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    Abstract     A signifi cant increase in lipogenesis is a metabolic hallmark of prolifer-
ating tumor cells and is required for oncogenic transformation of epithelial cells. 
Although most normal cells acquire the bulk of their fatty acids from the circulation, 
tumor cells synthesize more than 90 % of required lipids de novo. Consistent with 
an increased demand for lipid synthesis, diverse human cancer cells express high 
levels of lipogenic enzymes, such as fatty acid synthase (FASN) and stearoyl-CoA 
desaturase 1 (SCD1). The sterol regulatory element-binding protein 1 (SREBP1) 
and peroxisome proliferator-activated receptor γ (PPARγ) are master regulators of 
lipogenesis in diverse organisms. Previous studies have established that FASN and 
SCD1, the major transcriptional targets of SREBP1 and PPARγ, promote synthesis 
of fatty acids, which then serve as ligands for PPARγ activation. This review focuses 
on the potential therapeutic value of these lipogenic transcription factors as targets 
in cancer treatment.  
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10.1         Introduction 

 Lipogenesis is almost universally upregulated in human cancers [ 1 ]. Consistent with 
an essential role of the sterol regulatory element-binding protein 1 (SREBP1) in 
sensing and regulating intracellular lipid homeostasis, increased expression of 
SREBP1 has been detected in colorectal carcinoma, breast and prostate cancer, and 
hepatocarcinoma [ 2 – 5 ]. Moreover, elevated expression of SREBP1 is closely cor-
related with malignant transformation, cancer progression, and metastasis for sev-
eral cancer types, particularly hormone responsive tissue-derived cancers, such as 
breast and prostate cancers [ 2 ,  4 ,  6 ,  7 ]. SREBP1 expression correlates with the 
expression of  FASN  (encodes fatty acid synthase or FAS) and Ki-67(a nuclear 
marker for cellular proliferation) in colorectal cancer, suggesting a role for SREBP1 
in supporting rapid cellular proliferation [ 7 ]. SREBP1 is elevated in clinical prostate 
cancer samples compared to benign prostatic hypertrophy [ 3 ]. Gene expression pro-
fi ling of hepatocellular carcinoma (HCC) tissue and non-cancerous liver tissue 
showed increased lipogenic signaling in HCC. ElevatedSREBP1 expression in 
hepatocellular carcinoma is a known predictor of increased mortality [ 4 ,  6 ]. 
Overexpression of SREBP1 in human hepatoma HuH7 and Hep3B cells enhanced 
cellular proliferation and foci formation, while knockdown of SREBP1 in these 
cells reduced cell replication and anchorage-independent cell growth [ 6 ]. A dra-
matic increase of SREBP1 has been correlated with the progression of prostate can-
cer towards androgen-independence [ 3 ]. Oncogenic transformation of normal breast 
epithelial cells was accompanied by increased  SREBP1  and  FASN  expression, con-
sistent with the observation of increased SREBP1 levels in human breast cancers 
[ 8 – 10 ]. Previous studies have established that SREBP1, through induction of  FASN  
and subsequent fatty acids production, regulates PPARγ transactivation [ 11 ,  12 ]. 

 Dietary carbohydrates are digested into glucose, the major source of energy for 
many tissues. Once transported into cells, glucose is converted into pyruvate through 
glycolysis and subsequently acetyl Co-enzyme A (acetyl-coA), which is then re- 
engineered into palmitate, the major fatty acid, by Acetyl-coA carboxylase (ACC), 
the rate-limiting enzyme, and FAS, the major enzyme, both of which are required 
for fatty acid biosynthesis. Palmitate is further converted into triglycerides for 
energy storage and phospholipids, the major components of cell membrane. The 
key steps in lipogenesis in mammalian hepatocytes are summarized in Fig.  10.1 . 
The enzymatic reactions that govern carbohydrate and lipid metabolism, as well as 
the allosteric regulation of the activities of these enzymes, also known as the “short- 
term regulation”, have been elucidated by many pioneering biochemists during the 
fi rst half of the twentieth century.

