
Chapter 3
Channel Coding Basics

This chapter gives a short overview of the basic principle of linear block codes
and possible decoding methods. As this treatise only deals with a subset of existing
channel codes, only a short primer with small examples are given. For an in depth
study many good books are available, like [1] and [2].

When speaking about channel coding we have to distinguish between the code
definition itself and the associated decoding algorithm which has to calculate an
estimation of the transmitted information based on the sequence of received symbols.
The goal of a practical system is to establish a channel coding scheme which has the
theoretical capability to approach the Shannon limit. However, just as important is
an associated decoding method that can be implemented in hardware.

All described codes here in this chapter and in this manuscript are linear block
codes. The basic terms and overview of channel codes are introduced in Sect. 3.1,
linear block codes are presented in Sect. 3.2. The general decoding problem -trying
to solve the maximum likelihood (ML) criterion—is addressed in Sect. 3.3. For the
decoding algorithm we have to distinguish between a soft-input and hard-input infor-
mation as explained in Sect. 2.2. Soft-input information refers to the LLR values for
each received sample, provided by the demodulator. All decoding algorithms pre-
sented in this chapter require these LLR values as input, furthermore the decoding
algorithms are derived in the logarithm domain which enables an efficient decoder
hardware realizations.

Solving the ML criterion is an NP complete problem, thus in practical applications
we can often only approximate the ML result by utilizing heuristics. These iterative
heuristics are mandatory in the case of turbo and LDPC code decoding. When apply-
ing iterative decoding we have to solve the symbol-by-symbol maximum a posteriori
(MAP) criterion which is explained in Sect. 3.3.3. One important class of channel
codes is the class of convolutional codes. These are introduced in Sect. 3.4, an exam-
ple of a decoding algorithm which approximates the MAP criterion is derived in
Sect. 3.4.2.
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3.1 Overview Channel Coding

The goal of a channel code is to transmit information reliably via an unrealiable
channel. To achieve this we map an information word u into a codeword x. Through-
out this manuscript we assume binary information for the elements ui, xi ∈ [0, 1].
Table 3.1 shows an exemplary binary code with K = 3 information bits which are
mapped onto N = 8 distinct codewords. The code C is given by K basis vectors
of length N . The cardinality of this code is |C| = 23. The process of mapping an
information word to a code word is called encoding. A channel code defines only
the mapping from u to x, it does not define a possible decoding procedure.

One important measure for the quality of the code is its minimum (Hamming) dis-
tance. The Hamming distance is defined as the distance between two binary vectors,
i.e.

d(x, y) =
N−1∑

i=0

|xi − yi|. (3.1)

The minimum distance is an important measure for the quality of a code. The pre-
sented channel code in this example is a linear code, i.e., a channel code is linear if
the addition of two codewords yields again a valid codeword. The minimum distance
of a linear code is the minimum weight of a codeword:

dmin = min∀x∈C

N−1∑

i=0

xi. (3.2)

The code of Table 3.1 has a minimum Hamming distance of dmin = 3.
During transmitting of the codeword x errors may occur. Suppose we have trans-

mitted one codeword of Table 3.1 and we receive a (hard) bit vector y = [111100].
By using nearest neighbor decoding we can measure the distance of the received
(corrupted) vector to the possibly sent codewords. The distances for all 8 possible
codeword are: d(x0, y) = 4, d(x1, y) = 1, d(x2, y) = 3, d(x3, y) = 2, d(x4, y) = 2,
d(x5, y) = 3, d(x6, y) = 5, d(x7, y) = 4. The codeword x1 has the smallest distance

Table 3.1 A binary code
with K = 3 information bits
and N = 6 codeword bits

Information word Codeword

u0=[0 0 0] x0=[0 0 0 0 0 0]
u1=[0 0 1] x1=[1 1 0 1 0 0]
u2=[0 1 0] x2=[0 1 1 0 1 0]
u3=[0 1 1] x3=[1 0 1 1 1 0]
u4=[1 0 0] x4=[1 1 1 0 0 1]
u5=[1 0 1] x5=[0 0 1 1 0 1]
u6=[1 1 0] x6=[1 0 0 0 1 1]
u7=[1 1 1] x7=[0 1 0 1 1 1]
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Fig. 3.1 Hamming distance between two valid codewords

to the received information y and is thus the codeword that was most likely sent by
the transmitter.

The importance of a large minimum distance is shown in Fig. 3.1. It shows
two codewords x1 and x3 with the Hamming distance of d(x1, x3) = 3. The non-
overlapping spheres around the codewords indicate the decision region for a particular
codeword, i.e. vectors inside this region can be clearly associated to a codeword. For a
code with a minimum distance dmin we have a guaranteed error correction capability
of:

t =
⌊

dmin

2

⌋
, (3.3)

with t the number of errors occurred in the received vector. �a� defines the next
integer which is lower than or equivalent to a. The error detection capability of the
code is dmin − 1, i.e., it can detect any invalid sequence as long as this sequence
is not a codeword. Thus, the worst thing that can happen during transmission is an
error sequence which results in another valid codeword, i.e. y = xi + e = xj, with
xj ∈ C. The error sequence is represented here by an error vector e with ei ∈ {0, 1}.
An one entry indicates that the corresponding bit position is flipped. One goal when
designing channel codes is to ensure a minimum distance as large as possible which
will enable a high error correction capability.

3.2 Linear Block Codes

A binary linear block code with cardinality |C| = 2K and block length N is a K dimen-
sional subspace of the vector space {0, 1}N defined over the binary field (GF(2)). It
is possible to define a linear block code as well over larger field, e.g. extension fields
GF(2m). However, here we only address binary codes. The operations with respect
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Table 3.2 GF(2) addition
(XOR)

+ 0 1

0 0 1
1 1 1

Table 3.3 GF(2)
multiplication (AND)

∗ 0 1

0 0 0
1 0 1

to GF(2) are shown in Tables 3.2 and 3.3. Additions and multiplications result in
simple XOR and AND operations.

The linear code C is given by K basis vectors of length N which are represented
by a K × N matrix G (generator matrix). The encoding process can be described by
a multiplication with the generator matrix G. Thus the encoder evaluates:

x = uG (3.4)

The output of the encoder is the codeword x. Most of the practically codes utilized
in communication standards are linear codes. Wireless communications systems
utilize packet based transmission techniques, thus linear block codes that are defined
on vectors fits well to theses systems.

Equivalently, a code C can be described by a parity check matrix H ∈ {0, 1}M×N

where M = N − K . We thus have x ∈ C, i.e., x is a codeword, if

xHT = 0. (3.5)

The scalar product of each row x ·hi
T has to be zero. All operations are performed in

the binary domain. We denote the ith row and jth column of H by Hi,., H.,j respectively.
xHT

i,. = 0 in GF(2) is defined as the ith parity check constraint.
The parity check constraints are used within decoding algorithms to check for a

valid codeword. Assuming a vector z = x + e with remaining errors, the resulting
codeword check will evaluated to

yHT = xHT + eHT = s. (3.6)

s is denoted as syndrome and contains information about the current error vector.
This property can be as well utilized within a decoding algorithm [2].

