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    Abstract     Arsenic compounds exert important biological effects and arsenic triox-
ide has been approved by the Food and Drug Administration (FDA) for the treat-
ment of patients with acute promyelocytic leukemia (APL). Much of arsenic’s 
actions in cells refl ect its ability to bind thiol groups in cellular proteins or to affect 
the production of reactive oxygen species (ROS), leading to the engagement and 
regulation of several cellular signaling pathways. Arsenic has been also shown to 
degrade abnormal fusion proteins found in myeloid leukemias. It has also been 
shown to effect NFκB, MAPK, mTOR and Hedgehog pathways which can modu-
late the viability of cancer cells. Many clinical trials have been performed to exam-
ine the clinical effi cacy of arsenic trioxide alone or in combination with other agents 
in the treatment of various hematological malignancies. The continuous advances in 
basic and translational research and the better understanding of the mechanisms of 
action of arsenic should lead to more effective combinations with other agents that 
could result in better clinical outcomes.  
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5.1         Clinical Uses of Arsenic Trioxide 

 Arsenic has been used empirically for centuries, for the treatment of countless dis-
eases, including syphilis, cancer, malaria, and ulcers [ 1 ]. It was fi rst described as a 
drug to treat leukemia in 1878 [ 2 ]. In the modern medical era, one of the compounds 
of arsenic, arsenic trioxide, has shown signifi cant clinical activity in certain malig-
nant diseases, as discussed below. 
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5.1.1     Acute Promyelocytic Leukemia (APL) 

 Over the last two decades there has been extensive evidence accumulated indicating 
that arsenic trioxide (ATO) has major clinical activity in the treatment of one form 
of acute myeloid leukemia (AML), acute promyelocytic leukemia (APL) and ATO 
was approved for the treatment of relapsed APL by the Food and Drug Administration 
(FDA) of the United States in 2001 [ 3 ]. This relatively rare variant of AML is asso-
ciated with the reciprocal chromosomal translocation t(15;17) that brings together 
the promyelocytic leukemia (PML) gene on chromosome 15 and the retinoic acid 
receptor (RAR)α gene on chromosome 17 [ 4 ]. The resultant chimeric protein 
(PML–RARα) causes a maturation block of myeloid cells at the promyelocytic 
stage, resulting in the accumulation of abnormal promyelocytes in the bone marrow 
[ 4 ]. Historically, APL has been associated with a severe bleeding dysfunction asso-
ciated with disseminated intravascular coagulation (DIC) and a fatal course of only 
weeks [ 5 ]. With the implementation of chemotherapy, a complete remission (CR) 
rate of 75–80 % in newly diagnosed patients was achieved, however the median 
duration of remission ranged from 11 to 25 months, with only 35–45 % of the 
patients being cured [ 4 ]. The introduction of a regimen consistent of  all-trans  reti-
noic acid (ATRA), which targets the RAR moiety of the fusion transcript, together 
with anthracycline-based chemotherapy dramatically raised the remission rate up to 
90–95 % and the 5-year disease free survival (DFS) to 74 % [ 6 ]. Since the early 
1990s, ATO was introduced for the treatment of relapsed APL, and has shown major 
clinical activity [ 7 ]. Since ATO is less toxic than chemotherapy, its role as a single 
agent in newly diagnosed patients is currently being researched with the aim to 
minimize the use of cytotoxic chemotherapy in this condition, especially for those 
with a compromised cardiac function and/or for older patients [ 8 ,  9 ].  

5.1.2     Clinical Trials of ATO in Multiple Myeloma 

 In vitro studies have shown that ATO induces apoptosis in myeloma cells [ 10 – 13 ], 
therefore investigators have evaluated its potential in the treatment of refractory and 
relapsed multiple myeloma (MM) [ 14 ]. Some clinical activity was seen in a phase II 
study performed in 14 patients with refractory or relapsed MM [ 15 ]. In another trial 
using a higher but not as frequent dose of ATO, reduction of M-protein in serum of 
more than 25 % was obtained in eight patients (33 %), while six patients had stable 
disease, with a median duration response time of 130 days [ 16 ]. Investigators have 
also developed combination studies using ATO together other agents previously 
known to be useful for the treatment of this condition. Berenson et al. administered 
a combination of melphalan, ATO and ascorbic acid to 65 patients with MM who 
had failed more than two previous regimens [ 17 ]. This combination (also known as 
MAC regimen) produced objective responses in 31 patients (48 %), ranging from 
CR in two patients to minor responses in 14 of them [ 17 ]. More recently, the com-
bination of MAC regimen plus bortezomib was evaluated in a different randomized 
trial and was found to be safe and well tolerated by patients [ 18 ]. Other combination 
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regimens including ATO have also demonstrated effi cacy in patients with relapsed 
or refractory MM [ 19 ].  

