
Chapter 2
Digital Transmission System

Throughout the manuscript, we use as application the outer receiver, which is a
part of the complete transmission chain as shown in Fig. 1.3. The model for the
entire transceiver chain can be very complex. Thus it is essential to make further
abstractions of this transmission chain model. As mentioned, the task of the inner
transceiver is to create a good time discrete channel from the inner transmitter input
to the inner receiver output. Assuming a perfect synchronization of the demodula-
tor in time and frequency we can abstract the outer transmitter chain by a simple
baseband transmission chain as shown in Fig. 2.1. The term baseband means that
there is no frequency component present in the model. The final simple baseband
model features a binary random source and a binary sink, which replaces the source
compression/decompression of Fig. 1.3. This outer transceiver chain composed of
channel encoder, interleaver, and modulator is called bit-interleaved coded modula-
tion (BICM) and is often utilized in communication systems.

In the following we describe the nomenclature of the variables shown in Fig. 2.1.
Most channel codes used in digital communications systems, such as the linear
block codes that we explain in Chap. 3, operate on vectors. The vector input to the
channel encoder is u with the vector u = [u0, u1, . . . , uK−1] of length K . u is
called information word, with uk ∈ {0, 1} being the information bits. The purpose
of the channel encoder is to introduce, in a controlled manner, redundancy to the
information word u. The redundancy can be used at the receiver side to overcome the
signal degradation encountered during the transmission through the discrete channel.
The output of the channel encoder is the codeword x = [x0, x1, . . . , xN−1] of length
N > K . The interleaver permutes the sequence of the bits in the codeword, creating
the interleaved codeword x′. The interleaving is explained in more detail in Sect. 4.3.

This sequence is mapped by the digital modulator onto a sequence of symbols
s. We can always map groups of Q bits on one modulation symbol. Thus, there
exist 2Q distinct symbols which we can transmit via the channel. One of the most
common modulation schemes is the Binary Phase Shift Keying (BPSK) with Q = 1,
where x ∈ {0, 1} is mapped to s ∈ {−1,+1}. The final mapped transmit sequence
s of length Ns is then disturbed by noise. For wireless transmission and the already
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Fig. 2.1 Digital transmission system model of the outer transceiver

mentioned perfect synchronization, we model the noise as additive white Gaussian
noise (AWGN) with zero mean and variance σ 2. This channel model is used for all
simulations in this manuscript. The received vector y results in

y = s + n (2.1)

with n the noise vector which is added to the sent transmit sequence.
The task of the demodulator is to transform the disturbed input sequence of sym-

bols y into a sequence of bit probabilities. This sequence λ′ contains likelihood
values, indicating the probability for each bit in the output of the channel encoder
having been sent as a 1 bit or a 0 bit. This is done by calculating the conditional prob-
ability for every bit position i ∈ 0, N − 1 under the condition that y was received.
λ′ is de-interleaved to λ which means we restore the original index positions of the
channel decoder output. Note, that the prime to indicate an interleaved version of a
sequence is omitted in the following. The channel decoder now has the task to detect
and correct occurring errors. Thus it calculates an estimation of the sent informa-
tion bits û. The AWGN channel and the demodulator calculations are explained in
Sects. 2.1 and 2.2 respectively.

The modeling of different stages within the outer receiver chain requires a basic
understanding of probability theory. For example, the model of a channel requires
a probabilistic description of the effects of noise caused by the environment. Many
more stages like the demodulator or the channel decoder deal with probabilities,
as they calculate estimations of which information was most likely sent given the
received disturbed input information. All decoding methods for LDPC codes, turbo
codes, and convolutional codes were originally derived in the probability domain.
The basic probability terms, which introduce terms like joint probability distribu-
tion, conditional probability, and marginalization are described in Appendix C. The
probability terms are as well required to describe the information content which can
be transmitted via an AWGN channel. This is denoted as channel capacity and is
introduced in Sect. 2.3. The amount of information we can transmit via a channel
can even be increased by using multiple antennas at the transmitter and/or receiver
side. This so called MIMO transmission is introduced in Sect. 2.4. Especially the
MIMO transmission with respect to a BICM transmission system will be further
addressed in Chap. 8.

http://dx.doi.org/10.1007/978-1-4614-8030-3_8
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2.1 Channel Model

