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    Abstract     The compaction of genomic DNA into chromatin has far-ranging conse-
quences for almost all aspects of DNA metabolism activity. ATP-dependent chro-
matin remodeling complexes (CRCs) enable DNA-binding proteins access to 
nucelosomal DNA by altering chromatin structure through distinct mechanisms 
including nucleosome sliding, nucleosome assembly, and histone exchanges, in an 
energy-dependent manner. Consequently, CRCs play critical roles in diverse cellular 
processes that are dependent on chromatin template, including transcription, repli-
cation, and DNA repair. Thus, an aberration in these chromatin remodeling proteins 
leads to human diseases including cancer. In this chapter, we discuss the functional 
roles of CRCs in the regulation of gene transcription, DNA damage response, and 
its potential connection with cancer development as well as tumor therapeutics.  
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16.1         Introduction 

 It is increasingly accepted that cancer is a genetic disease. A precise understanding 
of how genetic alternations contribute to tumor development and progression is the 
key to develop effective strategies for winning the fi ght against cancer. The genetic 
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material is stored into the nucleus in the form of chromatin. The fundamental build-
ing block of chromatin is the nucleosome core particle, which is made of approxi-
mately 147 base pairs of DNA wrapped around a histone octamer consisting of two 
copies of each of the four core histones H2A, H2B, H3, and H4 [ 1 ,  2 ]. The repeating 
nucleosome cores are connected by 20–80 base pairs of linker DNA and further 
assembled into hierarchically folded higher-order structures with the linker histone 
H1, nonhistone proteins and divalent metal ions [ 1 – 3 ]. By its very nature, the highly 
condensed structure of chromatin generally limits the accessibility of DNA binding 
proteins to the DNA, thus exerting an inhibitory effect on many critical DNA metab-
olizing activities, such as transcription, DNA replication, recombination and repair. 
To counteract this repressive barrier imposed by nucleosome architecture, eukary-
otes have developed multiple intricate mechanisms to remodel nucleosomes, thus 
allowing DNA binding proteins such as transcription factors and DNA repair pro-
teins access to the DNA. One of such mechanisms is involved in the ATP-dependent 
chromatin remodeling complexes (CRCs) that hydrolyze ATP to alter histone-DNA 
contacts through several mechanisms including nucleosome sliding, histone 
exchange, and nucleosome/histone eviction [ 4 ]. To date, four families of CRCs have 
been characterized in eukaryotes based on their compositions and functional 
domains, including the SWI/SNF (switching/sucrose non-fermenting), ISWI (imi-
tation switch), Mi-2/NuRD (nucleosome remodeling and histone deacetylase), and 
INO80 (inositol requiring) [ 5 ,  6 ]. All CRCs are multisubunit complexes that contain 
an ATPase subunit [ 6 ] and most of them are conserved from yeast to humans. These 
CRCs play essential roles in many basic biological processes, including gene 
expression, DNA damage repair, and cell division (Fig.  16.1 ) [ 6 – 11 ]. Consequently, 
aberrations in these chromatin remodeling proteins are associated with a variety of 
human diseases including cancer. Thus, targeting the components of chromatin 
remodeling signaling pathways is currently being evaluated as a major therapeutic 
strategy in the prevention and treatment of human cancers. In the following sec-
tions, we focus on discussing the emerging role of CRCs in gene transcription, DNA 
damage response (DDR), and tumor development as well as its potential implica-
tion in cancer therapeutics.

  Fig. 16.1    Functional role of the CRCs in transcription and DDR. The CRCs alter chromatin struc-
ture in an energy-dependent manner. Consequently, the transcriptional and DDR machinery pro-
teins get access to nucleosomal DNA and facilitate gene transcription and effi cient DNA repair       
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16.2        Characterization of the CRC Family 

 The fi rst discovered CRC family is the SWI/SNF, which was initially identifi ed in 
independent screens for mutants affecting mating-type switching and growth on 
sucrose in 1994 [ 12 – 14 ]. The SWI/SNF family is composed of 8–14 subunits and is 
characterized by a bromodomain in its ATPase catalytic subunits, BRG1 (also known 
as SMARCA4 or BAF190A) and BRM (also known as SMARCA2 or BAF190B) 
  http://www.genecards.org/     [ 15 ]. The bromodomain preferentially interacts with acety-
lated histones, which play both positive and negative roles in regulating the activity of 
the SWI/SNF remodeling factors [ 16 ]. In  S .  cerevisiae , this family contains the found-
ing member SWI/SNF complex as well as the highly related RSC (remodel the struc-
ture of chromatin) complex [ 17 ]. Both SWI/SNF and RSC complexes exhibit a 
DNA-dependent ATPase activity to perturb nucleosome structure [ 17 ,  18 ], and contain 
nuclear actin- related proteins Arp7 and Arp9 [ 19 ,  20 ]. Arp7 and Arp9 form a stable 
heterodimer relying on their actin-related regions for heterodimerization, and function 
with DNA binding proteins to facilitate proper chromatin architecture and complex- 
complex interactions [ 19 ,  20 ]. Human complexes of this family have also been identi-
fi ed, including the BRG1-associated factor (BAF) complex and the polybromo 
BRG1-assocaited factor (PBAF) complex [ 21 ,  22 ]. With regard to homology, BAF1 is 
similar to the yeast SWI/SNF and PBAF is more like yeast RSC complex [ 21 ,  22 ]. 

