
Chapter 6
Turbo Codes

A major step towards the Shannon limit was done in 1993 by introducing the so called
turbo code (TC) [1]. Before 1993 a gap of 3 dB existed between practical coding
schemes and that what the theory promised. With the introduction of turbo codes this
gap was suddenly reduced to less than 1 dB. The new concept was the introduction
of iterative decoding. Turbo codes consist of concatenated, simple component codes
which calculate their information locally and exchange this information within an
iterative loop. The local decoding of component codes also opened the door for
practical systems. Due to the superior communications performance and the simple
decoding scheme TCs have been rapidly adopted for many communications systems.
This chapter introduces turbo codes and the corresponding encoders with respect to
communication standards. The iterative decoding process of turbo codes is described
and the communications performance is shown, taking into account the quantization
effects of fixed-point calculations. The importance of an SNR insensitive algorithm
is demonstrated which reflects a more realistic instantiation within a full system. The
basic component of a turbo decoder is a maximum a posteriori (MAP) decoder. Its
most common realization is shown which is linked to the previously derived data
path of a forward-backward algorithm (Chap. 5). The chapter also summarizes the
essential questions, which are most commonly used to drive industrial design process
for turbo decoders and recap the huge possibilities within the architectural design
space exploration.

6.1 Encoder Structure

Figure 6.1 shows a typical generic parallel turbo code encoder. This encoder features
two component encoders in parallel which typically are both convolutional codes
with identical polynomials.

For all ‘parallel’ turbo encoders the encoding process is similar. The systematic
bit u is a part of the codeword xs. One parity part x p0 is generated by component
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Fig. 6.1 Generic parallel turbo encoder structure with puncturing unit

encoder 1, while the second encoder generates the parity output x p1 . The input stream
of the second encoder is the interleaved version of the information bits u = Π(u).
Π denotes the permutation operation as described in Sect. 4.3. The resulting code
rate of this encoder structure is R = 1/3.

For adjusting the code rate the output of the encoder (x = [xs, x p1, x p2]) is passed
to a puncturing unit. The puncturing unit erases bits from the original codeword x
and passes a shorter vector x punct to the next stage. The puncturing unit is often
called rate matching unit. Thus the transmitted code rate can be adjusted in a flexible
way. In LTE a large range of code rates is specified from base code rate R = 1/3 up
to very high code rates, e.g. R = 14/15. Note that in the high rate case of LTE even
information bits are punctured out.

The presented parallel encoder structure is utilized in many communications stan-
dards. These are shown in Table 6.1 with their corresponding base parameters. The
component codes used in these standards are convolutional codes either with 8 states
or 16 states respectively.

The most important standard is the 3GPP initiative (UMTS, LTE). Its turbo code
encoder structure is shown in Fig. 6.2. Here, the puncturing unit is omitted. The com-
ponent encoder are 8-state recursive convolution codes with forward and backward
polynomials of G0 = 13 and GFB = 15 respectively. The component encoders
are the same for UMTS and LTE encoding. However, the interleaver is different
for both standards. The newer LTE standard features an interleaver which allows a
simpler implementation of parallel decoder architectures. The problem of parallel
interleaving was already described in Sect. 4.3.

Table 6.1 Turbo codes in communication standards

Application Turbo code States Forward Backward Base code rate

UMTS Binary 8-state 13 15 1/3
LTE Binary 8-state 13 15 1/3
CDMA 2000 Binary 8-state 13, 17 15 1/5, 1/3
IEEE 802.16 Duo-binary 8-state 11, 13 15 1/2
CCSDS (deep space) Binary 16-state 33, 25, 37 23 1/6, 1/4, 1/3,1/2
Immarsat Binary 16-state 35 23 1/2
DVB-RCS Duo-binary 8-state 11, 13 15 1/3
Eutelsat Duo-binary 8-state 13 15 4/5, 6/7
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Fig. 6.2 3GPP turbo encoder
with 8-state RSC component
encoder
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Fig. 6.3 WiMAX duo-binary
encoder with 8-state RSC
component encoder
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Figure 6.3 shows the DVB-RCS duo-binary turbo encoder. The encoder always
operates on two bits simultaneously, while these couples are treated together during
encoding and decoding. The interleaver permutes the stream with respect to couple
positions and does not break up the tight coupling of the ‘duo’ bit grouping. The
resulting base code rate is R = 1/3.

Table 6.1 shows 8 different standards featuring turbo codes. All have a parallel
turbo code encoder structure with two component encoders. The turbo code decoding
of all theses standards share the same basic iterative exchange of messages. This basic
iterative decoding procedure is described next section. Turbo code decoder and turbo
decoder are used as synonyms in the following.
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6.2 The Iterative Decoding Procedure

In this section the iterative decoding procedure is described step-by-step. The decoder
structure presented here can decode any parallel concatenated turbo code which
consist of two component codes. Thus, it fits to all encoders of Table 6.1. This section
presents one possible decoder structure. Obviously, more decoder structures exist.
All of them have to handle the so called extrinsic information principle which takes
care how to exchange messages. One iteration is described in the following.

