
Chapter 4
Hardware Design of Individual Components

The previous chapters described the basic principles for the application channel
coding. Before proceeding to advanced channel coding techniques and its possible
hardware realization we will introduce in this chapter the basic steps for a hardware
design. An entire receiver is large system and comprises many different function-
alities. Combining all of them on a single die yields a so called System-on-a-Chip
(SoC). The SoC design requires the knowledge from system specification down to
hardware partitioning and refinement. However, every SoC is partitioned in smaller
functional blocks which can then be developed individually on component level.
This is especially true for the channel decoder which is just one single component
in a larger system. The same hold for e.g. demodulator, source encoder or decoder
and so on. The advantage of designing components individually is that typically the
functionality is restricted and can be well described. In this chapter we first revise
(Sect. 4.1) the design flow for a single component and show the different design
constraints which are posed either by the communications domain or the hardware
domain. Note, that the design flow shown here is no general hardware design flow.
It is restricted to communications specific constraints with respect to the introduced
base band processing components. Memories are an extremely important part for the
entire SoC and for each individual component as well.

For every hardware designer an understanding of the data access patterns and
their impact on the choice of the memory architecture, as well as the resulting area
and power consumption is mandatory. The basic parameters for the instantiation of
memories for the design of individual components are described in Sect. 4.2. The
following Sect. 4.3 exemplary shows the design of a simple interleaver component,
and how it is heavily influenced by the constraints of instantiated memories.

F. Kienle, Architectures for Baseband Signal Processing, 67
DOI: 10.1007/978-1-4614-8030-3_4, © Springer Science+Business Media New York 2014

68 4 Hardware Design of Individual Components

4.1 Design Flow

A generic design flow for individual component design is shown in Fig. 4.1. Every
component like the discussed channel decoder in this manuscript is embedded in a
larger system. The design flow for a full system is not explained here, the starting
point is the isolated functionality like channel coding. Note that many of this small
functional blocks exist in a system design which have to be extracted by a system
engineer using the divide and conquer method. Every component design flow has
input constraints and certain quality measures. Here, the flow starts at the algorithmic
design level and ends in a refined model on the so called register transfer level (RTL).
This design flow is tailored to components which are embedded in communications
systems. For other applications different constraints especially for the quality of
service will exist.

Typically we can distinguish between an algorithmic design space exploration
and a hardware design space exploration. Different design requirements and quality
assessments exist for different levels of the design.

4.1.1 Algorithmic Design Space Exploration

Quality of Service

The quality of service (QoS) is the expected error rate with respect to a given signal-
to-noise ratio. This QoS is given by a communications standard or has to be defined
by a system engineer. A defined error rate could be: at most 3 bits are erroneous out
of 10,000 decoded bits. For every utilized algorithm we have to track the communi-
cations performance.

Communications Performance

At each level during the design process we have to ensure that the achieved communi-
cations performance meets the given QoS design requirements. The communications
performance as an assessment of the quality means e.g. the measured frame error rate
with respect to a certain noise level of a channel. Typically the communications per-
formance cannot be evaluated analytically. Thus so called Monte Carlo simulations
are performed: the entire transmission chain is model (e.g., using Matlab or C++)
and the transmission of information is simulated until the observed communications
performance is statistically stable. For every algorithmic transformations the impact
on the communications performance has to be checked.

4.1 Design Flow 69

Fig. 4.1 Generic design flow: From component algorithmic extraction to register transfer level

Floating Point Reference Model

The floating point reference model is the time discrete model of the algorithm. It is
not important in which language this model exist, e.g. C, C++, Matlab. Each value
is represented by sufficient bits (e.g. 32 or 64 bits) to achieve the best achievable
communications performance. In many cases this perfect model is too complex for an
efficient hardware realization. Thus, sub-optimal algorithms have to be derived which
can be implemented in hardware. The degradation of each algorithmic transformation
has to be checked with respect to an optimal floating point reference model.

70 4 Hardware Design of Individual Components

Algorithm Selection & Transformation

The floating point reference model defines one correct realization, often different
basic algorithms exist to achieve the perfect performance as well. For example to
decode a given channel code we can implement the algorithm in probability domain
or in log-likelihood domain or we can change the basic flow of the algorithm e.g.
depth first or breadth first algorithm. The algorithm type selection is the first important
step towards a hardware realization. This decision step is for sure not a simple one,
since a wrong decision at this point may lead to complex or cumbersome hardware
realization. At this point the communications performance has to match that of the
floating point reference model.

Optimal Versus Sub-optimal Algorithm

After defining the algorithm type the first approximations within the algorithms
are introduced. Goal of this approximation is already to limit the complexity of the
algorithm. This is a very important design step and requires already experience about
a possible hardware complexity. This step is pretty often combined with the floating
point to fixed point conversion.

Quantization

During the floating point to fixed point conversion many algorithmic manipulations
take place. The communications performance has to be tracked whether it still fulfills
the QoS requirements. This step is not a classical quantization step where the quan-
tization noise can be measured, rather it in-cooperates many transformations with
respect to sub-optimality of the algorithm. The overall effects can only be measured
by Monte Carlo simulations by comparing the final performance degradation with
respect to the floating point reference model.

4.1.2 Hardware Design Space Exploration

The fixed point model defines all bit widths of quantized data: input bits, output
bits, and all internal values. However, the fixed point model does not define further
implementation details. Many further exploration steps have to be performed until a
register transfer model will be obtained. A hardware design can be decomposed into
three major blocks the data path, control logic, and the memory structure. Different
design requirements exist as well for the hardware design space exploration which
are shortly discussed in the following.

4.1 Design Flow 71

Implementation Style

As mentioned with the term ‘implementation styles’ we refer to the choice of dif-
ferent hardware platforms and thus different possibilities with respect to flexibility,
power consumption, design time, re-usability, and costs. Different possibilities for
the implementation style were already shown in Fig. 1.2.

The choice of the implementation style is a trade-off between performance, power,
programmability, and costs. It is typically made even before the beginning of the
entire component design flow, since the platform will influence each design decision
significantly. Furthermore, the clock frequency is given, or at least, which clock
frequencies are available within a larger SoC.