 The second family of CRCs is ISWI. One distinguishing feature of this family is 
that its ATPase subunit contains a carboxyl-terminal SANT and a SLIDE (SANT- 
like ISWI domain) domain, which together form a nucleosome recognition module 
that binds histone tails and linker DNA [ 23 ,  24 ]. The founding member of this family 
is the  Drosophila  NURF (nucleosome remodeling factor) complex, which was iden-
tifi ed in 1995 by assaying the ability of drosophila embryo extracts to generate a 
nuclease-hypersensitive site within an array of nucleosomes [ 25 ]. NURF is com-
posed of four distinct subunits, including the 140-kD ISWI ATPase subunit 
(NURF140) [ 26 ], a 55-kD WD repeat protein (NURF55) [ 27 ], the smallest NURF38 
component [ 28 ], and the large NURF301 subunit [ 29 ]. In contrast to the SWI/SNF 
complex, the ATPase activity of NURF requires nucleosomes rather than free DNA 
or histones [ 25 ]. Thus, NURF acts directly on a nucleosome to alter chromatin struc-
ture by catalyzing nucleosome sliding, thereby exposing DNA sequences associated 
with nucleosomes [ 25 ,  30 ,  31 ]. Interestingly, the N-terminal histone tails are func-
tionally important for modulating nucleosome mobility and regulating ATP- 
dependent nucleosome sliding by NURF [ 30 ]. In addition to NURF, the  drosophila  
ISWI complex also contains the CHRAC (chromatin remodeling and assembly com-
plex) [ 32 ] and ACF (ATP-utilizing chromatin remodeling and assembly factor) com-
plexes [ 33 ]. Both exhibit chromatin assembly and nucleosome sliding activity in an 
ATP-dependent mechanism [ 32 ,  33 ]. In mammals, two highly related ATPase sub-
units of the ISWI CRC have been identifi ed, including SNF2L (SNF2 like) and 
SNF2H (SNF2 homologue) [ 34 ]. Biochemical analysis revealed that the SNF2H 
ATPase catalytic subunit is contained in multiple complexes including ACF, CHRAC, 
RSF (remodeling and spacing factor), NoRC (nucleosome-remodeling complex), 
WICH (WSTF-ISWI chromatin remodeling), and WCRF (WSTF-related 
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chromatin-remodeling factor) [ 34 – 41 ]. In contrast, only a small number of com-
plexes, such as the human NURF and CERF (CECR2-containing remodeling factor) 
complexes, contain the SNF2L ATPase subunit [ 35 ,  42 ]. 

 The third family of CRCs is the Mi-2/NuRD complex, which was identifi ed 
in1998 from several independent groups and processes both ATP-dependent chro-
matin remodeling and histone deacetylase activities [ 43 – 46 ]. The complex contains 
the histone deacetylases HDAC1/2, the histone-binding proteins RbAp46/48, the 
dermatomyositis-specifi c autoantigen Mi-2, the metastasis-associated proteins 
MTA1/2/3, and the methyl-CpG-binding domain proteins MBD2/3 [ 43 ,  44 ,  47 ]. 
Notably, Mi-2 subunit contains a chromodomain and plant homeo domain (PHD)-
type zinc fi nger, and functions as a DNA-dependent, nucleosome-stimulated ATPase 
that remodels nucleosomes in an ATP-dependent manner [ 48 ]. In particular, Mi-2 
lacking its chromodomains fails to bind or remodel nucleosomes [ 23 ]. 

