
Chapter 5
Data Path of Individual Components

The data path of an architecture defines the alignment of processing elements. It real-
izes a certain functionality which fulfills a given throughput constraints. There exit
always different possibilities to realize a defined functionality. Here we describe the
individual steps to the design of individual components, again tailored for commu-
nications systems as shown in Fig. 4.1. Note, there is a difference of a data path for
individual components and the data path for processors. The data path of a general
purpose processor has the task to be as flexible as possible, thus arithmetics units are
used with large bit width to provide a high flexibility, e.g. 32 bit or 64 bit. For dedi-
cated hardware design the data path and thus the computational units are optimized
with respect to the given algorithm to be processed. The steps to derive a dedicated
data path are:

1. Starting from an algorithm description we have to decompose the algorithm
in functional parts. Goal of this task is to identify the mandatory processing.
The processing can often be separated in individual processing steps. For the
individual processing parts we have to analyze:

• the final bit width of the data, e.g. what is the influences of the data represen-
tation on the communication performance,

• how to realize processing kernels, e.g. processing in time or frequency domain,
• the correct or approximative functionality, e.g. whether the communications

performance of the approximation is good enough.

2. The next step is to derive a data flow. Deriving a data flow utilizing the complete
functionality of the algorithm can sometimes be cumbersome. We have to dis-
tinguish between important aspects for the data flow and unimportant ones. The
data flow is independent from the processing itself, rather reflects:

• data dependencies, e.g. which data have to processed first,
• lifetime analysis of data, e.g. how long do we have to hold information,
• concurrency, e.g. the choice of consuming one value after the other or process-

ing all at once.

F. Kienle, Architectures for Baseband Signal Processing, 97
DOI: 10.1007/978-1-4614-8030-3_5, © Springer Science+Business Media New York 2014

http://dx.doi.org/10.1007/978-1-4614-8030-3_4

98 5 Data Path of Individual Components

The data flow analysis is very important for the hardware realization since it
directly influences the resulting throughput and the overall data handling. The
data flow analysis should be done on an simplified or abstracted functional model.
An example is shown in next section.

3. Define the constraints to derive a data path. For dedicated hardware design the
major constraint is often a time budget to fulfill a certain task. One constraints
could be the number of data which should be processed within a certain time
budget which is in fact the throughput definition of an application.

4. Define a feasible data path of one possible realization which fulfills the timing
budget/throughput constraint. The timing information can be an abstract timing
or a detailed cycle based timing. Important is that we allocate the time budget for
the processing task.

In the following we derive first an abstract data flow followed by different data
path possibilities. We use the example of a Max-Log-MAP processing which was
introduced in Sect. 3.3.3. The corresponding functional processing parts are derived
afterwards. The data paths derived in the next section are valid for all forward-
backward based algorithms, thus independent of a possible Log-MAP or Max-Log-
MAP implementation. This is only possible if a clear separation of data flow and
functionality is derived. Realizing corresponding processing elements are presented
Sect. 5.2. More complicated functions can either be done by look-up tables or by
deriving approximations which can be efficiently implemented. Both techniques are
explained based on exemplary functions which are often used to realize channel
decoders.

5.1 Data Flow to Data Path Example

The MAP decoder has to calculate the maximum a posteriori probability which
was introduced in Sect. 3.3.3. We deal here only with the so called Max-Log-MAP
algorithm which is typically employed in the hardware realizations. To perform the
Max-Log-MAP algorithm on the trellis we have to perform the so called forward-
backward processing, this is shown step-by-step at Figs. 3.10–3.14.

To separate the processing and the data flow we first derive the mandatory
processing steps in a more general way. The Max-Log-MAP decoding according
to Sect. 3.4.2 can be summarized in four processing steps which are repeated here.

• Branch metric computation and allocation on the edges of the trellis.
• Forward recursion: calculate at each time step and thus trellis step k the corre-

sponding path metric αS
k+1 for every state S. The calculation is done recursively,

where the result in step k always depends on the previous results.
• Backward recursion: the backward recursion is based on exactly the same recursive

processing, however starting with the calculation from the last state in the trellis.

http://dx.doi.org/10.1007/978-1-4614-8030-3_3
http://dx.doi.org/10.1007/978-1-4614-8030-3_3
http://dx.doi.org/10.1007/978-1-4614-8030-3_3
http://dx.doi.org/10.1007/978-1-4614-8030-3_3
http://dx.doi.org/10.1007/978-1-4614-8030-3_3

5.1 Data Flow to Data Path Example 99

• Soft-output calculation: to calculate the symbol-by-symbol MAP probability we
need the results from the forward recursion, the backward recursion and the branch
metrics.

