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    Abstract     Steroid receptor coactivators (SRCs), including SRC-1, SRC-2, and 
SRC-3, mediate transcriptional activities of nuclear receptors and other transcrip-
tion factors. SRCs’ activities and functions are regulated by multiple signaling path-
ways, including those of hormones, growth factors, and cytokines, and are 
determined by post-translational modifi cations, including phosphorylation, ubiqui-
tination, sumoylation, acetylation, and methylation. SRCs integrate signals from a 
variety of pathways that regulate multiple cellular processes such as metabolism, 
reproduction, and growth. For the growth response, they regulate proliferation, sur-
vival, migration, and invasion, and promote tumor development and metastasis. 
SRCs are highly disregulated in many types of cancers at multiple levels including 
gene amplifi cation, mutation, and mRNA/protein overexpression. Alterations of 
SRCs are frequently associated with advanced tumor progression and drug resis-
tance. As such, SRCs are important prognostic cancer biomarkers and could serve 
as therapeutic targets for cancer therapy.  
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1.1         Introduction 

    The p160 steroid receptor coactivator (SRC) family, consisting of SRC-1, SRC-2, 
and SRC-3, were originally identifi ed as transcriptional coactivators of nuclear hor-
mone receptors (NRs) for estrogen, progesterone, and androgen. SRC-1, also known 
as nuclear receptor coactivator 1(NCOA1), was cloned and characterized as the fi rst 
NR coactivator in 1995 [ 1 ]. SRC-2, also known as NCOA2, GRIP1 (glucocorticoid 
receptor interacting protein 1), and TIF2 (transcriptional intermediary factor 2), was 
identifi ed soon after the cloning of SRC-1 [ 2 ,  3 ]. SRC-3 was then identifi ed by sev-
eral laboratories nearly in the same year of 1997, and was provided with different 
names [ 4 – 7 ]: AIB1 (amplifi ed in breast cancer 1), p/CIP (p300/CBP interacting pro-
tein), RAC3 (RAR-associated coactivator 3), ACTR (activator of thyroid and retinoic 
acid receptor), and TRAM1 (thyroid receptor activator molecule 1). Since the dis-
covery of the fi rst coactivator (SRC-1) in 1995, a substantial number of studies have 
been conducted to elucidate the molecular actions of SRCs in normal physiology and 
pathology. In this chapter, we will focus on the cancer-related functions of SRCs and 
the underlying molecular mechanisms, thereby highlighting the molecular structures 
and functional interacting partners of SRCs, the regulation of SRCs’ activities by 
posttranslational modifi cations (PTMs), and the integration of multiple oncogenic 
signaling pathways by SRCs that promote tumor development and progression.  

1.2     Structures and Transcriptional Interacting 
Partners of SRCs 

 SRC proteins share a common structure that contains fi ve functional domains/
regions (Fig.  1.1 ): the N-terminal basic helix-loop-helix-Per/ARNT/Sim (bHLH/
PAS) domain, the serine/threonine rich (S/T) domain, the nuclear receptor interact-
ing domain (RID), the CBP(cAMP-response element binding protein-binding pro-
tein) interacting domain (CID) or activation domain 1 (AD1), and the activation 
domain 2 (AD2) or the histone acetyltransferase (HAT) domain at the C-terminus 
[ 10 ,  11 ]. Each domain has different interacting partners that confer various func-
tions (Fig.  1.1 ). The bHLH/PAS domain harbors nuclear localization signals (NLS) 
and is the most conserved region. This domain is also termed activation domain 3 
(AD3) as it is responsible for the interaction of SRCs with multiple co-coactivators 
and non-NR transcriptional factors. CoCoA was shown to interact with SRC-2 
through the bHLH/PAS domain and work cooperatively with p300/CBP co- 
coactivators to regulate NR-mediated gene transcription [ 12 ]. hBrm-associated fac-
tor 57 (BAF57), a core component of SNI/SWF chromatin remodeling complex, 
binds to the bHLH/PAS domain of SRCs and bridges the SNI/SWF chromatin 
remodeling complex to ER/SRCs transcription complex to promote estrogen- 
responsive gene transcription [ 13 ]. Melanoma antigen gene protein-A11 (MAGE- 
11) interacts with both TIF2 and AR and potentiates AR transcriptional activity 
probably through stabilizing the AR-TIF2 transcription complex on the target gene 
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promoter [ 14 ]. The bHLH/PAS domain also mediates the interaction of SRCs with 
several non-NR transcription factors such as Stat3 [ 15 ] and p53 [ 16 ] that are impor-
tant factors in cancer.

   The S/T-rich domains of SRCs are frequently targeted by protein kinases and 
phosphatases, which regulate SRC protein stability and activity [ 17 ]. The S/T-rich 
domain of SRC-3 mediates its interaction with E2F1, an essential transcription fac-
tor in cell cycle control [ 18 ]. SRCs bind to NRs through the RID domain that har-
bors three “LXXLL” NR-binding motifs where “L” represents leucine residue and 
“X” denotes any amino acid [ 19 ,  20 ]. The interactions of SRCs with NRs are either 
hormone-dependent or hormone-independent based upon the NRs that SRCs are 
bound to and the growth conditions. Besides mediating the interaction with NRs, 
the RID domain of SRC-3 is important for its interaction with NFкB [ 21 ]. Following 
the binding to NRs, SRCs recruit p300/CBP histone acetyltransferases through the 
CID domain, which promotes chromatin remodeling and the recruitment of general 
transcription machinery [ 5 ,  22 – 24 ]. In the C-terminus of SRCs resides the activa-
tion domain 2 (AD2) that recruits CARM1 and PRMT1 methyltransferases [ 25 ,  26 ]. 
Interestingly, the C-terminus of SRC-1 and SRC-3 also contains a HAT domain 
[ 6 ,  27 ], but its functional substrates remain to be substantiated. In addition, the 
C-terminus was shown to mediate the interaction of SRCs with AP-1 transcription 
factors that play critical roles in cancer cell proliferation and invasion [ 28 ]. 

 Of note, SRCs also have been shown to interact with other oncogenic transcrip-
tion factors such as Rb [ 29 ] and HIF1α [ 30 ], and to potentiate activities of these 
transcription factors, although it is unclear which precise domains within SRCs are 
required for these interactions. Taken together, SRCs interact with a variety of tran-
scriptional factors and coregulators through their fi ve functional domains, suggest-
ing that SRCs are important molecules that integrate diverse cellular processes.  

  Fig. 1.1    Structural domains and transcriptional interacting partners of SRCs. SRC proteins con-
tain fi ve functional domains: the N-terminal bHLH/PAS domain, the serine/threonine rich ( S / T ) 
domain, the nuclear receptor interacting domain ( RID ), the p300/CBP interacting domain ( CID ) or 
activation domain 1 ( AD1 ), and the C-terminal activation domain 2 ( AD2 ). SRC-1 and SRC-3 
harbor a histone acetyltransferase domain ( HAT ) in the C-terminus. A representative list of tran-
scriptional interacting partners within each domain of SRCs are indicated above (for interacting 
transcriptional factors) or below (for interacting coactivators) the structure. Interacting proteins are 
referenced from [ 8 ,  9 ] and as mentioned in the text       
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1.3     Molecular Codes of SRCs: PTMs Targeted by Multiple 
Signaling Pathways 

 As coactivators of a variety of transcription factors, the activity and functions of 
SRCs are regulated by multiple signaling pathways. The molecular regulation of 
SRCs’ activity and functions are determined by post-translational modifi cations 
(PTMs, Figs.  1.2  and  1.3 ), including phosphorylation, ubiquitination, sumoylation, 
acetylation, and methylation, all of which coordinately regulate SRCs’ cellular 
localization, stability, and the interactions with their functional partners.

