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    Abstract     There is a now a large body of evidence supporting the notion that cancer 
cells have vastly altered cell cycle networks that serve to maintain their high rate of 
proliferation. Consequently, targeting these pathways pharmacologically has been 
long studied, but only recently have some promising compounds progressed into the 
clinic. In this chapter, we review cell cycle function in both normal cells and describe 
how cancer cells deregulate this fundamental process. Next we describe in detail the 
development of different classes of CDK inhibitors and review the failures and suc-
cesses so far, and provide insight into some future directions for research and clini-
cal trials in order to exploit the ever-expanding molecular characterization of tumors 
with the drugs available and in the pipelines. In addition, we present a short over-
view of using differential cell cycle characteristics of normal and tumor cells as a 
way of protecting normal cells from cytotoxic chemotherapies. Finally we describe 
other potential targets such as regulating p27, inhibiting PIM and MELK kinases as 
well as some of the mitotic kinases.  

  Keywords     Cell cycle   •   Cyclins   •   CDKs   •   Synthetic lethality   •   Mitosis   •   Combination 
therapy  

14.1         Introduction 

 Hanahan and Weinberg recognized the importance of cell cycle and checkpoints in 
their original and updated “hallmarks of cancer” papers, which describe the key 
features that normal cells must acquire during transformation into a tumor [ 1 ,  2 ]. 
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Cell cycle deregulation has long been appreciated as a fundamental early event dur-
ing tumorigenesis, which contributes to several of these hallmarks, namely self- 
suffi ciency in growth signals” and “insensitivity to anti-growth signals”, and results 
in genomic instability, one of the newly added hallmarks. Since these alterations are 
almost universal among different tumor types, cancer biologists have expended con-
siderable effort in interrogating these pathways as therapeutic targets for 20 years. 
In spite of the substantial body of literature focused on identifying the biological 
roles of many cell cycle pathway proteins in both normal development and in 
describing tumor-associated defects, the progress in the clinic has not been as rapid 
as desired. With this in mind, we felt that this chapter would be an ideal opportunity 
for us to review what is known about cell cycle deregulation in cancer, with a focus 
on personalized treatment strategies. Ultimately, we hope to suggest future direc-
tions for research and clinical trials to utilize the wealth of genomic knowledge we 
now have about cancer, and design more rational strategies likely to be effective in 
defi ned genetic contexts, as well as using the cell cycle as a means of protecting 
normal tissues from the chemotherapeutic insults. We will utilize a particularly 
promising strategy from our work as an example in a subsequent section.  

14.2     Core Cell Cycle Proteins as Targets for Therapy 

14.2.1     Cell Cycle Regulation 

 Some of the best characterized cell cycle targets are key proteins that have been 
highly conserved throughout evolution in all eucaryotes. These include cyclins, 
cyclin-dependent kinases (CDKs) and cyclin-dependent kinase inhibitors (CDKi). 
Cyclins are master regulators of the cell cycle, via activating CDKs which in turn 
stimulate downstream signaling (Fig.  14.1 ).

  Fig. 14.1    Cell cycle regulation by cyclins and CDKs       
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   Cell cycle progression is regulated by 4 major families of cyclins, cyclin D, E, A 
and B, and 4 respective CDKs (CDK4, 6, 2, or 1). Cyclin D is the fi rst cyclin that is 
involved in the entry of cells from G0 into G1, in response to ample growth factors 
and other mitogens. Cyclin D exerts its activity via its catalytic partners CDK4 and 
CDK6, (and can also bind to CDK2 and CDK3) which phosphorylate many sub-
strates. One of the most studied substrates of CDK4/6 is the retinoblastoma protein 
(Rb), which is a negative regulator of E2F transcriptional activity. Prior to phos-
phorylation by CDK4/6, Rb is in a hypophosphorylated state, and is bound to E2F 
and DP proteins, keeping E2F inactive. However CDK4/6 phosphorylation induces 
conformational change in Rb, releasing E2F to bind DNA and facilitate transcrip-
tion. The next cyclins that are transcriptionally regulated are cyclin E and A. Cyclin 
E bound to CDK2 helps drive cells through G1/S transition by further phosphorylat-
ing Rb and other substrates involved in DNA replication such as cdc6. Later during 
S phase, CDK2 is also regulated by cyclin A levels. After DNA replication is com-
plete, cells enter G2 phase where they prepare to enter mitosis by upregulating 
microtubule formation and other biosynthetic pathways necessary for chromosome 
segregation. Towards the end of G2 phase, CDK1 takes over as the predominant 
kinase, since cyclin B levels begin to rise and translocate to the nucleus to bind 
CDK1 to initiate the G2/M transition. This complex was fi rst identifi ed as the 
M-phase promoting factor since its main function is to break down the nuclear enve-
lope and initiate prophase. Once mitosis is almost complete, CDK1 is deactivated via 
dephosphorylation, and a negative feedback loop is engaged via the anaphase- 
promoting complex which degrades cyclin B, allowing cells to exit mitosis. 

 The requirement for all of the cyclins and CDKs to control the cell cycle in nor-
mal cells as described in the previous paragraph has been recently challenged based 
on the fi ndings from genetic studies in knockout mice. Tables  14.1  and  14.2  sum-
marize the phenotypes observed in the knockout models. Each interphase CDK has 
been knocked out individually, and except for CDK1, all of the mice are viable. 
However, each mouse model has cell-type specifi c defects, which reveal tissue- 
specifi c roles for individual CDKs. For example, the CDK2-defi cient model is via-
ble (although born at slightly lower than predicted Mendelian ratio), but sterile due 
to an absolute requirement for CDK2 during meiosis in both male and female germ 
cells [ 3 ,  4 ]. Cell cycle analysis and proliferation rate of mouse embryonic fi bro-
blasts from both CDK2 wild-type and knockout embryos showed no signifi cant 
difference in cell cycle distribution, and a similar rate of proliferation for the fi rst 
4 days in culture, after which the knockout cells reached a plateau phase. Similarly 

   Table 14.1    CDK knockout mouse phenotypes   

 Gene  Phenotype  References 

 CDK1  Not viable  [ 7 ] 
 CDK2  Sterile but viable  [ 3 ,  4 ] 
 CDK3  N/A – not active in most mouse strains  [ 210 ] 
 CDK4  Impaired proliferation of pancreatic  β cells, leading to diabetes  [ 5 ,  211 ] 
 CDK6  Hematopoietic defi ciency – anemia, thymic development delay  [ 6 ] 
 CDK4 and CDK6  Embryonic lethal between E14.5 and E18.5, severe anemia  [ 6 ] 
 CDK2 and CDK6  Viable but sterile and females are small  [ 6 ] 
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CDK4 and CDK6 are not necessary for cell cycle progression in most cells, although 
CDK4 is required for proliferation of pancreatic β-cells, leading to a diabetic phe-
notype in the knockout mouse [ 5 ]. Additionally, CDK6 is important in the hemato-
poietic system, both in the lymphocytes and erythrocytes. CDK6-defi cient mice 
have small, less cellular thymi, since CDK6 is downstream of Notch and AKT sig-
naling which is critical in early thymic T cell commitment to the T-cell lineage, and 
also have smaller spleens with less erythroid cells [ 6 ]. Double knockout of CDK4 
and CDK6 induces late embryonic lethality, primarily due to the hematopoietic 
defects in erythroid cell production, however MEF cells from these embryos do 
proliferate and can become immortalized by continuous passage. CDK2 can par-
tially compensate to phosphorylate Rb in these double-knockout cells by binding 
cyclin D, and therefore promote cell cycle progression, however this is not thought 
to fully explain the lack of cell cycle defects systemically. In stark contrast to the 
phenotypes seen in CDK2/4/6 knockout models, CDK1 defi ciency causes cell cycle 
arrest and prevents embryos from developing beyond the 2-cell stage, demonstrat-
ing a lack of compensation between the mitotic CDK and the interphase CDKs [ 7 ].