Since the codeword x may be derived via x = uG one can see the important
relation between generator matrix and parity check matrix which is:

G · HT = 0 (3.7)
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If the information word u is part of the codeword the code is called systematic,
e.g.:

x = uG = [x0x1 . . . xN−1] = [up] = [u0 u1 . . . uK−1︸ ︷︷ ︸
systematic bits

p0 . . . pM−1︸ ︷︷ ︸
parity bits

] (3.8)

The code is called non-systematic if the information vector is not part of the codeword.
A linear systematic generator matrix is specified by G = [IP], with I an identity
matrix of size K × K .

G =

⎡

⎢⎢⎣

1 0 . . . 0 p0,0 p0,1 . . . p0,M−1
0 1 . . . 0 p1,0 p1,1 . . . p1,M−1
. . . . . . . . . . . . . . . . . . . . .

0 0 . . . 1 pK−1,0 pK−1,1 . . . pK−1,M−1

⎤

⎥⎥⎦ (3.9)

The number of parity bits M is defined by N −K = M. The matrix part which defines
the parity constraints P is transpose within in the corresponding parity check matrix.

H = [PTI] =

⎡

⎢⎢⎣

p0,0 p1,0 . . . pK−1,0 1 0 . . . 0
p0,1 p1,1 . . . pK−1,1 0 1 . . . 0
. . . . . . . . . . . . . . . . . .

p0,M−1 p1,M−1 . . . pK−1,M−1 0 0 . . . 1

⎤

⎥⎥⎦ (3.10)

One of the first and best known linear block codes is the Hamming code.

G =

⎡

⎢⎢⎣

1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 1

⎤

⎥⎥⎦ H =
⎡

⎣
1 0 1 1 1 0 0
1 1 0 1 0 1 0
0 1 1 1 0 0 1

⎤

⎦

The generator matrix enables a systematic encoding which can be seen by the
identity matrix I at the left part of the matrix G = [IP]. With P the parity check
equations for generating the corresponding parity bits. As mentioned mentioned the
scalar product of each row x · hi has to be zero, thus each code word has to fulfill the
following parity check equations.

x0 + x2 + x3 + x4 = 0

x0 + x1 + x3 + x5 = 0

x1 + x2 + x3 + x6 = 0

When ever all these parity check equations are fulfilled a valid codeword is found.
This is utilized during the decoding process. This (7,4) Hamming code has a minimum
distance of dmin = 3.



42 3 Channel Coding Basics

3.3 General Decoding Problem

The general decoding task is to detect or even correct errors which may have occurred
during transmission. For deriving corresponding decoding criteria we initially ignore
the result of the demodulator of Sect. 2.2 and derive the decoding task directly on the
received vector y. Later we will comment on the important separation of demodulator
and decoding algorithm. We can distinguish two different decoding principles, which
either optimizes results on the entire codeword or on each individual bit.

• Maximum likelihood criterion: solving the maximum likelihood criterion opti-
mizes the so called codeword probability which means ML decoding picks a
codeword x̂ which maximizes the condition probability:

x̂ = arg max
x∈C

P (x sent|y received) (3.11)

The receiver has no knowledge about the true sent codeword x. Thus the receiver
algorithm for decoding may check all possible sent codewords x ∈ C and decides
for the codeword x̂ which was most likely sent.

• Symbol-by-symbol maximum a posteriori criterion: solving the symbol-by-symbol
MAP criterion optimizes the bit probability which means MAP decoding decides
for a single bit xi

x̂i = arg maxP (xi sent|y received) (3.12)

The resulting bit estimations for the entire codeword x̂i for i ∈ {1, . . . , N} will
result in the optimum bit error rate. The result will not necessarily be a valid
codeword. The MAP probability will be arg maxP (xi|y) with xi ∈ {0, 1}.

3.3.1 Maximum Likelihood (ML) Decoding

For many block based transmissions the frame error rate is of importance, thus when
ever possible we should try to solve th ML criterion. In the following we will derive
the ML criterion in a more evident form. Applying Bayes’s rule to entire vectors
results for the ML criterion in:

x̂ = arg max
x∈C

(
P (y|x) · P(x)

P(y)

)
(3.13)

P(y) is the vector of channel related probability. The vector elements are con-
stant for each received information, it will thus have no influence on the final deci-
sion. Furthermore we assume that each codeword was equally likely sent. With this
assumption, the term P(x) can be omitted as well. Under the assumption that each
received sample is independent and with the transformation to the logarithm domain

http://dx.doi.org/10.1007/978-1-4614-8030-3_2
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the maximum likelihood (ML) criterion turns into

x̂ = arg max
x∈C

P(y|x) (3.14)

= arg max
x∈C

(∏N−1

i=0
P(yi|xi)

)
(3.15)

= ∈
x

Carg min

(
−ln

∏N−1

i=0
P(yi|xi)

)
(3.16)

= arg min
x∈C

(
−
∑N−1

i=0
lnP(yi|xi)

)
(3.17)

The vector problem can be decomposed in the product form. This is only possible
if the received values are independent of each other. The next two steps are the
transformation in the logarithm domain and the transformation in a minimization
problem which can be simply done by −1 multiplication. Note, that P(yj|xi) is
exactly the result of our demodulator in the probability domain, attention here we
assumed that for each received symbol one bit exists.

It is more convenient to express the ML criterion with log likelihood values. If we
add the constant

∑N−1
i=0 lnP(yi|0), i.e. the weight of the zero codeword, the problem

results in

x̂ = arg min
x∈C

(
N−1∑

i=0

(lnP(yi|xi = 0) − lnP(yi|xi))

)
(3.18)

When ever the codeword has a zero at the corresponding position xi = 0 no weight
will be added to the entire cost function. If the corresponding position equals xi = 1
the already introduced LLR term results with λi = ln P(yi|xi=0)

P(yi|xi=1)
. Now, the ML criterion

can be expressed in a more elegant form with the scalar product of the LLR vector
obtained of the demodulator and a possible codeword x ∈ C. The maximum likeli-
hood criterion is thus a minimum search via a linear cost function of the demodulator
output and a possible code word

x̂ = arg min
x∈C

(
N−1∑

i=0

λixi

)
. (3.19)

The maximum likelihood criterion derived here has the cost function of
∑N−1

i=0 λixi.
Each possible codeword x ∈ C, is associated with its cost or weight wc, which can be
expressed as the scalar product of wc =< λ, xc >, with c the index of one particular
codeword. We decide in favor of the codeword with the minimum resulting weight.
Each λi value represents the derived LLR result of Sect. 2.2 on bit level, defined in a

general form λi = ln
P(yj |xi=0)

P(yj |xi=1)
. Depending on the channel statistics this calculation

may differ, however the derived ML criterion is still valid if λi is represented on

http://dx.doi.org/10.1007/978-1-4614-8030-3_2


44 3 Channel Coding Basics

bit level. A general framework to solve the ML criterion for linear block codes is
presented in the next section.