1.4         Phosphorylations 

 SRCs are phosphorylated by protein kinases in response to multiple signals includ-
ing hormones, growth factors, and cytokines. These signals work independently or 
in concert to regulate SRCs’ activities and functions.  

1.5     Hormone-Induced Phosphorylations of SRCs 

 Hormones stimulate target gene transcription not only by activating hormone recep-
tors via direct binding, but also by activating protein kinases that subsequently phos-
phorylate hormone receptors and coregulators including SRCs (Fig.  1.4 ). Hormones 

  Fig. 1.2    PTMs of SRC-1 and SRC-2. Some identifi ed serine ( S ) and threonine ( T ) phosphoryla-
tion sites and sumoylated lysine ( K ) residues of SRC-1 and SRC-2 are indicated in the schematic 
structure. In the “( )” are shown certain kinases that target the specifi c phosphorylation residues. 
The two conserved sumoylation sites within RID domain of SRCs are shown in  bold        

 

W. Long and B.W. O’Malley



7

such as estrogen, progesterone, androgen, and glucocorticoid stimulate the activa-
tion of multiple kinases such as ERK1/2, Akt, p38, and JNK; rapid activations of 
these kinases by hormones are referred to as non-genomic signaling in contrast to 
direct actions of the receptors on the nuclear genome [ 31 ]. In response to E2 stimu-
lation, SRC-3 is phosphorylated at multiple residues including T24 in the N-terminus, 
S505 and S543 in the S/T-rich region, and S857, S860, and S867 in the RID region 
[ 32 ]. E2-induced phosphorylation of SRC-3 occurs acutely (within minutes) and is 
dependent on ERα [ 33 ]. Phosphorylations at these residues promote the interaction 
of SRC-3 with ERα and CBP, and augment SRC-3’s transcriptional activity. 

  Fig. 1.3    PTMs of SRC-3 and SRC-3Δ4. ( a ) Selectedphosphorylation sites of serine ( S ), threonine 
( T ), or tyrosine ( Y ), lysine ( K ) residues with ubiquitination ( Ub ), sumoylation ( SUMO ), or acetyla-
tion ( Ac ), and arginine ( R ) residue with methylation ( Me ) of SRC-3 are indicated in the schematic 
structures. In the “( )” are also shown certain modifying enzymes for each specifi c PTM. Both 
K723 and K786 are sumoylation sites as well that are conserved in SRCs. ( b ) Phosphorylation 
codes of SRC-3Δ4 that are targeted by PAK1 for EGF signal transduction to FAK. PAK1 phos-
phorylates SRC-3Δ4 at T56, which mediates the interaction with EGFR, and at S569 and S676, 
which is important for the interaction with FAK. See the text for details (It should be noted that 
SRC-3 contains over 50 different PTMs that have been identifi ed by a variety of techniques)       
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Interestingly, while androgen/AR induces SRC-3 phosphorylations similar to 
E2/ ERα, progesterone/PR is unable to do so, suggesting there is ligand/receptor/
coactivator specifi city in hormone-induced SRC phosphorylations. In agreement 
with this notion, SRC-2 is a primary coactivator for glucocorticoid receptor (GR) 
and is phosphorylated upon the stimulation of dexamethason eat fi ve residues (S469, 
S487, S493, S499, and S565) in the S/T-rich region and one residue (S736) in the 
RID region [ 34 ]. Phosphorylations of SRC-2 facilitate GR transcriptional activity. 
Similarly, progesterone/PR stimulates SRC-1 phosphorylations that are important 
for SRC-1 transcription activity (Weiwen Long and Bert O’Malley, unpublished 
data). Collectively, these fi ndings demonstrate that phosphorylations of SRCs serve 
as an integrating link between non-genomic and genomic actions of hormones.

  Fig. 1.4    SRCs-mediated hormone signaling and the cross-talk with growth factor and cytokine 
signals in regulating NR target gene expression. Upon the binding of hormone ( H ), nuclear recep-
tors ( NRs ) dimerize and bind to the hormone responsive element ( HRE ) of target genes. SRCs 
coactivate gene transcription by interacting with DNA-bound NRs and then recruiting secondary 
coactivators including p300/CBP histone acetyltransferases and CARM1/PRMT1 histone methyl-
transeferases. p300/CBP and CARM1/PRMT1 elicit histone acetylation ( Ac ) and methylation 
( Me ), respectively, both of which facilitates the assembly of the general transcriptional machinery 
consisting of TBP, TAFIIs, and Pol II, and the subsequent gene transcription. SRCs also are capa-
ble of recruiting SWI/SNF chromatin remodeling complex via BAF57 and further potentiate gene 
transcription. The transcriptional activities of SRCs and NRs are regulated by multiple signaling 
pathways including those of cytokines ( Cy ), growth factors ( GF ), and non-genomic hormone 
actions, mainly through protein kinase-mediated phosphorylations ( P ) that are important for the 
interactions of SRCs with NRs and other coactivators       
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1.6        Phosphorylations of SRCs Induced by Cytokines 
and Growth Factors 

 SRCs also are phosphorylated upon stimulation by growth factors and/or cytokines, 
which facilitates their functions in coactivating NR-mediated gene expression in 
both ligand-dependent and ligand-independent mechanisms; these stimulations 
serve as important molecular mechanisms for anti-hormone resistance during can-
cer therapy. SRC-1 is phosphorylated at T1179 and S1185 by MAPK upon stimula-
tion by interleukin 6 (IL-6)and co-activates AR in a ligand-independent manner in 
prostate cancer cells [ 35 ]. Interestingly IL-4promotes PP2A-directed dephosphory-
lation of SRC-1 which is important for SRC-1/Stat6-regulated IL-4 target gene 
expression in Ramos B lymphoma cells [ 36 ]. Cytokines such as TNFa stimulate 
IKK-directed phosphorylation of SRC-3 which potentiates NFкB-mediated gene 
expression in breast cancer cells [ 32 ,  37 ]. 

 SRC-1, SRC-2, and SRC-3 all are known to be regulated by growth factor signals. 
Epidermal growth factor (EGF) stimulates ERK2-directed phosphorylations of SRC-1 
that are important for the interaction of SRC-1 with CBP in PR-dependent transactiva-
tion [ 38 ]. T1426 in AD2 of SRC-1 is targeted by Cdk1 and Cdk2, and this phosphory-
lation is important for PR/SRC-1-mediated cell cycle control [ 39 ]. SRC-2 is 
phosphorylated at S736 by EGF stimulation, and S736-phosphorylated SRC-2 pro-
motes AR-dependent but ligand-independent transactivation, suggesting a potential 
role of SRC-2-mediated cross-talk between growth factor signaling and AR signaling 
in recurrent prostate cancer progression [ 40 ]. SRC-3 activity is tightly regulated by 
growth factor signaling. Both EGF and IGF-1 stimulate SRC-3 phosphorylation at 
tyrosine 1357 (Y1357) that is directed by AbI kinase in breast cancer and lung cancer 
cells [ 41 ]. Phosphorylation of Y1357 is critical for SRC-3 oncogenic activity in co-
activating ERα and NFкB and promoting anchorage-independent cancer cell growth. 
Heregulin 1β, an EGF-like growth factor, stimulates SRC-3 phosphorylation through 
ERBB2 oncogenic kinase [ 42 ] which is implicated in the breast cancer tamoxifen 
resistance. cAMP/PKA signaling also induces SRC-1 and SRC-2 phosphorylation 
and potentiates NR-mediated transactivation in a ligand- independent manner [ 43 ,  44 ].  

