

cases where the optimal solution is hard or impossible to obtain. In these cases,
heuristic methods accelerate the problem-solving process and provide us accessible
and simple solutions.

The problems to be solved in both capacity versus fairness and capacity versus
QoS trade-offs have a common structure and are illustrated in Fig. 4.1. Each possible
resource assignment or solution to the problem is represented by circles in this figure.
Also, the objective to be pursued is to maximize the total data rate or spectral effi-
ciency that is shown on the left-hand side of Fig. 4.1. Note that each possible solution
has a different value for the spectral efficiency. Regarding the problem constraints,
we have network specific constraints such as the multiple access constraints, and the
QoS or fairness constraints that are directly related to the data service provided to
the users by the network. In this figure we illustrate the space of all solutions and
two inner spaces that represent the network specific and fairness or QoS constraints.
Note that we are interested in the solutions that obey both set of constraints located
in the intersection region (feasible region). Therefore, although “solution 1” is able
to achieve higher spectral efficiency than “solution 2” in Fig. 4.1, we are interested
in the latter solution since it is in accordance with both sets of constraints.

The heuristic framework to solve the presented problem consists in two parts:
Unconstrained Maximization and Resource Reallocation. In the Unconstrained
Maximization part we relax the fairness or QoS constraints and solve the problem
in order to find the solution that obeys the network-specific constraints that leads to
the maximum spectral efficiency. In general, due to the propagation properties of the
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Fig. 4.2 Illustration of the general heuristic framework to solve the problems in the capacity versus
fairness and capacity versus QoS trade-offs

wireless medium, only few users that are next to the transmit antennas get most of the
system resources. Therefore, we expect that the fairness or QoS constraints are not
met in this initial solution. This initial solution is illustrated by “Solution 1” in Fig. 4.2.
In the Resource Reallocation part of the proposed framework, we have an iterative
phase where the system resources assigned in the Unconstrained Maximization part
are exchanged between the users in order to meet either fairness or QoS constraints. In
Fig. 4.2, we assume that the final solution, “Solution 4”, is found after three iterations
or resource reallocations. The reallocations in each iteration are represented by the
dashed-line arrows where the intermediate solutions “Solution 2” and “Solution 3”
are obtained after the first and second iterations. Note that the main idea in the
reallocation procedure is that the loss in spectral efficiency after each iteration should
be kept as minimum as possible. At the end of the proposed framework, we expect that
the solution found by the proposed heuristic method achieves a spectral efficiency as
close as possible to the optimal solution represented in Fig. 4.2 by “Optimal solution”.

4.4 Utility-Based Resource Allocation Framework

In communication networks, the benefit of the usage of certain resources, e.g., band-
width and/or power, can be quantified by using utility theory. This theoretical tool can
also be used to evaluate the degree to which a network satisfies service requirements
of users’ applications, e.g., in terms of throughput and delay.
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The general utility-based optimization problem considered in this work is formu-
lated as:

max
K j

J∑

j=1

U
(
Tj [n]

)
(4.1a)

subject to
J⋃

j=1

K j ⊆ K , (4.1b)

Ki

⋂
K j = ∅, i �= j, ∀i, j ∈ {1, 2, . . . , J }, (4.1c)

where J is the total number of users in a cell, K is the set of all resources in
the system, K j is the subset of resources assigned to user j , K is the total num-
ber of resources in the system (subcarriers, codes, etc) to be assigned to the users,
and U

(
Tj [n]

)
is a monotonically increasing utility function based on the current

throughput Tj [n] of the user j in Transmission Time Interval (TTI) n. Constraints
(4.1b) and (4.1c) state that the union of all subsets of resources assigned to different
users must be contained in the total set of resources available in the system, and that
the same resource cannot be shared by two or more users in the same TTI, i.e., these
subsets must be disjoint.

The power allocated to the resources could be considered as another optimization
variable in the optimization problem (4.1a)–(4.1c). However, this joint optimization
problem is very difficult to be solved optimally [8]. Revising the literature, we can
find out that most of the sub-optimum solutions split the problem into two stages:
first, dynamic resource assignment with fixed power allocation, and next, adaptive
power allocation with fixed resource assignment. Furthermore, it has been shown
for Orthogonal Frequency-Division Multiple Access (OFDMA)-based systems that
adaptive power allocation provides limited gains in comparison with equal power
allocation with much more complexity [8]. Therefore, we consider the simplified
optimization problem (4.1a)–(4.1c), which can be solved by a suitable dynamic
resource assignment with equal power allocation.

Many RRA policies can be proposed if different utility functions are used. In this
study, we are interested in formulating general RRA techniques suitable for control-
ling the capacity versus fairness and capacity versus QoS trade-offs in a scenario
with NRT services.

It is demonstrated in the Appendix that we are able to derive a simplified optimiza-
tion problem that is equivalent to our original problem. According to the Appendix,
the objective function of our simplified problem is linear in terms of the instantaneous
user’s data rate and given by

max
K j

J∑

j=1

U
′ (

Tj [n − 1]
)

R j [n], (4.2)
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where R j [n] is the instantaneous data rate of user j and U
′ (

Tj [n − 1]
) =

∂U

∂Tj

∣∣∣∣
Tj=Tj [n−1]

is the marginal utility of user j with respect to its throughput

in the previous TTI. The objective function (4.2) characterizes a weighted sum
rate maximization problem [11], whose weights are adaptively controlled by the
marginal utilities.

The weighted sum rate maximization problem given by (4.2) has a linear objective
function with respect to R j [n], whose solution is simple to obtain. Particularly,
the Dynamic Resource Assignment (DRA) problem in OFDMA systems, which is
the optimization problem (4.1) with subcarriers or physical resource blocks (PRB)
as the resources and considering equal power allocation, has a closed form solution
when the objective function is given by (4.2) [12, 41]. The user with index j� is
chosen to transmit on resource k in TTI n if it satisfies the condition given by

j� = arg max
j

{
U
′ (

Tj [n − 1]
)

r j,k [n]
}
, (4.3)

where r j,k [n] denotes the instantaneous achievable transmission rate of resource k
with respect to user j . Notice that this utility-based resource allocation performs
a balance between the QoS-dependent factor U

′ (
Tj [n − 1]

)
and the efficiency-

dependent factor r j,k [n].
The chosen utility function must be parameterized, for example by a parameter δ,

i.e. U (·) = U
(
Tj [n], δ

)
, in order to allow the control of trade-offs between two

objectives. The parameter δ is limited by δmin ≤ δ ≤ δmax. On the one hand, δmin

is associated to the maximization of one objective, for example system capacity. On
the other hand, δmax is associated to the maximization of the other objective, for
example, system fairness or user satisfaction. The adaptation of δ according to a
suitable metric and a desired target allows the control of trade-offs.

4.5 Capacity Versus Fairness Trade-Off

In this section, we study the trade-off between capacity and fairness. First, a general
definition of the trade-off is presented in Sect. 4.5.1. Next, two RRA techniques are
proposed, namely Fairness-based Sum Rate Maximization (FSRM) and Adaptive
Throughput-based Efficiency-Fairness Trade-off (ATEF), which are described and
evaluated in Sects. 4.5.2 and 4.5.3, respectively. The former is based on the heuristic-
based RRA framework described in Sect. 4.3, while the latter is based on the utility-
based RRA framework presented in Sect. 4.4. Finally, the conclusions about the study
of the capacity versus fairness trade-off are shown in Sect. 4.5.4.
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4.5.1 General Definition

It is well known that the scarcity of radio resources is one of the most important
characteristics of wireless communications, which demands a very efficient usage
of the available resources. Different criteria can be used for resource allocation;
for instance, the users that present the best channel quality can be chosen to use
the resources. In this case, the efficiency indicator of the resources is the channel
quality. The efficiency in the resource usage can be maximized if opportunistic RRA
algorithms are used [26]. The opportunism comes from the fact that the resources are
dynamically allocated to the users that present the highest efficiency indicator with
regard to the radio resources. When the resources have different efficiency indicators
to different users (multi-user diversity), the trade-off between efficiency (capacity)
and fairness appears. The use of opportunistic resource allocation to exploit these
diversities causes unfair situations in the resource distribution.

From a network operator perspective, it is very important to use the channel
efficiently because the available radio resources are scarce and the revenue must be
maximized. From the users’ point of view, it is more important to have a fair resource
allocation in a way that they are not on a starvation/outage situation and their QoS
requirements are guaranteed.1 Then the question is: how can the network operator
manage this trade-off? In this section we try to answer this question and highlight
important clues toward this goal.

In order to better understand the aforementioned trade-off, it is indispensable to
define what fairness means. There are two main fairness definitions: resource- or
QoS-based [31]. In the former, fairness is related to the equality of opportunity to
use network resources, for example, the number of frequency resources a user is
allowed to use or the amount of time during which a user is permitted to transmit. In
the latter, fairness is associated with the equality of utility derived from the network,
e.g., flow throughput. Resource and QoS-based fairness are related to the notion of
how equal is the number of resources allocated or how similar is the service quality
experienced by the users, respectively. If all users in a given instant approximately
have the same number of allocated resources, or perceive more or less the same QoS
level, we can say that the system provides a high fairness. On the contrary, if the
resources are concentrated among few users, or few of them experience a very good
QoS while the others are unsatisfied, the resource allocation can be considered unfair.

Focusing on QoS-based fairness, it is well known that the characteristics and
transmission requirements of NRT traffic differ from those of Real Time (RT) data
traffics. NRT services, such as World Wide Web (WWW) and File Transfer Protocol

1 Mobile operators are becoming increasingly more concerned about fairness issues in their net-
works. It has been observed that most of the Internet traffic is coming from a few end-users, thereby
congesting the network for the rest of the users. A small number of customers use their broadband
service inappropriately, for example, when sending or downloading very large files, or using ‘peer to
peer’ and file sharing software. In order to solve this problem, network operators are implementing
‘Fair Use Policies’ in order to manage inappropriate use and make sure the service can be used
fairly by everyone.
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Fig. 4.3 Illustration of different operation points of the trade-off between capacity and fairness in
a wireless network with two users

(FTP), are not delay-sensitive but require an overall high throughput. Therefore, rate
or throughput can be used as fairness indicators in a scenario with NRT services.

Let us consider a simplified scenario of two users in a wireless system. Figure 4.3
depicts a conceptual view of the trade-off between system capacity and QoS-based
user fairness in such a scenario. This conceptual analysis is also valid for the case of
resource-based fairness.

The QoS experienced by the two users after the resource allocation is represented
by the axes on the figure. One can notice that there are two main lines on the figure:
efficiency and fairness. Since the radio resources in the wireless system are limited,
the efficiency line delimits a capacity region. The fairness line indicates that the QoS
of the users are the same in any point along this line, i.e., the fairness is maximum.
The crossing between these lines is the optimal network operation point, which char-
acterizes a resource allocation with maximum efficiency and fairness. In the figure,
one can see regions of low and high efficiency and fairness. Wired networks can
effectively work near the optimal point due to the implementation of congestion
control techniques, such as Transmission Control Protocol (TCP) [6]. However, the
frequency and time-varying wireless channel poses significant challenges to the solu-
tion of this problem, and the optimal RRA technique that always provides maximum
efficiency and fairness in wireless networks is still an open problem.
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Referring again to Fig. 4.3, let us assume that user 1 has better channel conditions
than user 2. If an opportunistic RRA policy that gives importance only to the efficiency
in the resource usage were used, we would have the region marked as “A”. In this
case, the majority of the resources were allocated to user 1, which would cause an
unfair situation. On the other hand, the region marked as “B” characterizes an RRA
policy that provides absolute fairness but causes a significant loss in efficiency since
it has to deal with the bad channel conditions of user 2. Therefore, one can observe
that in most of the times the optimal point of maximum efficiency and fairness may
be unfeasible due to the channel quality of the users.