Throughput and Latency Specification

The throughput and latency numbers for the entire communication system is defined
in the communications standard. The latency of an individual component has to be
derived from the overall system. Each component a dedicated respond time has to
be allocated. Starting from the latency and a given clock frequency one can derive
the required parallelism of an architecture. The goal is to meet the required latency
constraints and the throughput design requirements. However, the interface has to be
taken into account as well, as this can influence the final architecture.

Input and Output Interface Specification

The input and output (I/O) interface specification pose further constraints for the
hardware designer. It is very important to define the interfaces early during the design
space exploration since latency and throughput may be effected by the interface. The
interface should be specified in the very beginning of the hardware design. However,
in practice due to new requirements this definition changes frequently and thus posses
a time consuming challenge for the component designer.

Golden Reference Model

The golden reference model is way more than a simple fixed point implementation.
The fixed point model checks the statistical correctness with respect to e.g. commu-
nications performance. The golden reference model has to be statistically correct,
however, it has to provide a bit accurate behavior with respect to a hardware model.
Each internal variable should be modeled as well the correct bit width. Furthermore,
often a so called cycle accurate model is required which gives detailed timing infor-
mation, especially for the interface timing. The timing behavior is important for the
system validation and for hardware debugging.

http://dx.doi.org/10.1007/978-1-4614-8030-3_1

72 4 Hardware Design of Individual Components

Data Path

The data path is the heart of the processing kernel at which most of the arithmetic
operations are performed. Serial or parallel data paths may co-exist within a design.
Their basic task is the evaluation of a function output = f (input), where the input
and output data may be scalar data or vectors. The parallelism of the data path depends
on the required latency/throughput definition. For the design of the data path one has
to take care to meet the target clock frequency constraint.

Memory Structure

Memories are important building block for a designer. Typically for component
design only static random access memories are utilized which have fast access times.
From system point of view, in communications systems up to 70 % of the overall
power consumption is due to the memories. Thus, it is of increasing importance that
algorithm design takes the memory hierarchy into account. Memory hierarchy means
the grouping and organizing of smaller blocks of memory. The memory access, i.e.
reading and writing, has to be organized by a controller. Memories are explained in
more detail in Sect. 4.2.

Control Flow

Passing the correct input data at the correct time to the data path is one task of a
controller. Furthermore it has to organize the message transfer between different
data paths and storage devices. The overall control flow of an individual component
defines the sequence of individual task which are mandatory to obtain the desired
functionality. The control can be either as a software running on a small micro-
controller (CPU) or as a dedicated controller instance, depending on the complexity
and the task of the controller.

Hardware Performance

The typical performance measures of a certain task with respect to its hardware
realization are area and power. Area and power consumption have to be linked with
the achieved throughput and with the achieved quality of service. Furthermore the
flexibility of the implemented algorithm has to be taken into account. Thus, it is
a multi-dimension performance measure with conflicting goals, e.g. lowest power
consumption versus highest flexibility. The difficult task of communications perfor-
mance versus VLSI performance will be addressed in Chap. 9.

http://dx.doi.org/10.1007/978-1-4614-8030-3_9

4.2 SRAM Memories 73

4.2 SRAM Memories

Memories are important building blocks. The task of the memory is to store and
provide information for different agents which may interpret or manipulate the infor-
mation. There exist many different types of memories, and each type has different
characteristics regarding functionality, accessibility, area efficiency, power efficiency,
and of course implementation cost. We can distinguish two major types of memories,
volatile memory and non-volatile memories. Volatile memories lose their informa-
tion when the power is switched off, non-volatile not. Non-volatile memories like
read only memories (ROM) or Flash memories are utilized to store long-term persis-
tent data. Flash storage devices cannot be utilized for high performance applications
with rapidly changing data content.

In every system-on-chip volatile memories are instantiated with its major storage
type called random access memories (RAM). Random access means we can either
store or read a data in any order, typically within a given maximum, deterministic
time frame. There exist two major classes of random access memories. The static ran-
dom access memories (SRAM) and the dynamic random access memory (DRAM).
Table 4.1 compares the major differences between these two type of memories.

In summary of the table we can extract one major reasons why only SRAMs are
possible for the design of an outer receiver. The mandatory bandwidth and a ‘truly
random’ data access can only provided by this type of RAMs. Thus, in the following
we only consider design aspects with respect to SRAMs.

Table 4.1 Major differences of SRAMs and DRAMs

SRAM DRAM

Technology
process

Identical CMOS process with respect
to logic and thus can fabricated on the
same die

Dedicated process for DRAMs

Access time Fast and constant access time, inde-
pendent of the access pattern

Access time heavily depend on the his-
tory of access, thus only a worst case time
can be specified

Access
protocol

Simple access protocol, which means
that no special controller is needed

Special controller mandatory

Area and
size

SRAMs have typically a limited size
(∼ 8Mbyte) due to cost and fabrica-
tion reasons. One cell to store a bit is
typically composed of 6 to 10 transis-
tors, depending on the specific SRAM
type

One cell to store a bit is realized by
utilizing the capacity of one transistor.
Thus, the cell size is up to ∼10x smaller
compared to that of a SRAM cell. The
bit storage to area ratio of DRAMs are
very efficient, at least for larger storage
demands.

Power SRAMs have a higher leakage cur-
rent and dynamic power consumption
due to logic technology compared to
DRAMS

Very power efficient when large junks of
data can be read

74 4 Hardware Design of Individual Components

Typically we are only interested here in so called synchronous SRAMs, which
means everything is triggered by a clock event. The opposite would be asynchronous
SRAM where data input and output are triggered by the transition of the addresses.

