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Preface

Mobile communication devices like smart phones or tablet PCs enable us to
consume information at every location and at every time. The rapid development
of new applications and new services and the demand to access data in real time
create an increasing throughput demand. The data have to be transmitted reliably
to ensure the desired quality of service. Furthermore, an improved utilization of
the bandwidth is desired to reduce the cost of transmission. All these demands lead
to an increased complexity of the algorithms employed in wireless transceivers. In
addition, the hardware realization of mobile transceivers has to feature a small area
and power profile to reduce fabrication costs and to increase the user convenience.
The rapid technology improvements of the chip industry allow the integration of
more and more functionality on every chip.

Dealing with the increase of algorithmic complexity and required data
throughput poses a big problem for the algorithm designer and the chip designer.
An algorithm designer needs to understand the impact of his design decisions on
the chip complexity, while a chip designer needs to understand the employed
algorithms to enable an efficient implementation. Thus, a comprehensive under-
standing of algorithmic and architectural constraints becomes mandatory and has
to be considered within educational programs, as well.

This manuscript addresses students in electrical engineering, computer engi-
neering, and computer science with an interest in the field of communications
engineering, architectures, and microelectronic design. An according lecture is
given at the University of Kaiserslautern and the Karlsruhe Institute of Technol-
ogy, both Germany. The manuscript puts a special focus on implementation
aspects and implementation constraints of individual components that are needed
in transceivers for current standards like UMTS, LTE, WiMAX, and DVB-S2. The
application domain is the so-called outer receiver, which comprises the channel
coding, interleaving stages, modulator, and multiple antenna transmission. Within
a receiver device, the task of the outer receiver is to transmit information at the
highest practical rate, as reliably as required by the application, i.e., voice or data
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transmission. Throughout the manuscript, the focus lies on advanced algorithms
that are actually in use in modern communications systems. Their basic principles
are always derived with a focus on the resulting communications and imple-
mentation performance.

Kaiserslautern, December 2012 Frank Kienle
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Chapter 1
Introduction

Practically all modern communication systems, like digital video broadcasting
(DVB), wireless local area networks (WLAN), and all mobile cellular standards cur-
rently in use, transmit information in digital form. The shift from analog transmission
to digital transmission in practical applications and products was fueled by the rapid
development of integration densities of digital circuits. Today’s so called very-large-
scale integration(VLSI) processes allow millions (or even billions) of transistors to
be integrated in one single chip. The development of new communication systems
and the rapid progress of chip technology lead to ever more complex systems. With
every system generation, larger integration densities allow to integrate a widened set
of functionalities into these systems, which in turn drives the development of larger
integration densities. Transceivers of future cellular standards will have to support
virtually all existing wireless standards, shall provide a throughput of up to 1 Gbit/s,
and all that within the limited power budget of a mobile phone.

Both domains, chip design and communication systems, show a rapid growth in
complexity. Every designer of such a system-on-a-chip (SoC) is required to have
a comprehensive, interdisciplinary understanding of both domains, which are typi-
cally thought as separate major subjects in university courses. To achieve efficient
designs—efficient in terms of constraints posed by the application and in terms of
chip design, e.g. area and power consumption—it is of increasing importance that
engineers learn to bridge these two distinct engineering domains.

Many good text books exist in the area of hardware design, e.g. [1–4], as well as
in the field of digital communication systems, e.g. [5–9]. The list of good references
is far from being complete, for both areas. However, it is difficult to find a text book
which covers both domains, the algorithm design—even when it does not specialize
in communication systems—and the hardware design. This manuscript tries to fill
this void and bridge the two domains, using the so called outer receiver of a digital
communication system as an exemplary application.

The next sections give an overview of the basic trends in VLSI technology as
well as in wireless communications, followed by the introduction of the application
example which is used throughout the manuscript.

F. Kienle, Architectures for Baseband Signal Processing, 1
DOI: 10.1007/978-1-4614-8030-3_1, © Springer Science+Business Media New York 2014



2 1 Introduction

The terms chip or integrated circuit (IC) are general expressions, which just refer
to an electronic circuit based on semiconductor materials. One very important semi-
conductor material is silicon, which is why the IC manufacturers are often called as
well the silicon industry. One important property of a semiconductor material is that
it is possible to change its conductivity by inserting positively or negatively charged
atoms into the material, a process which is called doping.

Every structural element within an integrating circuit is thus composed of a differ-
ent combination of doped semiconductor materials. Additional materials are utilized
as well during chip fabrication, as for example highly conductive materials and
isolation materials. Very-large-scale integration (VLSI) is the current integration
technique which enables the instantiation of millions of transistors on one chip. The
basic idea here is the repeated usage of regular structures to ensure a homogeneous
fabrication process.

One of the most important logic families is called complementary metal oxide
semiconductor (CMOS) logic. A CMOS structure is typically composed of two ‘com-
plementary’ metal-oxide-semiconductor field-effect transistors (MOSFET). Fabrica-
tion processes for highly integrated CMOS circuits—so called CMOS processes—
are thus a good indicator of technological progress.

Figure 1.1 shows the development trends of CMOS processes over the years. The
y-axis shows the maximum number of transistors that can be integrated in one chip
and the minimum gate length in µ m for a MOSFET, which can be seen as the
minimum geometric object size in an integrated circuit. The future trend for process

Fig. 1.1 Old and current trends in semiconductor integration densities, for future trends see [10]



1 Introduction 3

shrinking is given by the International Technology Road Map for Semiconductors
(ITRS) [10], which is a partnership network of semiconductor manufacturers. The
ITRS road map comprises the common assumption of the manufactures about the
future trends and challenges for the chip technology.

The terms CMOS and MOSFET are not explained in detail here. The important
message of Fig. 1.1 is that the current technology progress still follows Moore’s law
of integrated circuits, which states that the number of transistors that can be placed
on a given area doubles approximately every 2 years [11].

Special care has to be taken when evaluating VLSI efficiency characteristics like
area and power consumption. For every given technology node, e.g. 40 nm, there are
different fabrication processes. A process developer like the Taiwan Semiconductor
Manufacturing Company (TSMC) can provide a so called low power process or a high
performance process. Note, that more process types are possible. The differences of
some important implementation figures of an ARM [12] processor for two different
processes are shown exemplary in Table. 1.1. We highlight here three important
aspects about power, area, and performance.

• Power consumption: For the power consumption of a chip we have to distinguish
between dynamic power consumption and static power consumption. Dynamic
power consumption refers to the case when the processor is working. The static
power consumption is of importance when the processor is idle. A low power
process is often a low leakage process which optimizes the static power consump-
tion. A mobile phone is one typical example of a device which is in idle mode for
most of the time. Thus, a low power process is utilized. However, under the same
usage conditions (voltage, work load, temperature), the dynamic power consump-
tion of a circuit fabricated in a low power process will be higher than if it was
fabricated in a high performance process.

• Area: The area for different process types does not change for these two process
variants. Furthermore, it can be seen that 50 % the overall area of this ARM device
is in determined by memories. For future devices it is assumed that the area for
memories will more and more determine the entire area. Thus, for area comparison
it is always important to specify the storage capabilities as done in Table. 1.1.

Table 1.1 Difference between a low power process and a high performance process, both at a
40 nm technology node [13]

ARM Cortex-A5 Performance, Power, Area
TSMC 40LP TSMC 40G

Process type/Nominal voltage Low leakage, 1.1.V Performance, 1.0 V
Frequency (optimized) 530–600 MHz ≥1 GHz
Area excluding RAMs/cache 0.27 mm2 0.27 mm2

Area with 16 kbyte RAMs/16 kbyte cache 0.53 mm2 0.53 mm2

Dynamic power 0.12 mW/MHz ≤0.08 mW/MHz
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• Performance: The performance is often measured in operations or instructions per
second. This number depends of course on the achieved frequency which largely
differs between these two process variants.

Table. 1.1 describes the influence of the process type for one ARM processor
which will be embedded in a larger system. The ARM processor is a programmable
device and, thus, offers a large flexibility with respect to a given application.

A processor is only one implementation possibility, however, many different
implementation styles are possible. With the term ‘implementation styles’ we refer
to the choice of different hardware platforms and thus different possibilities with
respect to area efficiency, power efficiency, and flexibility. The implementation style
is one major decision which has to be done early during product development.

General purpose processors (GPP) provide the highest flexibility, however, with
the highest power consumption compared to other implementation styles. ASICs are
up to 5 orders of magnitude more power and area efficient than GPPs. An application-
specific integrated circuit (ASIC) provides the highest performance and lowest energy
consumption. ASICs are designed for one specific task and are optimized with respect
to the required performance. An overview figure is presented in Fig. 1.2, with the area
efficiency depicted on the x-axis and the energy efficiency on the y-axis, respectively.
Here, area efficiency is defined as operations per seconds (given in mega operations

Fig. 1.2 Comparison of peak performance, power efficiency, and flexibility of different implemen-
tation styles, derived from [14]
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per seconds or Mops) divided by area, while energy efficiency is defined as power
consumption divided by number of operations per second.

Many different implementation styles exist between the two extremes, with respect
to their power and area efficiency. For example digital signal processors (DSP) or
application specific instruction-set processors (ASIP). A DSP is a processor with an
instruction set optimized to perform operations for digital signal processing applica-
tions. A DSP is typically designed with a wide scope of applications in mind and the
same DSP could be for example used efficiently for video processing as well as for
processing tasks within a digital communication receiver. The goal of an ASIP design
is to provide just enough flexibility to cover the flexibility requirements of a given
application domain. It has thus an optimized instruction set to provide maximum
performance at a minimum area and energy budget.

All implementation styles presented so far have a special architecture in mind,
which is implemented utilizing a VLSI fabrication process. Once fabricated we can-
not change the design anymore. One hardware platform which allows a reconfig-
uration even after fabrication is a field-programmable gate array (FPGA). FPGAs
are integrated circuits which can be configured by a designer and, thus, offer huge
flexibility. It is possible to map practically every architecture—e.g., an application
specific design, the architecture of a general purpose processor, or an ASIP—onto
an FPGA. A certain architecture mapped onto FPGAs will always have an inferior
area and power efficiency compared to a direct VLSI realization. FPGAs are often
utilized for rapid prototyping or smaller product series.

With every new technology process every implementation style moves as well with
respect to their power efficiency and as well their peak performance. For example the
required processing in a mobile phone to perform a voice call was realized in the year
2000 by dedicated hardware (ASIC). With the rapid progress in technology a phone
call today is typically processed by an embedded GPU, e.g. ARM core, within a smart
phone. Thus, a hardware designer implementing an identical application may have
to deal with different implementation styles when moving to the next technology
node.

Trends in Communication Standards

For communication systems we typically have to distinguish between different trans-
port media over which communication takes place. There is a difference for transmis-
sions via optical, wireline or wireless communication channels. Many more different
transport media exist. The one thing uniting them is that for all of these communi-
cation media a trend to higher throughput demands can be observed. This trend for
higher data throughputs is driven by requests to access data at every place, every
time, and very importantly often in real time. In the following we will highlight the
trends in mobile communications.

Mobile phone communications are one major technological part of our daily lives.
The number of acronyms for telecommunication standards is immense, which can be
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seen just by looking at the advertisement from mobile communication providers. We
have to distinguish between the standardization bodies, the organizing parties, and
the resulting technology generations. All of these parts exists with different naming
and acronyms within Europe, north America, and Asian regions. In the following we
will mainly focus on the European region.

• Standardization bodies: ETSI is responsible for standardizing information and
communication technologies (ICT) in Europe. ETSI stands for European Telecom-
munications Standards Institute and is an independent, non-profit, standardization
organization in the telecommunications industry.

• Organizing bodies: The International Telecommunication Union (ITU) is an
agency of the United Nations responsible for the ICT domain and coordinates,
e.g. standardization activities and as well the harmonization of international
frequency-spectrum. The 3rd Generation Partnership Project (3GPP) is an associ-
ation of companies, ranging from telecommunication providers to chip manufac-
turers. The task of the 3GPP initiative is to define and evolve the generations of
mobile standards.

• Mobile standards generation: Every mobile standard generation stands for an evo-
lution in employed techniques with respect to an efficient frequency usage and
an increased throughput. The 2nd generation, for example, was the first digital
cellular technology and already defined in 1989. The 3rd generation was released
in 1999, the 4th generation in 2008. Each generation is still further evolved with
the objective of being compatible to older generations but achieving increased
data throughput. The list of acronyms is large and not all will be explained in this
text, e.g. 2nd generation evolution (GSM →GPRS→EDGE→EDGE advanced),
3rd generation evolution (UMTS → HSPA → HSPA advanced) 4th generation
evolution (LTE →LTE advanced).

One of the most successful, nowadays global, telecommunication standards is
GSM (Global System for Mobile Communications), The world wide coverage of
GSM is already larger than 70 %, i.e. more than 70 % of all people world wide
have access to this mobile network, see www.gsma.com. GSM belongs to the 2nd
generation of mobile communications systems and has a defined throughput of only
2kbit/s. New features and applications led to the demand of higher throughput, thus
the third generation of mobile communication standards was developed. The 3rd
Generation Partnership Project (3GPP) had the task to evolve the GSM standard to
a 3rd generation telecommunication standard. It is worth noting that the 3GPP was
just one initiative towards the 3rd generation organized in Europe, which fulfilled
requirements defined by the ITU. In Europe the first 3rd generation was denoted
UMTS (universal mobile telecommunication standard) and was released in the year
1999. The documents describing these standard are often denoted as Release99.
Starting form this basic definition new evolved standards were developed, as for
example the High speed packet access (HSPA) with higher throughput requirements,
e.g. released in 2005 and 2008. In 2008 a revised mobile communications standard
with new features was released, as well as a further branch, which is called long term
evolution (LTE) or often as well 3.5th or sometimes directly the 4th generation.

www.gsma.com
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Table 1.2 Mobile phone trends in 5-year intervals, table adapted from [16]

Year 1995 2000 2005 2010 2015 2020

Cellular standard 2G 3G 3.5G pre-4G 4G 5G
GSM UMTS HSPA LTE LTE-A

Downlink bitrate (Mbit/s) 0.01 0.1 1 10 100 1000
Workload (GOPS) 0.1 1 10 100 1000 10000
CMOS (ITRS, nm) 350 180 90 50 22 7.4
Battery energy (Wh) 1 2 3 4 5 6
Phone CPU clock (MHz) 20 100 200 500 1000 2000
Phone CPU power (W) 0.05 0.05 0.1 0.2 0.3 0.5
PC CPU power (W) 5 20 100 200 200 300

For mobile communication systems we have to distinguish between the so called
uplink and downlink communications. For mobile communication typically base
station handles all mobile communications within a specific area. The base station
serves as a central hub in which all mobile devices have to be registered. An uplink
defines the communication link from a mobile terminal to a base station while the
downlink defines the communication from a base station to a mobile terminal.

Table. 1.2 shows the currently assumed mobile communication trends in 5-year
intervals. The standard documents for the different releases and thus years of approval
can be found at www.3gpp.org. It can be seen that the throughput demands of a new
generation is rapidly increasing, with an approximative increase of 10 times within
5 years teme interval. Note that an identical trend can be seen as well for wireline
communications, as shown in [15].

The presented table shows the trend for the data rates, it tells us nothing about the
new techniques and algorithms which have to be realized to enable this throughput
increase.

Design Challenges

Table 1.2 is adapted form [16] and comprises three important aspects: the trend in
CMOS technology, the trend for downlink throughputs, and the trend of the workload
caused by the employed algorithms for transmission and reception.

The trend in downlink throughput and CMOS integration was already described.
Here, additional information is given, like the clock frequency and the power con-
sumption of the CPUs in a personal computer (PC) and a mobile phone. This is
related to the already discussed implementation styles, where one is optimized for
high performance, the other for low power applications, respectively.

Especially for mobile phones it is assumed that the total battery energy given
in [Wh] will increase only moderately over the years, while the workload demand
is increasing rapidly. One reason is the already mentioned increased throughput

www.3gpp.org
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demand, which is also linked to the number of pixels that can be displayed on modern
high resolution screen.

The major bottleneck will be the productivity of a designer. The designer has
to map a complex algorithm down to an architectural design. A typical top down
design flow, may result in an inefficient VLSI performance as measured by chip
area and power consumption. Top down means the separation of algorithm designer
and hardware designer in terms of programming or design language. The algorithm
designer programs the basic functionality in C, C++, or Matlab. Taking the resulting
program, the hardware designer utilizes a design language like VHDL or Verilog,
for the architecture design. This clear separation of algorithm and hardware design
may lead to inefficient designs and results as well in-productivity in terms of design
time.

Two promising approaches to enhance the productivity are summarized: The first
possibility is the introduction of so called high-level synthesis, a research domain
which has received a lot of attention in recent years. A tool featuring high-level syn-
thesis will improve the productivity, since the design will be described in a high-level
language, e.g. C++ or Java. The mapping to an architecture will be done automati-
cally. This will be a big benefit for the designer, since designing an architecture in
VHDL is time consuming as well as error prone, due to the fact that the reference
system is programmed in another language than the architectural description. It is
like writing assembler compared to writing C. However, the inherent parallelism of a
hardware design poses big challenges for the high-level design flow and sometimes
as well for the designer. A second possibility to close the productivity gap can be
already observed during the standardization process of LTE or DVB-S2 standard. In
these standards, algorithmic parts were introduced with an efficient implementation
strategy in mind. The mapping from algorithmic level down to hardware is then
predefined and will, thus, result in efficient designs.

Both methods to improve the productivity require knowledge of the application
as well as a basic understanding of hardware design. For the sake of simplicity we
focus in this manuscript on individual components within a larger receiver real-
ization. Already for a simple component design a comprehensive understanding of
algorithm and architecture becomes mandatory to achieve efficiency in communica-
tions performance and VLSI performance. The next section gives an overview of the
application which serves as an example throughout the rest of this manuscript.

1.1 Application: Outer Receiver

Designing a transceiver or receiver of a digital transmission system requires an
abstract model of the transmission chain. The model of the digital transmission chain
approximates the real world behavior of sending information from one point to some
other physical location, as shown in Fig. 1.3. The transmission of information form
one source to one sink is typically denoted as point-to-point communication. The
research of the basics of discrete information processing has started mainly with the
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Fig. 1.3 Transmission system, only the outer transceiver part is discussed in the following chapters

Nyquist criterion, already formulated in 1928. Nyquist stated the basic principle that
band-limited signals can be fully characterized in a discrete time bases. An analog
signal has to be sampled at a rate of fS Hz, which must be greater than twice the high-
est frequency component in the analog signal. The resulting time discrete stream of
continuous (real-valued) samples, contains all information of the band-limited ana-
log signal. These real values are then converted to the digital domain by a quantizer
(A/D unit), see Fig. 1.3. The resulting time and value discrete samples are passed
to the next stage. From now on the discrete stream can be represented, stored and
processed in a binary form, where each discrete sample may be represented by an
n-bit binary word. The so called source compression removes redundant informa-
tion from this binary sample stream. The output of the source compression can be
modeled as a sequence of statistically independent symbols, in which each symbol
has an equal likelihood of appearance. Thus, the entire part of analog source, A/D
conversion, and source compression can be modeled as a binary random source with
0 and 1 to be equally likely.

Transmitting this binary information via a communication channel can result in
bit errors (or bit flips) in the received bit sequence. The flipped bits are caused by the
noise of the channel, which is especially large for wireless channels. Thus, additional
stages are mandatory to ensure a reliable transmission of the information. Typically,
we can split the transmitter and receiver into two parts: the inner and outer transceiver
part as indicated by the box in Fig. 1.3. The task of the inner transceiver is to present
a good time discrete channel from its outer transmitter input to the outer receiver
output. The task of the outer transceiver is to transmit the information at the highest
practical data rate.

In the following we roughly sketch the parts of Fig. 1.3. The first stage of the
outer transmitter is the channel encoder. The binary input stream is passed to the
channel encoder, which adds additional information to the data stream, which it gen-
erates in a deterministic manner from the input bits. This additional information is
called redundancy. The channel decoder on the receiver side will exploit this redun-
dant information to detect and correct errors which occurred during transmission.
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The output sequence of the channel encoder is interleaved, i.e. the positions of the bits
within the sequence are permuted. The symbol modulator or higher-order modulation
maps bits to a real-valued symbol.

Thus, the output of the outer transceiver is a sequence of real-valued symbols,
in which each symbol comprises the information of one or more bits. The task of
this symbol modulation is to increase the so called spectral efficiency. The spectral
efficiency gives a measure for the number of bits that are transmitted per unit of
bandwidth. The inner receiver now has the task to allocate the symbol information
to a certain carrier frequency.

The symbol stream input to the inner transmitter is first passed to a scrambler
unit. This unit ensures that undesirable symbol sequences (e.g. long sequences of
zeros) will be eliminated. This output stream is regrouped, which is then passed to
the carrier modulator. Typically, to transmit information via a physical channel we
modify one characteristic, e.g. the amplitude, of a higher frequency signal, the so
called carrier. This carrier modulation is done in a systematic manner depending on
the data we would like to transmit. Here, a so called orthogonal frequency division
multiplexing (OFDM) modulator is indicated which is one possibility to modulate
the information on the carries. An OFDM technique is for example utilized in the
LTE downlink scenario, while in UMTS a so called code division multiple access
(CDMA) scheme is employed, instead. Many different setups exist for the inner
transmitter, some of which also have additional stages. The detailed composition of
the inner transmitter depends on the carrier modulation technique as well as the type
of communications channel.

The channel, the medium of transmission, will disturb the sent signals, e.g. by
superposition of waveforms from other transmitters, or by simple reflections of the
original signal. Thus we will receive a disturbed information, with disturbances
across multiple symbols. The inner receiver has the task to separate the superim-
posed received signals into individual symbols of information. The separation of the
individual symbols can only be accomplished if the channel conditions are good.
The obtained individual time discrete samples are passed to the outer receiver (after
re-framing and descrambling). Often, a major problem is the correct synchronization
in time and frequency to ensure the correct separation of the symbols. Furthermore,
we have to extract the corresponding signal-to-noise (SNR) which has to be passed
to the outer receiver, as well.

The outer receiver will obtain a sequence of symbols which is still corrupted by
discrete noise. The discrete noise reflects the imperfect separation process. Ensuring
a nearly correct input data stream to the source decoder, is the goal of the outer
receiver. The outer receiver has the task to provide the best guess about the sent
information with respect to its input information. The outer receiver with the indi-
vidual components of demodulation, deinterleaving, and channel decoding will be
the application in this manuscript.

The output of the outer receiver has to fulfill a certain type of quality. Depending
on the type of application the nearly correct input data stream for the source decoder
may mean for example 1 faulty bit out of 100 bits for voice decoders, or 1 faulty
bit out of 10000 bits for MPEG decoders. A very important factor for the entire
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Table 1.3 Selection of communication standards and their channel codes with maximum number
of coded information bits and the maximum defined throughput

Standard Channel codes Num. information bits Throughput

GSM Convolutional codes Up to 876 Up to 12 kbit/s
EDGE Convolutional codes Up to 870 Up to 384 kbit/s
UMTS Convolutional codes Up to 504 Up to 32 kbit/s

Turbo codes Up to 5114 Up to 2 Mbit/s
HSPA Turbo codes Up to 5114 Up to 14.4 Mbit/s
LTE Turbo codes Up to 6144 Up to 300 Mbit/s
LTE-A Turbo codes Up to 6144 Up to 1000 Mbit/s
CDMA2000 Convolutional codes Up to 744 Up to 28 kbit/s

Turbo codes Up to 20730 Up to 2 Mbit/s
IEEE802.11n Convolutional codes Up to 4095 Up to 450 Mbit/s

LDPC codes Up to 1620 Up to 450 Mbit/s
IEEE802.16e Convolutional codes Up to 864 Up to 75 Mbit/s
(WiMax) Turbo codes Up to 4800 Up to 75 Mbit/s

LDPC codes Up to 1920 Up to 75 Mbit/s

transmission is the resulting ratio of transmit power to noise power, often called
signal-to-noise ratio (SNR).

For every component in this transmission chain many design options exist. For
example for the channel encoder there exist a many different channel codes, through-
put demands, and flexibility requirements. Table. 1.3 shows a selection of wireless
standards and the utilized channel codes. While convolutional codes (CC) are uti-
lized in practically all communications standards, turbo codes (TC), and low-density
parity-check codes (LDPC) are employed in standards only since the mid of the
nighties. CC, TC and LDPC codes are discussed in Chaps. 3, 6, and 7 respectively.

1.2 Dependencies and Overview of Chapters

This manuscript addresses students in electrical engineering, computer engineering,
and computer science with an interest in the field of communications engineer-
ing, architectures, and microelectronic design. Figure 1.4 shows the overview of the
chapters and the dependencies. An according lecture is given at the University of
Kaiserslautern and the Karlsruhe Institute of Technology, both Germany. The num-
bering indicates the current sequence of lectures, each with a durtion of 2 h. The
manuscript puts a special focus on implementation aspects and implementation con-
straints of individual components that are needed for outer transceiver design of
current standards like UMTS, LTE, WiMAX and DVB-S2. White boxes in Fig. 1.4
indicates content related to communications engineering, gray boxes are related to the
design or architectures. The application domain is the so called outer receiver, which
comprises the channel coding, interleaving stages, modulator, and multiple antenna

http://dx.doi.org/10.1007/978-1-4614-8030-3_3
http://dx.doi.org/10.1007/978-1-4614-8030-3_6
http://dx.doi.org/10.1007/978-1-4614-8030-3_7
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Fig. 1.4 Structure of the treatise and dependencies of the chapters. The numbers indicate the
sequence of the lectures. White boxes indicate content related to communications engineering, gray
boxes are related to the design or architectures

transmission. Throughout the manuscript the focus lies on advanced algorithms that
are currently in use in modern communications systems. Their basic principles are
always derived with considering the resulting communications and implementation
performance.

The individual chapters and their dependencies are described in the following:

• Chapter 2 introduces the basic transmission scheme which is utilized throughout
this manuscript. The so called bit-interleaved coded modulation (BICM) scheme
is explained together with its most important channel model, the additive white
Gaussian noise (AWGN) channel. This type of channel is explained and its capacity
discussed. The channel capacity is by definition the maximum amount of infor-
mation for a reliable transmission over this channel. By using multiple antenna
systems we can establish a channel with high capacity. Its basic concept is sketched
shortly.

• Chapter 3 introduces the linear block codes, which are the basis of nearly
all channel coding schemes in use in current communication standards. The

http://dx.doi.org/10.1007/978-1-4614-8030-3_2
http://dx.doi.org/10.1007/978-1-4614-8030-3_3
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general decoding problem is addressed, which is to solve the maximum likeli-
hood (ML) criterion. The ML solution is the most likely sequence which was
probably sent. Sometimes an additional probability term for each output result is
required. Then the symbol-by-symbol maximum a posteriori (MAP) criterion has
to be solved. Examples are presented how to calculate the ML and MAP solu-
tions. The important class of convolutional codes is introduced and the decoding
algorithm is derived. All introduced algorithms are derived using examples and
already in a form which is suitable for a hardware realization.

• The basic design flow for the design of individual components is described in
Chap. 4. Memories are one major building block of hardware systems and are
investigated in this chapter, with a special focus on static random access memories
(SRAM). The high level design of SRAMs is reviewed with area and power trends
for different SRAM instances. Interleaving is one typical stage within a communi-
cation system. However, the realization of a parallel interleavers poses challenges
for the architecture and especially for the utilization of the SRAM memories. It is
worth noting that such a simple functionality poses big problems. Here, in Sect. 4.3
for the first time in this manuscript a joint design of algorithm and hardware is
introduced. The same methodology was utilized for designing LTE turbo codes.