 The fourth family of CRCs is the evolutionarily conserved INO80 subfamily, 
which includes the INO80 complex and SWR1 complex [ 49 ]. The subfamily is 
characterized by a split ATPase domain and the presence of two RuvB-like proteins 
Rvb1 and Rvb2 [ 49 ]. The INO80 complex was initially purifi ed from  S .  cerevisiae  
in 2000, consisting of about 12 subunits including Arp4, Arp5, Arp8, actin, and the 
Rvb1 and Rvb2 helicase proteins, and displays nucleosome-stimulated ATPase 
activity and ATP-dependent chromatin remodeling activities [ 50 ]. Deletion of Arp5 
in yeast strains impairs INO80 ATPase activity, DNA binding, and nucleosome 
mobilization [ 51 ]. Similarly, Arp8 forms a complex with nucleosomes via the H3 
and H4 histones [ 51 ,  52 ] and is essential for activity of INO80. In this context, dele-
tion of Arp8 results in loss of INO80 function with multiple effects on cellular 
processes such as double-strand break (DSB) repair and chromosome alignment 
[ 52 – 55 ]. In contrast, Rvbp1p/Rvb2p is required for the complete assembly of a 
functional INO80 complex and for recruiting Arp5p to the INO80 complex in an 
ATP dependent manner [ 56 ]. The highly-related SWR1 complex was identifi ed 
from  S .  cerevisiae  in 2004 [ 57 ] and its human counterparts, termed Snf2-related 
CREBBP activator protein (SRCAP) and p400, were also identifi ed afterward [ 58 ,  59 ]. 
In  S .  cerevisiae , this SWR1 complex contains Swr1p, a putative Swi2/Snf2-related 
ATPase, and 12 additional subunits. Among them, several subunits including Act1, 
Arp4, Rvb1 and Rvb2 are common to the INO80 complex [ 50 ]. Despite highly 
related to INO80, the SWR1 complex is unique in its ability to catalyze the incor-
poration of the histone variant H2AZ (Htz1 in  S .  cerevisiae ) into nucleosomes [ 57 , 
 60 ,  61 ], and this occurs in vitro in a stepwise and unidirectional fashion and requires 
dual activation with histone H2AZ and canonical nucleosome [ 62 ].  

16.3     CRCs in Gene Transcription 

 The compaction of DNA into chromatin in the eukarytotic nucleus poses many obsta-
cles to transcription [ 63 ]. The CRCs bind directly to nucleosomes and disrupt histone-
DNA interactions using the energy of ATP hydrolysis, thus facilitating the access of 
the core transcription machinery proteins and general cofactors to nucleosomal DNA. 
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As a result, CRCs play a fundamental role in modulating transcription in yeast and 
higher eukaryotes. Notably, these CRCs have a range of specifi c and context-depen-
dent roles in control of gene expression depending on the circumstance. 

16.3.1     The SWI/SNF Complex 

 The SWI/SNF complex is involved in a variety of functionally distinct complexes and 
exerts diverse roles in gene regulation and genome function [ 64 ]. One outstanding 
example is that the SWI/SNF CRC participates in promoting transcriptional activation 
by nuclear receptors. The androgen receptor (AR) is a ligand-dependent transcription 
factor whose activity is tightly regulated by interacting cofactors and cofactor com-
plexes and is a key player in prostate cancer development and progression [ 65 ,  66 ]. 
Considerable evidence has pointed out that the SWI/SNF CRC directs AR-mediated 
transcriptional activation, and different AR targets show disparity in the requirement 
for SWI/SNF [ 65 – 67 ]. A case in point is the BAF57 (also known as SMARCE1) sub-
unit, which directly binds to the AR and is recruited to endogenous AR targets upon 
ligand activation, thus regulating AR activity, coactivator function, and AR-dependent 
proliferation [ 68 ]. Similarly, the BAF57 subunit specifi cally regulates estrogen recep-
tor alpha (ERα)-dependent gene expression and proliferation in human breast cancer 
cells [ 69 ,  70 ]. Consequently, mutations in BAF57 deregulate several oncogenic sig-
naling pathways, thus contributing to the development of breast cancer [ 71 ,  72 ]. 

 In addition to BAF57, the BRG1subunit is a critical modulator of transcriptional 
regulation in various tissues and pathophysiological conditions [ 73 ]. For instance, 
BRG1predominantly interacts with Smad2 and Smad3 and is specifi cally required 
for transforming growth factor β-induced expression of endogenous Smad2/3 target 
genes through recruitment to Smad-dependent promoters [ 74 ,  75 ]. BRG1, as well as 
BRM, associates with the  CD44  and  E - cadherin  promoters and promotes their tran-
scriptional activation in cancer cells through deceasing DNA methylation at their 
promoters [ 76 ]. In addition, SNF5 (also known as Ini1, BAF47, SNR1, or 
SMARCB1) mediates BRG1 recruitment to the  p15   INK4b   and  p16   INK4a   promoters and 
activates their expression through eviction of polycomb group silencing complex 
and extensive chromatin reprogramming [ 77 ]. 