   Compared to the short-term quick regulation of the enzymes, however, the tran-
scriptional regulation of the metabolic enzymes in vivo, known as the “long-term 
regulation” of metabolism, is less well-understood [ 13 ]. Since defects in short-term 
regulation of enzymes are likely detrimental to survival at the cellular or organismal 
levels, the aberrant regulation of the long-term regulation contributes to a number of 
major diseases in adults, collectively known as the metabolic syndrome [ 14 – 17 ]. 

 Because of the fundamental importance of FAS, ACC, ACS and SCD1 in regu-
lating lipid metabolism, it is essential to understand the transcriptional regulation of 
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these enzymes in response to physiological stimuli by key transcription factors, 
including SREBP, PPARγ, liver X receptor (LXR), and carbohydrate-responsive 
element-binding protein (ChREBP) [ 13 ,  18 – 20 ]. In this chapter, we summarize the 
recent advances in studies linking deregulated lipogenesis in cancers, and then focus 
on our understanding of SREBPs and PPARγ in regulating lipid homeostasis. 
Finally, we will discuss potential therapeutic approaches to target lipid metabolism 
in treating cancer.  

10.2     Deregulation of Lipogenic Signaling in Cancer 

10.2.1     Elevated FASN Expression and Enhanced De Novo 
Fatty Acid Synthesis in Cancer 

 Most normal human tissues preferentially use circulating lipids for synthesis of new 
structural lipids, and de novo fatty-acid synthesis is normally suppressed due to the 
low levels of  FASN  expression. In cancer cells, however, fatty-acid supply becomes 
highly dependent on de novo lipogenesis. Deregulation of de novo fatty-acid syn-
thesis leads to cellular fatty-acid accumulation and affects cellular processes, 
including signal transduction and gene expression. 

  FASN  over-expression occurs in a variety of human cancers [ 21 – 25 ]. In cancer 
cells,  FASN  gene expression is upregulated in response to multiple signaling 

  Fig. 10.1     The key biochemical reactions and enzymes involved in de novo lipogenesis in 
mammalian hepatocytes . This process is highly conserved in evolution. Transcription of many 
metabolic enzymes in this process is directly regulated by several transcription factors, such as 
PPARγ, SREBP, ChREBP, and LXR etc.       
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pathways, including growth factors, steroid hormone receptors such as the estrogen 
receptor alpha (ERα), androgen receptor (AR) and progesterone receptor (PR), as 
well as oncoproteins including ErbB2, Ras and Akt [ 9 ,  25 – 30 ]. In addition to the 
essential role in cancer cell growth and survival, FAS is involved in other phases of 
cancer development. FAS over-expression confers resistance to adriamycin and 
mitoxantrone in breast cancer cells [ 31 ] and increased lipogenesis and FAS has been 
reported to be associated with invasive phenotype and cancer metastasis [ 24 ,  27 , 
 32 – 36 ]. Elevated expression of  FASN  leads to increased cell proliferation, migration 
and invasion of prostate cancer cells [ 27 ,  32 ] and FAS inhibition reduces cellular 
migration and invasiveness [ 25 ,  26 ,  29 ,  35 ]. For example, Orlistat, an anti-obesity 
drug, inhibits FAS function and suppresses endothelial cell proliferation and angio-
genesis, suggesting a novel role of FAS in endothelial cell in tumor growth in vivo 
[ 37 ]. It is still unclear how the level and activity of FAS are regulated during tumor 
progression towards metastasis.  