For each component encoder a corresponding component decoder exists. Decoder 1 will consume

the received systematic information λs and the corresponding parity LLRs λp1. Decoder one starts

to calculate new a posteriori probability information for each systematic bit information. Each APP

information can be decomposed in the already existing systematic part and an additional ‘extrinsic’

gain. Thus, we obtain Λ = λs + Le1.
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We can isolate the new additional extrinsic information from the APP information by subtracting

the systematic information (position by position). The resulting extrinsic vector Le1 is passed to the

interleaver stageΠ and stored in the indicated delay unit (T). The interleaver reorders the information

according to the utilized encoding procedure. The new obtained sequence is now treated as new ‘a

priori’ information for the second MAP decoder La2.

Decoder 2 consumes the input a priori information, the interleaved systematic information λs
π

and the corresponding parity LLRs λp2. Decoder 2 calculates new APP information Λπ for each

(interleaved) systematic bit. This APP information can be composed as a sum of a priori information

λa2 obtained from decoder 1, the interleaved systematic information λs
π and an additional gain

provided by decoder 2 Le2. Only the additional gain Le2 is stored in the delay unit. We pass the

information Le2 + La2 to the deinterleaver stage.
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The vector is deinterleaved again position by position. We obtain a sum, composed of the old

extrinsic information Le1 originally calculated by decoder 1 and a new a priori information La1

which was provided from decoder 2. However, before passing the sum information to decoder 1,

we subtract the old extrinsic information (Le1). Only the additional information La1 is passed to

decoder 1. Otherwise we would rely on our old confidence. One iterations is finished and a new

iteration starts by calculating a new APP information Λ = λs + La1 + Le1
new.

The described iterative procedure is continued several times. In practical appli-
cations we rarely iterate more than a maximum amount of 8 iterations. Note that
different structure exist for this iterative processing, for example we can pass the
information λs + Le1 to the second component decoder. Then, we don’t need to
provide λs

π separately to the decoder since it is already considered in the passed sum.
Still, we have to store this sum in the delay unit (T) to ensure the extrinsic information
principle, as already indicated in Sect. 3.5.

6.2.1 Convergence Progress (EXIT Charts)

The convergence of the iterative decoding process can be analyzed by extrinsic
information transfer (EXIT) chart analysis [2]. The information characteristics of
the component codes are analyzed by tracking the information content of the out-
put information and input information of corresponding component decoders. The
soft-in soft-out decoders for iterative turbo decoding have two inputs. The first input
comprises the channel values, which depend on the received LLRs, the second input
retrieves a priori information which is exchanged during iterative decoding. We can
track the information content for input variables and output variables by using the
mutual information which was already introduced in Sect. 2.3. The mutual informa-
tion I (La, S) describes the information content of the a priori information La while
I (Le, S) represents the mutual information of the extrinsic output values Le. For
binary variables and an antipodal modeling of the symbols (s ∈ {+1,−1}), we can
calculate the information content of the a priori information I (La, S) by:

http://dx.doi.org/10.1007/978-1-4614-8030-3_3
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I a = I (La, S) (6.1)

= 1

2

∑

si ={+1,−1}

∑

∀a

p(a|si ) · log2

(
2p(a|si )

p(a|si = −1) + p(a|si = +1)

)

The equation of the mutual information here was already used in Sect. 2.3 to derive
the channel capacity. The mutual information can be obtained by summing over all
possible a priori values expressed by the variable a. Note that here a probability
mass function for the a priori values p(a|s) is assumed which allows the modeling
of a fixed-point realization. p(a|s) can be tracked by Monte Carlo simulations. The
equation for the information content of the extrinsic information is identical, however,
with the density mass function for the extrinsic information to be p(e|xi ).

Two assumptions are often assumed for deriving the EXIT charts. First, the inter-
leaver is assumed to be sufficient large, such that the exchanged information can be
modeled as independent information. Second, the extrinsic information is assumed
to approach a Gaussian distribution with increasing iterations.

Figure 6.4 shows the setup to measure an EXIT chart. The input LLRs for the
channel decoder can be described by

λy = 2

σ 2
n

y = 2

σ 2
n

(s + n), (6.2)

with σ 2
n the channel noise variance. Thus, the channel LLR input values are Gaussian

distributed with the mean value μy = 2
σ 2

n
, while its variance will be σ 2

y = 4
σ 2

n
. A

Gaussian distribution having the variance twice the mean is said to be consistent.

Fig. 6.4 Measurement of the EXIT chart

http://dx.doi.org/10.1007/978-1-4614-8030-3_2
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When the input is consistent it can be observed that the distribution of the extrinsic
output is consistent too [2]. The extrinsic output of one component decoder serves as
a priori information of the other component decoder. Thus, the a priori information
can be modeled as Gaussian variable with a variance of σ 2

a with a mean value of

μa = σ 2
a
2 .

The mutual information I a depends only on the variance σa , while the mutual
information of the extrinsic information depends on the a priori input and the current
signal to noise ratio. Thus, the extrinsic information characteristics are defined as a
transfer function of:

I e = T (I a, Eb/N0) (6.3)

For each signal-to-noise ratio of the channel we can evaluate another characteristic.
Fig. 6.5 shows the extrinsic information transfer characteristics for a convolutional
code used for LTE turbo codes (8-states, R = 1/3, Log-MAP). Shown are the
decoder behaviors for three different Eb/N0 values with the x-axis representing the
mutual information I a at the input of the decoder while the y-axis shows the extrinsic
information I e respectively.

