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    Abstract     Many molecules currently used to treat cancer patients target proteins 
encoded by transcripts that are alternatively spliced. As a consequence, the treat-
ment may simultaneously block isoforms with different and sometimes opposing 
biological activity, thus reducing its effi cacy. Recent studies highlight the role of 
splicing regulation in cancer progression and the importance of the splicing machin-
ery as a therapeutic target. In reviewing this emerging fi eld of cancer biology, we 
describe very exciting novel fi ndings that illustrate the range of scenarios in which 
alternative splicing can contribute to all cancer hallmarks, from avoidance of apop-
tosis to angiogenesis, invasion and acquired resistance to drug therapy. Finally, we 
address cancer-selective approaches that are being developed to interfere with the 
splicing machinery and modulate splicing decisions.  

  Keywords     Alternative splicing   •   Splicing factors   •   Cancer biology   •   Cancer ther-
apy   •   Drug targets  

13.1         Introduction 

 Although cancer is a genetic disease, no single gene defect causes a tumor. Rather, 
it is only when several genes are altered that cancer arises. Moreover, cancer evolves 
through successive genetic changes that become advantageous to a cell. In essence, 
defective genes responsible for tumorigenesis belong to three groups: oncogenes, 
tumor-suppressor genes and genome stability genes [ 1 ]. Defects in oncogenes 
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render the gene constitutively active or active under conditions in which the normal 
gene is not, whereas tumor-suppressor and stability genes become inactivated. 
These defects in gene function can result from chromosomal translocations, dele-
tions or insertions, amplifi cations or intragenic mutations. An additional, recently 
recognized mechanism of oncogene activation or tumor-suppressor and genome 
stability gene inactivation is alternative splicing. Most human genes produce mul-
tiple mRNA isoforms through alternative splicing, and altered splicing is a major 
contributor to cancer progression. This chapter focuses on the role of alternative 
splicing in cancer and highlights the therapeutic potential of targeting and modulat-
ing cancer-specifi c splicing isoforms.  

13.2     Pre-mRNA Splicing and Its Regulation 

 RNA splicing was discovered in 1977 as a new mechanism for the biosynthesis of 
adenovirus mRNA in mammalian cells [ 2 ,  3 ]. Shortly after, cellular genes were also 
shown to be split into exons and introns. The fi rst examples included the globin [ 4 , 
 5 ], the ovalbumin [ 6 ] and the immunoglobulin [ 7 ] genes. Next, it was recognized that 
at each intron boundary there are consensus sequences common to vertebrate, plant 
and yeast cells, suggesting the splicing process was evolutionary conserved [ 8 ,  9 ]. 

 Today we know that the vast majority of human protein-coding genes contain up 
to 90 % of non-coding sequence in the form of introns that must be spliced from the 
primary transcripts synthesized by RNA polymerase II (pre-mRNAs). There are 
over 200,000 different introns in the human genome, ranging in size from <100 to 
>700,000 nucleotides (nts), with median intron and exon lengths of 1,800 and 
123 nts, respectively. 

 Excision of introns with single nucleotide precision relies on the spliceosome, 
one of the largest and most elaborate macromolecular machines in the cell [ 10 ]. The 
building blocks of the spliceosome are uridine-rich small nuclear RNAs (UsnRNAs) 
packaged as ribonucleoprotein particles (snRNPs) that function in conjunction with 
over 100 distinct non-snRNP auxiliary proteins [ 11 ]. The major spliceosomal small 
nuclear ribonucleoprotein particles comprise the U1, U2, U4, U5 and U6 snRNAs. 
In addition, human cells have a minor variant form of the spliceosome responsible 
for excision of about 800 so-called U12-dependent introns that are characterized by 
a distinct set of splice-site sequences [ 12 – 14 ]. Much of our current understanding of 
the role of snRNPs in splicing was triggered by studies using human autoantibodies 
from patients with systemic lupus erythematosus that selectively react with the spli-
ceosomal RNA-protein complexes [ 15 ]. 