1.7     Phosphorylation Codes for SRC-3Δ4 Acting as an EGF 
Signaling Adaptor 

 SRC-3Δ4 is a splicing variant of SRC-3 with the deletion of exon 4 (Fig.  1.3b ) [ 45 , 
 46 ]. In comparison with full-length SRC-3 protein, SRC-3Δ4 lacks an N-terminal 
bHLH/PAS region that harbors the NLS. Consequently, SRC-3Δ4 primarily local-
izes in the cell cytosol due to its absence of an NLS. Upon EGF stimulation, PAK1 
phosphorylates SRC-3Δ4 on T56 at the N-terminus and S659 and S676 within the 
RID region. Phosphorylations of SRC-3Δ4 promote its localization to the plasma 
membrane region where it interacts with EGFR through the N-terminus, which is 
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mediated by T56 phosphorylation, and with FAK through the RID region, which is 
mediated by phosphorylations of S659 and S676(Fig.  1.3b ). SRC-3Δ4 mediates the 
interaction between EGFR and FAK, thereby promoting EGF-induced c-Src activa-
tion and FAK phosphorylation on Y925, which in turn drives cancer cell migration 
and metastasis.  

1.8     Ubiquitination and Its Regulation by Phosphorylation 

 Ubiquitination plays an essential role in regulating the stability and functions of 
SRC proteins. Ubiquitination of SRCs is frequently dependent on phosphorylations 
of specifi c residues that mediate the interaction of SRCs with the ubiquitin E3 
ligases. The stability and activity of SRC-3 have been shown to be regulated by 
several protein kinase signals that are coupled to different E3 ligase complexes. 
GSK3β phosphorylates SRC-3 at S505 in the S/T-rich region, which is required for 
the binding of Fbw7α, a component of the SCF (Skp, Cullin, F-box protein contain-
ing) E3 ligase complex. SRC-3 is then ubiquitinated by SCF Fbw7α  at lysine 723 
(K723) and K786 that are within the receptor-interacting domain. Interestingly, 
mono-ubiquitinations at K723 and K786 enhance the interaction of SRC-3 with 
ERα, ERα’s phosphorylation at S118, and expression of the target genes in response 
to E2 stimulation [ 47 ]. Subsequent poly-ubiquitinations then lead to the degradation 
of SRC-3 and termination of SRC-3/ERα-regulated gene transcription. 
Ubiquitination-coupled activation of SRC-3 is also manifested by retinoic acid 
(RA) signaling, which involves the phosphorylation of SRC-3 at S860 by 
RA-activated p38, the subsequent phospho-S860-mediated recruitment of Cullin 
3-based E3 ligase, ubiquitination of SRC-3, and fi nally activation of SRC-3/RAR- 
regulated gene transcription [ 48 ,  49 ]. In addition, SRC-3 protein stability and activ-
ity are regulated by a phospho-dependent degron that is located in the N-terminal 
bHLH/PAS region [ 50 ,  51 ]. Ser102 in the degron is phosphorylated by CKI (casein 
kinase I), which is required for the recruitment of a speckle-type POZ protein 
(SPOP)-based E3 ligase complex and the subsequent ubiquitination and turnover of 
SRC-3. Interestingly, phosphatases PP2A and PP1 target phosphorylated Ser102 
and inhibit SRC-3 protein ubiquitination [ 50 ]. 

 In addition to ubiquitin-dependent proteasomal degradation pathways, SRC-3 
protein turnover is regulated by an ubiquitin-independent mechanism [ 52 ]. 
Importantly, PKCζ phosphorylates multiple residues in an acidic fragment that is 
important for the interaction of SRC-3 with the C8 subunit of the 20S proteasome, 
and enhances SRC-3 protein stability by inhibiting both ubiquitin-dependent and 
ubiquitin-independent proteolytic pathways [ 53 ]. 

 In contrast with the extensive study on SRC-3, much less is known about the 
regulation of ubiquitination and stability of SRC-1 and SRC-2. However, a single 
nucleotide polymorphism (SNP) P1272S was shown to increase SRC-1 protein sta-
bility by disrupting a potential GSK3β-directed phospho-dependent degradation 
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code in the AD2 region of SRC-1 [ 54 ]. Although no specifi c phosphorylation and 
ubiquitination sites were revealed, an ubiquitination-coupled activation mechanism 
for SRC-2 was shown to be regulated by cAMP/PKA signaling [ 44 ].  

1.9     Sumoylation 

 Sumoylation is a type of PTM that involves an addition of small ubiquitin-like modi-
fi er (SUMO) to the lysine residues of proteins [ 55 ]. In spite of its structural and 
enzymatic processing similarities to ubiquitination, sumoylation often alters a pro-
tein’s binding affi nity with the associating partners or its subcellular localization 
rather than degradation. All of the SRCs were shown to be sumoylated on two con-
served lysine residues of the nuclear receptor-interacting domains (Figs.  1.2  and  1.3 ); 
sumoylations alter the interaction of SRCs with NRs and their transcriptional activi-
ties [ 56 ]. However, while sumoylations enhance the interaction of SRC-1 and SRC-2 
with PR and AR respectively [ 57 ,  58 ], and their retention and transactivity in the 
nucleus, SRC-3 transactivity is attenuated by sumoylations at K723 and K786 [ 47 ]. 
As aforementioned, K723 and K786 of SRC-3 are ubiquitination sites as well, and 
the ubiquitinations on these sites are important for the interaction of SRC-3 with ERα 
and their transactivity. As such, the attenuation of SRC-3 transactivity by sumoylations 
at K723 and K786 is likely due to the competitive blocking of ubiquitinations on 
these two sites. Although the regulation of SRCs’ sumoylations by phosphorylations 
have not been reported to date, both SRC-2 and SRC-3 harbor a phosphorylation-
dependent sumoylation motif (PDSF) ψKxExxSP (where ψ is a large hydrophobic 
residue)that has been characterized in heat shock factor 1 (HSF- 1) and MEF2A tran-
scription factors [ 59 ,  60 ]. S736 within the PDSF of SRC-2 is a phosphorylation site 
targeted by EGF/ERK1/2 signaling [ 40 ], and K731 is a sumoylation site that enhances 
SRC-2 transactivity [ 58 ]. It would be of interest to determine whether this is a  bona 
fi de  PDSF that plays a role in SRC-2 activity.  