4.5.2 Fairness-Based Sum Rate Maximization

The Fairness-based Sum Rate Maximization (FSRM) technique is based on the
heuristic-based RRA framework described in Sect. 4.3 and tries to solve the problem
of controlling the trade-off between capacity and fairness. It was first proposed in
[33, 35].

This section is organized as follows. Section 4.5.2.1 revises the state of the art
about the topic, while the RRA problem to be solved by FSRM is formulated in
Sect. 4.5.2.2. The details of the FSRM technique are presented in Sect. 4.5.2.3, and
finally, simulation results in Sect. 4.5.2.4 show the comparison between FSRM and
other classical RRA techniques.

4.5.2.1 Background

In general, heuristic-based RRA strategies are derived from combinatorial optimiza-
tion formulations. The optimization-based RRA strategies for OFDMA systems
found in the literature typically follow two approaches: margin adaptive and rate
adaptive. The former formulates the dynamic resource allocation with the goal of
minimizing the transmitted power with a rate constraint for each user [22, 44].
The latter aims at maximizing the instantaneous data rate with a power constraint
[18, 32, 38]. Since the capacity versus fairness trade-off is an explicit consequence
of the use of opportunistic rate adaptive RRA algorithms, this latter approach is the
one studied in this section.

There are three main classical approaches to cope with the rate adaptive optimiza-
tion problem: Max–Min Rate (MMR) [21, 32], Sum Rate Maximization (SRM) [18],
and Sum Rate Maximization with Proportional Rate Constraints (SRM-P) [38, 45].

The rate adaptive approach was first proposed in [32], where the objective was
to maximize the minimum rate of the users. A sub-optimum heuristic solution com-
prising subcarrier assignment and equal power allocation was proposed. After the
resource allocation the users have almost the same rate, which results in the fairest
policy in terms of data rate distribution. The MMR optimization problem was refor-
mulated in [21] in order to be solved by Integer Programming techniques. Notice
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that such a policy is able to maximize fairness at the expense of degraded system
capacity (see region “B” in Fig. 4.3).

Reference [18] presented the solution of the SRM problem, which is the classical
opportunistic rate adaptive policy. SRM maximizes the system capacity regardless
of the QoS of the individual users. The subcarriers are assigned to the users who have
the highest channel quality, and next the power is allocated among the subcarriers
following the waterfilling procedure [30]. This resource allocation ignores the users
with bad channel conditions, who may not receive any resources, and benefits the
users close to the base station. According to Fig. 4.3, this policy would be located in
region “A”.

The SRM-P optimization problem attempts to be a trade-off solution between
system capacity and user fairness [38]. The same objective function of the problem
described in [18] was considered and a new optimization constraint of rate propor-
tionality for each user was added. This constraint aims to rule the rate distribution
in the system. This new optimization problem is suitable for a scenario where there
are different service classes with different proportional rate requirements. The solu-
tion was divided into two steps: a sub-optimum subcarrier assignment based on [32]
and an optimal power allocation. The SRM-P problem was further addressed by
[45], which linearized the power allocation problem avoiding the solution of a set of
nonlinear equations that was required by the solution proposed in [38].

In this section, a new proposed fairness/rate adaptive policy called FSRM is
described. It is a generalization of a classical rate adaptive policy SRM found in
the literature [18].

4.5.2.2 Problem Formulation

The generalization of the classical SRM policy takes into account a new way to
control the trade-off between system capacity and fairness. This control is applied
on a cell fairness index and is formulated as a new constraint in the optimization
problem.

The considered RRA optimization problem is formulated as follows:

max
X

J∑

j=1

K∑

k=1

r j,k x j,k (4.4)

subject to x j,k = {0, 1}, ∀ j ∈J and ∀k ∈ K , (4.5)
J∑

j=1

x j,k = 1, ∀k ∈ K , (4.6)

Φcell = Φ target, (4.7)

where J and K are the total number of active users and available frequency resources,
respectively; J and K are the sets of users and resources, respectively; X is a
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J ×K assignment matrix whose elements x j,k assume the value 1 if the resource k is
assigned to the user j and 0 otherwise; Φcell is the instantaneous Cell Fairness Index
(CFI); and Φ target is the Cell Fairness Target (CFT), i.e., the desired target value of
the CFI.

Constraints (4.5) and (4.6) say that each frequency resource must be assigned to
only one user at any instant of time. A new fairness control mechanism is explicitly
introduced into the optimization problem of the fairness/rate adaptive policy by
means of the fairness constraint (4.7). A short-term (instantaneous) fairness control
can be achieved, because this constraint requires that the instantaneous CFI Φcell

must be equal to the CFT Φ target at each TTI.
The fairness/rate adaptive optimization (4.4)–(4.7) is a nonlinear combinatorial

optimization problem, because it involves an integer variable x j,k and a nonlinear
constraint (4.7), as will be explained in the following. This problem is not convex
because the integer constraint (4.5) makes the feasible set nonconvex.

Constraint (4.7) is the main novelty in comparison with the classical SRM rate
adaptive policy. It has a deep impact on the design of the RRA technique used to
solve the optimization problem (4.4)–(4.7), as will be shown in Sect. 4.5.2.3. In order
to better comprehend the importance of this constraint, let us further elaborate on
the concept of the fairness index.

It is assumed that each user has a rate requirement Rreq
j that will indicate whether

this user is satisfied or not. In order to evaluate how close the user’s transmission rate
is from its rate requirement, the UFI is defined as

φ j = R j

Rreq
j

, (4.8)

where R j is the instantaneous transmission rate of user j .
In order to measure the fairness in the rate distribution among all users in the cell,

the CFI is calculated by

Φcell =
(∑J

j=1 φ j

)2

J
∑J

j=1

(
φ j

)2 , (4.9)

where J is the number of users in the cell and φ j is the UFI of user j given by
(4.8). This proposed CFI is a particularization of the well-known Jain’s fairness
index proposed by Jain et al. in [16]. Notice that 1/J ≤ Φcell ≤ 1. On one hand,
the worst allocation occurs when Φcell = 1/J , which means that all resources were
allocated to only one user. On the other hand, a perfect fair allocation is achieved
when Φcell = 1, which means that the instantaneous transmission rates allocated to
all users are equally proportional to their requirements Rreq

j (all UFIs are equal).
The objective function (4.4) is the same of the classical rate adaptive SRM policy

[18]. The constraint (4.7) does not exist in the original SRM problem. Therefore,
SRM is a pure channel-based opportunistic policy, where the resources are allocated
to the users with better channel conditions, which maximizes the cell throughput.
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However, such a solution is extremely unfair because the other users with worse
channel conditions are neglected.

Although the objective function of the proposed FSRM policy seeks the maxi-
mization of capacity, the fairness constraint (4.7) acts as a counterpoint, provoking
the explicit appearance of a trade-off. FSRM tries to answer the following question:
How can a given fairness level be achieved while keeping the system capacity as
high as possible? Guided by this criterion, the FSRM policy can achieve different
fairness levels and draw a complete capacity-fairness curve. We will answer in the
next section this design question.

4.5.2.3 Algorithm Description

The underlying concept behind the FSRM policy is that resource allocation can be
based on two possible approaches:

• Resource-centric/efficiency-oriented: the RRA policy allows the resource to
“choose” who is the best user to use it;
• User-centric/fairness-oriented: the RRA policy allows the user to choose which

is the most adequate resource to him/her.

Whether the RRA policy uses the former, the latter, or both approaches, will deter-
mine its ability to control the intrinsic trade-off between resource efficiency and user
fairness found in wireless networks.

Three “actors” play an important role in the proposed technique: the “richest”
user (the one with the maximum proportional rate), the “poorest” user (the one with
the minimum proportional rate), and the resource.

The FSRM policy is able to increase the fairness in the system. This process
is illustrated in Fig. 4.4. In this hypothetical example, we have the distribution of
the QoS among 20 users. The user IDs are ordered in such a way that the users
with best QoS are given IDs around 10, and the users with worst service quality are
given the extreme IDs (close to 1 or 20). A QoS distribution depicted by the dashed
curve shows an unfair resource usage. If fairness is to be increased from that point,
the resources, and consequently the QoS, should be divided more equally among the
users. This is accomplished removing resources from the rich and giving them to the
poor. The solid curve is an example of a fair QoS distribution.

The fairness/rate adaptive problem formulated in (4.4)–(4.7) is a nonconvex opti-
mization problem, which makes it very difficult to find the optimum solution. This
work proposes an RRA technique able to solve the proposed fairness/rate adaptive
problem in a sub-optimum way. Based on the heuristic-based framework described
in Sect. 4.3, the FSRM policy is implemented by a sequence of two RRA algorithms,
as explained in the following.

1. Unconstrained Maximization: An initial fairness level (CFI) is achieved after
the execution of the DRA algorithm of the classical SRM policy. Therefore, an
initial positioning on the capacity-fairness plane is determined.
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Fig. 4.4 Relation between QoS distribution and fairness adaptation

2. Resource Reallocation: The initial CFI is, in general, low because SRM is an
unfair policy. Thus, in order to meet the desired CFT, fairness must be increased by
means of resource reallocations among users. Fairness variation is only possible if
resources are moved between different users. The first step is to decide from which
user a resource will be removed. Next, a small amount of resource (resource with
worst channel quality) is removed from this user. Finally, this resource is given
to the user that can take the most benefit of it, or in other words, this resource is
given to the user that can use it in the most efficient way. This means to assign the
removed resource to the user that has the highest channel gain on it. Hopefully,
after this procedure an accurate approximation of the CFT is achieved.

After the Unconstrained Maximization and Resource Reallocation parts, we per-
form Equal Power Allocation (EPA), i.e., the power is divided equally among the
resources.

In the Unconstrained Maximization part, a resource should be assigned to only
one user who has the best channel gain for that resource, as indicated in Algorithm 7.
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Algorithm 7 Unconstrained Maximization part of the FSRM technique
Initialization
1: J ← {1, 2, 3, · · · J } {Users set}
2: K ← {1, 2, 3, · · · K } {Resources set}
3: for all j ∈J and k ∈ K do
4: x j,k ← 0 {Reset connection matrix}
5: K j ← ∅ {Reset user’s resources subset}
6: end for
Resource assignment
7: for all k ∈ K do
8: j∗ ← arg max j {γ j,k} {Find user with maximum SNR on resource k}
9: x j∗,k ← 1 {Set the connection}
10: K j∗ ← K j∗

⋃ {k} {Update user’s resources subset}
11: end for

The detailed pseudo-code of the Resource Reallocation part of FSRM is presented
in Algorithm 8 while its flowchart is depicted in Fig. 4.5.