Figure 4.2 shows the high level view of a SRAM which is mainly composed
of a cell matrix, address port, data port, and command port (cmd) together with
multiplexers and registers. The cell matrix is composed of individual bits in cells,
while one storage cell is typically composed of 6 transistors building a bistable
latching circuit. The bit cells are organized in an array, where the word width defines
the cells in one row, and word depth defines the number of rows in this cell array.
This high level view is one simplistic version of a so called single ported SRAM,
with one address port and one data port. Typically for single ported SRAMs we
can access exactly one word per clock cycle, either read one word or write one
word, respectively. Of course there exist many different types of SRAMs which for
example can read and write one data within one clock cycle. These SRAMs are called
dual ported memories and will be discussed later. The bit pattern at the address port
defines the row number in the cell matrix. The demultiplex after the address port
is called address decoder which ensures the correct address in bits to row number.
Note, that the number of addresses can be quite large, here indicated with 4096 rows.
The address decoder and the mandatory wires to the corresponding cells can have

Fig. 4.2 High level view of a SRAM memory

4.2 SRAM Memories 75

a large influence on power of the overall SRAM which is explained in more detail
in the next section. Via the command port we typically define the mode of access,
either reading or writing. It is as well possible to put the memory in idle mode which
means a reduced static power consumption.

The registers as indicated in Fig. 4.2 can best be understood when looking at the
clock diagram for reading and writing the SRAMS. Figure 4.3a shows the timing
diagram of a typical read access to a SRAM memory. The address data is passed to
the input port of a SRAM memory. This address data is then latched in an internal
register with the next rising clock edge. The data which can be read form the output
port is then stable at the next clock cycle. We can read one new data at each clock
cycle, while the corresponding address has to be passed one clock cycle before to
the address port. This behavior is indicated in the high level SRAM view as shown
in Fig. 4.2 which shows an input register at the address port but no output register
for the data port.

Figure 4.3b shows the timing diagram of a typical SRAM writing access. The
address and the corresponding data have to be passed at the same clock cycle to the
SRAM ports. The address and data are internally latched and then the data is written,
in the mean while the next data and address can be passed to the SRAM ports. This
means that the SRAM accepts new data at each clock cycle.

Fig. 4.3 Reading and writing
process of a SRAM memory.
a SRAM read access. b SRAM
write access

(a)

(b)

76 4 Hardware Design of Individual Components

4.2.1 SRAM Design Space Exploration

As already mentioned the SRAM memories are one important building blocks for
the design of individual components. The hardware designer has to care about the
instantiation of the memory arrays. Many different SRAM can be instantiated with
different shapes. The shape defines the word depth and word width. It is obvious that
SRAM memories with different shapes result in different area numbers and power
numbers. The designer would like to check what is the influence with respect to area
and power when instantiating different types of SRAMs. What is the area benefit
if my algorithm works with one bit less quantization? What is the expected power
consumption if I have to access the memory every clock cycle? What is the difference
in e.g. area when instantiating shapes of 512 × 8 versus 128 × 32 (both memories
store the same amount of overall bits)? What is the maximum design frequency the
memory can operate on?

To get answers on these question we have to explore the memory characteristics.
Each manufacturer offers another possibility how to analyze SRAM data, which
we denote in this manuscript as SRAM memory explorer. Note that the following
data and naming are artificial and not trailered to one specific manufacturer.
The SRAM memory explorer gives you the relevant design information for a given
SRAM design, described by its characteristics under specified conditions. It gives
here an example of SRAM output characteristics of a SRAM input characteristics
request. In the following we will explain the input parameters and output parameters
of apossible memory explorer. The input parameters define the SRAM for which
we request the design information and its operating condition and are mandatory to
narrow the search space.

Even the number of possible input parameters might be very large. For that reason
we divide the input request in primary and secondary input parameters. The primary
input parameters are mandatory to be defined by the designer, while for setting the
secondary parameters a more precise knowledge of the internal memory structure is
mandatory.

Primary Input Parameters

• Technology
Of course the feature size or process type is one of the first parameter with has to
be specified. As shown in Fig. 1.1 the size of the technology node changes rapidly.
Each technology node is coming typically with different SRAM types like

– Low power: SRAMs are optimized with respect to low power consumption,
typically for mobile applications we assume a so called low leakage technology.

– High performance: SRAMs are optimized with respect to fast access times and
thus high frequencies.

– Regular: SRAMs which trades off low power and high performance which are
of course typically counteracting parameters.

http://dx.doi.org/10.1007/978-1-4614-8030-3_1

4.2 SRAM Memories 77

• WordDepth
The word depth parameter defines the number of words which can be stored in the
memory.

• WordWidth
The word width parameter defines the number of bits per of each word.

• Process
For the process we have to distinguish between slow and fast. Due to process
variation the switching time of transistor differs. Slow process defines e.g. the
access time at −3σ of the process, while fast process at +3σ respectively. An
architecture has to be designed with respect to both conditions, slow and fast, since
we do not know the exact resulting switching time of each individual fabricated
chip. Thus, the critical path check should always be done on the slow process cycle
time, while the so called hold time check has to be done on the fast process. The
hold time specifies the time span a data has to be stable after a rising clock edge.
This time span is mandatory to latch the data e.g. in a register.

• Voltage
Each memory is specified with different voltage levels (nominal, worst, best). The
design which is done with respect to a nominal voltage e.g. 1. V has to work as
well at the respective worst case voltage (−10 %) of 0.9 V. Thus the cycle time has
to checked as well for worst case Voltage since this cycle time may be twice as
large. Power is typically checked on nominal voltage level, however again worst
case power consumption should be done on +10 % voltage level.

Secondary Input Parameters

• Power Off
Some memory types allow to switch off the core cell array, where we have to
specified if we would like to have a pin for such a power off mode or not. One has
to remember since the SRAM is a volatile memory a power off mode will always
delete the memory content.

• Sleep Mode
Again an additional pin is generated if a sleep mode or sometime retention mode
is desired. A sleep mode switches off the periphery and thus reduces the leakage
of the memory. The memory content will be preserved.

• Write single bit
Some memory types allow to write individual bits. These special property will
increase the overall area since additional control logic will be mandatory to enable
the addressing of each individual cell.

Primary Output Parameters

• Area
The area occupied by the specified memory is one of the key numbers, and typically
given in mm2. This number is very accurate even for the final physical design.

78 4 Hardware Design of Individual Components

Remember that for logic area after synthesis a significant overhead for place and
route may occur may occour (e.g. +30 %), due to clock tree or additional design
for test structures.