1.10     Acetylation and Methylation 

 SRCs act as bridging factors to recruit histone acetyltransferases such as p300/CBP 
and histone methyltransferases such as CARM1/PRMT1 to DNA-bound NRs to 
remodel chromatin and regulate gene transcription (Fig.  1.4 ). Interestingly, these 
histone modifying enzymes target not only histones but also SRCs and NRs [ 61 – 64 ]. 
SRCs were shown to be acetylated by p300 [ 61 ] and methylated by CARM1 upon 
E2 stimulation [ 63 ,  64 ]. While histone acetylation and methylation facilitate the 
assembly of the transcription machinery and subsequent gene transcription, acetyla-
tion or methylation of SRC-3 leads to the dissociation of NRs/cofactors complex and 
the termination of gene transcription.  
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1.11     Molecular Actions of SRCs in Cancer Cells In Vitro 
and in Mouse Tumor Models In Vivo: SRCs as 
Integrators of Multiple Signaling Pathways 

 SRCs, in particular SRC-3, function as important mediators and integrators of a 
variety of oncogenic signaling (e.g., hormones, growth factors, and cytokines) path-
ways to regulate virtually every aspect of cellular processes: proliferation, survival, 
migration, and invasion (Figs.  1.4  and  1.5 ). Hormone signaling acts independently 

  Fig. 1.5    SRC-3 integrates multiple signaling pathways to promote tumorigenesis and metastasis. 
Besides its regulation of hormone signaling as illustrated in Fig.  1.4 , SRC-3 integrates multiple 
growth factor and cytokine signaling pathways to regulate a variety of cancer cell processes. Only 
a subset of these pathways are illustrated in Fig 1.5. In response to TNFα/IL-1 signals, SRC-3 is 
phosphorylated by IKKs and coactivates NFкB-mediated Bcl-2 expression for cancer cell survival. 
SRC-3 upregulates the expression of multiple components of IGF1-IGFR-PI3K/Akt pathway that 
is important for both cancer cell proliferation and survival. Upon EGF or IGF-1 stimulation, 
SRC-3 is targeted by protein kinases including c-AB1, and then coactivates E2F1-mediated 
expression of cell cycle genes including cyclins E and A. SRC-3 itself is a target gene of E2F-1 
(indicated by a  dashed arrow ), and upregulation of SRC-3 by E2F1 might boost other signaling 
pathways regulated by SRC-3, for example, the IGF1/Akt pathway. SRC-3 is also important for the 
activation (phosphorylations) of ERBB2 and EGFR and the downstream kinases such as JNK, and 
plays a role in tumor angiogenesis, likely by coactivating HIF1. In addition, SRC-3Δ4 acts as an 
EGF signaling adaptor by bridging EGFR to FAK, and promotes EGF-induced FAK phosphoryla-
tions and cancer cell migration. Furthermore, SRC-3 is targeted by ERK3 kinase and coactivates 
PEA-3/AP-1-mediated MMP gene expression for promoting cell invasion       
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or synergistically with growth factor or cytokine signaling to regulate these cellular 
processes in which SRCs play important, integrating roles (Fig.  1.4 ). The actions of 
SRCs are exquisitely regulated by PTMs (mainly phosphorylations) that are stimu-
lated by the oncogenic signals. Increased growth factor and/or cytokine signaling 
hijack SRCs to drive the progression of cancer cells from hormone-dependent to 
hormone-independent growth and elicit anti-hormone resistance, for example, anti- 
estrogen resistance in breast cancer. Based on the expression status of hormone 
receptors (mainly ER and PR) and growth factor tyrosine kinase receptors (mainly 
ERBB2 and EGFR) and the origin of cancer cells, breast cancers can be classifi ed 
as 4 subtypes [ 65 ,  66 ]: luminal A (ER +  PR + ERBB2 - ), luminal B (ER +  PR + ERBB2 + ), 
ERBB2-enriched (ER − PR − ERBB2 ++ ), and basal-like (also known as triple-negative, 
ER − PR − ERBB2 − ). Accompanied by enhanced growth factor signaling, luminal A 
subtype can progress to luminal B and further to ERBB2-enriched subtype, which 
leads to advanced cancer phenotype and increased anti-estrogen resistance. Basal- 
like breast cancer cells often have upregulated EGFR expression and high aggres-
siveness. As discussed below, SRC-1 and SRC-3 play critical functions in all four 
subtypes of breast cancer, whereas the roles of SRC-2 are minor.

1.12        SRCs with Hormones/NRs-Mediated Signaling 

1.12.1     Estrogen/ER Signaling in Breast Cancer 

 Both SRC-1 and SRC-3 act as coactivators of ERα to mediate estradiol signaling in 
promoting breast cancer cell proliferation and survival. SRC-1 is important for 
estradiol-induced cell proliferation ofMCF-7, a breast cancer cell line of luminal 
A subtype [ 67 – 69 ]. Depletion of SRC-1 differentially affected E2-inducible genes: 
with a signifi cant decrease in the expression of pS2 and stromal cell-derived factor 
1 (SDF-1) but little effect on c-Myc [ 69 ]. Both MCF-7 and T47D (another breast 
cancer cell line of luminal A subtype) overexpress SRC-3. Depletion of SRC-3in 
these cells diminishes the expression of estrogen/ER target genes including cyclin 
D1, c-Myc, and Bcl-2, and inhibits cell proliferation but increases apoptosis [ 70 , 
 71 ]. Consequently, depletion of SRC-3 in MCF-7 cells inhibits estrogen-induced 
colony formation in soft agar and xenograft tumor growth in nude mice [ 72 ]. E2 
exerts non-genomic signaling by activating multiple kinases including ERK1/2 and 
IKKα. E2-induced phosphorylations of SRC-3 via ERK1/2 and IKKα are critical for 
SRC-3’s activity in promoting the expression of E2 target genes such as cyclin D1 
and c-Myc [ 32 ,  73 ]. The functional relationship between SRC-3 and ERα in tumori-
genesis was revealed in a mouse mammary tumor virus (MMTV)-SRC-3 transgenic 
mouse model [ 74 ]. Transgenic overexpression of SRC-3 induced tumors primarily 
in mammary glands but also in other organs including uterus and lung, suggesting 
SRC-3 is a  bona fi de  oncogene. Ovariectomy in MMTV-SRC-3 mice greatly 
decreased mammary tumor formation, and genetic deletion of ERα in MMTV-
SRC- 3 mice by crossing with ERα-null mice completely abolished mammary tumor 
formation [ 75 ]. Taken together, these fi ndings suggest that SRC-3 and possibly 
SRC-1 are critical for E2/ER signaling in promoting breast cancer progression.  

1 Steroid Receptor Coactivators (SRCs) as Integrators of Multiple Signaling Pathways…



14

1.12.2     Androgen/AR Signaling in Prostate Cancer 

 While estrogen/ER signaling is critical for the progression of breast cancer, andro-
gen/AR signaling plays an essential role in hormone responsive prostate cancer. All 
of three SRC members have been shown to coactivate AR to meditate androgen 
signaling in prostate cancer cells. Depletion of either SRC-1 [ 76 ], SRC-2 [ 77 ,  78 ], 
or SRC-3 [ 79 ,  80 ] signifi cantly decreases androgen-dependent AR transcriptional 
activity and LNCaP prostate cancer cell growth in culture and in xenograft tumor 
mouse models. On the contrary, overexpression of SRC-3 or SRC-2 in LNCap 
greatly enhances the responsiveness of AR to androgen or to ligand-independent 
stimulation and promotes cell growth.   