The convergence of a turbo decoder can now be visualized by plotting the char-
acteristics of both component decoders into the same chart. However, the axis have
to be swapped for the second soft-in soft-out decoder. The resulting EXIT chart is
shown in Fig. 6.6 for three different Eb/N0 values. In addition the so called trajectory
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Fig. 6.5 Extrinsic information transfer characteristics of soft-in soft-out component convolutional
decoder (8-state, R = 1/3, LTE)
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Fig. 6.6 EXIT chart characteristics for three different Eb/N0 values. The sketched trajectory is
only valid for an infinite interleaver size

of the decoding process is shown. There, the output information of one decoder is
used as input information of the next decoder. The iteration proceeds as long as there
is a gain of information. For Eb/N0 = 1.5 dB the iterative decoding will continue
until the maximum information of I e = I a = 1 is reached, i.e. error free informa-
tion. For a larger Eb/N0 the number of iterations is reduced to obtain an error free
decoding, while at a low Eb/N0 the two characteristics will intersect and thus will
not gain any information for successive iterations. The decoding procedure is going
to get stuck. For the hardware realization the EXIT charts can be used to track the
effects of quantization or to visualize the information loss of sub-optimal algorithms.
In summary, EXIT chart analysis is a mighty tool to explain, analyze, and as well to
design iterative decoders, see [2, 3].

6.2.2 Communications Performance

As mentioned before the communications performance is typically measured in frame
error rate (FER) over the signal-to-noise ratio (SNR). The decoding of turbo codes is
an iterative process, while the communications performance improves for successive
iterations.

Figure 6.7 shows various iterations of a LTE turbo decoder with K = 6144 infor-
mation bits and a code rate of R = 1/2. An AWGN channel was utilized for these
performance results. The input data has a FER of nearly one for the entire SNR range.
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Fig. 6.7 LTE turbo code performance for code rate R = 0.5 and a block length of K = 6144 [4]

Thus, at least one bit error is occurring in each frame. After 3 iterations a huge coding
gain can be observed. For the 4th and 6th iteration the gain is still significant. How-
ever, after 8 iteration the additional gain for further iteration gets smaller and smaller.
Typically, not more than 8 turbo iterations are performed for decoders realized in
hardware. This number is restricted due to latency and throughput constraints of the
system. For the LTE standard an achieved FER = 10−3 is sufficient, since additional
techniques like automatic repeat requests (ARQ) are applied to preserve the desired
system quality of service. Anyhow for turbo codes we have to distinguish between
convergence gain and low asymptotic gain. Good convergence means that the FER
already decreases at an SNR close to the theoretical limit. This SNR region with still
improving communications performance is also denoted as waterfall region. The
asymptotic gain describes the (SNR) coding gain at a very low bit error rate. As
mentioned, the gain in communications performance is getting smaller with more
iterations. Note that the convergence speed of the algorithms depends also on the
block size. The larger the block size the more iterations are mandatory to obtain the
best achievable communications performance.

Figure 6.8 shows the 4th and 8th iterations of a LTE turbo decoder (K = 6144
information bits, R = 1/2) simulated with a simple additive white Gaussian noise
channel. Shown are three different algorithm, the optimal Log-MAP simulation, the
Max-Log-MAP simulation, and an improved Max-Log-MAP simulation with extrin-
sic scaling factor (ESF). For eight iterations the performance difference between the
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Fig. 6.8 Comparing Max-Log MAP, Log-MAP, Max-Log-MAP-ESF communications perfor-
mance

three algorithms is already significant. The difference between the optimal Log-MAP
implementation and the sub-optimal Max-Log MAP implementation is 0.3 db. It is
well know that the Max-Log-MAP algorithm overestimates the additional gain which
is passed between the component codes. In [5] a simple extrinsic scaling was intro-
duced which counterbalances this overestimation. The extrinsic information is just
multiplied by e.g. ESF = 0.75 and the performance improves as shown in Fig. 6.8.

The LTE standard uses new interleavers and a new puncturing scheme compared
to its original UMTS definition. Figure 6.9 shows the difference between the LTE
system and the HSPA system. Both with identical block length of N = 5178 and a
high code rate of R = 0.94. Both codes utilize the same number of iterations and
the same implementation of the component code processing. Noteworthy, a huge
difference in communications performance can be seen. The reason for this is the
different minimum distance of the resulting code (after puncturing). An appropri-
ate interleaver and a clever puncturing scheme influence the distance spectrum and
thus the asymptotic gain. Turbo codes are faced with the convergence versus dmin

dilemma. The better the early convergence the smaller the minimum distance which
results in a so called error floor.