 The spliceosomal snRNAs recognize, through base pairing, four short consen-
sus sequences termed the exon-intron junctions (5′ splice site and 3′ splice site), the 
branch point sequence, and the polypyrimidine tract (Fig.  13.1a ). Spliceosomes 
build anew on every intron that is synthesized and then disassemble for the next 
round of splicing (Fig.  13.1b–e ). Assembly of the spliceosome starts with the ATP- 
independent binding of the U1 snRNP through base-pairing interactions of the 5′ 
end of the U1 snRNA to the 5′ splice site of the intron. This is followed by the 
binding of the SF1 protein and the heterodimeric U2 auxiliary factor (U2AF) to the 
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  Fig. 13.1     Intron removal by splicing . ( a ) In humans, most introns are removed by the major 
spliceosome that recognizes conserved sequence elements located at the 5′ splice site, branch point 
(BP) and 3′ splice site. The polypyrimidine tract is a pyrimidine-rich stretch located between the 
BP and the 3′ splice site. The panel depicts two exons ( blue ) separated by an intron ( green ). N 
represents any nucleotide, R a purine, and Y a pyrimidine. ( b ) Spliceosome assembly initiates by 
binding of the U1 snRNP to the 5′ splice site and recruitment of the U2AF65/U2AF35 heterodimer 
to the 3′ splice site. The U2AF65 subunit binds to the polypyrimidine tract, the U2AF35 subunit to 
the AG dinucleotide at the 3′ splice site, and the SF1 protein binds to the branch point sequence. 
( c ) In an ATP-dependent reaction, the U2 snRNP displaces SF1 and binds to the branch point. At 
this stage, the 5′ splice site, branch point sequence, and 3′ splice site, are in close spatial proximity. 
Bending of the polypyrimidine tract induced by interaction with U2AF brings the 3′ splice site into 
juxtaposition with the branch point sequence. Both the 5′ and 3′ splice sites are close to the 5′-end 
of the U2 snRNA, which later assembles with U6 snRNA forming the catalytic center of the spli-
ceosome. ( d ) Catalytic activation occurs subsequent to addition of the U4/U6.U5 tri-snRNP and 
requires several rearrangements, including departure of the U1 and U4 snRNPs. The splicing reac-
tion consists of two consecutive transesterifi cation (replacement of one phosphodiester linkage for 
another) events. ( e ) After the two chemical steps of splicing are complete, the spliced exons are 
released, the spliceosome disassembles and the excised intron is degraded       
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branch point sequence and the downstream polypyrimidine tract, respectively. 
These proteins bind cooperatively, with SF1 interacting with the large subunit of 
U2AF (U2AF65), whereas the small subunit (U2AF35) binds the AG dinucleotide 
of the 3′ splice site (Fig.  13.1b ). Next, the U2 snRNA engages in an ATP-dependent 
base-pairing interaction with the branch point sequence, displacing SF1 
(Fig.  13.1c ). Subsequently, the U4, U5 and U6snRNPs are recruited as a preas-
sembled U4/U6.U5 tri-snRNP. With all snRNPs present, the spliceosome under-
goes major conformational rearrangements that lead to release of U1 and U4. The 
spliceosome is now competent to catalyze the fi rst transesterifi cation step of splic-
ing (Fig.  13.1d ): the phosphodiester bond at the 5′ splice site is attacked by the 
2′-hydroxyl of the adenosine at the branch point sequence, generating a free 5′ 
exon and an intron lariat-3′ exon intermediate. After additional rearrangements, the 
spliceosome catalyzes the second transesterifi cation reaction: the 3′-hydroxyl of 
the 5′ exon attacks the phosphodiester bond at the 3′ splice site, leading to exon 
ligation and excision of the lariat intron. Then the spliceosome dissociates, releas-
ing the mRNA (Fig.  13.1e ).

   Most of the functionally important RNA-RNA interactions formed within the 
spliceosome are weak and require the assistance of auxiliary proteins that bind 
weakly to specifi c sequences in exons and introns. This combination of multiple 
weak interactions is crucial for the fl exibility of the spliceosome, in particular dur-
ing regulated splicing decisions. Recently, fl uorescence microscopy has been used 
to follow assembly of individual yeast spliceosomes in real time. The results indi-
cate that spliceosomal components associate with pre-mRNA sequentially, but each 
step in the assembly pathway is reversible [ 16 ]. This implies that potentially any 
step during spliceosome formation might be subject to regulation. Spliceosome 
assembly is indeed highly regulated: depending on the combinatorial effect of pro-
teins that either promote or repress the recognition of the core splicing sequences, 
splice sites in pre-mRNA can be differentially selected to produce multiple mRNA 
isoforms (Fig.  13.2 ). This process is called alternative splicing.

13.3        The Importance of Alternative Splicing 

 Diverse forms of mRNA are created by the differential use of splice sites (reviewed 
in [ 17 ]). Exons that are always included in the mRNA are called constitutive exons, 
and exons that are sometimes included and sometimes excluded from the mRNA are 
called cassette exons (Fig.  13.3 ). Some pre-mRNAs contain multiple cassette exons 
that are mutually exclusive, producing mRNAs that always include one of several 
possible exon choices. Exons can also be lengthened or shortened by altering the 
position of one of their splice sites alternative 5′ and alternative 3′ splice site selec-
tion; (Fig.  13.3 ). The 5′ and 3′-terminal exons can further be switched by combining 
alternative splicing with the use of alternative promoters or alternative polyadenyl-
ation sites, respectively (Fig.  13.3 ). Finally, certain intronic sequences may persist 
in the fi nal mRNA, a splicing pattern called intron retention (Fig.  13.3 ).
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   Alternative splicing was fi rst reported in 1980, when it was discovered that 
membrane- bound and secreted antibodies are encoded by the same gene [ 18 ,  19 ]. 
During the 1980s and 1990s many biologically important alternative splicing events 
were identifi ed and characterized. Yet, the prevalence and general importance of 
this process was far from clear. More recently, the application of genome-wide pro-
fi ling technologies coupled with bioinformatic approaches resulted in major 
advances in our understanding of alternative splicing. In particular, high-throughput 
massively parallel short-read sequencing provided for the fi rst time unambiguous 
and unbiased detection of expressed RNA sequences. Compared to microarray- 
based systems for profi ling alternative splicing, short-read sequencing offers a more 
accurate method for quantifying relative levels of different transcripts. Analysis of 
human tissue RNA sequencing (RNA-Seq) data revealed that approximately 95 % 
of human pre-mRNAs that contain more than one exon are spliced to yield multiple 
mRNAS, and that most isoforms display variable expression across tissues [ 20 ,  21 ]. 
Genes with few exons typically encode a small number of mRNA isoforms, while 
tremendously diverse mRNA repertoires can be produced from genes containing 
numerous exons. For example, the human gene  UTY  has 61 exons and can generate 
129 mRNA isoforms (according to UCSC Known Gene annotations [ 22 ]). 