3.3.2 ML Decoding by Solving IP Problems

The ML decoding problem can be formulated as an integer program (IP). In literature
mainly two different possibilities can be found for the IP modeling [3, 4]. One
formulation relies on the parity check equation, the other one relies on the syndrome
and the error vector e. Both formulations model the ML decoding problem exactly
and are thus equivalent.

min
N−1∑

i=0

λixi (3.20)

s. t. Hx − 2z = 0

x ∈ {0, 1}N

z ∈ Z
N−K , zi ≥ 0 (3.21)

The variables x model bits of the codeword, while z is a vector of variables used by
the IP formulation to account for the binary modulo 2 arithmetic. The cost function
to be minimized is identical to that derived in previous section.

For the syndrome based formulation the cost function changes and is based on
the error vector e.

min
N−1∑

i=0

|λi|ei (3.22)

s. t. He − 2z = s

e ∈ {0, 1}N

z ∈ Z
N−K , zi ≥ 0 (3.23)

The constraints are based on the syndrome vector s while again the z variables ensure
the GF(2) operations.

Interestingly both formulations are efficient enough such that a general purpose
IP solver can tackle the problem for codes of practical interest. At least for smaller
block sizes we can perform Monte-Carlo simulations to obtain the FER performance.
The IP formulation has to be solved many times, once for every simulated frame.

Since the formulation are only based on the parity check matrix all types of linear
block codes can be simulated with this IP formulation. Furthermore, the IP can be
enhanced to comprise as well higher oder modulation types. This was shown in [5].

The general framework of integer programming models is shortly introduced
together with some solution strategies. Let c ∈ R

n, b ∈ R
m, and A ∈ R

m×n be given.
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Let x ∈ R
n denote the vector of variables. Integer programming is the mathematical

discipline which deals with the optimization of a linear objective function cT x over
the feasible set, i.e. the space of all candidate solutions. A general linear integer
programming problem can be written as

min or max cT x

s. t. Ax = b

x ∈ Z
n.

Without loss of generality, we may consider minimization problems only. In contrast
to linear programming problems, solutions are required to be integral. General IP
problems—as well as many special cases—are NP-hard. However, due to extensive
studies of theoretical properties, the development of sophisticated methods, as well
as increasing computational capabilities, IP proved to be very useful to model and
solve many real-world optimization problems (e.g. production planning, scheduling,
routing problems,…).

IP problems can be solved in a brute force way by explicitly enumerating all
possible values of the variable vector x and choosing the one yielding the minimal
objective function value. Though correct, this procedure is guaranteed to be expo-
nential in the number of components of x. To avoid excessive computational effort, a
theory inducing more efficient algorithms was developed which relies on techniques
like implicit enumeration, relaxation and bounds, and the usage of problem-specific
structural properties. In the following, we will highlight some basic concepts. An
in-depth exposition to this field can be found in [6].

Branch and bound is a wide-spread technique realizing the concept of divide-
and-conquer in the context of IP: For each i ∈ {0, . . . , n − 1} and v ∈ Z, an optimal
solution x∗ either satisfies x∗

i ≤ v or x∗
i ≥ v + 1.

Using these two constraints two sub problems can be created from the original
problem formulation by adding either one or the other constraint to the original set of
constraints. This can be seen as branches of a tree, while each branch posses a smaller
feasible set. At least one branch results in the optimal solution x∗. Iterative application
of this branching step yields IP problems of manageable size. For each (sub)problem,
primal and dual bounds are obtained by relaxation techniques and heuristics. They
allow to prune branches of the search tree, thus reducing the search area (implicit
enumeration). Branch and bound techniques are often used within algorithms for
communications systems, e.g., the sphere decoding which is presented in Chap. 8.

For any IP problem a linear programming (LP) problem can be derived, called the
LP relaxation. This can be done by taking the same objective function and same
constraints but with the requirement that the integer variables are replaced by
appropriate continuous constraints. Cutting plane algorithms rely on the idea of
solving the IP problem as the LP problem

min{cT x : x ∈ conv(PI)}.

http://dx.doi.org/10.1007/978-1-4614-8030-3_8
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However, the convex hull of the feasible set (PI ) of the IP problem is in general
hard to compute explicitly. Therefore, approaches are developed which iteratively
solve the LP relaxation of the IP and compute a cutting plane, i.e., a valid inequality
separating the feasible set PI from the optimal solution of the LP relaxation. These
cuts are added to the formulation in all subsequent iteration. Important questions
address the convergence of this procedure, as well as the generation of strong valid
inequalities. In case of channel code decoding this technique is applied in [4].

A mixture of strategies such as branch-and-cut and the utilization of problem
intrinsic structures might lead to enhanced solution strategies. Implementing an effi-
cient IP problem solver is certainly a demanding task. For a special purpose solver,
the problem has to be thoroughly understood, a suitable algorithm has to be chosen
and efficiently realized. But there also exists a bandwidth of all-purpose solvers,
both open source (like GLPK [7]) and commercial (e.g. CPLEX [8]), which may
be sufficient to solve various different IP problems such as the ones mentioned for
ML decoding. Several ML decoding results are presented within this treatise, all are
based on solving the corresponding IP formulations as described in this section. In
[9, 10] further IP formulations are presented, that cover different aspects of code
analysis. All formulations are general and can therefore be applied to arbitrary linear
block codes.

ML Decoding Examples

In the following two simple channel codes are introduced together with their ML
decoding procedure. Since the code examples are very small it is possible to explicitly
enumerate all solutions. For both examples we assume an input LLR vector λ of
length N = 4. Of course, for decoding the receiver needs of course the knowledge of
utilized encoding scheme. One example uses a so called repetition code for encoding,
the second example a so called single parity check code.

Example: Repetition Code

A repetition code is a very simple code that simply repeats a single bit of information
(K = 1) N times. The generator matrix and the parity check matrix of a repetition
code for N = 4 is the following:

G = [1111] H =
⎡

⎣
1 0 0 1
0 1 0 1
0 0 1 1

⎤

⎦

In this example one bit is repeated four times which results in a code rate of
R = 1/4. For this type of a code it is obvious that only two possible codewords exist,
since K = 1: either the all zero codeword or the all one codeword.
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Imagine we receive the LLRs λ = [
0.4 1.1 −0.1 −0.3

]
. The ML decoder deter-

mines, which codeword x̂ was the one that most likely led to the observation of λ

solving:

x̂ = arg min
x∈C

(
N−1∑

i=0

λixi

)
.