The convergence of a code is defined by the used component codes while the
interleaver determines the error floor. Much effort was taken to answer the question:
which simple codes have to be concatenated to approach the Shannon limit? The
EXIT chart analysis is one major techniques to answer this question.
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Fig. 6.9 HSPA and LTE turbo code performance for code rate R = 0.94 and a block length of
N = 5178 [4]

6.2.3 Fixed-Point Realization and Robustness

For hardware realization of any channel decoder we have to convert the algorithm
from a floating point to a fixed-point realization as shown in Fig. 4.1. Goal is to rep-
resent every variable in the algorithm with a limited number of bits, since a smaller
bit width results in a smaller area and as well to a reduced power consumption.
During the conversion an information loss occurs which may result in a degrada-
tion in communications performance. For simple components like the demodulator
we can evaluate this information loss in an analytical way, however, for iterative
decoding algorithm we have to simulate the resulting communications performance
while comparing the result towards an optimal floating point implementation. Turbo
decoders are realized in hardware since its standardization in UMTS, since then many
explorations have been carried out, e.g. [6, 7].

For the fixed-point realization the quantization of the input data (Qin) is of great
importance as the bit width of all other variables can be derived from this number.
For example in practical systems the quantization of the exchanged message between
the component decoders is chosen to be the input bit width plus one bit, i.e. Qext =
Qin +1. In the following we always simulate the internal bit width of the component
decoder sufficiently large such that no degradation occurs w.r.t. communications
performance. In the following only the discussion of the input bit width is highlighted.

http://dx.doi.org/10.1007/978-1-4614-8030-3_4
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Fig. 6.10 LTE turbo code performance for code rate R = 0.5 and a block length of K = 6144
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As derived in Sect. 2.2, the inputs to the turbo decoder are the channel LLR values
λ = 2

σ 2 y which are the received samples corrected by the channel reliability factor

Lch = 2
σ 2 .

Figure 6.10 shows the communications performance result of a LTE turbo code
(R = 0.5, K = 6144). For all fixed-point simulations an input quantization of
Qin = 6 bits is assumed, while the number of fractional bits is varying between
one bit, two bits and three bits, denoted as Prec = 1, Prec = 2, and Prec = 3,
respectively. Always the result of the 8th iteration is shown for a fixed-point Log-
MAP and a fixed-point Max-Log-MAP with scaling realization. One can see that
the performance degradation of the Log-MAP fixed-point model leads only to a
small loss compared to the reference floating point Log-MAP model. Furthermore,
the relative behavior between both types of algorithms, Log-MAP and Max-Log-
MAP with scaling, is similar. The best communications performance is achieved in
both algorithmic cases when simulating with two fractional bits. All simulations in
this graph are carried out with an optimal channel reliability factor Lch . Thus, for
each SNR point a different scaling of the input values is applied while the input
quantization is performed after this optimal demodulator stage.

For an instantiation of a turbo decoder in a larger system this is a too optimistic
assumption. In a final system realization we have to estimate σ 2 by a channel estima-
tor. In practical systems we can not assume a perfect estimation and by that optimally
scaled input values. Rather, we have to explore the fixed-point analysis with so-called

http://dx.doi.org/10.1007/978-1-4614-8030-3_2


130 6 Turbo Codes

mismatched SNR estimations. A mismatched SNR estimation refers to the case of
difficult channel conditions at which the channel reliability factor is fixed for an
entire SNR range. Furthermore, we have to emulate the case that the noise level is
estimated imprecisely.

Figure 6.11 shows the performance of the same LTE turbo code, while all simu-
lations are performed with Qin = 6 bits input values (two bits fractional part). This
time we perform the simulations with different channel reliability values ranging
from LCH = 1 to LCH = 3. For each simulation the corresponding channel reliabil-
ity factor is fixed for the entire SNR range and denoted as CHR in the legend of the
figure.

The Max-Log-MAP with scaling shows for all CHR cases a nearly identical com-
munications performance. The reason for that is that the Max-Log-MAP algorithm
is SNR insensitive since only the metric differences are of importance, see [8]. How-
ever, the Log-MAP performance results show a huge variation. For CHR = 1 the
decoding algorithm does not show any convergence at all. Indeed, this is a large
mismatch of the channel reliability factor, however, for a mobile device we have to
ensure a robustness of the algorithm even under difficult conditions. The reason for
the SNR sensitivity of the Log-MAP algorithm is the correction term introduced in
Sect. 3.3.4.

In summary, a fixed-point exploration of an algorithm is more than fitting the
bit width to one specific simulation set up. We have to explore the communications
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Fig. 6.11 LTE turbo code performance (R = 0.5, K = 6144). All results with 6 bits input width
and 2 precision bits. The scaling of the input LLRs provided by the demodulator is varying

http://dx.doi.org/10.1007/978-1-4614-8030-3_3
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performance with respect to realistic conditions. Thus, we should chose an algorithm
with respect to its robust behavior under all conditions, i.e., SNR mismatch effects
as shown here, but as well for different modulation schemes, code rates, block sizes,
or different channel models as well.

6.3 Turbo Codes Architecture

The previous sections presented turbo codes from an algorithmic point of view. Mov-
ing towards implementation, the architectural side of the decoder must be regarded.
For hardware realization of a turbo decoder three important design steps have to be
done.