• Power read nominal (Preadnom)
This number defines the average power of a read under the assumption that half
of the address bits are switching. All power numbers of a memory are specified
by μW/M H z, i.e. the specified power consumption is normalized to the system
frequency f . The power consumption of a memory results in

P = Aac · Preadnom · f. (4.1)

With Aac ∈ [0, . . . , 1] the access patter. Aac = 1 means that the memory is
accessed for a read at each clock cycle.

• Power write nominal (Pwritenom)
This number defines the average power of a write under the assumption that half
of the address bits are switching and half of the data bits are switching. The
power consumption of writing a data is slightly larger than that of a reading access
(≤ +10%)

• Read access time (Tacc)
The read access time specifies the (internal) time a memory requires to read a data.
It gives you an indication about the amount of additional logic one can instantiate
between the input/output memory port and the next register. Thus the critical path
is composed of Tcyc ≥ Tacc + Tlogic.

• Cycle time (Tcyc)
The cycle time determines mainly the maximum frequency of the design. For
smaller design frequencies one access can be performed at each clock cycle.

Secondary Output Parameters

• Aspect Ratio
Defines the ratio between the geometries Height/Width.

• ColumnMux:
A memory array may be folded for good aspect ratio. In Fig. 4.4 one possi-
ble example is shown. The memory is instantiated with parameters 4096 × 16
(rows×columns). However the internal storage structure may be folded into a
2048 × 128 memory. However, to select 16 output bits form the 32 columns
requires 16 times a 2:1 column multiplexer. Thus for this example the ‘Mux’
parameter would be ColumnMux = 2.

• Output Capacitance
This parameter defines the maximum capacitance which the outputs are able to
drive.

• Width and Height
The physical width and height of the SRAM cell in mm.

4.2 SRAM Memories 79

Fig. 4.4 High level view of a SRAM memory with ColumnMux=2.

• Density
The density is defined as Kbits/mm2 and gives you an indicator about the area
efficient of the memory.

4.2.2 Exemplary SRAM Data: Area, Power, Cycle Time

In this section we show exemplary the results for area, power, and cycle time. The
utilized technology for demonstration is a 40 nm low power technology with Vdd =
1.1 nominal voltage. Note, that the numbers are derived from an existing technology,
however, the results are changed with respect to the absolute numbers and adjusted
for educational purposes. Shown are different memory types like:

• SP-SRAM: single ported SRAM memories.
• XS-SP-SRAM: extra small single ported SRAM memories which are designed

for a small storage requirement.
• DP-SRAM: dual-ported SRAM memories which enable the reading of two values

and the possibility to write and read one value within a clock cycle.

80 4 Hardware Design of Individual Components

0

0,02

0,04

0,06

0,08

0,1

128 1024 1920 2816 3712 4608 5504 6400 7296 8192

[m
m

2]

Word Depth

SP-SRAM: Area (WW=32bit)

Mux 8

Mux 16

The graph shows the area trends for a WordWidth of 32 bits and different WordDepth values, ranging

from 128 addresses to 8192 addresses respectively. The two lines represents the area for two different

ColumnMux factors. The area is given in mm2.

0

5

10

15

20

25

128 1024 1920 2816 3712 4608 5504 6400 7296 8192

[u
W

/M
H

z]

Word Depth

SP-SRAM: Power read nominal (Vdd=1.1V)

Mux 8

Mux 16

The figure shows the average power read operation (Preadnom) at which half of the addresses are

switching. It is important to show the numbers for a nominal voltage case of Vdd = 1.1 V. The

two ColumnMux factors show at least up to 8192 addresses no break-even point. At least from

perspective of power consumption one would decide in favor of Mux = 8.

4.2 SRAM Memories 81

0

0,5

1

1,5

2

2,5

3

3,5

4

128 1024 1920 2816 3712 4608 5504 6400 7296 8192

[n
s]

Word Depth

SP-SRAM: Cycle time (slow process Vdd=0.99V)

Mux 8

Mux 16

The graph shows the cycle time for the LPHDSPSRAM again with a word width of 32 bits. Attention

the cycle time has to be checked for the worst case assumption, which is the slow case of Vdd =
0.99 V. The two lines represents again the area trends for two different ColumnMux factors. However,

this time the larger Mux factor shows a etter cycle time behavior.

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

128 256 384 512 640 768 896 1024

[m
m

2]

Word Depth

Area of XS-SP-SRAM vs. SP-SRAM vs.DP-SRAM all WW=32bit

SP-SRAM

XS-SP-SRAM

DP-SRAM

The graph shows the area trend lines for three different memory types. The chosen WordDepth is

quite small with a maximum of 1024. Not surprisingly, the special optimized memory for small

storage demands XS-SP-SRAM shows the smallest area. The dual ported memory shows at least

in this range a large area compared to both single ported SRAMs.

82 4 Hardware Design of Individual Components

4

5

6

7

8

9

10

11

12

128 256 384 512 640 768 896 1024

[u
W

/M
H

z]

Word Depth

Power read nominal (nominal case Vdd=1.1V)

DP-SRAM

XS-SP-SRAM

The figure shows Power read nominal case for the DP-SRAM and XS-SP-SRAM memories (WW =
32 bits, Mux = 4). Again the overhead of the power consumption for an access of a dual ported

memory gives a strong argument to avoid dual-ported memories. Note, that these memories here

allow a full simultaneous wright/read of two values. Thus the entire control logic, I/Os, and internal

routing has to be doubled.

1

1,2

1,4

1,6

1,8

2

2,2

2,4

2,6

2,8

128 256 384 512 640 768 896 1024

[n
s]

Word Depth

Cycle time (slow case Vdd=0.99V)

DP-SRAM

XS-SP-SRAM

The graph shows the cycle time for the XS-SP-SRAM and DP-SRAMs again with a word width of

32 bits. The Mux factor was chosen to obtain the best possible cycle time for both cases. The cycle

time overhead for the dual ported SRAMs can be significant. When using dual-ported SRAMs,

special care has to be put on the cycle constraint given by the system constraints.