As already mentioned the code space C for a repetition code has just two possible
codewords. Evaluating the cost function for these two codewords results in:

C :=
{

[0 0 0 0]
[1 1 1 1] ⇒ ∑N−1

i=0 λixi =
{

0

1.1

When looking at the result of the cost function it can be seen that
∑3

i=0 λixi = 0
is the result for the all zero codeword while for the all one codeword the weight is∑3

i=0 λixi = 1.1. The ML decoding solution is thus x̂ = [0 0 0 0]. The minimum
distance of this code is dmin = 4, since all four bits are different. When looking
at the input values of λ one can see that a decoding with just the sign information
sign(λ) = [

1.0 1.0 −1.0 −1.0
]

would result in cost values which can not be distin-
guished. Thus we could only detect an error and not correct it. This is one intuitive
example which shows that soft information input provides a better error correction
capability than hard-input values.

Example: Single Parity Check Code

A second very simple code is the so called single parity check code with K = 3
information bits. The corresponding generator and parity check matrices for the
resulting block length of N=4 are:

G =
⎡

⎣
1 0 0 1
0 1 0 1
0 0 1 1

⎤

⎦H = [1111]

Again the codeword is generated by the multiplication of the information vector
with the generator matrix x = uG. The code space has now 2K = 8 possible
codewords, since the information vector u has now three bits. The resulting eight
codewords and thus the code space C is:
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u =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0 0 0]
[0 0 1]
[0 1 0]
[0 1 1]
[1 0 0]
[1 0 1]
[1 1 0]
[1 1 1]

⇒ [u0u1u2]
⎡

⎣
1 0 0 1
0 1 0 1
0 0 1 1

⎤

⎦ = x C :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0 0 0 0]
[0 0 1 1]
[0 1 0 1]
[0 1 1 0]
[1 0 0 1]
[1 0 1 0]
[1 1 0 0]
[1 1 1 1]

In the following we will calculate the ML estimation x̂ when receiving
λ = [

0.4 −1.1 0.1 0.3
]
. The cost function for all possible codewords can be eval-

uated to:

C :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0 0 0 0]
[0 0 1 1]
[0 1 0 1]
[0 1 1 0]
[1 0 0 1]
[1 0 1 0]
[1 1 0 0]
[1 1 1 1]

⇒ ∑N−1
i=0 λixi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0.4
−0.8
−1.0
0.7
0.5
−0.7
−0.3

The smallest value is −1.0 and thus the codeword that most likely equals the
originally transmitted codeword is x̂ = [0 1 1 0].

Solving the maximum likelihood criterion is the goal of a channel decoder. How-
ever, maximum likelihood decoding is an NP-hard problem [11]. The presented
examples solve the ML decoding problem by evaluating all possible codes in a brute
force manner. In practical examples this is not a feasible solution since the cardinality
of the code space is |C| = 2K , with K > 1000 for many applications. This is why
some channel codes, e.g. convolutional codes, have special properties which enable
an efficient realization of an ML decoding algorithm. For example the well known
Viterbi algorithm is one algorithm which utilizes a special structure of the code to
solve the ML criterion—in this case the so called trellis structure. The trellis structure
is an elegant way to represent all possible codewords generated by a convolutional
code (CC), see Sect. 3.4. The Viterbi algorithm checks all possible realizations of the
codeword x and decides in favor of that codeword with the minimum cost function∑N−1

i=0 λixi.
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3.3.3 Symbol-by-Symbol MAP Decoding

For modern codes (turbo codes, LDPC codes) the maximum likelihood decoding
is too complex for practical applications. Thus, heuristics are used which tries to
approximate the ML solution. The typical procedure is to divide the code C in
smaller component codes

C = {C0 ∩ C1 ∩ . . . ∩ Cj} (3.24)

Typically, the cardinality |Ck| is identically for each sub-code, while a sub-code has
a smaller cardinality as the original code |Ck | ≤ |C|. Each sub-code is a linear code
itself which can be defined by a parity check matrix HCk . HCk is in turn a part of the
original parity check matrix. As an example the Hamming code is decomposed in
three sub-codes.

H =
⎡

⎣
1 0 1 1 1 0 0
1 1 0 1 0 1 0
0 1 1 1 0 0 1

⎤

⎦
HC0 = [1 0 1 1 1 0 0]
HC1 = [1 1 0 1 0 1 0]
HC2 = [0 1 1 1 0 0 1]

For decoding, each component code can be solved independently. The result of
each component decoder is then passed to the others component code decoders
and serves as an additional support information (a priori information). For 3GPP
turbo codes the utilized decoding algorithm exchanges information between two
component codes C = {C1 ∩C2}. LDPC codes are typically divided in M component
codes C = {C0 ∩ C1 ∩ . . . ∩ CM−1}, which means we decompose the original code,
row-by-row, in M single parity check codes.

Each sub-code is decoded by utilizing a so called symbol-by-symbol MAP cri-
terion or in short MAP algorithm. The MAP algorithm provides a posteriori proba-
bilities for each symbol or bit. For each decoded bit xi, the probability is calculated
that this bit was either 0 or 1, given the received sequence λ.

The MAP probability is derived by an example using a single parity check code.
The same received sequence is the starting point, i.e. λ = [

0.4 −1.1 0.1 0.3
]
.

One possible first step is to evaluate the already explained cost function for all
possible codewords.

C :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = [0 0 0 0]
x1 = [0 0 1 1]
x2 = [0 1 0 1]
x3 = [0 1 1 0]
x4 = [1 0 0 1]
x5 = [1 0 1 0]
x6 = [1 1 0 0]
x7 = [1 1 1 1]

⇒ ∑N−1
i=0 λixi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w0 = 0

w1 = 0.4

w2 = −0.8

w3 = −1.0

w4 = 0.7

w5 = 0.5

w6 = −0.7

w7 = −0.3

(3.25)
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A labeling for each weight wc =< λ, xc > is now introduced with an associated
codeword numbering. xc is one codeword of the codeword space C with the corre-
sponding cost value wc. The set of all possible weights is denoted as w. The weight
which associated to the ML codeword will be denoted as wML . Now we would like
to evaluate the MAP probability for the first bit. Each cost wc gives us a relative
measure of a certain code word xc with respect to a received λ.

When we derived the cost function we have subtracted the all zero codeword, see
Eq. 3.18. Thus each weight wc reflects the log likelihood ratio of a certain codeword
xc with respect to the all zero codeword x0.

wc = ln

(
P(xc|y)
P(x0|y)

)
(3.26)

with xc one codeword of the codeword space C. The MAP probability for the first
bit position P(x0 = 0|y) gives the probability that the first bit position was sent as a
zero, i.e., that either x0, x1, x2 or x3 have been sent. These four codewords have all a
zero at the first position. When looking on Eq. 3.26 we can evaluate this question by

P(x0 = 0|y) = ew0 + ew1 + ew2 + ew3

normalizer
. (3.27)

The normalizer has to ensure that the probability over all codewords is 1. Again the
normalizer can be omitted when building the likelihood ratio, or here directly the
log-likelihood ratio.