   Table 14.2    Cyclin knockout mouse phenotypes   

 Gene  Phenotype  References 

  D - type cyclins  
 Cyclin D1  Viable, but mice have neurological abnormalities, retinal 

hypoplasia, decreased body size, and during pregnancy 
only, impaired mammary epithelial cell proliferation 

 [ 212 – 215 ] 

 Cyclin D2  Viable, but females are sterile, and males have decreased 
sperm counts and hypoplastic testes. Diabetes due 
to impaired pancreatic beta cell proliferation 

 [ 216 ,  217 ] 

 Cyclin D3  Viable, but hypoplastic thymus  [ 218 ] 
 Cyclin D1 and 

Cyclin D2 
 Viable until 3 weeks, but decreased body size and hypoplastic 

cerebellum 
 [ 219 ] 

 Cyclin D1 and 
Cyclin D3 

 Some loss of viability by 4 weeks, most do not survive past 
2 months due to respiratory failure and neurological defects 

 [ 219 ] 

 Cyclin D2 and 
Cyclin D3 

 Embryonic lethal at E17.5-E18.5 due to megaloblastic anemia  [ 219 ] 

 Cyclin D1, 
Cyclin D2 
and Cyclin D3 

 Embryonic lethal at E16.5 due to megaloblastic anemia 
and defective fetal hematopoiesis 

 [ 220 ] 

  E - type cyclins  
 Cyclin E1  Viable, no detected phenotype  [ 221 ,  222 ] 
 Cyclin E2  Viable, males are infertile  [ 221 ,  222 ] 
 Cyclin E1 and 

Cyclin E2 
 Embryonic lethal at E11.5. Placental failure due to lack of 

trophoblast-derived polyploid giant cells in the placenta 
 [ 221 ,  222 ] 

  A - type cyclins  
 Cyclin A1  Viable, males are infertile  [ 223 ,  224 ] 
 Cyclin A2  Embryonic lethal at implantation  [ 223 ] 
  B - type cyclins  
 Cyclin B1  Embryonic lethal at E10.5, unknown reason  [ 225 ] 
 Cyclin B2  Viable, no detected phenotype  [ 225 ] 
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    Unlike normal cells that do not depend on any single cyclin or CDK for growth, 
there is beginning to be some evidence that in tumor cells, altered cellular wiring can 
lead to oncogenic addiction to CDK signaling. For example, in a mouse model of tri-
ple negative breast cancer driven by low-molecular weight cyclin E, tumors are highly 
dependent upon CDK2 signaling, even though CDK2 is dispensable in normal cells 
[ 8 ]. This type of variation on synthetic lethality involving CDK signaling is not lim-
ited to breast cancer but can be observed in a K-Ras mutant lung cancer model. In a 
K-Ras-driven mouse model of lung cancer, CDK2 and CDK6 knockout only partially 
inhibited tumor initiation, whereas CDK4 knockout signifi cantly decreased tumori-
genesis due to an immediate induction of senescence [ 9 ]. Even though the K-Ras-
mutant transgene is expressed in several other epithelial tissues in this mouse model, 
none of these undergo hyperplasia or tumorigenesis, and senescence is not observed 
in these normal tissues. CDK4 was also shown to be essential for progression of estab-
lished K-Ras driven NSCLC lesions, and pharmacological CDK4 inhibition signifi -
cantly inhibited tumorigenesis. The reasons for lack of immediate compensation 
mechanisms involving other CDKs in tumors are not clear, but this phenomenon may 
allow us to turn this frequent observation into an Achilles heel in cancer cells if we 
carefully dissect true dependencies in well-planned genetic experiments.  

14.2.2     CDK Inhibitors 

14.2.2.1     Pan-CDK Inhibitors 

 Since CDKs are the catalytically active drivers of cell cycle progression, targeting 
them pharmacologically has been a major effort. The early generation inhibitors, 
developed more than 15 years ago were pan-inhibitors targeting a large spectrum of 
CDKs. These drugs were somewhat promising based upon cell line and xenograft 
work, but when moved into early stage clinical studies failed to show considerable 
net benefi t. The reasons for failure are likely multi-factorial, and include both bio-
logical issues as well clinical trial design fl aws. In the forthcoming section we will 
describe the development of several generations of inhibitors and their related trials, 
and provide insights into future development of these classes of compounds. 
Figure  14.2  shows the structures of all the CDK inhibitors discussed in this section.

   The most extensively tested pan-CDK inhibitor is fl avopiridol, which inhibits all 
four of the interphase CDKs as well as CDK7 and is also the most potent known 
CDK9 inhibitor [ 10 ,  11 ]. CDK7 is both a cell cycle and a transcriptional CDK, since 
it is a part of the transcription factor IIH (TFIIH) complex with cyclin H and MAT 
[ 12 ,  13 ]. CDK7 promotes transcription elongation by phosphorylating the 
C-terminus of RNA polymerase II. CDK9 is also thought to be involved in tran-
scriptional regulation, in complex with cyclin T, via phosphorylating different sites 
in the C-terminus of RNA polymerase II [ 14 ]. There is a profound response to fl a-
vopiridol in cells, that encompasses both cell cycle arrest in G1 and G2, but also 
transcriptional changes especially in mRNAs with short half lives such as early 
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response transcription factors, apoptosis regulating genes (like Mcl1) and NFκB 
responsive genes [ 11 ,  15 ,  16 ]. Whether these responses truly translated when this 
agent was tested in the clinic was not well studied. 

 Preclinical data had suggested that prolonged exposure to fl avopiridol was nec-
essary for maximal anti-tumor effect, so the two phase 1 trials that opened in 1994 
used long infusions (72 h). The dose-limiting toxicities seen were primarily diar-
rhea, and at higher doses hypotension, anorexia and muscle weakness, and 21 % of 
patients had venous thromboses. Pharmaokinetic analysis of steady state plasma 
concentration revealed that 200–400nM was the range reached at the maximum 
tolerated dose [ 17 ]. The prior preclinical studies had found that for maximum activ-
ity, a higher concentration in the micromolar range would be desirable, so future 
studies attempted to reach these levels via bolus dosing on a 1 h per day for fi ve 
consecutive days schedule. In these later trials, low micromolar peak concentrations 
were observed, and similar toxicities were observed [ 18 ]. However, when several 
phase 2 studies in solid tumors were analyzed, the enthusiasm for this agent waned, 
since no objective responses were seen in tumors ranging from melanoma to endo-
metrial carcinoma [ 19 – 21 ]. In contrast, the results seen in hematopoietic malignan-
cies appeared more promising [ 17 ]. For example, in chronic lymphocytic leukemia, 
40 % of patients had partial responses, and the dose-limiting toxicity observed was 
tumor-lysis syndrome, indicative of strong anti-tumor activity of this agent [ 22 ]. 

 In addition to studies using fl avopiridol as a single agent, combination studies were 
pursued based on the hypothesis that fl avopiridol may have benefi t as a chemosensi-
tizer. This hypothesis was generated based on the pre-clinical observation that 

  Fig. 14.2    Structures of CDK inhibitors       
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synchronizing the cells into S phase sensitized them to fl avopiridol-induced cytotox-
icity, resulting in E2F dependent cell death that is selective to transformed cells [ 23 ]. 
These studies used a variety of classes of cytotoxic drugs including platinum agents, 
anthracyclines, taxanes and 5-fl uorouracil. These studies had more promising results, 
including a 30–40 % rate of partial responses in some studies [ 24 – 31 ]. 

 In spite of some of these promising activities in both solid tumors and leukemias, 
recently, there has not been signifi cant progress with this agent. The chemistry of the 
agent does have some challenges, since it binds to plasma proteins and also is poorly 
water soluble [ 32 ,  33 ]. There has been a novel liposomal formulation reported a few 
years ago, which aimed to improve the therapeutic index by slowly releasing the 
drug to effectively synchronize a large portion of the tumor cell population, while 
not being bound up in the circulation by plasma proteins [ 34 ]. As of writing, there 
have not been any clinical studies presented or registered using this formulation.  