Typically, real world channels have complicated characteristics with all kind of inter-
ferences, e.g multi-path propagations, frequency selectivity and so on. However, as
already mentioned, the task of the inner receiver is to provide a discrete channel
to the outer receiver. The remaining discrete channel is modeled as additive white
Gaussian noise (AWGN) channel, which is the most important channel model for
the examination of channel codes. The AWGN channel model has no memory and
adds to each random input variable a random noise variable N with density function:

p(x |μ, σ 2) = 1√
2πσ 2

exp

{
− 1

2σ 2 (x − μ)2
}

(2.2)

The noise variable is Gaussian distributed with variance σ 2 and a mean value μ = 0,
see Sect. C: The output of the time discrete channel for each time step i is:

yi = si + ni . (2.3)

In the following a Binary Phase Shift Keying (BPSK) modulation is assumed with
s ∈ {−√

ES,
√

ES}. √ES represents the magnitude of the signal such that the signal
energy results in ES . The received samples yi are corrupted by noise. When we
plot the distribution of the received samples two independent Gaussian distributions
occur. The two distributions are centered at their respective mean value and are
shown in Fig. 2.2. The three sub-figures show the different distributions for different
values of the variance σ 2 and μ = ±1 respectively. Depending on the variance of
the additive Gaussian noise the overlapping of the two distributions, the gray shaded
area in Fig. 2.2, changes.

One way to estimate the received bits (x̂) is to apply a threshold detection at
the 0 level. If the received information yi ≥ 0 then x̂i = 1, and vice versa. The
resulting errors are indicated by the gray shaded areas in Fig. 2.2. Depending on the
variance of the Gaussian distribution the possible error region gets smaller or larger.
We define the ratio of incorrectly received bits to the total number of received bits
as the bit-error rate (BER).

We can calculate the probability of errors for the presented binary transmission
by using two shifted Gaussian distributions:

p(y|s = √
Es) = 1√

2πσ 2
exp

{
− 1

2σ 2 (y − √
Es)

2
}

(2.4)

and

p(y|s = −√
Es) = 1√

2πσ 2
exp

{
− 1

2σ 2 (y + √
Es)

2
}

. (2.5)
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Fig. 2.2 Distributions of received values y with BPSK modulation for different variances of the
noise

As mentioned, ES is the transmission energy of one symbol, while the noise energy
(N0) is part of the channel properties. The noise energy is directly related to the
variance of the Gaussian distribution, which is given by:

N0

2
= σ 2. (2.6)

The quantity N0
2 is the two-sided noise power spectral density. The probability of an

error for the binary detection can be calculated using the Q-function.

Q(t) = Q(N > t) = 1√
2π

∫ ∞

t
exp

{
−n2/2

}
dn. (2.7)

The integral evaluates the probability that the random variable N is larger than a
threshold t . A Gaussian distribution with zero mean and variance one is assumed in
this function. However, for our transmission system we have to include the corre-
sponding mean and variance values.
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The resulting error rate when transmitting symbols with s = −√
Es is

Q(Y > t) = 1√
2πσ 2

∫ ∞

t
exp

{
− 1

2σ 2 (y + √
Es)

2
}

dn = Q

(
t + √

Es

σ

)
.

(2.8)
The probability of a bit error assuming BPSK is the weighted probability of both
possible transmissions (s = ±√

Es), i.e.

Pb = Q

(
t + √

ES

σ

)
P

(
−√

ES

)
+ Q

(√
ES − t

σ

)
P

(√
ES

)
. (2.9)

Both BPSK symbols are transmitted equally likely, P
(√

ES
) = P

(−√
ES

)
, while

the threshold t for a detected bit error lies at t = 0 as shown in Fig. 2.2. ThusPb

evaluates to:

Pb = Q

(√
ES

σ

)
= Q

(√
2ES

N0

)
. (2.10)

For the evaluation of the obtained results, typically graphs as shown in Fig. 2.3
are used. Shown is the bit error rate on the y-axis in logarithmic scale, the x-axis
represents the signal-to-noise ratio in ES/N0 for an AWGN channel.
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Fig. 2.3 Bit error rate for a BPSK transmission without channel coding (uncoded)
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Quality of Service