  Fig. 13.2     Splicing is regulated by positional binding of RNA-binding proteins . The diagram 
depicts a model for mechanism of splicing activation or repression by RNA-binding proteins 
(RBPs). Two constitutively spliced exons ( blue ) are separated by an alternative or cassette exon 
( orange ). Pending on the positions at which RBPs bind to the pre-mRNA, the alternative exon is 
either included ( top ) or excluded ( bottom ). Certain RBPs (depicted  red ) bind at intronic positions 
close to the 3′ and 5′ splice sites of the alternative exon to silence its inclusion. In contrast, binding 
of enhancer RBPs ( depicted green ) within the exon or in the downstream intron promotes inclusion 
of the alternative exon       
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  Fig. 13.3     Alternative splicing events in cancer . The basic types of alternative splicing include 
cassette-exon inclusion or exclusion, alternative 5′ or 3′ splice site selection, intron retention, alter-
native selection of transcription initiation (alternative promoter) and alternative selection of 3′ end 
processing sites (alternative polyadenylation). Alternative splicing events that have positive effects 
on cancer progression are shown. Constitutively spliced exons are depicted in  blue        
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 Overall, the high prevalence of alternative splicing combined with the fi nding 
that many mRNA isoforms represent low-abundant, non-conserved transcripts 
argue that they may be devoid of functional impact. Yet, recent studies are revealing 
a rapidly growing number of physiologically important splicing events. 

 Distinct splicing patterns of a given pre-mRNA can be observed pending on the 
cellular environment. For example, some mRNA isoforms are specifi cally expressed 
in certain tissues or developmental stages and other are triggered in response to 
external stimuli such as signaling pathways (reviewed in [ 23 ,  24 ]) or depolarization 
of neurons [ 25 ]. The diversity of mRNA isoforms appears to be higher in embryonic 
stem cells compared to differentiated cells [ 26 ] and some isoforms specifi cally 
detected in embryonic stem cells have recently been shown to play a key role in 
pluripotency [ 27 – 30 ]. Remarkably, a single splicing event can function to control an 
entire transcriptional network. This is well illustrated by alternative splicing of the 
transcription factor  FOXP1 .  FOXP1  mRNAs transcribed in embryonic stem cells 
contain a specifi c exon that is skipped in differentiated cells [ 30 ]. Inclusion of this 
exon determines the DNA binding properties of the encoded protein and is required 
for stimulating the expression of several pluripotency transcription factor genes [ 30 ]. 

 Presumably, the intron-exon structure of genes played an important role in the 
generation of new genes during evolution. Moreover, alternative splicing seems to be 
rapidly evolving, particularly among physiologically equivalent organs from verte-
brate species [ 31 ]. A remarkable example of how species-specifi c alternative splicing 
evolved was found in bats [ 32 ]. In order to detect warm-blooded prey, vampire bats 
express a splice isoform of the transient receptor potential cation channel V1 ( TRPV1 ) 
gene. This isoform produces a channel with a truncated carboxy- terminal cytoplas-
mic domain capable of detecting infrared radiation. In contrast, the protein isoform 
expressed in fruit-feeding bats has a much higher thermal activation threshold [ 32 ]. 

 Around 10–30 % of all alternatively spliced exons have inclusion levels that dif-
fer across tissues and are therefore called tissue-specifi c exons. Many of these exons 
play an important role in cell differentiation, for example during brain and heart 
development [ 33 ]. Recent large-scale computational analysis revealed that genes 
with tissue-specifi c exons tend to have more interaction partners compared to the 
other genes [ 34 ,  35 ]. Tissue-specifi c exons tend to encode fl exible protein segments 
without a well-defi ned three-dimensional structure that likely form conserved inter-
action surfaces [ 34 ,  35 ]. Using a high-through put coimmunoprecipitation assay, 
inclusion of tissue-specifi c exons was shown to both promote and disrupt partner 
interactions [ 35 ]. Thus, tissue-specifi c splicing can potentially mediate new molec-
ular interactions in a cell type-specifi c manner. 