4.2 SRAM Memories 83

Summary SRAM Exploration

Figures 4.5 and 4.6 show the area and the power trend for the three different memory
types. Both figures show the result for the slow process with Vdd = 0.99 V, thus the
best case power consumption. However, the intention of the figures is to show the
relative area and power and the area and power trends for different memory types
with respect to bit width and word depth. For every memory type three different,
typical word width W W ∈ {8, 16, 32} bit are given. One important fact can be seen,
that each memory type is designed for a specific range of word depth. Especially
the SP-SRAMs are designed for very large number of words. This can be seen
when comparing the slopes of the extra small memories and the large single ported
memories. Between ∼1024 and ∼2048 the area slopes will cross. Attention in the
figures: no MuxNumbers are given, thus, it is just an indication of sizes and trends.
For the designer we can summarize the most important issues for working with the
memory explorer or a similar tool.

• Different nominal cases for the memory exist, e.g. Vdd(nom) = 1.0 V or
Vdd(nom) = 1.1 V.

• Derived from the nominal case a slow and fast case exist with Vdd(slow) =
0.9 · Vdd(nom) and Vdd(f ast) = 1.1 · Vdd(nom).

• The cycle time has to be checked for its worst case assumption, which is Vdd (slow).

0,001

0,01

0,1

10 100 1000 10000

A
re

a
[m

m
2]

Number of words

SP-SRAM

DP-SRAM

XS-SP-SRAM

WW8

WW16

WW32

WW8

WW16

WW32

WW8

WW16

WW32

Fig. 4.5 Example of the area for different memories types, all in 40 nm technology

84 4 Hardware Design of Individual Components

1

10

10 100 1000 10000

P
o

w
er

 [
u

W
/M

H
z]

Number of words

SP-SRAM

DP-SRAM

XS-SP-SRAM

WW8

WW16

WW32

WW8

WW16

WW32

WW8

WW16

WW32

Fig. 4.6 Example of the power for different memories types, all in 40 nm technology

• The power consumption should be investigated for the nominal case Vdd(nom).
• The ColumnMux factor defines the internal structure of the memory. Different

ColumnMux factors result in different, sometimes contradicting, area, power and
cycle time numbers.

• When possible, the instantiation of dual ported memories should be avoided, since
area and power are larger than for single-ported memories with identical storage
capabilities.

Which SRAM memories are instantiated during the design of a component, and
whether it is possible to avoid the instantiation of dual ported memories, depends on
the access pattern of the application. Access pattern defines the data access in time
and space (location) and depends of the functionality we would like to implement.
One example with a difficult access pattern is presented in the next section.

4.2.3 Importance of Memory Exploration

We have seen in the previous section that we can instantiate different types of mem-
ories. For the design of a digital baseband receiver exploring the different options
gets more and more important. In future designs it is expected that the size of mem-
ories with respect to the overall chip area will increase further. For example Fig. 4.7

4.2 SRAM Memories 85

Fig. 4.7 Chip photo after place&route of product DVB-S2 receiver chip, 70 % of the overall area
is determined by instantiated memories.

shows the final place and route (P&R) layout of a low-density parity-check (LDPC)
decoder which was designed for a DVB-S2 receiver product.

LDPC codes are explained in Chap. 7 while the entire design of this particular
decoder is described in [1]. Here, we only consider the memories, which determines
70 % of entire area. The instantiated memories are indicated by the boxes.In this
design we have to store in total ∼2Mbits of data. 960 bits are read and written
in each clock cycle. An SRAM featuring a bitwidth of 960 bits does not exist as a
monolithic building block. Thus, multiple memories have to instantiated to enable
the access of 960 bits per clock cycle. The designer now has the possibility to chose
a possible fragmentation to achieve the required memory access bandwidth. A so
called memory hierarchy is introduced. Note, that the term memory hierarchy is
often used in large systems and defines the organization of memories of different
types (DRAM, SRAM) in which each storage element may have a different respond
time. Here, we use the term memory hierarchy to emulate a large SRAM memory
array for an application while the internal structure is fragmented. This is indicated in
Fig. 4.8 for two different setup to emulate the required SRAM shape of 2048 × 960.
Either we instantiate 15 SRAMs of shape 2048 × 64 or we could even instantiate
240 SRAMs of shape 256 × 32. Both possibilities are shown in Table 4.2. Given
are the corresponding data in terms of area and power of a single instance and the
overall expected numbers, respectively. In case of a high fragmentation the extra
small memories are assumed since these are optimized for the instantiated shape.
Assuming the low fragmentation case the data for area and power correspond to
standard single ported SRAMs. The table shows clearly the trade-off a designer
has to be aware of. The power is optimized for the case of the highly fragmented
instantiation, while the area is optimized for the low fragmentation variant.

http://dx.doi.org/10.1007/978-1-4614-8030-3_7

86 4 Hardware Design of Individual Components

Fig. 4.8 Two different memory hierarchies to enable the access of words with 960 bits

Table 4.2 Two different memory organizations to enable an access of 960 bits per clock cycle.

Case High fragmentation Low fragmentation
memory type XS-SP-SRAM SP-SRAM

Shape 256 × 32 2048 × 64
Single area 0.006 mm2 0.05 mm2

Average Power (Preadnom+Preadwrite)/2 5.8 μW/M H z 22 μW/M H z
Number of instances 240 15
Total number of stored bits 1.96 Mbits 1.96 Mbits
Total area estimate 1.44 mm2 0.75 mm2

Total power estimate 52.2 mW 99 mW

The total power estimate assumes here a frequency of f = 300M H z by eval-
uating Eq. 4.1. The power and area numbers given here are only estimates. P&R
will influence these results again since the data have to be routed to the correspond-
ing memories. Thus, the area and the power consumption will be higher in both
cases. The large influence of the P&R is further highlighted in the design example
presented in Sect. 7.5.

In the example here we did not assume any constraints about how to access the
960 bits. It is of course a huge difference if these 960 bits have a regular access pattern
or a random access pattern. In all cases the designer has to design the controller to
ensure the correct addressing across instances of memories. One example which
often requires a high fragmentation due to its difficult access pattern is presented in
the next section.

http://dx.doi.org/10.1007/978-1-4614-8030-3_7

4.3 Individual Component: Interleaver 87

4.3 Individual Component: Interleaver

In this section we will show exemplary the considerations a designer has to make
when designing an individual component, in this case an interleaver. We will see that
its design, at least for higher throughputs, can be difficult due to requirements to the
memory architecture.