The recursive calculations are always done on multiple values. In the case of trellis
processing we calculate at each recursion step Sk+1 = f (Sk, γ k). In the case of a
4-state trellis Sk+1 consist of 4 values, while γ k , the edge labels, consists as well of
4 branch metrics.

For the data flow we do not concern about the cardinality of S or γ k and we can
abstract the recursion function by a simple function which calculates only one value,

Sk+1 = f (Sk, γk). (5.1)

Each branch metric at step k is assumed as well to be one value. For deriving the
data flow we use a block of 8 input values, denoted as γ = [a, b, c, d, e, f, g, h],
with e.g. γ0 = a at step k = 0. Furthermore, for the function of Eq. 5.1 we utilize
a simple minimum search of two input values, i.e. min(x, y). The entire forward-
backward processing is thus reduced to a simple processing of 8 input values with
simple computational stages.

The abstract function for deriving the data flow can be written as a marginalization
problem:

M(x) = min∼xi
{a, b, c, d, e, f, g, h} (5.2)

∼ xi defines the values of x without the value at position i . Thus, we have to
compute 8 different results, one for each input position.

M(xi = a) = min {b, c, d, e, f, g, h} M(xi = b) = min {a, c, d, e, f, g, h}
M(xi = c) = min {a, b, d, e, f, g, h} M(xi = d) = min {a, b, c, e, f, g, h}
M(xi = e) = min {a, b, c, d, f, g, h} M(xi = f) = min {a, b, c, d, e, g, h}
M(xi = g) = min {a, b, c, d, e, f, h} M(xi = h) = min {a, b, c, d, e, f, g}

One possible data flow structure to solve Eq. 5.2 is a tree structure. The tree
structure is a typical data flow with respect to a parallel realization.

Parallel means here that we may process all input values {a, b, c, d, e, f, g, h} in
one step.1 The tree structure for two functions can be seen in Fig. 5.1. The left tree
calculates M(xi = a) and the right tree M(xi = b) respectively. It can be seen that
in both trees identical sub-results are calculated, indicated by the circles. This gives
us an indication about possible hardware reuse in a derived data path.

However, first we define additional constraints on our data flow with respect to data
dependencies. The MAP processing is recursive and non commutative, at least when
utilizing the trellis structure of convolutional codes. We have to ensure a recursive
approach as well to solve Eq. 5.2. This is shown in the new data flow structure of

1 In a hardware realization this would mean in the same clock cycle.

100 5 Data Path of Individual Components

Fig. 5.1 Tree data flow for calculating M(xi = a) and M(xi = b)

Fig. 5.2 Recursive data flow
to calculate M(xi = a) and
M(xi = b)

a b c g h

Fig. 5.2. Two different data flow directions are shown here, the forward direction
with solid lines, and the backward direction with dotted lines.

In the following we derive two different data paths which fulfill the constraint of
a recursive calculation. The data path contains already timing information and is one
major step towards a dedicated hardware architecture. Then, one processing step in
the calculation corresponds to one clock cycle.

5.1.1 Serial Data Path: One min (x, y) Unit

The serial data path (serial marginalization) has already prerequisites for a final
hardware realization. Here in the example, we assume that we can process one input
value per clock cycle (processing step). Figures 5.3–5.5 show the data path and the
processing steps to solve Eq. 5.2. We write all input information (a, b, d, e, f, h, g)
to an array, indicated as box, which may be later instantiated as a memory. The current
reading position of the array is indicated as a pointer. In the hardware implementation
this pointer will be a reading address for a RAM, see Sect. 4.2. Each processing step
is now described step by step.

http://dx.doi.org/10.1007/978-1-4614-8030-3_4

5.1 Data Flow to Data Path Example 101

Memory1

Memory2

read pointer starts at addr.0+1

+1

Fig. 5.3 Serial architecture: forward recursion, with the content of memory 2 after the 7th clock
cycle

Step 1: Forward Processing (Figure 5.3)

• Initialization:
The input values {a, b, c, d, e, f, g, h} are stored sequentially in memory 1.
The read pointer (address) for memory 1 is set to 0 (the address where value a is
stored).
The write pointer(address) for memory 2 is set to 0.
The register is initialized with an ‘infinite value’, e.g. in hardware this would be
the largest number with respect the utilized number representation.