For many services, data are packed into frames (blocks, packets,…). For packet based
transmission like LTE up to 25 codewords are grouped into one transmission time
interval frame (TTI), which implies a higher-level grouping of bits with additional
header information. However, in the context of channel coding in the baseband model
of Fig. 2.1, the terms frame, block, and packet are used interchangeably and all denote
one transmitted codeword. Often it is irrelevant how many bits could be received
correctly within one frame. It only matters whether the frame contains errors or not,
as in many services every erroneous frame is considered lost, including all the data
therein. This leads to the ratio of the number of erroneous frames to the total number
of frames, the frame-error rate (FER). Both BER and FER are usually expressed in
the logarithmic domain:

BER|dB = log

(
number of erroneous bits

total number of bits

)
, (2.11)

and

FER|dB = log

(
number of erroneous frames

total number of frames

)
. (2.12)

BER and FER always have to be put in relation to the noise present in a channel.
The relative amount of noise is expressed by the signal-to-noise ratio (SNR).

SNR = ES

N0
. (2.13)

The energy needed for the transmission of one information bit (Eb) is generally
not equal to ES . Eb incorporates also information about the code rate (R) and the
number of modulation bits Q. The code rate is defined as the ratio of information
bits per coded bit. A code rate R = 1/3 for example denotes that three bits are
transmitted to communicate one information bit. The number of modulation bits
determines how many bits are grouped to one modulation symbol. For the already
mentioned BPSK modulation this is Q = 1. E.g. in the case of Q = 2 we use 22 = 4
different symbols for transmission, see Sect. 2.2. The SNR can consequently also be
expressed in relation to the information bit energy instead of the symbol energy. The
relation between the two forms of expression is:

ES

N0
= Q · R · Eb

N0
, (2.14)

or in the logarithmic domain:

ES

N0

∣∣∣∣
dB

= 10 · log(Q) + 10 · log(R) + Eb

N0

∣∣∣∣
dB

. (2.15)
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Fig. 2.4 Bit error rate for a BPSK transmission with and without channel coding

For comparing different channel coding schemes the required SNR level has to be
evaluated with respect to a certain frame error rate. In order to obtain a statistic for
the frame error rate at a given signal-to-noise ratio so called Monte Carlo simulations
can be performed. According to the modeling of Fig. 2.1 a large number of frames
are simulated, always at one fixed signal-to-noise ratio and one fixed channel coding
setup (type, block length, code rate). Then, the simulations are repeated for different
noise levels, by changing the variance of the Gaussian noise.

Figure 2.4 shows again the bit error rate on the y-axis in logarithmic scale, while
the x-axis represents the signal-to-noise ratio in Eb/N0 for an AWGN channel.
Shown is the BER for an uncoded system and a system using a channel code, a so
called turbo code. Turbo codes are introduced in Chap. 6 and are defined in the 3GPP
communication standards. A code rate of R = 0.5 is used which means two bits are
transmitted for each information bit. Even though transmitting more coded bits, the
energy required to transmit an information bit reliable is lower than in the uncoded
case. We can see a large gain in terms of signal-to-noise ratio to obtain a specific
BER. In other words: With respect to a higher noise level we can obtain the same
quality-of-service when using a channel coding scheme. This gain between coded
and uncoded transmission is denoted as coding gain.

For turbo codes we transmit the information in blocks and we should use the
resulting frame error rate to judge on the achieved communications performance.
Figure 2.5 shows FER curves over SNR for the same kind of turbo code, however,
applying different code rates for transmission.

All simulations have a fixed number of information bits of K = 6144, while the
codeword size ranges from N = 18432 to N = 6400 bits, which corresponds to

http://dx.doi.org/10.1007/978-1-4614-8030-3_6
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Fig. 2.5 FER vs. SNR for different code rates of a LTE turbo code

code rates of R = 1/3 to R = 0.96, respectively. For each Eb/N0 and each code
rate 100000 frames were simulated, in order to get statistically stable results.