14.2.2.2     Selective CDK4/6 Inhibitors 

 The G1-S checkpoint (see Fig.  14.3 ) is altered in close to 90 % of human tumors, by 
various mechanisms, indicating that this phenotype provides a selective advantage 
for proliferation and/or survival. With this in mind, selectively targeting CDK4 and 

  Fig. 14.3    Key regulators of G1 to S phase transition       
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CDK6 has been considered as an alternative strategy in several diseases including 
breast cancer due to the prevalence of amplifi cation/overexpression of cyclin D1 
observed (15–20 % amplifi cation/50–70 % overexpression overall) [ 35 ,  36 ]. One 
drug candidate, PD-0332991 (see Fig.  14.2  for structure), has quickly moved to the 
top of its class and has rapidly moved into clinical studies [ 37 ]. This compound was 
selected from a high-throughput screen of pyridopyrimidines, in which both potent 
anti-proliferative and selective inhibition of CDK4 were used as criteria [ 38 ]. When 
tested against a large panel of other kinases, PD-0332291 (Pablociclib) had a highly 
selectivity index towards CDK4 and CDK6 (IC50’s 11/16nM, versus >8–10 μM for 
36 other kinases tested). When tested in MDA-MB435 breast carcinoma cells, 
PD-0332991 induced a robust G1 arrest, and concomitant reduction of phosphory-
lation of Rb at the CDK4/6 phosphorylation sites (Ser 780–795). As expected, in 
Rb-negative cell lines, this compound has no activity, further demonstrating that its 
mechanism of action includes inhibition of CDK4/6 phosphorylation of Rb [ 39 ]. 
Another marker of resistance that has been identifi ed is elevated p16 expression, 
since CDK4/6 is  physically bound and unable to be inhibited [ 40 ].

   Breast cancer is the model system which has been best studied so far in terms of 
understanding mechanism of action, potential synergistic combinations and predic-
tors of resistance. At the molecular level, breast cancers can be divided into luminal 
or basal based on gene expression signatures. Most of the sensitive cell lines are 
luminal in nature, and all have intact Rb signaling, whereas the resistant cells tend 
to be basal-like and lack Rb activity [ 41 ,  42 ]. Intriguingly, basal cell lines, which 
retain Rb activity are still unresponsive to PD-0332991, and have hyperphosphory-
lated Rb. It is unclear at present what the precise mechanism is that drives hyper-
phosphorylation of Rb in these cell lines. It is possible that there is a greater 
dependence upon CDK2/CDK1, in which case these cells might respond to a com-
bination of CDK2/1 and CDK4/6 inhibitors. Luminal tumors encompass both 
estrogen- receptor (ER) positive and many HER2-amplifi ed tumors, so naturally 
combinations of ER antagonists or HER2 inhibiting drugs with CDK4/6 inhibitors 
were tested. In ER-positive cell lines, treatment with tamoxifen and PD-0332991 
resulted in synergism and G1 arrest, and similarly trastuzumab  and PD-0332991 
are synergistic in HER2-amplifi ed cell lines [ 41 ]. 

 Apart from breast cancer cell lines, PD-0332991 has now been evaluated in a 
variety of other solid tumor types, including pancreatic neuroendocrine tumors, 
glioblastoma multiforme, rhabdomyosarcoma and mantle cell lymphoma with simi-
lar results [ 43 – 47 ]. In xenograft experiments, this drug is mostly cytostatic, with a 
few examples of cytotoxicity. In addition, PD-0332991 has been explored as a 
radiosensitizer in glioblastoma, due to its high penetrance of the blood-brain barrier, 
and preclinically appears to be useful in this scenario [ 47 ]. 

 However not all tumor contexts are ideal candidates for such a strategy even if 
the underlying genetic changes would predict sensitivity. A recent paper described 
an unanticipated effect observed in pancreatic adenocarcinoma (PDAC). In PDAC 
cell lines examined, PD-0332991 had anti-proliferative activity, induced robust G1 
arrest and hypophosphorylation of Rb [ 48 ]. However, gene expression analysis 
revealed that PD-0332991 upregulated genes involved in pro-angiogenic signaling, 
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cell adhesion, cell migration/ECM remodeling, and infl ammatory pathways. In 
addition, EMT was induced correlating with increased invasion via TGFβ-SMAD4 
signaling, suggesting perhaps combinations of TGFβ inhibitors with CDK4/6 inhib-
itors might be a way forward in PDAC tumors expressing wild-type SMAD4. 
Genetic manipulation of CDK4/6 recapitulated this phenotype, ruling out a drug-
mediated off- target kinase inhibition. 

 The fi rst phase 1 study performed using PD-0332991 was recently published, 
and examined patients with Rb-positive advanced cancers [ 49 ]. This study showed 
that the drug was generally well tolerated, with the main toxicity being myelosup-
pression, consistent with other cell cycle targeted therapies. Pharmacokinetic analy-
sis suggested favorable properties including slow absorption and elimination. The 
response rate was moderate (~27 %), however given all the usual caveats of general-
izing based on phase 1 studies, the patients who derived some benefi t (i.e. stable 
disease) could tolerate the drug well enough to remain on study for 10+ cycles. In 
breast cancer patients, a randomized phase I-II study utilizing PD-0332991 in com-
bination with letrozole in ER-positive, HER2-normal post-menopausal patients has 
been completed (personal communication). In the phase 1 portion, there has been 
no biomarker selection, but in the phase II portion, the trial is specifi cally focused 
on patients with cyclin D1 amplifi cation and/or loss of p16, since these are the 
patients predicted to respond best. So far, the clinical benefi t rate in this combina-
tion trial was 70%, which resulted in statistically signifi cant increase in progression-
free survival and the adverse event profi les are very similar to what was reported in 
the single-agent phase 1 studies trials previously discussed i.e. this combination is 
generally well tolerated. The few patients so far in the study have been safely treated 
with some patients having partial responses. These well-designed trials with inte-
grated biomarkers built in, are likely to provide more useful information not only 
about safety and pharmacokinetics but also pharmacogenomics information about 
responders and the biology behind responses. Caution must be taken though in con-
sidering combinations with chemotherapies that depend on actively cycling cells, 
based on a recent study that showed that PD-0332991 actually protected RB-positive 
MDA-MB-231 cells from paclitaxel-induced mitotic catastrophe [ 50 ]. Pre-treatment 
with PD-0322991 also resulted in a switch from homologous recombination (HR) 
DNA repair mechanism to non-homologous end-joining (NHEJ), which is an error 
prone pathway that could potentially induce further genomic instability in cancer 
cells. While this fi nding is intriguing and worthy of further mechanistic study in a 
broader panel of cell lines and normal mammary epithelial cells, it still remains to 
be determined how this result will be translated into ER+/HER2+ cell lines, which 
have been the focus of the majority of the breast cancer studies using this agent. 

 Going forward in hormone-receptor positive breast cancer, targeting CDK4/6 
should eventually become a fi rst line therapy in combination with endocrine therapy 
for a number of reasons. Certainly, as described above, the preclinical data regard-
ing this combination is compelling, and this includes cell lines that acquired tamoxi-
fen resistance being re-sensitized by PD-0332991. Secondly, genomic data have 
confi rmed the relevance of this pathway in resistance to endocrine therapy alone, 
such as the fact that cyclin D1 is overexpressed/amplifi ed in endocrine-therapy 
resistant tumors [ 51 ,  52 ]. In addition to deregulating the cell cycle, amplifi ed cyclin 
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D can directly activate ER in a hormonally-independent manner that does not 
require CDK/Rb activity [ 53 ]. Thirdly, the fact that cyclin D1-CDK4 is downstream 
of multiple pathways that mediate resistance to anti-estrogens (e.g. EGFR/HER2, 
ERK, AKT, NFκB) may make this strategy useful regardless of which pathways are 
upregulated in any particular patient [ 54 ]. Despite being a good target however, 
resistance to CDK4/6 inhibition is likely to occur, since resistance arises to every 
targeted therapy tested so far. Indeed, there is evidence currently for activation of 
CDK2 due to p27 down regulation as a mechanism of resistance to these agents, 
which could potentially be targeted via CDK2 inhibitors as will be discussed in the 
next section [ 55 ]. 

 Further clinical studies in other diseases are also underway, for example in man-
tle cell lymphoma. The single agent study showed some evidence of benefi t, and 
now a subsequent study has been designed using PD-0332991 in combination with 
bortezomib in this patient subset.  