 How human cells control more than 100,000 alternative splicing decisions 
remains incompletely understood. Clearly, there are multiple mechanisms involved, 
including RNA-binding proteins that interact with pre-mRNAs and modulate the 
effi ciency of splice-site recognition by the spliceosome, formation of secondary 
structures in the RNA, the transcription rate and epigenetic modifi cation of the tem-
plate chromatin [ 36 ,  37 ]. A relatively small number of splicing regulators has been 
identifi ed, and most are ubiquitously expressed although their relative abundances 
can fl uctuate in different tissues [ 38 ]. A few, however, are tissue-specifi c 
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RNA- binding proteins, such as  NOVA1  and  NOVA2  [ 39 ],  PTBP2  (nPTB) [ 40 ,  41 ], 
 RBFOX1  (FOX-1) and  RBFOX2  (FOX-2) [ 42 ,  43 ],  ESRP1  and  ESRP2  [ 44 ] and 
 SRRM4  (nSR100) [ 45 ]. Currently, large-scale quantifi cation of alternative splicing 
has been combined with genome-wide identifi cation of in vivo binding sites of 
splicing regulators (Fig.  13.2 ) to create maps identifying all pre-mRNAs regulated 
by a single RNA-binding protein. RNA splicing maps are providing an unprece-
dented view of the global principles guiding splicing regulation [ 46 ].  

13.4     Numerous Alterations in Splicing Occur 
in Cancer Cells 

 Recent high-throughput transcriptome sequencing studies revealed that different 
splicing variants are commonly found in cancer tissue compared to the normal sur-
rounding tissue. This type of information has already proven useful in the classifi ca-
tion of ovarian and breast cancer [ 47 ,  48 ]. In the case of prostate cancer, alternative 
splicing signatures are more reliable for diagnostic purposes than are gene expres-
sion signatures [ 49 ], and in osteosarcoma, changes in relative expression of splicing 
isoforms of the  TP53  (p53) inhibitor  MDM2  (HDMX) is a more effective prognos-
tic biomarker than  TP53  mutation [ 50 ]. 

 Direct causes of splicing alterations in cancer can be grouped into two main cat-
egories:  cis -acting mutations in the pre-mRNA sequence and  trans -acting changes 
in expression or activity of regulatory splicing factors. The fi rst category encom-
passes mutations or polymorphisms in splice sites or regulatory sequence motifs. 
For example, in breast and ovarian cancer, mutations in the tumor suppressor breast 
cancer 1, early onset ( BRCA1 ) often disrupt constitutive splice sites, leading to the 
production of inactive protein isoforms [ 51 ]. Splice site mutations in the  TP53  gene 
have also been described in various cancers [ 52 ]. In infant B-precursor leukemia, 
intronic mutations were found in the  CD22  gene that affect target motifs for splicing 
factors  HNRNPL  (hnRNP-L),  PTBP1  (PTB) and  PCBP1  leading to deletion of exon 
12 and expression of a truncated and functionally defective  CD22  coreceptor pro-
tein unable to transmit apoptotic signals [ 53 ]. Recent systematic surveys identifi ed 
106 acquired somatic splice site mutations associated with aberrant splicing in lung 
cancer [ 54 ] and 158 essential splice site mutations in breast cancer [ 55 ]. 