All curves show a characteristic drop of the observed FER for an increased SNR.
All code rates have a FER = 1 at a very low Eb/N0 ratio. E.g. at Eb/N0 = 0dB
all simulations have at least one bit error per frame after the channel decoder. It can
be seen that the lower the code rate, the smaller the SNR level at which a certain
FER can be obtained. It is really important that we compare the SNR in terms of
Eb/N0, since only then a comparison of different code rates and the evaluation of
the final achieved coding gain is possible. When comparing the coding gain of two
coding schemes, here two different code rates, we always need a certain FER as
reference. For practical wireless transmission the reference frame error rate is often
FER = 10−2 or FER = 10−3.

2.2 Digital Modulator and Demodulator

The modulator maps groups of Q bit to one symbol, before transmitting these via
the channel. Task of this modulation is the increase of sent information per channel
usage.
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Fig. 2.6 Different modulation types: binary phase shift keying, 4-QAM, 8

Figure 2.6 shows different signal constellations which can be used for the mod-
ulation. 2Q different signal points exist, depending on the number of mapped bits.
For the phase-shift keying with 2, 4, or 8 signal points (BPSK, QPSK, 8-PSK) each
signal point has the same energy ES . The figure shows as well a quadrature ampli-
tude modulation (QAM) with 16 signal points. The energy for different signal points
may vary for QAM modulation types, while the average signal energy ĒS will be
normalized, with

ĒS = 1

2Q

2Q−1∑
k=0

(Re(sk)
2 + I m(sk)

2). (2.16)

The amplitudes (Re(s), I m(s)) of the complex constellation points are chosen
accordingly to ensure ĒS = 1. The bit to symbol mapping shown in Fig. 2.6 is a
so called Gray mapping. A Gray mapping or Gray coding ensures that two neigh-
boring symbols differ in only one bit. This type of mapping is most often used in
communication systems which use the introduced bit-interleaved coded modulation
transmission.
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The demodulator is the first stage after the channel model, see Fig. 2.1. The input to
the demodulator is the sequence of received values y, where each value yi comprises
the information of Q bits corrupted by noise.

The task of the demodulator is to calculate for each of these Q bits, an estimate
of the originally sent bit. These bit estimates can be given as so-called hard-values
or soft-values.

• Hard-values: These values are represented by just one bit per transmitted bit. For
the BPSK example in Fig. 2.2 this would be the sign bit of the received information,
which can by extracted in this case by a simple threshold decision.

• Soft-values: These values include a probability information for each bit. Thus we
pass a sign value and an associated confidence information, which is derived from
the received sample.

The advantage of the soft-values is an increased possible coding gain of the chan-
nel decoder. This gain is up to 3 dB when comparing channel decoding with hard-
input or soft-input information, respectively [1]. Nearly all modern channel decoders
require soft-values as input information.

In order to obtain soft-values we have to calculate the a posteriori probability
(APP) that the bit xi (or symbol s j ) was transmitted under the condition that y j was
received. Also possible to calculate a symbol probability P(s j |y j ) it is often required
to calculated directly the corresponding bit probability P(xi |y j ). This is due to the
BICM system at which the bit information is interleaved to ensure independent
probabilities at the channel decoders input. For a simple modulation scheme with
one bit mapped to one symbol we will calculate one a posteriori probability. In the
case of a higher mapping we have to extract Q APP values, one for each mapped bit.
Thus, the demodulator has to calculate for one received symbol y j :

P(xi |y j ), ..., P(xi+Q−1|y j ) (2.17)

We can not directly calculate this probability, but instead we have to use Baye’s
theorem, which then results in:

P(xi |y j ) = P(y j |xi ) · P(xi )/P(y j ) (2.18)

P(xi |y j ) is denoted as a posteriori probability, P(y j |xi ) as conditional probability,
and P(xi ) as a priori information. The calculation of P(y j |xi ) and P(y j ) depends
on the channel characteristics, while P(xi ) reflects an a priori information about
the source characteristics. For the demodulation process we do not calculate the
probability of P(xi |y j ) directly; rather we operate in the so called log-likelihood
domain, which calculates

λ(xi |y j ) = ln
P(y j |xi = 0) · P(xi = 0)/P(y j )

P(y j |xi = 1) · P(xi = 1)/P(y j )
(2.19)
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P(y j ) depends only on the channel characteristics and is a constant for a certain
received y j . The term cancels out while the calculation can be split into two parts.