10.2.2     Stearoyl-CoA Desaturase (SCD) and Cancer 

 SCD is a regulatory enzyme in lipogenesis, catalyzing the rate-limiting step in the 
de novo synthesis of monounsaturated fatty acids (MUFAs), mainly palmitic and 
stearic acids. Increased content of the MUFA products, palmitoleic and oleic acids, 
occurs in a variety of transformed cells and cancers [ 38 – 41 ], suggesting that the 
high rate of fatty acid synthesis in cancer is coupled to the conversion of saturated 
fatty acids (SFAs) into MUFAs. Elevated expression and activity of SCD1, the 
endoplasmic reticulum-resident Δ9 desaturase that converts SFA into MUFA, has 
been reported in several types of cancers, including colonic and oesophageal carci-
noma, liver cancer, and mammary gland tumor [ 42 – 45 ]. SV40-transformed human 
lung fi broblasts show signifi cantly increased protein and activity levels of SCD1 
compared to their parental normal cell line [ 46 ]. This is consistent with a model in 
which a high rate of MUFA synthesis is required for producing membrane lipids in 
order to sustain the proliferation of transformed cells. Defi ciency or inhibition of 
SCD1 reduces cell proliferation and anchorage-independent growth, and enhances 
apoptosis in several different cancer cell types [ 40 ,  47 ]. We and others have shown 
that SCD1 is a transcriptional target of SREBP1 and PPARγ [ 48 – 54 ].   

10.3     Cellular Regulation of SREBP1 Function 

10.3.1     SREBP1 Signaling in Lipogenesis and Tumorigenesis 

 SREBPs are a family of transcription factors that control lipid homeostasis by regu-
lating the expression of enzymes required for cholesterol and fatty acids (FAs) syn-
thesis. The three SREBP isoforms, SREBP-1a, SREBP-1c and SREBP-2, have 
distinct roles in lipid synthesis [ 55 ,  56 ]. In vivo studies using transgenic and 
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knockout mice suggest that SREBP-1c is involved in FA synthesis and insulin-
induced glucose metabolism (particularly in lipogenesis), whereas SREBP-2 is rela-
tively specifi c in controlling cholesterol synthesis. The SREBP-1a isoform is 
implicated in regulating both cholesterol and FA pathways [ 57 ,  58 ]. 

 Extensive studies in the past two decades have revealed an elegant paradigm to 
understand how SREBPs maintain the intracellular lipid and cholesterol homeosta-
sis. SREBP transcription factors are synthesized as inactive precursors bound to the 
endoplasmic reticulum (ER) membranes and their processing is mainly controlled 
by cellular sterol content: when sterol level decreases, the precursor undergoes a 
sequential two-step cleavage process to release the NH2-terminal active domain in 
the nucleus (designated as the nSREBPs), which then activates SREBP target genes 
whose products are required for the de novo biosynthesis of cholesterol and FAs 
[ 59 – 66 ]. The major SREBP targets include FASN [ 12 ,  67 ] and stearoyl-CoA desat-
urase (SCD) [ 49 – 51 ,  68 ]. This sterol-sensitive process appears to be a major point 
of regulation for the SREBP-1a and SREBP-2 isoforms, but not for SREBP-1c. 
Moreover, the SREBP-1c isoform is mainly regulated at the transcriptional level by 
insulin. The unique regulation and activation properties of each SREBP isoform 
facilitate the coordinated regulation of lipid and energy metabolism.  

10.3.2     Regulation of the Transcriptional Activity of SREBP1 

 As summarized above, SREBPs are family of transcription factors that play critical 
roles in regulating intracellular lipid and cholesterol homeostasis. Using SREBP- 
1a/-1c as an example, here we focus on the recent advances in our understanding of 
how SREBP-1 activates lipogenic gene expression and how the transcriptional 
activity of SREBP is regulated. 

10.3.2.1     Transcription Activation by SREBP 

 In response to cholesterol depletion, the N-terminus of SREBP that contains the 
transactivation domain and the basic helix-loop-helix leucine zipper (bHLH-Zip) 
DNA binding domain, is cleaved from its precursor, which is localized in ER and 
Golgi apparatus, and then translocates to the nucleus and activates the expression of 
SREBP-target genes [ 69 ,  70 ]. Through the bHLH-Zip DNA-binding domain, the 
nuclear SREBP fragments bind to the SREBP-target gene promoters that contain 
either palindromic E-boxes (CAXXTG) or nonpalindromic sterol regulatory ele-
ments (SREs) [ 71 ]. 