14.2.2.3     Selective CDK1/2 Inhibitors 

 The other subclass of CDK inhibitors that have been developed are more specifi c for 
CDK1 and CDK2 (versus CDK4/6), such as R-roscovitine (also known as CYC202 
or seliciclib), SNS-032 and the newer agent SCH727965 (see Fig.  14.2  for the struc-
tures). Roscovitine, a 2,6,9-trisubstituted purine was generated in a screen of 
olomoucine- related analogues for CDK1/cyclin B inhibition, and found to potently 
inhibit CDK1 kinase activity (IC50 of 0.45 µM) [ 56 ]. Once olomoucine was shown 
to co-crystalize with CDK2, roscovitine was also confi rmed to bind directly to 
CDK2 [ 57 ]. Several years later, roscovitine became the fi rst orally bioavailable drug 
from this class to go into clinical trials based on the preclinical data showing that 
CDK1/2 inhibition causes S and G2 arrest followed by apoptosis in tumor cells 
[ 58 – 60 ]. Apart from the effects on these cell cycle CDKs, roscovitine also inhibits 
CDK7 and CDK9, thereby inhibiting transcription as well, via reducing key anti-
apoptotic proteins such as Mcl1 [ 61 – 64 ]. 

 Several studies have shown that apoptosis is further induced when CDK1/2 
inhibitors are combined with most cytotoxic therapies including taxanes, anthracy-
clines as well as radiation. For example, a combination of purvalanol A and taxol 
caused profound apoptosis in Hela cells, when taxol was used fi rst to stabilize 
microtubules then purvalanol A was added [ 60 ]. Intriguingly when the drugs were 
used in the reverse order, the response was decreased, demonstrating that synchro-
nization of cells in mitosis (i.e. the end results of taxol) is important for the mecha-
nism of CDK inhibitor-induced cell death. A similar synergistic combination 
strategy was demonstrated in MCF7 breast cancer xenografts using roscovitine and 
doxorubicin, however in this context, cell cycle synchronization in G2/M phase 
with roscovitine was used to prime the cells to respond to doxorubicin (versus the 
taxol→CDKi strategy in Hela cells) [ 65 ,  66 ]. Similar to the Hela cell study described 
above, the taxol-purvalanol A combination was found to be similarly effective in 
MCF7 xenografts [ 67 ]. These dichotomous results in two different systems just 
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illustrate one of the challenges we have moving forward with sequential combina-
tion therapies that exploit mechanism of action of drugs. Likely a number of factors 
could contribute to which direction of treatment is likely to be best, including 
genomic factors (such as Rb status, p53 pathway status), timing of exposure to 
agents as well as which specifi c drugs under investigation. Clearly, further mecha-
nistic work is still needed to dissect out these details in order to rationally match 
treatments to individual patients. 

 In spite of this incomplete understanding of mechanism of action of these agents 
in both solid tumors and hematopoietic malignancies, roscovitine was moved into 
clinical trials in the early 2000s [ 68 ]. The phase 1 studies demonstrated that this 
agent could be administered both in an intravenous formulation as well as orally [ 69 , 
 70 ]. It has reasonable pharmacokinetic properties including high bioavailability, 
slow GI absorption, however it is rapidly metabolized to an inactive metabolite, 
making its half-life fairly short (~1 h). However, there were a number of dose- 
limiting side effects observed including liver and kidney toxicity, electrolyte distur-
bances, rashes and fatigue that accumulated over time, making repeated 
administration daily for more than 5 days too challenging for patients. Responses 
were unimpressive over a few phase 1 studies, with primarily stable disease and very 
few partial responses seen as monotherapy. Two phase 2 studies were undertaken in 
non-small cell lung cancer and nasopharngeal carcinoma which essentially repli-
cated the results in the phase 1 studies [ 71 ]. Looking at the pharmacological and 
response data together, the researchers concluded that one of the major challenges 
was maintaining a plasma dose that is high enough for anti-tumor activity based on 
the preclinical studies, and even when white blood cells were used as a surrogate for 
tumor cells, Rb phosphorylation was not decreased, further supporting the claim of 
insuffi cient dose reaching tumor cells. One way of potentially overcoming this prob-
lem might be to use a more frequent dosing schedule such as 2–3 times a day, since 
the preclinical studies showed that 8–16 h of continued exposure is needed to effec-
tively inhibit tumor growth. Whether this would actually work might not be known 
since the excitement regarding this agent has waned, in light of newer compounds 
that have been developed. One such potential compound is CR8, which is a N6-biaryl-
substituted derivative of roscovitine that is 2–4 fold more potent at inhibiting CDK1, 
CDK2 and CDK7, which translated to 40–70 fold higher potency in cellular activity 
measures such as PARP cleavage and caspase activation [ 72 – 74 ]. Since discovery of 
this compound a few years ago, animal studies have not been published in cancer 
models, although a very recent paper utilizing CR8 in a mouse model of traumatic 
brain injury demonstrated that this drug could be delivered safely in vivo. 

 The other CDK inhibitor that targets CDK1 and CDK2 (as well as CDK5 and 
CDK9) that appears promising is SCH727965 (Dinaciclib) (see Fig.  14.2  for struc-
ture), a compound developed to address some of the issues with previous generation 
inhibitors with respect to therapeutic index [ 75 ]. Indeed, in direct comparison to 
fl avopiridol this agent had > tenfold greater therapeutic index in the A2780 ovarian 
cancer xenograft model (defi ned as the ratio between MTD defi ned as 20 % body 
weight loss and minimal effective dose to cause 50 % inhibition of tumor growth 
when given i.p. once daily for 7 days). In addition, cell line studies showed that even 
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a brief 2 h exposure to SCH727965 was suffi cient to inhibit progression of cells into 
S phase. In vivo, this drug was at least as effective as paclitaxel in A2780 xenografts, 
and well tolerated with the main toxicity being reversible myelosuppression. 

 In addition to ovarian cancer, SCH727965 has been tested and found to be poten-
tially effective in pancreatic cancer, melanoma and various forms of sarcoma includ-
ing osteosarcoma [ 76 – 79 ]. The pancreatic study was particularly exciting, as it was 
performed using low-passage patient-derived xenografts (PDX) as opposed to cell 
line xenografts. These PDX models are thought to more faithfully recapitulate 
human tumorigenesis for multiple reasons including the fact that they maintain 
human stroma for multiple passages [ 80 ]. This intense desmoplastic stroma and 
hypovascular microenvironment which characterizes pancreatic cancer, is known to 
be a major barrier to chemotherapy drug access. Therefore the data showing effi -
cacy in multiple mouse models with these characteristics bodes well for subsequent 
trials in humans. In addition to using these better disease models, the authors per-
formed gene set enrichment analysis on the tumors to interrogate potential mecha-
nisms of resistance, an area of research that is very undeveloped in the cell cycle 
fi eld. They compared sensitive and resistant tumors, and found that in the most 
resistant tumors, the Notch and TGFβ pathways were upregulated, suggesting that 
perhaps combinations of these inhibitors may be future directions for research. 

 Preclinical studies in adult and pediatric leukemia are also underway, and a 
report of effi cacy in CLL cells showed promise independent of high-risk genomic 
features (del 17p13.1 and gVHI unmutated). Short-term exposure of CLL cells 
directly taken from patients was suffi cient to induce apoptosis [ 81 ]. Moreover, 
SCH727965 was shown to abrogate microenvironment-derived cytokine-induced 
survival signaling, in a PI3K-dependent mechanism, suggesting that a logical com-
bination to explore might be SCH727965 in combination with PI3K inhibitors. 