λ(xi |y j ) = ln
P(y j |xi = 0)

P(y j |xi = 1)
+ ln

P(xi = 0)

P(xi = 1)
= λ(y j |xi ) + λ(xi ) (2.20)

For binary sources without a priori information, i.e., with an assumed equal distrib-
ution of 1s and 0s, the probabilities P(xi = 1) = P(xi = 0) are equivalent and thus
cancel out (i.e, λ(xi ) = ln P(xi =0)

P(xi =1)
= 0).

Log-likelihood ratios (LLR) have several advantages over operating on the prob-
abilities directly. These advantages become evident for evaluating λ(y j |xi ) when
taking the characteristics of a channel into account, e.g. an AWGN channel. The
mathematical operations for BPSK demodulator is presented in the following. The
demodulation for a 4 amplitude modulation is presented in Appendix D, respectively.

BPSK Demodulator

In the case of BPSK modulation only one bit is mapped to every symbol s. Typically
the mapping is xi = 0 → si = +1 and xi = 1 → si = −1. For each received
value one LLR value is calculated, which is here denoted with λ(y|x). For the sake
of simplicity, we omit the indices i = j for the BPSK demodulation. In order to
calculate λ(y|x) under the assumption of an AWGN channel we have to evaluate the
Gaussian density function with a shift of its mean value according to the amplitude
of the transmitted symbol s, thus:

p(y|s) = 1√
2πσ 2

exp

{
− (y − s)2

2σ 2

}
. (2.21)

For the BPSK mapping given above the computation of the demodulator results
in:

λ(y|x) = ln
P(y|s = +1)

P(y|s = −1)

= ln
exp

{
− 1

2σ 2 (y − 1)2
}

exp
{
− 1

2σ 2 (y + 1)2
}

= 1

2σ 2 (y + 1)2 − 1

2σ 2 (y − 1)2

= 2

σ 2 y (2.22)
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Thus the channel LLR value λ = 2
σ 2 y of the received symbol is just the received

sample corrected by the channel reliability factor Lch = 2
σ 2 .1 We can summarize

the advantage of the log-likelihood logarithm of Eq. 2.20 for this demodulator exam-
ple: Only the exponents are of interest, while all normalizers of the density function
(1/

√
2πσ 2) cancel out. Furthermore, in the logarithmic domain multiplications and

divisions turn into additions, and subtractions, respectively, which is of great advan-
tage for a hardware realization.

2.3 Channel Capacity

As mentioned before, the goal of the channel code is to transmit the information
bits reliably through a discrete unrealiable channel at the highest practicable rate.
The channel capacity gives us the bound for a reliable (error free) transmission
with respect to a given signal-to-noise ratio. For evaluating this question we have to
introduce the definition of the information content I . The information content of a
discrete event x is defined as:

I (x) = log2
1

P(x)
, (2.23)

with P(x) the probability of the single event x , see Appendix C. The logarithm of
base two constraints this information measure to the dimension ‘bit’. This is the
smallest and most appropriate unit, especially when dealing with digital data. Often
we are interested in the average information content of a discrete random variable
X with probability density function p(x). This is denoted as entropy H and can be
calculated via the expectation with respect to I :

H(X) = E

{
log2

1

p(x)

}
=

∑
x∈Ωx

p(x)log2
1

p(x)
. (2.24)

p(x) defines the probability of the random variable X , with Ωx defining the respective
discrete sample space. The entropy of the random variable X is maximized when each
element occurs equally likely. Assuming Ωx has 2K elements, the entropy results in:

H(X) =
2K −1∑
i=0

1

2K
log2

1
1

2K

= 2K 2−K K = K [bit]. (2.25)

Assuming two discrete random variable X and Y we can define a joint entropy:

1 A channel model related to the AWGN channel is the so called fading channel. In this channel
model each received value has an additional attenuation term a, and the channel reliability factor
turns into Lch = a 2

σ 2 , with a being the fading factor.
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H(X; Y ) = E

{
log2

1

p(x, y)

}
=

∑
x∈Ωx

∑
y∈Ωy

p(x, y)log2
1

p(x, y)
. (2.26)

The joint entropy is very important since we can describe the dependency of the
information between two variables. Its relation is closely linked to Bayes theory, see
Eq. C.9. However, since the entropy is defined in the logarithm domain, additions
instead of multiplications result within the chain rule:

H(X, Y ) = H(X |Y ) + H(Y ) = H(Y |X) + H(X) (2.27)

The mutual information I (X; Y ) gives us the information that two random vari-
ables X and Y share. If this shared information is maximized we have as much
knowing of one variable to give information (reduce uncertainty) above the other.
Figure 2.7 shows the dependencies between the mutual information and the entropies.
The illustration shows a possible transmission of variable X with entropy H(X) via
a channel. Information will get lost during transmission which is expressed as condi-
tional entropy (equivocation) H(X |Y ). In turn irrelevant information will be added
H(Y |X). The final received and observable entropy is H(Y ). The mutual information
of two random variables can be calculated by:

I (X; Y ) = H(Y ) − H(Y |X) = H(X) − H(X |Y ). (2.28)

We can define the mutual information as well directly via the joint and marginal
probabilities

I (X; Y ) =
∑

x∈Ωx

∑
y∈Ωy

p(x, y)log2
p(x, y)

p(x) · p(y)
. (2.29)

Note that the mutual information of the input X and the output Y of a system
can be estimated by Monte Carlo simulations. By tracking the density functions by
histogram measurements we can evaluate Eq. 2.29. This is a pragmatic approach
especially when the density functions are not entirely known. As mentioned before,
the channel capacity gives an upper bound for a reliable (error free) transmission

Fig. 2.7 Illustration of the
mutual information and its
dependencies
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with respect to a given signal-to-noise ratio. Assuming a random input variable X
and the observation Y , the capacity of the utilized channel is its maximum mutual
information

C = sup
p(x)

I (X; Y ). (2.30)

Equation 2.30 requires the knowledge of the joint distribution of X and Y and
the distribution and the channel. Three assumptions have to be met to achieve the
maximum capacity which is denoted as Shannon limit:

• the input variable X requires to be Gaussian distributed,
• the noise has to be additive with Gaussian distribution,
• the length of the input sequence has to be infinite.

In the case of an AWGN channel with a constant noise power of N0 the channel
capacity can be evaluated to [2]:

C = log2

(
1 + ES

N0

)
= log2

(
1 + REb

N0

)
. (2.31)

When using a transmission rate R < C an error probability as low as desired can
be achieved. With Eq. 2.31 we can evaluate the bound for the required bit energy to
noise power by assuming the code rate to be equal to the capacity

Eb

N0
= 2R − 1

R
. (2.32)

The Shannon limit gives a bound for the minimum bit energy required for reli-
able transmission assuming an infinite bandwidth, i.e. the code rate approaches zero
(R → 0). The absolute minimum bit energy to noise power required for reliable
transmission is Eb/N0 = −1.59 dB.

The bandwidth B is limited for many communications systems and quite expen-
sive from an economic point of view. The total noise power is given by N = B · N0,
the total signal energy S = Rb Eb is defined via the data rate Rb. Rb is the number
of bits we can transmit within a certain amount of time. According to the Nyquist
criterion this will be 2BT symbols within a time unit of T . The channel capacity for
a channel with limited bandwidth B can be expressed as

CB = B · log2

(
1 + S

N

)
[bits/s]. (2.33)

We can see that it is possible to trade off bandwidth for signal-to-noise ratio. The
introduced capacity before, without bandwidth, defines the spectral efficiency. This
spectral efficiency gives us the number of bits per second per Hertz [bits/s/H z]
which is an important metric since it defines the amount of information that can be
transmitted per Hertz of bandwidth.
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Fig. 2.8 Spectral and power efficiency for Shannon limit, theoretical limit applying BPSK modu-
lation, and turbo codes with different block sizes

Figure 2.8 shows the spectral efficiency versus the signal-to-noise ratio Eb/N0.
Plotted is the optimum theoretical limit which can only be reached for Gaussian
distributed values given as input to a channel. By constraining the channel input
to be binary (e.g. Binary Phase Shift Keying (BPSK) [3] the resulting capacity is
lower than the optimum capacity. The random input variable S has a sample space of
s ∈ {−1,+1} while the output is modeled as a continuous random variable y ∈ R.
Then the mutual information evaluates to:

I (S; Y ) = 1

2

∑
si ∈{+1,−1}

∫ +∞

−∞
p(y|si ) · log2

(
2p(y|si )

p(y|si = −1) + p(y|si = +1)

)
dy

(2.34)

The resulting theoretical limit for BPSK input is shown as well in Fig. 2.8.
The channel capacity is the tight upper bound for a reliable transmission, however,

it tells us not how to construct good codes which can approach this limit. Further-
more, the limit is only valid for infinite block sizes. Therefore, Fig. 2.8 shows coding
schemes with different block lengths and coding rates. The utilized coding schemes
here are turbo codes utilized in the LTE standard.