Algorithm 8 is an iterative heuristic algorithm that adapts the CFI by means of a
resource reallocation procedure. Initially, the CFI according to (4.9) is calculated.
As previously mentioned, the initial DRA procedure is performed by the classical
SRM technique, which in general provides low levels of CFI. Therefore, it is most
likely that the initial CFI provided by SRM is lower than the desired CFT value
Φ target. Based on that, the fairness-based DRA algorithm of the FSRM technique
must increase the fairness until a value close to Φ target. This is accomplished by an
iterative procedure that stops when the CFT is achieved. Details are given below.

1. Select a user j∗ from the set of available users in such a way that fairness can
be increased if a resource is removed from this user. This can be accomplished
by taking resources from the user with maximum proportional rate (richest user)
and give them to other users.

2. From the subset of resources assigned to user j∗, select the one with the minimum
Signal-to-Noise Ratio (SNR) with respect to this user (resource k∗).

3. Find the user j∗∗ (different of user j∗) who can be most benefited from the
resource reallocation. This is the user with maximum SNR on resource k∗.

4. Remove resource k∗ from user j∗ and give it to user j∗∗ (resource reallocation).
The rates and subsets of assigned resources of users j∗ and j∗∗ must be updated.

5. Re-calculate the new value of CFI and repeat the process until the CFT is achieved.
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Algorithm 8 Resource Reallocation part of the FSRM technique
Initialization
1: J ← {1, 2, 3, . . . , J }; K ← {1, 2, 3, . . . , K }; B← ∅ {Initialize users set, resources set and

blocked resources subset}
2: for all j ∈J and k ∈ K do
3: x j,k ← 0 {Reset connection matrix}
4: K j ← ∅ {Reset resources subset of each user}
5: Qk ← ∅ {Reset blocked users subset of each resource}
6: end for
Resource reallocation to increase fairness
7: Calculate Φcell according to (4.9)
8: if Φcell < Φ target then {Increase fairness}
9: while Φcell < Φ target do
10: j∗ ← arg max j {R j /Rreq

j },∀ j ∈J {Find user with maximum proportional rate}
11: k∗ ← arg mink{γ j∗,k},∀k ∈ K j∗ and ∀k /∈ B {Find available resource assigned to user

j∗ with minimum SNR}
12: Qk∗ = Qk∗ + { j∗} {Update subset of blocked users for resource k∗}
13: j∗∗ ← arg max j {γ j,k∗ },∀ j ∈J and ∀ j /∈ Qk∗ {Find available user with maximum SNR

on resource k∗}
14: if j∗∗ exists then
15: Remove resource k∗ from user j∗ and give it to j∗∗; update R j∗ , R j∗∗ , K j∗ and K j∗∗
16: else
17: B = B + {k∗} {Update set of blocked resources}
18: end if
19: Re-calculate Φcell according to (4.9)
20: end while
21: end if

During the fairness increase procedure, the resources have more freedom to move
between the users. In order to avoid ping-pong effects, the resource k∗ cannot return
to its original owner (user j∗) in subsequent iterations of the algorithm. Due to this
restriction, after some iterations, the resource k∗ may not have any user eligible to
receive it. In this case, this resource is removed from the set of available resources.

As can be noticed, the way the resources are reallocated in the FSRM policy
guarantees that a desired CFT is met while maximum capacity is achieved.

4.5.2.4 Simulation Results

In this section, we compare the performance of the proposed FSRM technique with
three classical rate adaptive techniques, namely SRM [18], SRM-P [45] and MMR
[32]. Table 4.1 shows the parameters considered in the system-level simulations,
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Fig. 4.5 Flowchart of the Resource Reallocation part of the FSRM technique

where the main characteristics of a single-cell2 Long Term Evolution (LTE)-based
system were modeled.

2 There is a trend in next generation mobile communication networks that RRA techniques should
be executed in the base stations, not in the radio network controllers anymore, as was the case
for 3G systems. Moreover, all the information needed by the RRA techniques proposed in this
chapter is available in each base station locally. The reasons explained above support our decision
of evaluating the RRA techniques in a single-cell scenario. Finally, we expect that the performance
evaluation on a multi-cell scenario would present only a performance degradation for all studied
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Table 4.1 Simulation parameters for the evaluation of the FSRM technique

Parameter Value

Maximum BS transmission power 1 W
Cell radius 500 m
MT speed Static
Carrier frequency 2 GHz
Number of subcarriers 192
Effective subcarrier bandwidtha 14 kHz
Path lossb L = 128.1+ 37.6 log10 d
Log-normal shadowing standard deviation 8 dB
Small-scale fading Typical urban (TU)
AWGN power per subcarrier −123.24 dBm
BER requirement 10−6

Link adaptation Shannon capacity
with SNR gap [40]

Transmission time interval (TTI) 0.5 ms
NRT traffic model Full buffer
User satisfaction requirement (Rreq

j ) 512 kbps
Proportional rate requirementsc 1/J
Target CFI (Φ target) Variable
Number of independent snapshots 10,000
aThe effective subcarrier bandwidth takes into account the signaling overhead
bDistance d in km
cIn the SRM-P technique, we considered that all users had the same proportional rate requirements,
which is given by 1/J , where J is the number of users

Figure 4.6 depicts the mean CFI averaged over all snapshots as a function of
the number of users for all classical rate adaptive algorithms and the fairness/rate
adaptive technique proposed in this work. It can be observed that the SRM technique,
which uses a pure opportunistic policy that allocates the resources only to the best
users, is the one that presents the highest rates. However, this benefit comes at the
expense of a very unfair distribution of the QoS among the users, since many of
them do not have the opportunity to transmit due to the lack of resources. Notice
that the higher the number of users, the lower the fairness provided by SRM. This is
due to the multi-user diversity which is fully exploited by the opportunistic resource
allocation of the SRM technique. At the other extreme we have the SRM-P and
MMR techniques, where the transmission rates of the users are more equalized, and
therefore the fairness in the system is higher. However, the transmission rates of the
users are also lower, which characterizes a capacity loss. Notice that the users’ rates
provided by SRM-P are slight higher than the ones achieved with MMR, because
the former takes extra actions that allow a better utilization of the resources [45].

(Footnote 2 continued)
techniques due to inter-cell interference, which would not change the conclusions taken from their
relative comparison.
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Fig. 4.6 Mean cell fairness index as a function of the number of users for the classic (solid lines)
and the FSRM technique (dashed line)

Figure 4.6 also shows that the FSRM technique is successful at guaranteeing the
fairness targets, which were [1/J, 0.2, 0.4, 0.6, 0.8, 1.0], where J is the total number
of NRT users in the cell. It can be observed that for lower system loads that FSRM is
not able to exactly meet very low CFTs (see for instance 6 or 8 users and CFT=1/J
in Fig. 4.6). This happens due to two interrelated factors: (1) the performance of the
FSRM technique is lower-bounded by the classic SRM policy; and (2) the multi-user
diversity is not sufficient with a low number of users. As explained in Sect. 4.5.2.3,
the initial resource assignment performed by the classic SRM is the first step of
the FSRM technique. If the CFT is larger than the initial CFI, fairness should be
increased, and resource reallocations are done in the reallocation part of the heuristic-
based framework. This explains the lower bound given by SRM. On the other hand,
the performance of the FSRM strategy converges to the performance of the classic
MMR for extremely high values of CFT, since the latter presents the highest values
of CFI.

Figure 4.7 compares the performance of the proposed FSRM strategy with the
classical rate adaptive techniques in terms of total cell throughput, which is the
efficiency indicator that we use in this analysis. As a consequence of the trade-off,
we have that the total cell throughput is inversely proportional to the CFT. As can be
seen in Fig. 4.7, the higher the CFT, the lower the total cell throughput. Regarding the
classical strategies, SRM provides much better results in terms of system capacity
than SRM-P and MMR. SRM-P also shows slightly better results than MMR due
to its resource assignment algorithm that seeks the maximization of the capacity
whenever possible. One can see the inverse proportion between capacity and CFT
by the performance of the FSRM technique.
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The best way to evaluate the trade-off between resource efficiency and user fair-
ness is plotting the 2D capacity-fairness plane. The chosen efficiency and fairness
indicators are the total cell data rate (capacity) and cell fairness index, respectively.
Figure 4.8 summarizes the most relevant aspects discussed so far. It compares the per-
formance of the classical rate adaptive techniques (SRM, SRM-P and MMR), which
are indicated as single markers, and the generalized fairness/rate adaptive strategy
(FSRM), which is indicated as solid line. In order to plot the capacity-fairness plane,
the number of users must be fixed, which in this case is 16.

The classical rate adaptive techniques are represented as single points in the
capacity-fairness plane because they represent static policies, i.e., each policy pro-
vides only one trade-off operation point. SRM provides maximum capacity at the
expense of very poor fairness among users, while SRM-P and MMR are very fair
in the rate distribution (CFI close to one) but as a consequence they achieve much
lower system capacity.

On the other hand, the FSRM technique is able to achieve a desired cell fairness
target thanks to a new fairness constraint in the optimization problem. It is able to
cover the whole path between extreme points in the capacity-fairness plane (classical
rate adaptive points), drawing a complete curve. One can observe that the perfor-
mance of the proposed fairness/rate adaptive strategy converges to the results of the
classical rate adaptive techniques in both extremes of the CFI, which are 1/J and 1.
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4.5.3 Adaptive Throughput-Based Efficiency-Fairness
Trade-Off

The Adaptive Throughput-based Efficiency-Fairness Trade-off (ATEF) technique is
based on the utility-based RRA framework described in Sect. 4.4 and tries to solve
the problem of controlling the trade-off between capacity and fairness. It was first
proposed in the seminal works [33, 34].

This section is organized as follows. Section 4.5.3.1 presents some works related
to the topic, while the RRA problem to be solved is formulated in Sect. 4.5.3.2.
The proposed technique is described in Sect. 4.5.3.3, while Sect. 4.5.3.4 shows the
performance evaluation of ATEF and other classical RRA techniques.

4.5.3.1 Background

Most of the works that proposed packet scheduling (PS) algorithms to effect a com-
promise between efficiency and fairness among NRT flows [4, 5, 13, 46] are based
on the Proportional Fair (PF) PS algorithm proposed in [43] for High Data Rate
(HDR) CDMA systems. However, there are some works [7, 23] that used different
approaches. The former introduced a PS algorithm with a fairness controlling parame-
ter that accounts for any intermediate policy between the instantaneous fairness and
the opportunistic policies, while the latter evaluated a scheduling algorithm whose
priority function is a linear combination between instantaneous channel capacity
and the average throughput. As a generalization of the PF criterion, we can high-
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light the weighted α-proportional fairness PS algorithm, which is also known as the
alpha-rule and was initially proposed by [28] and later used in [20]. The idea behind
this algorithm is to embody a number of fairness concepts, such as rate maximization,
proportional fairness and max–min fairness, by varying the values of the parameter
α and the weight parameter.

A more general class of RRA algorithms is based on utility fairness. Utility fairness
is defined with a utility function that composes the optimization problem, where the
objective is to find a feasible resource allocation that maximizes the utility function
specific to the fairness concept used. Some examples of utility functions can be found
in [9, 19, 39]. There is a general family of utility functions that were presented and/or
evaluated in [36, 37, 42] that includes the weighted α-proportional fairness algorithm
as a special case. Some works followed a similar approach, but using different utility
functions, e.g., [3, 40, 41].