 These pre-clinical studies provided strong rationale for moving this agent into 
clinical studies. A phase 1 study using SCH727965 dosed once every 3 weeks as a 
single agent in unselected adult patients has been performed which showed moder-
ate responses (mainly stable disease) and similar to the preclinical studies, myelo-
suppression was the DLT [ 82 ]. Notably, unlike fl avopiridol, there was no diarrhea, 
and much less fatigue, making this agent better tolerated. Since nausea and vomiting 
were common side effects as well, a subset of patients was given the anti-emetic 
drug aprepitant [ 83 ]. Aprepitant is known to weakly inhibit CYP3A4 which is one 
of the enzymes involved in metabolizing SCH727965, so the pharmacokinetic 
parameters were compared in patients treated with aprepitant with those not given it. 
These results showed no interaction between aprepitant and SCH727965, suggest-
ing that use of this agent prophylactically in the clinic is a feasible and safe strategy 
moving forward to maximize use of SCH727965 in different patient populations. 

 Several phase 2 studies with SCH727965 as a single agent have also begun in 
both solid tumors and hematopoietic diseases, and some have been presented as 
abstracts at meetings. The fi rst and most promising was performed in adult acute 
myeloid or lymphocytic leukemia patients and reported at ASH in 2010 [ 84 ]. The 
response rate was 60 %, and many patients had rapid decrease in their blast counts. 
Correlative studies including pharmacodynamics analyses showed that CDK activity 
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(i.e. Rb phosphorylation and Mcl1 decreased expression) was effectively inhibited in 
the samples taken at 4 h post infusion, however these biomarkers returned almost to 
baseline by 24 h, suggesting a need for frequent dosing. A similar study is also 
underway in multiple myeloma, but no results are currently available [ 85 ]. 

 With respect to solid tumors being examined in single-agent phase 2 trials, the 
progress has been slower. One single arm study has been reported in melanoma, 
which had ~72 patients enrolled [ 86 ]. The response profi les were very modest, with 
22 % of patients with stable disease and no partial or complete responses, and tox-
icities were common. Another phase 1–2 study in unresectable melanoma is now 
approved and about to open. The only other trial that has been started is a multi-arm 
randomized phase 2 in breast cancer and NSCLC, in which SCH727965 is being 
compared to active treatments for each respective disease (oral capecitabine for 
breast cancer, and erlotinib for NSCLC). Importantly crossover from the control 
arm was allowed after disease progression, which is likely to make detection of a 
signifi cant difference in overall survival extremely challenging. The study has been 
completed but no data has been presented as of writing (Nov 2012) [ 87 ]. 

 Similar to the other CDK inhibitors, combinations with chemotherapy/other tar-
geted agents are ultimately going to be necessary for optimal activity of SCH727965, 
and already a number of combination studies have been started. These trials include 
combinations with the PARP inhibitor Veliparib with or without carboplatin, ritux-
imab in CLL, bortezomib and dexamethasone in myeloma, and our own trial with 
epirubicin in triple negative breast cancer [ 88 – 91 ]. Our trial differs from the others 
in that by limiting our patients to a specifi c subtype of breast cancer in which we 
have preclinical data showing dependence on CDK2 signaling because of LMW-E 
expression [ 92 ]. In addition, another group has shown elevated c-Myc expression is 
synthetically lethal with CDK inhibition in triple negative breast cancer [ 93 ]. By 
pre-selecting patients with a high likelihood of being oncogenically addicted to 
CDKs either via the LMW-E pathway or via amplifi cation of c-Myc, we believe we 
will enrich for potential responders. Further biomarkers of response or markers pre-
dicting resistance will be needed in order to make this drug clinically useful. For 
example, basal like breast cancers or serous ovarian cancers with defects in DNA 
repair such as BRCA1/2 or ATM mutations may be more sensitive to CDK2 inhibi-
tion (in combination with chemotherapy), analogous to their propensity for sensitiv-
ity to PARP inhibition. BRCA1 or ATM knockdown sensitized various cell lines to 
CDK2 inhibitors, since CDK2 can regulate DNA repair independently of its effect 
on the cell cycle [ 94 ].   

14.2.3     Targeting p27 

 Moving away from directly targeting components of the cell cycle that promote 
growth, the other strategy that has been proposed is targeting negative regulators 
such as p27. p27 is a small nuclear protein involved in negatively regulating G1 to S 
phase transition via inhibiting cyclin E-CDK2, cyclin A-CDK2 and cyclin D-CDK4/6 
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activity [ 95 ]. However, in addition, it has novel functions when mislocalized in the 
cytoplasm that contribute to tumor cell survival and cancer progression [ 95 ]. For 
example, in response to stress, p27 is driven into the cytoplasm via AMPK-mediated 
phosphorylation at Thr198 which blocks apoptosis and induces a cytoprotective 
autophagy response [ 96 ,  97 ]. Other cytoplasmic functions also include increased 
invasion and metastatic potential, perhaps via binding to RhoA and stimulating 
changes in actin cytoskeleton formation [ 98 ]. A p27 knock-in mouse model where 
p27 has been mutated to be unable to bind cyclins and CDK2, was generated to 
determine whether there are cell-cycle independent roles for p27 [ 99 ]. One of the 
major fi ndings from this model includes a role for cytoplasmic p27 in stem/progeni-
tor cell enrichment, leading to lung tumorigenesis [ 100 ]. Taken together these results 
clearly show that p27 has pleiotropic functions and therefore merely upregulating it 
without understanding cellular context may not be very effective. 

 In many cancers p27 levels are decreased as a result of deregulation of transcrip-
tional, translational or post-translational pathways. Much effort has been expended 
into understanding these mechanisms with the end goal being to determine ways of 
upregulating nuclear p27 to prevent cell cycle progression. To briefl y summarize 
these studies, which have been reviewed extensively elsewhere, p27 transcriptional 
regulation is complex, and involves both repression via oncogenic transcription fac-
tors such as c-Myc and Id3, as well as activation via FOXO transcription factors and 
E2F1 [ 101 ]. In addition to transcriptional regulation, p27 has been shown to be regu-
lated via miRNAs such as miR-221/222, which are overexpressed in some tumors 
[ 102 ]. p27 is also extensively regulated at a post-translational level, including mul-
tiple phosphorylation sites that dictate localization, as well as that phosphorylation 
sites that stabilize the protein via inhibiting ubiquitination. Some of these most 
important sites include Ser10, Tyr74/88/89, Thr157, Thr187, and Thr198. 

 Beyond phosphorylation, p27 localization can also be regulated via protein- 
protein interactions, such as Jab1, which binds to p27 and induces its nuclear export 
and degradation in the cytoplasm [ 103 ]. Jab1 is an interesting potential target for a 
number of reasons. Jab1 expression in tumors is inversely correlated with p27 levels 
and overexpression is correlated with poor prognosis [ 104 – 107 ]. This proto- 
oncogene has also been linked to radiation resistance and cisplatin-resistance due to 
inhibiting several apoptotic and DNA repair pathways [ 108 ]. Apart from p27, Jab1 
can induce degradation of other tumor suppressors such as Smad4 and p53 as well 
as inhibit DNA repair via HR pathways that involve Rad51 [ 109 – 111 ]. 

 p27 proteolysis via the proteasome is regulated by Skp2 [ 112 ]. Skp2 is part of a 
larger SCF complex, comprised of cullin1, Skp1, ROC1/Rbx1 and requires an adap-
tor protein called Cks1. Together, this complex functions as an E3-ligase that regu-
lates a number of substrates including p27, p21, p57, FOXO1 and c-Myc [ 113 – 116 ]. 
Towards the end of G1 phase, Skp2 recognizes p27 phosphorylated at Thr187, 
which serves as a degradation signal, allowing cells to enter S phase. However, in 
cancer cells, Skp2 can be amplifi ed and/or overexpressed, leading to decreased p27 
levels constitutively [ 117 – 119 ]. As a result of this reciprocal relationship, the con-
cept of targeting Skp2 has been proposed, however these studies have not progressed 
well. Genetic studies using a Skp2 defi cient mouse model have demonstrated that 
acute inactivation of Skp2 in the context of Pten or Arf heterozygosity induced 
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senescence but not in the Skp2-defi cient mice without other oncogenic signals 
[ 120 ]. Senescence induction correlated with decreased tumorigenesis and p27 
induction in the preneoplastic lesions that could be detected in some mice, provid-
ing additional rationale for the development of Skp2 inhibitors. 