1.13     Interplay of SRCs with ERBB2 Signaling: Anti- 
estrogen Resistance in Breast Cancer 

 ERBB2, a member of the EGFR family, is an oncogenic protein that is frequently 
overexpressed in advanced breast cancer. ERBB2 overexpression promotes tumor 
progression, and is highly associated with the progression of ER-positive breast can-
cer cells from estrogen-dependent to estrogen-independent growth; the overexpres-
sion is concomitant with the gain of resistance to anti-estrogen drugs [ 81 ]. Both 
SRC-1 and SRC-3, in concert with ERBB2, play a critical role during these pro-
cesses. Genetic loss of SRC-3 completely suppressed MMTV-ERBB2 induced 
mouse mammary tumor formation in association with a remarkable decrease in 
phosphorylations of ERBB2 and the downstream kinases JNK and Akt [ 82 ]. 
Interestingly, tumor angiogenesis also was curtailed signifi cantly due to the loss of 
SRC-3. SRC-3 was confi rmed as a pro-angiogenic factor recently [ 83 ] and acts as a 
coactivator of HIF1α [ 30 ]. While loss of SRC-1 did not signifi cantly decrease the 
average tumor number formed in MMTV-ERBB2 transgenic mice, it increased 
tumor latency and greatly inhibited tumor metastasis to the lung [ 84 ]. Under cell 
culture conditions, stable exogenous expression of ERBB2 in MCF-7 elicits an 
estrogen-independent cell growth and resistance to tamoxifen, both of which were 
signifi cantly inhibited by depletion of SRC-3 [ 42 ]. A similar synergistic role of 
ERBB2 with SRC-3 or SRC-1 was shown in BT474, a luminal-B subtype of breast 
cancer cell line with overexpression of ERBB2 [ 85 ,  86 ]. ERBB2 overexpression 
activates the downstream kinases ERK1/2, JNK, and Akt that phosphorylate ERα 
and SRCs, which leads to activation of ERα under low concentration or even in the 
absence of estrogen [ 42 ,  87 ]. In addition to ERα, SRC-3 and SRC-1 interact with and 
coactivate other transcription factors such as Ets and PEA3 to promote cancer cell 
growth and invasion in response to enhanced ERBB2 signaling [ 88 ,  89 ]. Conversely, 
SRC-3 positively regulates ERBB2 expression by competing with PAX-2 (a repres-
sor of ERBB2 gene expression) for the binding to the ERα-bound site of the ERBB2 
gene [ 90 ]. These fi ndings suggest a positive feedback between ERBB2 and SRC-3 
that regulates breast cancer cell proliferation and anti-estrogen resistance.  
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1.14     Interplay Between SRCs and EGFR Signaling: 
From the Membrane to the Nucleus 

 EGF/EGFR signaling is implicated in multiple cancers including those of breast, 
prostate, and lung. EGF signaling stimulates SRCs’ phosphorylation and activation; 
activated SRCs then work with transcriptional factors including E2F-1, ETS, and 
AP-1 to regulate cell proliferation, migration, and invasion (Fig.  1.5 ). 

 In breast cancer, increased EGFR signaling is frequently associated with the inva-
sive and triple-negative phenotype. In a triple negative breast cancer cell line 
MDA-MB231, SRC-3 and its N-terminus-deleted isoform SRC-3Δ4 elegantly regu-
late distinct aspects of the EGF signaling at different cellular locations (Fig.  1.5 ). 
SRC-3Δ4 acts as a signaling adaptor bridging EGFR to FAK at the plasma mem-
brane to mediate activation of FAK and promote cell migration upon the EGF signal 
[ 46 ]. SRC-3 is phosphorylated by Ab1 kinase atY1357 in response to EGF stimula-
tion, and this phosphorylation is important for SRC-3’s function in coactivating 
AP-1 and E2F1 in the nucleus and promoting cell growth [ 41 ]. Intriguingly, EGFR 
tyrosine phosphorylation and activity is regulated by SRC-3. Depletion of SRC-3 
greatly decreased EGF-induced EGFR tyrosine phosphorylation, which led to 
decreased JNK kinase activity and growth inhibition of MDAMB231 cells [ 91 ]. 
While the detailed molecular mechanism is unclear, downregulation of tyrosine 
phosphatases by SRC-3 partly contributes to an increase of EGFR phosphorylation. 

 In prostate cancer, enhanced EGFR signaling is highly associated with castration- 
resistant (androgen-independent) cancer progression. On one hand, EGF signaling 
stimulates AR tyrosine phosphorylation (Y534) via c-Src kinase [ 92 ], and AR tyro-
sine phosphorylation promotes its nuclear localization and transactivity. On the other 
hand, EGF signaling targets SRCs via MAPK-directed phosphorylations. For exam-
ple, SRC-2 is phosphorylated at S736 by EGF stimulation, and S736- phosphorylated 
SRC-2 promotes AR-dependent but androgen-independent transactivation [ 40 ]. 
Together, EGF signaling stimulates AR/SRCs’ transactivity and promotes prostate 
cancer cell growth in culture and tumor growth in castrated mice [ 40 ,  92 ].  

1.15     Regulation of IGF-1/Akt Signaling by SRC-3 
and SRC-1 

 IGF-1/Akt signaling is another molecular pathway that is regulated by SRCs and is 
critical for SRCs’ oncogenic functions (Fig.  1.5 ). The IGF-1/Akt signaling pathway 
initiates with the binding of IGF-1 to its receptor (IGF-1R) on the cell membrane 
and the subsequent activation of IGF-1R by auto-tyrosine phosphorylation, fol-
lowed by the recruitment of insulin receptor substrate (IRS) proteins and IRS- 
mediated activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway [ 93 ]. 
SRC-3 regulates the expression levels of multiple components of the IGF-1/Akt 
pathway, includingIGF-1/IGF-2, IGF-1R, IRS-1/IRS-2, and Akt in breast cancer 
cells [ 94 ] and prostate cancer cells [ 95 ], thereby regulating the activities/
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phosphorylations of IGF-1R and Akt and promoting cancer cell proliferation and 
anchorage- independent cell growth. The regulation of IGF-1/Akt signaling by 
SRC-3 was corroborated in vivo. Increased IGF-1 expression and activation of 
IGF-1R, Akt, and mTOR was seen in MMTV-AIB1 (SRC-3) transgenic mice, 
which led to spontaneous mammary tumor formation [ 74 ]. In contrast, genetic 
depletion of SRC-3 in v-Ha-Ras transgenic mice caused a remarkable decrease in 
tumor initiation and metastasis to the lung, partly due to decreased expression of 
IRS-1 and IRS-2 and the attenuated Akt activity [ 96 ]. Loss of SRC-1 did not affect 
primary mammary tumor growth, but greatly decreased tumor metastasis to the lung 
in MMTV- polyoma middle T antigen (PyMT) transgenic mice by downregulating 
ERBB2 expression and Akt phosphorylation [ 97 ].  