5.1.3     Myelodysplastic Syndromes 

 There has been also evidence for some clinical activity of ATO in the treatment of 
myelodysplastic syndromes (MDS). Hematologic improvement was obtained in 
MDS with the use of single agent ATO in two different trials [ 20 ,  21 ]. In other stud-
ies, thalidomide was used in combination with ATO in 28 patients with transfusion 
dependent MDS, accomplishing a response in 25 % of them, including one CR and 
responses in three of fi ve patients with high baseline levels of EVI1, which is a 
known poor prognostic marker [ 22 ]. More recently, the combination of thalidomide, 
ATO, dexamethasone, and ascorbic acid (TADA regimen) was used in patients with 
myelodysplastic/myeloproliferative neoplasms (MDS/MPN) or primary myelofi -
brosis (PMF), achieving a response in 29 % of patients [ 23 ].   

5.2     Effects of Arsenic on Cellular Signaling Pathways 
in Malignant Cells 

5.2.1     Arsenic Compounds 

 Arsenic is found is two different oxidative states, As (III) or trivalent arsenic and 
As(V) or pentavalent arsenic. Pentavalent arsenic can substitute for phosphate and 
cause hydrolysis of compounds such as ATP [ 24 ]. Trivalent arsenic can bind to thiol 
groups in the cysteines of proteins in cells and alter their structure resulting in the 
modulation of protein stability, folding, and function, thus affecting cellular signal-
ing pathways [ 24 – 26 ]. For instance, arsenic can bind to tubulin and other cytoskel-
etal proteins and affect polymerization and mitosis [ 27 – 30 ]. Arsenic can also affect 
signaling pathways through the production of reactive oxygen species (ROS) and 
there is evidence that it increases ROS in cells in two ways. First, arsenic can inhibit 
the activity of enzymes, such as thioredoxin reductase by its ability to bind via cys-
teine groups, which are involved in regulating the cellular redox state [ 31 ]. Second, 
methylation of arsenic during its cellular metabolism also leads to the production of 
ROS [ 32 ,  33 ].  

5.2.2     Effects on Fusion Proteins in Leukemia 

 Arsenic trioxide has been shown to cause the degradation of multiple fusion pro-
teins found in leukemia by various mechanisms. ATO’s proposed mechanism of 
action in acute promeylocytic leukemia is via degradation of the PML-RAR fusion 
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protein [ 34 ]. In APL, the fusion protein alters the localization of PML from nuclear 
bodies, which contributes to aberrant cell growth [ 35 ,  36 ]. Arsenic trioxide targets 
both PML and PML-RAR to nuclear bodies in APL cells and leads to its subsequent 
degradation [ 37 ]. Targeting PML protein expression with arsenic has also been 
shown in quiescent leukemia initiating stem cells in CML [ 38 ]. A recent publication 
demonstrated that arsenic specifi cally binds to the PML zinc fi nger domain at cys-
teine residues displacing the zinc and causing a shift in secondary structure as well 
as aggregation that leads to increased sumolyation and degradation [ 39 ,  40 ]. Another 
recent publication showed that autophagy induction by ATO and ATRA also con-
tributes to the degradation of the PML-RAR fusion protein [ 41 ]. 

 Besides APL, arsenic has shown cytotoxicity in chronic myleogenous leukemia 
(CML), as well. It is of particular interest that historically, arsenic was used to treat 
CML in the nineteenth and twentieth centuries [ 1 ]. Imatinib combined with arsenic 
sulfi de showed enhanced anti-leukemic effects over either agent alone in a mouse 
model of CML [ 42 ]. Recent evidence has shown that arsenic is cytotoxic in Ph + leu-
kemia cells by degradation of the BCR-ABL fusion protein by the autophagic 
machinery, where p62 binds to BCR-ABL in the autophagosome [ 43 ]. Arsenic tri-
oxide has been also shown to degrade another fusion protein, AML1/MDS1/EVI1, 
via targeting of the MDS1/EVI1 portion of the fusion protein [ 44 ]. The EVI1 por-
tion contains two zinc fi nger DNA binding domains therefore similar to PML, arse-
nic could be binding to the cysteine residues in zinc fi nger domains in EVI1 and 
lead to the degradation of the fusion protein [ 40 ,  44 ].  