The utility fairness concept is used in this section to propose the utility-based
alpha-rule, which is a generalized parametric RRA framework suitable for NRT
services that can balance efficiency and fairness in wireless systems according to
the network operator’s interest. This framework is composed of dynamic resource
assignment algorithm and can be designed to work as any of well-known classical
RRA policies by adjusting only one parameter in their corresponding parametric
structures.

4.5.3.2 Problem Formulation

We consider a family of utility functions based on throughput of the form presented
in (4.10) below [37].

U
(
Tj [n]

) = Tj [n]1−α

1− α
(4.10)

where α ∈ [0,∞) is a nonnegative parameter that determines the degree of fairness.
Figure 4.9 depicts, for different values of α, the utility and marginal utility func-

tions. A family of concave and increasing utility functions is shown, which repre-
sents that the satisfaction of the users increases when their throughput increases.
The marginal utilities play an important role in the DRA algorithm, as explained in
Sect. 4.4. Let us consider a utility-based weight of user j as its marginal utility, i.e.,
w j = U

′ (
Tj [n − 1]

)
. The higher the weight, the higher the priority of the user to get

a resource. The marginal utility functions also show that users experiencing poor QoS
(low throughput) will have higher priority in the resource allocation process. And
such priority is higher when α increases. Therefore, one can conclude that when α

increases, the users with poorest QoS are benefited, and so the fairness in the system
becomes stricter.

Taking into account (4.10), the expression of the weight w j becomes

w j = U
′ (

Tj [n − 1]
) = 1

Tj [n − 1]α
. (4.11)
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Fig. 4.9 Family of utility functions used in the utility-based alpha-rule framework. a Utility func-
tions. b Marginal utility functions

The corresponding DRA algorithm, which is given by (4.3), must use the particular
expression of w j presented in (4.11).

Depending on the value of the fairness controlling parameter α, the alpha-rule
framework presented above can be designed to work as different RRA policies,
achieving different performances in terms of resource efficiency and throughput-
based fairness. The main characteristics of the alpha-rule framework and the four
particular RRA policies contemplated by this framework are presented in Table 4.2.
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Table 4.2 Features of the utility-based alpha-rule framework: U
(
Tj [n]

) = Tj [n]1−α

1−α

Policies Parameter α Weight w j Characteristics

RM 0 1 High resource efficiency and low
throughput-based fairness

PF 1
1

Tj [n − 1]
Static trade-off between resource

efficiency and throughput-based
fairness

MMF α→∞ lim
α→∞

1

Tj [n − 1]α
Low resource efficiency and high

throughput-based fairness

ATEF Adaptive
1

Tj [n − 1]α
Dynamic trade-off between resource

efficiency and throughput-based
fairness

The first three RRA policies are well-known classical policies, namely Rate Max-
imization (RM) [18] (also known as SRM), Max–Min Fairness (MMF) [37] and
Proportional Fair (PF) [19]. The novel adaptive policy ATEF is described in detail
in the following.

4.5.3.3 Algorithm Description

The ATEF policy is an adaptive version of the utility-based alpha-rule. It aims to
achieve an efficient trade-off between resource efficiency and throughput-based fair-
ness planned by the network operator in a scenario with NRT services. This is done
by means of the adaptation of the fairness controlling parameter α in the utility func-
tion presented in (4.10). The user priority in the resource allocation is very sensitive
to the value of α, as can be seen in Fig. 4.9. So small values are sufficient to provide
the desired fairness degrees on the ATEF DRA algorithm.

The ATEF policy is based on the definition of a user fairness index (UFI) φ j , which
is based on throughput and calculated for each user in the cell. The instantaneous
UFI is defined as

φ j [n] = Tj [n − 1]

T req
j

, (4.12)

where T req
j is the throughput requirement of user j .

Next, we define a cell fairness index considering all users connected to it as
follows:

Φcell [n] =
(∑J

j=1 φ j [n]
)2

J
∑J

j=1

(
φ j [n]

)2 , (4.13)
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where J is the number of users in the cell. This proposed CFI is based on the
well-known Jain’s fairness index [16]. This fairness index was also used by the
heuristic-based FSRM technique, whose formulation is presented in Sect. 4.5.2.2.

The objective of the ATEF policy is to assure that the instantaneous CFI Φcell [n] is
kept around a planned valueΦ target , i.e., a strict throughput-based fairness distribution
among the users is achieved. Therefore, the ATEF policy adapts the parameter α in
the utility-based alpha-rule framework in order to achieve the desired operation point.
Therefore, the new value of the parameter α is calculated using a feedback control
loop of the form:

α [n] = α [n − 1]− η
(
Φfilt [n]−Φ target

)
(4.14)

where the parameter η is a step size that controls the adaptation speed of the parameter
α; Φfilt [n] is a filtered version of the CFI Φcell [n] using an exponential smoothing
filtering, which is used to smooth time series with slowly varying trends and suppress
short-run fluctuations; and Φ target is the CFT, i.e. the desired value for the CFI.

The ATEF technique is an iterative and sequential process. At each TTI, the
steps indicated in Fig. 4.10 are executed. This process is executed indefinitely. After
some iterations (TTIs), the ATEF technique reaches a stable convergence of the
fairness pattern defined by the target CFI. The simplicity of the ATEF policy makes
it a robust and reliable way to control the trade-off between capacity and fairness.
By keeping the cell fairness around a planned target value, the network operator can
have a stricter control of the network QoS and also have a good prediction about the
performance in terms of system capacity.

4.5.3.4 Simulation Results

In this section, the performance of the utility-based alpha-rule is evaluated by
means of system-level simulations. The performance of the ATEF policy is com-
pared to the three classic RRA policies (MMF, PF and RM). In this simulation
scenario, several CFTs were considered for the ATEF policy, namely Φ target =
[1/J, 0.2, 0.4, 0.6, 0.8, 1.0]. The simulations took into account the main character-
istics of an LTE-based cellular system. The general simulation parameters are the
same as used for the evaluation of the FSRM technique in Sect. 4.5.2.4 (see Table 4.1).
Table 4.3 shows the specific simulation parameters used in the performance evalua-
tion of the utility-based alpha-rule framework.

The throughput-based CFI calculated by (4.13) averaged over all simulation snap-
shots is depicted in Fig. 4.11 for various system loads. It can be observed that ATEF
is successful at achieving its main objective, which is to guarantee a strict fairness
distribution among the users. This is achieved due to the feedback control loop that
dynamically adapts the parameter α of the alpha-rule framework.

Notice that the structure of the utility-based alpha-rule framework bounds the
performance of the ATEF policy between the performances of the RM and MMF
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policies. According to Table 4.2, the extreme values of the parameter α are 0 and
∞ (in practice a very large number), which correspond to RM and MMF policies,
respectively. We considered in the simulations a range of values from 0 to 10 for the
adaptation of the parameter α by the ATEF policy. Notice that this upper limit of
α = 10 was sufficient for the ATEF policy configured with Φtarget = 1.0 to be very
close to the performance of the MMF policy. On the other extreme, it is clear that
RM works as a lower bound for ATEF configured with Φtarget = 1/J .

Regarding the classic RRA policies, as expected, MMF provided the highest fair-
ness, very close to the maximum value of 1, while RM was the unfairest strategy with
a high variance on the fairness distribution for high cell loads. PF presented a good
intermediate fairness distribution. From this fairness analysis, it can be concluded
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Table 4.3 Specific simulation parameters for the evaluation of the utility-based alpha-rule frame-
work

Parameter Value

Throughput filtering constant ( f thru) 1/1,000
Minimum α value 0
Maximum α value 10
ATEF control time window 0.5 ms
ATEF fairness target (Φ target) Variable
ATEF step size (η) 0.1
ATEF filtering time constant 10
User throughput requirement (T req

j ) 512 kbps
Simulation time span 5 s
Number of independent simulation runs 70
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Fig. 4.11 Mean cell fairness index as a function of the number of users for the utility-based alpha-
rule framework

that the advantage of the ATEF policy compared with the classic RRA strategies is
that the former can be designed to provide any required fairness distribution, while
the latter are static and do not have the freedom to adapt themselves and guarantee
a specific performance result.

We consider the total cell throughput (cell capacity) as the efficiency indicator,
which is presented in Fig. 4.12 as a function of the number of users.

As expected, RM was able to maximize the system capacity, while MMF presented
the lowest cell throughput, since it is not able to exploit efficiently the available
resources. PF is a trade-off between RM and MMF, so its performance is laid between
them. The ATEF policy is able to achieve several cell throughput performances
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Fig. 4.12 Total cell throughput as a function of the number of users for the utility-based alpha-rule
framework

depending on the value of the chosen CFT. In this way, we realize that ATEF is able
to work as a hybrid policy between any classic RRA strategy contemplated in the
framework.

Looking at Figs. 4.11 and 4.12, one can clearly see the conflicting objectives of
capacity and fairness maximization, and how RM and MMF are able to achieve one
objective in detriment of the other. PF and ATEF were able to achieve a static and
a dynamic trade-off, respectively. A didactic way to explicitly evaluate the trade-off
between resource efficiency and user fairness is to combine Figs. 4.11 and 4.12 and
plot a 2D plane between total cell throughput (capacity) and the cell fairness index.
Figure 4.13 presents the plane built from the simulations of all studied RRA policies
on a scenario with 16 active NRT flows.

In Fig. 4.13, the classic RRA policies are indicated as single markers, and the
adaptive policy ATEF is indicated as a solid line. The classic policies show a static
behavior on the capacity-fairness plane. RM is the most efficient on the resource
usage but provides an unfair throughput distribution among users, while MMF is
able to provide maximum throughput-based fairness at the expense of low system
capacity. The PF policy appears as a fixed trade-off between MMF and RM, with
intermediate system capacity and throughput-based fairness.

In order to achieve a desired cell fairness target, the ATEF policy controls the
parameter α adaptively according to (4.14). In this way, it is able to cover the whole
path between the classic policies in the capacity-fairness plane. Notice in the ATEF
curve that the fairness targets set in the simulations (0.2, 0.4, 0.6, 0.8, and 1.0) are
successfully met. As expected, the performance of the ATEF policy for very low
fairness range converges to the performance of the RM policy. Therefore, it can be
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Fig. 4.13 Capacity-Fairness plane for the utility-based alpha-rule framework

concluded that the ATEF policy can adaptively adjust the utility-based alpha-rule
framework presented in Table 4.2 in order to provide a dynamic trade-off between
resource efficiency and throughput-based fairness.

4.5.4 Conclusions

Two adaptive RRA techniques for the control of the capacity versus fairness trade-off
are proposed: FSRM and ATEF. We propose to manage this trade-off by means of
fairness control. FSRM and ATEF use two different ways to control the fairness in
the system: instantaneousor average fairness control, respectively.

FSRM is able to cover the whole path between the extreme points in the capacity-
fairness plane, drawing a complete capacity-fairness curve. One can observe that
the performance of FSRM converges to the results of the classical rate adaptive
strategies in both extremes of the cell fairness index, which are 1/J and 1. These
classical techniques are SRM and MMR, respectively. The performance of FSRM
is constrained by SRM and MMR because FSRM plays with the competition of
two paradigms: efficiency-oriented (resource-centric) and fairness-oriented (user-
centric). SRM is the maximum exponent of the former paradigm, while MMR is the
best representative of the latter.