1.16     Interplay of SRCs with Cytokine Signaling 
in Promoting Cancer Cell Aggressiveness 

 IL-6 signaling promotes castration-resistant prostate cancer progression by activat-
ing AR in an androgen-independent mechanism [ 98 – 100 ]. Besides the direct effect 
on AR, IL-6 signaling modulates SRCs’ activity as well. SRC-1 phosphorylation by 
MAPK in response to IL-6 is important for ligand-independent activation of AR 
[ 35 ]. In addition, upregulation of SRC-2 in LNCaP cells upon long-term treatment 
with IL-6 is associated with acquired resistance to bicalutamide, an anti-androgen 
drug [ 101 ]. Conversely, cytokine production can be regulated by SRCs. For exam-
ple, SRC-1 upregulates colony-stimulating factor-1 (CSF-1) expression and pro-
motes the recruitment of macrophages to the tumor site, which contributes to tumor 
metastasis [ 97 ]. 

 SRC-3 is phosphorylated upon the stimulation of cytokines such as TNFα and 
IL-1β [ 32 ,  37 ]. Phosphorylations of SRC-3 stimulate the interactions of SRC-3 with 
ERα and NFкB, which are important for TNFα-induced cyclin D1 expression and 
cell proliferation [ 102 ]. Interestingly, SRC-3 was shown to interact with transla-
tional repressors TIA1 (T cell restricted antigen 1) and TIAR (TIA1 related homo-
logue) and regulate the translation of TNFα and interlukin 1 mRNAs [ 103 ], for 
which the implication in cancer is unclear at present. 

 A recent study revealed an intriguing interplay between a cleaved isoform of 
SRC-1 and TNFα signaling during endometriosis [ 104 ] which shed new light on the 
roles of SRCs in infl ammation-associated diseases such as cancers. Endometriosis 
is an infl ammation-driven disease that is initiated by the migration of endometrial 
cells to distal sites. While TNFα is well-known as a critical driving factor for endo-
metriosis, it is less clear how the intrinsic pro-apoptotic activity of TNFα is silenced 
during this process. It is shown in this interesting study that TNFα-induced MMP9 
cleaves SRC-1 at Pro-790, and the c-terminus of cleaved SRC-1 promotes endome-
triosis by blocking caspase8-mediated apoptosis and by stimulating 
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epithelial-to- mesenchymal transition (EMT) for increased invasiveness. Given the 
positive associations of both SRC-1 and infl ammation with advanced and metastatic 
tumor stages, cytokine signaling and SRC-1 conceivably could synergistically pro-
mote cancer progression and metastasis following similar mechanisms as shown in 
endometriosis. Indeed, SRC-1 was shown to positively regulate TWIST, a master 
regulator of EMT, thereby promoting tumor cell migration/invasion and metastasis 
[ 89 ]. It would be interesting to determine whether SRC-1 undergoes proteolytic 
cleavage to produce the cleaved isoform during cancer progression and whether this 
cleaved form of SRC-1 is responsible for the upregulation of TWIST and EMT-
associated tumor cell migration and invasion.  

1.17     Phospho-dependent Regulation of SRC-3 by an Atypic 
MAPK for Cancer Cell Invasion 

 SRC-3 promotes cancer cell invasion by coactivating PEA-3- and AP-1-regulated 
matrix metalloproteinase (MMP) expression [ 105 – 107 ], but the invasive signals to 
SRC-3 and the molecular regulation of SRC-3 proinvasive activity were not eluci-
dated until a recent study that revealed a phospho-dependent regulation of SRC-3 
proinvasive activity by an atypical MAPK ERK3 (Fig.  1.5 ) [ 108 ]. ERK3 was identi-
fi ed as an interacting partner of SRC-3 by immunoprecipitation-mass spectrometry 
(IP-MS) analyses. ERK3 phosphorylates SRC-3 at serine 857 (S857), and this 
ERK3-mediated phosphorylation at S857 is essential for SRC-3’s interaction with 
the ETS transcription factor PEA3, promoting upregulation of matrix metallopro-
teinase (MMP) gene expression and proinvasive activity in lung cancer cells. ERK3/
SRC-3 signaling drives cancer cells to invade and form tumors in the lung. As such, 
this study not only revealed a molecular mechanism for regulating SRC-3 proinva-
sive activity, but also identifi ed a novel oncogenic function for ERK3 in promoting 
lung cancer invasiveness.  

1.18     Alterations of SRCs and the Clinical Implications 
in Cancers 

 As transcriptional coactivators integrating multiple signaling pathways to regulate 
cancer cell proliferation, survival, migration, and invasion, SRCs are highly dys-
regulated in a variety of cancers including breast cancer, prostate cancer, endome-
trial cancer, ovarian cancer, lung cancer, colorectal cancer, liver cancer, and 
pancreatic cancer. Alterations of SRCs, including primarily gene amplifi cation, 
mRNA or protein overexpression, are implicated in cancer progression and metas-
tasis and tumor resistance to therapeutic interventions.  
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1.19     Gene Amplifi cation 

 Gene amplifi cation is one of the fundamental features for defi ning an oncogene. 
SRC genes, in particular SRC-3 (also known as AIB1-Amplifi ed in breast cancer 
gene 1), are amplifi ed in multiple human cancers. Gain of copy numbers of SRC-1 
and SRC-2 genes were reported in a recent study with a cohort of 218 prostate 
tumors consisting of 181 primaries and 37 metastases [ 109 ]. Of particular note, 
SRC-2 gene amplifi cation was detected in 8 % of primary tumors and 37 % of 
metastases. Gain of SRC-2 expression is associated with increased rates of prostate 
tumor recurrence. SRC-3 gene amplifi cation has been shown in multiple cancers 
including breast cancer (with 5–10 % frequency [ 4 ,  110 ]), ovarian cancer (with 
7–25 % frequency [ 110 ,  111 ]), colorectal cancer (with 10–32 % frequency [ 112 , 
 113 ], lung cancer (with 8.2–27 % frequency [ 114 ,  115 ]), and hepatocellular cancer 
(40 % frequency, [ 116 ]). SRC-3 gene amplifi cation contributes to upregulation of 
SRC-3 mRNA and protein in cancers, and is positively correlated with advanced 
tumor stages.  

1.20     Mutations 

 In contrast to high frequencies of gene amplifi cation and mRNA/protein overexpres-
sion, gene mutation of SRCs is rarely detected in cancers. Even though a few point 
mutations of SRC-1 [ 117 ] and SRC-2 [ 109 ] were identifi ed in tumors, the frequency 
is very low (~1 %) and the pathological association is undetermined. Interestingly, a 
fusion between MOZ (monocytic leukemia zinc fi nger) gene and TIF2 (SRC-2) 
gene has been repeatedly detected in acute myeloid leukemia [ 118 – 120 ]. MOZ-
TIF2 fusion protein retains the PHD zinc fi nger domain and the MYST domain of 
MOZ and the CBP-interacting domain (CID) and activation domain 2 (AD2) of 
TIF2. The recruitment of p300/CBP via the CID of MOZ-TIF2 is essential for 
 leukemogenesis of the fusion gene [ 120 ].  