• First clock cycle:
Read the first value (a) from memory 1.
min(x, y) calculates the first result which is min(a, inf) = a.
The result is stored in memory 2.
The register keeps now the value a.
The read and write pointer are incremented by one.

• Second clock cycle:
Read the second value (b) from memory 1.
min(x, y) calculates the second result which is min(a, b).
The result is stored in memory 2.
The register keeps now the value min(a, b).
The read and write pointer are incremented by one.

• 7th clock cycle
After 7 clock cycles all intermediate results are stored in memory 2.
The so called forward processing or forward recursion is finished.

102 5 Data Path of Individual Components

Memory1Memory 3

+1

write pointer
starts at addr.0

read pointer
starts at addr.7

1

Memory 2

Fig. 5.4 Serial architecture: backward recursion, with the content of memory 3 after the 7th clock
cycle

Step 2: Backward Processing (Figure 5.4)

For the backward processing a third memory has to be instantiated, denoted as mem-
ory 3.

• Initialization:
The input values {a, b, c, d, e, f, g, h} are again stored sequentially in memory 1.
The read pointer (address) for memory 1 is set to 7 (the address where value h is
stored).
The write pointer(address) for memory 3 is set to 0.
The register is initialized with an infinite value.

• First clock cycle to last clock cycle:
Read the memory 1 starting form address 7, first value is h, last is a.
The min(x, y) calculates the results in reversed order.
The register keeps always the intermediate values.
The read pointer of memory 1 is decremented by one in each step. The write
pointer of memory 3 is incremented by one in each step.

Step 3: Output Processing (Figure 5.5)

For the output processing the data passed to the min(x, y) are multiplexed from
memory 2 and memory 3 respectively. The two new introduced multiplexers indicate
the required switching.

• Initialization:

The read pointer (address) for memory 2 is set to 0.
The read pointer(address) for memory 3 is set to 6.

5.1 Data Flow to Data Path Example 103

Memory1

Memory3Memory2
read pointer
starts at addr.6

1

+1

read pointer
starts at addr.0

Fig. 5.5 Serial architecture: backward recursion

• First clock cycle:
Only the value from memory 3 at address 6 is read which is already the first result
M(a) = min (h, g, f, e, d, c, b).
The pointer of memory 3 is decremented by one.

• Second clock cycle:
Read address 0 from memory 2.
Read address 5 from memory 3.
min(x, y) calculates the next result M(b).The pointer of memory 2 is incremented
by one.
The pointer of memory 3 is decremented by one.

• Last clock cycle:
Only the value from memory 2 at address 6 is read, this is already
M(h) = min (a, b, c, d, e, f, g).

Summary data path: one min (x,y) unit

For the processing we instantiate three memories and one processing unit. One mem-
ory stores the input values, memory2 and memory 3 store the intermediate results of
the forward, and backward processing respectively. The overall number of clock
cycles for the processing can be decomposed into three processing steps which
are: 7 clock cycles for the forward processing, 7 clock cycles for the backward
processing and 8 clock cycles for the output processing. Thus, the overall number

104 5 Data Path of Individual Components

of cycles is 22 to calculate 8 output values. On average, one output value needs
#cycles/value = 22/8 = 2.75 cycles. The presented data path utilizes a so called
resource sharing of one processing unit, while load of the processing unit is 100 %.

5.1.2 Serial Data Path: Two min(x,y) Units

The section shows a serial data path using one additional min(x, y) unit. The goal
here is to trade off processing units versus memory usage. The basic difference to the
first approach is the simultaneous processing of the backward and output processing.
The processing is now performed in two processing steps which are again described
step-by-step:

Step 1: Forward Processing Figure 5.3

The forward processing remains identical to the description of Fig. 5.3.