• The data path defines the alignment of processing units. The steps to design a
data path of individual components are introduced in Chap. 5. The data path of a
so called forward-backward algorithm is derived for two different levels of paral-
lelism: one which results in a serial architecture and one which results in a parallel
architecture. Processing units have to be designed to realize the correct functional-
ity. Complicated functions can either be realized by look-up tables or by deriving
an approximation which can be realized in hardware efficiently. Examples of both
techniques are presented.

• Chapter 6 introduces turbo codes and the corresponding encoders with respect
to communication standards. The iterative decoding process of turbo codes is
described and the communications performance is shown, taking into account
the quantization effects of fixed-point calculations. The importance of an SNR
insensitive algorithm is demonstrated which reflects a more realistic instantiation
within a full system. The basic component of a turbo decoder is a maximum a
posteriori (MAP) decoder. Its most common realization is shown which is linked
to the previously derived data path of a forward-backward algorithm. The chapter
also summarizes the essential questions, which are most commonly used to drive
industrial design process for turbo decoders and recap the huge possibilities within
the architectural design space exploration.

• The basic communications performance of low-density parity-check codes and the
architectural constraints on theses codes are presented in Chap. 7. For the decoding
of a WiFi code communication performance results are given and compared to an
optimal ML decoding, which demonstrates the quality of the utilized iterative
decoding algorithm. The joint design of decoder architecture and channel code—
a key enabling method to efficient decoder designs for e.g. DVB-S2, WiFi, and
WiMax—is highlighted. The essential questions for the design of LDPC decoders

http://dx.doi.org/10.1007/978-1-4614-8030-3_4
http://dx.doi.org/10.1007/978-1-4614-8030-3_4
http://dx.doi.org/10.1007/978-1-4614-8030-3_5
http://dx.doi.org/10.1007/978-1-4614-8030-3_6
http://dx.doi.org/10.1007/978-1-4614-8030-3_7
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and the design space exploration are given as well. The chapter closes with a design
study for a high throughput LDPC decoder.

• LTE specified a new technique which transports information by employing multi-
ple antennas for transmission as well as reception. These so called multiple input
and multiple output (MIMO) systems are characterized by a high computational
complexity for the outer receiver, as well. Design challenges to realize the result-
ing MIMO-BICM systems are highlighted. An example of joint design of MIMO
detection and LDPC code design is presented which will reduce the implementa-
tion complexity and improve the communications performance. Even though the
example applies only one idea with respect to a certain MIMO detection algorithm,
it highlights the strengths of joint design of algorithm and architecture. This is a
common motif throughout the manuscript.

• Meaningful efficiency metrics are required to explore and evaluate the huge result-
ing design space. In Chap. 9 different metrics are introduced and discussed. It will
be shown that suitable energy and area efficiency metrics are based on decoded
information bit per energy and throughput per area unit. This chapter demonstrates
that the understanding of the trade-offs between implementation efficiency, com-
munications performance and flexibility is key for designing efficient baseband
receivers.

References

1. Hennessy, J.L., Patterson, D.A.: Computer Architecture a Quantitive Approach. Morgan Kauff-
mann Publishers, Inc., San Francisco (1996)

2. Rabaey, J.M., Chandrakasan, A., Nikolic, B.: Digital Integrated Circuits—A Design Perspec-
tive, 2nd edn. Prentice Hall, Upper Saddle River (2004)

3. Ashenden, P.J.: The Designer’s Guide To VHDL, 2nd edn. Morgan Kaufmann Publishers Inc.,
San Francisco (2002)

4. Rabaey, J.M.: Low Power Design Essentials, 1ed edn. Springer, New York (2009)
5. Moon, T.K.: Error Correction Coding: Mathematical Methods and Algorithms. Wiley-

Interscience, Hoboken (2005)
6. Meyr, H., Moeneclaey, M., Fechtel, S.A.: Digital Communication Receivers. Wiley, New York

(1998)
7. MacKay, D.: Information Theory, Inference, and Learning Algorithms. Cambridge University

Press, Cambridge (2003)
8. Lin, S. Jr, Costello, D.J.: Error Control Coding, 2nd edn. Prentice Hall PTR, Upper Saddle

River (2004)
9. Bossert, M.: Kanalcodierung, 2nd edn. B.G. Teubner, Stuttgart (1998)

10. International Technology Roadmap for Semiconductors 2011: ITRS home page. http://public.
itrs.net

11. Moore, G.E.: Cramming more components onto integrated circuits, Reprinted from Electronics,
volume 38, number 8, April 19, 1965, pp. 114 ff. IEEE Solid-State Circuits Newsl. 20(3), 33–35
(2006). doi:10.1109/N-SSC.2006.4785860

12. ARM Ltd. http://www.arm.com
13. ARM Ltd. Cortex-A5. http://www.arm.com/products/processors/cortex-a/cortex-a5.php.

Accessed Feb 2012

http://dx.doi.org/10.1007/978-1-4614-8030-3_9
http://public.itrs.net
http://public.itrs.net
http://dx.doi.org/10.1109/N-SSC.2006.4785860
http://www.arm.com
http://www.arm.com/products/processors/cortex-a/cortex-a5.php


References 15

14. Blume, H., Feldkaemper, H.T., Noll, T.G.: Model-based exploration of the design space for
heterogeneous systems on chip. In: Proceedings of the IEEE International Conference on
Application-Specific Systems, Architectures and Processors, vol. 1, pp. 29–40 (2002). doi:10.
1007/s11265-005-4936-4

15. Transition to 4G: 3GPP Broadband Evolution to IMT-Advanced. http://www.rysavy.com
16. van Berkel, C.H.: Multi-core for mobile phones. In: Proceedings of the Design, Automation.

Test in Europe Conference and Exhibition (DATE ’09), pp. 1260–1265 (2009)

http://dx.doi.org/10.1007/s11265-005-4936-4
http://dx.doi.org/10.1007/s11265-005-4936-4
http://www.rysavy.com


Chapter 2
Digital Transmission System

Throughout the manuscript, we use as application the outer receiver, which is a
part of the complete transmission chain as shown in Fig. 1.3. The model for the
entire transceiver chain can be very complex. Thus it is essential to make further
abstractions of this transmission chain model. As mentioned, the task of the inner
transceiver is to create a good time discrete channel from the inner transmitter input
to the inner receiver output. Assuming a perfect synchronization of the demodula-
tor in time and frequency we can abstract the outer transmitter chain by a simple
baseband transmission chain as shown in Fig. 2.1. The term baseband means that
there is no frequency component present in the model. The final simple baseband
model features a binary random source and a binary sink, which replaces the source
compression/decompression of Fig. 1.3. This outer transceiver chain composed of
channel encoder, interleaver, and modulator is called bit-interleaved coded modula-
tion (BICM) and is often utilized in communication systems.

In the following we describe the nomenclature of the variables shown in Fig. 2.1.
Most channel codes used in digital communications systems, such as the linear
block codes that we explain in Chap. 3, operate on vectors. The vector input to the
channel encoder is u with the vector u = [u0, u1, . . . , uK−1] of length K . u is
called information word, with uk ∈ {0, 1} being the information bits. The purpose
of the channel encoder is to introduce, in a controlled manner, redundancy to the
information word u. The redundancy can be used at the receiver side to overcome the
signal degradation encountered during the transmission through the discrete channel.
The output of the channel encoder is the codeword x = [x0, x1, . . . , xN−1] of length
N > K . The interleaver permutes the sequence of the bits in the codeword, creating
the interleaved codeword x′. The interleaving is explained in more detail in Sect. 4.3.

This sequence is mapped by the digital modulator onto a sequence of symbols
s. We can always map groups of Q bits on one modulation symbol. Thus, there
exist 2Q distinct symbols which we can transmit via the channel. One of the most
common modulation schemes is the Binary Phase Shift Keying (BPSK) with Q = 1,
where x ∈ {0, 1} is mapped to s ∈ {−1,+1}. The final mapped transmit sequence
s of length Ns is then disturbed by noise. For wireless transmission and the already
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Fig. 2.1 Digital transmission system model of the outer transceiver

mentioned perfect synchronization, we model the noise as additive white Gaussian
noise (AWGN) with zero mean and variance σ 2. This channel model is used for all
simulations in this manuscript. The received vector y results in

y = s + n (2.1)

with n the noise vector which is added to the sent transmit sequence.
The task of the demodulator is to transform the disturbed input sequence of sym-

bols y into a sequence of bit probabilities. This sequence λ′ contains likelihood
values, indicating the probability for each bit in the output of the channel encoder
having been sent as a 1 bit or a 0 bit. This is done by calculating the conditional prob-
ability for every bit position i ∈ 0, N − 1 under the condition that y was received.
λ′ is de-interleaved to λ which means we restore the original index positions of the
channel decoder output. Note, that the prime to indicate an interleaved version of a
sequence is omitted in the following. The channel decoder now has the task to detect
and correct occurring errors. Thus it calculates an estimation of the sent informa-
tion bits û. The AWGN channel and the demodulator calculations are explained in
Sects. 2.1 and 2.2 respectively.

The modeling of different stages within the outer receiver chain requires a basic
understanding of probability theory. For example, the model of a channel requires
a probabilistic description of the effects of noise caused by the environment. Many
more stages like the demodulator or the channel decoder deal with probabilities,
as they calculate estimations of which information was most likely sent given the
received disturbed input information. All decoding methods for LDPC codes, turbo
codes, and convolutional codes were originally derived in the probability domain.
The basic probability terms, which introduce terms like joint probability distribu-
tion, conditional probability, and marginalization are described in Appendix C. The
probability terms are as well required to describe the information content which can
be transmitted via an AWGN channel. This is denoted as channel capacity and is
introduced in Sect. 2.3. The amount of information we can transmit via a channel
can even be increased by using multiple antennas at the transmitter and/or receiver
side. This so called MIMO transmission is introduced in Sect. 2.4. Especially the
MIMO transmission with respect to a BICM transmission system will be further
addressed in Chap. 8.

http://dx.doi.org/10.1007/978-1-4614-8030-3_8
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2.1 Channel Model

Typically, real world channels have complicated characteristics with all kind of inter-
ferences, e.g multi-path propagations, frequency selectivity and so on. However, as
already mentioned, the task of the inner receiver is to provide a discrete channel
to the outer receiver. The remaining discrete channel is modeled as additive white
Gaussian noise (AWGN) channel, which is the most important channel model for
the examination of channel codes. The AWGN channel model has no memory and
adds to each random input variable a random noise variable N with density function:

p(x |μ, σ 2) = 1√
2πσ 2

exp

{
− 1

2σ 2 (x − μ)2
}

(2.2)

The noise variable is Gaussian distributed with variance σ 2 and a mean valueμ = 0,
see Sect. C: The output of the time discrete channel for each time step i is:

yi = si + ni . (2.3)

In the following a Binary Phase Shift Keying (BPSK) modulation is assumed with
s ∈ {−√

ES,
√

ES}. √ES represents the magnitude of the signal such that the signal
energy results in ES . The received samples yi are corrupted by noise. When we
plot the distribution of the received samples two independent Gaussian distributions
occur. The two distributions are centered at their respective mean value and are
shown in Fig. 2.2. The three sub-figures show the different distributions for different
values of the variance σ 2 and μ = ±1 respectively. Depending on the variance of
the additive Gaussian noise the overlapping of the two distributions, the gray shaded
area in Fig. 2.2, changes.

One way to estimate the received bits (x̂) is to apply a threshold detection at
the 0 level. If the received information yi ≥ 0 then x̂i = 1, and vice versa. The
resulting errors are indicated by the gray shaded areas in Fig. 2.2. Depending on the
variance of the Gaussian distribution the possible error region gets smaller or larger.
We define the ratio of incorrectly received bits to the total number of received bits
as the bit-error rate (BER).

We can calculate the probability of errors for the presented binary transmission
by using two shifted Gaussian distributions:

p(y|s = √
Es) = 1√

2πσ 2
exp

{
− 1

2σ 2 (y − √
Es)

2
}

(2.4)

and

p(y|s = −√
Es) = 1√

2πσ 2
exp

{
− 1

2σ 2 (y + √
Es)

2
}
. (2.5)
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Fig. 2.2 Distributions of received values y with BPSK modulation for different variances of the
noise

As mentioned, ES is the transmission energy of one symbol, while the noise energy
(N0) is part of the channel properties. The noise energy is directly related to the
variance of the Gaussian distribution, which is given by:

N0

2
= σ 2. (2.6)

The quantity N0
2 is the two-sided noise power spectral density. The probability of an

error for the binary detection can be calculated using the Q-function.

Q(t) = Q(N > t) = 1√
2π

∫ ∞

t
exp

{
−n2/2

}
dn. (2.7)

The integral evaluates the probability that the random variable N is larger than a
threshold t . A Gaussian distribution with zero mean and variance one is assumed in
this function. However, for our transmission system we have to include the corre-
sponding mean and variance values.
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The resulting error rate when transmitting symbols with s = −√
Es is

Q(Y > t) = 1√
2πσ 2

∫ ∞

t
exp

{
− 1

2σ 2 (y + √
Es)

2
}

dn = Q

(
t + √

Es

σ

)
.

(2.8)
The probability of a bit error assuming BPSK is the weighted probability of both
possible transmissions (s = ±√

Es), i.e.

Pb = Q

(
t + √

ES

σ

)
P

(
−√

ES

)
+ Q

(√
ES − t

σ

)
P

(√
ES

)
. (2.9)

Both BPSK symbols are transmitted equally likely, P
(√

ES
) = P

(−√
ES

)
, while

the threshold t for a detected bit error lies at t = 0 as shown in Fig. 2.2. ThusPb

evaluates to:

Pb = Q

(√
ES

σ

)
= Q

(√
2ES

N0

)
. (2.10)

For the evaluation of the obtained results, typically graphs as shown in Fig. 2.3
are used. Shown is the bit error rate on the y-axis in logarithmic scale, the x-axis
represents the signal-to-noise ratio in ES/N0 for an AWGN channel.

0 1 2 3 4 5 6 7 8 9 10 11
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

ES/N0 [dB]

B
it

 e
rr

o
r 

ra
te

 (
B

E
R

)

uncoded BPSK transmission

Fig. 2.3 Bit error rate for a BPSK transmission without channel coding (uncoded)
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Quality of Service

For many services, data are packed into frames (blocks, packets,…). For packet based
transmission like LTE up to 25 codewords are grouped into one transmission time
interval frame (TTI), which implies a higher-level grouping of bits with additional
header information. However, in the context of channel coding in the baseband model
of Fig. 2.1, the terms frame, block, and packet are used interchangeably and all denote
one transmitted codeword. Often it is irrelevant how many bits could be received
correctly within one frame. It only matters whether the frame contains errors or not,
as in many services every erroneous frame is considered lost, including all the data
therein. This leads to the ratio of the number of erroneous frames to the total number
of frames, the frame-error rate (FER). Both BER and FER are usually expressed in
the logarithmic domain:

BER|dB = log

(
number of erroneous bits

total number of bits

)
, (2.11)

and

FER|dB = log

(
number of erroneous frames

total number of frames

)
. (2.12)

BER and FER always have to be put in relation to the noise present in a channel.
The relative amount of noise is expressed by the signal-to-noise ratio (SNR).

SNR = ES

N0
. (2.13)

The energy needed for the transmission of one information bit (Eb) is generally
not equal to ES . Eb incorporates also information about the code rate (R) and the
number of modulation bits Q. The code rate is defined as the ratio of information
bits per coded bit. A code rate R = 1/3 for example denotes that three bits are
transmitted to communicate one information bit. The number of modulation bits
determines how many bits are grouped to one modulation symbol. For the already
mentioned BPSK modulation this is Q = 1. E.g. in the case of Q = 2 we use 22 = 4
different symbols for transmission, see Sect. 2.2. The SNR can consequently also be
expressed in relation to the information bit energy instead of the symbol energy. The
relation between the two forms of expression is:

ES

N0
= Q · R · Eb

N0
, (2.14)

or in the logarithmic domain:

ES

N0

∣∣∣∣
dB

= 10 · log(Q)+ 10 · log(R)+ Eb

N0

∣∣∣∣
dB
. (2.15)
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Fig. 2.4 Bit error rate for a BPSK transmission with and without channel coding

For comparing different channel coding schemes the required SNR level has to be
evaluated with respect to a certain frame error rate. In order to obtain a statistic for
the frame error rate at a given signal-to-noise ratio so called Monte Carlo simulations
can be performed. According to the modeling of Fig. 2.1 a large number of frames
are simulated, always at one fixed signal-to-noise ratio and one fixed channel coding
setup (type, block length, code rate). Then, the simulations are repeated for different
noise levels, by changing the variance of the Gaussian noise.

Figure 2.4 shows again the bit error rate on the y-axis in logarithmic scale, while
the x-axis represents the signal-to-noise ratio in Eb/N0 for an AWGN channel.
Shown is the BER for an uncoded system and a system using a channel code, a so
called turbo code. Turbo codes are introduced in Chap. 6 and are defined in the 3GPP
communication standards. A code rate of R = 0.5 is used which means two bits are
transmitted for each information bit. Even though transmitting more coded bits, the
energy required to transmit an information bit reliable is lower than in the uncoded
case. We can see a large gain in terms of signal-to-noise ratio to obtain a specific
BER. In other words: With respect to a higher noise level we can obtain the same
quality-of-service when using a channel coding scheme. This gain between coded
and uncoded transmission is denoted as coding gain.

For turbo codes we transmit the information in blocks and we should use the
resulting frame error rate to judge on the achieved communications performance.
Figure 2.5 shows FER curves over SNR for the same kind of turbo code, however,
applying different code rates for transmission.

All simulations have a fixed number of information bits of K = 6144, while the
codeword size ranges from N = 18432 to N = 6400 bits, which corresponds to

http://dx.doi.org/10.1007/978-1-4614-8030-3_6
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Fig. 2.5 FER vs. SNR for different code rates of a LTE turbo code

code rates of R = 1/3 to R = 0.96, respectively. For each Eb/N0 and each code
rate 100000 frames were simulated, in order to get statistically stable results.

All curves show a characteristic drop of the observed FER for an increased SNR.
All code rates have a FER = 1 at a very low Eb/N0 ratio. E.g. at Eb/N0 = 0dB
all simulations have at least one bit error per frame after the channel decoder. It can
be seen that the lower the code rate, the smaller the SNR level at which a certain
FER can be obtained. It is really important that we compare the SNR in terms of
Eb/N0, since only then a comparison of different code rates and the evaluation of
the final achieved coding gain is possible. When comparing the coding gain of two
coding schemes, here two different code rates, we always need a certain FER as
reference. For practical wireless transmission the reference frame error rate is often
FER = 10−2 or FER = 10−3.

2.2 Digital Modulator and Demodulator

The modulator maps groups of Q bit to one symbol, before transmitting these via
the channel. Task of this modulation is the increase of sent information per channel
usage.
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Fig. 2.6 Different modulation types: binary phase shift keying, 4-QAM, 8

Figure 2.6 shows different signal constellations which can be used for the mod-
ulation. 2Q different signal points exist, depending on the number of mapped bits.
For the phase-shift keying with 2, 4, or 8 signal points (BPSK, QPSK, 8-PSK) each
signal point has the same energy ES . The figure shows as well a quadrature ampli-
tude modulation (QAM) with 16 signal points. The energy for different signal points
may vary for QAM modulation types, while the average signal energy ĒS will be
normalized, with

ĒS = 1

2Q

2Q−1∑
k=0

(Re(sk)
2 + I m(sk)

2). (2.16)

The amplitudes (Re(s), I m(s)) of the complex constellation points are chosen
accordingly to ensure ĒS = 1. The bit to symbol mapping shown in Fig. 2.6 is a
so called Gray mapping. A Gray mapping or Gray coding ensures that two neigh-
boring symbols differ in only one bit. This type of mapping is most often used in
communication systems which use the introduced bit-interleaved coded modulation
transmission.
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The demodulator is the first stage after the channel model, see Fig. 2.1. The input to
the demodulator is the sequence of received values y, where each value yi comprises
the information of Q bits corrupted by noise.

The task of the demodulator is to calculate for each of these Q bits, an estimate
of the originally sent bit. These bit estimates can be given as so-called hard-values
or soft-values.

• Hard-values: These values are represented by just one bit per transmitted bit. For
the BPSK example in Fig. 2.2 this would be the sign bit of the received information,
which can by extracted in this case by a simple threshold decision.

• Soft-values: These values include a probability information for each bit. Thus we
pass a sign value and an associated confidence information, which is derived from
the received sample.

The advantage of the soft-values is an increased possible coding gain of the chan-
nel decoder. This gain is up to 3 dB when comparing channel decoding with hard-
input or soft-input information, respectively [1]. Nearly all modern channel decoders
require soft-values as input information.

In order to obtain soft-values we have to calculate the a posteriori probability
(APP) that the bit xi (or symbol s j ) was transmitted under the condition that y j was
received. Also possible to calculate a symbol probability P(s j |y j ) it is often required
to calculated directly the corresponding bit probability P(xi |y j ). This is due to the
BICM system at which the bit information is interleaved to ensure independent
probabilities at the channel decoders input. For a simple modulation scheme with
one bit mapped to one symbol we will calculate one a posteriori probability. In the
case of a higher mapping we have to extract Q APP values, one for each mapped bit.
Thus, the demodulator has to calculate for one received symbol y j :

P(xi |y j ), ..., P(xi+Q−1|y j ) (2.17)

We can not directly calculate this probability, but instead we have to use Baye’s
theorem, which then results in:

P(xi |y j ) = P(y j |xi ) · P(xi )/P(y j ) (2.18)

P(xi |y j ) is denoted as a posteriori probability, P(y j |xi ) as conditional probability,
and P(xi ) as a priori information. The calculation of P(y j |xi ) and P(y j ) depends
on the channel characteristics, while P(xi ) reflects an a priori information about
the source characteristics. For the demodulation process we do not calculate the
probability of P(xi |y j ) directly; rather we operate in the so called log-likelihood
domain, which calculates

λ(xi |y j ) = ln
P(y j |xi = 0) · P(xi = 0)/P(y j )

P(y j |xi = 1) · P(xi = 1)/P(y j )
(2.19)
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P(y j ) depends only on the channel characteristics and is a constant for a certain
received y j . The term cancels out while the calculation can be split into two parts.

λ(xi |y j ) = ln
P(y j |xi = 0)

P(y j |xi = 1)
+ ln

P(xi = 0)

P(xi = 1)
= λ(y j |xi )+ λ(xi ) (2.20)

For binary sources without a priori information, i.e., with an assumed equal distrib-
ution of 1s and 0s, the probabilities P(xi = 1) = P(xi = 0) are equivalent and thus
cancel out (i.e, λ(xi ) = ln P(xi =0)

P(xi =1) = 0).
Log-likelihood ratios (LLR) have several advantages over operating on the prob-

abilities directly. These advantages become evident for evaluating λ(y j |xi ) when
taking the characteristics of a channel into account, e.g. an AWGN channel. The
mathematical operations for BPSK demodulator is presented in the following. The
demodulation for a 4 amplitude modulation is presented in Appendix D, respectively.

BPSK Demodulator

In the case of BPSK modulation only one bit is mapped to every symbol s. Typically
the mapping is xi = 0 → si = +1 and xi = 1 → si = −1. For each received
value one LLR value is calculated, which is here denoted with λ(y|x). For the sake
of simplicity, we omit the indices i = j for the BPSK demodulation. In order to
calculate λ(y|x) under the assumption of an AWGN channel we have to evaluate the
Gaussian density function with a shift of its mean value according to the amplitude
of the transmitted symbol s, thus:

p(y|s) = 1√
2πσ 2

exp

{
− (y − s)2

2σ 2

}
. (2.21)

For the BPSK mapping given above the computation of the demodulator results
in:

λ(y|x) = ln
P(y|s = +1)

P(y|s = −1)

= ln
exp

{
− 1

2σ 2 (y − 1)2
}

exp
{
− 1

2σ 2 (y + 1)2
}

= 1

2σ 2 (y + 1)2 − 1

2σ 2 (y − 1)2

= 2

σ 2 y (2.22)
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Thus the channel LLR value λ = 2
σ 2 y of the received symbol is just the received

sample corrected by the channel reliability factor Lch = 2
σ 2 .1 We can summarize

the advantage of the log-likelihood logarithm of Eq. 2.20 for this demodulator exam-
ple: Only the exponents are of interest, while all normalizers of the density function
(1/

√
2πσ 2) cancel out. Furthermore, in the logarithmic domain multiplications and

divisions turn into additions, and subtractions, respectively, which is of great advan-
tage for a hardware realization.

2.3 Channel Capacity

As mentioned before, the goal of the channel code is to transmit the information
bits reliably through a discrete unrealiable channel at the highest practicable rate.
The channel capacity gives us the bound for a reliable (error free) transmission
with respect to a given signal-to-noise ratio. For evaluating this question we have to
introduce the definition of the information content I . The information content of a
discrete event x is defined as:

I (x) = log2
1

P(x)
, (2.23)

with P(x) the probability of the single event x , see Appendix C. The logarithm of
base two constraints this information measure to the dimension ‘bit’. This is the
smallest and most appropriate unit, especially when dealing with digital data. Often
we are interested in the average information content of a discrete random variable
X with probability density function p(x). This is denoted as entropy H and can be
calculated via the expectation with respect to I :

H(X) = E

{
log2

1

p(x)

}
=

∑
x∈Ωx

p(x)log2
1

p(x)
. (2.24)

p(x) defines the probability of the random variable X , withΩx defining the respective
discrete sample space. The entropy of the random variable X is maximized when each
element occurs equally likely. AssumingΩx has 2K elements, the entropy results in:

H(X) =
2K −1∑
i=0

1

2K
log2

1
1

2K

= 2K 2−K K = K [bit]. (2.25)

Assuming two discrete random variable X and Y we can define a joint entropy:

1 A channel model related to the AWGN channel is the so called fading channel. In this channel
model each received value has an additional attenuation term a, and the channel reliability factor
turns into Lch = a 2

σ 2 , with a being the fading factor.
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H(X; Y ) = E

{
log2

1

p(x, y)

}
=

∑
x∈Ωx

∑
y∈Ωy

p(x, y)log2
1

p(x, y)
. (2.26)

The joint entropy is very important since we can describe the dependency of the
information between two variables. Its relation is closely linked to Bayes theory, see
Eq. C.9. However, since the entropy is defined in the logarithm domain, additions
instead of multiplications result within the chain rule:

H(X,Y ) = H(X |Y )+ H(Y ) = H(Y |X)+ H(X) (2.27)

The mutual information I (X; Y ) gives us the information that two random vari-
ables X and Y share. If this shared information is maximized we have as much
knowing of one variable to give information (reduce uncertainty) above the other.
Figure 2.7 shows the dependencies between the mutual information and the entropies.
The illustration shows a possible transmission of variable X with entropy H(X) via
a channel. Information will get lost during transmission which is expressed as condi-
tional entropy (equivocation) H(X |Y ). In turn irrelevant information will be added
H(Y |X). The final received and observable entropy is H(Y ). The mutual information
of two random variables can be calculated by:

I (X; Y ) = H(Y )− H(Y |X) = H(X)− H(X |Y ). (2.28)

We can define the mutual information as well directly via the joint and marginal
probabilities

I (X; Y ) =
∑

x∈Ωx

∑
y∈Ωy

p(x, y)log2
p(x, y)

p(x) · p(y)
. (2.29)

Note that the mutual information of the input X and the output Y of a system
can be estimated by Monte Carlo simulations. By tracking the density functions by
histogram measurements we can evaluate Eq. 2.29. This is a pragmatic approach
especially when the density functions are not entirely known. As mentioned before,
the channel capacity gives an upper bound for a reliable (error free) transmission

Fig. 2.7 Illustration of the
mutual information and its
dependencies
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with respect to a given signal-to-noise ratio. Assuming a random input variable X
and the observation Y , the capacity of the utilized channel is its maximum mutual
information

C = sup
p(x)

I (X; Y ). (2.30)

Equation 2.30 requires the knowledge of the joint distribution of X and Y and
the distribution and the channel. Three assumptions have to be met to achieve the
maximum capacity which is denoted as Shannon limit:

• the input variable X requires to be Gaussian distributed,
• the noise has to be additive with Gaussian distribution,
• the length of the input sequence has to be infinite.