 In addition to inherited and acquired mutations, the human genome contains approx-
imately 1,200 single nucleotide polymorphisms (SNPs) expected to modify splicing 
decisions [ 56 ]. A subset of these splicing-related SNPs may be functionally relevant in 
the context of cancer susceptibility and cancer progression, as shown by a recent study 
that identifi ed a splicing polymorphism in the germline as predictor of response to tar-
geted therapies [ 57 ]. A common intronic deletion polymorphism in the  BCL2L11  
(BCL2-like 11, BIM) gene switches splicing from exon 4 to exon 3, leading to expres-
sion of  BCL2L11  isoforms that lack the pro-apoptotic BCL2-homology domain 3. The 
presence of this polymorphism explains why some individuals with chronic myeloid 
leukemia and epidermal growth factor receptor- mutated non-small-cell lung cancer 
have inferior responses to tyrosine kinase inhibitors [ 57 ]. 
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 Changes in expression or activity of  trans -acting protein factors are caused by 
defects in components of the spliceosome or splicing regulatory factors. These can 
be induced by either genetic mutations and amplifi cations, or transcriptional and 
post-transcriptional mis-regulation. For example,  SRSF1  (SF2/ASF), a member of 
the SR protein family of splicing regulators, is frequently upregulated in many can-
cers. In some tumors, the gene locus is amplifi ed accounting for the elevated levels 
of the protein [ 58 ]. Altered transcriptional regulation by  MYC  (c-Myc), which binds 
directly to E-boxes in the  SRSF1  gene promoter, is an alternative cause for  SRSF1  
protein over expression in cancer [ 59 ].  MYC  can also control expression of addi-
tional splicing regulators, namely hnRNP proteins [ 60 ]. In addition to  MYC , other 
transcription factors control the expression of splicing proteins. Namely, mutations 
in the Wilms’s tumor suppressor gene,  WT1 , abrogates binding of the  WT1  protein 
to the  SRPK1  promoter, causing over-expression of this SR-protein kinase and 
hyperphosphorylation of splicing regulator  SRSF1 ; this in turn resulted in altered 
splicing of  VEGFA , stimulating angiogenesis [ 61 ]. Direct binding of the transcrip-
tion repressor Snail to the  ESRP1  promoter was also shown to cause reduced 
expression of this epithelial-specifi c splicing factor, thus promoting isoform switch-
ing of several genes involved in epithelial-to-mesenchymal transition [ 62 ]. 
Recurrent mutations in genes encoding essential components of the splicing 
machinery such as  U2AF1 ,  ZRSR2 ,  SRSF2 ,  SF3A1  and  SF3B1  were recently found 
in patients with myelodysplastic syndromes [ 63 – 66 ]. More recently, mutations in 
 U2AF1 ,  U2AF2 , and  SF3B1  genes were also detected in lung cancer patients [ 67 ]. 
Remarkably, most of these mutations affect proteins involved in 3′-splice site rec-
ognition during the early stages of spliceosome assembly (Fig.  13.1b, c ). This, 
together with the fi nding that mutations were detected in a mutually exclusive man-
ner, strongly suggests that the compromised function of early spliceosome com-
plexes is a hallmark of cancer. 

 In general, factors involved in splicing regulation are RNA binding proteins that 
interact with particular sequence motifs, albeit with relatively low specifi city. 
Therefore, most alternative splicing decisions are controlled by the cooperative 
binding of several protein factors to short redundant RNA motifs. As a consequence, 
each alternative splicing event is frequently regulated by multiple factors, and each 
factor may control several splicing events [ 46 ]. A striking example was recently 
reported for the tissue-specifi c splicing factors  RBFOX1  (FOX-1) and  RBFOX2  
(FOX-2). Unlike most other known splicing regulators, the FOX proteins bind 
exclusively two defi ned sequence motifs: UGCAUG and AGCAUG [ 68 ]. The 
expression of  RBFOX2  was found downregulated in ovarian cancer and  RBFOX2  
binding sites were detected downstream of one-third of the exons alternatively 
spliced in this type of cancer [ 69 ]. Importantly, reducing the expression of  RBFOX2  
in cell lines recapitulated the cancer-associated splicing signature, suggesting that 
the reduced level of  RBFOX2  causes the changes in splicing [ 69 ]. This study further 
showed that ovarian and breast cancers share a common splicing signature. Although 
 RBFOX2  transcripts were not downregulated in breast cancer, they were alterna-
tively spliced producing an inactive form of the protein [ 69 ]. This illustrates how 
changes in splicing of a splicing factor can change its regulatory activity, leading to 
further changes in splicing of its target pre-mRNAs. 
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 Although splicing is primarily controlled by sequence elements in the pre-mRNA 
that recruit trans-acting splicing factors, recent work make it clear that alternative 
splicing is also sensitive to transcriptional rate and chromatin conformation 
(reviewed in [ 70 ]). Since many proteins that control DNA and histone modifi cation 
show aberrant expression or altered activity in tumors [ 71 ], it is likely that epi-
genetics represents a third cause of splicing abnormalities in cancer. Of note in this 
regard, variations in the methylated status of the  MST1R  (RON) promoter correlate 
with transcription of a short isoform of the enzyme that is constitutively active and 
drives cell proliferation [ 72 ]. 

 While the majority of cancer-specifi c alternative splicing events may have just 
coincidently occurred during tumor development, a few bestow a growth advantage 
on the tumor. To date, several splicing isoforms that are specifi cally expressed in 
cancer have been demonstrated to contribute to cellular malignant phenotypes such 
as avoidance of apoptosis, angiogenesis, limitless replication potential, and invasion 
[ 73 ], as detailed below (see also Table  13.1  and Fig.  13.3 ).

13.4.1       Apoptosis 

 Transcripts from numerous genes involved in apoptosis are alternatively spliced, 
often resulting in isoforms with opposing roles in promoting or preventing cell 
death. Well-characterized examples include the  BCL2L1  (Bcl-x),  CASP2  
(Caspase-2),  CASP9  (Caspase-9), and  FAS  (Fas) genes. In general, isoforms that 
enhance survival tend to be up-regulated in cancer and correlated with clinical stag-
ing (reviewed in [ 73 ]). Another protein that promotes apoptosis upon DNA damage 
is  AIMP2  (Aminoacyl-tRNA synthetase-interacting multifunctional protein 2). 
A splicing variant of  AIMP2  was found highly expressed in lung cancer, leading 
to increased resistance to cell death, and the relative expression of this isoform 
 correlated with cancer stage and survival of patients [ 75 ].  