Step 2: Backward Processing and Output Processing (Figure 5.6)

• Initialization:
The input values {a, b, c, d, e, f, g, h} are stored sequentially in memory 1.
The read pointer (address) for memory 1 is set to 7 (the address where value h is
stored).
The write pointer(address) for memory 2 is set to 6 (the address where the last
forward result is stored).
The register is initialized with an infinite value.

• First clock cycle:
Read the value (h) from memory 1.
The first min-search unit calculates the first result which is min(h, inf) = h.
The result is stored in the register, the register keeps the value h.
Read the last forward processing result from memory 2, which is min
(a, b, c, d, e, f, g).
The second min-search unit calculates the first output result M(h).
The read pointer of memory 1 and 2 is decremented by one position.

• Second clock cycle:
Read the next value (g) from memory 1.
The first min-search unit calculates the second result which is min(h, g).
The result is stored in the register.
The second min-search unit calculates the second output result M(g).
The read and write pointer is decremented by one.

• Last clock cycle:
The last result M(a) is stored in the register after the 7th clock cycle.

5.1 Data Flow to Data Path Example 105

read pointer starts at addr. 71

Memory1Memory2

11

second min -search unitread pointer starts at addr.6

Fig. 5.6 Serial architecture: simultaneous backward and output processing

No additional reading from memory 2 is mandatory.
The backward processing including the output processing is finished.

Summary data path: two min (x,y) units

For the processing we instantiate two memories and two processing unit. One memory
to keep the input values, and one memory to store the intermediate result of the
forward processing. The overall number of clock cycles for the processing can be
decomposed into two processing steps which are: 7 clock cycles for the forward
processing, and 8 clock cycles for the backward recursion and output processing.
Thus, the overall number of cycles is 15 to process 8 output values. On average,
one output value needs #cycles/value = 15/8 = 1.875 cycles. The presented
serial data path puts focus on a simultaneous processing of different tasks. Two
important difference can be seen when comparing the architecture with one and
two min(x, y) unit. First, the result is obtained in a different order, second, the
number of required clock cycles is much lower for the architecture according to
Fig. 5.6.

106 5 Data Path of Individual Components

5.1.3 Data Path: Parallel Processing

Parallel processing means, that more than one input value is processed in every clock
cycle. Since we still have to solve Eq. 5.2 in a recursive manner this is not trivial.
The architecture for a possible parallel processing is derived step-by-step.

The first step is the so called unrolling of the calculation of M(h). Here, we instantiate six functional

units (min(x, y)), which are shown as boxes in this figure Each unit receives the result of the previous

unit and one of the input values as input. The intermediate result are written next the outputs of

each unit.

This figure shows the unrolling of the recursions from the beginning and the end. Two results are

obtained M(a) and M(h). Every input value is consumed by two min(x, y) functions. The dotted

arrows indicate that a certain value is also an input to a second functional units. For better readability

some of the intermediate values are not labeled in this figure.

5.1 Data Flow to Data Path Example 107

Here, we use two intermediate results to calculate other M(xi) values. For example M(d) is obtained

by an additional min(x, y) unit, the inputs x and y are the intermediate result x = min(a, b, c)

which is obtained from the forward recursion, and y = min(e, f, g, h) which is calculated by the

backward recursion respectively.

This figure shows the full parallel processing of all results. Every intermediate result, as well as

every input result is used two times. Here, the data dependency restricts the order in which the

operations can be performed. Note also that every functional unit in gray features tow instances of

min(x, y) units. One for the output processing and one to pass an intermediate result to the next

recursion stage. It is worth noting the similarities to the serial output processing of Fig. 5.6.

108 5 Data Path of Individual Components

Possible
pipeline
stages

Typically we can not process all functions in one clock cycle. Hence, additional registers have to

be instantiated which are called pipeline stages. At each pipeline stage we have to store all values

which are consumed at a later time step. When ever a line of the derived data flow is crossing the

horizontal pipe line stages the corresponding values have to be stored. It can be seen that the number

of values we have to store varies for each pipe line stages.

Summary data path: parallel processing

In the following we assume that pipeline stages are instantiated after each processing
block.

• The parallel architecture has a latency of 6 clock cycles, before the first output is
valid, then in each clock cycle an entire block is calculated.