 The transactivation domain of SREBPs can directly interact with transcription 
coactivators including CBP/p300, PGC-1β, MED14/DRIP150, and MED15/
ARC105 [ 72 ]. Recruitment of CBP/p300 via the KIX domain of SREBP may alter 
chromatin structure through the intrinsic histone acetyltransferase activity of CBP/
p300, thereby facilitating gene activation [ 73 ]. The interaction between PGC-1β and 
SREBP is required for SREBP-dependent lipogenic gene expression and 
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contributes to the effect of saturated fat in stimulating hyperlipidemia and athero-
genesis [ 74 ]. In addition, SREBPs directly interact with the MED14/DRIP150 
and the MED15/ARC105 subunits of the Mediator complex in mammals and 
 C.  elegans , which provides an elegant model to explain how transcription activator 
SREBPs interact with the general transcription machinery [ 73 ,  75 – 77 ]. The interac-
tions between SREBP-1c and MED14 or MED15 are weaker than the interactions 
between SREBP-1a and MED14 or MED15, which may explain why SREBP-1a is 
more potent than SREBP-1c in activating gene expression [ 73 ,  75 ]. Since the 
nuclear SREBPs bind to DNA as homo-dimers, it is unclear whether the two trans-
activation domains of the SREBP homo-dimer can bind to MED14 and MED15 
simultaneously.  

10.3.2.2     Inactivation of SREBP-Mediated Transcription 

 Because of the fundamental roles of SREBPs in regulating the expression of lipo-
genic and cholesterogenic genes, the mechanisms that restrain SREBP transactiva-
tion are also important. CDK8, the enzymatic subunit of the Mediator complex, 
directly phosphorylates a conserved Threonine residue in SREBP (Thr402 in 
SREBP-1c), thereby promoting nuclear SREBP degradation [ 78 ]. Consistent with 
this model, the mutants of CDK8 and its regulatory partner Cyclin C (CycC) in 
 Drosophila  larvae, as well as depletion of CDK8 in cultured mammalian cells and 
mouse liver, display signifi cantly increased expression of SREBP-target genes and 
dramatic increase of triglyceride accumulation [ 78 ]. Feeding and activation of the 
insulin-signaling pathway can down-regulate CDK8-CycC thus allow the activation 
of nuclear SRBEP, providing a mechanism for the lipogenic effect of insulin [ 78 ]. 
Together with the previous works on MED14 and MED15 in activating SREBP- 
dependent gene expression, this recent work on the inhibitory effect of CDK8-CycC 
on SREBP-regulated de novo lipogenes further highlights the importance of the 
Mediator complexes in modulating the activation and subsequent degradation of 
nuclear SREBPs. 

 Interestingly, GSK3β also negatively regulates SREBP by phosphorylating 
SREBP-1a at Thr 426 and Ser430 (corresponding to Thr402 and Ser406 in 
SREBP-1c), thereby providing a docking site for the ubiquitin ligase FBW7 [ 79 –
 81 ]. It is still not known whether CDK8 and GSK3β play redundant roles in phos-
phorylating and thereby promoting SREBP destruction, however, these studies 
suggest a model to explain how activation of SREBP-dependent transcription is 
coupled to its degradation. This mechanism is consistent with a general theme by 
coupling transactivation with their destruction for many transactivators in yeasts 
and multicellular organisms [ 82 ]. 