• Realization of the processing of the component codes.
• Iterative exchange of the message, see Sect. 6.2.
• Interleaver realization.

As mentioned for future architecture we often have to realize a high throughput which
results as well in parallel decoder architectures. Especially the interleaver realization
can be a problem for a parallel implementation as already presented in Sect. 4.3. For
the realization of the component decoder we have different possibilities. The most
common architecture is the so called serial MAP architecture which is presented in the
next section. When assembling all components together various design possibilities
have to be considered. The design space is presented in Sect. 6.3.2.

6.3.1 Serial MAP Architecture

The component decoder of a turbo decoder has to realize a soft-input soft-output algo-
rithm. Typically, the Max-Log MAP realization is implemented. It uses a forward-
backward algorithm—corresponding data paths are derived in Chap. 5. Adapting a
serial data path for the MAP architecture is often denoted as serial MAP architecture.
The serial MAP (SMAP) architecture is the most common architecture in literature
which is instantiated within a turbo decoder. The now presented architecture is based
on the derived serial data path example of Sect. 5.1.2.

The decoding consists of two steps, the forward recursion and the backward
recursion. Figure 6.12 shows the architecture of the forward processing, Fig. 6.13
shows the final architecture of the backward processing and output calculation.

We deal with a (information) block of length BL, thus we need BL−1 clock cycles
for the forward processing and BL cycles for the backward and output processing.
The block length processed in hardware is often BL ≤ K , with K the number of
information bits. BL in hardware can be smaller since we can either process two
trellis steps within one clock cycle or we can even partition the entire block into
so called windows. Both techniques are not treated in this section and are advanced

http://dx.doi.org/10.1007/978-1-4614-8030-3_4
http://dx.doi.org/10.1007/978-1-4614-8030-3_5
http://dx.doi.org/10.1007/978-1-4614-8030-3_5
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Fig. 6.12 SMAP architecture
during forward recursion

optimization techniques to increase throughput or to decrease storage demands, for
details we refer to [9]. For the discussion here a processing of one information bit
per trellis step is assumed (BL = K ).

We now introduce some generic parameters to describe corresponding number of
values passed between the processing units, i.e., how many values are read, written or
processed per clock cycle. We assume a convolutional code of rate R with 2M states,
with M the number of registers within the encoder. Depending on the utilized code
rate R always 1/R values are read from the channel LLR memory. The branch metric
unit calculates 21/R values and passes these to the recursion unit. The recursion unit,
assumed to process all 2M states in parallel, passes 2M state metrics to the register
bank. These 2M values are stored in the alpha memory. When processing a trellis
featuring 64-states as is used in the WiFi standard the number of bits to store or to
process is very large. Under the assumption that each value is represented by 10 bits
we have to store 640 bits per clock cycle. If BL is large, the alpha memory may
becomes the largest part of the entire architecture. Yet considering turbo decoders,
the number of states is restricted at most to 16 states, see Table 6.1.

Of course there are various possibilities to perform the forward-backward process-
ing. Each data flow possibility results in different architectural characteristics for,
e.g., input data retrieval, number of instantiated recursion units, latency, and resulting
throughput. The starting point is often a graphical representation to analyze the so
called life time analysis of processed data. The life time analysis of the presented
architecture is shown in Fig. 6.14.
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Fig. 6.13 SMAP architecture during backward recursion and output processing

Fig. 6.14 Graphical data life time analysis. y axis reflects the position in a data block of length
BL, the x axis reflects the time or trellis steps



134 6 Turbo Codes

The y-axis reflects the position in a data block of length BL, the x-axis reflects
the processing time or trellis step. We analyze the graph from left to right. Each time
step is associated with one recursion step. The processing of the forward recursion
is indicated by the diagonal bottom left to top right. The processing of the backward
recursion is depicted by a diagonal from top left to bottom right. At each time step
exactly one recursion step is performed. Thus, it is obvious that we have to instantiate
one RU which performs first the entire forward recursion and then the same RU is
utilized for the backward recursion. The output processing is done simultaneously
with the backward processing which requires additional logic. We can see that the
input data has to be read from the first block position in an incrementing order.
However, the output information is calculated in a reversed direction. Thus the result
of position BL−1 is obtained first. One important information that we can extract
from this representation is the storage time of the state metrics of each time step.
The first state metrics obtained in the very first clock cycle is used again at the end
of the backward recursion. This is the maximum storage time occurring during the
backward forward processing. The depth of the state metric memory is determined
by the hight of the triangle. Typically this memory is called state metric memory or
alpha memory as already mentioned.

One important aspect of the backward forward algorithm is the possibility to
perform the backward recursion first as shown in Fig. 6.15. The major difference for
processing is the inverse reading sequence of the input values and also a new order of
the output values. This can be of advantage when output values have to be provided
in the original order for the next stage.