4.3.1 Interleaver Types

In communication systems interleavers are used in many different components. For
wireless transmission systems, typically, block-based interleavers are used, which
change the location of a bit or symbol within a block, where the term block means
either a codeword, multiple codewords grouped to a frame, or only a part of a code-
word. Thus, we have to distinguish between:

• inter-frame interleaving: interleaving across multiple frames,
• intra-frame interleaving: changes the position of bits within a codeword, as in the

case of bit-interleaved coded modulation as shown in Fig. 2.1, and
• channel code interleaving: the channel code interleaving is the bit permutation

within a part of the codeword to ensure randomness of the code. This is applied in
e.g. turbo codes or LDPC codes, see Chaps. 6 and 7.

The task of any interleaver is to break up dependencies between adjacent posi-
tions within a data stream. For example, the inter-frame interleaving ensures that
burst errors are spread via multiple frames. Burst errors are errors on consecutive
positions within a transmission stream, which may occur when transmitting via fad-
ing channels. An interleaver spreads these uncertain locations over a larger distance.

An interleaver uses a bijective function which maps the indices of an input
sequence to changed indices of an output sequence. An interleaver table Π is one
realization of this index mapping, i.e. it defines the one to one positional mapping
from input position to output position of a given interleaver. Typically i defines the
index in the interleaved block when we speak about Π(i). Thus the interleaved data
sequence can be derived by indirect addressing:

x(Π(i)) = x′(i) (4.2)

x refers to the data vector in the original order, the vector x′ is the interleaved vector at
the output of the interleaver. It is also possible to define a direct addressing. However,
to obtain the same output sequence of x′ the inverse interleaver table has to be derived,
which is typically indicated as Π−1.

x(i) = x′(Π(i)−1) (4.3)

http://dx.doi.org/10.1007/978-1-4614-8030-3_2
http://dx.doi.org/10.1007/978-1-4614-8030-3_6
http://dx.doi.org/10.1007/978-1-4614-8030-3_7

88 4 Hardware Design of Individual Components

Many different possibilities exist to generate an interleaver table for a specific
block. Which one to use depends mainly on the application. In the following we
will present four different methods to generate an interleaver table. Three of these
interleavers are actually used in today’s communications standards. Figure 4.9 plots
the output position over the input position for four different interleavers operating
on blocks, all with a block length of 80 bits. The x-axis shows the input position, the
y-axis the corresponding output position.

Figure 4.9a reflects the output of a so called random interleaver. The random inter-
leaving shows no special structure and is typically not utilized in communications
systems. Figure 4.9b shows the pattern for a classical block interleaver. Note that the
name block interleaver denotes just a special type of a block-based interleaver, but

(a)

(c)

(b)

(d)

Fig. 4.9 Illustration of the permutation pattern of 4 different interleavers, all with block length of
N = 80: a random interleaver, b block interleaver, c UMTS channel code interleaver, and d LTE
channel code interleaver

4.3 Individual Component: Interleaver 89

these terms are not to be confused. The typical procedure of a block interleaver is to
write the data stream in an array in a column by column fashion. The output stream
is generated by reading the content row by row. In Fig. 4.9 we utilized an array with
C1 = 20 rows and C2 = 4 columns. The generation of the interleaver table Π can
be described with

Π(i) = (i mod C1) · C2 +
⌊

i

C1

⌋
(4.4)

C1 and C2 are the two dimensions of the block interleaver with the overall block size
of C1 · C2. Block interleavers are used in communication standards very often, since
they provide a simple and often effective permutation.

In addition there exist a so called cyclic block interleaver. The cyclic block inter-
leaver needs a further vector for its description, Ioffset. The offset vector has C2
entries, one for each column. The values define the start index at which each column
is filled. For the interleaver plotted in Fig. 4.9b this offset vector would be

Ioffset = [
1 1 1 1

]
. (4.5)

Here, all columns are written starting from the very first position top to bottom.
Plot (c) shows the interleaver which is instantiated within the UMTS channel

code encoder (turbo encoder). The interleaver construction is called permuted block
interleaving and is based on a classical block interleaver. Again, the input block is
written to an array row by row. However, before the reading step, the position of
the columns and rows are permuted as well. With this additional row and column
permutation stage a quasi random interleaver pattern is obtained, even so, with a
deterministic procedure to calculate this interleaver pattern within an application.

In UMTS a different interleaver table has to be generated for each block length
ranging from 40 to 5114 bits. Thus, the granularity of this interleaver generator is 1
bit. Despite its deterministic generation procedure, for a hardware realization of the
turbo decoder it turned out that the specified procedure to generate the interleaver
tables has two disadvantages. Especially for high throughput applications, where
spatial parallelism is required two problems have to be solved:

• The generation of the interleaver tables is relatively complicated and may require
many clock cycles. Producing multiple indices of the interleaver table in one clock
cycle is possible but cumbersome.

• The second problem is more difficult to solve. Parallel processing requires par-
allel interleaving of data. Memory access conflicts may occur, which have to be
resolved, see Sect. 4.3.2.

Due to these two problems a new interleaver type was defined in the newer
LTE standard. Figure 4.9d shows the permutation pattern of the LTE channel code
interleaver (turbo encoder). It has a very simple construction rule to generate the
interleaver table:

�(i) =
(

f1 · i + f2 · i2
)

mod K (4.6)

90 4 Hardware Design of Individual Components

Table 4.3 Overview of interleaver types the block size and granularity their characteristics

Standard Interleaver Classes Smallest block Largest block Granularity in bits

TTI frame Block interleaver 150 k 8
LTE [3] Sub-block Block interleaver 120 18 k 8

Channel code ARP interleaver [4] 40 6144 8
TTI frame Block interleaver 150 k 8

UMTS Sub-block Block interleaver 120 15 k 8
[5] Channel code Block permuation 40 5114 1
DVB-S2 Intra block Block interleaver 16.4 k 64.8 k 360
[6] Channel code Quasi-cyclic 80 k 240 k 360

f1 and f2 are interleaver parameters defined in the standard and K is the block length.
The granularity is 4, 8, or even 16 for larger block sizes. This interleaver type is called
quadratic polynomial permutation (QPP) interleaver [2].