In the case of an AWGN channel with a constant noise power of N0 the channel
capacity can be evaluated to [2]:

C = log2

(
1 + ES

N0

)
= log2

(
1 + REb

N0

)
. (2.31)

When using a transmission rate R < C an error probability as low as desired can
be achieved. With Eq. 2.31 we can evaluate the bound for the required bit energy to
noise power by assuming the code rate to be equal to the capacity

Eb

N0
= 2R − 1

R
. (2.32)

The Shannon limit gives a bound for the minimum bit energy required for reli-
able transmission assuming an infinite bandwidth, i.e. the code rate approaches zero
(R → 0). The absolute minimum bit energy to noise power required for reliable
transmission is Eb/N0 = −1.59 dB.

The bandwidth B is limited for many communications systems and quite expen-
sive from an economic point of view. The total noise power is given by N = B · N0,
the total signal energy S = Rb Eb is defined via the data rate Rb. Rb is the number
of bits we can transmit within a certain amount of time. According to the Nyquist
criterion this will be 2BT symbols within a time unit of T . The channel capacity for
a channel with limited bandwidth B can be expressed as

CB = B · log2

(
1 + S

N

)
[bits/s]. (2.33)

We can see that it is possible to trade off bandwidth for signal-to-noise ratio. The
introduced capacity before, without bandwidth, defines the spectral efficiency. This
spectral efficiency gives us the number of bits per second per Hertz [bits/s/H z]
which is an important metric since it defines the amount of information that can be
transmitted per Hertz of bandwidth.
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Fig. 2.8 Spectral and power efficiency for Shannon limit, theoretical limit applying BPSK modu-
lation, and turbo codes with different block sizes

Figure 2.8 shows the spectral efficiency versus the signal-to-noise ratio Eb/N0.
Plotted is the optimum theoretical limit which can only be reached for Gaussian
distributed values given as input to a channel. By constraining the channel input
to be binary (e.g. Binary Phase Shift Keying (BPSK) [3] the resulting capacity is
lower than the optimum capacity. The random input variable S has a sample space of
s ∈ {−1,+1} while the output is modeled as a continuous random variable y ∈ R.
Then the mutual information evaluates to:

I (S; Y ) = 1

2

∑
si ∈{+1,−1}

∫ +∞

−∞
p(y|si ) · log2

(
2p(y|si )

p(y|si = −1)+ p(y|si = +1)

)
dy

(2.34)

The resulting theoretical limit for BPSK input is shown as well in Fig. 2.8.
The channel capacity is the tight upper bound for a reliable transmission, however,

it tells us not how to construct good codes which can approach this limit. Further-
more, the limit is only valid for infinite block sizes. Therefore, Fig. 2.8 shows coding
schemes with different block lengths and coding rates. The utilized coding schemes
here are turbo codes utilized in the LTE standard.

All codes are plotted at a reference bit error rate of B E R = 10−5. The results are
collected from different simulations over a simple AWGN channel and BPSK mod-
ulation, with K the number of information bits (K = 124, K = 1024, K = 6144).
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The different code rates are obtained by a so called puncturing scheme defined in the
communication standard. The simulated LTE turbo codes are introduce in Chap. 6.
One important aspects can be seen in this figure. The larger the block length the
smaller the gap to the theoretical limit. For block sizes of K > 100k bits the gap to
the theoretical limit is less than 0.2 dB.

2.4 Multiple Antenna Systems

Multiple antenna system is a general expression for a transceiver system which relies
on multiple antennas at the receiver and/or at the transmitter side. The major goal of
using a multiple antenna system is to improve the system performance. This could
either mean the transmission of more information for a given amount of energy, or to
achieve a better quality of service for a fixed amount of energy [4]. By using multiple
antennas different type of gains can be obtained.

• Array gain: The array gain can increase the signal-to-noise ratio by a coherent
combination of the received signal. Achieving the coherent detection we need the
knowledge of the channel to align the phases of signals. The average SNR grows
proportionally to the number of received signals, i.e., multiple receive antennas
collect more signal energy compared to a single receive antenna.

• Diversity gain: Diversity gain is obtained when transmitting information multi-
ple times via different transmission channels. Different channels may underly a
different fading, which means, the attenuation of the channel path will change.
The assumption is that different paths do not fade concurrently. The receiver will
gather the diversified information and has then the possibility to mitigate the fad-
ing effects. The higher the number of paths, the higher the probability to miti-
gate occurring fading effects. There exist different sources of diversity: diversity
in time (also called temporal diversity), diversity in frequency, and diversity in
space. Temporal diversity can be introduced in an artificial way by the transmitter,
by transmitting the same information at different points in time. Frequency diver-
sity can be utilized when transmitting at different frequencies. Spatial diversity
uses the distance between receive or transmit antennas. The goal of diversity is
always to improve the reliability of communication. The maximum diversity gain
we can obtain is of d = MT MR th order, i.e. each individual path can be exploited.
MT defines the number of transmit antennas, MR defines the number of receive
antennas, respectively. The diversity d is defined as the slope of the average error
probability at high signal-to-noise ratio, i.e., the average error probability can be
made to decay like 1/SN Rd [5].

• Multiplexing gain: Maximum gain in spatial multiplexing is obtained when at each
time step and each antenna a new symbol is transmitted. The MIMO detector on the
receiver side has the task to separate the symbols which are interfered and corrupted
by noise. MIMO channels offer a linear increase r = min(MT ,MR) in capacity
[5]. It was shown in the high SNR regime that the rate of the system (capacity)

http://dx.doi.org/10.1007/978-1-4614-8030-3_6
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Fig. 2.9 Three different
multiple antenna systems

(a)

(b)

(c)

can grow with r log(SN R). The factor r is denoted as spatial multiplexing gain
and defines the number of degrees of freedom of a system (bit/s/Hz). There exists
a trade off between gain in diversity and gain in spatial multiplexing [5].

Three major scenarios exist to set up a multiple antenna system which are shown
in Fig. 2.9. All three possibilities are used in the LTE communication standard, a
good overview can be found in [6]. Here, only the obtained diversity or multiplexing
gain is highlighted with respect to the different antenna constellations.

Single-Input Multiple-Output Transmission

The most straight forward system using multiple antennas is the single-input
multiple-output (SIMO) system which is shown in Fig. 2.9a. The receiver collects
two versions of the sent symbol s1 which is denoted as receive diversity. The channel
coefficients h1 and h2 define the different attenuations of both paths. The high-
est degree of diversity is obtained when the channel coefficients are uncorrelated.
Assuming MR receive antennas we can obtain diversity of order MR . The SIMO
system reflects a typical point-to-point transmission from a mobile device to a base
station (uplink).
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Multiple-Input Single-Output Transmission

Multiple antennas can be applied as well at the transmitter which the goal to obtain
transmit diversity, see Fig. 2.9b. Again, to maximize the diversity the channel coef-
ficients have to be uncorrelated. This can be achieved by an appropriate distance
between transmit antennas. Diversity can be in addition introduced by applying
a function to the sent information, denoted here as f (s1). The function indicates
the introduction of a time or frequency offset. One prominent example is the so
called space-time coding [7] which is as well introduced in the LTE communica-
tion standard. The point-to-point multiple-input single-output (MISO) system can
be efficiently exploited in the downlink of wireless transmission systems.

Multiple-Input Multiple-Output Transmission

MIMO systems can achieve either a diversity gain and/or a multiplexing gain. Espe-
cially the multiplexing gain is of large interest. For achieving the highest multiplexing
gain the symbol stream is demultiplexed to multiple transmit antennas. At each trans-
mit antenna and in each time slot we transmit independent symbols. The receiver side
collects the superposed and noise disturbed samples from multiple receive antennas.
This spatial multiplexing yields in a linear increase of system capacity, i.e. the spec-
tral efficiency is increased by a factor of min(MT ,MR) for a given transmit power.
LTE defines a spatial multiplexing scheme using 4 transmit and 4 receive antennas
(4 × 4) while applying a 64-QAM modulation. The number of pits per second per
Hertz would be 24 [bits/s/Hz] without channel coding. However, spatial multiplexing
should be combined with a channel coding scheme which is often done according to
a BICM system as shown in Fig. 2.1.

Ergodic Channel and Quasi-Static Channel

Figure 2.9c shows a two-by-two antenna system. The transmission of a data and the
received vector can be modeled in general as:

yt = H t · st + nt , (2.35)

with H t the channel matrix of dimension MR × MT and nt the noise vector of
dimension MR . The entries in H t can be modeled as independent, complex, zero-
mean, unit variance, Gaussian random variables [8]. The presented channel model is
again a time discrete model. In this model fading coefficients are represented by the
matrix H t which is in contrast to the already introduced AWGN channel in which
no fading coefficients are present. The average transmit power ES of each antenna is
normalized to one, i.e. E{st sH

t } = I 2. We assume an additive Gaussian noise at each

2 I is the identity matrix and ()H denotes the Hermitian transpose.
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receive antenna, with E{nt nH
t } = N0 I . The signal-to-noise power at each receive

antenna can be expressed as SN R = MT ES
N0

. We have to distinguish two major cases
for simulating the MIMO channel:

• Quasi-static channel: H t remains constant for a longer time period and is assumed
to be static for one entire codeword of the channel code.

• Ergodic channel: H t changes in each time slot and successive time slots are sta-
tistically independent.

Assuming a quasi-static channel we cannot guarantee an error free transmission
since we cannot average across multiple channel realizations. The fading coefficients
of H t could by chance prohibit a possible correction of the sent signal. Another
definition of the channel capacity has to be used which is called outage capacity [9].
The outage capacity is associated with an outage probability Pout which defines the
probability that the current channel capacity is smaller than the transmission rate R.

Pout = P(C(ρ) < R) (2.36)

C(ρ) defines the capacity of a certain channel realization with the signal-to-noise ρ
of the current fading coefficients. The outage probability can be tracked via Monte-
Carlo simulations. The capacity C of a given channel model differs for a quasi-static
or ergodic channel.

For ergodic channels the capacity is higher as shown in [9]. The capacity C for an
ergodic channel can be calculated as expectation via the single channel realizations:

C = E

{
log2det

(
I + SNR

MT
· Ht H H

t

)}
[bits/s/H z]. (2.37)

SN R is the physically measured signal-to-noise ratio at each receive antenna.
Assuming an ergodic channel the channel capacity increases linearly with min(MT ,

MR). Transmission rates near MIMO channel capacity can be achieved by a bit-
interleaved coded MIMO system. The resulting BICM-MIMO systems and the chal-
lenges for designing an appropriate MIMO detector are shown in Chap. 8. A com-
prehensive overview of MIMO communications can be found in [8].
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Chapter 3
Channel Coding Basics

This chapter gives a short overview of the basic principle of linear block codes
and possible decoding methods. As this treatise only deals with a subset of existing
channel codes, only a short primer with small examples are given. For an in depth
study many good books are available, like [1] and [2].

When speaking about channel coding we have to distinguish between the code
definition itself and the associated decoding algorithm which has to calculate an
estimation of the transmitted information based on the sequence of received symbols.
The goal of a practical system is to establish a channel coding scheme which has the
theoretical capability to approach the Shannon limit. However, just as important is
an associated decoding method that can be implemented in hardware.

All described codes here in this chapter and in this manuscript are linear block
codes. The basic terms and overview of channel codes are introduced in Sect. 3.1,
linear block codes are presented in Sect. 3.2. The general decoding problem -trying
to solve the maximum likelihood (ML) criterion—is addressed in Sect. 3.3. For the
decoding algorithm we have to distinguish between a soft-input and hard-input infor-
mation as explained in Sect. 2.2. Soft-input information refers to the LLR values for
each received sample, provided by the demodulator. All decoding algorithms pre-
sented in this chapter require these LLR values as input, furthermore the decoding
algorithms are derived in the logarithm domain which enables an efficient decoder
hardware realizations.

Solving the ML criterion is an NP complete problem, thus in practical applications
we can often only approximate the ML result by utilizing heuristics. These iterative
heuristics are mandatory in the case of turbo and LDPC code decoding. When apply-
ing iterative decoding we have to solve the symbol-by-symbol maximum a posteriori
(MAP) criterion which is explained in Sect. 3.3.3. One important class of channel
codes is the class of convolutional codes. These are introduced in Sect. 3.4, an exam-
ple of a decoding algorithm which approximates the MAP criterion is derived in
Sect. 3.4.2.

F. Kienle, Architectures for Baseband Signal Processing, 37
DOI: 10.1007/978-1-4614-8030-3_3, © Springer Science+Business Media New York 2014

http://dx.doi.org/10.1007/978-1-4614-8030-3_2


38 3 Channel Coding Basics

3.1 Overview Channel Coding

The goal of a channel code is to transmit information reliably via an unrealiable
channel. To achieve this we map an information word u into a codeword x. Through-
out this manuscript we assume binary information for the elements ui, xi ∈ [0, 1].
Table 3.1 shows an exemplary binary code with K = 3 information bits which are
mapped onto N = 8 distinct codewords. The code C is given by K basis vectors
of length N . The cardinality of this code is |C| = 23. The process of mapping an
information word to a code word is called encoding. A channel code defines only
the mapping from u to x, it does not define a possible decoding procedure.

One important measure for the quality of the code is its minimum (Hamming) dis-
tance. The Hamming distance is defined as the distance between two binary vectors,
i.e.

d(x, y) =
N−1∑
i=0

|xi − yi|. (3.1)

The minimum distance is an important measure for the quality of a code. The pre-
sented channel code in this example is a linear code, i.e., a channel code is linear if
the addition of two codewords yields again a valid codeword. The minimum distance
of a linear code is the minimum weight of a codeword:

dmin = min∀x∈C

N−1∑
i=0

xi. (3.2)

The code of Table 3.1 has a minimum Hamming distance of dmin = 3.
During transmitting of the codeword x errors may occur. Suppose we have trans-

mitted one codeword of Table 3.1 and we receive a (hard) bit vector y = [111100].
By using nearest neighbor decoding we can measure the distance of the received
(corrupted) vector to the possibly sent codewords. The distances for all 8 possible
codeword are: d(x0, y) = 4, d(x1, y) = 1, d(x2, y) = 3, d(x3, y) = 2, d(x4, y) = 2,
d(x5, y) = 3, d(x6, y) = 5, d(x7, y) = 4. The codeword x1 has the smallest distance

Table 3.1 A binary code
with K = 3 information bits
and N = 6 codeword bits

Information word Codeword

u0=[0 0 0] x0=[0 0 0 0 0 0]
u1=[0 0 1] x1=[1 1 0 1 0 0]
u2=[0 1 0] x2=[0 1 1 0 1 0]
u3=[0 1 1] x3=[1 0 1 1 1 0]
u4=[1 0 0] x4=[1 1 1 0 0 1]
u5=[1 0 1] x5=[0 0 1 1 0 1]
u6=[1 1 0] x6=[1 0 0 0 1 1]
u7=[1 1 1] x7=[0 1 0 1 1 1]
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Fig. 3.1 Hamming distance between two valid codewords

to the received information y and is thus the codeword that was most likely sent by
the transmitter.

The importance of a large minimum distance is shown in Fig. 3.1. It shows
two codewords x1 and x3 with the Hamming distance of d(x1, x3) = 3. The non-
overlapping spheres around the codewords indicate the decision region for a particular
codeword, i.e. vectors inside this region can be clearly associated to a codeword. For a
code with a minimum distance dmin we have a guaranteed error correction capability
of:

t =
⌊

dmin

2

⌋
, (3.3)

with t the number of errors occurred in the received vector. �a� defines the next
integer which is lower than or equivalent to a. The error detection capability of the
code is dmin − 1, i.e., it can detect any invalid sequence as long as this sequence
is not a codeword. Thus, the worst thing that can happen during transmission is an
error sequence which results in another valid codeword, i.e. y = xi + e = xj, with
xj ∈ C. The error sequence is represented here by an error vector e with ei ∈ {0, 1}.
An one entry indicates that the corresponding bit position is flipped. One goal when
designing channel codes is to ensure a minimum distance as large as possible which
will enable a high error correction capability.

3.2 Linear Block Codes

A binary linear block code with cardinality |C| = 2K and block length N is a K dimen-
sional subspace of the vector space {0, 1}N defined over the binary field (GF(2)). It
is possible to define a linear block code as well over larger field, e.g. extension fields
GF(2m). However, here we only address binary codes. The operations with respect
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Table 3.2 GF(2) addition
(XOR)

+ 0 1

0 0 1
1 1 1

Table 3.3 GF(2)
multiplication (AND)

∗ 0 1

0 0 0
1 0 1

to GF(2) are shown in Tables 3.2 and 3.3. Additions and multiplications result in
simple XOR and AND operations.

The linear code C is given by K basis vectors of length N which are represented
by a K × N matrix G (generator matrix). The encoding process can be described by
a multiplication with the generator matrix G. Thus the encoder evaluates:

x = uG (3.4)

The output of the encoder is the codeword x. Most of the practically codes utilized
in communication standards are linear codes. Wireless communications systems
utilize packet based transmission techniques, thus linear block codes that are defined
on vectors fits well to theses systems.

Equivalently, a code C can be described by a parity check matrix H ∈ {0, 1}M×N

where M = N − K . We thus have x ∈ C, i.e., x is a codeword, if

xHT = 0. (3.5)

The scalar product of each row x ·hi
T has to be zero. All operations are performed in

the binary domain. We denote the ith row and jth column of H by Hi,., H.,j respectively.
xHT

i,. = 0 in GF(2) is defined as the ith parity check constraint.
The parity check constraints are used within decoding algorithms to check for a

valid codeword. Assuming a vector z = x + e with remaining errors, the resulting
codeword check will evaluated to

yHT = xHT + eHT = s. (3.6)

s is denoted as syndrome and contains information about the current error vector.
This property can be as well utilized within a decoding algorithm [2].

Since the codeword x may be derived via x = uG one can see the important
relation between generator matrix and parity check matrix which is:

G · HT = 0 (3.7)
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If the information word u is part of the codeword the code is called systematic,
e.g.:

x = uG = [x0x1 . . . xN−1] = [up] = [u0 u1 . . . uK−1︸ ︷︷ ︸
systematic bits

p0 . . . pM−1︸ ︷︷ ︸
parity bits

] (3.8)

The code is called non-systematic if the information vector is not part of the codeword.
A linear systematic generator matrix is specified by G = [IP], with I an identity
matrix of size K × K .

G =

⎡
⎢⎢⎣

1 0 . . . 0 p0,0 p0,1 . . . p0,M−1
0 1 . . . 0 p1,0 p1,1 . . . p1,M−1
. . . . . . . . . . . . . . . . . . . . .

0 0 . . . 1 pK−1,0 pK−1,1 . . . pK−1,M−1

⎤
⎥⎥⎦ (3.9)

The number of parity bits M is defined by N −K = M. The matrix part which defines
the parity constraints P is transpose within in the corresponding parity check matrix.

H = [PTI] =

⎡
⎢⎢⎣

p0,0 p1,0 . . . pK−1,0 1 0 . . . 0
p0,1 p1,1 . . . pK−1,1 0 1 . . . 0
. . . . . . . . . . . . . . . . . .

p0,M−1 p1,M−1 . . . pK−1,M−1 0 0 . . . 1

⎤
⎥⎥⎦ (3.10)

One of the first and best known linear block codes is the Hamming code.

G =

⎡
⎢⎢⎣

1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 1

⎤
⎥⎥⎦ H =

⎡
⎣1 0 1 1 1 0 0

1 1 0 1 0 1 0
0 1 1 1 0 0 1

⎤
⎦

The generator matrix enables a systematic encoding which can be seen by the
identity matrix I at the left part of the matrix G = [IP]. With P the parity check
equations for generating the corresponding parity bits. As mentioned mentioned the
scalar product of each row x · hi has to be zero, thus each code word has to fulfill the
following parity check equations.

x0 + x2 + x3 + x4 = 0

x0 + x1 + x3 + x5 = 0

x1 + x2 + x3 + x6 = 0

When ever all these parity check equations are fulfilled a valid codeword is found.
This is utilized during the decoding process. This (7,4) Hamming code has a minimum
distance of dmin = 3.
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3.3 General Decoding Problem

The general decoding task is to detect or even correct errors which may have occurred
during transmission. For deriving corresponding decoding criteria we initially ignore
the result of the demodulator of Sect. 2.2 and derive the decoding task directly on the
received vector y. Later we will comment on the important separation of demodulator
and decoding algorithm. We can distinguish two different decoding principles, which
either optimizes results on the entire codeword or on each individual bit.

• Maximum likelihood criterion: solving the maximum likelihood criterion opti-
mizes the so called codeword probability which means ML decoding picks a
codeword x̂ which maximizes the condition probability:

x̂ = arg max
x∈C

P (x sent|y received) (3.11)

The receiver has no knowledge about the true sent codeword x. Thus the receiver
algorithm for decoding may check all possible sent codewords x ∈ C and decides
for the codeword x̂ which was most likely sent.

• Symbol-by-symbol maximum a posteriori criterion: solving the symbol-by-symbol
MAP criterion optimizes the bit probability which means MAP decoding decides
for a single bit xi

x̂i = arg maxP (xi sent|y received) (3.12)

The resulting bit estimations for the entire codeword x̂i for i ∈ {1, . . . , N} will
result in the optimum bit error rate. The result will not necessarily be a valid
codeword. The MAP probability will be arg maxP (xi|y) with xi ∈ {0, 1}.

3.3.1 Maximum Likelihood (ML) Decoding

For many block based transmissions the frame error rate is of importance, thus when
ever possible we should try to solve th ML criterion. In the following we will derive
the ML criterion in a more evident form. Applying Bayes’s rule to entire vectors
results for the ML criterion in:

x̂ = arg max
x∈C

(
P (y|x) · P(x)

P(y)

)
(3.13)

P(y) is the vector of channel related probability. The vector elements are con-
stant for each received information, it will thus have no influence on the final deci-
sion. Furthermore we assume that each codeword was equally likely sent. With this
assumption, the term P(x) can be omitted as well. Under the assumption that each
received sample is independent and with the transformation to the logarithm domain

http://dx.doi.org/10.1007/978-1-4614-8030-3_2
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the maximum likelihood (ML) criterion turns into

x̂ = arg max
x∈C

P(y|x) (3.14)

= arg max
x∈C

(∏N−1

i=0
P(yi|xi)

)
(3.15)

= ∈
x

Carg min

(
−ln

∏N−1

i=0
P(yi|xi)

)
(3.16)

= arg min
x∈C

(
−
∑N−1

i=0
lnP(yi|xi)

)
(3.17)

The vector problem can be decomposed in the product form. This is only possible
if the received values are independent of each other. The next two steps are the
transformation in the logarithm domain and the transformation in a minimization
problem which can be simply done by −1 multiplication. Note, that P(yj|xi) is
exactly the result of our demodulator in the probability domain, attention here we
assumed that for each received symbol one bit exists.

It is more convenient to express the ML criterion with log likelihood values. If we
add the constant

∑N−1
i=0 lnP(yi|0), i.e. the weight of the zero codeword, the problem

results in

x̂ = arg min
x∈C

(
N−1∑
i=0

(lnP(yi|xi = 0) − lnP(yi|xi))

)
(3.18)

When ever the codeword has a zero at the corresponding position xi = 0 no weight
will be added to the entire cost function. If the corresponding position equals xi = 1
the already introduced LLR term results with λi = ln P(yi|xi=0)

P(yi|xi=1)
. Now, the ML criterion

can be expressed in a more elegant form with the scalar product of the LLR vector
obtained of the demodulator and a possible codeword x ∈ C. The maximum likeli-
hood criterion is thus a minimum search via a linear cost function of the demodulator
output and a possible code word

x̂ = arg min
x∈C

(
N−1∑
i=0

λixi

)
. (3.19)

The maximum likelihood criterion derived here has the cost function of
∑N−1

i=0 λixi.
Each possible codeword x ∈ C, is associated with its cost or weight wc, which can be
expressed as the scalar product of wc =< λ, xc >, with c the index of one particular
codeword. We decide in favor of the codeword with the minimum resulting weight.
Each λi value represents the derived LLR result of Sect. 2.2 on bit level, defined in a

general form λi = ln
P(yj |xi=0)

P(yj |xi=1)
. Depending on the channel statistics this calculation

may differ, however the derived ML criterion is still valid if λi is represented on

http://dx.doi.org/10.1007/978-1-4614-8030-3_2
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bit level. A general framework to solve the ML criterion for linear block codes is
presented in the next section.

3.3.2 ML Decoding by Solving IP Problems

The ML decoding problem can be formulated as an integer program (IP). In literature
mainly two different possibilities can be found for the IP modeling [3, 4]. One
formulation relies on the parity check equation, the other one relies on the syndrome
and the error vector e. Both formulations model the ML decoding problem exactly
and are thus equivalent.

min
N−1∑
i=0

λixi (3.20)

s. t. Hx − 2z = 0

x ∈ {0, 1}N

z ∈ Z
N−K , zi ≥ 0 (3.21)

The variables x model bits of the codeword, while z is a vector of variables used by
the IP formulation to account for the binary modulo 2 arithmetic. The cost function
to be minimized is identical to that derived in previous section.

For the syndrome based formulation the cost function changes and is based on
the error vector e.

min
N−1∑
i=0

|λi|ei (3.22)

s. t. He − 2z = s

e ∈ {0, 1}N

z ∈ Z
N−K , zi ≥ 0 (3.23)

The constraints are based on the syndrome vector s while again the z variables ensure
the GF(2) operations.

Interestingly both formulations are efficient enough such that a general purpose
IP solver can tackle the problem for codes of practical interest. At least for smaller
block sizes we can perform Monte-Carlo simulations to obtain the FER performance.
The IP formulation has to be solved many times, once for every simulated frame.

Since the formulation are only based on the parity check matrix all types of linear
block codes can be simulated with this IP formulation. Furthermore, the IP can be
enhanced to comprise as well higher oder modulation types. This was shown in [5].

The general framework of integer programming models is shortly introduced
together with some solution strategies. Let c ∈ R

n, b ∈ R
m, and A ∈ R

m×n be given.
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Let x ∈ R
n denote the vector of variables. Integer programming is the mathematical

discipline which deals with the optimization of a linear objective function cT x over
the feasible set, i.e. the space of all candidate solutions. A general linear integer
programming problem can be written as

min or max cT x

s. t. Ax = b

x ∈ Z
n.

Without loss of generality, we may consider minimization problems only. In contrast
to linear programming problems, solutions are required to be integral. General IP
problems—as well as many special cases—are NP-hard. However, due to extensive
studies of theoretical properties, the development of sophisticated methods, as well
as increasing computational capabilities, IP proved to be very useful to model and
solve many real-world optimization problems (e.g. production planning, scheduling,
routing problems,…).