All codes are plotted at a reference bit error rate of B E R = 10−5. The results are
collected from different simulations over a simple AWGN channel and BPSK mod-
ulation, with K the number of information bits (K = 124, K = 1024, K = 6144).
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The different code rates are obtained by a so called puncturing scheme defined in the
communication standard. The simulated LTE turbo codes are introduce in Chap. 6.
One important aspects can be seen in this figure. The larger the block length the
smaller the gap to the theoretical limit. For block sizes of K > 100k bits the gap to
the theoretical limit is less than 0.2 dB.

2.4 Multiple Antenna Systems

Multiple antenna system is a general expression for a transceiver system which relies
on multiple antennas at the receiver and/or at the transmitter side. The major goal of
using a multiple antenna system is to improve the system performance. This could
either mean the transmission of more information for a given amount of energy, or to
achieve a better quality of service for a fixed amount of energy [4]. By using multiple
antennas different type of gains can be obtained.

• Array gain: The array gain can increase the signal-to-noise ratio by a coherent
combination of the received signal. Achieving the coherent detection we need the
knowledge of the channel to align the phases of signals. The average SNR grows
proportionally to the number of received signals, i.e., multiple receive antennas
collect more signal energy compared to a single receive antenna.

• Diversity gain: Diversity gain is obtained when transmitting information multi-
ple times via different transmission channels. Different channels may underly a
different fading, which means, the attenuation of the channel path will change.
The assumption is that different paths do not fade concurrently. The receiver will
gather the diversified information and has then the possibility to mitigate the fad-
ing effects. The higher the number of paths, the higher the probability to miti-
gate occurring fading effects. There exist different sources of diversity: diversity
in time (also called temporal diversity), diversity in frequency, and diversity in
space. Temporal diversity can be introduced in an artificial way by the transmitter,
by transmitting the same information at different points in time. Frequency diver-
sity can be utilized when transmitting at different frequencies. Spatial diversity
uses the distance between receive or transmit antennas. The goal of diversity is
always to improve the reliability of communication. The maximum diversity gain
we can obtain is of d = MT MR th order, i.e. each individual path can be exploited.
MT defines the number of transmit antennas, MR defines the number of receive
antennas, respectively. The diversity d is defined as the slope of the average error
probability at high signal-to-noise ratio, i.e., the average error probability can be
made to decay like 1/SN Rd [5].

• Multiplexing gain: Maximum gain in spatial multiplexing is obtained when at each
time step and each antenna a new symbol is transmitted. The MIMO detector on the
receiver side has the task to separate the symbols which are interfered and corrupted
by noise. MIMO channels offer a linear increase r = min(MT , MR) in capacity
[5]. It was shown in the high SNR regime that the rate of the system (capacity)

http://dx.doi.org/10.1007/978-1-4614-8030-3_6
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Fig. 2.9 Three different
multiple antenna systems

(a)

(b)

(c)

can grow with r log(SN R). The factor r is denoted as spatial multiplexing gain
and defines the number of degrees of freedom of a system (bit/s/Hz). There exists
a trade off between gain in diversity and gain in spatial multiplexing [5].

Three major scenarios exist to set up a multiple antenna system which are shown
in Fig. 2.9. All three possibilities are used in the LTE communication standard, a
good overview can be found in [6]. Here, only the obtained diversity or multiplexing
gain is highlighted with respect to the different antenna constellations.