 Although the SWI/SNF CRC is generally associated with transcriptional activa-
tion, emerging evidence points out its additional role in transcriptional silencing 
pathway [ 78 ]. For instance, SWI3B, an essential subunit of the SWI/SNF complex, 
physically interacts with a long noncoding RNA (lncRNA)-binding protein, IDN2, 
and contributes to lncRNA-mediated transcriptional silencing [ 78 ]. Human BRM is 
functionally linked with the methyl-CpG binding protein MeCP2-depenendent tran-
scriptional silencing [ 79 ]. Both BRG-1 and SNF5 subunits repress transcription of 
 cyclin D1  gene through the direct recruitment of histone deacetylase (HDAC) activ-
ity to its promoter, thereby exerting their tumor suppressor functions [ 80 ,  81 ]. More 
interestingly, BRG1 and BRM can switch their mode of function at same promoter 
between activation and repression through the context-dependent reprogramming of 
the SWI/SNF complex [ 82 ].  
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16.3.2     The ISWI Complex 

 The ISWI complex can space nucleosomes, thus affecting a variety of nuclear pro-
cesses including transcription. Genome-wide analysis demonstrates that ISWI binds 
both genic and intergenic regions, and remarkably, binds genes near their promoters 
causing specifi c alterations in nucleosome positioning at the level of the transcrip-
tion start sites [ 83 ]. Accumulating evidence suggests that the ISWI containing 
NURF complex is able to facilitate transcriptional activation via remodeling of 
chromatin in vitro and in vivo [ 29 ,  84 ,  85 ]. However, NURF also functions as a co- 
repressor of a large set of JAK/STAT target genes in  drosophila  to regulate innate 
immunity network [ 86 ]. Similarly, ISWI and ACF1 directly repress Wingless tran-
scriptional targets in  drosophila  [ 87 ]. In  S .  cerevisiae , Isw1 also functions in stress- 
induced gene repression under normal growth conditions [ 88 ]. In contrast, the Isw2 
complex represses transcription of early meiotic genes during mitotic growth and 
this repressor function of lsw2 complex is largely dependent upon Ume6p, which 
recruits the complex to target genes [ 89 ,  90 ]. Subsequent studies further demon-
strate that Isw2 acts as a transcriptional repressor by altering nucleosome positions, 
and loss of Isw2 activity results in the generation of both coding and noncoding 
transcripts due to inappropriate transcription [ 91 ].  

16.3.3     The Mi-2/NuRD Complex 

 Accumulating evidence has uncovered a number of interesting connections between 
the Mi-2/NuRD complex and gene regulation [ 9 ,  92 ,  93 ]. A case in point is the 
metastasis-associated protein 1 (MTA1), the founding member of the MTA family, 
which was isolated by differential cDNA library screening using a rat mammary 
adenocarcinoma metastatic system [ 94 ]. MTA1 functions not only as a transcrip-
tional repressor of estrogen receptor α [ 95 ], p21WAF1 [ 96 ], breast cancer type 1 
susceptibility protein [ 97 ], RING fi nger protein 144A [ 98 ], phosphatase and tensin 
homolog [ 99 ], transforming growth factor β signaling component SMAD7 [ 100 ], 
guanine nucleotide-binding protein G(i) subunit alpha-2 [ 101 ], and homeobox pro-
tein SIX3 [ 102 ], but also as a transcriptional activator for certain genes, such as the 
breast cancer-amplifi ed sequence 3 [ 103 ] paired box 5 [ 104 ], tumor suppressor 
alternative reading frame [ 105 ], cell surface oncogenic protein hyaluronan- mediated 
motility receptor [ 106 ], proto-oncogene protein Wnt-1 [ 107 ], and tyrosine hydroxy-
lase [ 108 ]. One unanswered question in this fi eld is what is the underlying mecha-
nism for the physiologic switch between coactivator and corepressor functions of 
MTA1. It is becoming increasingly clear that post-translational modifi cations might 
play a role in the regulation of MTA1 function in transcription. In this context, 
SUMOylation and SUMO-interacting motif of MTA1 synergistically regulate its 
co-repressor activity on  PS2  transcription [ 109 ]. Similarly, acetylation status of 
MTA1 might also be crucial for its corepressor function on a negative modifi er of 
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Ras activation and its oncogenic activity [ 101 ]. More interestingly, methylation of 
lysine 532 in MTA1 protein seemly represents a molecular switch between coacti-
vator and corepressor [ 110 ]. In this context, methylated MTA1 is required for the 
NuRD repressor complex, while demethylated MTA1 recognizes the active histone 
mark and recruits coactivator complex onto its target gene promoters in a signaling- 
dependent manner [ 110 ].  