IP problems can be solved in a brute force way by explicitly enumerating all
possible values of the variable vector x and choosing the one yielding the minimal
objective function value. Though correct, this procedure is guaranteed to be expo-
nential in the number of components of x. To avoid excessive computational effort, a
theory inducing more efficient algorithms was developed which relies on techniques
like implicit enumeration, relaxation and bounds, and the usage of problem-specific
structural properties. In the following, we will highlight some basic concepts. An
in-depth exposition to this field can be found in [6].

Branch and bound is a wide-spread technique realizing the concept of divide-
and-conquer in the context of IP: For each i ∈ {0, . . . , n − 1} and v ∈ Z, an optimal
solution x∗ either satisfies x∗

i ≤ v or x∗
i ≥ v + 1.

Using these two constraints two sub problems can be created from the original
problem formulation by adding either one or the other constraint to the original set of
constraints. This can be seen as branches of a tree, while each branch posses a smaller
feasible set. At least one branch results in the optimal solution x∗. Iterative application
of this branching step yields IP problems of manageable size. For each (sub)problem,
primal and dual bounds are obtained by relaxation techniques and heuristics. They
allow to prune branches of the search tree, thus reducing the search area (implicit
enumeration). Branch and bound techniques are often used within algorithms for
communications systems, e.g., the sphere decoding which is presented in Chap. 8.

For any IP problem a linear programming (LP) problem can be derived, called the
LP relaxation. This can be done by taking the same objective function and same
constraints but with the requirement that the integer variables are replaced by
appropriate continuous constraints. Cutting plane algorithms rely on the idea of
solving the IP problem as the LP problem

min{cT x : x ∈ conv(PI)}.

http://dx.doi.org/10.1007/978-1-4614-8030-3_8
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However, the convex hull of the feasible set (PI ) of the IP problem is in general
hard to compute explicitly. Therefore, approaches are developed which iteratively
solve the LP relaxation of the IP and compute a cutting plane, i.e., a valid inequality
separating the feasible set PI from the optimal solution of the LP relaxation. These
cuts are added to the formulation in all subsequent iteration. Important questions
address the convergence of this procedure, as well as the generation of strong valid
inequalities. In case of channel code decoding this technique is applied in [4].

A mixture of strategies such as branch-and-cut and the utilization of problem
intrinsic structures might lead to enhanced solution strategies. Implementing an effi-
cient IP problem solver is certainly a demanding task. For a special purpose solver,
the problem has to be thoroughly understood, a suitable algorithm has to be chosen
and efficiently realized. But there also exists a bandwidth of all-purpose solvers,
both open source (like GLPK [7]) and commercial (e.g. CPLEX [8]), which may
be sufficient to solve various different IP problems such as the ones mentioned for
ML decoding. Several ML decoding results are presented within this treatise, all are
based on solving the corresponding IP formulations as described in this section. In
[9, 10] further IP formulations are presented, that cover different aspects of code
analysis. All formulations are general and can therefore be applied to arbitrary linear
block codes.

ML Decoding Examples

In the following two simple channel codes are introduced together with their ML
decoding procedure. Since the code examples are very small it is possible to explicitly
enumerate all solutions. For both examples we assume an input LLR vector λ of
length N = 4. Of course, for decoding the receiver needs of course the knowledge of
utilized encoding scheme. One example uses a so called repetition code for encoding,
the second example a so called single parity check code.

Example: Repetition Code

A repetition code is a very simple code that simply repeats a single bit of information
(K = 1) N times. The generator matrix and the parity check matrix of a repetition
code for N = 4 is the following:

G = [1111] H =
⎡
⎣ 1 0 0 1

0 1 0 1
0 0 1 1

⎤
⎦

In this example one bit is repeated four times which results in a code rate of
R = 1/4. For this type of a code it is obvious that only two possible codewords exist,
since K = 1: either the all zero codeword or the all one codeword.
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Imagine we receive the LLRs λ = [
0.4 1.1 −0.1 −0.3

]
. The ML decoder deter-

mines, which codeword x̂ was the one that most likely led to the observation of λ

solving:

x̂ = arg min
x∈C

(
N−1∑
i=0

λixi

)
.

As already mentioned the code space C for a repetition code has just two possible
codewords. Evaluating the cost function for these two codewords results in:

C :=
{

[0 0 0 0]
[1 1 1 1] ⇒ ∑N−1

i=0 λixi =
{

0

1.1

When looking at the result of the cost function it can be seen that
∑3

i=0 λixi = 0
is the result for the all zero codeword while for the all one codeword the weight is∑3

i=0 λixi = 1.1. The ML decoding solution is thus x̂ = [0 0 0 0]. The minimum
distance of this code is dmin = 4, since all four bits are different. When looking
at the input values of λ one can see that a decoding with just the sign information
sign(λ) = [

1.0 1.0 −1.0 −1.0
]

would result in cost values which can not be distin-
guished. Thus we could only detect an error and not correct it. This is one intuitive
example which shows that soft information input provides a better error correction
capability than hard-input values.

Example: Single Parity Check Code

A second very simple code is the so called single parity check code with K = 3
information bits. The corresponding generator and parity check matrices for the
resulting block length of N=4 are:

G =
⎡
⎣1 0 0 1

0 1 0 1
0 0 1 1

⎤
⎦H = [1111]

Again the codeword is generated by the multiplication of the information vector
with the generator matrix x = uG. The code space has now 2K = 8 possible
codewords, since the information vector u has now three bits. The resulting eight
codewords and thus the code space C is:
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u =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0 0 0]
[0 0 1]
[0 1 0]
[0 1 1]
[1 0 0]
[1 0 1]
[1 1 0]
[1 1 1]

⇒ [u0u1u2]
⎡
⎣1 0 0 1

0 1 0 1
0 0 1 1

⎤
⎦ = x C :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0 0 0 0]
[0 0 1 1]
[0 1 0 1]
[0 1 1 0]
[1 0 0 1]
[1 0 1 0]
[1 1 0 0]
[1 1 1 1]

In the following we will calculate the ML estimation x̂ when receiving
λ = [

0.4 −1.1 0.1 0.3
]
. The cost function for all possible codewords can be eval-

uated to:

C :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0 0 0 0]
[0 0 1 1]
[0 1 0 1]
[0 1 1 0]
[1 0 0 1]
[1 0 1 0]
[1 1 0 0]
[1 1 1 1]

⇒ ∑N−1
i=0 λixi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0.4
−0.8
−1.0
0.7
0.5
−0.7
−0.3

The smallest value is −1.0 and thus the codeword that most likely equals the
originally transmitted codeword is x̂ = [0 1 1 0].

Solving the maximum likelihood criterion is the goal of a channel decoder. How-
ever, maximum likelihood decoding is an NP-hard problem [11]. The presented
examples solve the ML decoding problem by evaluating all possible codes in a brute
force manner. In practical examples this is not a feasible solution since the cardinality
of the code space is |C| = 2K , with K > 1000 for many applications. This is why
some channel codes, e.g. convolutional codes, have special properties which enable
an efficient realization of an ML decoding algorithm. For example the well known
Viterbi algorithm is one algorithm which utilizes a special structure of the code to
solve the ML criterion—in this case the so called trellis structure. The trellis structure
is an elegant way to represent all possible codewords generated by a convolutional
code (CC), see Sect. 3.4. The Viterbi algorithm checks all possible realizations of the
codeword x and decides in favor of that codeword with the minimum cost function∑N−1

i=0 λixi.
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3.3.3 Symbol-by-Symbol MAP Decoding

For modern codes (turbo codes, LDPC codes) the maximum likelihood decoding
is too complex for practical applications. Thus, heuristics are used which tries to
approximate the ML solution. The typical procedure is to divide the code C in
smaller component codes

C = {C0 ∩ C1 ∩ . . . ∩ Cj} (3.24)

Typically, the cardinality |Ck| is identically for each sub-code, while a sub-code has
a smaller cardinality as the original code |Ck | ≤ |C|. Each sub-code is a linear code
itself which can be defined by a parity check matrix HCk . HCk is in turn a part of the
original parity check matrix. As an example the Hamming code is decomposed in
three sub-codes.

H =
⎡
⎣1 0 1 1 1 0 0

1 1 0 1 0 1 0
0 1 1 1 0 0 1

⎤
⎦ HC0 = [1 0 1 1 1 0 0]

HC1 = [1 1 0 1 0 1 0]
HC2 = [0 1 1 1 0 0 1]

For decoding, each component code can be solved independently. The result of
each component decoder is then passed to the others component code decoders
and serves as an additional support information (a priori information). For 3GPP
turbo codes the utilized decoding algorithm exchanges information between two
component codes C = {C1 ∩C2}. LDPC codes are typically divided in M component
codes C = {C0 ∩ C1 ∩ . . . ∩ CM−1}, which means we decompose the original code,
row-by-row, in M single parity check codes.

Each sub-code is decoded by utilizing a so called symbol-by-symbol MAP cri-
terion or in short MAP algorithm. The MAP algorithm provides a posteriori proba-
bilities for each symbol or bit. For each decoded bit xi, the probability is calculated
that this bit was either 0 or 1, given the received sequence λ.

The MAP probability is derived by an example using a single parity check code.
The same received sequence is the starting point, i.e. λ = [

0.4 −1.1 0.1 0.3
]
.

One possible first step is to evaluate the already explained cost function for all
possible codewords.

C :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = [0 0 0 0]
x1 = [0 0 1 1]
x2 = [0 1 0 1]
x3 = [0 1 1 0]
x4 = [1 0 0 1]
x5 = [1 0 1 0]
x6 = [1 1 0 0]
x7 = [1 1 1 1]

⇒ ∑N−1
i=0 λixi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w0 = 0

w1 = 0.4

w2 = −0.8

w3 = −1.0

w4 = 0.7

w5 = 0.5

w6 = −0.7

w7 = −0.3

(3.25)
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A labeling for each weight wc =< λ, xc > is now introduced with an associated
codeword numbering. xc is one codeword of the codeword space C with the corre-
sponding cost value wc. The set of all possible weights is denoted as w. The weight
which associated to the ML codeword will be denoted as wML . Now we would like
to evaluate the MAP probability for the first bit. Each cost wc gives us a relative
measure of a certain code word xc with respect to a received λ.

When we derived the cost function we have subtracted the all zero codeword, see
Eq. 3.18. Thus each weight wc reflects the log likelihood ratio of a certain codeword
xc with respect to the all zero codeword x0.

wc = ln

(
P(xc|y)
P(x0|y)

)
(3.26)

with xc one codeword of the codeword space C. The MAP probability for the first
bit position P(x0 = 0|y) gives the probability that the first bit position was sent as a
zero, i.e., that either x0, x1, x2 or x3 have been sent. These four codewords have all a
zero at the first position. When looking on Eq. 3.26 we can evaluate this question by

P(x0 = 0|y) = ew0 + ew1 + ew2 + ew3

normalizer
. (3.27)

The normalizer has to ensure that the probability over all codewords is 1. Again the
normalizer can be omitted when building the likelihood ratio, or here directly the
log-likelihood ratio.

Λ(x0|y) = ln

(
P(x0 = 0|y)
P(x0 = 1|y)

)
= ln

ew0 + ew1 + ew2 + ew3

ew4 + ew5 + ew6 + ew7
(3.28)

This is the symbol-by-symbol MAP result in terms of log-likelihood ratios, since
Λ(x0|y) is conditioned on an entire receive vector it denotes with a capital lambda.
For the second bit position x1 we have to evaluate

Λ(x1|y) = ln

(
P(x1 = 0|y)
P(x1 = 1|y)

)
= ln

ew0 + ew1 + ew4 + ew5

ew2 + ew3 + ew6 + ew7
. (3.29)

A general expression for each bit position results in

Λ(xi|y) = ln

∑
x|xi=0

ewc

∑
x|xi=1

ewc
(3.30)

x|xi = 1 is a codeword x ∈ C with the is bit set to 1. Equation 3.30 is one possible
description to calculate the symbol-by-symbol MAP probability for any type of linear
block code. The formulation is based on the weights of LLR values and can be used
as starting point for implementation. The basic procedure to solve this equation is to
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exploit the code properties to enable an intelligent search with respect to the current
constraint codeword x|xi.

3.3.4 Max-Log-MAP Approximation

Equation 3.30 delivers the correct MAP result in the log-likelihood domain and is
typically denoted as Log-MAP solution. The logarithm over the sum of exponential
functions can expressed by the Jacobian logarithm either in its positive form with

ln
(
eδ1 + eδ2

) = max∗(δ1, δ2) = max(δ1, δ2) + ln(1 + e−|δ1−δ2|), (3.31)

or in its negative form with

− ln
(
e−δ1 + e−δ2

) = min∗(δ1, δ2) = min(δ1, δ2) − ln(1 + e−|δ1−δ2|). (3.32)

By utilizing the Jacobian logarithm and ignoring the correction term ln(1+e−|δ1−δ2|)
yields the so called Max-Log-MAP approximation which will be:

Λ(xi|y) = ln

(
P(xi = 0|y)
P(xi = 1|y)

)

≈ + max
x|xi=0

{w} − max
x|xi=1

{w} (3.33)

Or we can express this function as well utilizing the minimum search by just
multiplying it with −1.0; The resulting Max-Log-MAP expression results in:

Λ(xi|y) = ln

(
P(xi = 0|y)
P(xi = 1|y)

)

≈ − min
x|xi=0

{
N−1∑
i=0

λixi

}
+ min

x|xi=1

{
N−1∑
i=0

λixi

}

≈ − min
x|xi=0

{w} + min
x|xi=1

{w} (3.34)

Equation 3.34 searches through the weights w, always with respect to one position i.
Note that the weight of the ML solution wML will always part of the solution.

The sub-optimal Max-Log-MAP calculation becomes clearer when evaluating
again the our single parity check example with the received sequence
λ = [

0.4 −1.1 0.1 0.3
]
. The corresponding weights and codewords are shown

in Eq. 3.25, the approximated Max-Log-MAP expression evaluates to:
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Λ(x0|y) = −min{0, 0.4,−0.8,−1.0} + min{0.7, 0.5,−0.7,−0.3} = 0.3
Λ(x1|y) = −min{0, 0.4, 0.7, 0.5} + min{−0.8,−1.0,−0.7,−0.3} = −1.0
Λ(x2|y) = −min{0,−0.8, 0.7,−0.7} + min{0.4,−1.0, 0.5,−0.3} = −0.2
Λ(x3|y) = −min{0,−1.0, 0.5,−0.7} + min{0.4,−0.8, 0.7,−0.3} = 0.2

In each result of Λ(xi|y) the weight of the ML result wML = −1.0 is used. The sign
bit of each LLR value calculated by the Max-Log-MAP approximation correspond
to the maximum likelihood estimation x̂.

In hardware realizations we can either use the Max-Log-MAP approximation or
the Log-MAP realization which mainly depends on the type of application.

• A Max-Log-MAP implementation is chosen when the communications perfor-
mance result of a Max-Log-MAP approximation is close to that of a Log-MAP
realization. The difference with respect to communications performance is shown
for turbo codes in Sect. 6.2.2.

• The computational complexity of the approximation term can be quite significant.
However, sometime an approximation towards the Log-MAP solution becomes
mandatory due to communications performance reasons. Then in hardware an
approximation of the correction term is realized, one possible approximation is
shown in Sect. 5.2.

• One major advantage of a MAX-Log-MAP realization is its independence of the
signal-to-noise ratio, i.e. the algorithm is robust with respect to linear scaling of the
input values provided by the demodulator. One example with respect to fixed-point
realization and analysis of the robustness of an algorithm is shown in Sect. 6.2.3.

3.4 Convolutional Codes

Convolutional codes (CC) were already introduced in 1954 [12] and are still parts of
many communication systems. This section just gives a pragmatic introduction to this
type of codes. The theory for designing a convolutional codes and its mathematical
description mandatory for in-depth analysis is omitted. An excellent in depth analysis
is found in [1].

The encoder of a convolutional code is either a recursive or a non recursive filter,
operating on bit level. It is composed of M memory elements, as shown for M = 2
in Fig. 3.2 and for M = 3 in Fig. 3.3 respectively.

Figure 3.2 shows a non-recursive encoder for a non-systematic convolutional
(NSC) code. One input bit produces always two output bits. Thus this is a R = 1

2
code. Depending on the values stored at any given moment in the storage elements S0

and S1 and on the input different output bits are produced. Since two storage devices
are present M = 2, 4 different internal states can be reached (2M ) The so called
transition table is shown at the right which shows the current state, input, next state,
output1 and output2 values. Figure 3.3 shows a recursive systematic convolutional
(RSC) code, again with transition table. Recursive means that there exist a feedback

http://dx.doi.org/10.1007/978-1-4614-8030-3_6
http://dx.doi.org/10.1007/978-1-4614-8030-3_5
http://dx.doi.org/10.1007/978-1-4614-8030-3_6
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S0 S1

current
state

input next
state

out1-out2

00 0 00 00
00 1 10 11

01 0 00 11
01 1 10 00

10 0 01 10
10 1 11 01

11 0 01 01
11 1 11 10

Fig. 3.2 4-state NSC code with state transition table

S0 S1 S2

current
state

input next
state

out1-out2

000 0 000 00
000 1 100 11

001 0 100 00
001 1 000 11

010 0 101 01
010 1 001 10

011 0 001 01
011 1 101 10

100 0 010 01
100 1 110 10

101 0 110 01
101 1 010 10

110 0 111 00
110 1 011 11

111 0 011 00
111 1 111 11

Fig. 3.3 8-state RSC code with state transition table. This code is used in 3GPP turbo encoding

from the state information to the input bit. The plus boxes indicates an XOR of the
participating bits.

The transition table describes a Mealy automaton, where the output depends on
the state and the input information. For the 4-state NSC code the automaton is shown
in Fig. 3.4. The finite state diagram does not contain any information in time, but
unrolled over time steps results in the trellis diagram. For each time step k one new
trellis step exists, which is shown for three time steps in Fig. 3.4. The trellis is one
graphical representation for all possible output sequences.
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it output

Mealy Trellis

0/00

input output
0/00

input output

0/00
00

0/00

1/11
unrolledover

time steps

00
1/11

0/10

0/11

00 00

01

00

01

0/00

1/11

10

11

10 01
1/00

1/01 0/01 1010
0/10

1/0111

1/10
1111

1/01

Fig. 3.4 State diagram unrolled over the time results in the trellis diagram

As described by the Mealy automaton we have in this example always two possi-
bilities to reach a certain state. In the case of the encoding procedure of Fig. 3.4 this
reflects two possible input/output sequences resulting in the same state.

In Fig. 3.5 the trellis is shown for two possible paths which converge again, e.g.
there exist two paths which start from the same state and end up at the same state.
Since a path is associated to an input bit/output bit combination one can see that the
input sequence [u0 u1 u2] = [0 0 0] and [u0 u1 u2] = [1 0 0] have paths which
merges again. The corresponding output sequence and thus part of the codeword are
[x0 x1 x2 x3 x4 x5] = [0 0 0 0 0 0] and [x0 x1 x2 x3 x4 x5] = [1 1 1 0 1 1], respectively.
This 6 bits are just a part of the codeword. Thus we have at least a minimum distance
of the two codewords of dmin = 5.

As well convolutional codes are utilized in packet based transmission systems.
At the end of the encoding of one block, typically the trellis is terminated in the zero
state. This is enforced by adding tail bits to the sequence. The tail bits are chosen
depending on the last encoding stage. This is shown for the 4-state NSC code of our
example in Fig. 3.6. For a 2M -state NSC code a sequence of M zeros can be used as
input to enforce the termination in the zero state.

A formal method for describing a convolutional code is to give its generator matrix
G in the D-transform notation, where D represents a delay operator. With respect to
the encoding process of Fig. 3.2 we can say that the current input bit at time step
D0 = 1 is influenced by the bit of the previous time step D1 and the bit at the input

Fig. 3.5 Merging paths in a
trellis

0/00

input output

0/00 0/00
00

0/00
00 0000

01

0/00 0/00

0/11

10
0/10

1/11
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Fig. 3.6 Tail bits to enforce
the final zero state

0/00 

0/11 

0000

01

10

11

00

01

10

11

00

01
0/10 

0/00 

0/11 

0/01 

two time steps before D2. The linear map of the input bits onto the coded bits can be
written as a multiplication of the input sequence and a generator:

x(D) = u(D)G(D) (3.35)

For the 4-state NSC encoder (Fig. 3.2) and the presented 8-state RSC encoder
these generators are:

G(D) = [1 + D + D2 1 + D2] G(D) =
[

1
1 + D2 + D3

1 + D + D3

]
(3.36)

In communication standards these generators are given typically in octal form
which directly shows the structure for the encoding process. For the 4-state the so
called forward polynomial for output one is G0 = 1112 = 78, and for output two is
G1 = 1012 = 58. The binary form describes directly the taps of the NSC filter. Thus,
the octal representation groups 3 taps positions per digit. For the recursive structure
a standard typically defines a forward polynomial, here for the 8-state G0 = 138
and the feedback polynomial as GFB = 158. For different code rates more forward
polynomials may exist, which are labeled by Gi.

Since the encoding scheme and as well the decoding scheme is quite simple many
communication standards utilize convolution codes. Table 3.4 shows a selection of
different convolutional codes utilized in various standards. The list shows the number
of states, the code rate, and the defined polynomials. In a communication standards
like defined by 3GPP there exist various different codes for e.g. different control
channels or data channels. It quite surprising how many different encoder structures
can be found when reading through the documentation of the standards.

3.4.1 ML Decoding of Convolutional Codes

For decoding we ideally would like to solve the ML criterion which is defined as:

x̂ = arg min
x∈C

(
N−1∑
i=0

λixi

)
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Table 3.4 Selection of standards featuring convolutional codes, with the code type, number of
states, and polynomials

Standard Codes States Rate Polynomials

NSC 16 1/2 G0 = 238, G1 = 338

GSM/EDGE NSC 16 1/3 G0 = 338, G1 = 258, G2 = 378

RSC 16 1/2 G0 = 338, GFB = 238

RSC 16 1/3 G0 = 338, G1 = 258, GFB = 378

GSM/EDGE NSC 64 1/2 G0 = 1238, G1 = 1718

NSC 64 1/3 G0 = 1238, G1 = 1458, G3 = 1718 or G3 = 1758

NSC 64 1/4 G0 = 1238, G1 = 1458, G2 = 1758, G3 = 1718

GSM/EDGE RSC 64 1/4 G0 = 1238, G1 = 1458, G2 = 1758, GFB = 1718

RSC 64 1/4 G0 = 1238, G1 = 1458, G2 = 1718, GFB = 1758

UMTS NSC 256 1/2 G0 = 5618, G1 = 7538

NSC 256 1/3 G0 = 557, G1 = 6638, G2 = 7118

DVB-H CC 64 1/2 G0 = 1718, G1 = 1338

IEEE802.11a/g/n CC 64 1/2 G0 = 1338, G1 = 1718

IEEE802.16e CC 64 1/2 G0 = 1338, G1 = 1718

As seen in Sect. 3.3.2 a brute force check of all possible code words is quite cumber
sum or even impossible for larger block sizes. The trellis however as introduced in
the previous chapter is a graph structure which was obtained direct from the encoding
process and represents all possible bit patterns. Solving the ML solution by using
a trellis is equivalent to solving a shortest path problem and is denoted as Viterbi
algorithm in the field of communications [13].

This is now demonstrated for a code Rate of R = 1/2. The sum of the cost function
can be decomposed in partial sums:

(
N−1∑
i=0

λixi

)
=
(

2k−1∑
i=0

λixi

)
+

(
2k+1∑
i=2k

λixi

)

︸ ︷︷ ︸
partial

∑=branch metric

+
⎛
⎝ N−1∑

i=2k+2

λixi

⎞
⎠ (3.37)

The middle part, which reflects the partial sum of one encoding step, is of special
interest. This partial sum is labeled with γ

xixi+1
k and are denoted as branch metrics.

Four different branch metrics are possible, depending on the bit combinations of xi

and xi+1.
γ 00

k = 0 → [xi xi+1] = [0 0]
γ 01

k = λi+1 → [xi xi+1] = [0 1]
γ 10

k = λi → [xi xi+1] = [1 0]
γ 11

k = λi +λi+1 → [xi xi+1] = [1 1]
(3.38)

As already mentioned the trellis defines all possible bit combinations. A valid path
from the beginning to end of the trellis defines a valid codeword. For each trellis step
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Fig. 3.7 Merging paths in a trellis

Forward Recursion:
store all survivor pathes

Fig. 3.8 Viterbi processing with the resulting surviver paths

k we can associate one intermediate sum value of Eq. 3.38 to one state transition,
while i defines the position of the bit xi within the codeword. The relation between
trellis step k and codeword position i is 2 ∗ k = i, which results due to the code rate
of R = 1

2 within the example. One branch metric associated to an edge is denoted
as:

γ
xixi+1
k (Sm

k , Sm′
k+1) (3.39)

which determines the mapping of a branch metric to a state transition or edge in
the trellis, with Sm

k and Sm′
k+1 the connected states at trellis step k to k + 1 with

m, m′ ∈ {0 . . . 2M − 1}. Fig. 3.7 shows 3 trellis steps which corresponds to 6 bits of
the codeword. On the right side of Fig. 3.7 the paths are labeled with the corresponding∑

λixi values. The labeling of the edges are exactly one branch metric of Eq. 3.38.
The partial sum (λ0 + λ1) + (λ2) + (λ4 + λ5) comprises 3 encoding steps and is
part of a valid cost function. However, the all zero path with the partial sum weight
0 + 0 + 0 could be one part as well. Thus it makes sense only to follow the survivor
of a minimum search

α0
k=3 = min{0 + 0 + 0 , (λ0 + λ1) + (λ2) + (λ4 + λ5)} (3.40)

With α0
k=3 the so called state metric or current survivor sum at trellis step k = 3

and state S0. The calculation has to be done for each state and each trellis step. We
recursively calculate new state metrics αS

k+1, with S the state number which is in this
example for possible states with S ∈ 0, 1, 2, 3.
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Figure 3.8 shows the basic sketch of the Viterbi processing at processing step k.
Processing step and trellis step are identically in this example. The Viterbi algorithm
which calculates the ML codeword can be divided in 3 major steps

• branch metric allocation: according to the state transition tables, allocate one of the
corresponding branch metrics of Eq. 3.38 to an each edge in the trellis, according
to Eq. 3.39.

• forward recursion: calculate at each time step and thus trellis step k the corre-
sponding survivor path metric αm

k+1 for each state m ∈ {0 . . . 2M − 1}. We have to
store these results for each state of the current processing step k. The αm

k+1 state
metric hold an intermediate sum of the overall cost function of Eq. 3.37 to reach
this particular state. It is the smallest sum which can be evaluated to reach this state,
starting form the very first state α0

0. In addition to the state metrics we have to store
an indication about the surviver edge, i.e. where did I come from. The resulting
surviver paths are indicated in Fig. 3.8 to the left of the current processing step.

• trace back: When reaching the final state at trellis step k = N/2 we have to extract
the path which connects α0

0 and α0
N/2. When we reached the last terminated state we

obtained the final cost value of the entire code word α0
N/2 = ∑N−1

i=0 λixi. Obtaining
the final cost value is, however, secondary to the objective of finding the ML path
x̂. The way to obtain this path is quite elegant. For each time step we have stored
the already indicated survivor at each trellis step. When reaching the final state we
now use a back tracing of the path information to obtain x̂ which is thus obtained
in a reversed order.