• We need 6 forward and 6 backward recursion units (min(x, y) units) and 6 output
units.

• (N − 1) · (N − 1)/2 intermediate results have to be stored, with N=8.
• In every clock cycle we have to read all 8 input values
• After the pipeline is filled we need one clock cycle to calculate all 8 results, the

required cycles to process one value is thus #cycles/value = 1/8 = 0.125 cycles.

The question whether to use a serial or parallel architecture leads to the question of
required throughput, data storage problems and data access problems. The require-
ments for providing the correct input data at the right time is completely different for
both architectures. Furthermore one has to analyze the complexity when utilizing the
full functional unit of our application. Thus we have now to replace the (min(x, y))
by the correct processing units, which leads to the so called recursion units.

5.2 Deriving Processing Units

In the previous section we have derived the data path for serial and parallel processing.
As an example the data flow of a general forward-backward algorithm was used. As
mentioned the data path defines the alignment of processing units. These procession

5.2 Deriving Processing Units 109

00

10

01

11

00

01

10

11

00

01

10

11

00

01

10

11

resorting

Fig. 5.7 Calculations of one trellis step.

units have to be designed with respect to the required functionality of the application.
The functional units for the Max-Log-MAP algorithm are derived in Sect. 5.2.1. Often
we have to perform algorithmic manipulations to realize the correct functionality.
Either we can use look-up table to realize the mandatory functionality or we can derive
good approximations by algorithmic transformation. Both techniques are shown by
examples in Sects. 5.2.2 and 5.2.3, respectively.

5.2.1 Recursion Units

In this section we derive the processing units for the Max-Log-MAP algorithm. It is
quite obvious that the forward recursion and the backward recursion share identical
functionality, which can be seen by comparing the two mandatory equations for
α and β processing (Eq. 5.3).

αm′
k+1 = min

∀(m− > m′)

(
αm

k + γ
xi ,xi +1
k (Sm

k , Sm′
k+1)

)

βm′
k = min

∀(m′− > m)

(
βm′

k+1 + γ
xi ,xi +1
k (Sm

k , Sm′
k+1)

)
(5.3)

These equations where derived in Sect. 3.4.2. An unit implementing the function-
ality of this recursion step is called recursion unit (RU). It is always a function of the
old state metrics and the input branch metrics. Figure 5.7 shows one example trellis
with 4 states, while the trellis on the left reflects one trellis step. Starting form this
example we derive a corresponding recursion unit. In trellis step k each state has two
possible state transitions to a successor state in trellis step k +1. The trellis transition
can be mapped to so called butterflies, however, the output has to be resorted. A
butterfly represents the processing of two input to two output states, the direction
(forward or backward) itself is not of importance. The advantage of the decompo-
sition in butterflies and resorting is the clear separation of a regular processing part
and a resorting of the state results.

http://dx.doi.org/10.1007/978-1-4614-8030-3_3

110 5 Data Path of Individual Components

Fig. 5.8 Butterfly architec-
ture for Viterbi decoding or
Max-Log-MAP decoding

Fig. 5.9 Full recursion unit
to process a 4-state trellis. A
realization to process a larger
amount of states can be done
by an appropriate number of
instantiated butterfly units.

Butterfly

Unit

Butterfly

Unit

A butterfly unit for Max-Log-MAP processing or Viterbi decoding is shown in
Fig. 5.8. Every Butterfly unit is composed of two min(x, y) units simply realized as
compare select units (CS). The CS part is realized by one subtraction, while the sign
of the result is used as the multiplexer control signal.

The inputs for the butterfly units are the old states Sa,b
k and the corresponding

branch metrics which connect the corresponding states, e.g. γk(Sa
k , Sc

k+1) represents
the path metric between state Sa

k and Sc
k+1. Since one butterfly unit processes four state

transitions we have four branch metrics as input. Note that for a convolutional code
of R = 1/2 typically only two distinct branch metrics exist, then γk(Sa

k , Sc
k+1) =

γk(Sb
k , Sd

k+1) and γk(Sb
k , Sc

k+1) = γk(Sa
k , Sd

k+1) respectively.
The recursion unit itself is implemented as multiple instances of the butterfly units

and shuffling unit. The RU unit presented here can process one trellis step in one
clock cycle. This is shown for a 4-state code in Fig. 5.9. The old state metrics are
read from the registers and the new updated states are written to the registers. This
can be done within one clock cycle. The shuffling unit has to ensure that the original
trellis connectivity structure is preserved. The derived structure with four states can
be extended for more states which is done by increasing the number of butterfly