 A high-throughput screen for inhibitors of Skp2 was performed using purifi ed 
components of the complex and p27 as a substrate [ 121 ]. A compound designated 
CpdA was discovered to induce cell cycle arrest at low micromolar doses in multiple 
myeloma cells, and this led to caspase-independent cell death via autophagy. In 
addition, because low levels of p27 is associated with resistance to therapy in 
myeloma cells, CpdA was examined as a chemosensitizer, and was found to syner-
gize with bortezomib, and overcome resistance to doxorubicin and melphalan. 
Despite this useful spectrum of activity however, further progress has not been made 
using this agent since it is diffi cult to make, and was not potent enough to use in vivo 
(required 5–10 µM dose in cell lines). More recently, another screen was performed 
using a chemical-genetics approach using automated microscopy to identify com-
pounds that upregulate p27 in prostate cancer cell lines [ 122 ]. After several rounds 
of stringent validation, two compounds were identifi ed – SMIP001 and SMIP004. 
These compounds are not broad proteasome inhibitors, but specifi cally target Skp2, 
resulting in elevated p27 and decreased CDK2 activity at low micromolar doses. At 
this point is it not known whether either of these compounds will be effective in vivo. 

 Targeting p27 presents a considerable challenge, despite the large body of knowl-
edge regarding the mechanisms of its regulation and their redundancy. Some open 
questions include which of the upstream regulatory enzymes would be the best tar-
get to induce a sustained increase in p27 cells in tumor cells specifi cally. In some 
ways, the lack of complete specifi city of substrates presents the largest conundrum. 
Assuming it would be possible to move one or more of the identifi ed compounds (or 
a derivative) into the clinic, it is possible that some of the off-target effects may be 
undesirable e.g. in some contexts the upregulation of cyclin E or c-Myc may drive 
additional genomic instability. In fact there is data suggesting this might be the case 
using siRNA in A549 lung cancer cells targeting p27, Skp2 or the combination of 
both mRNAs [ 123 ]. In the dual-siRNA treated cells, there was an increase in centro-
some number, abnormal mitoses/nuclear atypia, which could be attributed to an 
increase in both full length and low-molecular weight forms of cyclin E. In tumors, 
such as triple negative breast cancers, which already have LMW-E expression we 
propose that a Skp2-targeting strategy could be detrimental because of this off-tar-
get effect, unless combined with CDK inhibitors. 

 The other concern with Skp2 targeting relates to the specifi c genetic background 
of p27. As mentioned previously, p27 transcriptional silencing such as by miRNAs 
or promoter methylation are not uncommon events, and could co-exist with Skp2 
overexpression. In this scenario even a potent Skp2 inhibitor would be ineffective at 
restoring p27 expression, with similar potential consequences as described above. 
In addition, because cyclin D-CDK complexes also bind p27, the level of p27 induc-
tion that may be necessary to slow down the cell cycle might be fairly high. Clearly, 
much work lies ahead in developing more potent inhibitors and understanding in 
greater depth the cellular contexts in which this strategy could be benefi cial and 
which contexts to avoid.   
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14.3     Exploiting Normal and Cancer Cell Differences 
for Protection of Normal Tissue 

 One of the most challenging problems in cancer therapy involving cytotoxic che-
motherapy is how to selectively kill tumor cells while sparing normal dividing 
cells. Previous work from our group has demonstrated two potential strategies that 
utilize cell cycle synchronization as a mechanism of selectively arresting normal 
cells. We proposed that using UCN-01, a staurosporine analog which was devel-
oped as a PKC inhibitor, but was later shown to inhibit other kinases including 
CDK1, CDK2 and CDK4 at low nanomolar concentrations could be used in this 
manner. UCN-01 has been found to induce a reversible G1 arrest in normal cells, 
while Rb-defi cient tumor cells arrest in S phase instead [ 124 ]. Cytostatic doses of 
staurosporine (0.5–10nM) can also be used to arrest normal cells in G1 without any 
detectable effect on tumor cells [ 125 ]. Importantly, staurosporine priming does not 
compromise the ability for tumor cells to respond to cytotoxic therapies, while 
normal cells are arrested in G1 and therefore not responsive to chemotherapy that 
targets cycling cells. 

 More recently with the availability of specifi c CDK4/6 inhibitors that are more 
clinically relevant than staurosporine, this hypothesis has been revived and tested in 
mouse models using PD-0332991 [ 126 ]. Myelosuppression induced by platinum 
drugs and anthracyclines are one of the most life-threatening toxicities seen in can-
cer patients, due to both heightened risk of infection while immunosuppressed and 
also due to the subsequent chemotherapy delays or dose reduction, which can com-
promise treatment effi cacy. A study was performed comparing two different mouse 
models of breast cancer, one with intact Rb signaling (the MMTV-neu model) and 
the other with inactive Rb (C3-Tag), to examine whether CDK4/6 inhibition could 
protect the hematopoietic progenitor cells from carboplatin-induced quiescence. 
The C3-Tag model which best resembles basal-like breast cancers, is Rb-defi cient 
and, unsurprisingly, does not respond to CDK4/6 inhibition as a single agent. 
Carboplatin is highly active in basal-like breast cancer, though, and co- treatment 
with PD-0332991 did not protect tumor cells from death. However, these mice had 
reduced thrombocytopenia. In contrast, MMTV-neu mice, which have previously 
been shown to be dependent upon CDK4 and cyclin D, were sensitive to PD-0332991 
as a single agent. In addition, when carboplatin was combined with PD-0332291, 
tumors grew back faster, indicating the CDK4/6 inhibition in this context protects 
tumor cells as well normal cells from toxicity, therefore not gaining any signifi cant 
therapeutic index. These results suggest that CDK4/6 inhibitors may have a new 
utility – in tumors that are CDK4/6 sensitive, these drugs can be used for anti-tumor 
effect (and should be used separately from other cytotoxic therapies), and in other 
tumors that are insensitive (e.g. Rb defi cient, p16 overexpressed), these drugs can be 
normal tissue protectors from other cytotoxic therapies. As a practical consideration 
as a result of these discoveries, we advocate for Rb mutation status to become one 
of the biomarkers tested routinely in the clinic.  
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14.4     Newer Cell Cycle-Related Targets for Therapy 

 In this last section, we briefl y outline rationale for targeting other cell cycle-related 
proteins and review the state of drug development for each class of agent. Some of 
these proteins are intimately involved in mitosis regulation, and will be discussed 
separately. 

14.4.1     PIM Family Kinases 

 One of the most interesting emerging targets in the PIM family of kinases, which 
regulate multiple pathways including the cell cycle. The PIM family of serine/threo-
nine kinases consists of three isoforms that have a signifi cant degree of sequence 
homology, but differ in their tissue distribution [ 127 ]. Overall these proteins are 
expressed throughout in hematopoietic progenitors as well as liver, spleen and other 
epithelial and mesenchymal tissues, and have considerable functional redundancy. 
PIM1 is the best studied member of this family, and is thought to be the most widely 
relevant gene (of the 3 PIM isoforms) in cancer. 

 The PIM1 gene was identifi ed in the 1980s as a frequent proviral integration site 
for Moloney murine-leukemia virus (MuLV) which induced T-cell lymphomas in 
transgenic mice [ 128 ]. Subsequently PIM1 was shown to cooperate with c-Myc in 
inducing lymphomas in utero or around birth, whereas Eµ-Myc transgenic mouse 
crossed onto a PIM1 and PIM2-defi cient background had delayed lymphomagene-
sis [ 129 – 131 ]. More recently, PIM family kinases have been discovered to be over-
expressed or mutated in other solid tumors such as prostate, pancreatic, ER-negative 
breast cancer and head and neck squamous carcinomas as well as many leukemias 
and lymphomas (AML and CLL), leading to the question of whether they could be 
targeted [ 132 – 137 ]. 