3.4.2 Max-Log-MAP Decoding of Convolutional Codes

The symbol-by-symbol maximum a posteriori algorithm, short MAP algorithm, pro-
vides a posteriori probabilities for each symbol or bit. The original algorithm in
probability domain for trellis codes was already published in 1974 [14] and named
after their inventors BCJR algorithm. However, the algorithm was not of practical
importance since it is more complex than the Viterbi algorithm and has no advantage
when decoding only convolutional codes. The Viterbi algorithm find the optimum
sequence while the MAP algorithm provides additional reliability information for
each position. First the invention of iterative decodable codes turned the focus again
on the MAP algorithm. In iterative decoding the ’soft’ information plays an important
role.

In hardware the processing is always done in the so already mentioned log-
likelihood domain. For each decoded bit xi, the Log-Likelihood Ratio (LLR) is
calculated that this bit was 0 or 1, given the received symbol sequence.

Λ(xi|y) = ln

(
P(xi = 0|y)
P(xi = 1|y)

)
(3.41)
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Solving the Log-MAP or Max-Log-MAP criterion in a brute force manner was
already shown in Sect. 3.3.3. Here we show the procedure with respect to a trellis
representation. The MAP processing on a trellis is a so called forward-backward
algorithm and is shown for trellis step k in Fig. 3.9. The processing can be decomposed
in 4 steps.

• branch metric allocation: according to the state transition tables, allocate one of
the corresponding γ

xixi+1
k values of Eq. 3.38 to each edge in the trellis. This part is

identical to the Viterbi algorithm
• forward recursion: calculate at each time step and thus trellis step k the correspond-

ing path metric αS
k+1 for every state S. We have to store these results for each state

S of all processing step up to trellis step k. Only the current state metrics at a given
trellis step are utilized for the next time step. For the Max-Log-MAP algorithm
exactly the same α or forward recursion is utilized which can be expressed in a
more general form as:

αm′
k+1 = min

∀(m−>m′)

(
αm

k + γ
xi,xi+1
k (Sm

k , Sm′
k+1)

)
(3.42)

We have find the minimum over all possibilities which connect states at the previous
time step to Sm′

k+1.
• backward recursion: the backward recursion has exactly the same recursive func-

tionality, however starting with the calculation from the last state in the trellis.

βm
k = min

∀(m′−>m)

(
βm′

k+1 + γ
xi,xi+1
k (Sm

k , Sm′
k+1)

)
(3.43)

Again we store all obtained results for each trellis step.
• soft-output calculation: we would like to calculate the symbol-by-symbol Max-

Log MAP result. For this we need the results of the forward recursion, backward
recursion and the current branch metric, which is:

Λ(xi, y) = min∀γ |xi=0

(
γ

xi,xi+1
k (Sm

k , Sm′
k+1) + αm

k + βm′
k+1

)

− min∀γ |xi=1

(
γ

xi,xi+1
k (Sm

k , Sm′
k+1) + αm

k + βm′
k+1

)
. (3.44)

We are searching the minimum over all sum of weights which has at trellis step k
under the condition that the corresponding codeword bit is either zero or one.

The individual processing steps of the Max-Log-MAP algorithm are explained
now by a small example. Note, that for practical hardware implementation for turbo
decoding only this algorithm is implemented, more details about this in the turbo
decoder chapter. The utilized channel code in the following example is a simple
2-state RSC with G0 = 1 and GFB = 38, its mealy automaton ins displayed next to
its trellis representation, see Fig. 3.10.
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Forward Recursion:
store all alpha values

Backward Recursion:
store all beta values 

Fig. 3.9 MAP processing with the forward and backward recursion

0 1 

infobit parity 

Fig. 3.10 Step one: set up the corresponding trellis and the labeling. The two state trellis with 4
trellis steps is shown. For each trellis step i and each edge a branch metric γ exists. Depending on
the possible systematic, parity bit combination xs

i xp
i a different branch metric has to be allocated

Fig. 3.11 Step two: allocate the corresponding branch values. The corresponding λ-values for each
trellis step are shown at the top. The branch metrics with the corresponding values are now updated
(the trellis step label k is omitted here). Each branch metric is calculated according to Eq. 3.38

The information word used for demonstration has just 4 bits, with u = [0101].
The resulting codeword after encoding is the concatenation of the systematic part xs

and the parity part xp. The codeword is modulated via a binary phase shift keying
(BPSK), which mapping 0 → +1 and 1 → −1 respectively. After demodulation we
receive the LLRs. The values of the resulting codeword, the sent symbols, and the
noise corrupted decoder input are the following:
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Fig. 3.12 Step three: calculate the forward state metrics α: In this example only two possible
transitions exist between the previous states and the state we would like to calculate. Since only two
states exist in this example, only two equations have to be solved for α0

k+1 and α1
k+1 respectively

α0
k+1 = min{α0

k + γ 00
k , α1

k + γ 10
k }

α1
k+1 = min{α0

i + γ 11
k , α1

k + γ 01
k }

Fig. 3.13 Step four: calculate the backward state metrics β: The calculation is identical to
that of the forward recursion, again only two equations have to be solved at each trellis

step:
β0

k = min{β0
k+1 + γ 00

k , β1
k+1 + γ 11

k }
β1

k = min{β0
k+1 + γ 10

k , β1
k+1 + γ 01

k }

codeword:
x = [xs xp] = [[ 0 1 0 1] [0 1 1 0 ]]
sent symbol:
s = [ +1 −1 +1 −1 +1 −1 −1 +1 ]
received:
λ = [λs λp] = [[ −0.8 −1.0 +1.8 −1.6] [−0.1 +0.5 −1.1 +1.6 ]]

For the decoding algorithm we several steps have to be done, see Figs. 3.10, 3.11,
3.12, 3.13 and 3.14.
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Fig. 3.14 Step five: calculate the output Max-Log-MAP approximation: We calculate now the out-

put result by evaluating: Λ(xi|y) ≈ − min
γk |xi=0

{. . .} + min
γk |xi=1

{. . .} . The figure shows the participating

α, β, and γ values to calculate trellis step k = 1. The left side for all possible γk |xi = 0 transitions
and the right side of the figure shows the equation for the γk |xi = 0 transition. α1

0 = inf and
β1

4 = inf are both initialized with an infinite value, since these states can not be reached. Zero
values are not explicitly stated within the sum terms. For each position we have to evaluate these
equations which are shown in the following:

Λ(x0|y) ≈ − min
γ0|x0=0

{(−3.2), inf}
+ min

γ0|x0=1
{(−0.9 − 2.2), inf} = 0.1

Λ(x1|y) ≈ − min
γ1|x1=0

{(−0.9), (−0.9 + 0.5 − 2.7)}
+ min

γ1|x1=1
{(−0.5 − 2.7), (−0.9 − 1.0 − 0.9)} = −0.1

Λ(x2|y) ≈ − min
γ2|x2=0

{(−1.9), (−0.5 − 1.1 − 1.6)}
+ min

γ2|x2=1
{(−1.9 + 0.7 − 1.6), (−0.5 + 1.8)} = 0.4

Λ(x3|y) ≈ − min
γ3|x3=0

{(−1.9), inf}
+ min

γ3|x3=1
{inf, (−1.6 − 1.6)} = −1.3

(3.45)

3.5 Soft-Input Soft-Output (SISO) Decoder

The previous example is summarized with the following 4 lines, the sent codeword,
sent symbol, received LLR, and output result respectively.

x = [xs xp] = [[ 0 1 0 1] [0 1 1 0 ]]
s = [ +1 −1 +1 −1 +1 −1 −1 +1 ]
λ = [λs λp] = [[ −0.8 −1.0 +1.8 −1.6] [−0.1 +0.5 −1.1 +1.6 ]]
Λ(xi|y) = [[ 0.1 −0.1 0.4 −1.3] [x x x x ]]
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Fig. 3.15 Concatonation of component decoders for soft-in soft-out decoding

As mentioned the result of the symbol-by-symbol MAP algorithm is denoted as well
as soft-output information. Typically the decoder utilizes all soft-input information
to calculate this soft-output information. The gain we obtained by the soft-input soft-
output algorithm is denoted as extrinsic information. It is calculated by taking the
difference between the obtained information of the MAP algorithm and the input
information.

Extrinsic LLR Le = Λ − λ = [ 0.9 0.9 −1.4 0.3 ]

The extrinsic information of a symbol or bit is the additional information a
(MAP) decoder calculates. The decoder calculates the a posteriori information taking
all input information into account. The extrinsic information is thus the a posteriori
information excluding the entire input information.

Typically, for decoding we have two types of soft-input information. The channel
information with here denoted as λ and an additional information which is called a
priori information (La) which is in this example zero. The a priori information of
symbol or bit is an additional information known before decoding. This information
may come from a source independent of the received sequence.

The efficient usage of a priori and extrinsic information turned in to focus when
Berrou and Glavieux presented the turbo codes (TC) [15]. These channel codes are
decoded in an iterative manner and are already applied in many communication stan-
dards [16, 17]. Note that already low-density parity-check (LDPC )codes, introduce
in 1963 utilized the iterative decoding.

The success of the iterative decoding process is the efficient usage of extrinsic
and a priori information. The major principle of all iterative channel code decoders
is the exchange of reliability information, in terms of LLRs, between 2 or more
component decoders. The basic code structure of TCs is the random concatenation
of 2 component codes. In the case of LDPC codes many simple component codes
are concatenated. Both code types and the implementation of the decoding algorithm
are explained in detail in the next chapters.

The concatenation of different component codes for decoding is shown in
Fig. 3.15. For each component code a corresponding component decoder exist. A
component decoder calculates a local MAP information of the bits to be decoded.
These information is re-sorted according to the concatenation of the component
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codes and then passed to the connected component codes. The re-sorting process
is denoted as interleaving in the following, see Sect. 4.3. One iteration is finished if
each component code has updated the information ones.

The outstanding communications performance of concatenated codes can only be
obtained when each component decoder is utilizing soft information at the input and
calculates new soft information at the output which is denoted as SISO decoder and
does not really tell something about the utilized decoding algorithm like Log-MAP,
Max-Log-MAP, or other algorithms.

The output a posteriori probabilities (Λ) can be decomposed in three parts: the
channel input information, the additional gain (extrinsic information), and the a priori
information:

Λ = λ + La + Le (3.46)

Only the additional gain (Le) is passed to the other component decoders with respect
to the connectivity structure. Which means, we subtract the input LLRs as well as
the input a priori information:

Le = Λ − λ − La (3.47)

This additional information serves now as a priori information for an other compo-
nent code decoder and is besides the channel information one part of the soft-input
information.

Without subtracting the old input information a SISO decoder (Eq. 3.47) would
just confirm its decision of prior iterations.
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Chapter 4
Hardware Design of Individual Components

The previous chapters described the basic principles for the application channel
coding. Before proceeding to advanced channel coding techniques and its possible
hardware realization we will introduce in this chapter the basic steps for a hardware
design. An entire receiver is large system and comprises many different function-
alities. Combining all of them on a single die yields a so called System-on-a-Chip
(SoC). The SoC design requires the knowledge from system specification down to
hardware partitioning and refinement. However, every SoC is partitioned in smaller
functional blocks which can then be developed individually on component level.
This is especially true for the channel decoder which is just one single component
in a larger system. The same hold for e.g. demodulator, source encoder or decoder
and so on. The advantage of designing components individually is that typically the
functionality is restricted and can be well described. In this chapter we first revise
(Sect. 4.1) the design flow for a single component and show the different design
constraints which are posed either by the communications domain or the hardware
domain. Note, that the design flow shown here is no general hardware design flow.
It is restricted to communications specific constraints with respect to the introduced
base band processing components. Memories are an extremely important part for the
entire SoC and for each individual component as well.

For every hardware designer an understanding of the data access patterns and
their impact on the choice of the memory architecture, as well as the resulting area
and power consumption is mandatory. The basic parameters for the instantiation of
memories for the design of individual components are described in Sect. 4.2. The
following Sect. 4.3 exemplary shows the design of a simple interleaver component,
and how it is heavily influenced by the constraints of instantiated memories.

F. Kienle, Architectures for Baseband Signal Processing, 67
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4.1 Design Flow

A generic design flow for individual component design is shown in Fig. 4.1. Every
component like the discussed channel decoder in this manuscript is embedded in a
larger system. The design flow for a full system is not explained here, the starting
point is the isolated functionality like channel coding. Note that many of this small
functional blocks exist in a system design which have to be extracted by a system
engineer using the divide and conquer method. Every component design flow has
input constraints and certain quality measures. Here, the flow starts at the algorithmic
design level and ends in a refined model on the so called register transfer level (RTL).
This design flow is tailored to components which are embedded in communications
systems. For other applications different constraints especially for the quality of
service will exist.

Typically we can distinguish between an algorithmic design space exploration
and a hardware design space exploration. Different design requirements and quality
assessments exist for different levels of the design.

4.1.1 Algorithmic Design Space Exploration

Quality of Service

The quality of service (QoS) is the expected error rate with respect to a given signal-
to-noise ratio. This QoS is given by a communications standard or has to be defined
by a system engineer. A defined error rate could be: at most 3 bits are erroneous out
of 10,000 decoded bits. For every utilized algorithm we have to track the communi-
cations performance.

Communications Performance

At each level during the design process we have to ensure that the achieved communi-
cations performance meets the given QoS design requirements. The communications
performance as an assessment of the quality means e.g. the measured frame error rate
with respect to a certain noise level of a channel. Typically the communications per-
formance cannot be evaluated analytically. Thus so called Monte Carlo simulations
are performed: the entire transmission chain is model (e.g., using Matlab or C++)
and the transmission of information is simulated until the observed communications
performance is statistically stable. For every algorithmic transformations the impact
on the communications performance has to be checked.
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Fig. 4.1 Generic design flow: From component algorithmic extraction to register transfer level

Floating Point Reference Model

The floating point reference model is the time discrete model of the algorithm. It is
not important in which language this model exist, e.g. C, C++, Matlab. Each value
is represented by sufficient bits (e.g. 32 or 64 bits) to achieve the best achievable
communications performance. In many cases this perfect model is too complex for an
efficient hardware realization. Thus, sub-optimal algorithms have to be derived which
can be implemented in hardware. The degradation of each algorithmic transformation
has to be checked with respect to an optimal floating point reference model.
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Algorithm Selection & Transformation

The floating point reference model defines one correct realization, often different
basic algorithms exist to achieve the perfect performance as well. For example to
decode a given channel code we can implement the algorithm in probability domain
or in log-likelihood domain or we can change the basic flow of the algorithm e.g.
depth first or breadth first algorithm. The algorithm type selection is the first important
step towards a hardware realization. This decision step is for sure not a simple one,
since a wrong decision at this point may lead to complex or cumbersome hardware
realization. At this point the communications performance has to match that of the
floating point reference model.

Optimal Versus Sub-optimal Algorithm

After defining the algorithm type the first approximations within the algorithms
are introduced. Goal of this approximation is already to limit the complexity of the
algorithm. This is a very important design step and requires already experience about
a possible hardware complexity. This step is pretty often combined with the floating
point to fixed point conversion.

Quantization

During the floating point to fixed point conversion many algorithmic manipulations
take place. The communications performance has to be tracked whether it still fulfills
the QoS requirements. This step is not a classical quantization step where the quan-
tization noise can be measured, rather it in-cooperates many transformations with
respect to sub-optimality of the algorithm. The overall effects can only be measured
by Monte Carlo simulations by comparing the final performance degradation with
respect to the floating point reference model.

4.1.2 Hardware Design Space Exploration

The fixed point model defines all bit widths of quantized data: input bits, output
bits, and all internal values. However, the fixed point model does not define further
implementation details. Many further exploration steps have to be performed until a
register transfer model will be obtained. A hardware design can be decomposed into
three major blocks the data path, control logic, and the memory structure. Different
design requirements exist as well for the hardware design space exploration which
are shortly discussed in the following.
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Implementation Style

As mentioned with the term ‘implementation styles’ we refer to the choice of dif-
ferent hardware platforms and thus different possibilities with respect to flexibility,
power consumption, design time, re-usability, and costs. Different possibilities for
the implementation style were already shown in Fig. 1.2.

The choice of the implementation style is a trade-off between performance, power,
programmability, and costs. It is typically made even before the beginning of the
entire component design flow, since the platform will influence each design decision
significantly. Furthermore, the clock frequency is given, or at least, which clock
frequencies are available within a larger SoC.

Throughput and Latency Specification

The throughput and latency numbers for the entire communication system is defined
in the communications standard. The latency of an individual component has to be
derived from the overall system. Each component a dedicated respond time has to
be allocated. Starting from the latency and a given clock frequency one can derive
the required parallelism of an architecture. The goal is to meet the required latency
constraints and the throughput design requirements. However, the interface has to be
taken into account as well, as this can influence the final architecture.

Input and Output Interface Specification

The input and output (I/O) interface specification pose further constraints for the
hardware designer. It is very important to define the interfaces early during the design
space exploration since latency and throughput may be effected by the interface. The
interface should be specified in the very beginning of the hardware design. However,
in practice due to new requirements this definition changes frequently and thus posses
a time consuming challenge for the component designer.

Golden Reference Model

The golden reference model is way more than a simple fixed point implementation.
The fixed point model checks the statistical correctness with respect to e.g. commu-
nications performance. The golden reference model has to be statistically correct,
however, it has to provide a bit accurate behavior with respect to a hardware model.
Each internal variable should be modeled as well the correct bit width. Furthermore,
often a so called cycle accurate model is required which gives detailed timing infor-
mation, especially for the interface timing. The timing behavior is important for the
system validation and for hardware debugging.

http://dx.doi.org/10.1007/978-1-4614-8030-3_1
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Data Path

The data path is the heart of the processing kernel at which most of the arithmetic
operations are performed. Serial or parallel data paths may co-exist within a design.
Their basic task is the evaluation of a function output = f (input), where the input
and output data may be scalar data or vectors. The parallelism of the data path depends
on the required latency/throughput definition. For the design of the data path one has
to take care to meet the target clock frequency constraint.

Memory Structure

Memories are important building block for a designer. Typically for component
design only static random access memories are utilized which have fast access times.
From system point of view, in communications systems up to 70 % of the overall
power consumption is due to the memories. Thus, it is of increasing importance that
algorithm design takes the memory hierarchy into account. Memory hierarchy means
the grouping and organizing of smaller blocks of memory. The memory access, i.e.
reading and writing, has to be organized by a controller. Memories are explained in
more detail in Sect. 4.2.

Control Flow

Passing the correct input data at the correct time to the data path is one task of a
controller. Furthermore it has to organize the message transfer between different
data paths and storage devices. The overall control flow of an individual component
defines the sequence of individual task which are mandatory to obtain the desired
functionality. The control can be either as a software running on a small micro-
controller (CPU) or as a dedicated controller instance, depending on the complexity
and the task of the controller.

Hardware Performance

The typical performance measures of a certain task with respect to its hardware
realization are area and power. Area and power consumption have to be linked with
the achieved throughput and with the achieved quality of service. Furthermore the
flexibility of the implemented algorithm has to be taken into account. Thus, it is
a multi-dimension performance measure with conflicting goals, e.g. lowest power
consumption versus highest flexibility. The difficult task of communications perfor-
mance versus VLSI performance will be addressed in Chap. 9.

http://dx.doi.org/10.1007/978-1-4614-8030-3_9
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4.2 SRAM Memories

Memories are important building blocks. The task of the memory is to store and
provide information for different agents which may interpret or manipulate the infor-
mation. There exist many different types of memories, and each type has different
characteristics regarding functionality, accessibility, area efficiency, power efficiency,
and of course implementation cost. We can distinguish two major types of memories,
volatile memory and non-volatile memories. Volatile memories lose their informa-
tion when the power is switched off, non-volatile not. Non-volatile memories like
read only memories (ROM) or Flash memories are utilized to store long-term persis-
tent data. Flash storage devices cannot be utilized for high performance applications
with rapidly changing data content.

In every system-on-chip volatile memories are instantiated with its major storage
type called random access memories (RAM). Random access means we can either
store or read a data in any order, typically within a given maximum, deterministic
time frame. There exist two major classes of random access memories. The static ran-
dom access memories (SRAM) and the dynamic random access memory (DRAM).
Table 4.1 compares the major differences between these two type of memories.

In summary of the table we can extract one major reasons why only SRAMs are
possible for the design of an outer receiver. The mandatory bandwidth and a ‘truly
random’ data access can only provided by this type of RAMs. Thus, in the following
we only consider design aspects with respect to SRAMs.

Table 4.1 Major differences of SRAMs and DRAMs

SRAM DRAM

Technology
process

Identical CMOS process with respect
to logic and thus can fabricated on the
same die

Dedicated process for DRAMs

Access time Fast and constant access time, inde-
pendent of the access pattern

Access time heavily depend on the his-
tory of access, thus only a worst case time
can be specified

Access
protocol

Simple access protocol, which means
that no special controller is needed

Special controller mandatory

Area and
size

SRAMs have typically a limited size
(∼ 8Mbyte) due to cost and fabrica-
tion reasons. One cell to store a bit is
typically composed of 6 to 10 transis-
tors, depending on the specific SRAM
type

One cell to store a bit is realized by
utilizing the capacity of one transistor.
Thus, the cell size is up to ∼10x smaller
compared to that of a SRAM cell. The
bit storage to area ratio of DRAMs are
very efficient, at least for larger storage
demands.

Power SRAMs have a higher leakage cur-
rent and dynamic power consumption
due to logic technology compared to
DRAMS

Very power efficient when large junks of
data can be read
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Typically we are only interested here in so called synchronous SRAMs, which
means everything is triggered by a clock event. The opposite would be asynchronous
SRAM where data input and output are triggered by the transition of the addresses.

Figure 4.2 shows the high level view of a SRAM which is mainly composed
of a cell matrix, address port, data port, and command port (cmd) together with
multiplexers and registers. The cell matrix is composed of individual bits in cells,
while one storage cell is typically composed of 6 transistors building a bistable
latching circuit. The bit cells are organized in an array, where the word width defines
the cells in one row, and word depth defines the number of rows in this cell array.
This high level view is one simplistic version of a so called single ported SRAM,
with one address port and one data port. Typically for single ported SRAMs we
can access exactly one word per clock cycle, either read one word or write one
word, respectively. Of course there exist many different types of SRAMs which for
example can read and write one data within one clock cycle. These SRAMs are called
dual ported memories and will be discussed later. The bit pattern at the address port
defines the row number in the cell matrix. The demultiplex after the address port
is called address decoder which ensures the correct address in bits to row number.
Note, that the number of addresses can be quite large, here indicated with 4096 rows.
The address decoder and the mandatory wires to the corresponding cells can have

Fig. 4.2 High level view of a SRAM memory
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a large influence on power of the overall SRAM which is explained in more detail
in the next section. Via the command port we typically define the mode of access,
either reading or writing. It is as well possible to put the memory in idle mode which
means a reduced static power consumption.

The registers as indicated in Fig. 4.2 can best be understood when looking at the
clock diagram for reading and writing the SRAMS. Figure 4.3a shows the timing
diagram of a typical read access to a SRAM memory. The address data is passed to
the input port of a SRAM memory. This address data is then latched in an internal
register with the next rising clock edge. The data which can be read form the output
port is then stable at the next clock cycle. We can read one new data at each clock
cycle, while the corresponding address has to be passed one clock cycle before to
the address port. This behavior is indicated in the high level SRAM view as shown
in Fig. 4.2 which shows an input register at the address port but no output register
for the data port.

Figure 4.3b shows the timing diagram of a typical SRAM writing access. The
address and the corresponding data have to be passed at the same clock cycle to the
SRAM ports. The address and data are internally latched and then the data is written,
in the mean while the next data and address can be passed to the SRAM ports. This
means that the SRAM accepts new data at each clock cycle.

Fig. 4.3 Reading and writing
process of a SRAM memory.
a SRAM read access. b SRAM
write access

 

 

(a)

(b)
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4.2.1 SRAM Design Space Exploration

As already mentioned the SRAM memories are one important building blocks for
the design of individual components. The hardware designer has to care about the
instantiation of the memory arrays. Many different SRAM can be instantiated with
different shapes. The shape defines the word depth and word width. It is obvious that
SRAM memories with different shapes result in different area numbers and power
numbers. The designer would like to check what is the influence with respect to area
and power when instantiating different types of SRAMs. What is the area benefit
if my algorithm works with one bit less quantization? What is the expected power
consumption if I have to access the memory every clock cycle? What is the difference
in e.g. area when instantiating shapes of 512 × 8 versus 128 × 32 (both memories
store the same amount of overall bits)? What is the maximum design frequency the
memory can operate on?

To get answers on these question we have to explore the memory characteristics.
Each manufacturer offers another possibility how to analyze SRAM data, which
we denote in this manuscript as SRAM memory explorer. Note that the following
data and naming are artificial and not trailered to one specific manufacturer.
The SRAM memory explorer gives you the relevant design information for a given
SRAM design, described by its characteristics under specified conditions. It gives
here an example of SRAM output characteristics of a SRAM input characteristics
request. In the following we will explain the input parameters and output parameters
of apossible memory explorer. The input parameters define the SRAM for which
we request the design information and its operating condition and are mandatory to
narrow the search space.

Even the number of possible input parameters might be very large. For that reason
we divide the input request in primary and secondary input parameters. The primary
input parameters are mandatory to be defined by the designer, while for setting the
secondary parameters a more precise knowledge of the internal memory structure is
mandatory.

Primary Input Parameters

• Technology
Of course the feature size or process type is one of the first parameter with has to
be specified. As shown in Fig. 1.1 the size of the technology node changes rapidly.
Each technology node is coming typically with different SRAM types like

– Low power: SRAMs are optimized with respect to low power consumption,
typically for mobile applications we assume a so called low leakage technology.

– High performance: SRAMs are optimized with respect to fast access times and
thus high frequencies.

– Regular: SRAMs which trades off low power and high performance which are
of course typically counteracting parameters.

http://dx.doi.org/10.1007/978-1-4614-8030-3_1
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• WordDepth
The word depth parameter defines the number of words which can be stored in the
memory.

• WordWidth
The word width parameter defines the number of bits per of each word.

• Process
For the process we have to distinguish between slow and fast. Due to process
variation the switching time of transistor differs. Slow process defines e.g. the
access time at −3σ of the process, while fast process at +3σ respectively. An
architecture has to be designed with respect to both conditions, slow and fast, since
we do not know the exact resulting switching time of each individual fabricated
chip. Thus, the critical path check should always be done on the slow process cycle
time, while the so called hold time check has to be done on the fast process. The
hold time specifies the time span a data has to be stable after a rising clock edge.
This time span is mandatory to latch the data e.g. in a register.

• Voltage
Each memory is specified with different voltage levels (nominal, worst, best). The
design which is done with respect to a nominal voltage e.g. 1. V has to work as
well at the respective worst case voltage (−10 %) of 0.9 V. Thus the cycle time has
to checked as well for worst case Voltage since this cycle time may be twice as
large. Power is typically checked on nominal voltage level, however again worst
case power consumption should be done on +10 % voltage level.

Secondary Input Parameters

• Power Off
Some memory types allow to switch off the core cell array, where we have to
specified if we would like to have a pin for such a power off mode or not. One has
to remember since the SRAM is a volatile memory a power off mode will always
delete the memory content.

• Sleep Mode
Again an additional pin is generated if a sleep mode or sometime retention mode
is desired. A sleep mode switches off the periphery and thus reduces the leakage
of the memory. The memory content will be preserved.

• Write single bit
Some memory types allow to write individual bits. These special property will
increase the overall area since additional control logic will be mandatory to enable
the addressing of each individual cell.

Primary Output Parameters

• Area
The area occupied by the specified memory is one of the key numbers, and typically
given in mm2. This number is very accurate even for the final physical design.
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Remember that for logic area after synthesis a significant overhead for place and
route may occur may occour (e.g. +30 %), due to clock tree or additional design
for test structures.