Single-Input Multiple-Output Transmission

The most straight forward system using multiple antennas is the single-input
multiple-output (SIMO) system which is shown in Fig. 2.9a. The receiver collects
two versions of the sent symbol s1 which is denoted as receive diversity. The channel
coefficients h1 and h2 define the different attenuations of both paths. The high-
est degree of diversity is obtained when the channel coefficients are uncorrelated.
Assuming MR receive antennas we can obtain diversity of order MR . The SIMO
system reflects a typical point-to-point transmission from a mobile device to a base
station (uplink).
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Multiple-Input Single-Output Transmission

Multiple antennas can be applied as well at the transmitter which the goal to obtain
transmit diversity, see Fig. 2.9b. Again, to maximize the diversity the channel coef-
ficients have to be uncorrelated. This can be achieved by an appropriate distance
between transmit antennas. Diversity can be in addition introduced by applying
a function to the sent information, denoted here as f (s1). The function indicates
the introduction of a time or frequency offset. One prominent example is the so
called space-time coding [7] which is as well introduced in the LTE communica-
tion standard. The point-to-point multiple-input single-output (MISO) system can
be efficiently exploited in the downlink of wireless transmission systems.

Multiple-Input Multiple-Output Transmission

MIMO systems can achieve either a diversity gain and/or a multiplexing gain. Espe-
cially the multiplexing gain is of large interest. For achieving the highest multiplexing
gain the symbol stream is demultiplexed to multiple transmit antennas. At each trans-
mit antenna and in each time slot we transmit independent symbols. The receiver side
collects the superposed and noise disturbed samples from multiple receive antennas.
This spatial multiplexing yields in a linear increase of system capacity, i.e. the spec-
tral efficiency is increased by a factor of min(MT , MR) for a given transmit power.
LTE defines a spatial multiplexing scheme using 4 transmit and 4 receive antennas
(4 × 4) while applying a 64-QAM modulation. The number of pits per second per
Hertz would be 24 [bits/s/Hz] without channel coding. However, spatial multiplexing
should be combined with a channel coding scheme which is often done according to
a BICM system as shown in Fig. 2.1.

Ergodic Channel and Quasi-Static Channel

Figure 2.9c shows a two-by-two antenna system. The transmission of a data and the
received vector can be modeled in general as:

yt = H t · st + nt , (2.35)

with H t the channel matrix of dimension MR × MT and nt the noise vector of
dimension MR . The entries in H t can be modeled as independent, complex, zero-
mean, unit variance, Gaussian random variables [8]. The presented channel model is
again a time discrete model. In this model fading coefficients are represented by the
matrix H t which is in contrast to the already introduced AWGN channel in which
no fading coefficients are present. The average transmit power ES of each antenna is
normalized to one, i.e. E{st sH

t } = I 2. We assume an additive Gaussian noise at each

2 I is the identity matrix and ()H denotes the Hermitian transpose.
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receive antenna, with E{nt nH
t } = N0 I . The signal-to-noise power at each receive

antenna can be expressed as SN R = MT ES
N0

. We have to distinguish two major cases
for simulating the MIMO channel:

• Quasi-static channel: H t remains constant for a longer time period and is assumed
to be static for one entire codeword of the channel code.

• Ergodic channel: H t changes in each time slot and successive time slots are sta-
tistically independent.

Assuming a quasi-static channel we cannot guarantee an error free transmission
since we cannot average across multiple channel realizations. The fading coefficients
of H t could by chance prohibit a possible correction of the sent signal. Another
definition of the channel capacity has to be used which is called outage capacity [9].
The outage capacity is associated with an outage probability Pout which defines the
probability that the current channel capacity is smaller than the transmission rate R.

Pout = P(C(ρ) < R) (2.36)

C(ρ) defines the capacity of a certain channel realization with the signal-to-noise ρ

of the current fading coefficients. The outage probability can be tracked via Monte-
Carlo simulations. The capacity C of a given channel model differs for a quasi-static
or ergodic channel.

For ergodic channels the capacity is higher as shown in [9]. The capacity C for an
ergodic channel can be calculated as expectation via the single channel realizations:

C = E

{
log2det

(
I + SNR

MT
· Ht H H

t

)}
[bits/s/H z]. (2.37)

SN R is the physically measured signal-to-noise ratio at each receive antenna.
Assuming an ergodic channel the channel capacity increases linearly with min(MT ,

MR). Transmission rates near MIMO channel capacity can be achieved by a bit-
interleaved coded MIMO system. The resulting BICM-MIMO systems and the chal-
lenges for designing an appropriate MIMO detector are shown in Chap. 8. A com-
prehensive overview of MIMO communications can be found in [8].
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