 Both CDK8 and CycC are amplifi ed, mutated or deleted in a variety of cancers, 
and CDK8 is identifi ed as an oncoprote in melanoma and colorectal cancers [ 83 ]. In 
addition, the MED12 subunit of the CDK8 module, which is composed of CDK8, 
CycC, MED12 and MED13, is mutated in prostate cancer, colorectal cancer, and 
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~70 % of uterine leiomyomas [ 84 – 87 ]. Importantly, MED12, but not MED13, is 
required for human CDK8 kinase activity [ 88 ]. Therefore, although it is still unclear 
how dysregulation of the CDK8 module contributes to tumorigenesis, it is conceiv-
able that dysregulation of CDK8 submodules may compromise CDK8 activity, 
thereby potentiating SREBP activity, increasing SREBP target gene expression and 
promoting lipogenesis in cancer cells. This model may explain the mechanisms 
underlying aberrantly increased lipogenesis in human cancer cells and provide the 
rationale for developing pharmaceutical approaches to block de novo lipogenesis in 
tumor cells.    

10.4     Modulation of PPARγ Activation for Cancer 
Therapeutics 

10.4.1     The Function of PPARγ in Lipogenesis 

 Besides SREBPs, the peroxisome proliferator-activator receptor gamma (PPARγ) 
also plays a critical role in both lipid metabolism and tumorigenesis. The PPARs are 
ligand-activated nuclear receptors, which include PPARα, PPARγ and PPARδ [ 89 ]. 
Their modular structure resembles other nuclear hormone receptors with an 
N-terminal activation function 1 (AF-1), a DNA binding domain, and a C-terminal 
ligand-binding domain that harbors AF2. PPARγ was initially cloned as a transcrip-
tion factor involved in adipocyte differentiation. Subsequent studies suggested a 
broad spectrum of PPARγ functions in lipid metabolism, infl ammation, atherogen-
esis, cell differentiation, as well as tumorigenesis. The endogenous PPARγ ligands 
include derivatives of fatty acids produced through lipogenesis (Fig.  10.1 ). 

 PPARγ regulates lipogenesis and adipocyte differentiation, and ectopic PPARγ 
expression promotes cell adipogenesis in an NIH 3 T3 cell model [ 90 ,  91 ]. Synthetic 
PPARγ ligands enhance de novo lipogenesis [ 92 ,  93 ], which was further supported 
by the genetic evidence that  PPARγ   -/−   ES cells and embryonic fi broblasts are resis-
tant to induction of adipogenesis [ 94 ,  95 ]. Aberrant hepatic expression of PPARγ2 
stimulates murine hepatic lipogenesis [ 96 ,  97 ]. The screening for PPARγ-regulated 
genes in mammary epithelial cells, identifi ed that Scd1 ( SCD1 ) as a transcriptional 
target of PPARγ [ 98 ]. SCD1 production of unsaturated fatty acids may thereby 
serve as PPARγ agonist ligands, providing a feedback loop to PPARγ. Reciprocal 
up- regulation of PPARγ and SREBP-1 has been reported. Ectopic expression of 
SREBP-1 in pre-adipocyte 3 T3-L1 cells and hepatic cancer HepG2 cells induced 
endogenous PPARγ mRNA expression [ 99 ]. SREBP-1 activation increased the pro-
duction of lipids as endogenous ligands for PPARγ, which binds to PPARγ and 
augments the transcriptional activity of PPARγ [ 11 ,  12 ]. PPARγ, upon ligand bind-
ing, up-regulates the expression of  INSIG1 , the key regulator in the processing of 
SREBPs [ 100 ].  
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10.4.2     Contradictory Role of PPARγ in Tumorigenesis 