The fairness control performed by ATEF is bounded by the structure of the alpha-
rule framework, i.e., the minimum and maximum fairness performance depends
on the allowed range of values for the parameter α. In the alpha-rule framework,
minimum and maximum α correspond to the classical RM and MMF policies,
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respectively. The ATEF technique dynamically adapts the fairness-controlling para-
meter α of the alpha-rule framework using a feedback control loop, in order to achieve
a desired fairness distribution in terms of throughput (average data rate).

ATEF is able to provide equal or better cell capacity than the respective classical
policies for the same cell fairness indexes. Furthermore, it is also able to provide
dynamic trade-offs covering the capacity-fairness plane. This is a remarkable strate-
gic advantage to the network operators, because they can now control the aforemen-
tioned trade-off and decide in which point on the plane they want to operate.

4.6 Capacity Versus QoS Trade-Off

In this section, we study the trade-off between capacity and QoS. First, a general
definition of the trade-off is presented in Sect. 4.6.1. Next, two RRA techniques are
proposed: Constrained Rate Maximization (CRM) and Adaptive Throughput-based
Efficiency-Satisfaction Trade-off (ATES). The former is based on the heuristic-based
RRA framework described in Sect. 4.3, while the latter is based on the utility-based
RRA framework presented in Sect. 4.4. The CRM and ATES techniques are described
and evaluated in Sects. 4.6.2 and 4.6.3, respectively. Finally, the conclusions about
the study of the capacity versus QoS trade-off are shown in Sect. 4.6.4.

4.6.1 General Definition

Capacity and QoS are two contradicting objectives in wireless networks. Without loss
of generality, let us consider the case of opportunistic RRA that take into account
the channel quality of the users. As it was previously mentioned, the objective of
such opportunistic RRA is to allocate more resources to the users with better channel
conditions, which leads to a higher resource utilization and system capacity. However,
this strategy benefits the users closer to the Base Station (BS), i.e., the ones with
highest SNR, and can cause starvation to the users with worse channel conditions.
This can severely degrade some users’ experience as a result of unfair resource
allocation and increased variability in the scheduled rate and delay. Moreover, long
delays in the scheduling of packets coming from bad channels can cause severe
degradation in the overall performance of the system for higher layer protocols, such
as TCP.

On the other hand, schemes that aim to maximize the overall satisfaction have to
fulfill QoS requirements and guarantee specific targets of throughput, packet delays,
among others. Sometimes, system resources should be assigned to users indepen-
dently of channel quality state in order to take into account users with degraded QoS,
which penalizes users with better channel conditions and reduces system efficiency.
Therefore, in general maximizing the system capacity leads to poor QoS provision
and vice versa.
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The compromise between efficiency and fairness has been widely studied in the
literature, as explained in Sect. 4.5. However, to the best of our knowledge, the explicit
evaluation of the capacity versus QoS trade-off has not been covered in the literature.

4.6.2 Constrained Rate Maximization

The capacity versus QoS tradeoff will be characterized, in Sect. 4.6.2.1, by the opti-
mization problem of maximizing the system capacity under minimum satisfaction
constraints. Then we present the optimal and the heuristic solutions to this problem
in Sects. 4.6.2.2 and 4.6.2.3, respectively. Finally, simulation results for performance
evaluation are presented in Sect. 4.6.2.4. The contributions presented in this section
were first shown in the seminal works [24, 25].

4.6.2.1 Problem Formulation

We consider that in a given TTI, J active users compete for K available resources.
We define J and K as the set of active users and available resources, respectively.
As we are dealing with a multiservice scenario we assume that the number of services
provided by the system operator is S and that S is the set of all services. We consider
that the set of users from service s ∈ S is Js and that |Js | = Js , where | · | denotes
the cardinality of a set. Note that

⋃
s∈S

Js = J and
∑

s∈S
Js = J . We define X

as a J × K assignment matrix with elements x j,k that assume the value 1 if the
resource k ∈ K is assigned to the user j ∈ J and 0 otherwise. According to the
link adaptation functionality, the BS can transmit at different data rates according
to the channel state, allocated power, and perceived noise/interference. We consider
that user j ∈ J can transmit using resource k ∈ K with the data rate r j,k . The
transmit power is uniformly distributed among the available resources. A user j is
satisfied if its transmit data rate is higher than or equal to its data rate requirement
Rreq

j after resource allocation. Furthermore, the system operator requires that κs users
of service s should be satisfied after resource allocation.

The problem of maximizing capacity under minimum satisfaction constraints is
formulated as

max
X

⎛

⎝
J∑

j=1

K∑

k=1

r j,k x j,k

⎞

⎠, (4.15a)

subject to
J∑

j=1

x j,k = 1, ∀k ∈ K , (4.15b)

x j,k ∈ {0, 1}, ∀ j ∈J and ∀k ∈ K , (4.15c)
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∑

j∈Js

u

(
K∑

k=1

r j,k x j,k, Rreq
j

)
≥ κs, ∀s ∈ S , (4.15d)

where u(x, b) is a step function that assumes the value 1 if x ≥ b and 0 otherwise,
where b is a constant. The first part of this optimization problem is the objective
function in (4.15a). The objective of this problem is to maximize the total downlink
data rate transmitted by the BS to the connected users. When the problem constraints
are concerned, we can see that constraints (4.15b) and (4.15c) assure that the each
resource k should be allocated exclusively to a given user, i.e., a given resource
cannot be shared by multiple users. Another consequence of these constraints is
that within a cell covered by a given BS there is no intra-cell interference. The last
constraint (4.15d) addresses QoS and user satisfaction issues. In this constraint, for
each provided service s in the system, a minimum number of users should be satisfied
(κs). This is equivalent to satisfy a certain percentage of the connected users for each
service in the system.

4.6.2.2 Method for Obtaining the Optimal Solution

Note that problem (4.15) has a binary optimization variable x j,k . Therefore, this
problem belongs to the class of combinatorial optimization problems. Moreover,
constraint (4.15d) is a nonlinear function of the optimization variable x j,k . Therefore,
problem (4.15) is a nonlinear combinatorial problem that is hard to solve optimally
depending on the problem dimensions [47].

A well-known method to solve problem (4.15) consists in the brute force method
that consists in numerating all possible solutions, testing whether they obey the
constraints (4.15b)–(4.15d), and evaluating the achieved total data rate. The optimal
solution is the one that presents the highest total data rate. The total number of
possible solutions that can be enumerated is J K . Therefore, this method only works
for small J and K , which is not the case in cellular networks.

Fortunately, problem (4.15) can be simplified by modifying constraint (4.15d).
Consider a binary selection variable ρ j that assumes the value 1 if user j is selected to
be satisfied and 0 otherwise. According to this, the problem (4.15) can be restated as

max
X,ρ

⎛

⎝
J∑

j=1

K∑

k=1

r j,k x j,k

⎞

⎠, (4.16a)

subject to
J∑

j=1

x j,k = 1, ∀k ∈ K , (4.16b)

x j,k ∈ {0, 1}, ∀ j ∈J and ∀k ∈ K , (4.16c)
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K∑

k=1

r j,k x j,k ≥ Rreq
j ρ j , ∀ j ∈J , (4.16d)

ρ j ∈ {0, 1}, ∀ j ∈J , (4.16e)

∑

j∈Js

ρ j ≥ κs, ∀s ∈ S . (4.16f)

As can be seen, the constraint (4.15d) of problem (4.15) was replaced by con-
straints (4.16d), (4.16e) and (4.16f) in problem (4.16). Now, the optimization vari-
ables are x j,k and ρ j , and all problem constraints and objective function are linear.
Therefore, we managed to convert problem (4.15) to an Integer Linear Problem
(ILP). This special class of optimization problems can be solved by standard numer-
ical solvers based on the Branch and Bound (BB) algorithm. The main idea of the BB
algorithm is to decrease the search space by solving a relaxed version of the original
optimization problem [29].

Although, the optimal solution of problem (4.16) can be obtained with much
less processing time with BB-based solvers compared to the brute force method,
the worst-case complexity of the BB-based solvers is exponential with the number
of variables and problem constraints [47]. In problem (4.16), we have J × K + J
variables and J + K + S constraints. Consequently, obtaining the optimal solution
to the studied problem is not feasible for the short time basis of cellular networks
even for moderated number of users, resources and services.

4.6.2.3 Algorithm Description

In this section we present an algorithm to solve the problem presented in Sect. 4.6.2.1
following the heuristic framework presented in Sect. 4.3. As it was shown previously,
the first part of the solution consists in solving the studied problem without the
minimum satisfaction constraints. In other words, we are interested in finding the
solution that maximizes the spectral efficiency. The implementation of this first part,
called Unconstrained Maximization, is presented in Fig. 4.14.

In step (1) of the Unconstrained Maximization part we define two temporary user
sets: auxiliary user set represented by B and the available user set denoted by A .
The auxiliary user set contains the users that can be disregarded without violating
the minimum satisfaction constraints per service. The available user set contains the
users that were not disregarded along the Unconstrained Maximization part and will
get resources in the Reallocation part. Both user sets are initialized with the set of
all users J .

In step (2) we solve the relaxed version of problem (4.16), i.e., without the min-
imum satisfaction constraints, with the users of the available user set. The optimal
solution to the relaxed problem is simple; basically the resources should be assigned
to the users with best channel quality on them [18]. According to the RRA performed
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Fig. 4.14 Flowchart of the Unconstrained Maximization part of the CRM technique
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in step (2), some of the users would get an allocated data rate higher than or equal
to the required data rate, Rreq

j , whereas other users would get an allocated data rate
lower than the data rate requirement. Therefore, in step (3) we define the former
users as the satisfied users while the latter are the unsatisfied users.

In step (4) we evaluate if the minimum number of users that should be satisfied
per service, κs , is fulfilled with the RRA performed in step (2). Basically, in step (4)
we evaluate if the set of constraints (4.16d), (4.16e) and (4.16f) of problem (4.16)
are fulfilled. If so, the RRA solution in step (2) is the optimal solution of the studied
problem as presented in step (5). Note that this is an uncommon situation because
of the wireless propagation characteristics where few users present the best channel
qualities in most of the resources. In this way, only few users would get satisfied with
the solution in step (2).

In step (6), a user is taken out of the RRA process. The main idea here is to take out
of the RRA process the user that demands more resources to be satisfied. According
to this, the selected user is chosen according to the following equation:

j∗ = arg max
j∈B

Rreq
j

1

K

K∑
k=1

r j,k

. (4.17)

As it can be seen in (4.17), the denominator of the fraction in the argument of the
arg max (·) function consists in the estimated average transmit data rate of user j per
resource, whereas the numerator is the required data rate of user j . Therefore, the
ratio between these two quantities consists in the estimated number of resources that
user j needs to be satisfied. The objective is to disregard the user that needs more
resources. As it will be shown later, there is a limit in the number of users that can
be disregarded that depends on the minimum satisfaction constraints of the studied
problem.