 PIM kinases are unusual in that they are constitutively active, but are regulated 
largely at the transcriptional and translational level [ 127 – 138 ]. A wide range of 
cytokines and growth factors can activate PIM kinases, mainly via the JAK-STAT 
pathway and NFκB pathways [ 139 ,  140 ]. Since the mRNA has a short half-life, 
inhibitors of JAK-STAT could potentially be used to inhibit PIM signaling as well. 
An emerging paradigm places PIM1 at the center of a cellular stress response, since 
PIM1 can be induced by hypoxia and DNA damage via various mechanisms. For 
example hypoxia can induce PIM1 expression rapidly in a HIF1α independent 
mechanism, as well as induce nuclear translocation [ 141 ,  142 ]. PIM1 induction in 
response to hypoxia promotes cell survival via inhibition of apoptosis and is linked 
to chemoresistance under these conditions. PIM1 can also be induced in response to 
DNA damage by Kruppel-like factor 5 [ 143 ]. In a study of head and neck squamous 
carcinoma patients, upregulation of PIM1 in response to irradiation was shown to be 
associated with a poor response [ 144 ]. Since EGFR expression is also correlated 
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with radiation resistance and EGFR is autophosphorylated and nuclear localized 
after IR, the authors asked with EGFR can regulate PIM1 levels/activity. In cell 
lines, EGF-ligands induced PIM1 nuclear-translocation, and this effect could be 
blocked by the EGFR antibody cetuximab or tyrosine kinase inhibitor, gefi tinib. 
Similarly, HNSCC cells that were irradiated had more nuclear PIM1, and PIM1 
knockdown demonstrated the pro-survival role that PIM1 plays in this context. 
Taken together, these studies show that PIM1 may be a good target in a number of 
different cancer systems. 

 PIM1 plays a number of cellular functions that all contribute to tumorigenesis, as 
depicted in Fig.  14.4 . One of these is regulation of the cell cycle via phosphorylating 
several substrates such as p21, p27, cdc25A, cdc25C and HP1 [ 145 – 151 ]. One of 
the most robust readouts of PIM1 activity is phosphorylation of the pro-apoptotic 
protein BAD at Ser 112, which inactivates it, therefore enhancing anti-apoptotic 
activity of Bcl2 [ 152 ]. As mentioned previously, PIM1/PIM2 cooperates with 
c-Myc to regulate lymphomagenesis, and one of the mechanisms it does so is via 
phosphorylation of c-Myc which stabilizes the protein [ 153 ]. Overexpression of 
PIM1 also induces genomic instability via deregulating the mitotic spindle check-
point, which causes abnormal mitoses, centrosome amplifi cation and aneuploidy 
[ 154 ]. In hematopoietic malignancies in which PIM2 is highly expressed, 4EBP1 is 
also a target that is involved in promoting cap-dependent translation initiation of 

  Fig. 14.4    PIM1 kinase substrates and cellular functions       
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proteins that have growth promoting roles such as c-Myc and cyclin D1 [ 136 ]. In 
prostate cancer specifi cally, the androgen receptor is also a substrate of PIM1, and 
this phosphorylated form is transcriptionally inactivated and degraded [ 155 ,  156 ].

   Structurally PIM kinases are distinct from other kinases in terms of how ATP 
binds to them, which has allowed chemists to design highly selective inhibitors. 
One of the most attractive features of PIM1 as a drug target is the lack of obvious 
phenotype in the knockout mouse, which is viable and fertile [ 157 ]. Compensation 
by other PIM family members is unlikely since compound knockout mice are also 
viable and fertile. The only phenotype that was observed in the Pim1 -/-  mouse is a 
subtle hematopoietic effect, such that the red blood cells are abnormally small but 
this did not lead to any physiological effects. When other potential hematopoietic 
functions were examined closely, it was found that bone-marrow-derived cells in 
culture had a signifi cant impairment in IL-3 and IL-7 growth factor response [ 131 ]. 

 The fi rst compound that has been developed that has moved into cellular and in 
vivo studies is SGI-1776, which is an imidazo [1, 2-b] pyridazine compound that 
inhibits all three PIM kinases with IC50s of 7, 363 and 69nM (PIM1, PIM2 and 
PIM3 respectively), and has some activity against FLT3, another target in AML (see 
Fig.  14.5  for structure of this and other PIM inhibitors) [ 158 ]. In xenograft models 
of AML cells, this drug was highly active as an oral agent, inducing complete 
regression of blasts [ 159 ]. In addition, SGI-1776 can re-sensitize chemoresistant 
prostate cells to taxanes due to inhibiting multidrug resistance proteins including 
MDR1 [ 160 ]. Unfortunately when moved into phase 1 trials in humans (one trial 
was focused on prostate cancer and the other was non-Hodgkin’s lymphoma) this 
drug was found to cause dose-limiting cardiac toxicity for reasons that are not clear, 
and the studies were stopped [ 161 ]. Another two structurally-related PIM1 inhibi-
tors were identifi ed in a chemical library screen called Smi-4a and Smi-16a which 
are benzylidene-thiazolidine-2, 4-diones [ 162 ]. When tested in vitro, these agents 
both had growth inhibitory activity in leukemia and prostate cancer cell lines, 
induced G1 arrest and induced p27 nuclear translocation. In addition, PIM1 inhibi-
tors including Smi-4a synergize with both rapamycin in prostate cancer cells, and 
more recently with the Bcl2 inhibitor ABT-737 [ 163 ]. In our opinion despite these 
compounds having promising pre-clinical activity, the drug discovery market relat-
ing to PIM1 kinase is wide open right now. Special attention should be focused on 
the potential cardiac toxicity profi le of future inhibitors (compared to SGI-1776), to 
try to understand what the off-target mechanisms are that underlie the Qt prolonga-
tion seen with SGI-1776 in patients.

  Fig. 14.5    Structure of PIM1 kinase inhibitors       
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14.4.2        Mitotic Kinases: Aurora Kinase Family 

 In much of this chapter so far we have discussed targets that function early in the 
cell cycle in regulating G1 and S phases. However, G2 and M phases are also very 
kinase-rich and have tremendous potential as drug targets. Several classes of che-
motherapies already target these processes, such as taxanes, which bind to tubulin 
and disrupts the assembly of the spindle. In order to design better therapies against 
proteins that act in G2 and M phase, we must understand their functions at a mecha-
nistic level and how they contribute to the events that are necessary for progression 
through these stages. During G2 phase when cells are preparing for mitosis, the cell 
is very active in ensuring the DNA was replicated correctly, and dividing the other 
organelles. In addition, microtubule proteins are being synthesized in order to form 
the mitotic spindle along which the chromosomes will segregate during mitosis. 
G2-M phase targets include proteins that are involved in entering mitosis (such as 
Aurora kinase A), the spindle assembly checkpoint (such as BUB1), and mitotic 
exit (such as APC). Each of these proteins and processes could be the focus of entire 
chapters, so we will provide a high-level overview of each here, and point the read-
ers to recent reviews on these proteins. 

 Aurora kinases, of which there are three highly related isoforms (A, B and C) in 
mammalian cells, are key regulators of mitosis that have been well conserved 
throughout eukaryotic organisms. All three isoforms have been the focus of drug 
development over the past several years, and most of the inhibitors target two or 
three of them due to the highly conserved catalytic domain [ 164 ]. Aurora kinase A 
(AURKA) and Aurora kinase B (AURKB) have the strongest evidence for a role in 
tumor cell growth, whereas Aurora kinase C has scant evidence. This may be 
because for many years Aurora kinase C was thought to be primarily expressed in 
the testes where it plays a role in spermatogenesis, by playing similar roles to 
AURKB [ 165 ]. However more recently it has also been found to be expressed at 
high levels in some cancer lines, and several point mutations have been found in 
lung tumors but relatively little is known about its function [ 166 ,  167 ]. 