Λ(x0|y) = ln

(
P(x0 = 0|y)
P(x0 = 1|y)

)
= ln

ew0 + ew1 + ew2 + ew3

ew4 + ew5 + ew6 + ew7
(3.28)

This is the symbol-by-symbol MAP result in terms of log-likelihood ratios, since
Λ(x0|y) is conditioned on an entire receive vector it denotes with a capital lambda.
For the second bit position x1 we have to evaluate

Λ(x1|y) = ln

(
P(x1 = 0|y)
P(x1 = 1|y)

)
= ln

ew0 + ew1 + ew4 + ew5

ew2 + ew3 + ew6 + ew7
. (3.29)

A general expression for each bit position results in

Λ(xi|y) = ln

∑
x|xi=0

ewc

∑
x|xi=1

ewc
(3.30)

x|xi = 1 is a codeword x ∈ C with the is bit set to 1. Equation 3.30 is one possible
description to calculate the symbol-by-symbol MAP probability for any type of linear
block code. The formulation is based on the weights of LLR values and can be used
as starting point for implementation. The basic procedure to solve this equation is to
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exploit the code properties to enable an intelligent search with respect to the current
constraint codeword x|xi.

3.3.4 Max-Log-MAP Approximation

Equation 3.30 delivers the correct MAP result in the log-likelihood domain and is
typically denoted as Log-MAP solution. The logarithm over the sum of exponential
functions can expressed by the Jacobian logarithm either in its positive form with

ln
(
eδ1 + eδ2

) = max∗(δ1, δ2) = max(δ1, δ2) + ln(1 + e−|δ1−δ2|), (3.31)

or in its negative form with

− ln
(
e−δ1 + e−δ2

) = min∗(δ1, δ2) = min(δ1, δ2) − ln(1 + e−|δ1−δ2|). (3.32)

By utilizing the Jacobian logarithm and ignoring the correction term ln(1+e−|δ1−δ2|)
yields the so called Max-Log-MAP approximation which will be:

Λ(xi|y) = ln

(
P(xi = 0|y)
P(xi = 1|y)

)

≈ + max
x|xi=0

{w} − max
x|xi=1

{w} (3.33)

Or we can express this function as well utilizing the minimum search by just
multiplying it with −1.0; The resulting Max-Log-MAP expression results in:

Λ(xi|y) = ln

(
P(xi = 0|y)
P(xi = 1|y)

)

≈ − min
x|xi=0

{
N−1∑

i=0

λixi

}
+ min

x|xi=1

{
N−1∑

i=0

λixi

}

≈ − min
x|xi=0

{w} + min
x|xi=1

{w} (3.34)

Equation 3.34 searches through the weights w, always with respect to one position i.
Note that the weight of the ML solution wML will always part of the solution.

The sub-optimal Max-Log-MAP calculation becomes clearer when evaluating
again the our single parity check example with the received sequence
λ = [

0.4 −1.1 0.1 0.3
]
. The corresponding weights and codewords are shown

in Eq. 3.25, the approximated Max-Log-MAP expression evaluates to:
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Λ(x0|y) = −min{0, 0.4,−0.8,−1.0} + min{0.7, 0.5,−0.7,−0.3} = 0.3
Λ(x1|y) = −min{0, 0.4, 0.7, 0.5} + min{−0.8,−1.0,−0.7,−0.3} = −1.0
Λ(x2|y) = −min{0,−0.8, 0.7,−0.7} + min{0.4,−1.0, 0.5,−0.3} = −0.2
Λ(x3|y) = −min{0,−1.0, 0.5,−0.7} + min{0.4,−0.8, 0.7,−0.3} = 0.2

In each result of Λ(xi|y) the weight of the ML result wML = −1.0 is used. The sign
bit of each LLR value calculated by the Max-Log-MAP approximation correspond
to the maximum likelihood estimation x̂.

In hardware realizations we can either use the Max-Log-MAP approximation or
the Log-MAP realization which mainly depends on the type of application.

• A Max-Log-MAP implementation is chosen when the communications perfor-
mance result of a Max-Log-MAP approximation is close to that of a Log-MAP
realization. The difference with respect to communications performance is shown
for turbo codes in Sect. 6.2.2.

• The computational complexity of the approximation term can be quite significant.
However, sometime an approximation towards the Log-MAP solution becomes
mandatory due to communications performance reasons. Then in hardware an
approximation of the correction term is realized, one possible approximation is
shown in Sect. 5.2.

• One major advantage of a MAX-Log-MAP realization is its independence of the
signal-to-noise ratio, i.e. the algorithm is robust with respect to linear scaling of the
input values provided by the demodulator. One example with respect to fixed-point
realization and analysis of the robustness of an algorithm is shown in Sect. 6.2.3.

3.4 Convolutional Codes

Convolutional codes (CC) were already introduced in 1954 [12] and are still parts of
many communication systems. This section just gives a pragmatic introduction to this
type of codes. The theory for designing a convolutional codes and its mathematical
description mandatory for in-depth analysis is omitted. An excellent in depth analysis
is found in [1].

The encoder of a convolutional code is either a recursive or a non recursive filter,
operating on bit level. It is composed of M memory elements, as shown for M = 2
in Fig. 3.2 and for M = 3 in Fig. 3.3 respectively.

Figure 3.2 shows a non-recursive encoder for a non-systematic convolutional
(NSC) code. One input bit produces always two output bits. Thus this is a R = 1

2
code. Depending on the values stored at any given moment in the storage elements S0

and S1 and on the input different output bits are produced. Since two storage devices
are present M = 2, 4 different internal states can be reached (2M ) The so called
transition table is shown at the right which shows the current state, input, next state,
output1 and output2 values. Figure 3.3 shows a recursive systematic convolutional
(RSC) code, again with transition table. Recursive means that there exist a feedback

http://dx.doi.org/10.1007/978-1-4614-8030-3_6
http://dx.doi.org/10.1007/978-1-4614-8030-3_5
http://dx.doi.org/10.1007/978-1-4614-8030-3_6
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S0 S1

current
state

input next
state

out1-out2

00 0 00 00
00 1 10 11

01 0 00 11
01 1 10 00

10 0 01 10
10 1 11 01

11 0 01 01
11 1 11 10

Fig. 3.2 4-state NSC code with state transition table

S0 S1 S2

current
state

input next
state

out1-out2

000 0 000 00
000 1 100 11

001 0 100 00
001 1 000 11

010 0 101 01
010 1 001 10

011 0 001 01
011 1 101 10

100 0 010 01
100 1 110 10

101 0 110 01
101 1 010 10

110 0 111 00
110 1 011 11

111 0 011 00
111 1 111 11

Fig. 3.3 8-state RSC code with state transition table. This code is used in 3GPP turbo encoding

from the state information to the input bit. The plus boxes indicates an XOR of the
participating bits.