1.21     Upregulation of mRNA and Proteins 

 Expression of SRCs, in particular SRC-3 and SRC-1, are frequently upregulated in 
a variety of cancers. SRC-3 is the second most overexpressed oncogene among all 
human cancers, second only to c-myc. Upregulation of SRCs is often co-current 
with elevated protein kinase signaling, which indicates high tumor grade, increased 
tumor invasiveness, and tumor resistance to therapeutic treatments. A substantial 
number of studies have investigated the expression and clinical implication of SRCs 
in a variety of cancers, with focus mostly on breast cancer and prostate cancer.  
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1.22     Breast Cancer 

 Breast cancer progression relies on two major signaling pathways: hormone (e.g. 
E2/ERα) signaling and epidermal growth factor signaling pathways [ 81 ]. 
Antihormonal drugs (e.g. tamoxifen, an estradiol antagonist, and letrozole, an anti- 
aromatase inhibitor) have been commonly used for treating ER/PR-positive breast 
cancers. However, antihormone resistance (either naïve or acquired resistance after 
therapy) and associated cancer recurrence have been major obstacles for curing 
breast cancer patients. The acquisition of resistance to antihormonal drugs is often 
associated with a transition of hormone signaling-dependent to growth factor 
signaling- dependent tumor growth [ 121 ,  122 ]. SRC-1 and SRC-3 are overexpressed 
at high frequency in breast cancer, and their overexpression is implicated both in 
hormone-dependent and in hormone-independent breast cancer progression and 
metastasis. 

 SRC-1 expression has been shown to be signifi cantly increased in around 
19–30 % breast tumors [ 123 – 125 ]. In line with its primary role in promoting cancer 
cell migration and invasion in vitro and tumor metastasis in animal models, upregu-
lation of SRC-1 is highly correlated with lymph node metastasis and poor disease- 
free survival (DFS) of breast cancer patients [ 88 ,  126 ]. Another important role for 
SRC-1 is the regulation of cancer cell sensitivity to anti-hormone drugs. Indeed, 
SRC-1 expression has been demonstrated as a predictor of anti-estrogen resistance 
and/or tumor recurrence following therapy [ 125 ,  126 ]. 

 The implication of SRC-3 expression in breast cancer progression has been 
extensively studied. From various separate studies [ 4 ,  72 ,  124 ,  127 ,  128 ], overex-
pression of SRC-3 mRNA and protein has been shown in the range of from 13 % to 
74 % of breast tumors, with an average of around 50 % overexpression rate. In 
agreement with the broad roles of SRC-3 in regulating cancer cell proliferation, 
survival, migration, and invasion in cultured cells and in animal models, overex-
pression of SRC-3 is positively associated with advanced tumor grade, increased 
tumor invasiveness and metastasis, and worse DFS in both ERα-positive and ERα- 
negative breast tumors [ 4 ,  87 ,  124 ,  127 ]. SRC-3 overexpression is frequently associ-
ated with enhanced protein kinase signaling. Tyrosine kinase receptor ERBB2 is 
frequently amplifi ed (gene copy) and overexpressed (mRNA and protein) in cancers 
[ 129 ], with the highest frequency in breast cancer (~25 %). Simultaneous overex-
pression of SRC-3 and ERBB2 are reported in several studies [ 87 ,  128 ,  130 ,  131 ], 
and their co-overexpression indicates increased tumor resistance to tamoxifen treat-
ment and increased tumor recurrence. Although the regulation of the IGF1R/Akt 
signaling pathway by SRC-3 has been well demonstrated by cell culture studies and 
mouse mammary gland tumor models, the correlation between these two has not 
been shown in tumor studies of breast cancer patients. Given the frequent alterations 
of both of these two factors in breast cancer, it is of high clinical signifi cance to 
investigate the association of SRC-3 and IGF1R/Akt signaling pathways and their 
implications in cancer progression in more detail. 

1 Steroid Receptor Coactivators (SRCs) as Integrators of Multiple Signaling Pathways…



20

 In contrast with ample evidence for the critical roles of SRC-1 and SRC-3 in 
breast cancer progression and metastasis, few studies have provided conclusive data 
to support a defi nite role for SRC-2 in breast cancer.  

1.23     Prostate Cancer 

 Androgen/AR signaling plays a critical role in the initiation and progression of 
prostate cancer, and has been a major therapeutic target for treating this disease 
[ 132 ,  133 ]. Androgen ablation therapy (mainly by chemical castration) effectively 
inhibits tumor growth during the initial treatment. Unfortunately, most tumors 
relapse and become resistant to androgen ablation therapy. Castration-resistant can-
cer progression or recurrence is frequently associated with an advanced and meta-
static tumor phenotype and has been a major obstacle for curing prostate cancer. AR 
and its target genes are commonly expressed in and are believed to drive recurrent 
prostate cancers [ 134 ]. In addition to AR gene mutations and AR overexpression, 
alterations in AR coactivators including SRCs and upregulation of growth factor 
signaling are two other major molecular mechanisms for castration-resistant tumor 
progression [ 135 ]. While genetic alterations of the SRC-1 gene are rare in prostate 
tumors, upregulation of SRC-1 has been shown by a few studies [ 76 ,  117 ,  136 ]. 
Upregulation of SRC-1 protein is associated with lymph node metastasis [ 76 ] and 
tumor recurrence after androgen deprivation therapy [ 117 ,  136 ]. Like SRC-1, 
SRC-2 expression is highly increased in recurrent prostate tumors following andro-
gen deprivation therapy [ 117 ,  136 ]. More importantly, a recent study showed that 
elevated SRC-2 expression, probably due to SRC-2 gene amplifi cation, was detected 
in both primary and metastatic prostate tumors [ 109 ]. Similar fi ndings were reported 
for SRC-3 in prostate cancer [ 79 ,  106 ,  137 ,  138 ]. Upregulation of SRC-3 is posi-
tively correlated with increased Akt activity in prostate tumors [ 79 ,  138 ], which 
affi rms a positive regulatory role of SRC-3 in Akt signaling in prostate cancer.  

1.24     Lung Cancer 

 SRC-3 functions as an oncogene in lung cancer. Transgenic overexpression of 
SRC-3 in mice causes spontaneous lung tumor formation [ 74 ]. SRC-3 gene ampli-
fi cation and protein overproduction were shown in as high as 27 % of non-small cell 
lung cancers (NSCLCs) in one study [ 115 ]; overexpression correlates with poor 
disease free and overall survival. Interestingly, ERK3, a kinase that phosphorylates 
SRC-3 and confers SRC-3 pro-invasive activity in lung cancer cells, was shown to 
be highly upregulated in lung cancer [ 108 ]. Overexpression of SRC-3 protein in 
lung cancer also was reported in two other studies [ 139 ,  140 ]. The implications of 
SRC-1 and SRC-2 in lung cancer are not known. 
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 In addition to the cancer types discussed above, SRC-3 has been shown to be 
overexpressed in many other cancers: a 64 % overexpression rate in high grade 
ovarian tumors [ 141 ], a 67 % overexpression rate in hepatocellular carcinomas 
[ 116 ], a 35 % overexpression rate in colorectal carcinomas [ 112 ], and a nearly 70 % 
overexpression frequency in pancreatic tumors [ 142 ].  