16.3.4     The INO80 Complex 

 Involvement of the INO80 complex in transcription was fi rst discovered in  S .  cere-
visiae , in which INO80 facilitates transcription in vitro and in vivo [ 50 ,  111 ]. 
Subsequent studies further demonstrate that its mammalian orthologue also pro-
motes transcription with transcription factor Yin-Yang-1 (YY1) [ 112 ]. In contrast, 
TBP-interacting protein 49b (TIP49b), a component of the INO80 complex, inhibits 
transcription factor 2 (ATF2) transcriptional activities in response to stress and 
DNA damage [ 113 ].   

16.4     CCRs in the DDR 

 In response to DNA damage, chromatin undergoes a marked reorganization in an 
energy dependent manner, thus facilitating the DDR machinery proteins to recog-
nize and repair the damaged DNA [ 114 ]. In addition to their putative roles in tran-
scription, CCRs are intimately linked with the DDR. 

16.4.1     The SWI/SNF Complex 

 The SWI/SNF complex is required for DNA replication [ 115 ,  116 ], somatic 
recombination [ 117 ], nucleotide excision repair (NER) [ 118 ,  119 ], and DSB repair 
[ 120 ]. SWI/SNF also regulates checkpoint activation after ultraviolet (UV) dam-
age via regulation of the proliferating cell nuclear antigen-binding proteins 
Gadd45a and p21 [ 121 ]. The highly related RSC complex is also linked with effi -
cient DSB repair [ 122 ,  123 ]. Interestingly, two isoforms of this complex, defi ned 
by the presence of either Rsc1 or Rsc2, play distinct roles in DDR and that at least 
part of the functional specifi city is dictated by the bromo-adjacent homology 
(BAH) domains [ 124 ]. Moreover, the RSC and SWI/SNF chromatin remodelers 
play distinct roles in DSB repair; SWI/SNF is required during the early steps of 
homologous recombination (HR), while RSC is important upon the completion of 
the repair process [ 125 ].  
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16.4.2     The ISWI Complex 

 SNF2H, the catalytic subunit of ISWI complex, is rapidly recruited to DSBs in a 
poly(ADP-ribose) polymerase 1 (PARP1)-dependent manner and facilitates the 
RNF168-dependent signaling and repair of DSBs [ 126 ]. Similarly, the ACF1 chro-
matin remodeling factor accumulates at UV-induced DNA damage sites immedi-
ately following UV radiation [ 127 ] and promotes NER of UV-induced DNA lesions 
[ 128 ]. Similarly, the ACF1 complex accumulates rapidly at DSBs and is also 
required for non-homologous end joining (NHEJ) repair of DSBs in human cells 
[ 129 ]. Rsf-1 (also known as HBXAP) protein interacts with SNF2H to form an 
ISWI complex, RSF, and has been reported as an amplifi ed gene in human cancers, 
including the highly aggressive ovarian serous carcinoma [ 130 ]. Emerging evidence 
shows that Rsf-1induces DNA damage and promotes genomic instability [ 131 ], and 
consequently, high-grade ovarian serous carcinomas, especially those with Rsf-1 
overexpression, exhibit high levels of the DDR [ 132 ]. These fi ndings highlight that 
increased Rsf-1 expression in tumors can induce chromosomal instability probably 
through DDR [ 131 ].  

16.4.3     The Mi2/NuRD Complex 

 The initial link between the NuRD complex and DDR was found in 1999 [ 133 ], 
when Schmidt and colleagues discovered that ataxia telangiectasia and Rad3-related 
protein (ATR), a master regulator of the DDR, associates with multiple components 
of the NuRD complex, including MTA1, MTA2, HDAC1, HDAC2, and CHD4 
[ 133 ]. Afterward, van Haaften G et al. in 2006 defi ned a role for  C .  elegans  early 
growth response protein 1 (Egr-1), the homologue of human  MTA2  gene, in cellular 
sensitivity to ionizing radiation (IR) using a genome-wide RNA interference screen-
ing [ 134 ]. In 2009, Li et al. further discovered a previously unknown role for 
MTA1in IR-induced DSB repair and cell survival using MTA1-knockout fi broblasts 
[ 135 ]. In 2010, several studies from four different groups simultaneously reported a 
conserved role of the NuRD complex, including MTA1, MTA2, CHD4, HDAC1, 
and HDAC2 in DDR and DNA repair in multiple model systems [ 136 – 140 ]. 