13.4.2     Angiogenesis 

 Primary transcripts encoding Vascular Endothelial Growth Factor ( VEGFA ), which 
plays a key role in promoting the formation of new blood vessels, undergo exten-
sive alternative splicing. As a result, two families of splicing isoforms are produced 
with either pro-angiogenic or anti-angiogenic functions. Anti-angiogenic isoforms 
are expressed in normal tissues and are downregulated in many cancers (reviewed 
in [ 124 ,  125 ]). Another protein involved in angiogenesis that is regulated by alter-
native splicing is  CYR61  (cysteine rich 61, CCN1). While normal cells express a 
variant with retention of an intron that most likely targets the transcripts for degra-
dation, in cancer cells the intron is spliced leading to an accumulation of active 
protein [ 85 ].  
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13.4.3     Proliferative Potential 

 Proliferating cells reprogram their metabolism to engage in aerobic glycolysis (the 
Warburg effect), in part through alternative splicing of the pre-mRNA that encodes 
the enzyme pyruvate kinase M,  PKM . Normal cells express the splicing isoform 
PKM1, whereas all tumors express PKM2. Importantly, replacing PKM2 with 
PKM1 in cancer cells reduced tumor growth (reviewed in [ 126 ]). Cancer-associated 
changes in alternative splicing can also result in activation of proto-oncogenes such 
as  CCND1  (Cyclin D1) [reviewed in  127 ].  

13.4.4     Invasion and Metastasis 

 A signifi cant reprogramming of alternative splicing occurs during the epithelial-to- 
mesenchymal transition (EMT), a process by which cancer cells acquire invasive 
capabilities and become metastatic. EMT-associated changes in splicing affect 
genes such as  MST1R  (Ron),  RAC1 ,  CD44 ,  FGFR2 ,  CTNND1  (p120-catenin), and 
 ENAH  (Mena) (reviewed in [ 128 ,  129 ]). Among these, the  CD44  transmembrane 
protein was one of the fi rst genes for which splicing variants were found associated 
with metastasis. The expression of specifi c  CD44  splicing variants correlates with 
aggressive behavior in several cancer cell types [ 130 – 132 ], and one particular iso-
form (CD44v8-10) potentiates the ability of cancer cells to defend themselves 
against reactive oxygen species [ 91 ,  133 ]. Alternative splicing can further contrib-
ute to regulate the onset of EMT in cancer cells. Indeed, it was recently found that 
normal breast epithelia express two splice variants of sentrin/small ubiquitin-like 
modifi er (SUMO)-specifi c protease 7 ( SENP7 ), and breast cancer cells express pre-
dominantly the isoform that promotes EMT initiation [ 117 ]. Additional examples of 
alternatively spliced isoforms that promote cancer cell migration and invasion via a 
gain-of-function mechanism include the truncated glioma-associated oncogene 
homolog 1,  GLI1  [ 111 ,  134 ], the steroid receptor coactivator 3 ( NCOA3 , AIB1) with 
a deletion of exon 4, SRC-3Δ4 [ 115 ,  135 ], truncated forms of  ADAM8  (a disintegrin 
and metalloprotease) [ 105 ] and  CPE  (carboxypeptidase E) [ 108 ], and alternative 
inclusion of an exon in the fi ve untranslated region of tumor protein p53 inducible 
nuclear protein 2  TP53INP2  [ 118 ]. 

 In addition to generating protein isoforms with different biological activities, 
alternative splicing can also regulate gene expression level through inclusion of 
premature translation termination codons that target the mRNA for degradation by 
nonsense-mediated decay [ 136 ]. This mechanism causes downregulation of pro-
teins involved in tumor development such as  NFAT5  transcription factor [ 137 ] and 
 CDH1  (E-cadherin) in chronic lymphocytic leukemia [ 138 ]. 

 Finally, several lines of recent evidence reveal that splicing contributes for 
acquired resistance to chemotherapeutic drugs. For example, patients with meta-
static melanoma are currently treated with vemurafenib, a newly approved drug that 