The transition table describes a Mealy automaton, where the output depends on
the state and the input information. For the 4-state NSC code the automaton is shown
in Fig. 3.4. The finite state diagram does not contain any information in time, but
unrolled over time steps results in the trellis diagram. For each time step k one new
trellis step exists, which is shown for three time steps in Fig. 3.4. The trellis is one
graphical representation for all possible output sequences.
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it output

Mealy Trellis

0/00

input output
0/00

input output

0/00
00

0/00

1/11
unrolledover

time steps

00
1/11

0/10

0/11

00 00

01

00

01

0/00

1/11

10

11

10 01
1/00

1/01 0/01 1010
0/10

1/0111

1/10
1111

1/01

Fig. 3.4 State diagram unrolled over the time results in the trellis diagram

As described by the Mealy automaton we have in this example always two possi-
bilities to reach a certain state. In the case of the encoding procedure of Fig. 3.4 this
reflects two possible input/output sequences resulting in the same state.

In Fig. 3.5 the trellis is shown for two possible paths which converge again, e.g.
there exist two paths which start from the same state and end up at the same state.
Since a path is associated to an input bit/output bit combination one can see that the
input sequence [u0 u1 u2] = [0 0 0] and [u0 u1 u2] = [1 0 0] have paths which
merges again. The corresponding output sequence and thus part of the codeword are
[x0 x1 x2 x3 x4 x5] = [0 0 0 0 0 0] and [x0 x1 x2 x3 x4 x5] = [1 1 1 0 1 1], respectively.
This 6 bits are just a part of the codeword. Thus we have at least a minimum distance
of the two codewords of dmin = 5.

As well convolutional codes are utilized in packet based transmission systems.
At the end of the encoding of one block, typically the trellis is terminated in the zero
state. This is enforced by adding tail bits to the sequence. The tail bits are chosen
depending on the last encoding stage. This is shown for the 4-state NSC code of our
example in Fig. 3.6. For a 2M -state NSC code a sequence of M zeros can be used as
input to enforce the termination in the zero state.

A formal method for describing a convolutional code is to give its generator matrix
G in the D-transform notation, where D represents a delay operator. With respect to
the encoding process of Fig. 3.2 we can say that the current input bit at time step
D0 = 1 is influenced by the bit of the previous time step D1 and the bit at the input

Fig. 3.5 Merging paths in a
trellis

0/00

input output

0/00 0/00
00

0/00
00 0000

01

0/00 0/00

0/11

10
0/10

1/11
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Fig. 3.6 Tail bits to enforce
the final zero state

0/00 

0/11 

0000

01

10

11

00

01

10

11

00

01
0/10 

0/00 

0/11 

0/01 

two time steps before D2. The linear map of the input bits onto the coded bits can be
written as a multiplication of the input sequence and a generator:

x(D) = u(D)G(D) (3.35)

For the 4-state NSC encoder (Fig. 3.2) and the presented 8-state RSC encoder
these generators are:

G(D) = [1 + D + D2 1 + D2] G(D) =
[

1
1 + D2 + D3

1 + D + D3

]
(3.36)

In communication standards these generators are given typically in octal form
which directly shows the structure for the encoding process. For the 4-state the so
called forward polynomial for output one is G0 = 1112 = 78, and for output two is
G1 = 1012 = 58. The binary form describes directly the taps of the NSC filter. Thus,
the octal representation groups 3 taps positions per digit. For the recursive structure
a standard typically defines a forward polynomial, here for the 8-state G0 = 138
and the feedback polynomial as GFB = 158. For different code rates more forward
polynomials may exist, which are labeled by Gi.

Since the encoding scheme and as well the decoding scheme is quite simple many
communication standards utilize convolution codes. Table 3.4 shows a selection of
different convolutional codes utilized in various standards. The list shows the number
of states, the code rate, and the defined polynomials. In a communication standards
like defined by 3GPP there exist various different codes for e.g. different control
channels or data channels. It quite surprising how many different encoder structures
can be found when reading through the documentation of the standards.

3.4.1 ML Decoding of Convolutional Codes

For decoding we ideally would like to solve the ML criterion which is defined as:

x̂ = arg min
x∈C

(
N−1∑

i=0

λixi

)
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Table 3.4 Selection of standards featuring convolutional codes, with the code type, number of
states, and polynomials

Standard Codes States Rate Polynomials

NSC 16 1/2 G0 = 238, G1 = 338

GSM/EDGE NSC 16 1/3 G0 = 338, G1 = 258, G2 = 378

RSC 16 1/2 G0 = 338, GFB = 238

RSC 16 1/3 G0 = 338, G1 = 258, GFB = 378

GSM/EDGE NSC 64 1/2 G0 = 1238, G1 = 1718

NSC 64 1/3 G0 = 1238, G1 = 1458, G3 = 1718 or G3 = 1758

NSC 64 1/4 G0 = 1238, G1 = 1458, G2 = 1758, G3 = 1718

GSM/EDGE RSC 64 1/4 G0 = 1238, G1 = 1458, G2 = 1758, GFB = 1718

RSC 64 1/4 G0 = 1238, G1 = 1458, G2 = 1718, GFB = 1758

UMTS NSC 256 1/2 G0 = 5618, G1 = 7538

NSC 256 1/3 G0 = 557, G1 = 6638, G2 = 7118

DVB-H CC 64 1/2 G0 = 1718, G1 = 1338

IEEE802.11a/g/n CC 64 1/2 G0 = 1338, G1 = 1718

IEEE802.16e CC 64 1/2 G0 = 1338, G1 = 1718

As seen in Sect. 3.3.2 a brute force check of all possible code words is quite cumber
sum or even impossible for larger block sizes. The trellis however as introduced in
the previous chapter is a graph structure which was obtained direct from the encoding
process and represents all possible bit patterns. Solving the ML solution by using
a trellis is equivalent to solving a shortest path problem and is denoted as Viterbi
algorithm in the field of communications [13].

This is now demonstrated for a code Rate of R = 1/2. The sum of the cost function
can be decomposed in partial sums:

(
N−1∑

i=0

λixi

)
=
(

2k−1∑

i=0

λixi

)
+

(
2k+1∑

i=2k

λixi

)

︸ ︷︷ ︸
partial

∑=branch metric

+
⎛

⎝
N−1∑

i=2k+2

λixi

⎞

⎠ (3.37)

The middle part, which reflects the partial sum of one encoding step, is of special
interest. This partial sum is labeled with γ

xixi+1
k and are denoted as branch metrics.