 AURKA is ubiquitously expressed and is the fi rst of the family members to be 
activated starting in late S phase and working through to completion of mitosis. 
Many related processes are regulated by AURKA, including maturation and separa-
tion of the centrosomes, assembling the mitotic spindle, chromosome alignment and 
cytokinesis [ 168 – 170 ]. Regulation of AURKA levels is also important for mitotic 
exit, as either too much or too little activity leads to failure of cytokinesis and mul-
tinucleation [ 171 ]. AURKA regulation occurs at both transcriptional and posttrans-
lational levels, including activation by autophosphorylation at Thr288 on the 
activation loop, and deactivation via protein phosphatase 1 [ 172 ]. In cancer, AURKA 
is frequently amplifi ed/overexpressed due to various mechanisms, especially in 
higher grade tumors and has been demonstrated to be a poor prognostic factor [ 173 –
 176 ]. It was established as a bona fi de oncogene when it was shown to be capable of 
inducing rodent fi broblast cell transformation due to formation of multipolar mitotic 
spindles that induce genomic instability [ 177 ]. Interestingly, these chromosomal 
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abnormalities that occur in AURKA overexpressing cells does not lead to cell death, 
because AURKA also promotes cell survival pathways including AKT-mTOR and 
nuclear accumulation of cyclin D1 [ 178 ]. NFκB is another anti-apoptotic pathway 
that is regulated by AURKA phosphorylation of its inhibitor, IκB [ 179 ]. AURKA 
has also been shown to interact with the p53 network, specifi cally via phosphorylat-
ing p53 inducing its degradation via MDM2, as well as phosphorylating p53 on Ser 
215 which inhibits its DNA binding ability [ 180 ,  181 ]. These fi ndings demonstrate 
the wide spectrum of roles that AURKA plays in cellular transformation and pro-
vide signifi cant rationale for targeting this kinase. 

 Similar to Aurora kinase A, Aurora kinase B (AURKB) is also expressed in all 
proliferating cells, however it plays more limited roles as a chromosome passenger 
protein. AURKB is primarily expressed starting during prophase, where it is local-
ized at the kinetochore to ensure correct chromosome alignment to the spindle and 
also helps ensure chromosomes segregate correctly [ 182 ]. In addition, AURKB 
phosphorylates Histone H3 at Ser10 and Ser28, which facilitates chromosome con-
densation [ 183 ,  184 ]. In cancer AURKB is not amplifi ed, however it is still highly 
expressed in several tumor types [ 185 – 187 ]. Apart from regulating kinetochore- 
spindle interactions, in cancer cells, AURKB has been linked to degradation of p53 
via phosphorylation at multiple sites [ 188 ], providing further rationale for targeting 
this kinase. 

 Inhibition of AURKA leads to G2 arrest, and has been shown to increase chemo- 
and radiosensitivity in cancer cells [ 189 ]. Quite a number of inhibitors have been 
generated by most of the major pharmaceutical companies and are currently being 
tested in early stage clinical trials. Many of these target both AURKA and AURKB, 
although Millennium has two AURKA specifi c compounds, MLN8054 and 
MLN8237. For a recent review with information about the clinical development of 
these agents, see [ 169 ]. Inhibition of AURKB are known as mitotic drivers, since 
they cause overriding of the mitotic checkpoints and results in aberrant mitosis and 
aneuploidy. This contrasts with AURKA inhibitors which block passage through 
mitosis. The question of whether inhibiting both AURKA and AURKB is better 
than either kinase alone has still not been answered. In preclinical genetic studies, 
the results have been equivocal. In one study in pancreatic cancer, antisense oligo-
nucleotides to AURKA, AURKB or the combination were added to cells and 
responses compared [ 190 ]. The combination of both oligonucleotides was not better 
at inducing caspase activation, accumulating tetraploid cells or reducing formation 
in soft agar than either one alone. Targeting AURKA alone had a slightly better 
response overall versus AURKB alone, and this correlated with cells rounding up 
and detaching from the plate versus becoming large and multinucleated with the 
AURKB oligonucleotide. In contrast to this pancreatic study however, in colon can-
cer cells, AURKB inhibition was better than AURKA [ 191 ]. In order to move these 
targets forward, greater emphasis will have to be placed on understanding what 
contexts predict response to inhibition of each protein, and multiple readouts of 
each kinase inhibition should be analyzed since it is possible that each drug will 
have a slightly different profi le. One clue that has already emerged is that p53-defi -
cient cells more readily undergo apoptosis in response to the VX-680 inhibitor, 
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however since this is a pan-aurora inhibitor, it is diffi cult to dissect out which target is 
most relevant in p53-defi cient tumors [ 192 ]. Further molecular and pharmacodynamic 
characterization of sensitive and resistant patients in the many clinical trials in progress 
should elucidate more such factors, as well as more detailed preclinical work with 
patient derived xenograft models should be the in vivo assay of choice in these studies.  

14.4.3     Other Mitotic Targets of Interest 

 Moving forward as genomic studies are completed and more functional screens are 
performed it is likely more novel cell cycle targets will be found. Some examples of this 
nature that have been identifi ed so far include MELK, Bub1, and Mps1. We will briefl y 
summarize some of these proteins and how targeting them might be useful in cancer. 

 Maternal embryonic leucine zipper (MELK) is an atypical member of Snf1/
AMPK family of kinases that has received only a little research attention so far. 
MELK is upregulated in several solid tumors including high-grade prostate cancer, 
astrocytoma, medulloblastoma and in breast cancer [ 193 – 195 ]. In addition, MELK 
is highly expressed in neural and breast cancer stem cells, making it a potentially 
attractive target to eradicate this population of cells thought to be the main drivers 
of drug resistance and eventual disease progression [ 196 – 198 ]. Expression of 
MELK is known to be increased in mitotically-arrested cells, and in prostate cancer 
cells is highly correlated with several other cell cycle/proliferation related genes 
including AURKB, cyclin B2 and DNA topoisomerase 2 alpha [ 193 ,  199 ,  200 ]. A 
few recent studies have suggested a role for MELK in radioresistance and chemore-
sistance, and have provided some in vitro evidence that knockdown can sensitize 
cancer cells to additional therapies [ 201 ,  202 ]. The only known pharmacological 
agent that targets MELK so far is the antibiotic siomycin A which reduces MELK 
expression and has been shown to decrease glioblastoma growth in vivo via target-
ing the neural stem cells [ 203 ]. 

 The spindle assembly checkpoint (SAC) is a mechanism of delaying anaphase if 
the kinetochores are unattached to microtubules. There are at least 14 proteins 
involved in this process, four of which are kinases that are potentially targetable. 
These kinases are Bub1, BubR1, Mps1 and aurora B, although aurora B is dispens-
able for the checkpoint. If the SAC checkpoint is active, some of the components, 
such as Bub1, sequester Cdc20 which is the active part of the APC/C complex 
which degrades cyclin B. Bub1 may be a master regulator of the spindle assembly 
checkpoint by recruiting other important proteins involved such as BubR1, Mad1 
and Mad2 [ 204 ]. The underlying concept behind targeting this checkpoint is that by 
preventing SAC activation, severe chromosome segregation occurs occur which 
causes cell death. Even partial inhibition of any of these essential mitotic check-
point components can sensitize tumor cells to mitotic-targeting chemotherapies 
such as taxanes, whereas normal cells are not sensitized since normal cells can 
maintain a diploid population of cells [ 205 ]. Proof of this principle  in vitro  has been 
obtained for inhibitors of Mps1 [ 206 ,  207 ]. 
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 Cdc20 has also been proposed as a target in cancer due to the strong phenotypes 
seen in genetic studies from blocking mitotic exit. The cdc20 homozygous knock-
out mouse is embryonic lethal at the two-cell stage due to a metaphase arrest [ 208 ]. 
When an inducible knockout model was generated, a similar phenotype could be 
observed upon induction, and very high levels of cyclin B was observed in the cell, 
consistent with a defect in APC/C function [ 209 ]. When tumors of either epithelial 
or mesenchymal origin were induced in this model, and then cdc20 knockout was 
induced, the tumors rapidly regressed due to mitotic arrest and apoptosis. 

 In summary, there are various strategies that are being investigated to interfere 
with mitosis including delaying mitotic entry and spindle formation, preventing 
activation of the spindle assembly checkpoint or targeting mitotic exit via the APC/
C-cdc20 complex. Such strategies may synergize with current chemotherapies that 
act in mitosis such as taxanes and vinca alkaloids, allowing lower doses of these 
agents to be administered. The question remains however whether a suffi cient thera-
peutic index can be reached since normal cells also require these processes to be 
intact to undergo normal mitosis.      
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