5.2 Deriving Processing Units 111

−−−−−−−→y grid w.r.t.

input levels

Fig. 5.10 Lookup table analysis and generation. Left shows the plot with a linear grid of the y-axis,
right shows the y-axis with a grid with respect to the quantized input values

instances. The merge of the derived functional unit with one derived data path will
result in a detailed Max-Log-MAP architecture. One specific instance of a so called
serial MAP architecture will be shown in Sect. 6.3.1 in the context of building turbo
code decoders.

5.2.2 Look-Up Tables

Sometimes it is difficult to realize a function in hardware. If the input bit width or the
output bitwidth is small we can realize the corresponding function by a look-up table.
A look-up table stores pre-computed values for each possible input combination.
Deriving such a look-up table is shown Fig. 5.10. As an example we derive the
function

f (x) = ln(tanh(x)). (5.4)

This equation is used for processing so called check nodes, as introduced in Chap. 7,
here it is used for demonstration purposes only. The left plot shows the function of
ln(tanh(x)) with the input value on the x-axis, the function value on the y-axis. For
the look-up table we first have to evaluate the input quantization. Here, the right plot
features an input granularity of 0.25. That means the input values have two bits for
the fractional part. Now we have to derive the corresponding output value. Due to
the non-linear function the output value requires a higher resolution. For large input
values we can barely distinguish the output results. For the look-up table we have to
decide on how many bits to represent the corresponding y values. Communications
performance simulations are mandatory to see if the chosen granularity will result
in a performance degradation.

http://dx.doi.org/10.1007/978-1-4614-8030-3_6
http://dx.doi.org/10.1007/978-1-4614-8030-3_7

112 5 Data Path of Individual Components

Look-up tables are simple to realize in hardware, however, the size of the values to
be stored may quickly come infeasible for a large input width. Then, more elaborated
techniques like an additional compression or the direct approximation of the function
may become mandatory.

5.2.3 Deriving an Approximation Function

Approximative functions are used when a direct implementation will not fulfill the
throughput constraints, results in a large area, or shows a high power consump-
tion, respectively. For example realizing functions with many input variables quickly
increases the number of stored values when realizing these by look-up tables. Thus,
we should use algorithmic transformations to see whether it is possible to find a
more suitable form for implementation. Often we can only approximate the desired
function due to given constraints, however, for many applications this will be good
enough. There exist no general rule how to derive a suitable approximation for an
efficient hardware realization. Rather, the designer often relies on many different
mathematical techniques and its own experience.

In the following one example is presented to derive an approximation suitable
for hardware realization. The symbol-by-symbol MAP processing of a single parity
check code is used for demonstration. The equation for the mandatory processing
was derived in Sect. 3.3.3. Assuming a single parity check code with three bits we
have to process:

λq = ln

(
eλp eλr + 1

eλp + eλr

)
(5.5)

This equation can be derived from Eq. 3.30.2 It shows the output calculation for bit
message q utilizing the two input messages p and r . In the first transformation step
we utilize the already introduced Jacobian logarithm in its positive form

ln
(
eδ1 + eδ2

) = max∗(δ1, δ2) = max(δ1, δ2)+ ln(1 + e−|δ1−δ2|).

Using the Jacobian logarithm in Eq. 5.5 results in:

λq = ln

(
eλp eλr + 1

eλp + eλr

)
= max∗(λp + λr , 0)− max∗(λp, λr) (5.6)

The result can be further decomposed in two maximum searches and two parts
determining the correction term.