5.2.3     mTOR Pathway 

 Arsenic has been shown to activate the mTOR pathway although the precise mecha-
nism of such engagement is unknown (Fig.  5.1 ) [ 45 ]. Treatment with rapamycin or 
the dual PI3K/mTOR inhibitor, PI-103, was shown to enhance the antileukemic 
effects of arsenic, indicating that activation of mTOR occurs in a negative feedback 
manner in order to suppress the cytotoxic effects of arsenic [ 45 ,  46 ]. Therefore 
combining arsenic with mTOR pathway inhibitors could conceivably enhance its 
antileukemic effects in vivo and this needs to be examined in future work.

5.2.4        MAPK Pathways 

 Arsenic has been shown to affect the various MAPK pathways such as p38 MAPK, 
JNK and ERK. JNK activation has been shown to be important for the anti-leukemic 
effects of arsenic (Fig.  5.1 ) [ 47 – 49 ]. ATO-resistant APL cell lines showed little 
activation of JNK due to upregulation of glutathione (GSH) [ 47 ]. Treating cells with 
compounds that deplete GSH in cells enhance ATO’s cytotoxic effects [ 47 ,  50 ]. 
Increased GSH levels in leukemia cells has been correlated with a decrease in 
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sensitivity to arsenic, which could affect sensitivity by either GSH decreasing the 
amount of ROS in cells directly, or binding arsenic leading to its metabolism and 
subsequent excretion [ 51 – 53 ]. Ascorbic acid has been shown to synergize with arse-
nic in multiple myeloma and myeloid leukemia cells by decreasing GSH levels and 
increasing ROS levels [ 52 ,  54 ,  55 ]. In chronic lymphocytic leukemia (CLL), JNK 
activation was an early event leading to the upregulation of PTEN, which results in 
PI3K, AKT, NFκB inhibition, and an increase in ROS production [ 56 ]. In addition, 
combining arsenic with PI3K inhibitors was shown to enhance arsenic’s cytotoxic 
effects on CLL cells [ 56 ]. 

 Other studies have shown that arsenic modulates ERK activity. The induction of 
autophagy by arsenic trioxide was shown to be important for its antileukemic prop-
erties and the ERK pathway is required for induction of the autophagic state in this 
context [ 57 ]. ATO-dependent ERK2-mediated phosphorylation of PML has also 
been shown to lead to increased sumoylation/degradation of the PML protein and 
ultimately resulting in induction of apoptosis [ 58 ]. 
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  Fig. 5.1    Arsenic’s positive and negative effects on cell viability and proliferation. Arsenic can affect 
MAPK pathways, by activating the MEK/ERK branch leading to the induction of autophagy. At the 
same time it can either activate p38 or JNK leading to the inhibition, or induction of apoptosis. 
Additionally, arsenic can activate the PI3K/mTOR pathway by activation of AKT signaling or mTOR 
signaling which leads to the inhibition of apoptosis and increase in cellular proliferation. Arsenic can 
inhibit GLI1 and GLI2 which leads to an inhibition of cellular proliferation. Arsenic’s inhibition of 
GLI3, however, can lead to activation of cellular proliferation in some cellular contexts       
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 Arsenic trioxide also activates p38 MAPK in several leukemia cell types [ 59 ]. 
However, inhibition of p38 MAPK or its downstream effectors MNK or MSK1 
attenuated the cytotoxic effects of ATO and/or increased JNK activation in leukemia 
cells [ 60 – 62 ]. This indicates that p38 MAPK is activated as a negative feedback 
loop in leukemia cells, which limits arsenic’s cytotoxicity. Co-treatment of breast 
cancer or leukemia cells with ATO and MEK inhibitors leads to a greater induction 
of apoptosis, suggesting a possible therapeutic approach to enhance arsenic’s cyto-
toxic effects [ 63 ,  64 ].  

5.2.5     Effects on the NFKB Pathway 

 The canonical NFκB pathway has been shown to be inhibited by arsenic. When the 
canonical NFκB pathway is not active, the negative regulator IκB binds to the NFκB 
dimer and prevents it from translocating to the nucleus [ 65 ]. Activation of this path-
way in response to TNFα or other stimuli leads to activation of the IKK complex 
[ 65 ]. IKK phosphorylates IκB leading to its degradation, which allows NFκB to 
translocate to the nucleus and activate pro-tumorigenic genes that help lead to the 
evasion of apoptosis [ 66 ]. In multiple myeloma cells, arsenic trioxide was shown to 
prevent NFκB activation by TNFα [ 10 ]. Arsenic can directly bind to IKKβ at cyste-
ine residue 179 in the activation loop of the catalytic subunit of IKKβ and inhibit its 
activity, to engage the NFκB canonical signaling (Fig.  5.1 ) [ 67 ]. Since IKKβ can 
have effects independently of NFκB such as by regulating MAPK and mTOR path-
ways [ 66 ], the inhibition of IKKβ by arsenic can also conceivably effect those path-
ways in addition to NFκB.  