Four different branch metrics are possible, depending on the bit combinations of xi

and xi+1.
γ 00

k = 0 → [xi xi+1] = [0 0]
γ 01

k = λi+1 → [xi xi+1] = [0 1]
γ 10

k = λi → [xi xi+1] = [1 0]
γ 11

k = λi +λi+1 → [xi xi+1] = [1 1]
(3.38)

As already mentioned the trellis defines all possible bit combinations. A valid path
from the beginning to end of the trellis defines a valid codeword. For each trellis step



3.4 Convolutional Codes 57

00
0/00 

1/11 

10

00 0000

01

0/10 

0/00 0/00 

0/11 
00

11

10

00 0000

01

10

decoding 
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Fig. 3.7 Merging paths in a trellis

Forward Recursion:
store all survivor pathes

Fig. 3.8 Viterbi processing with the resulting surviver paths

k we can associate one intermediate sum value of Eq. 3.38 to one state transition,
while i defines the position of the bit xi within the codeword. The relation between
trellis step k and codeword position i is 2 ∗ k = i, which results due to the code rate
of R = 1

2 within the example. One branch metric associated to an edge is denoted
as:

γ
xixi+1
k (Sm

k , Sm′
k+1) (3.39)

which determines the mapping of a branch metric to a state transition or edge in
the trellis, with Sm

k and Sm′
k+1 the connected states at trellis step k to k + 1 with

m, m′ ∈ {0 . . . 2M − 1}. Fig. 3.7 shows 3 trellis steps which corresponds to 6 bits of
the codeword. On the right side of Fig. 3.7 the paths are labeled with the corresponding∑

λixi values. The labeling of the edges are exactly one branch metric of Eq. 3.38.
The partial sum (λ0 + λ1) + (λ2) + (λ4 + λ5) comprises 3 encoding steps and is
part of a valid cost function. However, the all zero path with the partial sum weight
0 + 0 + 0 could be one part as well. Thus it makes sense only to follow the survivor
of a minimum search

α0
k=3 = min{0 + 0 + 0 , (λ0 + λ1) + (λ2) + (λ4 + λ5)} (3.40)

With α0
k=3 the so called state metric or current survivor sum at trellis step k = 3

and state S0. The calculation has to be done for each state and each trellis step. We
recursively calculate new state metrics αS

k+1, with S the state number which is in this
example for possible states with S ∈ 0, 1, 2, 3.
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Figure 3.8 shows the basic sketch of the Viterbi processing at processing step k.
Processing step and trellis step are identically in this example. The Viterbi algorithm
which calculates the ML codeword can be divided in 3 major steps

• branch metric allocation: according to the state transition tables, allocate one of the
corresponding branch metrics of Eq. 3.38 to an each edge in the trellis, according
to Eq. 3.39.

• forward recursion: calculate at each time step and thus trellis step k the corre-
sponding survivor path metric αm

k+1 for each state m ∈ {0 . . . 2M − 1}. We have to
store these results for each state of the current processing step k. The αm

k+1 state
metric hold an intermediate sum of the overall cost function of Eq. 3.37 to reach
this particular state. It is the smallest sum which can be evaluated to reach this state,
starting form the very first state α0

0. In addition to the state metrics we have to store
an indication about the surviver edge, i.e. where did I come from. The resulting
surviver paths are indicated in Fig. 3.8 to the left of the current processing step.

• trace back: When reaching the final state at trellis step k = N/2 we have to extract
the path which connects α0

0 and α0
N/2. When we reached the last terminated state we

obtained the final cost value of the entire code word α0
N/2 = ∑N−1

i=0 λixi. Obtaining
the final cost value is, however, secondary to the objective of finding the ML path
x̂. The way to obtain this path is quite elegant. For each time step we have stored
the already indicated survivor at each trellis step. When reaching the final state we
now use a back tracing of the path information to obtain x̂ which is thus obtained
in a reversed order.

3.4.2 Max-Log-MAP Decoding of Convolutional Codes

The symbol-by-symbol maximum a posteriori algorithm, short MAP algorithm, pro-
vides a posteriori probabilities for each symbol or bit. The original algorithm in
probability domain for trellis codes was already published in 1974 [14] and named
after their inventors BCJR algorithm. However, the algorithm was not of practical
importance since it is more complex than the Viterbi algorithm and has no advantage
when decoding only convolutional codes. The Viterbi algorithm find the optimum
sequence while the MAP algorithm provides additional reliability information for
each position. First the invention of iterative decodable codes turned the focus again
on the MAP algorithm. In iterative decoding the ’soft’ information plays an important
role.

In hardware the processing is always done in the so already mentioned log-
likelihood domain. For each decoded bit xi, the Log-Likelihood Ratio (LLR) is
calculated that this bit was 0 or 1, given the received symbol sequence.

Λ(xi|y) = ln

(
P(xi = 0|y)
P(xi = 1|y)

)
(3.41)
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Solving the Log-MAP or Max-Log-MAP criterion in a brute force manner was
already shown in Sect. 3.3.3. Here we show the procedure with respect to a trellis
representation. The MAP processing on a trellis is a so called forward-backward
algorithm and is shown for trellis step k in Fig. 3.9. The processing can be decomposed
in 4 steps.

• branch metric allocation: according to the state transition tables, allocate one of
the corresponding γ

xixi+1
k values of Eq. 3.38 to each edge in the trellis. This part is

identical to the Viterbi algorithm
• forward recursion: calculate at each time step and thus trellis step k the correspond-

ing path metric αS
k+1 for every state S. We have to store these results for each state

S of all processing step up to trellis step k. Only the current state metrics at a given
trellis step are utilized for the next time step. For the Max-Log-MAP algorithm
exactly the same α or forward recursion is utilized which can be expressed in a
more general form as:

αm′
k+1 = min

∀(m−>m′)

(
αm

k + γ
xi,xi+1
k (Sm

k , Sm′
k+1)

)
(3.42)

We have find the minimum over all possibilities which connect states at the previous
time step to Sm′

k+1.
• backward recursion: the backward recursion has exactly the same recursive func-

tionality, however starting with the calculation from the last state in the trellis.

βm
k = min

∀(m′−>m)

(
βm′

k+1 + γ
xi,xi+1
k (Sm

k , Sm′
k+1)

)
(3.43)

Again we store all obtained results for each trellis step.
• soft-output calculation: we would like to calculate the symbol-by-symbol Max-

Log MAP result. For this we need the results of the forward recursion, backward
recursion and the current branch metric, which is:

Λ(xi, y) = min∀γ |xi=0

(
γ

xi,xi+1
k (Sm

k , Sm′
k+1) + αm

k + βm′
k+1

)

− min∀γ |xi=1

(
γ

xi,xi+1
k (Sm

k , Sm′
k+1) + αm

k + βm′
k+1

)
. (3.44)

We are searching the minimum over all sum of weights which has at trellis step k
under the condition that the corresponding codeword bit is either zero or one.