Figure 6.16 shows a different approach, leading to a different architecture with
changed architectural characteristics. In each time step a forward and a backward
recursion is active. Thus, two RU units have to be instantiated. After processing half
of the block again two RUs and two output LLR units are processing data. As a
result, two output data are provided per clock cycle. In this data flow always two
distinct data sets, input data and state metrics, have to be provided to the processing
units. The maximum storage time is reduced by a factor of two and the throughput

Fig. 6.15 Processing schedule: first the backward recursion then the forward recursion with output
LLR processing
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Fig. 6.16 Two recursions are running in parallel, forward and backward

increased by a factor of two compared to Fig. 6.14. The number of processing units
is exactly doubled compared to Fig. 6.14, while the number of state metrics to be
stored is identical. However, another access characteristic of the state metric memory
results. In every clock cycle two accesses are required, either two write access during
the first BL/2 clock cycles, or two reading accesses throughout the second half of
the process. There are many other possibilities either to increase the throughput or
to reduce the storage requirements.

The high throughput demands of a Max-Log-MAP decoder is mainly driven due
to the increasing throughput demands of turbo code decoders.

6.3.2 Design Space and Design Choices

In this section the design space for turbo decoder architectures is presented along
with the design choices which are most often utilized for industry driven designs.
The possible design steps in the following are not described in detail, rather the most
important references are given. The detailed description and compact analysis of full
turbo decoder designs can be found in various thesis like [9–11].

High Level Architecture Decisions

The first and very important high level architectural decision is the question of cou-
pling of the component decoders. Different methods how to exchange the information
exist. Furthermore additional interface options have to be considered for storing the
input and output data. We list the ‘Pro’ and ‘Con’ for each decision.

• It is possible to exchange combined extrinsic data plus information bit LLR within
one half iteration, see Fig. 6.17a.
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Fig. 6.17 a Turbo decoder which passes the full a posteriori information from MAP1 to MAP2, b
with separate interleaved systematic information

– Pro: The reading process and storing of interleaved systematic information can
be omitted.

– Con: The bit width of the exchanged information and thus stored information
is increased.

• Reading the interleaved information bit LLR within one half iteration, see
Fig. 6.17b.

– Pro: A symmetric/identical processing of the component decoder is possible
which enables, e.g., a simpler programming and a simpler control flow.

– Con: The technique is less power efficient since an addition reading of the
interleaved information becomes mandatory.

• Depending on the system considerations the input I/O features a double buffering
scheme. The interface writes to one buffer (memory) while the other buffer is
utilized for processing. The role of these two memory groups alternate for each
block.
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– Pro: The interface causes no additional latency. A simple control flow results
while the double I/O solution is often mandatory due to throughput and latency
constraints.

– Con: It doubles the area of input memories.

• A codeword featuring a code rate R > 1/3 is obtained by puncturing. The input
interface has the possibility to store the punctured information as LLR = 0 to the
corresponding memory address.

– Pro: The decoder needs no knowledge about the puncturing scheme at all. The
reading process for the channel values during MAP processing becomes straight
forward.

– Con: For high data rates all the unneeded ‘zero’ information is read and
processed.

• Typically for the output part of the I/O interface only hard values are provided.
However, providing soft-outputs for the information bits or parity bits is possible.

– Pro: Soft-outputs can be used as feedback information to demodulator or syn-
chronization unit.

– Con: The output memories are increased. For the soft-output parity bits an
additional output calculation stage has to be instantiated. Attention: the outer
inter-block interleaving has to be implemented for a possible feedback loop as
well.

• The turbo decoder can provide additional information for the MAC layer or previ-
ous processing stages. This additional information can enable e.g. dynamic time
allocation to process a block within a TTI frame, or it can support the channel
estimation etc.

– The number of required iterations is one information which can be used for
dynamic time allocation.

– Monitoring the convergence speed by utilizing a reliability measure gives an
information about the reliability of decoding.

– Tracking the saturation level of the input data will help to indicate a wrong LLR
scaling.

Quantization Issues

Quantization aspects directly influence the power consumption and the communica-
tions performance. Most of the current state-of-the-art implementations operate on 6
bits input quantization and 7 bits extrinsic quantization. For conservative designs and
robustness towards SNR mismatch up to 8 bits are sometimes utilized for input LLRs.
The input quantization directly influences the bit width of the state metrics. The bit
width of sate metrics have to be normalized due to the accumulative functionality of
the recursion units.
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• An efficient state metric renormalization technique is the modulo normalization
[12, 13]. The modulo normalization utilizes an overflow technique to limit the bit
width of the state metrics. It is performed on the fly within the recursion unit.

– Pro: The modulo normalization is a simple realization which requires no addi-
tional hardware units. The critical path is not prolonged.

– Con: The bit width of each state metric is slightly larger compared to subtractive
normalization.

• Limiting the bit width of the state metrics can be obtained by subtractive normal-
ization. The normalization can be done by subtracting always the zero state or by
subtracting the maximum state [12].

– Pro: The bit width of the state metric can be kept as small as possible.
– Con: The normalization during the recursion prolongs the critical path.

• Limiting the bit width of the stored state metrics can be achieved by subtractive
normalization prior the state metric storage. In this case the normalization is best
done by subtracting always the zero state [14].

– Pro: For LTE or HSDPA only 7 state metrics have to be stored, i.e. one state can
always be normalized to zero.

– Con: It can be cumbersome if already a modulo normalization is used within
the recursion units.