• Power read nominal (Preadnom)
This number defines the average power of a read under the assumption that half
of the address bits are switching. All power numbers of a memory are specified
by μW/M H z, i.e. the specified power consumption is normalized to the system
frequency f . The power consumption of a memory results in

P = Aac · Preadnom · f. (4.1)

With Aac ∈ [0, . . . , 1] the access patter. Aac = 1 means that the memory is
accessed for a read at each clock cycle.

• Power write nominal (Pwritenom)
This number defines the average power of a write under the assumption that half
of the address bits are switching and half of the data bits are switching. The
power consumption of writing a data is slightly larger than that of a reading access
(≤ +10%)

• Read access time (Tacc)
The read access time specifies the (internal) time a memory requires to read a data.
It gives you an indication about the amount of additional logic one can instantiate
between the input/output memory port and the next register. Thus the critical path
is composed of Tcyc ≥ Tacc + Tlogic.

• Cycle time (Tcyc)
The cycle time determines mainly the maximum frequency of the design. For
smaller design frequencies one access can be performed at each clock cycle.

Secondary Output Parameters

• Aspect Ratio
Defines the ratio between the geometries Height/Width.

• ColumnMux:
A memory array may be folded for good aspect ratio. In Fig. 4.4 one possi-
ble example is shown. The memory is instantiated with parameters 4096 × 16
(rows×columns). However the internal storage structure may be folded into a
2048 × 128 memory. However, to select 16 output bits form the 32 columns
requires 16 times a 2:1 column multiplexer. Thus for this example the ‘Mux’
parameter would be ColumnMux = 2.

• Output Capacitance
This parameter defines the maximum capacitance which the outputs are able to
drive.

• Width and Height
The physical width and height of the SRAM cell in mm.
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Fig. 4.4 High level view of a SRAM memory with ColumnMux=2.

• Density
The density is defined as Kbits/mm2 and gives you an indicator about the area
efficient of the memory.

4.2.2 Exemplary SRAM Data: Area, Power, Cycle Time

In this section we show exemplary the results for area, power, and cycle time. The
utilized technology for demonstration is a 40 nm low power technology with Vdd =
1.1 nominal voltage. Note, that the numbers are derived from an existing technology,
however, the results are changed with respect to the absolute numbers and adjusted
for educational purposes. Shown are different memory types like:

• SP-SRAM: single ported SRAM memories.
• XS-SP-SRAM: extra small single ported SRAM memories which are designed

for a small storage requirement.
• DP-SRAM: dual-ported SRAM memories which enable the reading of two values

and the possibility to write and read one value within a clock cycle.
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Summary SRAM Exploration

Figures 4.5 and 4.6 show the area and the power trend for the three different memory
types. Both figures show the result for the slow process with Vdd = 0.99 V, thus the
best case power consumption. However, the intention of the figures is to show the
relative area and power and the area and power trends for different memory types
with respect to bit width and word depth. For every memory type three different,
typical word width W W ∈ {8, 16, 32} bit are given. One important fact can be seen,
that each memory type is designed for a specific range of word depth. Especially
the SP-SRAMs are designed for very large number of words. This can be seen
when comparing the slopes of the extra small memories and the large single ported
memories. Between ∼1024 and ∼2048 the area slopes will cross. Attention in the
figures: no MuxNumbers are given, thus, it is just an indication of sizes and trends.
For the designer we can summarize the most important issues for working with the
memory explorer or a similar tool.

• Different nominal cases for the memory exist, e.g. Vdd(nom) = 1.0 V or
Vdd(nom) = 1.1 V.

• Derived from the nominal case a slow and fast case exist with Vdd(slow) =
0.9 · Vdd(nom) and Vdd( f ast) = 1.1 · Vdd(nom).

• The cycle time has to be checked for its worst case assumption, which is Vdd (slow).
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Fig. 4.5 Example of the area for different memories types, all in 40 nm technology
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• The power consumption should be investigated for the nominal case Vdd(nom).
• The ColumnMux factor defines the internal structure of the memory. Different

ColumnMux factors result in different, sometimes contradicting, area, power and
cycle time numbers.

• When possible, the instantiation of dual ported memories should be avoided, since
area and power are larger than for single-ported memories with identical storage
capabilities.

Which SRAM memories are instantiated during the design of a component, and
whether it is possible to avoid the instantiation of dual ported memories, depends on
the access pattern of the application. Access pattern defines the data access in time
and space (location) and depends of the functionality we would like to implement.
One example with a difficult access pattern is presented in the next section.

4.2.3 Importance of Memory Exploration

We have seen in the previous section that we can instantiate different types of mem-
ories. For the design of a digital baseband receiver exploring the different options
gets more and more important. In future designs it is expected that the size of mem-
ories with respect to the overall chip area will increase further. For example Fig. 4.7
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Fig. 4.7 Chip photo after place&route of product DVB-S2 receiver chip, 70 % of the overall area
is determined by instantiated memories.

shows the final place and route (P&R) layout of a low-density parity-check (LDPC)
decoder which was designed for a DVB-S2 receiver product.

LDPC codes are explained in Chap. 7 while the entire design of this particular
decoder is described in [1]. Here, we only consider the memories, which determines
70 % of entire area. The instantiated memories are indicated by the boxes.In this
design we have to store in total ∼2Mbits of data. 960 bits are read and written
in each clock cycle. An SRAM featuring a bitwidth of 960 bits does not exist as a
monolithic building block. Thus, multiple memories have to instantiated to enable
the access of 960 bits per clock cycle. The designer now has the possibility to chose
a possible fragmentation to achieve the required memory access bandwidth. A so
called memory hierarchy is introduced. Note, that the term memory hierarchy is
often used in large systems and defines the organization of memories of different
types (DRAM, SRAM) in which each storage element may have a different respond
time. Here, we use the term memory hierarchy to emulate a large SRAM memory
array for an application while the internal structure is fragmented. This is indicated in
Fig. 4.8 for two different setup to emulate the required SRAM shape of 2048 × 960.
Either we instantiate 15 SRAMs of shape 2048 × 64 or we could even instantiate
240 SRAMs of shape 256 × 32. Both possibilities are shown in Table 4.2. Given
are the corresponding data in terms of area and power of a single instance and the
overall expected numbers, respectively. In case of a high fragmentation the extra
small memories are assumed since these are optimized for the instantiated shape.
Assuming the low fragmentation case the data for area and power correspond to
standard single ported SRAMs. The table shows clearly the trade-off a designer
has to be aware of. The power is optimized for the case of the highly fragmented
instantiation, while the area is optimized for the low fragmentation variant.

http://dx.doi.org/10.1007/978-1-4614-8030-3_7
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Fig. 4.8 Two different memory hierarchies to enable the access of words with 960 bits

Table 4.2 Two different memory organizations to enable an access of 960 bits per clock cycle.

Case High fragmentation Low fragmentation
memory type XS-SP-SRAM SP-SRAM

Shape 256 × 32 2048 × 64
Single area 0.006 mm2 0.05 mm2

Average Power (Preadnom+Preadwrite)/2 5.8 μW/M H z 22 μW/M H z
Number of instances 240 15
Total number of stored bits 1.96 Mbits 1.96 Mbits
Total area estimate 1.44 mm2 0.75 mm2

Total power estimate 52.2 mW 99 mW

The total power estimate assumes here a frequency of f = 300M H z by eval-
uating Eq. 4.1. The power and area numbers given here are only estimates. P&R
will influence these results again since the data have to be routed to the correspond-
ing memories. Thus, the area and the power consumption will be higher in both
cases. The large influence of the P&R is further highlighted in the design example
presented in Sect. 7.5.

In the example here we did not assume any constraints about how to access the
960 bits. It is of course a huge difference if these 960 bits have a regular access pattern
or a random access pattern. In all cases the designer has to design the controller to
ensure the correct addressing across instances of memories. One example which
often requires a high fragmentation due to its difficult access pattern is presented in
the next section.

http://dx.doi.org/10.1007/978-1-4614-8030-3_7
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4.3 Individual Component: Interleaver

In this section we will show exemplary the considerations a designer has to make
when designing an individual component, in this case an interleaver. We will see that
its design, at least for higher throughputs, can be difficult due to requirements to the
memory architecture.

4.3.1 Interleaver Types

In communication systems interleavers are used in many different components. For
wireless transmission systems, typically, block-based interleavers are used, which
change the location of a bit or symbol within a block, where the term block means
either a codeword, multiple codewords grouped to a frame, or only a part of a code-
word. Thus, we have to distinguish between:

• inter-frame interleaving: interleaving across multiple frames,
• intra-frame interleaving: changes the position of bits within a codeword, as in the

case of bit-interleaved coded modulation as shown in Fig. 2.1, and
• channel code interleaving: the channel code interleaving is the bit permutation

within a part of the codeword to ensure randomness of the code. This is applied in
e.g. turbo codes or LDPC codes, see Chaps. 6 and 7.

The task of any interleaver is to break up dependencies between adjacent posi-
tions within a data stream. For example, the inter-frame interleaving ensures that
burst errors are spread via multiple frames. Burst errors are errors on consecutive
positions within a transmission stream, which may occur when transmitting via fad-
ing channels. An interleaver spreads these uncertain locations over a larger distance.

An interleaver uses a bijective function which maps the indices of an input
sequence to changed indices of an output sequence. An interleaver table Π is one
realization of this index mapping, i.e. it defines the one to one positional mapping
from input position to output position of a given interleaver. Typically i defines the
index in the interleaved block when we speak aboutΠ(i). Thus the interleaved data
sequence can be derived by indirect addressing:

x(Π(i)) = x′(i) (4.2)

x refers to the data vector in the original order, the vector x′ is the interleaved vector at
the output of the interleaver. It is also possible to define a direct addressing. However,
to obtain the same output sequence of x′ the inverse interleaver table has to be derived,
which is typically indicated as Π−1.

x(i) = x′(Π(i)−1) (4.3)

http://dx.doi.org/10.1007/978-1-4614-8030-3_2
http://dx.doi.org/10.1007/978-1-4614-8030-3_6
http://dx.doi.org/10.1007/978-1-4614-8030-3_7
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Many different possibilities exist to generate an interleaver table for a specific
block. Which one to use depends mainly on the application. In the following we
will present four different methods to generate an interleaver table. Three of these
interleavers are actually used in today’s communications standards. Figure 4.9 plots
the output position over the input position for four different interleavers operating
on blocks, all with a block length of 80 bits. The x-axis shows the input position, the
y-axis the corresponding output position.

Figure 4.9a reflects the output of a so called random interleaver. The random inter-
leaving shows no special structure and is typically not utilized in communications
systems. Figure 4.9b shows the pattern for a classical block interleaver. Note that the
name block interleaver denotes just a special type of a block-based interleaver, but

(a)

(c)

(b)

(d)

Fig. 4.9 Illustration of the permutation pattern of 4 different interleavers, all with block length of
N = 80: a random interleaver, b block interleaver, c UMTS channel code interleaver, and d LTE
channel code interleaver
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these terms are not to be confused. The typical procedure of a block interleaver is to
write the data stream in an array in a column by column fashion. The output stream
is generated by reading the content row by row. In Fig. 4.9 we utilized an array with
C1 = 20 rows and C2 = 4 columns. The generation of the interleaver table Π can
be described with

Π(i) = (i mod C1) · C2 +
⌊

i

C1

⌋
(4.4)

C1 and C2 are the two dimensions of the block interleaver with the overall block size
of C1 · C2. Block interleavers are used in communication standards very often, since
they provide a simple and often effective permutation.

In addition there exist a so called cyclic block interleaver. The cyclic block inter-
leaver needs a further vector for its description, Ioffset. The offset vector has C2
entries, one for each column. The values define the start index at which each column
is filled. For the interleaver plotted in Fig. 4.9b this offset vector would be

Ioffset = [
1 1 1 1

]
. (4.5)

Here, all columns are written starting from the very first position top to bottom.
Plot (c) shows the interleaver which is instantiated within the UMTS channel

code encoder (turbo encoder). The interleaver construction is called permuted block
interleaving and is based on a classical block interleaver. Again, the input block is
written to an array row by row. However, before the reading step, the position of
the columns and rows are permuted as well. With this additional row and column
permutation stage a quasi random interleaver pattern is obtained, even so, with a
deterministic procedure to calculate this interleaver pattern within an application.

In UMTS a different interleaver table has to be generated for each block length
ranging from 40 to 5114 bits. Thus, the granularity of this interleaver generator is 1
bit. Despite its deterministic generation procedure, for a hardware realization of the
turbo decoder it turned out that the specified procedure to generate the interleaver
tables has two disadvantages. Especially for high throughput applications, where
spatial parallelism is required two problems have to be solved:

• The generation of the interleaver tables is relatively complicated and may require
many clock cycles. Producing multiple indices of the interleaver table in one clock
cycle is possible but cumbersome.

• The second problem is more difficult to solve. Parallel processing requires par-
allel interleaving of data. Memory access conflicts may occur, which have to be
resolved, see Sect. 4.3.2.

Due to these two problems a new interleaver type was defined in the newer
LTE standard. Figure 4.9d shows the permutation pattern of the LTE channel code
interleaver (turbo encoder). It has a very simple construction rule to generate the
interleaver table:

�(i) =
(

f1 · i + f2 · i2
)

mod K (4.6)
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Table 4.3 Overview of interleaver types the block size and granularity their characteristics

Standard Interleaver Classes Smallest block Largest block Granularity in bits

TTI frame Block interleaver 150 k 8
LTE [3] Sub-block Block interleaver 120 18 k 8

Channel code ARP interleaver [4] 40 6144 8
TTI frame Block interleaver 150 k 8

UMTS Sub-block Block interleaver 120 15 k 8
[5] Channel code Block permuation 40 5114 1
DVB-S2 Intra block Block interleaver 16.4 k 64.8 k 360
[6] Channel code Quasi-cyclic 80 k 240 k 360

f1 and f2 are interleaver parameters defined in the standard and K is the block length.
The granularity is 4, 8, or even 16 for larger block sizes. This interleaver type is called
quadratic polynomial permutation (QPP) interleaver [2].

In summary we can say that different interleaver types are utilized in communi-
cations standards. The interleaver has a major impact on the resulting communica-
tions performance while different interleaving types within a transmission scheme
are mandatory. For modern communication standards the choice of the appropriate
interleaver type is often determined by the resulting communications performance
and the efficiency of possible hardware realizations of that interleaver.

Table 4.3 shows the different interleaves which are utilized within one communi-
cation standard. For example the LTE standard features an interleaver for the transport
transmission interval (TTI) frame which interleaves up to 1,50,000 positions. Then,
an interleaver stage for the coded codeword is utilized with a maximum block length
of 18,000 indices, furthermore the channel coding itself has an interleaver inside.
Here, the block sizes for the interleaving ranges from 40 to 6144 bits. The granular-
ity in the table defines the step width between to block sizes. The LTE turbo code
interleaver has a granularity of 8 and for larger block sizes even 16, the UMTS turbo
code interleaver has a granularity of one. Thus a hardware realization for the UMTS
channel code interleaving has to realize all possible block sizes between 40 and
5114 bits. Thus, it is of importance if we can compute the interleaver tables in hard-
ware or whether to compute the corresponding interleaver tables offline. Depending
on the throughput requirements different challenges for the hardware realization
exists.

4.3.2 Hardware Realization

This section discusses the different possibilities which can be applied to the storage
of data in an interleaved order. First we will derive a serial architecture for inter-
leaving, followed by an architecture which interleavers P data in parallel. Assuming
a serial architecture, we always store a data block in original order in one memory
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while the data with changed indices position is stored in a second memory. Further-
more, we assume that the interleaver tables are stored as well in memories. For the
serial interleaver architecture we can identify three major methods to the interleav-
ing/deinterleaving.

• Interleaving by reading (Fig. 4.10a)
The memory which stores the interleaver table is read sequentially. The output
data of this memory is used as address for data memory A. The retrieved data is
then written to data memory B at consecutive addresses. Thus, we read the content
DATA A in an interleaved manner, which is denoted as interleaving by reading.

• Interleaving by writing (Fig. 4.10b)
The data memory A and the deinterleaver memory are read sequentially. The output
data of the deinterleaver memory is used as address for data memory B. Thus, the
retrieved data is written in an interleaved manner to data memory B. The content
of the address memory is different to the first case and is called deintereaver table.

• Interleaving in two stages (Fig. 4.11)
The interleaving is performed in two stages. Stage one writes the data in an inter-
leaved manner to an intermediate data storage (DATA TMP). Interleaver Table 4.1

Fig. 4.10 One stage
interleaving: Interleaving
from memory A to memory
B upon read (top), upon write
(bottom)

(a)

(b)
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Fig. 4.11 Two stage
interleaving: the content of
address Tables 4.1 and 4.2 are
different.

does not hold the final interleaving table. The final interleaved data sequence is
obtained after the second stage, which is here indicated as an input to a process-
ing block. The second stage performs an interleaving by reading. The content of
interleaver Tables 4.1 and 4.2 are different and have to be derived from the overall
interleaver table.

Within all presented serial architectures we have instantiated memories for the
interleaver tables. However, when it is possible to generated the interleaver tables
on the fly we can replace these memories by an appropriate logic block. On the fly
means we have to provide the correct target address for reading or writing at each
clock cycle.

Parallel Interleaving

So far we have presented only possibilities for a sequential interleaving, which means
we need N clock cycles to interleave N values. Increasing throughput demands
requires a parallel interleaving. Multiple data have to processed and, consequently,
also interleaved in one clock cycle. Figure 4.12 shows the major problem of parallel
interleaving. On the right side the address table with the corresponding interleaving
address is shown. The data flow for the architecture is top down. 4 single ported
SRAM memories are instantiated in front of a parallel processing unit. The data
A,B,C,...,P are stored in the four input memories, while the numbering next to each
memory indicates the original address labeling of the interleaver table. The parallel
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Fig. 4.12 Parallel Interleaving and memory access conflict for the very first processing step

processing unit accepts now four values per clock cycle, i.e., in the first clock cycle it
processes data A,B,C,D. After the processing we would like to write the four output
data in an interleaved order. However this is not possible within one clock cycle since
data A and C have to be written to the same output memory We call this a memory
access conflict. Figure 4.13 shows the data after all data are written. In this small
example at all four clock cycles a memory access conflict occurs.
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Fig. 4.13 Parallel Interleaving and memory access after all values are processed
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One of the most elegant method to resolve the parallel interleaving problem is
two utilize a two stage interleaving process. As shown in Fig. 4.11 the two stage
interleaver requires two interleaver tables. Each stage interleaves P data in parallel
without memory access conflicts. The trick is the intelligent pre-computation of the
two appropriate interleaver tables. In [7] it was shown that it is always possible to
find a two stage procedure to interleave P values without memory access problems.

Currently, there is no deterministic algorithm known which can calculate the two
address tables on the fly, thus a pre-processing to determine the two interleaver
tables has to be performed Typically in practical applications all interleaver patterns
are pre-calculated and stored in external memories. Assuming a new block size the
corresponding interleaver tables have to be loaded to corresponding interleaver table
memories. This parallel interleaving problem occurs also for example in UMTS
turbo decoding which features 5000 different block length and thus as many varying
interleaver pattern. The storage of the pre-computed interleaver patterns is quite large
and exceeds the storage demands of the turbo decoder architecture itself.

Joint Algorithm-Hardware Design

Interleavers are defined in many communication standards. Since the throughput
demands of nearly all standards steadily increases we have to implement the inter-
leaving sooner or later as well in a parallel manner. As seen, this posses problems
for the implementation. However, it is possible to design an interleaver which pro-
vides parallel processing without any memory access conflicts. For that we have to
consider jointly constraints from a possible hardware realization and constraints for
the algorithm in this case an appropriate permutation pattern.

The idea how to achieve this is quite elegant and often denoted as joint algorithm-
hardware design. Figure 4.14 shows the first step for designing an interleaver table
which allows a conflict free parallel interleaving. We have seen that in the first clock
cycle there was an access conflict. We would like to write data A and C to the
same memory. The idea now is to replace the original destination address of data
C by a new address which allows a conflict free storage. For the first clock cycle
in this example we have here 4 possible address which have no conflicts. In theory
we could choose any of these for possibilities, nevertheless, since the interleaving
has to achieve a certain goal with respect to an application, additional constraints
may exist. For example a clustering of addresses is not allowed, see Fig. 4.9a in the
case of a random interleaving. A clustering of address indicates that e.g. a burst error
would not be spread across the block. The interleaver table is now filled step-by-step,
always preventing a possible conflict at each construction step. The entire ’conflict
free’ interleaver pattern can be obtained by Heuristics as explained, or as well by
algebraic methods [4]. The interleaver design method, however, has always a paral-
lelism level in mind, at which memory access conflicts can be prevented. Thus the
joint algorithm-hardware design requires knowledge of both domains. The hardware
gives us constraints with respect to an initial architecture template and defines also
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Fig. 4.14 Designing an interleaving table which allows a parallel interleaving without memory
access conflicts

as well a target parallelism, while the algorithm or application has constraints with
respect to functionality.

The idea of joint algorithm-hardware design was already applied in the design
of communications standards. The (turbo code) interleavers of the LTE standard are
designed with respect to hardware knowhow. The interleavers can be implemented
for parallel processing without occurring memory access conflicts. In the case of
LTE turbo code a parallelism of the decoder architecture is considered with P = 4,
P = 8, or P = 16 respectively.
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Chapter 5
Data Path of Individual Components

The data path of an architecture defines the alignment of processing elements. It real-
izes a certain functionality which fulfills a given throughput constraints. There exit
always different possibilities to realize a defined functionality. Here we describe the
individual steps to the design of individual components, again tailored for commu-
nications systems as shown in Fig. 4.1. Note, there is a difference of a data path for
individual components and the data path for processors. The data path of a general
purpose processor has the task to be as flexible as possible, thus arithmetics units are
used with large bit width to provide a high flexibility, e.g. 32 bit or 64 bit. For dedi-
cated hardware design the data path and thus the computational units are optimized
with respect to the given algorithm to be processed. The steps to derive a dedicated
data path are:

1. Starting from an algorithm description we have to decompose the algorithm
in functional parts. Goal of this task is to identify the mandatory processing.
The processing can often be separated in individual processing steps. For the
individual processing parts we have to analyze:

• the final bit width of the data, e.g. what is the influences of the data represen-
tation on the communication performance,

• how to realize processing kernels, e.g. processing in time or frequency domain,
• the correct or approximative functionality, e.g. whether the communications

performance of the approximation is good enough.

2. The next step is to derive a data flow. Deriving a data flow utilizing the complete
functionality of the algorithm can sometimes be cumbersome. We have to dis-
tinguish between important aspects for the data flow and unimportant ones. The
data flow is independent from the processing itself, rather reflects:

• data dependencies, e.g. which data have to processed first,
• lifetime analysis of data, e.g. how long do we have to hold information,
• concurrency, e.g. the choice of consuming one value after the other or process-

ing all at once.

F. Kienle, Architectures for Baseband Signal Processing, 97
DOI: 10.1007/978-1-4614-8030-3_5, © Springer Science+Business Media New York 2014
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The data flow analysis is very important for the hardware realization since it
directly influences the resulting throughput and the overall data handling. The
data flow analysis should be done on an simplified or abstracted functional model.
An example is shown in next section.

3. Define the constraints to derive a data path. For dedicated hardware design the
major constraint is often a time budget to fulfill a certain task. One constraints
could be the number of data which should be processed within a certain time
budget which is in fact the throughput definition of an application.

4. Define a feasible data path of one possible realization which fulfills the timing
budget/throughput constraint. The timing information can be an abstract timing
or a detailed cycle based timing. Important is that we allocate the time budget for
the processing task.

In the following we derive first an abstract data flow followed by different data
path possibilities. We use the example of a Max-Log-MAP processing which was
introduced in Sect. 3.3.3. The corresponding functional processing parts are derived
afterwards. The data paths derived in the next section are valid for all forward-
backward based algorithms, thus independent of a possible Log-MAP or Max-Log-
MAP implementation. This is only possible if a clear separation of data flow and
functionality is derived. Realizing corresponding processing elements are presented
Sect. 5.2. More complicated functions can either be done by look-up tables or by
deriving approximations which can be efficiently implemented. Both techniques are
explained based on exemplary functions which are often used to realize channel
decoders.

5.1 Data Flow to Data Path Example

The MAP decoder has to calculate the maximum a posteriori probability which
was introduced in Sect. 3.3.3. We deal here only with the so called Max-Log-MAP
algorithm which is typically employed in the hardware realizations. To perform the
Max-Log-MAP algorithm on the trellis we have to perform the so called forward-
backward processing, this is shown step-by-step at Figs. 3.10–3.14.

To separate the processing and the data flow we first derive the mandatory
processing steps in a more general way. The Max-Log-MAP decoding according
to Sect. 3.4.2 can be summarized in four processing steps which are repeated here.

• Branch metric computation and allocation on the edges of the trellis.
• Forward recursion: calculate at each time step and thus trellis step k the corre-

sponding path metric αS
k+1 for every state S. The calculation is done recursively,

where the result in step k always depends on the previous results.
• Backward recursion: the backward recursion is based on exactly the same recursive

processing, however starting with the calculation from the last state in the trellis.

http://dx.doi.org/10.1007/978-1-4614-8030-3_3
http://dx.doi.org/10.1007/978-1-4614-8030-3_3
http://dx.doi.org/10.1007/978-1-4614-8030-3_3
http://dx.doi.org/10.1007/978-1-4614-8030-3_3
http://dx.doi.org/10.1007/978-1-4614-8030-3_3
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• Soft-output calculation: to calculate the symbol-by-symbol MAP probability we
need the results from the forward recursion, the backward recursion and the branch
metrics.

The recursive calculations are always done on multiple values. In the case of trellis
processing we calculate at each recursion step Sk+1 = f (Sk, γ k). In the case of a
4-state trellis Sk+1 consist of 4 values, while γ k , the edge labels, consists as well of
4 branch metrics.

For the data flow we do not concern about the cardinality of S or γ k and we can
abstract the recursion function by a simple function which calculates only one value,

Sk+1 = f (Sk, γk). (5.1)

Each branch metric at step k is assumed as well to be one value. For deriving the
data flow we use a block of 8 input values, denoted as γ = [a, b, c, d, e, f, g, h],
with e.g. γ0 = a at step k = 0. Furthermore, for the function of Eq. 5.1 we utilize
a simple minimum search of two input values, i.e. min(x, y). The entire forward-
backward processing is thus reduced to a simple processing of 8 input values with
simple computational stages.

The abstract function for deriving the data flow can be written as a marginalization
problem:

M(x) = min∼xi
{a, b, c, d, e, f, g, h} (5.2)

∼ xi defines the values of x without the value at position i . Thus, we have to
compute 8 different results, one for each input position.

M(xi = a) = min {b, c, d, e, f, g, h} M(xi = b) = min {a, c, d, e, f, g, h}
M(xi = c) = min {a, b, d, e, f, g, h} M(xi = d) = min {a, b, c, e, f, g, h}
M(xi = e) = min {a, b, c, d, f, g, h} M(xi = f ) = min {a, b, c, d, e, g, h}
M(xi = g) = min {a, b, c, d, e, f, h} M(xi = h) = min {a, b, c, d, e, f, g}

One possible data flow structure to solve Eq. 5.2 is a tree structure. The tree
structure is a typical data flow with respect to a parallel realization.

Parallel means here that we may process all input values {a, b, c, d, e, f, g, h} in
one step.1 The tree structure for two functions can be seen in Fig. 5.1. The left tree
calculates M(xi = a) and the right tree M(xi = b) respectively. It can be seen that
in both trees identical sub-results are calculated, indicated by the circles. This gives
us an indication about possible hardware reuse in a derived data path.