In summary we can say that different interleaver types are utilized in communi-
cations standards. The interleaver has a major impact on the resulting communica-
tions performance while different interleaving types within a transmission scheme
are mandatory. For modern communication standards the choice of the appropriate
interleaver type is often determined by the resulting communications performance
and the efficiency of possible hardware realizations of that interleaver.

Table 4.3 shows the different interleaves which are utilized within one communi-
cation standard. For example the LTE standard features an interleaver for the transport
transmission interval (TTI) frame which interleaves up to 1,50,000 positions. Then,
an interleaver stage for the coded codeword is utilized with a maximum block length
of 18,000 indices, furthermore the channel coding itself has an interleaver inside.
Here, the block sizes for the interleaving ranges from 40 to 6144 bits. The granular-
ity in the table defines the step width between to block sizes. The LTE turbo code
interleaver has a granularity of 8 and for larger block sizes even 16, the UMTS turbo
code interleaver has a granularity of one. Thus a hardware realization for the UMTS
channel code interleaving has to realize all possible block sizes between 40 and
5114 bits. Thus, it is of importance if we can compute the interleaver tables in hard-
ware or whether to compute the corresponding interleaver tables offline. Depending
on the throughput requirements different challenges for the hardware realization
exists.

4.3.2 Hardware Realization

This section discusses the different possibilities which can be applied to the storage
of data in an interleaved order. First we will derive a serial architecture for inter-
leaving, followed by an architecture which interleavers P data in parallel. Assuming
a serial architecture, we always store a data block in original order in one memory

4.3 Individual Component: Interleaver 91

while the data with changed indices position is stored in a second memory. Further-
more, we assume that the interleaver tables are stored as well in memories. For the
serial interleaver architecture we can identify three major methods to the interleav-
ing/deinterleaving.

• Interleaving by reading (Fig. 4.10a)
The memory which stores the interleaver table is read sequentially. The output
data of this memory is used as address for data memory A. The retrieved data is
then written to data memory B at consecutive addresses. Thus, we read the content
DATA A in an interleaved manner, which is denoted as interleaving by reading.

• Interleaving by writing (Fig. 4.10b)
The data memory A and the deinterleaver memory are read sequentially. The output
data of the deinterleaver memory is used as address for data memory B. Thus, the
retrieved data is written in an interleaved manner to data memory B. The content
of the address memory is different to the first case and is called deintereaver table.

• Interleaving in two stages (Fig. 4.11)
The interleaving is performed in two stages. Stage one writes the data in an inter-
leaved manner to an intermediate data storage (DATA TMP). Interleaver Table 4.1

Fig. 4.10 One stage
interleaving: Interleaving
from memory A to memory
B upon read (top), upon write
(bottom)

(a)

(b)

92 4 Hardware Design of Individual Components

Fig. 4.11 Two stage
interleaving: the content of
address Tables 4.1 and 4.2 are
different.

does not hold the final interleaving table. The final interleaved data sequence is
obtained after the second stage, which is here indicated as an input to a process-
ing block. The second stage performs an interleaving by reading. The content of
interleaver Tables 4.1 and 4.2 are different and have to be derived from the overall
interleaver table.

Within all presented serial architectures we have instantiated memories for the
interleaver tables. However, when it is possible to generated the interleaver tables
on the fly we can replace these memories by an appropriate logic block. On the fly
means we have to provide the correct target address for reading or writing at each
clock cycle.

Parallel Interleaving

So far we have presented only possibilities for a sequential interleaving, which means
we need N clock cycles to interleave N values. Increasing throughput demands
requires a parallel interleaving. Multiple data have to processed and, consequently,
also interleaved in one clock cycle. Figure 4.12 shows the major problem of parallel
interleaving. On the right side the address table with the corresponding interleaving
address is shown. The data flow for the architecture is top down. 4 single ported
SRAM memories are instantiated in front of a parallel processing unit. The data
A,B,C,...,P are stored in the four input memories, while the numbering next to each
memory indicates the original address labeling of the interleaver table. The parallel

4.3 Individual Component: Interleaver 93

B

A

E

I

M 12

8

4

0 B

F

J

N 13

1

5

9

C

G

K

O 14

2

6

10

D

H

L

P 15

3

7

11

C

A

12

0

4

8

13

1

5

9 D

14

2

6

10

15

3

7

11

Parallel Processing

Parallel Interleaver

Addr Interl.
Addr.

0 8
1 1
2 4
3 10
4 3
5 9
6 13
7 12
8 2
9 6
10 15
11 0
12 11
13 7
14 5
15 14

Fig. 4.12 Parallel Interleaving and memory access conflict for the very first processing step

processing unit accepts now four values per clock cycle, i.e., in the first clock cycle it
processes data A,B,C,D. After the processing we would like to write the four output
data in an interleaved order. However this is not possible within one clock cycle since
data A and C have to be written to the same output memory We call this a memory
access conflict. Figure 4.13 shows the data after all data are written. In this small
example at all four clock cycles a memory access conflict occurs.

B

A

E

I

M 12

8

4

0 B

F

J

N 13

1

5

9

C

G

K

O 14

2

6

10

D

H

L

P 15

3

7

11

L

C

A

H 12

0

4

8
O

F

G 13

1

5

9

I

J

D

P 14

2

6

10

E

N

M

K 15

3

7

11

Parallel Processing

Parallel Interleaver

Addr Interl.
Addr.

0 8
1 1
2 4
3 10
4 3
5 9
6 13
7 12
8 2
9 6
10 15
11 0
12 11
13 7
14 5
15 14

Fig. 4.13 Parallel Interleaving and memory access after all values are processed

94 4 Hardware Design of Individual Components

One of the most elegant method to resolve the parallel interleaving problem is
two utilize a two stage interleaving process. As shown in Fig. 4.11 the two stage
interleaver requires two interleaver tables. Each stage interleaves P data in parallel
without memory access conflicts. The trick is the intelligent pre-computation of the
two appropriate interleaver tables. In [7] it was shown that it is always possible to
find a two stage procedure to interleave P values without memory access problems.