 The PARP family of proteins has been implicated in recruitment of proteins to 
sites of damage and is known to localize rapidly to sites of damage [ 136 ,  141 ]. In 
support of our early fi ndings, emerging evidence shows that MTA1 is recruited to 
sites of DNA damage in a PARP-dependent manner, and depletion of MTA1 by 
siRNAs renders cells sensitive to IR, further highlighting its importance in promot-
ing DNA repair [ 136 ]. The human homologue of  egr - 1 , MTA2, also protects human 
cells against IR, suggesting its conserved role in the DDR [ 139 ]. CHD4 is rapidly 
recruited to DSBs in a PARP-dependent manner [ 136 ,  138 ], where it promotes 
RNF8/RNF168-mediated histone ubiquitylation and the ubiquitin-dependent accu-
mulation of RNF168 and BRCA1 at sites of DNA lesions [ 137 ,  139 ]. CHD4 also 
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acts as an important regulator of the G1/S cell-cycle transition by controlling p53 
deacetylation [ 138 ]. Consequently, loss of CHD4 causes defects in DNA repair and 
checkpoint activation, resulting in accumulation of spontaneous DNA damage and 
increased IR sensitivity [ 138 ,  139 ]. Furthermore, human HDAC1 and HDAC2 also 
function in the DDR to promote NHEJ repair [ 140 ]. Consistently, HDAC inhibitors 
block the activity of HDAC1 and HDAC2, resulting in defects in the DDR and 
hypersensitivity to the DSB-inducing agents [ 140 ]. Taken together, the NuRD chro-
matin–remodeling complex is a novel DDR factor that helps to preserve genome 
stability by regulating signaling and repair of DNA damage [ 11 ,  142 ]. Interestingly, 
recent studies pointed out that multiple NuRD components are lost during prema-
ture and normal ageing, resulting in accumulation of DNA damage during ageing 
[ 143 ], which could contribute to aging-related genomic instability and cancer [ 144 ].  

16.4.4     The INO80 Complex 

 In addition to their well-established role in regulating transcriptional processes, 
accumulating evidence shows that INO80 and SWR1 chromatin remodeling com-
ponents are essential for maintaining genomic integrity [ 10 ]. The INO80 complex 
is recruited to sites of DSBs through a specifi c interaction with the DNA damage- 
induced phosphorylated histone H2A (termed γH2AX) [ 145 ,  146 ], and mediates 
DSB repair through its role in DNA end strand resection [ 147 ]. INO80 is also 
recruited to sites of UV lesion repair through interactions with the NER apparatus 
and promotes the removal of UV lesions by the NER pathway [ 148 ,  149 ]. Moreover, 
INO80 is required for the restoration of chromatin structure after repair in response 
to UV-induced damage [ 149 ]. Interestingly, INO80 also shapes the DNA replication 
landscape. In this context, INO80 complexes are enriched at sites of replication and 
are required for effi cient replication of late-replicating regions during replication 
stress through regulating S-phase checkpoint activity [ 4 ,  150 ]. INO80 also regulates 
the threshold of DNA damage during replication phase via modifying PCNA ubiq-
uitination and Rad51-mediated processing of recombination intermediates at 
impeded replication forks [ 151 – 153 ].   

16.5     CRCs in Cancer Development and Progression 

16.5.1     The SWI/SNF Complex 

 Given its central function in epigenetic chromatin remodeling mechanisms, it is not 
surprising that alternation of the SWI/SNF CRC plays an important role in tumor 
development and progression. A substantial body of evidence indicates that several 
components of the SWI/SNF complexes function as tumor suppressors or negative 
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regulator of cellular proliferation [ 21 ,  154 ,  155 ]. One such example is the SNF5 
core subunit, which has been documented to be mutated or inactivated in a number 
of human cancers including rhabdoid, rhabdomyosarcoma, epithelioid sarcoma, 
chronic myeloid leukemia, medulloblastomas, choroid plexus carcinomas, and mel-
anoma [ 156 – 161 ]. In support of this notion, haploinsuffi ciency of SNF5 predis-
poses to malignant rhabdoid tumors in mice, and loss of SNF5 results in highly 
penetrant cancer predisposition with 100 % of mice developing T cell lymphoma or 
rhabdoid tumors with a median onset of only 11 weeks [ 162 ]. Collective evidence 
establishes that the tumor suppressor activity of SNF5 depends on its regulation of 
cell cycle progression, cell survival and senescence [ 163 – 168 ]. Inactivation of the 
SNF5 tumor suppressor stimulates cell cycle progression and cooperates with p53 
loss to accelerate oncogenic transformation and tumor growth in mice [ 169 ,  170 ]. 
The inhibition of RhoA-dependent migration is another crucial tumor suppressor 
function of hSNF5, and its loss-of-function may lead to increased invasiveness and 
metastatic potential of cancer cells [ 171 ]. 