However, first we define additional constraints on our data flow with respect to data
dependencies. The MAP processing is recursive and non commutative, at least when
utilizing the trellis structure of convolutional codes. We have to ensure a recursive
approach as well to solve Eq. 5.2. This is shown in the new data flow structure of

1 In a hardware realization this would mean in the same clock cycle.
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Fig. 5.1 Tree data flow for calculating M(xi = a) and M(xi = b)

Fig. 5.2 Recursive data flow
to calculate M(xi = a) and
M(xi = b)

a b c g h 

Fig. 5.2. Two different data flow directions are shown here, the forward direction
with solid lines, and the backward direction with dotted lines.

In the following we derive two different data paths which fulfill the constraint of
a recursive calculation. The data path contains already timing information and is one
major step towards a dedicated hardware architecture. Then, one processing step in
the calculation corresponds to one clock cycle.

5.1.1 Serial Data Path: One min (x, y) Unit

The serial data path (serial marginalization) has already prerequisites for a final
hardware realization. Here in the example, we assume that we can process one input
value per clock cycle (processing step). Figures 5.3–5.5 show the data path and the
processing steps to solve Eq. 5.2. We write all input information (a, b, d, e, f, h, g)
to an array, indicated as box, which may be later instantiated as a memory. The current
reading position of the array is indicated as a pointer. In the hardware implementation
this pointer will be a reading address for a RAM, see Sect. 4.2. Each processing step
is now described step by step.

http://dx.doi.org/10.1007/978-1-4614-8030-3_4
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Memory1

Memory2

read pointer starts at addr.0+1

+1

Fig. 5.3 Serial architecture: forward recursion, with the content of memory 2 after the 7th clock
cycle

Step 1: Forward Processing (Figure 5.3)

• Initialization:
The input values {a, b, c, d, e, f, g, h} are stored sequentially in memory 1.
The read pointer (address) for memory 1 is set to 0 (the address where value a is
stored).
The write pointer(address) for memory 2 is set to 0.
The register is initialized with an ‘infinite value’, e.g. in hardware this would be
the largest number with respect the utilized number representation.

• First clock cycle:
Read the first value (a) from memory 1.
min(x, y) calculates the first result which is min(a, inf) = a.
The result is stored in memory 2.
The register keeps now the value a.
The read and write pointer are incremented by one.

• Second clock cycle:
Read the second value (b) from memory 1.
min(x, y) calculates the second result which is min(a, b).
The result is stored in memory 2.
The register keeps now the value min(a, b).
The read and write pointer are incremented by one.

• 7th clock cycle
After 7 clock cycles all intermediate results are stored in memory 2.
The so called forward processing or forward recursion is finished.
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Memory1Memory 3

+1

write pointer
starts at addr.0

read pointer
starts at addr.7

1

Memory 2

Fig. 5.4 Serial architecture: backward recursion, with the content of memory 3 after the 7th clock
cycle

Step 2: Backward Processing (Figure 5.4)

For the backward processing a third memory has to be instantiated, denoted as mem-
ory 3.

• Initialization:
The input values {a, b, c, d, e, f, g, h} are again stored sequentially in memory 1.
The read pointer (address) for memory 1 is set to 7 (the address where value h is
stored).
The write pointer(address) for memory 3 is set to 0.
The register is initialized with an infinite value.

• First clock cycle to last clock cycle:
Read the memory 1 starting form address 7, first value is h, last is a.
The min(x, y) calculates the results in reversed order.
The register keeps always the intermediate values.
The read pointer of memory 1 is decremented by one in each step. The write
pointer of memory 3 is incremented by one in each step.

Step 3: Output Processing (Figure 5.5)

For the output processing the data passed to the min(x, y) are multiplexed from
memory 2 and memory 3 respectively. The two new introduced multiplexers indicate
the required switching.

• Initialization:

The read pointer (address) for memory 2 is set to 0.
The read pointer(address) for memory 3 is set to 6.
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Memory1

Memory3Memory2
read pointer
starts at addr.6

1

+1

read pointer
starts at addr.0

Fig. 5.5 Serial architecture: backward recursion

• First clock cycle:
Only the value from memory 3 at address 6 is read which is already the first result
M(a) = min (h, g, f, e, d, c, b).
The pointer of memory 3 is decremented by one.

• Second clock cycle:
Read address 0 from memory 2.
Read address 5 from memory 3.
min(x, y) calculates the next result M(b).The pointer of memory 2 is incremented
by one.
The pointer of memory 3 is decremented by one.

• Last clock cycle:
Only the value from memory 2 at address 6 is read, this is already
M(h) = min (a, b, c, d, e, f, g).

Summary data path: one min (x,y) unit

For the processing we instantiate three memories and one processing unit. One mem-
ory stores the input values, memory2 and memory 3 store the intermediate results of
the forward, and backward processing respectively. The overall number of clock
cycles for the processing can be decomposed into three processing steps which
are: 7 clock cycles for the forward processing, 7 clock cycles for the backward
processing and 8 clock cycles for the output processing. Thus, the overall number
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of cycles is 22 to calculate 8 output values. On average, one output value needs
#cycles/value = 22/8 = 2.75 cycles. The presented data path utilizes a so called
resource sharing of one processing unit, while load of the processing unit is 100 %.

5.1.2 Serial Data Path: Two min(x,y) Units

The section shows a serial data path using one additional min(x, y) unit. The goal
here is to trade off processing units versus memory usage. The basic difference to the
first approach is the simultaneous processing of the backward and output processing.
The processing is now performed in two processing steps which are again described
step-by-step:

Step 1: Forward Processing Figure 5.3

The forward processing remains identical to the description of Fig. 5.3.

Step 2: Backward Processing and Output Processing (Figure 5.6)

• Initialization:
The input values {a, b, c, d, e, f, g, h} are stored sequentially in memory 1.
The read pointer (address) for memory 1 is set to 7 (the address where value h is
stored).
The write pointer(address) for memory 2 is set to 6 (the address where the last
forward result is stored).
The register is initialized with an infinite value.

• First clock cycle:
Read the value (h) from memory 1.
The first min-search unit calculates the first result which is min(h, inf) = h.
The result is stored in the register, the register keeps the value h.
Read the last forward processing result from memory 2, which is min
(a, b, c, d, e, f, g).
The second min-search unit calculates the first output result M(h).
The read pointer of memory 1 and 2 is decremented by one position.

• Second clock cycle:
Read the next value (g) from memory 1.
The first min-search unit calculates the second result which is min(h, g).
The result is stored in the register.
The second min-search unit calculates the second output result M(g).
The read and write pointer is decremented by one.

• Last clock cycle:
The last result M(a) is stored in the register after the 7th clock cycle.
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read pointer starts at addr. 71

Memory1Memory2

11

second min -search unitread pointer starts at addr.6

Fig. 5.6 Serial architecture: simultaneous backward and output processing

No additional reading from memory 2 is mandatory.
The backward processing including the output processing is finished.

Summary data path: two min (x,y) units

For the processing we instantiate two memories and two processing unit. One memory
to keep the input values, and one memory to store the intermediate result of the
forward processing. The overall number of clock cycles for the processing can be
decomposed into two processing steps which are: 7 clock cycles for the forward
processing, and 8 clock cycles for the backward recursion and output processing.
Thus, the overall number of cycles is 15 to process 8 output values. On average,
one output value needs #cycles/value = 15/8 = 1.875 cycles. The presented
serial data path puts focus on a simultaneous processing of different tasks. Two
important difference can be seen when comparing the architecture with one and
two min(x, y) unit. First, the result is obtained in a different order, second, the
number of required clock cycles is much lower for the architecture according to
Fig. 5.6.
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5.1.3 Data Path: Parallel Processing

Parallel processing means, that more than one input value is processed in every clock
cycle. Since we still have to solve Eq. 5.2 in a recursive manner this is not trivial.
The architecture for a possible parallel processing is derived step-by-step.

The first step is the so called unrolling of the calculation of M(h). Here, we instantiate six functional

units (min(x, y)), which are shown as boxes in this figure Each unit receives the result of the previous

unit and one of the input values as input. The intermediate result are written next the outputs of

each unit.

This figure shows the unrolling of the recursions from the beginning and the end. Two results are

obtained M(a) and M(h). Every input value is consumed by two min(x, y) functions. The dotted

arrows indicate that a certain value is also an input to a second functional units. For better readability

some of the intermediate values are not labeled in this figure.
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Here, we use two intermediate results to calculate other M(xi ) values. For example M(d) is obtained

by an additional min(x, y) unit, the inputs x and y are the intermediate result x = min(a, b, c)

which is obtained from the forward recursion, and y = min(e, f, g, h) which is calculated by the

backward recursion respectively.

This figure shows the full parallel processing of all results. Every intermediate result, as well as

every input result is used two times. Here, the data dependency restricts the order in which the

operations can be performed. Note also that every functional unit in gray features tow instances of

min(x, y) units. One for the output processing and one to pass an intermediate result to the next

recursion stage. It is worth noting the similarities to the serial output processing of Fig. 5.6.
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Possible
pipeline
stages

Typically we can not process all functions in one clock cycle. Hence, additional registers have to

be instantiated which are called pipeline stages. At each pipeline stage we have to store all values

which are consumed at a later time step. When ever a line of the derived data flow is crossing the

horizontal pipe line stages the corresponding values have to be stored. It can be seen that the number

of values we have to store varies for each pipe line stages.

Summary data path: parallel processing

In the following we assume that pipeline stages are instantiated after each processing
block.

• The parallel architecture has a latency of 6 clock cycles, before the first output is
valid, then in each clock cycle an entire block is calculated.

• We need 6 forward and 6 backward recursion units (min(x, y) units) and 6 output
units.

• (N − 1) · (N − 1)/2 intermediate results have to be stored, with N=8.
• In every clock cycle we have to read all 8 input values
• After the pipeline is filled we need one clock cycle to calculate all 8 results, the

required cycles to process one value is thus #cycles/value = 1/8 = 0.125 cycles.

The question whether to use a serial or parallel architecture leads to the question of
required throughput, data storage problems and data access problems. The require-
ments for providing the correct input data at the right time is completely different for
both architectures. Furthermore one has to analyze the complexity when utilizing the
full functional unit of our application. Thus we have now to replace the (min(x, y))
by the correct processing units, which leads to the so called recursion units.

5.2 Deriving Processing Units

In the previous section we have derived the data path for serial and parallel processing.
As an example the data flow of a general forward-backward algorithm was used. As
mentioned the data path defines the alignment of processing units. These procession
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Fig. 5.7 Calculations of one trellis step.

units have to be designed with respect to the required functionality of the application.
The functional units for the Max-Log-MAP algorithm are derived in Sect. 5.2.1. Often
we have to perform algorithmic manipulations to realize the correct functionality.
Either we can use look-up table to realize the mandatory functionality or we can derive
good approximations by algorithmic transformation. Both techniques are shown by
examples in Sects. 5.2.2 and 5.2.3, respectively.

5.2.1 Recursion Units

In this section we derive the processing units for the Max-Log-MAP algorithm. It is
quite obvious that the forward recursion and the backward recursion share identical
functionality, which can be seen by comparing the two mandatory equations for
α and β processing (Eq. 5.3).

αm′
k+1 = min

∀(m− > m′)

(
αm

k + γ
xi ,xi +1
k (Sm

k , Sm′
k+1)

)

βm′
k = min

∀(m′− > m)

(
βm′

k+1 + γ
xi ,xi +1
k (Sm

k , Sm′
k+1)

)
(5.3)

These equations where derived in Sect. 3.4.2. An unit implementing the function-
ality of this recursion step is called recursion unit (RU). It is always a function of the
old state metrics and the input branch metrics. Figure 5.7 shows one example trellis
with 4 states, while the trellis on the left reflects one trellis step. Starting form this
example we derive a corresponding recursion unit. In trellis step k each state has two
possible state transitions to a successor state in trellis step k +1. The trellis transition
can be mapped to so called butterflies, however, the output has to be resorted. A
butterfly represents the processing of two input to two output states, the direction
(forward or backward) itself is not of importance. The advantage of the decompo-
sition in butterflies and resorting is the clear separation of a regular processing part
and a resorting of the state results.

http://dx.doi.org/10.1007/978-1-4614-8030-3_3
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Fig. 5.8 Butterfly architec-
ture for Viterbi decoding or
Max-Log-MAP decoding

Fig. 5.9 Full recursion unit
to process a 4-state trellis. A
realization to process a larger
amount of states can be done
by an appropriate number of
instantiated butterfly units.

Butterfly

Unit

Butterfly

Unit

A butterfly unit for Max-Log-MAP processing or Viterbi decoding is shown in
Fig. 5.8. Every Butterfly unit is composed of two min(x, y) units simply realized as
compare select units (CS). The CS part is realized by one subtraction, while the sign
of the result is used as the multiplexer control signal.

The inputs for the butterfly units are the old states Sa,b
k and the corresponding

branch metrics which connect the corresponding states, e.g. γk(Sa
k , Sc

k+1) represents
the path metric between state Sa

k and Sc
k+1. Since one butterfly unit processes four state

transitions we have four branch metrics as input. Note that for a convolutional code
of R = 1/2 typically only two distinct branch metrics exist, then γk(Sa

k , Sc
k+1) =

γk(Sb
k , Sd

k+1) and γk(Sb
k , Sc

k+1) = γk(Sa
k , Sd

k+1) respectively.
The recursion unit itself is implemented as multiple instances of the butterfly units

and shuffling unit. The RU unit presented here can process one trellis step in one
clock cycle. This is shown for a 4-state code in Fig. 5.9. The old state metrics are
read from the registers and the new updated states are written to the registers. This
can be done within one clock cycle. The shuffling unit has to ensure that the original
trellis connectivity structure is preserved. The derived structure with four states can
be extended for more states which is done by increasing the number of butterfly
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input levels

Fig. 5.10 Lookup table analysis and generation. Left shows the plot with a linear grid of the y-axis,
right shows the y-axis with a grid with respect to the quantized input values

instances. The merge of the derived functional unit with one derived data path will
result in a detailed Max-Log-MAP architecture. One specific instance of a so called
serial MAP architecture will be shown in Sect. 6.3.1 in the context of building turbo
code decoders.

5.2.2 Look-Up Tables

Sometimes it is difficult to realize a function in hardware. If the input bit width or the
output bitwidth is small we can realize the corresponding function by a look-up table.
A look-up table stores pre-computed values for each possible input combination.
Deriving such a look-up table is shown Fig. 5.10. As an example we derive the
function

f (x) = ln(tanh(x)). (5.4)

This equation is used for processing so called check nodes, as introduced in Chap. 7,
here it is used for demonstration purposes only. The left plot shows the function of
ln(tanh(x)) with the input value on the x-axis, the function value on the y-axis. For
the look-up table we first have to evaluate the input quantization. Here, the right plot
features an input granularity of 0.25. That means the input values have two bits for
the fractional part. Now we have to derive the corresponding output value. Due to
the non-linear function the output value requires a higher resolution. For large input
values we can barely distinguish the output results. For the look-up table we have to
decide on how many bits to represent the corresponding y values. Communications
performance simulations are mandatory to see if the chosen granularity will result
in a performance degradation.

http://dx.doi.org/10.1007/978-1-4614-8030-3_6
http://dx.doi.org/10.1007/978-1-4614-8030-3_7
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Look-up tables are simple to realize in hardware, however, the size of the values to
be stored may quickly come infeasible for a large input width. Then, more elaborated
techniques like an additional compression or the direct approximation of the function
may become mandatory.

5.2.3 Deriving an Approximation Function

Approximative functions are used when a direct implementation will not fulfill the
throughput constraints, results in a large area, or shows a high power consump-
tion, respectively. For example realizing functions with many input variables quickly
increases the number of stored values when realizing these by look-up tables. Thus,
we should use algorithmic transformations to see whether it is possible to find a
more suitable form for implementation. Often we can only approximate the desired
function due to given constraints, however, for many applications this will be good
enough. There exist no general rule how to derive a suitable approximation for an
efficient hardware realization. Rather, the designer often relies on many different
mathematical techniques and its own experience.

In the following one example is presented to derive an approximation suitable
for hardware realization. The symbol-by-symbol MAP processing of a single parity
check code is used for demonstration. The equation for the mandatory processing
was derived in Sect. 3.3.3. Assuming a single parity check code with three bits we
have to process:

λq = ln

(
eλp eλr + 1

eλp + eλr

)
(5.5)

This equation can be derived from Eq. 3.30.2 It shows the output calculation for bit
message q utilizing the two input messages p and r . In the first transformation step
we utilize the already introduced Jacobian logarithm in its positive form

ln
(
eδ1 + eδ2

) = max∗(δ1, δ2) = max(δ1, δ2)+ ln(1 + e−|δ1−δ2|).

Using the Jacobian logarithm in Eq. 5.5 results in:

λq = ln

(
eλp eλr + 1

eλp + eλr

)
= max∗(λp + λr , 0)− max∗(λp, λr ) (5.6)

The result can be further decomposed in two maximum searches and two parts
determining the correction term.

2 The function can equivalent expressed as λq = 2 ·arctanh
(

tanh
(
λp
2

)
· tanh

(
λr
2

))
. This trigono-

metric expression is sometimes used in literature.

http://dx.doi.org/10.1007/978-1-4614-8030-3_3
http://dx.doi.org/10.1007/978-1-4614-8030-3_3
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λq = max(λp + λr , 0)− max(λp, λr )︸ ︷︷ ︸
approximation λ̃q

+ ln(1 + e−|λp+λr |)− ln(1 + e−|λp−λr |)︸ ︷︷ ︸
correction term δ

This is an important result since we have clearly separated a simple approximation
part and an additional correction part. Table 5.1 shows results for λq assuming dif-
ferent input values. The true result is decomposed in an approximative output λ̃q and
a correction term δ . The approximation term is always the minimum of the absolute
values, while the sign ensures that the single parity check condition is fulfilled. The
largest correction term results when both input values are identical.

In the following the visual evaluation of Eq. 5.5 is shown, together with a possible
realization of the correction term. The visualization often helps to get an idea about
the quality of approximations. The used approximation derived within the following
four figures was originally presented in [1].

Plotted is Eq. 5.5, here denoted as f (x, y) = 2·arctanh
(
tanh

( x
2

) · tanh
( y

2

))
. The x-scale represents

the input value x , while 5 different y values result in 5 different graphs. The larger the y value, the

larger the output result (y-axis). Thus, y = 1 will be always the graph at the bottom, y = 5 at the top

of the graph. This is true for all following figures.

Table 5.1 λq calculations and approximation λ̃q for different input values

Input 1 Input 2 Approx. Correction Output
λp λr λ̃q δ λq

+5 +2 +2 −0.05 +1.95
+2 +5 +2 −0.05 +1.95
+5 −2 −2 +0.05 −1.95
−2 +5 −2 +0.05 −1.95
−5 −2 +2 −0.05 +1.95
−2 −2 +2 −0.68 +1.32
−5 −5 +5 −0.68 +4.32
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Plotted is the approximation f (x, y) ∼ min{|x |, |y|} (dotted lines) and the original function. The

shaded area highlights the difference between the true result and the approximation. It can be seen

that the approximation error is always the largest for x = y.

The difference between the original function and the min approximation is shown. Thus, the correc-

tion function is plotted which is δ(x, y) = ln(1 + e−|x+y|) − ln

(1 + e−|x−y|) The left graph has y = 1 as its input value, while the right most plot has a constant
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y = 5 value. A hardware approximation of this function can be derived by a Taylor approximation

which is the result presented in the next step.

Here the original function and the final utilized approximation is shown. The hardware approx-
imation term utilized here is: δ(x, y) ∼ ψ(|x + y|) − ψ(|x − y|) With a hardware friendly ψ
function.

f unctionψ(a) :
d = 5

8
− a

4
i f (d > 0.0) :

return d

else :
return 0.0

Comparing the final result one can see that the difference is rather small. This approximation can

be applied in a recursive manner for the serial computation of single parity check codes with more

bits. For example assuming three bits instead of two, the approximation can be calculated according

to δ(x, δ(y, z)).

The solution derived in this example is only one possible approximation of Eq. 5.5.
Providing the accurate functionality with respect to a given frequency constraint is
the major challenge when deriving a possible realization. If the cycle budget can not
be fulfilled, either we have to find a different approximation, or we have to increase
the parallelism of the data path to allow for a reduced frequency constraint.

Final architectures featuring data path and processing units for turbo decoders and
LDPC decoders are shown in Chaps. 6 and 7. For both type of decoders the respec-
tive design space is described highlighting different algorithmic and architectural
possibilities.

http://dx.doi.org/10.1007/978-1-4614-8030-3_6
http://dx.doi.org/10.1007/978-1-4614-8030-3_7
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Chapter 6
Turbo Codes

A major step towards the Shannon limit was done in 1993 by introducing the so called
turbo code (TC) [1]. Before 1993 a gap of 3 dB existed between practical coding
schemes and that what the theory promised. With the introduction of turbo codes this
gap was suddenly reduced to less than 1 dB. The new concept was the introduction
of iterative decoding. Turbo codes consist of concatenated, simple component codes
which calculate their information locally and exchange this information within an
iterative loop. The local decoding of component codes also opened the door for
practical systems. Due to the superior communications performance and the simple
decoding scheme TCs have been rapidly adopted for many communications systems.
This chapter introduces turbo codes and the corresponding encoders with respect to
communication standards. The iterative decoding process of turbo codes is described
and the communications performance is shown, taking into account the quantization
effects of fixed-point calculations. The importance of an SNR insensitive algorithm
is demonstrated which reflects a more realistic instantiation within a full system. The
basic component of a turbo decoder is a maximum a posteriori (MAP) decoder. Its
most common realization is shown which is linked to the previously derived data
path of a forward-backward algorithm (Chap. 5). The chapter also summarizes the
essential questions, which are most commonly used to drive industrial design process
for turbo decoders and recap the huge possibilities within the architectural design
space exploration.

6.1 Encoder Structure

Figure 6.1 shows a typical generic parallel turbo code encoder. This encoder features
two component encoders in parallel which typically are both convolutional codes
with identical polynomials.

For all ‘parallel’ turbo encoders the encoding process is similar. The systematic
bit u is a part of the codeword xs. One parity part x p0 is generated by component

F. Kienle, Architectures for Baseband Signal Processing, 117
DOI: 10.1007/978-1-4614-8030-3_6, © Springer Science+Business Media New York 2014
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Encoder 1
INT Puncturing

Encoder 2

Fig. 6.1 Generic parallel turbo encoder structure with puncturing unit

encoder 1, while the second encoder generates the parity output x p1 . The input stream
of the second encoder is the interleaved version of the information bits u = Π(u).
Π denotes the permutation operation as described in Sect. 4.3. The resulting code
rate of this encoder structure is R = 1/3.

For adjusting the code rate the output of the encoder (x = [xs, x p1, x p2]) is passed
to a puncturing unit. The puncturing unit erases bits from the original codeword x
and passes a shorter vector x punct to the next stage. The puncturing unit is often
called rate matching unit. Thus the transmitted code rate can be adjusted in a flexible
way. In LTE a large range of code rates is specified from base code rate R = 1/3 up
to very high code rates, e.g. R = 14/15. Note that in the high rate case of LTE even
information bits are punctured out.

The presented parallel encoder structure is utilized in many communications stan-
dards. These are shown in Table 6.1 with their corresponding base parameters. The
component codes used in these standards are convolutional codes either with 8 states
or 16 states respectively.

The most important standard is the 3GPP initiative (UMTS, LTE). Its turbo code
encoder structure is shown in Fig. 6.2. Here, the puncturing unit is omitted. The com-
ponent encoder are 8-state recursive convolution codes with forward and backward
polynomials of G0 = 13 and GFB = 15 respectively. The component encoders
are the same for UMTS and LTE encoding. However, the interleaver is different
for both standards. The newer LTE standard features an interleaver which allows a
simpler implementation of parallel decoder architectures. The problem of parallel
interleaving was already described in Sect. 4.3.

Table 6.1 Turbo codes in communication standards

Application Turbo code States Forward Backward Base code rate

UMTS Binary 8-state 13 15 1/3
LTE Binary 8-state 13 15 1/3
CDMA 2000 Binary 8-state 13, 17 15 1/5, 1/3
IEEE 802.16 Duo-binary 8-state 11, 13 15 1/2
CCSDS (deep space) Binary 16-state 33, 25, 37 23 1/6, 1/4, 1/3,1/2
Immarsat Binary 16-state 35 23 1/2
DVB-RCS Duo-binary 8-state 11, 13 15 1/3
Eutelsat Duo-binary 8-state 13 15 4/5, 6/7

http://dx.doi.org/10.1007/978-1-4614-8030-3_4
http://dx.doi.org/10.1007/978-1-4614-8030-3_4
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Fig. 6.2 3GPP turbo encoder
with 8-state RSC component
encoder

S0 S1 S2

S0 S1 S2

Fig. 6.3 WiMAX duo-binary
encoder with 8-state RSC
component encoder

S2S2 S1S1 S0S0

S2S2 S1S1 S0S0

Figure 6.3 shows the DVB-RCS duo-binary turbo encoder. The encoder always
operates on two bits simultaneously, while these couples are treated together during
encoding and decoding. The interleaver permutes the stream with respect to couple
positions and does not break up the tight coupling of the ‘duo’ bit grouping. The
resulting base code rate is R = 1/3.

Table 6.1 shows 8 different standards featuring turbo codes. All have a parallel
turbo code encoder structure with two component encoders. The turbo code decoding
of all theses standards share the same basic iterative exchange of messages. This basic
iterative decoding procedure is described next section. Turbo code decoder and turbo
decoder are used as synonyms in the following.
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6.2 The Iterative Decoding Procedure

In this section the iterative decoding procedure is described step-by-step. The decoder
structure presented here can decode any parallel concatenated turbo code which
consist of two component codes. Thus, it fits to all encoders of Table 6.1. This section
presents one possible decoder structure. Obviously, more decoder structures exist.
All of them have to handle the so called extrinsic information principle which takes
care how to exchange messages. One iteration is described in the following.

For each component encoder a corresponding component decoder exists. Decoder 1 will consume

the received systematic information λs and the corresponding parity LLRs λp1. Decoder one starts

to calculate new a posteriori probability information for each systematic bit information. Each APP

information can be decomposed in the already existing systematic part and an additional ‘extrinsic’

gain. Thus, we obtain Λ = λs + Le1.
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We can isolate the new additional extrinsic information from the APP information by subtracting

the systematic information (position by position). The resulting extrinsic vector Le1 is passed to the

interleaver stageΠ and stored in the indicated delay unit (T). The interleaver reorders the information

according to the utilized encoding procedure. The new obtained sequence is now treated as new ‘a

priori’ information for the second MAP decoder La2.

Decoder 2 consumes the input a priori information, the interleaved systematic information λs
π

and the corresponding parity LLRs λp2. Decoder 2 calculates new APP information Λπ for each

(interleaved) systematic bit. This APP information can be composed as a sum of a priori information

λa2 obtained from decoder 1, the interleaved systematic information λs
π and an additional gain

provided by decoder 2 Le2. Only the additional gain Le2 is stored in the delay unit. We pass the

information Le2 + La2 to the deinterleaver stage.
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The vector is deinterleaved again position by position. We obtain a sum, composed of the old

extrinsic information Le1 originally calculated by decoder 1 and a new a priori information La1

which was provided from decoder 2. However, before passing the sum information to decoder 1,

we subtract the old extrinsic information (Le1). Only the additional information La1 is passed to

decoder 1. Otherwise we would rely on our old confidence. One iterations is finished and a new

iteration starts by calculating a new APP information Λ = λs + La1 + Le1
new.