13 The Potential of Targeting Splicing for Cancer Therapy



326

selectively binds monomers of the most prevalent oncogenic mutation of  BRAF  
(B-RAF, V600E), inhibiting its kinase activity. However, most patients acquire 
resistance within a year of treatment. Different mechanisms have been identifi ed 
that counteract vemurafenib effectiveness, and one of them consists in expression of 
truncated forms of the  BRAF  (V600E) protein generated by abnormal pre-mRNA 
splicing. These splicing isoforms lack the RAS-binding domain and dimerize in a 
RAS-independent manner therefore rendering the enzyme insensitive to RAF inhib-
itors [ 121 ]. Another example is gemcitabine, the drug used for pancreatic ductal 
adenocarcinoma. Gemcitabine induces overexpression of splicing factor  SRSF1 , 
leading to formation of a mitogen activated protein kinase interacting kinase 
 MKNK2  (MNK2) splicing variant that overrides upstream regulatory pathways and 
confers resistance to the drug [ 122 ]. In chronic myeloid leukemia, one of the mech-
anisms responsible for resistance to tyrosine kinase inhibitors is the expression of an 
alternatively spliced  BCR  (BCR-ABL) pre-mRNA that lacks the drug-targeted 
kinase domain [ 120 ,  139 ] and in B cell malignancies, a splicing isoform of  MS4A1  
(CD20) produces a  truncated  protein that loses membrane anchorage and causes 
resistance to rituximab [ 123 ]. Splicing variants of the androgen receptor  AR  may 
also contribute to the development of castration-resistant prostate cancers [ 119 ], 
and in ovarian cancer expression of a particular  TP53  (p53) splicing isoform corre-
lates with impaired response to primary platinum-based chemotherapy [ 52 ].   

13.5     Targeting Splicing for Cancer Therapy 

 In cancer research, much effort is focused on the identifi cation of molecular path-
ways that are specifi c to tumor cells and essential for their survival. Cancer-specifi c 
splice variants are therefore emerging as highly attractive therapeutic targets, since 
only cancer cells will be targeted with minimum toxicity towards normal cells. 
However, in contrast with diagnostic and prognostic purposes for which any dis-
criminating isoform can be a valuable biomarker, the selection of splicing isoforms 
as drug targets requires detailed functional studies to evaluate their potential in 
ablating cancer cells. RNA interference (RNAi) screens specifi cally targeted to 
silence tumor-associated splicing variants currently represent a valuable tool for 
identifi cation of isoforms essential for cancer cell survival. Recently, a systematic 
isoform-specifi c functional screen of 41 alternatively spliced variants associated 
with breast and ovarian cancer revealed that targeting the spleen tyrosine kinase 
 SYK  isoform induced apoptosis, whereas global knockdown of the same gene had 
no effect [ 140 ]. Clearly, the functional contribution of splicing isoforms to tumor 
behavior should be considered when designing anticancer strategies. This is well 
illustrated by the limited effi cacy of currently used molecules like Bevacizumab 
that target angiogenesis but do not distinguish between the pro- and the anti-angio-
genic splicing isoforms of  VEGFA  [ 125 ]. It remains to be studied whether targeting 
specifi cally the pro-angiogenic  VEGFA  isoform or treating patients with 
Bevacizumab only in cases where the anti-angiogenic isoforms are absent will be 
more benefi cial [ 125 ]. 
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 Multiple strategies have been envisioned to therapeutically target cancer- 
associated splicing. These include small molecule inhibitors, antibodies, and 
 antisense oligonucleotides, as described below in more detail (see Fig.  13.4 ).

  Fig. 13.4     Strategies for splicing-targeted cancer therapies . ( a ) Small molecule inhibitors capa-
ble of altering cancer-associated splicing. ( b ) Monoclonal antibodies that recognize unique protein 
epitopes encoded by cancer-associated mRNA isoforms. ( c ) Antisense oligonucleotides that 
induce RNAi-mediated knockdown of oncogenic mRNA isoforms. ( d ) Splice-switching oligonu-
cleotides that redirect splicing decisions, thereby reducing oncogenic mRNA isoforms. ( e ) Instead 
of using oligonucleotides, splicing reprogramming can be achieved by engineered proteins that 
combine sequence-specifi c RNA-binding domains with functional domains that regulate splicing       
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13.5.1       Small Molecule Inhibitors 

 Different types of molecules capable of altering alternative splicing have emerged 
from several chemical screens. Many of these substances act by either blocking 
histone deacetylases or by inhibiting the kinases that phosphorylate SR splicing fac-
tors (reviewed in [ 141 ]). For example, amiloride can revert cancer-specifi c splicing 
events and this effect is likely mediated by changes in amount and phosphorylation 
status of SR proteins [ 142 ,  143 ]. Similarly, a small-molecule inhibitor of  XBP1  
splicing may be a promising therapeutic option in multiple myeloma [ 144 ]. 

 Using a different approach, natural products derived from distantly related bac-
teria were found to target a core component of the spliceosome, the SF3B1 protein, 
suggesting that interfering with splicing may be a mechanism by which bacteria 
compete with eukaryotes. Remarkably, mutations in the  SF3B1  gene were found in 
some cancers [ 66 ] and anti-SF3B1 compounds demonstrated dramatic, selective 
antitumor activity in human tumor xenograft models (reviewed in [ 145 ]). The 
mechanism responsible for such selective antitumor activity is unknown, but one 
intriguing possibility is that proliferating cancer cells are more vulnerable than nor-
mal cells to splicing inhibitors. Consistent with this view, several lines of evidence 
suggest that RNA splicing is functionally coupled to cell-cycle progression (see 
[ 146 ] and references therein). Moreover, interfering with the splicing machinery 
leads to activation of  TP53  [ 147 ] and induces an alternatively spliced isoform of 
 TP53  that promotes cellular senescence [ 148 ]. Altogether these observations sug-
gest that activation of p53 may contribute to the observed selective anti-tumor activ-
ity. Thus, targeting the spliceosome might be a viable approach for development of 
novel anticancer drugs [ 145 ].  