 PPARγ has been shown to function either as an oncoprote in, or as a tumor suppres-
sor. PPARγ is expressed in breast, prostate and colonic epithelium and ligand- 
dependent activation of PPARγ in cell lines derived from these tumors inhibits 
cellular proliferation [ 101 – 105 ]. Consistent with the role of PPARγ as a tumor sup-
pressor, PPARγ ligand reduced tumorigenesis in the Apc Min  model of familial ade-
nomatous polyposis. Carcinogen, N-nitroso-N-methylurea (NMU)-induced 
mammary tumorigenesis is prevented by PPARγ agonists [ 106 ], and 7, 
12-dimethylbenz(a)anthracene (DMBA)-induced mammary tumorigenesis was 
inhibited by troglitazone [ 107 – 109 ]. A chromosomal translocation between PAX8 
and PPARγ in follicular thyroid cancer served as a dominant inhibitor of endoge-
nous PPARγ expression [ 110 ]. PPARγ expression is reduced in human breast can-
cers compared with normal breast tissue [ 111 ,  112 ] and PPARγ over expression in 
tumor cells inhibits cell proliferation in tissue culture [ 112 ]. PPARγ levels are 
reduced in mouse transgenic mammary tumors induced by distinct oncogenes, com-
pared with normal adjacent non tumorous mammary epithelium [ 111 ,  112 ]. 

 In contrast, evidence that PPARγ is an oncogene includes observations that 
PPARγ ligands promote colonic tumor growth in Apc Min  mice when fed a high fat 
diet [ 113 ]. Heterozygous mutations of PPARγ have been detected in 4/55 patients 
with colon cancer [ 114 ]. Although genetic analyses failed to show that PPARγ- 
defi cient mice develop enhanced tumor phenotypes in prostate epithelium induced 
by the SV40 large-T antigen oncogene [ 113 ]. A constitutively active mutant of 
PPARγ (PγCA) enhanced ErbB2-induced tumor in vivo in immune-competent ani-
mals (Fig.  10.2 ) and in transgenic mice [ 115 ]. PγCA promoted ErbB2-induced 
tumor growth in immune-competent animals. Increased angiogenesis is associated 
with enhanced tumor growth in vivo [ 116 ]. Collectively, these studies suggest cell- 
type specifi c functions of PPARγ in the tumor induction versus inhibition.

10.4.3        Can PPARγ Be Targeted to Block the Tumor Growth? 

 In cell culture, PPARγ expression and/or activation repressed tumor cell growth by 
inhibiting cell proliferation, promoting apoptotic and autophagic cell death, and 
inducing terminal differentiation of cancer cells [ 112 ,  117 ,  118 ]. In whole animal 
studies, the picture appears more complex, which is consistent with the importance 
of heterotypic signals in cancer progression, and the presence of PPARγ in a variety 
of cell types including the infl ammatory system. Clinical trials have been under-
taken in a variety of tumor types including liposarcomas, prostate, pancreatic, 
colorectal, breast, thyroid, head and neck cancers, as well as melanoma and leuke-
mia [ 119 ]. Overall, PPARγ agonists failed to yield positive clinical outcome in 
most cancer types. PPARγ is increased in ERα-negative breast cancer, but reduced 
expression in ERα-positive breast cancers [ 120 ]. Breast cancer genetic subtypes 
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(Luminal A, Luminal B, Triple negative/basal-like, HER2 subtypes [ 121 – 123 ]) may 
have different response to PPARγ ligands. Our analysis of  PPARG  gene expression 
in a combined dataset comprising of over 2,000 breast cancers [ 124 ] showed a 
strong heterogeneous distribution of  PPARG  expression among the subtypes 
(unpublished data). Consistent with our previous IHC result showing reduced 
PPARγ expression in breast cancer comparing to normal breast tissue, this analysis 
demonstrated that the gene expression of  PPARG  was also reduced (data not shown). 

  Fig. 10.2     PγCA promotes tumor growth in vivo . ( a ) NAFA cells transduced with MSCV-IRES- 
GFP vector encoding either PPARγ, PγCA, or empty vector were implanted into FVB by injecting 
2 × 10 6  cells subcutaneously. Tumor growth was measured every 3 days by digital caliper and 
tumor volume was calculated. ( b ) Tumor volumes were logarithm-transformed and analyzed using 
a linear mixed model. Separate slope and intercepts were computed for each group (GFP, PPARγ, 
and PγCA), then compared across groups using a global test followed by pair-wise comparisons 
via linear contrasts (This fi gure was reproduced from our previous publication [ 116 ])       
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The higher  PPARG  expression predicts a better clinical outcome, which again holds 
the promise that PPARγ could serve as a therapeutic target. Given the variability in 
PPARγ expression in patient populations, clinical trials using PPARγ expression or 
function as a companion diagnostic may be warranted.   