1.25     Tumor Suppressor Functions of SRC-3 and SRC-2 
in Specifi c Tissue Context 

 In contrast with the ample evidence for SRC-3′s function as an oncogene in a mul-
titude of cancers, deletion of the SRC-3 gene promotes proliferation of lymphocytes 
and induces spontaneous malignant B-cell lymphoma upon aging in mice [ 143 ]. 
Similarly, while SRC-2 has been identifi ed as an oncogene in prostate cancer, a 
recent study revealed a tumor suppressor role for SRC-2 in liver cancer [ 144 ]. 
Although the molecular mechanisms underlying the unexpected tumor-suppressing 
roles of SRC-2 and SRC-3 are not understood, these fi ndings suggest that SRCs, as 
transcriptional coactivators, can regulate cell proliferation and survival either posi-
tively or negatively, depending upon the cell- and tissue context.  

1.26     SRCs as Prognostic Biomarkers and Therapeutic 
Drug Targets 

 Increased expression and activities of SRCs not only are implicated in cancer pro-
gression and metastasis, but also are positively associated with drug resistance, 
including anti-estrogen resistance in breast cancer [ 87 ,  123 ,  125 ,  145 ,  146 ], resis-
tance to EGFR inhibitors in lung cancer [ 115 ]), and resistance to chemotherapeutic 
drugs such as cisplatin and doxorubicin [ 30 ,  147 ,  148 ]. Hence, novel therapeutic 
drugs targeting SRCs might be utilized individually or in combination with other 
therapeutic drugs for treating cancers in different subtypes and at different stages.  

1.27     Targeting SRCs by Intervening NR-SRC Interactions 

 The binding of SRCs with NRs via SRCs’ ‘LXXLL’ NR interacting motifs is criti-
cal for their transcriptional activity. In addition, the fl anking amino acids of the 
‘LXXLL’ motif are shown to confer an order of specifi city on differential NR/SRCs 
interactions. On the basis of these molecular mechanisms, there have been efforts to 
develop peptides containing LXXLL motifs or identifying small molecules that can 
disrupt the interactions between NRs and SRCs. A screening of the phage display 
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library identifi ed peptides that specifi cally and effectively inhibit ERα or ERβ trans-
activity [ 149 – 151 ], but it was unclear what specifi c ER/SRC interaction(s)was 
affected by these peptides. Soon after this, a peptide specifi cally blocking the inter-
action of SRC-2 with TRβ [ 152 ] and other peptides preventing the binding of SRC-1 
with ERα or ERβ [ 153 ,  154 ] were identifi ed utilizing a similar strategy. In addition, 
small molecule inhibitors (SMIs) were identifi ed for targeting SRCs’ interaction 
with ERα [ 155 ] and TRβ [ 156 ]. Although these identifi ed peptides or SMIs were 
shown to effi ciently inhibit NRs’ transactivity, their effi cacy on NR/SRCs-mediated 
cell functions were not evaluated in animals.  

1.28     Small Molecule Inhibitors Targeting SRCs 
for Degradation 

 Since overexpression of SRC proteins, in particular SRC-3, is highly associated 
with advanced tumor progression and drug resistance, a potentially more effective 
strategy would be to identify small molecules that directly target SRCs and down-
regulate SRCs’ protein stability and activities. Based on this idea, a recent study 
identifi ed a SMI for SRC-1 and SRC-3 by both activity-based and stability-based 
screening assays [ 157 ]. This proof-of-principle drug, gossypol, downregulates the 
stability and activities of both SRC-1 and SRC-3 via direct binding, but is less 
selective forSRC-2 and other cofactors. Importantly, gossypol greatly increases 
the response of cancer cells to inhibitors of growth factor signaling, including 
MEK inhibitor AZD6244, EGFR inhibitor AG1478, and IGF-1R inhibitor 
AG1024. This study demonstrates that SRCs are accessible therapeutic targets to 
SMIs and encourages additional high throughout screenings for identifying drugs 
targeting SRCs. 

 SRCs also can serve as diagnostic and prognostic biomarkers, as they are altered 
in cancers at multiple levels including gene amplifi cation, mRNA/protein overexpres-
sion, and protein posttranslational modifi cations. Of particular interest is the phos-
phorylation of SRC-3 at S857. S857 appears to be a hotspot that is targeted by multiple 
kinases and confers to SRC-3 and SRC-3Δ4 a variety of oncogenic functions: aug-
mentation of cancer cell motility when targeted by PAK-1 [ 46 ], increase of cancer cell 
invasion when targeted by ERK3 [ 108 ], and gain of chemotherapeutic drug resistance 
when targeted by IKK [ 30 ]. It is of signifi cant clinical interest to test whether phos-
phorylation on this site is positively associated with human cancer progression and 
metastasis, thereby serving as a diagnostic and/or prognostic tumor biomarker.  

1.29     Conclusion and Perspective 

 Cancer cells must acquire a variety of capabilities for tumor initiation, uncontrolled 
outgrowth, invasion of surroundings, and metastasis to the distant organs. Hanahan 
and Weinberg have summarized these required capabilities as eight hallmarks of 
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cancer: sustaining proliferative signaling, evading growth suppressors, resisting cell 
death, enabling replicative immortality, inducing angiogenesis, activating invasion 
and metastasis, and two more recently recognized hallmarks-reprogramming of 
energy metabolism and evading immune destruction [ 158 ]. Despite little informa-
tion on the roles of SRCs in those two emerging hallmarks, substantial evidence 
exists that SRCs act as integrators for the other hallmarks, thereby making great 
contributions to cancer cells for acquisition of these hallmarks. It has been recog-
nized that cancer cells reprogram energy metabolism to provide fuels and biosyn-
thetic intermediates (nucleosides and amino acids) for uncontrolled cell growth and/
or invasion by enhancing energy consumption from glycolysis [ 159 ]. Although the 
roles of SRCs in reprogramming energy metabolism of cancer cells have not been 
revealed, a number of studies, mostly by using SRC knock-out animals, have shown 
that SRCs are critical regulators of energy metabolism of glucose and lipids [ 160 –
 166 ]. SRC-1 has distinct functions in cell metabolism of white and brown adipose 
tissues: loss of SRC-1 renders animals more susceptible to high fat diet-induced 
obesity, whereas loss of SRC-2 or SRC-3 confers protection against it. As such, 
future work on SRCs in cancer cell metabolism is warranted and should provide 
new insights on the molecular mechanisms by which SRCs alter the cues for uncon-
trolled growth and aggressiveness of cancers. 

 Evading immune destruction and harnessing tumor-associated infl ammation is 
another hallmark that is important for cancer progression. The roles of SRCs in this 
process have been scarce but surely are worthy of investigations. Although their 
exact roles in tumor-associated infl ammation remain to be determined, SRCs are 
engaged in cytokine signaling and infl ammation. As mentioned above, SRCs are 
activated (phosphorylated) by cytokine signaling and function as coactivators of 
NFкB and/or Stats to positively regulate cytokine signaling in cancer cells [ 32 ,  35 , 
 37 ,  101 ,  102 ] and in animal models of infl ammation-associated disease [ 104 ,  167 –
 169 ]. Hence, it would be of clinical signifi cance to determine in more detail the 
roles of SRCs in the underlying molecular mechanisms of tumor-associated infl am-
mation. Finally, as our recent proof-of-principle study demonstrates that SRCs are 
accessible therapeutic targets for SMIs, more effort should be put on future high 
throughput screenings for therapeutic drugs targeting SRCs for cancers.     
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