5.2.6     Hedgehog Pathway 

 Recent work has shown that arsenic can inhibit the hedgehog pathway by inhibiting 
GLI1/2 (Fig.  5.1 ) [ 68 ,  69 ]. Such inhibition was shown to be at the level of GLI1/2 
because ATO was found to inhibit hedgehog signaling when GLI1/2 was overex-
pressed or in SUFU –/–  MEFs, in contrast to upstream pathway inhibitors that cannot 
inhibit Hh signaling in this context [ 68 ,  69 ]. Notably, some tumors activate the path-
way by overexpression of ligand, patched inactivation or mutations that activate 
Smoothened [ 70 – 76 ]. Other cancers, however, can activate the pathway at the level of 
GLI, independent of Smoothened or Patched, either by mutations in negative regula-
tors SUFU or REN, chromosomal amplifi cation of GLI, chromosomal translocations 
that involve GLI, an increase in GLI protein stability or activation via non-canonical 
mechanisms involving other pathways [ 77 – 89 ]. Arsenic is able to inhibit the growth 
of both upstream activated medulloblastoma cancer cell lines as well as Ewing sar-
coma cells lines which have activation of GLI1 independently of SMO [ 68 ]. 
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 The exact mechanisms by which arsenic inhibits GLI1/2 still need further inves-
tigation. Since one of the studies demonstrated that arsenic can directly bind to 
GLI1 [ 68 ] and given prior evidence of arsenic’s ability to bind to cysteines in the 
zinc fi nger domain of PML, it is highly plausible that ATO binds to the zinc fi nger 
domains in GLI1. However, this remains to be directly addressed in future studies 
and the overall mechanisms by which arsenic affects GLI function necessitates fur-
ther investigation. 

 Another study showed that arsenic activates Hedgehog signaling [ 90 ]. The 
authors of that study found that arsenic activated GLI1/Hedgehog signaling in these 
cells by inhibiting the GLI3 repressor. However, in this study sodium arsenite was 
used, whereas the other two studies used arsenic trioxide. It is possible that sodium 
arsenite has preferential binding to GLI3 over GLI1 and GLI2 and thus activates 
signaling instead of repressing it. Notably, sodium arsenite has been previously 
shown to have opposing effects to the ones of arsenic trioxide in other cancer mod-
els. For instance, arsenic trioxide promotes apoptosis in breast cancer cell lines [ 91 , 
 92 ], while sodium arsenite binds to the estrogen receptor-α (ER-α) and increases the 
proliferation of MCF-7 cells [ 93 ]. Arsenic trioxide and sodium arsenite have been 
also shown to exhibit differential effects when combined with radiation [ 94 ]. 

 The precise mechanisms of how arsenic induces autophagy are not known, other 
than the requirement for MEK/ERK signaling [ 54 ]. Recent evidence suggests that 
the hedgehog pathway antagonizes autophagy through inhibition of autophagosome 
synthesis most likely through repression of genes required for autophagy [ 95 ]. 
Thus, the inhibition of the hedgehog pathway by arsenic could mechanistically con-
tribute to its ability to induce autophagy and this hypothesis remains to be examined 
in future studies.  

5.2.7     Effects on Nuclear Receptor Pathways 

 Arsenic has been shown to alter multiple nuclear receptor pathways. Notably, it has 
been shown to directly bind and inhibit the glucocorticoid receptor [ 96 ]. Nuclear 
receptor function has been shown to be inhibited by arsenic trioxide though JNK acti-
vation and phosphorylation of the retinoid X receptor (RXR) [ 97 ]. Arsenic’s effects 
on the estrogen receptor are controversial as multiple groups have shown differential 
effects. As mentioned previously, sodium arsenite can bind to the ligand pocket of 
ER-α and activate it, leading to proliferation of MCF-7 cells [ 93 ]. Arsenic trioxide 
was shown to lead to a decrease in expression of ER-α in ER-positive breast cancer 
cell lines, resulting in suppression of cellular proliferation [ 98 ,  99 ]. More recently 
arsenic trioxide treatment was found to result in increased expression of ER-α in 
ER-negative breast cancer cells by promoting demethylation of the promoter, leading 
to re-sensitization to endocrine therapy [ 100 ,  101 ]. The differences in effects may be 
due to differences in cell contexts (ER-positive vs. ER-negative cells) as well as men-
tioned previously the differential effects of sodium arsenite and arsenic trioxide.      
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