10.5     Conclusions and Future Directions 

 Given the importance of lipogenesis in cancer development, targeting lipogenic sig-
naling, particularly lipogenic enzymes, is an attractive strategy. The inhibitors of the 
rate-limiting or key lipogenic enzymes, including HMGCR, ACC, FASN, and SCD, 
are summarized in Table  10.1 . In addition to inhibiting these lipogenic enzymes, 
pharmaceutical inhibition of SREBPs and PPARγ, may also be effective.

   Taken together, these studies suggest that dysregulated lipogenic signaling in 
cancer is required for oncogenic transformation, thus targeting the dysregulated 
lipogenesis in câncer cells may represent an attractive therapeutic approach. Current 

   Table 10.1    Chemical modulators of lipogenic signaling   

 Modulator  Targeting molecule/pathway  Mechanism of function  References 

 Statins  HMG-CoA reductase 
(HMGCR)/mevalonate 
pathway 

 Structural analogs 
of HMG-CoA reductase, 
lipid-lowing agent 

 Review 
in [ 125 ] 

 Soraphen A  Acetyl CoA carboxylase (ACC)  Interferes with fatty 
acid elongation 

 [ 126 ,  127 ] 

 benzofuranyl 
alpha- pyrone 
(TEI-B00422) 

 Acetyl CoA carboxylase (ACC)  Competitive inhibition 
of ACC 

 [ 128 ] 

 5-(tetradecyloxy)-2- 
furoic acid (TOFA) 

 Acetyl CoA carboxylase (ACC)  Long chain fatty 
acid analogues 

 [ 129 ] 

 CP-640186  Acetyl CoA carboxylase (ACC)  Interacts with ACC  [ 130 ] 
 Cerulenin  Fatty acid synthase (FASN)  [ 131 ,  132 ] 
 C75  Fatty acid synthase (FASN)  Interacts and inhibits FASN  [ 133 ,  134 ] 
 C93  Fatty acid synthase (FASN)  [ 135 ] 
 Orlistat  Fatty acid synthase (FASN)  [ 136 ] 
 EGCG  Fatty acid synthase (FASN)  [ 137 ] 
 G28UCM  Fatty acid synthase (FASN)  [ 138 ] 
 GSK837149A  Fatty acid synthase (FASN)  Target the beta- ketoacyl 

reductase reaction 
 [ 139 ] 

 MK-8245  Stearoyl-CoA desaturase (SCD)  [ 140 ] 
 Compound 9  Stearoyl-CoA desaturase (SCD)  [ 141 ] 
 Fatostatin (and 

derivatives) 
 SREBP-1  Inhibits SREBP-1 processing  [ 142 ,  143 ] 

 BF175 
(and derivatives) 

 SREBP-1  N.D.  [ 144 ] 

 TZDs  PPARγ  Interacts with and 
activate PPARγ 

 [ 145 ] 
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research efforts have been focused on repressing the activity of lipogenic enzymes 
(such as FASN, HMG-CoA reductase, ACC, ACLY, and SCD). Future studies are 
required to provide a deeper understanding of the following three major aspects. 
First, it would be important to understand how alterations in molecular mechanisms 
of lipogenic signaling occur in cancer. Second, a compendium of metabolic profi l-
ing in different cancer types and subtypes may allow for more accurate patient 
selection for specifi c lipogenic pathway targeted therapies. Third, it may be impor-
tant to simultaneously target multiple lipogenic factors rather than a single mole-
cule, to ensure therapy effectiveness.     
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