Note that if there are initially Js users from service s and a minimum of κs users
should be satisfied, the maximum number of users that can be disregarded is Js − κs

in order to be still possible guaranteeing the minimum satisfaction constraint for
service s. In step (7), we check whether the service of the user selected in step
(6) (represented here by s∗) can have another user disregarded without violating
the minimum satisfaction constraints. If so, the algorithm returns to step (2) where
the relaxed version of problem (4.16) is solved with the users of the available user
set. Otherwise, all users from service s∗ will be taken out of the auxiliary user set in
step (8), i.e., these users could not be disregarded in the Unconstrained Maximization
part.

In step (9) we check if the auxiliary user set is empty which means that we could
not disregard any user without violating the minimum satisfaction constraints. If so,
we check in step (10) if at least one user is satisfied. If the output of step (10) is
positive, we define from the available user set and the resource set three new sets:
the donor (D) and receiver (R) user sets, and the available resource set (K ). The
donor user set D is composed of the satisfied users in the available user set A and
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can donate resources to unsatisfied users. The receiver user set R is composed of
the unsatisfied users from the available user set A that need to receive resources
from the donors to have their data rate requirements fulfilled. Finally, the available
resource set K is composed of all the resources from the users in the donor user set,
i.e., the resources that can be donated to the unsatisfied users (receiver users).

Note that if the auxiliary user set is not empty in step (9), step (2) is executed again
with the users of the available user set. Also, if there is no satisfied user in step (10)
the algorithm is not able to find a feasible solution. A satisfied user or donor user is
necessary in the second part of the proposed algorithm in order to donate resources
to the unsatisfied users or receiver users.

In Fig. 4.15 we present the flowchart of the second part of the proposed solution
named as Resource Reallocation. In step (1) of the Reallocation part of the proposed
solution, the user from the receiver user set with the worst channel condition is chosen
to receive resources. The main motivation for choosing the user with worst channel
condition is to increase the probability that this user will get resources in good
channel conditions, and therefore, need few resources to become satisfied. Then, in
step (2) a resource previously assigned to a donor user is reassigned to the receiver
user selected in step (1). The criterion to select the resource k∗ is presented in the
following:

k∗ = arg max
k∈K

r j∗,k
r j+,k

, (4.18)

where j∗ is the selected receiver user in step (1) and j+ is the user from the donor user
set D that has got assigned the resource k in the first part of the proposed solution
(Unconstrained Maximization). The numerator of the fraction in the argument of
the arg max (·) function represents the transmit data rate of the selected user j∗ on
resource k whereas the denominator comprises the transmit data rate of user j+
(donor user) on resource k. Therefore, the chosen resource k∗ is the one belonging
to user j∗ that presents the lowest loss in transmit data rate compared to the previous
allocation.

The selected resource in step (2) is reassigned to the receiver user only if the
donor user does not become unsatisfied with the resource reallocation. This test
is performed in step (3). If the donor cannot donate resources without becoming
unsatisfied, the selected resource in step (2) is taken out of the available resource set.
Otherwise, the resource is reallocated in step (4) and the data rates of the receiver
and donor users are updated in step (5). Another test that should be performed is to
check if the selected receiver is satisfied in step (6). If so, the selected receiver user
is taken out of the receiver user set in step (7). According to step (8), if the receiver
user set becomes empty after step (7), the algorithm is able to find a feasible solution
as shown in step (9). Note that if the output of step (6) is negative, the algorithm
goes to step (10) where the chosen resource is taken out of the reallocation process.
Finally, in step (11) we check if there are available resources to be reassigned. If so,
the algorithm goes to step (1). Otherwise, the algorithm is not able to find a feasible
solution as it is shown in step (12).
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Fig. 4.15 Flowchart of the Resource Reallocation part of the CRM technique

As it can be seen in the proposed solution, depending on the system load, channel
state, and data rate requirements, the algorithm is not able to find a feasible solution. In
these cases, an alternative is to softly decrease the minimum satisfaction constraints
and/or the data rate requirements and re-run the proposed solution again.
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Table 4.4 Simulation parameters for the evaluation of the CRM technique

Parameter Value

Number of cells 1
Transmit power per resource 0.35 W
Cell radius 334 m
MT speed Static
Carrier frequency 2 GHz
Number of subcarriers per resource 12
Path lossa L = 35.3+ 37.6 log10 d
Log-normal shadowing standard deviation 8 dB
Noise spectral density 3.16 · 10−20 W/Hz
Number of snapshots 3000
Number of services 4
Number of users and required minimum number of satisfied users See Table 4.5
aDistance d in km

4.6.2.4 Simulation Results

In this section we present some simulation results to illustrate the performance of
the CRM technique. We consider the downlink of a hexagonal sector belonging to
a tri-sectorized cell of a cellular system. In order to get valid results in a statistical
sense we perform several independent snapshots. In each snapshot, the terminals
are uniformly distributed within each sector, whose BS is placed at its corner. The
minimum allocable resource consists in a time-frequency grid composed of a group
of 12 adjacent subcarriers in the frequency dimension and 14 consecutive Orthogo-
nal Frequency-Division Multiplexing (OFDM) symbols in the time dimension. We
assume that there are 20 resources in the system.

The propagation model includes a distance-dependent path loss model, a log-
normal shadowing component, and a Rayleigh-distributed fast fading component.
Specifically, we consider that the fast-fading component of the channel gain of a
given terminal is independent among resources. We assume that the link adaptation
is performed based on the report of 15 discrete Channel Quality Indicators (CQI)
used by the LTE system [2]. The SNRs thresholds for MCS switching were obtained
by link level simulations from [27]. The main simulation parameters are summarized
in Table 4.4.

We assume that there are four different services with three users each. We consider
three different cases when the minimum number of satisfied users is concerned (κs).
The cases are summarized in Table 4.5. As it can be seen in this table we vary
the minimum number of users that should be satisfied for services 3 and 4. Case 3
requires that all users from all services should be satisfied while in case 1 two users
should be satisfied for services 3 and 4.

In order to assess the relative performance of the proposed solution we simulate
also two other RRA solutions. The first solution is the optimal solution of problem
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Table 4.5 Assumed cases for simulation of the CRM technique

Cases J1 J2 J3 J4 κ1 κ2 κ3 κ4

1 3 3 3 3 3 3 2 2
2 3 3 3 3 3 3 3 2
3 3 3 3 3 3 3 3 3

(4.16) obtained by ILP solver.3 We call this solution as SatisOpt. The second is the
optimal solution of the relaxed version of problem (4.16), i.e., without constraints
from (4.16d) to (4.16f). As explained previously, this solution corresponds to the
solution that maximizes the total data rate. We call this solution as MaxRateOpt.

Before presenting the results we first define a metric called success rate. The
success rate is defined by the ratio between the number of snapshots in which a given
solution was able to solve the problem (4.16) including the minimum satisfaction
constraints, and the total number of snapshots. Therefore, the higher the success rate,
the better the given algorithm in solving the studied problem.

In Fig. 4.16 we present the success rate for the SatisOpt, MaxRateOpt and the
proposed solution in cases 1, 2, and 3. First, we can see that the success rate decreases
with the data rate requirement of the users for all algorithms, as expected. Another
observation is that the MaxRateOpt solution presents low success rates even for low
data rate requirements. The reason for this is that it maximizes the total data rate
without any QoS guarantee. Consequently, in general, only few users (with best
channel conditions) get most of the system resources and become satisfied.

The relative comparison of cases 1, 2, and 3 shows that all algorithms perform
better in case 1 than in cases 2 and 3. In fact, in case 3 it is required that more
users should be satisfied than in case 2, that in its turn requires more satisfied users
than in case 1.Therefore, the problem to be solved is harder in case 3 than in cases
2 and 1. Looking at the performance of the proposed algorithm, we can observe
that its performance is similar to the SatisOpt solution in low and medium data rate
requirements. Focusing on the required data rate where the corresponding SatisOpt
solution has a success rate of 90 %, the differences in success rate between the
proposed solution and SatisOpt are only 1.67, 1.36, and 0.83 % in cases 1, 2, and 3,
respectively.

The success rate performance metric shows the capability of the algorithms in
finding a feasible solution to our problem. On the other hand, another important
information is the objective attained by the different algorithms, i.e., the total achieved
data rate. The total data rate consists in the sum of all data rates achieved by all users
after resource allocation. It should be noticed that in order to maximize the total
spectral efficiency, some users can get allocated data rates much higher than their
required data rates. In Table 4.6 and 4.7 we present some percentiles of the total
data rate for specific data rate requirements considered in the x-axis of Fig. 4.16
regarding the success rate performance. For a specific case and load, the percentiles

3 In order to solve ILP problems we used the IBM ILOG CPLEX Optimizer [14].



4 Capacity, Fairness, and QoS Trade-Offs in Wireless Networks 197

1 2 3 4 5 6 7 8 9

x 10
5

0

10

20

30

40

50

60

70

80

90

100

Required data rate per user (bits/s)

S
uc

ce
ss

 r
at

e 
(%

)

SatisOpt Case 1
MaxRateOpt Case 1
Proposal Case 1
SatisOpt Case 2
MaxRateOpt Case 2
Proposal Case 2
SatisOpt Case 3
MaxRateOpt Case 3
Proposal Case 3

Fig. 4.16 Success rate versus the required data rate per user in cases 1, 2, and 3 for SatisOpt,
MaxRateOpt and proposed CRM solution

of all algorithms are built with the samples of the snapshots in which the proposed
solution and SatisOpt were able to find a solution. Therefore, it is possible that in
many of the samples used to calculate the percentiles for the MaxRateOpt solution,
the constraints from (4.16d) to (4.16f) were not fulfilled. The main idea to include
results of the MaxRateOpt solution is to show how the problem constraints imposed
losses in the total achievable data rate.

In Table 4.6 we present the 25th, 50th, and 75th percentiles of the total data rate
for all algorithms in cases 1 and 2 for the required data rate of 250 kbps. In Table 4.7
we present the 25th, 50th, and 75th percentiles of the total data rate for all algorithms
in cases 1 and 2 for the required data rate of 750 kbps. Furthermore, in both tables
we present the losses in the percentiles of the total data rate comparing MaxRateOpt
and SatisOpt as well as SatisOpt and the proposed solution.

We have three comments about both tables. First, the MaxRateOpt algorithm
provides the highest total data rates in all percentiles and cases as can be seen in both
tables. This comes at the cost of low success rates as shown in Fig. 4.16. Second,
the difference in the total data rate between the MaxRateOpt algorithm and SatisOpt
increases with the required data rate as can be seen by comparing the fifth column
of Tables 4.6 and 4.7. The total data rate of SatisOpt is penalized when the data rate
requirement is high since many resources should be assigned to the users in medium
and bad channel conditions. Finally, focusing on the performance of the proposed
algorithm, we can see that it performs almost optimally at the required data rate of
250 kbps, with performance loss compared to the SatisOpt solution not higher than
1 %. At the required data rate of 750 kbps, the proposed algorithm leads to higher
performance losses compared with the ones of Table 4.6. It is important to highlight
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Table 4.6 Percentile of the total data rates (Mbps) and performance losses in cases 1 and 2 for
SatisOpt, MaxRateOpt, and proposed solution in the required data rate of 250 kbps

SatisOpt
(Mbps)

MaxRateOpt
(Mbps)

Proposal
(Mbps)

Loss from
MaxRateOpt

Loss from
SatisOpt

to SatisOpt (%) to Proposal (%)

Case 1
25th percentile 15.68 18.66 15.60 15.99 0.51
50th percentile 16.70 18.66 16.65 10.53 0.30
75th percentile 17.48 18.66 17.46 6.31 0.14
Case 2
25th percentile 16.37 18.66 16.31 12.30 0.35
50th percentile 17.23 18.66 17.19 7.64 0.27
75th percentile 17.83 18.66 17.78 4.43 0.29

Table 4.7 Percentile of the total data rates (Mbps) and performance losses in cases 1 and 2 for
SatisOpt, MaxRateOpt, and proposed solution in the required data rate of 750 kbps

SatisOpt
(Mbps)

MaxRateOpt
(Mbps)

Proposal
(Mbps)

Loss from
MaxRateOpt

Loss from
SatisOpt

to SatisOpt (%) to Proposal (%)

Case 1
25th percentile 14.06 18.66 12.79 24.64 9.02
50th percentile 15.47 18.66 14.82 17.10 4.23
75th percentile 16.75 18.66 16.54 10.26 1.24
Case 2
25th percentile 14.58 18.66 13.48 21.88 7.50
50th percentile 16.06 18.66 15.61 13.95 2.80
75th percentile 17.28 18.66 17.11 7.40 1.01

that this data rate is just considered for emphasizing the sensitivity (degradation) of
the proposed algorithm to this parameter, even though this is not a feasible load in
terms of user satisfaction.