Data Path MAP Component

Data path aspects is one of the most published topics for component MAP imple-
mentation. An overview can be found in [15]. Major issue is: how to partition a block
into sub-blocks which can be processed independently. This kind of partitioning is
mandatory for high throughput turbo decoders. Two fundamental techniques can be
distinguished. The block of length N is divided in P sub-blocks, always N

P con-
secutive bit positions belong to one partition [16, 17]. The resulting MAP engine
processing one sub-block is called serial MAP, see Chap. 5. The second partitioning
possibility is to utilize a pipelined XMAP architecture which accepts P consecutive
bit positions each clock cycle [18, 19], see Chap. 5.

• XMAP data flow

– Pro: In [15] it is proven that for final LLR calculation of this data flow is most
efficient in terms of state metric storage, if no acquisition phase is mandatory.
Note that the basic data flow principle can be also used for SMAP decoders.

– Con: The XMAP data flow requires an acquisition (training phase) from both
sides (α, β). The longer the mandatory training phase the larger the additional
overhead.

http://dx.doi.org/10.1007/978-1-4614-8030-3_5
http://dx.doi.org/10.1007/978-1-4614-8030-3_5
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• SMAP data flow

– Pro: The SMAP data flow is state-of-the-art and most often utilized in industry
designs. The throughput scaling of the resulting architecture is straight forward.

– Con: The state metric storage becomes large for a large window length, thus
additional techniques should be applied.

Windowing Scheme

A block which is processed by one SMAP decoder can be partitioned further by a so
called windowing scheme [19] which was already utilized for Viterbi decoding [20].
The boundaries of the windows can be initialized by state metrics of the previous
iteration or by an acquisition (training) phase, see Fig. 6.18 and Fig. 6.19.

• Depending on the window size an additional training phase may become manda-
tory. The training phase is called acquisition (ACQ).

– Pro: For long ACQ values the communications performance will be comparable
to that without windowing scheme.

Fig. 6.18 MAP decoder
which processes a full block
of length K

t

K

forward 
recursion

depth of 
state metric memory

Fig. 6.19 MAP decoder
which processes two windows,
each with K/2 data

t

K

forward 
recursion backward recursion

with LLR computation

K/2

pass 
alpha state
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– Con: Without additional hardware the latency of the decoder increases. With
additional hardware the area increases and the control flow will get difficult.

• Next Iteration Initialization: State metrics at the window boundaries are stored at
iteration i and reused at iteration i + 1 [14].

– Pro: The technique is very effective to enhance the convergence of the decoder.
It can be used as well in combination with ACQ.

– Con: Non, it should always be utilized.

Recursion Unit

The recursion unit (RU) is the basic building block for performing the mandatory
forward or backward processing. One basic issue is the number of instantiated RUs.
An other more detailed question is the number of processed trellis steps within a
RU unit. Radix-2 processes one trellis step, Radix-4 processes two trellis steps,
respectively.

• Number of instantiated recursion units within a SMAP unit.

– 1 RU: One recursion unit can process either α or β or an acquisition phase. This
is a feasible solution for lower throughputs.

– 2 RUs: Two recursion units process α and β concurrently. This is state-of-the-art
and allows a huge variety of windowing schemes.

– 3 RUs: Two RUs are used for α and β recursion, the third for acquisition phase.
Note, that with 3 recursion units special care has to be put on the branch metric
storage.

• The recursion unit can be implemented to process two trellis steps within one clock
cycle. This implementation is called radix-4 unit [21, 22].

– Pro: The number of stored state metrics reduces by a factor of two while the
throughput is doubled.

– Con: The critical path is longer compared to a radix-2 implementation, which
may cause problems for stringent frequency constraints.

• Re-computation approach: state metric values (α or β) are only partially stored
and recomputed during LLR calculation [16].

– Pro: It reduces the state metric memory and also the power consumption.
– Con: Additional RU units are required and the control flow is more complicated.

Parallel Interleaving

One difficult problem to support high throughput turbo decoding is the parallel inter-
leaving. The possible memory access problems can cause big problems. Especially
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for HSPA advance which requires throughput rates up to 150Mbit/s. Note that LTE
turbo codes feature interleavers which provides a conflict free access scheme with
respect to a maximum parallelism of 64.

Three different possibilities exist to store the corresponding soft-output values of
the component decoders. The soft-values which have to be interleaved can be stored
before or after (de)interleaving, as shown in Fig. 6.20.

• Access scheme a: The interleaving is performed during writing.

– Pro: There exists an identical flow for both component decoders. Occurring
conflicts may be resolved by buffering or flow control methods.

– Con: A worst case analysis has to be done for all block sizes to ensure the
required throughput demands.

• Access scheme b: The interleaving and deinterleaving is performed during reading
and writing data of the second component decoder.

– Pro: One component MAP can be realized highly parallel since no conflicts
occur. This procedure seems to be logical for an unified decoder (LTE and
HSPA) since the maximum throughput demand of a LTE mode is typically 2
times higher than the corresponding HSPA mode.

– Con: The second component decoder should operate on a different paralleliza-
tion level since conflicts have to be resolved during reading and writing.