Currently, there is no deterministic algorithm known which can calculate the two
address tables on the fly, thus a pre-processing to determine the two interleaver
tables has to be performed Typically in practical applications all interleaver patterns
are pre-calculated and stored in external memories. Assuming a new block size the
corresponding interleaver tables have to be loaded to corresponding interleaver table
memories. This parallel interleaving problem occurs also for example in UMTS
turbo decoding which features 5000 different block length and thus as many varying
interleaver pattern. The storage of the pre-computed interleaver patterns is quite large
and exceeds the storage demands of the turbo decoder architecture itself.

Joint Algorithm-Hardware Design

Interleavers are defined in many communication standards. Since the throughput
demands of nearly all standards steadily increases we have to implement the inter-
leaving sooner or later as well in a parallel manner. As seen, this posses problems
for the implementation. However, it is possible to design an interleaver which pro-
vides parallel processing without any memory access conflicts. For that we have to
consider jointly constraints from a possible hardware realization and constraints for
the algorithm in this case an appropriate permutation pattern.

The idea how to achieve this is quite elegant and often denoted as joint algorithm-
hardware design. Figure 4.14 shows the first step for designing an interleaver table
which allows a conflict free parallel interleaving. We have seen that in the first clock
cycle there was an access conflict. We would like to write data A and C to the
same memory. The idea now is to replace the original destination address of data
C by a new address which allows a conflict free storage. For the first clock cycle
in this example we have here 4 possible address which have no conflicts. In theory
we could choose any of these for possibilities, nevertheless, since the interleaving
has to achieve a certain goal with respect to an application, additional constraints
may exist. For example a clustering of addresses is not allowed, see Fig. 4.9a in the
case of a random interleaving. A clustering of address indicates that e.g. a burst error
would not be spread across the block. The interleaver table is now filled step-by-step,
always preventing a possible conflict at each construction step. The entire ’conflict
free’ interleaver pattern can be obtained by Heuristics as explained, or as well by
algebraic methods [4]. The interleaver design method, however, has always a paral-
lelism level in mind, at which memory access conflicts can be prevented. Thus the
joint algorithm-hardware design requires knowledge of both domains. The hardware
gives us constraints with respect to an initial architecture template and defines also

4.3 Individual Component: Interleaver 95

B

A

E

I

M 12

8

4

0 B

F

J

N 13

1

5

9

C

G

K

O 14

2

6

10

D

H

L

P 15

3

7

11

A
12

0

4

8

13

1

5

9 D
14

2

6

10

15

3

7

11

Parallel Processing

Parallel Interleaver

Addr Interl.
Addr.

0 8
1 1
2 ?
3 10
4
5
6
7
8
9
10
11
12
13
14
15

C

3
7
11
15

conflict free
addresses

Fig. 4.14 Designing an interleaving table which allows a parallel interleaving without memory
access conflicts

as well a target parallelism, while the algorithm or application has constraints with
respect to functionality.

The idea of joint algorithm-hardware design was already applied in the design
of communications standards. The (turbo code) interleavers of the LTE standard are
designed with respect to hardware knowhow. The interleavers can be implemented
for parallel processing without occurring memory access conflicts. In the case of
LTE turbo code a parallelism of the decoder architecture is considered with P = 4,
P = 8, or P = 16 respectively.

References

1. Mller, S., Schreger, M., Kabutz, M., Alles, M., Kienle, F., Wehn, N.: A novel LDPC decoder for
DVB-S2 IP. In: Proc. DATE ’09. Design, Automation. Test in Europe Conference. Exhibition,
pp. 1308–1313 (2009)

2. Sun, J., Takeshita, O.Y.: Interleavers for turbo codes using permutation polynomials over integer
rings. IEEE Trans. Inf. Theory 51(1), 101–119 (2005). doi:10.1109/TIT.2004.839478

3. Third Generation Partnership Project: 3GPP TS 36.212 V8.5.0; 3rd Generation Partnership
Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial
Radio Access (E-UTRA); Multiplexing and channel coding (Release 8) (2008).www.3gpp.org

4. Nimbalker, A., Blankenship, Y., Classon, B., Blankenship, T.K.: ARP and QPP interleavers for
LTE Turbo coding. In: Proceedings of the IEEE Wireless Communications and Networking
Conference WCNC 2008, pp. 1032–1037 (2008). doi:10.1109/WCNC.2008.187

5. Third Generation Partnership Project: 3GPP TS 25.212 V1.0.0; 3rd Generation Partnership
Project (3GPP);Technical Specification Group (TSG) Radio Access Network (RAN); Working
Group 1 (WG1); Multiplexing and channel coding (FDD) (1999). www.3gpp.org

http://dx.doi.org/10.1109/TIT.2004.839478
www.3gpp.org
http://dx.doi.org/10.1109/WCNC.2008.187
www.3gpp.org

96 4 Hardware Design of Individual Components

6. European Telecommunications Standards Institude (ETSI): Digital Video Broadcasting (DVB)
Second generation framing structure, channel coding and modulation systems for Broadcasting,
Interactive Services, News Gathering and other broadband satellite applications; TM 2860r1
DVBS2-74r8. www.dvb.org

7. Tarable, A., Benedetto, S.: Mapping interleaving laws to parallel turbo decoder architectures.
IEEE Commun. Lett. 8(3), 162–164 (2004)

www.dvb.org

	4 Hardware Design of Individual Components
	4.1 Design Flow
	4.1.1 Algorithmic Design Space Exploration
	4.1.2 Hardware Design Space Exploration

	4.2 SRAM Memories
	4.2.1 SRAM Design Space Exploration
	4.2.2 Exemplary SRAM Data: Area, Power, Cycle Time
	4.2.3 Importance of Memory Exploration

	4.3 Individual Component: Interleaver
	4.3.1 Interleaver Types
	4.3.2 Hardware Realization

	References