2 The function can equivalent expressed as λq = 2 ·arctanh
(

tanh
(
λp
2

)
· tanh

(
λr
2

))
. This trigono-

metric expression is sometimes used in literature.

http://dx.doi.org/10.1007/978-1-4614-8030-3_3
http://dx.doi.org/10.1007/978-1-4614-8030-3_3

5.2 Deriving Processing Units 113

λq = max(λp + λr , 0)− max(λp, λr)︸ ︷︷ ︸
approximation λ̃q

+ ln(1 + e−|λp+λr |)− ln(1 + e−|λp−λr |)︸ ︷︷ ︸
correction term δ

This is an important result since we have clearly separated a simple approximation
part and an additional correction part. Table 5.1 shows results for λq assuming dif-
ferent input values. The true result is decomposed in an approximative output λ̃q and
a correction term δ . The approximation term is always the minimum of the absolute
values, while the sign ensures that the single parity check condition is fulfilled. The
largest correction term results when both input values are identical.

In the following the visual evaluation of Eq. 5.5 is shown, together with a possible
realization of the correction term. The visualization often helps to get an idea about
the quality of approximations. The used approximation derived within the following
four figures was originally presented in [1].

Plotted is Eq. 5.5, here denoted as f (x, y) = 2·arctanh
(
tanh

(x
2

) · tanh
(y

2

))
. The x-scale represents

the input value x , while 5 different y values result in 5 different graphs. The larger the y value, the

larger the output result (y-axis). Thus, y = 1 will be always the graph at the bottom, y = 5 at the top

of the graph. This is true for all following figures.

Table 5.1 λq calculations and approximation λ̃q for different input values

Input 1 Input 2 Approx. Correction Output
λp λr λ̃q δ λq

+5 +2 +2 −0.05 +1.95
+2 +5 +2 −0.05 +1.95
+5 −2 −2 +0.05 −1.95
−2 +5 −2 +0.05 −1.95
−5 −2 +2 −0.05 +1.95
−2 −2 +2 −0.68 +1.32
−5 −5 +5 −0.68 +4.32

114 5 Data Path of Individual Components

Plotted is the approximation f (x, y) ∼ min{|x |, |y|} (dotted lines) and the original function. The

shaded area highlights the difference between the true result and the approximation. It can be seen

that the approximation error is always the largest for x = y.

The difference between the original function and the min approximation is shown. Thus, the correc-

tion function is plotted which is δ(x, y) = ln(1 + e−|x+y|) − ln

(1 + e−|x−y|) The left graph has y = 1 as its input value, while the right most plot has a constant

5.2 Deriving Processing Units 115

y = 5 value. A hardware approximation of this function can be derived by a Taylor approximation

which is the result presented in the next step.

Here the original function and the final utilized approximation is shown. The hardware approx-
imation term utilized here is: δ(x, y) ∼ ψ(|x + y|) − ψ(|x − y|) With a hardware friendly ψ
function.

f unctionψ(a) :
d = 5

8
− a

4
i f (d > 0.0) :

return d

else :
return 0.0

Comparing the final result one can see that the difference is rather small. This approximation can

be applied in a recursive manner for the serial computation of single parity check codes with more

bits. For example assuming three bits instead of two, the approximation can be calculated according

to δ(x, δ(y, z)).

The solution derived in this example is only one possible approximation of Eq. 5.5.
Providing the accurate functionality with respect to a given frequency constraint is
the major challenge when deriving a possible realization. If the cycle budget can not
be fulfilled, either we have to find a different approximation, or we have to increase
the parallelism of the data path to allow for a reduced frequency constraint.

Final architectures featuring data path and processing units for turbo decoders and
LDPC decoders are shown in Chaps. 6 and 7. For both type of decoders the respec-
tive design space is described highlighting different algorithmic and architectural
possibilities.

http://dx.doi.org/10.1007/978-1-4614-8030-3_6
http://dx.doi.org/10.1007/978-1-4614-8030-3_7

116 5 Data Path of Individual Components

Reference

1. Mansour, M.M., Shanbhag, N.R.: High-throughput LDPC decoders. IEEE Trans. Very Large
Scale Integr. Syst. 11(6), 976–996 (2003)

	5 Data Path of Individual Components
	5.1 Data Flow to Data Path Example
	5.1.1 Serial Data Path: One min (x, y) Unit
	5.1.2 Serial Data Path: Two min (x,y) Units
	5.1.3 Data Path: Parallel Processing

	5.2 Deriving Processing Units
	5.2.1 Recursion Units
	5.2.2 Look-Up Tables
	5.2.3 Deriving an Approximation Function

	Reference