MEMAPP
Decoder 1

INT
MEMAPP

Decoder 2
DEINT

MEMAPP
Decoder 1

INT
MEMAPP

Decoder 2
DEINT

(a)

(b)

MEMAPP
Decoder 1

INT
MEMAPP

Decoder 2
DEINT

(c)

DEINT

INT

Fig. 6.20 Storage and interleaving of exchanged soft-values: a interleaving and deinterleaving
upon write; b interleaving upon read, deinterleaving upon write, c two stage interleaving process
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• Access scheme c: Here a two stage interleaving process is assumed with two
interleaver tables.

– Pro: This access scheme allows a parallel processing of all HSPA interleavers
[23].

– Con: For each block length and thus interleaver pre-computed access patterns
have to be stored. The storage demand of this technique is high. Note that a
different pattern for MAP1 and MAP2 exists.

Low Power Techniques

Iteration control is one of the most important techniques to reduce the power con-
sumption. Goal is to reduce the average number of iterations. It has to be distinguished
between techniques to detect undecodable blocks and decodable blocks. Control cri-
teria can be based on soft (reliable) or hard information. An overview of different
techniques is presented in [24].

• Iteration control criteria based on soft information. Soft information can be either
the exchanged extrinsic information or the computed APP information.

– Pro: It does work for undecodable blocks by tracking the convergence of the
decoder.

– Con: In normal mode (decodable blocks) the additional energy consumption
and overhead can be large. There may exists a high false alarm rate for varying
channels.

• Iteration control criteria based on hard information.

– Pro: The implementation comes with only a small hardware overhead and does
work for decodable blocks. It is especially good for, e.g., HSPA decoding.

– Con: The detection of undecodable blocks is not reliable. It has to be switched
of for LTE decoding since the existing CRC check is more reliable.

• LTE: CRC check hardware instances after MAP1 and MAP2, since the decoding
process may oscillate for very high code rates [25].

– Pro: It is very important to perform the CRC after each MAP.
– con: Two separate CRC units may be mandatory due to latency reasons.

6.3.3 Dependencies of Architectural Parameters

In this section we show the dependencies of various architectural parameters on
throughput and area of state-of-the art turbo decoders. We use the following nomen-
clature and parameters:
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tcond technology node and operating conditions
w.r.t. feature size variation, Vdd , temperature

fcyc frequency of the design
Q = Qin quantization of the input data, the quantization

of all other variables are derived from this
i ter iteration number
K number of information bits
W L window length, in hardware the codeword is

processed window by window
AL acquisition length, the number of training steps

for the forward or backward recursion
rdx radix-2 or radix-4 realization of the recursion units
P architectural parallelism
CN latency due to network to realize the interleaving,

strongly depends on P and interleaver structure

The throughput (T ) for state-of-the-art turbo decoder architectures can be calcu-
lated by the frequency times the number of cycle needed to process an information
word of length K . An increased throughput requires a higher parallelism of the archi-
tecture, which increases the number of overhead cycles for interleaving CN (P). The
throughput is given as follows:

T = fcyc· K

2 · iter ·
(

WL+AL
log2(rdx) + K

P·log2(rdx) + CN (P)
) (6.4)

The frequency itself mainly depends on technology tcond , the quantization of the
input data, and the critical path in the combinatorial logic.

The area Aall of a turbo decoder is composed of three parts:

Aall = P · AM AP (tcond, Q, W L , AL , rdx)

+ Actrl(tcond)

+ AM (tcond, Q, W L , AL , rdx, P). (6.5)

AM AP is the logic area for a single MAP processing kernel which has to be instanti-
ated P times depending on the parallelism. Actrl is the area of the controller which is
typically small compared to the other two parts. AM is the required area for instan-
tiated memories. The area to store the input data (AI/O

M ), the area of extrinsic data
(Aextr

M ) which are exchanged between component decoders, and the area to store
state metric values used within the processing units (AM AP

M ). Thus the area of the
memory which is a large portion of the overall area is given by

AM = P · AM AP
M (tcond, W L , Q, rdx)

+ AI/O
M (tcond, P, K , Q)

+ Aextr
M (tcond, P, K , Q). (6.6)
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In a similar way it is possible to derive equations for the energy consumption.
Energy consumption of a turbo decoder can be expressed as

Eblock = iter · [2 · P ·
(

WL + AL + K

P

)
· Ekernel(tcond, P, Q)

+ Enetwork(tcond, P, Q)] + EI/O(tcond, Q) (6.7)

Eblock is the energy consumption of the entire block and depends of course directly
on the number of utilized iterations. The final energy per bit is thus

Ebit = Eblock

K
(6.8)

The power consumption results in

P = Eblock

2 · it ·
(

WL+AL
log2(rdx) + K

P·log2(rdx) + C(P)
)

+ II/O

· f (tcond, Q) (6.9)

Area and power results of various turbo decoder implementations will be pre-
sented in Chap. 9. Understanding the trade-offs between implementation efficiency,
communications performance and flexibility will be key for designing efficient turbo
decoders. Meaningful efficiency metrics are mandatory to explore and evaluate the
resulting huge design space which will be presented as well in Chap. 9.
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