13.5.2     Antibodies 

 An alternative strategy that is being explored consists of raising antibodies against 
epitopes that are uniquely present in the cancer-associated protein isoforms. 
A recent example is a fully human monoclonal antibody that recognizes the extra-
cellular domain of a  CD44  isoform expressed on the surface of various epithelial 
cancers [ 149 ].  

13.5.3     Antisense Oligonucleotides 

 Oligonucleotides designed to bind defi ned sequence elements in the pre-mRNA can 
induce either an RNAi-mediated specifi c knockdown of a particular splicing iso-
form, or redirect splicing decisions. For example, alterations in glucose metabolism 
mediated by pyruvate kinase ( PKM ) activity are likely to confer a selective advan-
tage for tumor cells to grow in hypoxic environments. Because PK activity is 
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modulated by alternative splicing, inhibition of the PKM2 isoform that is com-
monly expressed at high levels in tumor cells appears as a promising target of broad 
therapeutic applicability. By screening a tiling siRNA library, Goldberg and Sharp 
recently identifi ed sequences that discriminate between the M1 and M2 splicing 
isoforms of pyruvate kinase and produce a potent and specifi c knockdown of the M2 
isoform. This resulted in decreased viability and increased apoptosis in multiple 
cancer cell lines but less so in normal fi broblasts or endothelial cells. Moreover, 
when the selected siRNAs were delivered as nanoparticles to established xenografts, 
a substantial reduction of tumor volume was observed [ 150 ]. Oligonucleotides can 
also be designed to redirect splicing decisions through blocking access to the tran-
script by the spliceosome. Splice-switching oligonucleotides (SSOs) are chemically 
modifi ed to ensure stability and increase their binding affi nity for the target 
sequence. SSOs have been applied to restore correct splicing of an aberrantly spliced 
transcript, induce expression of a novel splice variant with therapeutic value, or 
manipulate alternative splicing from one splice variant to another (reviewed in 
[ 151 ]). The latter mechanism can induce downregulation of a deleterious transcript 
while simultaneously upregulating expression of a preferred isoform, making it an 
attractive anti-cancer molecular therapy. Although the application of SSOs is still 
hindered by poor in vivo delivery to tumor cells, promising results were reported for 
antisense compounds directed at either inducing the pro-apoptotic splicing variant 
Bcl-x(S) at the expense of the more abundant survival Bcl-x(L) isoform of  BCL2L1  
gene [ 152 ], or redirecting splicing of the signal transducer and activator of tran-
scription 3 ( STAT3 ) transcripts to produce a truncated isoform lacking the transacti-
vation domain [ 82 ]. Enhanced delivery of SSOs to the cell nucleus can be achieved 
through aptamers that bind nucleolin, a protein that is found on the surface of rap-
idly proliferating tumor cells and traffi cs from the cell surface to the nucleus [ 153 ]. 

 In principle, splicing can also be modulated using engineered proteins instead of 
antisense oligonucleotides. A recently proposed strategy relies on direct recognition 
of the pre-mRNA targets through protein-RNA interaction. Splicing reprogram-
ming is achieved through engineering artifi cial splicing factors that combine 
sequence-specifi c RNA-binding domains with functional domains that regulate 
splicing [ 154 ]. Artifi cial factors targeted to the human endogenous gene  BCL2L1  
(Bcl-X) increased the amount of the pro-apoptotic splicing isoform and promoted 
apoptosis of cancer cells [ 154 ].   

13.6     Concluding Remarks 

 Molecular studies are increasingly used to guide therapeutic decisions for cancer 
patients, as clinical trials demonstrate superior effi cacy of targeted treatments com-
pared to “classical” chemotherapy. Recent advances in high-throughput DNA and 
RNA sequencing will ultimately lead to a comprehensive characterization of the 
genome and transcriptome of most cancers. New activating mutations and translo-
cations in oncogenes will be discovered and pursued as drug targets. Additionally, a 
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more insightful perspective on the contribution of post-transcriptional regulation of 
gene expression in cancer complexity and diversity will be gained. The complete 
landscape of splicing alterations will be described for each cancer type and their 
functional impact on cell growth, metabolism, viability, apoptosis, invasiveness, 
angiogenesis and drug resistance will be established with the help of RNAi screens. 
The molecular mechanisms responsible for the functionally relevant cancer- 
associated splicing events will also be identifi ed. Doubtless, these studies will sig-
nifi cantly increase the list of potential cancer therapeutic targets in the near future. 
The challenge ahead will be to further develop innovative approaches to selectively 
and effi ciently interfere with the splicing machinery and modulate splicing deci-
sions. There is growing optimism that this research area may enable new opportuni-
ties for cancer patients.     
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