 Another example is the ARID1A (also known as BAF250A, SMARCF1, p270, 
or hOSA1), which encodes a human homolog of yeast SWI1. The signifi cance of 
ARID1A loss or mutation in cancer is now subject to intensive investigation. In this 
context, mutation of the  ARID1A  gene has been widely described in a broad array 
of tumor types, including gynecologic ovarian and endotrial carcinomas, pediatric 
Burkitt lymphoma, gastric carcinoma, breast cancer, and hepatitis B virus- associated 
hepatocellular carcinoma [ 172 – 178 ]. Consistently, restoring wild-type ARID1A 
expression in cancer cells that harbor ARID1A mutations is suffi cient to suppress 
cell proliferation and tumor growth in mice [ 172 ,  175 ]. In contrast, ARID1A knock-
down signifi cantly promotes the proliferation, migration and invasion of cancer 
cells [ 173 ]. Functional evidence further points out that ARID1A collaborates with 
p53 to regulate p21WAF1 and SMAD family member 3 [ 179 ]. Together, accumulat-
ing genomic and functional evidence strongly supports classifi cation of ARID1A as 
a tumor suppressor [ 177 ]. Similar to ARID1A, ARID1B (also known as BAF250B, 
or hOsa2) also inhibits cell growth and regulates cell cycle arrest through differen-
tially regulating  c - myc  and  p21WAF1  gene expression [ 180 ]. 

 In addition, loss or inactivation of BRG1, BRM, BAF155/SMARCC1, BAF180, 
and BAF200/ARID2 expression represents another mechanism for SWI/SNF com-
plex in the development in human cancers, including hepatitis C infection- related 
liver cancer, melanoma, lung, pancreatic, skin, and breast cancers [ 21 ,  181 – 188 ]. 
Notably, BRG1 and BRM are silenced by different mechanisms. BRG1 is com-
monly silenced by loss-of-function mutations, whereas epigenetic silencing is a 
major mechanism for the loss of BRM in human cancer cells [ 188 ].  

16.5.2     The ISWI Complex 

 A well-studied example is the Rsf-1, which plays an important role in cellular 
growth, survival, and oncogenic transformation, and its up-regulation is closely 
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associated with disease aggressiveness and poor prognosis in patients with various 
types of human cancers including bladder, colon, nasopharyngeal, gallbladder, oral, 
and ovarian carcinomas [ 130 ,  189 – 197 ]. A mechanistic study demonstrates that 
Rsf-1 interacts and collaborates with cyclin E1 in neoplastic transformation and p53 
mutations are a prerequisite for tumour-promoting functions of the RSF/cyclin E1 
complex [ 194 ]. In contrast, overexpression of Rsf-1 is rare in breast cancer, indicat-
ing that Rsf-1 is not a critical gene in breast cancer development [ 130 ,  198 ]. In 
contrast, SNF2L, a mammalian ISWI ortholog, suppresses cell proliferation and 
migration in human HeLa cells by attenuating Wnt signaling [ 199 ].  

16.5.3     The Mi2/NuRD Complex 

 Of all the NuRD complex subunits, the MTA family members are best studied in the 
context of cancer development [ 92 ,  93 ]. MTA1, the founding member of the MTA1 
family, has been documented to be overexpressed in a variety of human cancers and 
is signifi cantly associated with tumor progression and poor clinical outcome [ 92 , 
 93 ]. In contrast, the information concerning the expression of MTA2 and MTA3 in 
human cancers is limited. Like MTA1, increased expression of HDAC1 and HDAC2 
has been documented in a variety of human cancers and linked with therapeutic 
resistance [ 200 – 202 ]. In contrast, lysine-specifi c demethylase 1, a newly identifi ed 
component of the Mi-2/NuRD complex, inhibits the invasion of breast cancer cells 
in vitro and suppresses breast cancer metastatic potential in vivo [ 203 ].  

16.5.4     The INO80 Complex 

 Although the function of the INO80 complex in transcription and DDR, its connec-
tion with human cancers is rarely reported. The SRCAP, a homolog of Swr1 in 
human cells, modulates expression of prostate specifi c antigen and cellular prolif-
eration in prostate cancer cells [ 204 ]. Similarly, p400, another Swr1 homolog, 
inhibits p53-mediated  p21WAF1  transcription and the development of premature 
senescence [ 205 ]. P400 is an essential E1A transformation target that plays a major 
role in the E1A transforming process [ 206 ].   