In summary, from the joint analysis of the results in Fig. 4.16 and Tables 4.6 and
4.7, we can see that our proposed CRM solution performs near optimally considering
the problem objective and constraints in low and medium load conditions. According
to [24, 25] the worst case computational complexity to obtain the optimal solution
by using the BB algorithm is O

(
2J K

)
. The complexity of the proposed heuristic

algorithm is O
(
K

(
J −∑

s∈S κs
) (

J +∑
s∈S κs

))
. Therefore, the computational

complexity to obtain the optimal solution of problem (4.16) is too high for the short
time basis in which resource allocation takes place in current mobile networks. By
analyzing the computational complexity and performance of the proposed algorithm
we conclude that it leads to a good performance-complexity trade-off when compared
to the strategy used to obtain the optimal solution.
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4.6.3 Adaptive Throughput-Based Efficiency-Satisfaction
Trade-Off

The Adaptive Throughput-based Efficiency-Satisfaction Trade-off (ATES) technique
is based on the utility-based RRA framework described in Sect. 4.4 and tries to solve
the problem of controlling the trade-off between capacity and satisfaction (QoS).

This section is organized as follows. The RRA problem to be solved is formu-
lated in Sect. 4.6.3.1. The proposed technique is described in Sect. 4.6.3.2, while
Sect. 4.6.3.3 shows the performance evaluation of ATES and other classical RRA
techniques.

4.6.3.1 Problem Formulation

We claim that it is possible to perform user satisfaction shaping for NRT services
with low complexity if we consider a sigmoid utility function in the optimization
problem formulated in Sect. 4.4. This utility function should be based on a particular
QoS parameter suitable for NRT services.

In this section, we propose a particular case of the RRA framework described in
Sect. 4.4 that uses a sigmoid utility function. This framework is called the utility-
based sigmoid-rule, and comprises a novel RRA technique called ATES, whose
formulation is based on the users’ throughput and is suitable for NRT services. It
aims to control the trade-off between resource efficiency and user satisfaction using
an adaptive utility function and a feedback control loop.

In order to achieve user satisfaction shaping, we propose to use an increasing
sigmoid utility function based on the throughput Tj of the user j , as indicated below:

U
(
Tj [n]

) = 1

1+ e
− σ

(
Tj [n]−T req

j

) , (4.19)

where σ is a nonnegative parameter that determines the shape of the sigmoid function;
and Tj [n] and T req

j are the current throughput and the throughput requirement of
user j , respectively.

The marginal utility given by the utility-based weight plays an important role
in the DRA algorithm described in Sect. 4.4. The higher the weight, the higher the
priority of the user to get a resource. For the case of the utility function defined by
(4.19), the marginal utility is given by

w j = ∂U
(
Tj [n]

)

∂Tj [n]
= σ e

− σ
(

Tj [n]−T req
j

)

(
1+ e

− σ
(

Tj [n]−T req
j

))2 . (4.20)



200 E. B. Rodrigues et al.

Table 4.8 Features of the utility-based sigmoid-rule framework: U
(
Tj [n]

) = 1

1+ e
− σ

(
Tj [n]−T req

j

)

Techniques Parameter σ Weight w j Characteristics

RM σ→ 0 σ /4 High resource efficiency and low
throughput-based satisfaction

TSM σ→∞ Impulse at T req
j Low resource efficiency and high

throughput-based satisfaction

ATES Adaptive
σ e
− σ

(
Tj [n]−T req

j

)

(
1+ e

− σ
(

Tj [n]−T req
j

))2 Dynamic trade-off between resource
efficiency and throughput-based
satisfaction

Therefore, the corresponding DRA algorithm, which is given by (4.3), must now
use the particular expression of w j presented in (4.20).

Depending on the value of σ, we can achieve a different user satisfaction shaping.
If we consider σ as an adaptive parameter, interesting properties of the sigmoid
function appear. The higher the value of σ, the closer to a step-shaped function the
utility function will be. Otherwise, considering lower values of σ, the utility function
becomes more linear. This characteristic can be visualized in Fig. 4.17.

Depending on the value of the controlling parameter σ, the sigmoid-rule frame-
work presented above can be designed to work as different RRA techniques, achiev-
ing different performances in terms of resource efficiency and throughput-based sat-
isfaction. The main characteristics of the sigmoid-rule framework and the three par-
ticular RRA techniques contemplated by this framework are presented in Table 4.8.
When σ approaches to zero, then the RRA technique is the well-known classical
rate maximization (RM) technique. On the opposite side, when σ goes to ∞, the
throughput-based satisfaction maximization (TSM) technique is achieved. Details
about this technique are given in Chap. 2 of this book.

4.6.3.2 Algorithm Description

The ATES technique is an adaptive version of the utility-based sigmoid-rule. It aims
to achieve an efficient trade-off between resource efficiency and throughput-based
satisfaction planned by the network operator in a scenario with NRT services. This
is done by means of the adaptation of the satisfaction controlling parameter σ in the
utility function presented in (4.19).

Due to the fact that the shape of the sigmoid utility function is not so sensitive
to the variation of σ in linear unit, thus it is assumed that the adaptation of σ is
done in dB unit. As it was previously mentioned, the trade-off between satisfaction
and efficiency is limited by the TSM and RM policies, respectively. According to
Table 4.8, the TSM and RM techniques are associated to σ values tending to∞ and 0,
respectively. However, these are extreme values, and the ATES technique does need

http://dx.doi.org/10.1007/978-1-4614-8057-0_2
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Fig. 4.17 Family of utility functions used in the utility-based sigmoid-rule framework. a Utility
functions. b Marginal utility functions

to cover the whole range. Let us assume that the path between these policies can
be characterized by a dynamic range �dB in dB unit. The TSM policy is associated
with the maximum value of σ. In this work, we assume σTSM = 2.441 × 10−5,
which is suitable for the case of T req

j = 512 kbps (see Table 4.9). We also define
�dB = 10 log10 (σTSM / σRM). Lower values of σ yield utility functions more linear.
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We assume that σRM is associated with a utility function sufficiently linear for our
purposes.

The ATES policy needs to calculate the percentage of satisfied users in the sys-
tem continuously. A user from an NRT service is considered satisfied if its session
throughput Tj [n] is higher than the requirement T req

j . The percentage of satisfied
users is calculated as

Ψ cell [n] = Jsat[n]
J

, (4.21)

where Jsat[n] is the instantaneous number of satisfied users and J is the total number
of users in the cell.

The objective of the ATES policy is to assure a strict throughput-based satisfaction
distribution among the users, i.e., the instantaneous satisfaction percentage Ψ cell [n]
must be kept around a planned value Ψ target. Therefore, the ATES policy adapts
the parameter σ in the utility-based sigmoid-rule framework in order to achieve the
desired operation point. Aiming at this objective, the new value of the parameter σ

is calculated using a feedback control loop of the form:

σ [n] = σ [n − 1]− η
(
Ψ filt [n]− Ψ target

)
(4.22)

where Ψ filt [n] is a filtered version of the satisfaction percentage Ψ cell [n] using an
exponential smoothing filtering, which is used to suppress short-run fluctuations and
smooth time series with slowly varying trends; Ψ target is the target satisfaction, i.e.,
the desired value for the satisfaction percentage; and the parameter η is a step size
that controls the speed of adaptation of σ.

ATES is an iterative technique that is executed every TTI. The technique is able
to reach a stable convergence of the target satisfaction percentage. In this way, we
are able to manage efficiently the trade-off between system capacity and throughput-
based satisfaction. By controlling the network QoS, the network operator can also
have a good prediction about the system capacity.

4.6.3.3 Simulation Results

In this section, the performance of the adaptive ATES technique is compared to the
RM [18], PF [19], TSM, and Satisfaction-Oriented Resource Allocation for Non-
Real Time Services (SORA-NRT)4 techniques by means of system-level simula-
tions, which took into account the main characteristics of a single-cell LTE-based
system. In this simulation scenario, several satisfaction targets were considered for
the ATES technique, namely Ψ target = [70, 80, 90, 100] %. The particular simulation
parameters used in this analysis are depicted in Table 4.9.

The percentage of satisfied users calculated by (4.21) averaged overall simulation
snapshots is depicted in Fig. 4.18 for various system loads. More precisely, the per-

4 The TSM and SORA-NRT techniques are described and evaluated in details in Chap. 2 of this
book.

http://dx.doi.org/10.1007/978-1-4614-8057-0_2
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Table 4.9 Simulation parameters for the evaluation of the ATES technique

Parameter Value

Maximum BS transmission power 1 W
Cell radius 500 m
UE speed 3 km/h
Carrier frequency 2 GHz
System bandwidth 5 MHz
Total number of subcarriers 512
Total number of useful subcarriers 300
Subcarrier bandwidth 15 kHz
Number of PRBs 25
Path loss L = 128.1+ 37.6 log10 d
Log-normal shadowing standard deviation 8 dB
Small-scale fading 3GPP typical urban (TU) [1, 17]
AWGN power per sub-carrier −123.24 dBm
Noise figure 9 dB
Link adaptation Using link level curves from [27]
SNR threshold of MCS 1 [27] −6.9 dB
Transmission Time Interval (TTI) 1 ms
NRT traffic model Full buffer
Throughput filtering constant ( f thru) 1/1,000
User throughput requirement (T req

j ) 512 kbps
Parameter σ for TSM 2.441× 10−5

Parameter σ for ATES Adaptive
Maximum σ value 2.441× 10−5

Minimum σ value 2.441× 10−13

Dynamic range for σ adaptation (�dB) 80 dB
ATES control time window 1 ms
ATES satisfaction target (Ψ target) Variable
ATES step size (η) 0.1
ATES filtering time constant 10
Number of independent simulation runs 30
Simulation time span 30 s

formance of the adaptive ATES policy is compared to the RM and TSM policies. It
can be observed that ATES is successful at achieving its main objective, which is to
guarantee a strict satisfaction pattern among the NRT users. This is achieved due to
the feedback control loop that dynamically adapts the parameter σ of the utility-based
sigmoid-rule framework. In some cases the satisfaction target is not met exactly. This
is due to the small number of full-buffer flows considered in the simulations, which
does not provide enough granularity in the calculation of the satisfaction percentages.