The individual processing steps of the Max-Log-MAP algorithm are explained
now by a small example. Note, that for practical hardware implementation for turbo
decoding only this algorithm is implemented, more details about this in the turbo
decoder chapter. The utilized channel code in the following example is a simple
2-state RSC with G0 = 1 and GFB = 38, its mealy automaton ins displayed next to
its trellis representation, see Fig. 3.10.
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Forward Recursion:
store all alpha values

Backward Recursion:
store all beta values 

Fig. 3.9 MAP processing with the forward and backward recursion

0 1 

infobit parity 

Fig. 3.10 Step one: set up the corresponding trellis and the labeling. The two state trellis with 4
trellis steps is shown. For each trellis step i and each edge a branch metric γ exists. Depending on
the possible systematic, parity bit combination xs

i xp
i a different branch metric has to be allocated

Fig. 3.11 Step two: allocate the corresponding branch values. The corresponding λ-values for each
trellis step are shown at the top. The branch metrics with the corresponding values are now updated
(the trellis step label k is omitted here). Each branch metric is calculated according to Eq. 3.38

The information word used for demonstration has just 4 bits, with u = [0101].
The resulting codeword after encoding is the concatenation of the systematic part xs

and the parity part xp. The codeword is modulated via a binary phase shift keying
(BPSK), which mapping 0 → +1 and 1 → −1 respectively. After demodulation we
receive the LLRs. The values of the resulting codeword, the sent symbols, and the
noise corrupted decoder input are the following:
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Fig. 3.12 Step three: calculate the forward state metrics α: In this example only two possible
transitions exist between the previous states and the state we would like to calculate. Since only two
states exist in this example, only two equations have to be solved for α0

k+1 and α1
k+1 respectively

α0
k+1 = min{α0

k + γ 00
k , α1

k + γ 10
k }

α1
k+1 = min{α0

i + γ 11
k , α1

k + γ 01
k }

Fig. 3.13 Step four: calculate the backward state metrics β: The calculation is identical to
that of the forward recursion, again only two equations have to be solved at each trellis

step:
β0

k = min{β0
k+1 + γ 00

k , β1
k+1 + γ 11

k }
β1

k = min{β0
k+1 + γ 10

k , β1
k+1 + γ 01

k }

codeword:
x = [xs xp] = [[ 0 1 0 1] [0 1 1 0 ]]
sent symbol:
s = [ +1 −1 +1 −1 +1 −1 −1 +1 ]
received:
λ = [λs λp] = [[ −0.8 −1.0 +1.8 −1.6] [−0.1 +0.5 −1.1 +1.6 ]]

For the decoding algorithm we several steps have to be done, see Figs. 3.10, 3.11,
3.12, 3.13 and 3.14.
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Fig. 3.14 Step five: calculate the output Max-Log-MAP approximation: We calculate now the out-

put result by evaluating: Λ(xi|y) ≈ − min
γk |xi=0

{. . .} + min
γk |xi=1

{. . .} . The figure shows the participating

α, β, and γ values to calculate trellis step k = 1. The left side for all possible γk |xi = 0 transitions
and the right side of the figure shows the equation for the γk |xi = 0 transition. α1

0 = inf and
β1

4 = inf are both initialized with an infinite value, since these states can not be reached. Zero
values are not explicitly stated within the sum terms. For each position we have to evaluate these
equations which are shown in the following:

Λ(x0|y) ≈ − min
γ0|x0=0

{(−3.2), inf}
+ min

γ0|x0=1
{(−0.9 − 2.2), inf} = 0.1

Λ(x1|y) ≈ − min
γ1|x1=0

{(−0.9), (−0.9 + 0.5 − 2.7)}
+ min

γ1|x1=1
{(−0.5 − 2.7), (−0.9 − 1.0 − 0.9)} = −0.1

Λ(x2|y) ≈ − min
γ2|x2=0

{(−1.9), (−0.5 − 1.1 − 1.6)}
+ min

γ2|x2=1
{(−1.9 + 0.7 − 1.6), (−0.5 + 1.8)} = 0.4

Λ(x3|y) ≈ − min
γ3|x3=0

{(−1.9), inf}
+ min

γ3|x3=1
{inf, (−1.6 − 1.6)} = −1.3

(3.45)

3.5 Soft-Input Soft-Output (SISO) Decoder

The previous example is summarized with the following 4 lines, the sent codeword,
sent symbol, received LLR, and output result respectively.

x = [xs xp] = [[ 0 1 0 1] [0 1 1 0 ]]
s = [ +1 −1 +1 −1 +1 −1 −1 +1 ]
λ = [λs λp] = [[ −0.8 −1.0 +1.8 −1.6] [−0.1 +0.5 −1.1 +1.6 ]]
Λ(xi|y) = [[ 0.1 −0.1 0.4 −1.3] [x x x x ]]
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Fig. 3.15 Concatonation of component decoders for soft-in soft-out decoding

As mentioned the result of the symbol-by-symbol MAP algorithm is denoted as well
as soft-output information. Typically the decoder utilizes all soft-input information
to calculate this soft-output information. The gain we obtained by the soft-input soft-
output algorithm is denoted as extrinsic information. It is calculated by taking the
difference between the obtained information of the MAP algorithm and the input
information.

Extrinsic LLR Le = Λ − λ = [ 0.9 0.9 −1.4 0.3 ]

The extrinsic information of a symbol or bit is the additional information a
(MAP) decoder calculates. The decoder calculates the a posteriori information taking
all input information into account. The extrinsic information is thus the a posteriori
information excluding the entire input information.

Typically, for decoding we have two types of soft-input information. The channel
information with here denoted as λ and an additional information which is called a
priori information (La) which is in this example zero. The a priori information of
symbol or bit is an additional information known before decoding. This information
may come from a source independent of the received sequence.

The efficient usage of a priori and extrinsic information turned in to focus when
Berrou and Glavieux presented the turbo codes (TC) [15]. These channel codes are
decoded in an iterative manner and are already applied in many communication stan-
dards [16, 17]. Note that already low-density parity-check (LDPC )codes, introduce
in 1963 utilized the iterative decoding.

The success of the iterative decoding process is the efficient usage of extrinsic
and a priori information. The major principle of all iterative channel code decoders
is the exchange of reliability information, in terms of LLRs, between 2 or more
component decoders. The basic code structure of TCs is the random concatenation
of 2 component codes. In the case of LDPC codes many simple component codes
are concatenated. Both code types and the implementation of the decoding algorithm
are explained in detail in the next chapters.

The concatenation of different component codes for decoding is shown in
Fig. 3.15. For each component code a corresponding component decoder exist. A
component decoder calculates a local MAP information of the bits to be decoded.
These information is re-sorted according to the concatenation of the component
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codes and then passed to the connected component codes. The re-sorting process
is denoted as interleaving in the following, see Sect. 4.3. One iteration is finished if
each component code has updated the information ones.

The outstanding communications performance of concatenated codes can only be
obtained when each component decoder is utilizing soft information at the input and
calculates new soft information at the output which is denoted as SISO decoder and
does not really tell something about the utilized decoding algorithm like Log-MAP,
Max-Log-MAP, or other algorithms.

The output a posteriori probabilities (Λ) can be decomposed in three parts: the
channel input information, the additional gain (extrinsic information), and the a priori
information:

Λ = λ + La + Le (3.46)

Only the additional gain (Le) is passed to the other component decoders with respect
to the connectivity structure. Which means, we subtract the input LLRs as well as
the input a priori information:

Le = Λ − λ − La (3.47)

This additional information serves now as a priori information for an other compo-
nent code decoder and is besides the channel information one part of the soft-input
information.

Without subtracting the old input information a SISO decoder (Eq. 3.47) would
just confirm its decision of prior iterations.
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