16.6     CRCs in Cancer Therapeutics 

 Glucocorticoids are used in the curative treatment of acute lymphoblastic leukemia 
(ALL) and resistance to glucocorticoids is an important adverse prognostic factor in 
newly diagnosed ALL patients [ 207 ]. Emerging evidence suggests that decreased 
expression of the BRG1, ARID1A, and SNF5 subunits appears to be associated 

16 Therapeutic Signifi cance of Chromatin Remodeling Complexes in Cancer



410

with glucocorticoid resistance in primary ALL cells [ 207 ]. Similarly, knockdown of 
BRG1 and BRM enhances cellular sensitivity to chemotherapy drug cisplatin by 
regulating effi cient repair of the cisplatin DNA lesions [ 208 ]. Thus, cisplatin che-
motherapy could be more effective in BRG1- and BRM-negative or inactivated 
tumors (Fig.  16.2a ). Consistent with these fi ndings, depletion of CHD4 renders cell 
signifi cantly hypersensitive to DSB-inducing agents and PARP inhibitors as a con-
sequence of impaired HR repair (Fig.  16.2a ) [ 209 ]. As loss or mutation of BRG1, 
BRM and CHD4 has been observed in a variety of human cancers [ 186 ,  188 ,  210 , 
 211 ], it is highly interesting to examine whether these tumors are sensitive to PAPR 
inhibitors or other DNA-damaging agents.

   In contrast, overexpression of some components of CRCs is linked with thera-
peutic resistance (Fig.  16.2b ). For instance, Rsf-1 overexpression confers paclitaxel 
resistance in ovarian cancer cells [ 212 ] and is associated with poor therapeutic 
response in rectal cancer patients treated with neoadjuvant chemoradiation therapy 
[ 191 ] and associated with incomplete response to radiotherapy in patients with 
nasopharyngeal carcinoma [ 192 ]. Notably, the Rsf-1-hSNF2H interaction is essen-
tial for developing resistance phenotype in tumors overexpressing Rsf-1 [ 212 ]. 
Thus, inhibition of Rsf-1 activity or disruption of the Rsf-1-hSNF2H interaction has 
the potential to sensitize cells to paclitaxel in human cancers with Rsf-1 amplication 
or overexpression. Similarly, HDAC2 is highly expressed in pancreatic ductal ade-
nocarcinoma (PDAC) and confers resistance towards the topoisomerase II inhibitor 
etoposide in PDAC cells [ 201 ]. Consistently, selective inhibition of HDACs syner-
gises with etoposide to induce apoptosis in PDAC cells [ 201 ]. In a broader 

  Fig. 16.2    Implication of CRCs in cancer therapeutics. Cancer cells with loss, mutation, or inactiva-
tion of the CRC components such as of BRG1, BRM and CHD4 are sensitive to DNA damage based 
radiotherapy and chemotherapy due to impaired DNA repair ( a ). In contrast, the CRC subunits such 
as HDACs are over expressed or amplifi ed in cancer cells and promote effi cient DNA repair, thus 
contributing to therapeutic resistance to DNA damage based radiotherapy and chemotherapy ( b )       
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perspective, targeting the CRC-mediated DNA repair pathways might provide 
unique potential therapeutic avenues for human cancers when used in combination 
with DNA-damaging chemotherapeutic drugs [ 213 ,  214 ].  

16.7     Conclusions and Perspectives 

 During the past decades, it has been made great progress in our understanding of the 
functional roles for ATP-dependent CRCs in transcription and DDR, and it has been 
increasingly recognized that these CRCs show remarkable diversity and specifi ty in 
their contributions to these biological processes. However, it remains unknown why 
the transcription and DDR pathways need multiple CCRs and whether or how these 
CRCs exert their functions in these processes in an integrated manner at molecular 
levels. In addition, the detailed mechanisms by which these CRCs regulate tran-
scription and DDR and drive tumorigenesis and progression are largely unclear. 

 From a translational perspective, the importance of the CRCs in cancer causation 
and progression provides new avenues to improve cancer management by targeting 
the chromatin remodeling machinery. One example is that the CRCs predominantly 
function in the DNA repair pathways, which may contribute to therapeutic resistance 
in patients with cancers by enabling cancer cells to survival DNA damage induced 
by chemotherapeutic agents and radiotherapy [ 214 ]. Thus, targeting the CRC com-
ponents and related DNA repair signaling pathways in human cancers could be effi -
cacious as monotherapy or in combination with DNA-damaging agents [ 213 ,  214 ]. 
A case in point is the HDACs, whose inhibitors are emerging as promising drugs for 
cancer therapy that selectively kill cancer cells and sensitize cancer cells to DSB-
inducing agents [ 200 ]. On the other hand, as components of the CRCs are frequently 
mutated in human cancers, this unique property of cancer cells gives a great oppor-
tunity to screen appropriate patients in clinic for optimum personal therapy using 
DNA-damaging radiotherapy and chemotherapy. Together, further work that directs 
to understand the in vivo function and mechanism of action of these CRCs will defi -
nitely provide opportunities to discover new therapeutic targets and therapeutic strat-
egies for the treatment of cancer as well as other CRC-related diseases.     
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