Notice that the structure of the sigmoid-rule framework bounds the performance
of the ATES policy between the performances of the RM and TSM policies. We
considered in the simulations a dynamic range of 80 dB for the adaptation of the
parameter σ by the ATES policy. When a maximum satisfaction is desired, we con-
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Fig. 4.18 User satisfaction as a function of the number of users for the utility-based sigmoid-rule
framework

figure ATES with Ψ target = 100 % and set the upper limit of σ = 2.441 × 10−5,
which is the same σ as used in the TSM policy. On the other extreme, it is clear that
RM works as a lower bound for ATES configured with low values of Ψ target.

It can be concluded that the advantage of the ATES policy compared with RM
and TSM strategies is that the adaptive technique can be designed to provide any
required satisfaction level between the limits imposed by the sigmoid-rule, while RM
and TSM are static and do not have the freedom to adapt themselves and guarantee
a specific performance result.

In Fig. 4.19 we analyze how the RRA policies behave in terms of efficiency in the
resource usage. We consider the total cell throughput (cell capacity) as the efficiency
indicator, which is presented in Fig. 4.19 as a function of the number of users in the
system.

As expected, RM was able to maximize the system capacity, while TSM presented
the lowest cell throughput, since it is not able to exploit the available resources in
the most efficient way possible due to the QoS-dependent component in the resource
allocation prioritization. The ATES policy is able to achieve several cell throughput
performances depending on the value of the chosen satisfaction target. In this way, we
realize that ATES is able to work as a hybrid policy between RM and TSM strategies.
Furthermore, one can notice that the capacity gain when lower satisfaction targets are
set is not linear. The capacity gain from changing Ψ target from 100 to 90 % is higher
than changing it from 90 to 80 %, and so on. We can also see that Ψ target = 70 %
already provides a capacity very close to the maximum, with satisfaction levels much
higher than RM (see Fig. 4.18).
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Fig. 4.19 Total cell throughput as a function of the number of users for the utility-based sigmoid-
rule framework

Looking at Figs. 4.18 and 4.19, one can clearly see the conflicting objectives of
capacity and satisfaction maximization, and how RM and TSM are able to achieve
one objective in detriment of the other. A good way to explicitly evaluate the trade-
off between resource efficiency and user satisfaction is to combine Figs. 4.18 and
4.19 and plot a 2D plane between total cell throughput (capacity) and the satisfaction
percentage. Figure 4.20 presents the plane built from the simulations of the studied
RRA policies on a scenario with 26 active NRT flows.

In Fig. 4.20, the static RRA policies (RM, PF, SORA-NRT and TSM) are indicated
as single markers, and the adaptive policy ATES is indicated as a solid line. One can
clearly see the static behavior of the former policies on the capacity-satisfaction
plane. TSM is able to provide maximum satisfaction at the expense of low system
capacity, while RM is the most efficient on the resource usage but provides an unfair
throughput distribution among users (low satisfaction). The PF and SORA-NRT
policies appear as fixed trade-offs between TSM and RM, with intermediate user
satisfaction and system capacity.

The ATES policy, which controls the parameter σ adaptively according to (4.22) in
order to achieve a desired satisfaction target, is able to cover the whole path between
the RM and TSM policies in the capacity-satisfaction plane. Notice in the ATES
curves that the satisfaction targets set in the simulations (70, 80, 90 %) are always
met. One can observe that the performance of the ATES policy for very low and very
high satisfaction ranges converges to the performance of the RM and TSM policies, as
expected. In this way, it can be concluded that the ATES policy can adaptively adjust
the utility-based sigmoid-rule framework presented in Table 4.8 in order to provide
a dynamic trade-off between resource efficiency and user satisfaction. Furthermore,
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Fig. 4.20 Capacity-Satisfaction plane for the classical policies and the utility-based sigmoid-rule
framework considering a system load of 26 users

ATES is able to provide equal or better cell capacity than the static policies for the
same satisfaction levels.

4.6.4 Conclusions

We propose to manage the capacity versus QoS trade-off by means of user satisfaction
control. CRM and ATES use two different ways to control the satisfaction of the users
in the system: instantaneous or average satisfaction control, respectively.

First, we could see that this trade-off can be studied with the optimization problem
of maximizing spectral efficiency constrained to minimum satisfaction constraints.
We have shown that the optimal solution to this problem can be achieved by ILP
solvers that have exponential worst-case computational complexity. According to
this, we proposed a low-complexity algorithm following a heuristic framework that
first intends to obtain a solution that presents a high spectral efficiency and then,
through iterative resource reallocations among users, it fulfills the satisfaction con-
straints. According to the simulation results, the proposed CRM solution is able to
maintain an acceptable performance loss compared to the optimal solution with much
lower computational complexity.

Furthermore, an adaptive utility-based RRA framework, which is called sigmoid-
rule, was proposed to control this trade-off. The ATES technique, which is derived
from this framework, uses an increasing sigmoid function whose shape is determined
by a parameter σ that is adapted by a feedback control loop in order to guarantee a
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given target satisfaction level. The dynamic configuration of the sigmoid function
as a linear-shaped or step-shaped function allows several trade-offs between sys-
tem capacity and user satisfaction. The adaptive ATES technique is able to provide
almost the same cell capacity as the static policies (RM, PF, and SORA-NRT) for the
same satisfaction levels. Furthermore, it is also able to provide dynamic trade-offs
covering the capacity-satisfaction plane. This is a remarkable strategic advantage to
the network operators, because they can now control the trade-off between system
capacity and user satisfaction and decide in which point on the plane they want to
operate.

4.7 Conclusions

In this chapter we studied two important trade-offs in the downlink of wireless mobile
networks: capacity versus fairness and capacity versus QoS. Following heuristic
and utility-based frameworks for conceiving RRA solutions, we proposed different
strategies that are able to achieve adaptive configurations of these trade-offs in a
scenario with NRT services.

The use of smart RRA strategies has a great potential to help the network operator
to decrease the gap between these opposing design objectives. If these compromises
cannot be solved in a “win-win” approach, adaptive RRA strategies are still very
useful at finding an appropriate trade-off between these objectives.

Regarding the capacity versus fairness trade-off, we claim that this trade-off can be
managed by controlling the fairness in the system. Toward this goal, we proposed two
adaptive RRA techniques: FSRM and ATEF. The former uses heuristics to perform an
instantaneous fairness control, while the latter uses a dynamic utility-based resource
allocation (alpha-rule framework) and a feedback control loop to perform an average
fairness control. System-level simulations assuming an LTE-based cellular system
demonstrate that both techniques are able to achieve several trade-off operation points
according to the network operator’s interests.

We also propose to manage the capacity versus QoS trade-off by guaranteeing
certain levels of satisfaction for the users in the system. In this sense, another two
adaptive RRA techniques were presented: CRM and ATES. The former is a heuris-
tic technique that solves instantaneously the optimization problem of maximizing
the system capacity under minimum satisfaction constraints. The latter performs an
average satisfaction control by using the utility-based sigmoid-rule and a feedback
control loop that tracks the overall satisfaction of the users and keep it around a
desired target value. It was shown by means of system-level simulations of an LTE-
based network that the capacity versus QoS trade-off can be successfully controlled
by both techniques. This is a strategic advantage to the network operator who is able
to design and operate the network according to a planned user satisfaction profile.

Some perspectives for future work are: run simulations with more realistic
assumptions like detailed traffic models, mobility, imperfect CSI, etc.; address the
same trade-off problems in a mixed traffic scenario with both NRT and RT services;
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perform a detailed analysis of the computational complexity and convergence of
all techniques; and evaluate how adaptive power allocation algorithms and MIMO
technology can help the proposed techniques to achieve even better fairness and
satisfaction control.

Appendix: Utility-Based Optimization Formulation
for NRT Services

Let us consider a utility-based optimization problem in a scenario with NRT services
formulated as:

max
K j

J∑

j=1

U
(
Tj [n]

)
(4.23a)

subject to
J⋃

j=1

K j ⊆ K , (4.23b)

Ki

⋂
K j = ∅, i �= j, ∀i, j ∈ {1, 2, . . . , J }, (4.23c)

where J is the total number of users in a cell, K is the total number of resources
in the system (subcarriers, codes, or the like) to be assigned to the users, K is the
set of all resources in the system, K j is the subset of resources assigned to user j ,
and U

(
Tj [n]

)
is a monotonically increasing utility function based on the current

throughput Tj [n] of the user j in TTI n. Constraints (4.23b) and (4.23c) state that the
union of all subsets of resources assigned to different users must be contained in the
total set of resources available in the system, and that these subsets must be disjoint,
i.e., the same resource cannot be shared by two or more users in the same TTI.

The throughput of user j is calculated using an exponential smoothing filtering,
as indicated below:

Tj [n] =
(

1− f thru
)
· Tj [n − 1]+ f thru · R j [n] , (4.24)

where R j [n] is the instantaneous data rate of user j and f thru is a filtering constant.
Evaluating the objective function in (4.23a) and the throughput expression in

(4.24), the derivative of U
(
Tj

)
with respect to the transmission rate R j is given by:

∂U

∂ R j
= ∂U

∂Tj
· ∂Tj

∂ R j
= f thru · ∂U

∂Tj

∣∣∣∣
Tj=(1− f thru)·Tj [n−1]+ f thru·R j [n]

.

In the case that f thru is sufficiently small, the expression above can be simplified
as follows [41]:
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∂U
(
Tj [n]

)

∂ R j [n]
≈ f thru · ∂U

∂Tj

∣∣∣∣
Tj=Tj [n−1]

, (4.25)

where the previous resource allocation totally determines the current values of
the marginal utilities. Using the one-order Taylor formula for the utility function
[33, 41] and considering (4.25), we have

J∑

j=1

U
(
Tj [n]

) ≈
J∑

j=1

U
(
Tj [n − 1]

)

+
J∑

j=1

∂U

∂Tj

∣∣∣∣
Tj=Tj [n−1]

·
(

f thru · R j [n]− f thru · Tj [n − 1]
)
. (4.26)

Notice that maximizing (4.26) leads to the maximization of the original objective
function (4.23a). Since f thru is a constant and Tj [n − 1] is known and fixed before
the resource allocation at the current TTI n, the objective function of our simplified
optimization problem becomes linear in terms of the instantaneous user’s data rate,
and is given by

max
K j

J∑

j=1

U
′ (

Tj [n − 1]
) · R j [n], (4.27)

where U
′ (

Tj [n − 1]
) = ∂U

∂Tj

∣∣∣∣
Tj=Tj [n−1]

is the marginal utility (derivative of the

utility function) of user j with respect to its throughput in the previous TTI. The
objective function (4.27) characterizes a weighted sum rate maximization problem
[11], whose weights are adaptively controlled by the marginal utilities.

Notice that we started with an optimization formulation based on throughput given
by (4.23a), made some logical assumptions and mathematical simplifications, and
ended up with a linear optimization formulation based on instantaneous rates given by
(4.27). According to these arguments, we claim that the instantaneous optimization
maximizing (4.27) leads to a long-term optimization that maximizes (4.23a).
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