The described iterative procedure is continued several times. In practical appli-
cations we rarely iterate more than a maximum amount of 8 iterations. Note that
different structure exist for this iterative processing, for example we can pass the
information λs + Le1 to the second component decoder. Then, we don’t need to
provide λs

π separately to the decoder since it is already considered in the passed sum.
Still, we have to store this sum in the delay unit (T) to ensure the extrinsic information
principle, as already indicated in Sect. 3.5.

6.2.1 Convergence Progress (EXIT Charts)

The convergence of the iterative decoding process can be analyzed by extrinsic
information transfer (EXIT) chart analysis [2]. The information characteristics of
the component codes are analyzed by tracking the information content of the out-
put information and input information of corresponding component decoders. The
soft-in soft-out decoders for iterative turbo decoding have two inputs. The first input
comprises the channel values, which depend on the received LLRs, the second input
retrieves a priori information which is exchanged during iterative decoding. We can
track the information content for input variables and output variables by using the
mutual information which was already introduced in Sect. 2.3. The mutual informa-
tion I (La, S) describes the information content of the a priori information La while
I (Le, S) represents the mutual information of the extrinsic output values Le. For
binary variables and an antipodal modeling of the symbols (s ∈ {+1,−1}), we can
calculate the information content of the a priori information I (La, S) by:

http://dx.doi.org/10.1007/978-1-4614-8030-3_3
http://dx.doi.org/10.1007/978-1-4614-8030-3_2
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I a = I (La, S) (6.1)

= 1

2

∑
si ={+1,−1}

∑
∀a

p(a|si ) · log2

(
2p(a|si )

p(a|si = −1)+ p(a|si = +1)

)

The equation of the mutual information here was already used in Sect. 2.3 to derive
the channel capacity. The mutual information can be obtained by summing over all
possible a priori values expressed by the variable a. Note that here a probability
mass function for the a priori values p(a|s) is assumed which allows the modeling
of a fixed-point realization. p(a|s) can be tracked by Monte Carlo simulations. The
equation for the information content of the extrinsic information is identical, however,
with the density mass function for the extrinsic information to be p(e|xi ).

Two assumptions are often assumed for deriving the EXIT charts. First, the inter-
leaver is assumed to be sufficient large, such that the exchanged information can be
modeled as independent information. Second, the extrinsic information is assumed
to approach a Gaussian distribution with increasing iterations.

Figure 6.4 shows the setup to measure an EXIT chart. The input LLRs for the
channel decoder can be described by

λy = 2

σ 2
n

y = 2

σ 2
n
(s + n), (6.2)

with σ 2
n the channel noise variance. Thus, the channel LLR input values are Gaussian

distributed with the mean value μy = 2
σ 2

n
, while its variance will be σ 2

y = 4
σ 2

n
. A

Gaussian distribution having the variance twice the mean is said to be consistent.

Fig. 6.4 Measurement of the EXIT chart

http://dx.doi.org/10.1007/978-1-4614-8030-3_2
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When the input is consistent it can be observed that the distribution of the extrinsic
output is consistent too [2]. The extrinsic output of one component decoder serves as
a priori information of the other component decoder. Thus, the a priori information
can be modeled as Gaussian variable with a variance of σ 2

a with a mean value of

μa = σ 2
a
2 .

The mutual information I a depends only on the variance σa , while the mutual
information of the extrinsic information depends on the a priori input and the current
signal to noise ratio. Thus, the extrinsic information characteristics are defined as a
transfer function of:

I e = T (I a, Eb/N0) (6.3)

For each signal-to-noise ratio of the channel we can evaluate another characteristic.
Fig. 6.5 shows the extrinsic information transfer characteristics for a convolutional
code used for LTE turbo codes (8-states, R = 1/3, Log-MAP). Shown are the
decoder behaviors for three different Eb/N0 values with the x-axis representing the
mutual information I a at the input of the decoder while the y-axis shows the extrinsic
information I e respectively.

The convergence of a turbo decoder can now be visualized by plotting the char-
acteristics of both component decoders into the same chart. However, the axis have
to be swapped for the second soft-in soft-out decoder. The resulting EXIT chart is
shown in Fig. 6.6 for three different Eb/N0 values. In addition the so called trajectory

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mutual information I at input of decoder
a

m
ut

ua
l i

nf
or

m
at

io
n 

I a
t o

ut
pu

t o
f d

ec
od

er
e

Eb/N0=0.5 db

Eb/N0=1.5 db

Eb/N0=2.5 db

Fig. 6.5 Extrinsic information transfer characteristics of soft-in soft-out component convolutional
decoder (8-state, R = 1/3, LTE)
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Fig. 6.6 EXIT chart characteristics for three different Eb/N0 values. The sketched trajectory is
only valid for an infinite interleaver size

of the decoding process is shown. There, the output information of one decoder is
used as input information of the next decoder. The iteration proceeds as long as there
is a gain of information. For Eb/N0 = 1.5 dB the iterative decoding will continue
until the maximum information of I e = I a = 1 is reached, i.e. error free informa-
tion. For a larger Eb/N0 the number of iterations is reduced to obtain an error free
decoding, while at a low Eb/N0 the two characteristics will intersect and thus will
not gain any information for successive iterations. The decoding procedure is going
to get stuck. For the hardware realization the EXIT charts can be used to track the
effects of quantization or to visualize the information loss of sub-optimal algorithms.
In summary, EXIT chart analysis is a mighty tool to explain, analyze, and as well to
design iterative decoders, see [2, 3].

6.2.2 Communications Performance

As mentioned before the communications performance is typically measured in frame
error rate (FER) over the signal-to-noise ratio (SNR). The decoding of turbo codes is
an iterative process, while the communications performance improves for successive
iterations.

Figure 6.7 shows various iterations of a LTE turbo decoder with K = 6144 infor-
mation bits and a code rate of R = 1/2. An AWGN channel was utilized for these
performance results. The input data has a FER of nearly one for the entire SNR range.
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Fig. 6.7 LTE turbo code performance for code rate R = 0.5 and a block length of K = 6144 [4]

Thus, at least one bit error is occurring in each frame. After 3 iterations a huge coding
gain can be observed. For the 4th and 6th iteration the gain is still significant. How-
ever, after 8 iteration the additional gain for further iteration gets smaller and smaller.
Typically, not more than 8 turbo iterations are performed for decoders realized in
hardware. This number is restricted due to latency and throughput constraints of the
system. For the LTE standard an achieved FER = 10−3 is sufficient, since additional
techniques like automatic repeat requests (ARQ) are applied to preserve the desired
system quality of service. Anyhow for turbo codes we have to distinguish between
convergence gain and low asymptotic gain. Good convergence means that the FER
already decreases at an SNR close to the theoretical limit. This SNR region with still
improving communications performance is also denoted as waterfall region. The
asymptotic gain describes the (SNR) coding gain at a very low bit error rate. As
mentioned, the gain in communications performance is getting smaller with more
iterations. Note that the convergence speed of the algorithms depends also on the
block size. The larger the block size the more iterations are mandatory to obtain the
best achievable communications performance.

Figure 6.8 shows the 4th and 8th iterations of a LTE turbo decoder (K = 6144
information bits, R = 1/2) simulated with a simple additive white Gaussian noise
channel. Shown are three different algorithm, the optimal Log-MAP simulation, the
Max-Log-MAP simulation, and an improved Max-Log-MAP simulation with extrin-
sic scaling factor (ESF). For eight iterations the performance difference between the
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Fig. 6.8 Comparing Max-Log MAP, Log-MAP, Max-Log-MAP-ESF communications perfor-
mance

three algorithms is already significant. The difference between the optimal Log-MAP
implementation and the sub-optimal Max-Log MAP implementation is 0.3 db. It is
well know that the Max-Log-MAP algorithm overestimates the additional gain which
is passed between the component codes. In [5] a simple extrinsic scaling was intro-
duced which counterbalances this overestimation. The extrinsic information is just
multiplied by e.g. ESF = 0.75 and the performance improves as shown in Fig. 6.8.

The LTE standard uses new interleavers and a new puncturing scheme compared
to its original UMTS definition. Figure 6.9 shows the difference between the LTE
system and the HSPA system. Both with identical block length of N = 5178 and a
high code rate of R = 0.94. Both codes utilize the same number of iterations and
the same implementation of the component code processing. Noteworthy, a huge
difference in communications performance can be seen. The reason for this is the
different minimum distance of the resulting code (after puncturing). An appropri-
ate interleaver and a clever puncturing scheme influence the distance spectrum and
thus the asymptotic gain. Turbo codes are faced with the convergence versus dmin

dilemma. The better the early convergence the smaller the minimum distance which
results in a so called error floor.

The convergence of a code is defined by the used component codes while the
interleaver determines the error floor. Much effort was taken to answer the question:
which simple codes have to be concatenated to approach the Shannon limit? The
EXIT chart analysis is one major techniques to answer this question.
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Fig. 6.9 HSPA and LTE turbo code performance for code rate R = 0.94 and a block length of
N = 5178 [4]

6.2.3 Fixed-Point Realization and Robustness

For hardware realization of any channel decoder we have to convert the algorithm
from a floating point to a fixed-point realization as shown in Fig. 4.1. Goal is to rep-
resent every variable in the algorithm with a limited number of bits, since a smaller
bit width results in a smaller area and as well to a reduced power consumption.
During the conversion an information loss occurs which may result in a degrada-
tion in communications performance. For simple components like the demodulator
we can evaluate this information loss in an analytical way, however, for iterative
decoding algorithm we have to simulate the resulting communications performance
while comparing the result towards an optimal floating point implementation. Turbo
decoders are realized in hardware since its standardization in UMTS, since then many
explorations have been carried out, e.g. [6, 7].

For the fixed-point realization the quantization of the input data (Qin) is of great
importance as the bit width of all other variables can be derived from this number.
For example in practical systems the quantization of the exchanged message between
the component decoders is chosen to be the input bit width plus one bit, i.e. Qext =
Qin +1. In the following we always simulate the internal bit width of the component
decoder sufficiently large such that no degradation occurs w.r.t. communications
performance. In the following only the discussion of the input bit width is highlighted.

http://dx.doi.org/10.1007/978-1-4614-8030-3_4
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Fig. 6.10 LTE turbo code performance for code rate R = 0.5 and a block length of K = 6144
bits. All results with 6 bits input width, while the precision is varying

As derived in Sect. 2.2, the inputs to the turbo decoder are the channel LLR values
λ = 2

σ 2 y which are the received samples corrected by the channel reliability factor

Lch = 2
σ 2 .

Figure 6.10 shows the communications performance result of a LTE turbo code
(R = 0.5, K = 6144). For all fixed-point simulations an input quantization of
Qin = 6 bits is assumed, while the number of fractional bits is varying between
one bit, two bits and three bits, denoted as Prec = 1,Prec = 2, and Prec = 3,
respectively. Always the result of the 8th iteration is shown for a fixed-point Log-
MAP and a fixed-point Max-Log-MAP with scaling realization. One can see that
the performance degradation of the Log-MAP fixed-point model leads only to a
small loss compared to the reference floating point Log-MAP model. Furthermore,
the relative behavior between both types of algorithms, Log-MAP and Max-Log-
MAP with scaling, is similar. The best communications performance is achieved in
both algorithmic cases when simulating with two fractional bits. All simulations in
this graph are carried out with an optimal channel reliability factor Lch . Thus, for
each SNR point a different scaling of the input values is applied while the input
quantization is performed after this optimal demodulator stage.

For an instantiation of a turbo decoder in a larger system this is a too optimistic
assumption. In a final system realization we have to estimate σ 2 by a channel estima-
tor. In practical systems we can not assume a perfect estimation and by that optimally
scaled input values. Rather, we have to explore the fixed-point analysis with so-called

http://dx.doi.org/10.1007/978-1-4614-8030-3_2
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mismatched SNR estimations. A mismatched SNR estimation refers to the case of
difficult channel conditions at which the channel reliability factor is fixed for an
entire SNR range. Furthermore, we have to emulate the case that the noise level is
estimated imprecisely.

Figure 6.11 shows the performance of the same LTE turbo code, while all simu-
lations are performed with Qin = 6 bits input values (two bits fractional part). This
time we perform the simulations with different channel reliability values ranging
from LCH = 1 to LCH = 3. For each simulation the corresponding channel reliabil-
ity factor is fixed for the entire SNR range and denoted as CHR in the legend of the
figure.

The Max-Log-MAP with scaling shows for all CHR cases a nearly identical com-
munications performance. The reason for that is that the Max-Log-MAP algorithm
is SNR insensitive since only the metric differences are of importance, see [8]. How-
ever, the Log-MAP performance results show a huge variation. For CHR = 1 the
decoding algorithm does not show any convergence at all. Indeed, this is a large
mismatch of the channel reliability factor, however, for a mobile device we have to
ensure a robustness of the algorithm even under difficult conditions. The reason for
the SNR sensitivity of the Log-MAP algorithm is the correction term introduced in
Sect. 3.3.4.

In summary, a fixed-point exploration of an algorithm is more than fitting the
bit width to one specific simulation set up. We have to explore the communications
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Fig. 6.11 LTE turbo code performance (R = 0.5, K = 6144). All results with 6 bits input width
and 2 precision bits. The scaling of the input LLRs provided by the demodulator is varying

http://dx.doi.org/10.1007/978-1-4614-8030-3_3
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performance with respect to realistic conditions. Thus, we should chose an algorithm
with respect to its robust behavior under all conditions, i.e., SNR mismatch effects
as shown here, but as well for different modulation schemes, code rates, block sizes,
or different channel models as well.

6.3 Turbo Codes Architecture

The previous sections presented turbo codes from an algorithmic point of view. Mov-
ing towards implementation, the architectural side of the decoder must be regarded.
For hardware realization of a turbo decoder three important design steps have to be
done.

• Realization of the processing of the component codes.
• Iterative exchange of the message, see Sect. 6.2.
• Interleaver realization.

As mentioned for future architecture we often have to realize a high throughput which
results as well in parallel decoder architectures. Especially the interleaver realization
can be a problem for a parallel implementation as already presented in Sect. 4.3. For
the realization of the component decoder we have different possibilities. The most
common architecture is the so called serial MAP architecture which is presented in the
next section. When assembling all components together various design possibilities
have to be considered. The design space is presented in Sect. 6.3.2.

6.3.1 Serial MAP Architecture

The component decoder of a turbo decoder has to realize a soft-input soft-output algo-
rithm. Typically, the Max-Log MAP realization is implemented. It uses a forward-
backward algorithm—corresponding data paths are derived in Chap. 5. Adapting a
serial data path for the MAP architecture is often denoted as serial MAP architecture.
The serial MAP (SMAP) architecture is the most common architecture in literature
which is instantiated within a turbo decoder. The now presented architecture is based
on the derived serial data path example of Sect. 5.1.2.

The decoding consists of two steps, the forward recursion and the backward
recursion. Figure 6.12 shows the architecture of the forward processing, Fig. 6.13
shows the final architecture of the backward processing and output calculation.

We deal with a (information) block of length BL, thus we need BL−1 clock cycles
for the forward processing and BL cycles for the backward and output processing.
The block length processed in hardware is often BL ≤ K , with K the number of
information bits. BL in hardware can be smaller since we can either process two
trellis steps within one clock cycle or we can even partition the entire block into
so called windows. Both techniques are not treated in this section and are advanced

http://dx.doi.org/10.1007/978-1-4614-8030-3_4
http://dx.doi.org/10.1007/978-1-4614-8030-3_5
http://dx.doi.org/10.1007/978-1-4614-8030-3_5
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Fig. 6.12 SMAP architecture
during forward recursion

optimization techniques to increase throughput or to decrease storage demands, for
details we refer to [9]. For the discussion here a processing of one information bit
per trellis step is assumed (BL = K ).

We now introduce some generic parameters to describe corresponding number of
values passed between the processing units, i.e., how many values are read, written or
processed per clock cycle. We assume a convolutional code of rate R with 2M states,
with M the number of registers within the encoder. Depending on the utilized code
rate R always 1/R values are read from the channel LLR memory. The branch metric
unit calculates 21/R values and passes these to the recursion unit. The recursion unit,
assumed to process all 2M states in parallel, passes 2M state metrics to the register
bank. These 2M values are stored in the alpha memory. When processing a trellis
featuring 64-states as is used in the WiFi standard the number of bits to store or to
process is very large. Under the assumption that each value is represented by 10 bits
we have to store 640 bits per clock cycle. If BL is large, the alpha memory may
becomes the largest part of the entire architecture. Yet considering turbo decoders,
the number of states is restricted at most to 16 states, see Table 6.1.

Of course there are various possibilities to perform the forward-backward process-
ing. Each data flow possibility results in different architectural characteristics for,
e.g., input data retrieval, number of instantiated recursion units, latency, and resulting
throughput. The starting point is often a graphical representation to analyze the so
called life time analysis of processed data. The life time analysis of the presented
architecture is shown in Fig. 6.14.
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Fig. 6.13 SMAP architecture during backward recursion and output processing

Fig. 6.14 Graphical data life time analysis. y axis reflects the position in a data block of length
BL, the x axis reflects the time or trellis steps
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The y-axis reflects the position in a data block of length BL, the x-axis reflects
the processing time or trellis step. We analyze the graph from left to right. Each time
step is associated with one recursion step. The processing of the forward recursion
is indicated by the diagonal bottom left to top right. The processing of the backward
recursion is depicted by a diagonal from top left to bottom right. At each time step
exactly one recursion step is performed. Thus, it is obvious that we have to instantiate
one RU which performs first the entire forward recursion and then the same RU is
utilized for the backward recursion. The output processing is done simultaneously
with the backward processing which requires additional logic. We can see that the
input data has to be read from the first block position in an incrementing order.
However, the output information is calculated in a reversed direction. Thus the result
of position BL−1 is obtained first. One important information that we can extract
from this representation is the storage time of the state metrics of each time step.
The first state metrics obtained in the very first clock cycle is used again at the end
of the backward recursion. This is the maximum storage time occurring during the
backward forward processing. The depth of the state metric memory is determined
by the hight of the triangle. Typically this memory is called state metric memory or
alpha memory as already mentioned.

One important aspect of the backward forward algorithm is the possibility to
perform the backward recursion first as shown in Fig. 6.15. The major difference for
processing is the inverse reading sequence of the input values and also a new order of
the output values. This can be of advantage when output values have to be provided
in the original order for the next stage.

Figure 6.16 shows a different approach, leading to a different architecture with
changed architectural characteristics. In each time step a forward and a backward
recursion is active. Thus, two RU units have to be instantiated. After processing half
of the block again two RUs and two output LLR units are processing data. As a
result, two output data are provided per clock cycle. In this data flow always two
distinct data sets, input data and state metrics, have to be provided to the processing
units. The maximum storage time is reduced by a factor of two and the throughput

Fig. 6.15 Processing schedule: first the backward recursion then the forward recursion with output
LLR processing
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Fig. 6.16 Two recursions are running in parallel, forward and backward

increased by a factor of two compared to Fig. 6.14. The number of processing units
is exactly doubled compared to Fig. 6.14, while the number of state metrics to be
stored is identical. However, another access characteristic of the state metric memory
results. In every clock cycle two accesses are required, either two write access during
the first BL/2 clock cycles, or two reading accesses throughout the second half of
the process. There are many other possibilities either to increase the throughput or
to reduce the storage requirements.

The high throughput demands of a Max-Log-MAP decoder is mainly driven due
to the increasing throughput demands of turbo code decoders.

6.3.2 Design Space and Design Choices

In this section the design space for turbo decoder architectures is presented along
with the design choices which are most often utilized for industry driven designs.
The possible design steps in the following are not described in detail, rather the most
important references are given. The detailed description and compact analysis of full
turbo decoder designs can be found in various thesis like [9–11].

High Level Architecture Decisions

The first and very important high level architectural decision is the question of cou-
pling of the component decoders. Different methods how to exchange the information
exist. Furthermore additional interface options have to be considered for storing the
input and output data. We list the ‘Pro’ and ‘Con’ for each decision.

• It is possible to exchange combined extrinsic data plus information bit LLR within
one half iteration, see Fig. 6.17a.
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Fig. 6.17 a Turbo decoder which passes the full a posteriori information from MAP1 to MAP2, b
with separate interleaved systematic information

– Pro: The reading process and storing of interleaved systematic information can
be omitted.

– Con: The bit width of the exchanged information and thus stored information
is increased.

• Reading the interleaved information bit LLR within one half iteration, see
Fig. 6.17b.

– Pro: A symmetric/identical processing of the component decoder is possible
which enables, e.g., a simpler programming and a simpler control flow.

– Con: The technique is less power efficient since an addition reading of the
interleaved information becomes mandatory.

• Depending on the system considerations the input I/O features a double buffering
scheme. The interface writes to one buffer (memory) while the other buffer is
utilized for processing. The role of these two memory groups alternate for each
block.
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– Pro: The interface causes no additional latency. A simple control flow results
while the double I/O solution is often mandatory due to throughput and latency
constraints.

– Con: It doubles the area of input memories.

• A codeword featuring a code rate R > 1/3 is obtained by puncturing. The input
interface has the possibility to store the punctured information as LLR = 0 to the
corresponding memory address.

– Pro: The decoder needs no knowledge about the puncturing scheme at all. The
reading process for the channel values during MAP processing becomes straight
forward.

– Con: For high data rates all the unneeded ‘zero’ information is read and
processed.

• Typically for the output part of the I/O interface only hard values are provided.
However, providing soft-outputs for the information bits or parity bits is possible.

– Pro: Soft-outputs can be used as feedback information to demodulator or syn-
chronization unit.

– Con: The output memories are increased. For the soft-output parity bits an
additional output calculation stage has to be instantiated. Attention: the outer
inter-block interleaving has to be implemented for a possible feedback loop as
well.

• The turbo decoder can provide additional information for the MAC layer or previ-
ous processing stages. This additional information can enable e.g. dynamic time
allocation to process a block within a TTI frame, or it can support the channel
estimation etc.

– The number of required iterations is one information which can be used for
dynamic time allocation.

– Monitoring the convergence speed by utilizing a reliability measure gives an
information about the reliability of decoding.

– Tracking the saturation level of the input data will help to indicate a wrong LLR
scaling.

Quantization Issues

Quantization aspects directly influence the power consumption and the communica-
tions performance. Most of the current state-of-the-art implementations operate on 6
bits input quantization and 7 bits extrinsic quantization. For conservative designs and
robustness towards SNR mismatch up to 8 bits are sometimes utilized for input LLRs.
The input quantization directly influences the bit width of the state metrics. The bit
width of sate metrics have to be normalized due to the accumulative functionality of
the recursion units.
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• An efficient state metric renormalization technique is the modulo normalization
[12, 13]. The modulo normalization utilizes an overflow technique to limit the bit
width of the state metrics. It is performed on the fly within the recursion unit.

– Pro: The modulo normalization is a simple realization which requires no addi-
tional hardware units. The critical path is not prolonged.

– Con: The bit width of each state metric is slightly larger compared to subtractive
normalization.

• Limiting the bit width of the state metrics can be obtained by subtractive normal-
ization. The normalization can be done by subtracting always the zero state or by
subtracting the maximum state [12].

– Pro: The bit width of the state metric can be kept as small as possible.
– Con: The normalization during the recursion prolongs the critical path.

• Limiting the bit width of the stored state metrics can be achieved by subtractive
normalization prior the state metric storage. In this case the normalization is best
done by subtracting always the zero state [14].

– Pro: For LTE or HSDPA only 7 state metrics have to be stored, i.e. one state can
always be normalized to zero.

– Con: It can be cumbersome if already a modulo normalization is used within
the recursion units.

Data Path MAP Component

Data path aspects is one of the most published topics for component MAP imple-
mentation. An overview can be found in [15]. Major issue is: how to partition a block
into sub-blocks which can be processed independently. This kind of partitioning is
mandatory for high throughput turbo decoders. Two fundamental techniques can be
distinguished. The block of length N is divided in P sub-blocks, always N

P con-
secutive bit positions belong to one partition [16, 17]. The resulting MAP engine
processing one sub-block is called serial MAP, see Chap. 5. The second partitioning
possibility is to utilize a pipelined XMAP architecture which accepts P consecutive
bit positions each clock cycle [18, 19], see Chap. 5.

• XMAP data flow

– Pro: In [15] it is proven that for final LLR calculation of this data flow is most
efficient in terms of state metric storage, if no acquisition phase is mandatory.
Note that the basic data flow principle can be also used for SMAP decoders.

– Con: The XMAP data flow requires an acquisition (training phase) from both
sides (α, β). The longer the mandatory training phase the larger the additional
overhead.

http://dx.doi.org/10.1007/978-1-4614-8030-3_5
http://dx.doi.org/10.1007/978-1-4614-8030-3_5
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• SMAP data flow

– Pro: The SMAP data flow is state-of-the-art and most often utilized in industry
designs. The throughput scaling of the resulting architecture is straight forward.

– Con: The state metric storage becomes large for a large window length, thus
additional techniques should be applied.

Windowing Scheme

A block which is processed by one SMAP decoder can be partitioned further by a so
called windowing scheme [19] which was already utilized for Viterbi decoding [20].
The boundaries of the windows can be initialized by state metrics of the previous
iteration or by an acquisition (training) phase, see Fig. 6.18 and Fig. 6.19.

• Depending on the window size an additional training phase may become manda-
tory. The training phase is called acquisition (ACQ).

– Pro: For long ACQ values the communications performance will be comparable
to that without windowing scheme.

Fig. 6.18 MAP decoder
which processes a full block
of length K

t
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recursion

depth of 
state metric memory

Fig. 6.19 MAP decoder
which processes two windows,
each with K/2 data

t

K
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recursion backward recursion

with LLR computation

K/2

pass 
alpha state
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– Con: Without additional hardware the latency of the decoder increases. With
additional hardware the area increases and the control flow will get difficult.

• Next Iteration Initialization: State metrics at the window boundaries are stored at
iteration i and reused at iteration i + 1 [14].

– Pro: The technique is very effective to enhance the convergence of the decoder.
It can be used as well in combination with ACQ.

– Con: Non, it should always be utilized.

Recursion Unit

The recursion unit (RU) is the basic building block for performing the mandatory
forward or backward processing. One basic issue is the number of instantiated RUs.
An other more detailed question is the number of processed trellis steps within a
RU unit. Radix-2 processes one trellis step, Radix-4 processes two trellis steps,
respectively.

• Number of instantiated recursion units within a SMAP unit.

– 1 RU: One recursion unit can process either α or β or an acquisition phase. This
is a feasible solution for lower throughputs.

– 2 RUs: Two recursion units process α and β concurrently. This is state-of-the-art
and allows a huge variety of windowing schemes.

– 3 RUs: Two RUs are used for α and β recursion, the third for acquisition phase.
Note, that with 3 recursion units special care has to be put on the branch metric
storage.

• The recursion unit can be implemented to process two trellis steps within one clock
cycle. This implementation is called radix-4 unit [21, 22].

– Pro: The number of stored state metrics reduces by a factor of two while the
throughput is doubled.

– Con: The critical path is longer compared to a radix-2 implementation, which
may cause problems for stringent frequency constraints.

• Re-computation approach: state metric values (α or β) are only partially stored
and recomputed during LLR calculation [16].

– Pro: It reduces the state metric memory and also the power consumption.
– Con: Additional RU units are required and the control flow is more complicated.

Parallel Interleaving

One difficult problem to support high throughput turbo decoding is the parallel inter-
leaving. The possible memory access problems can cause big problems. Especially
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for HSPA advance which requires throughput rates up to 150Mbit/s. Note that LTE
turbo codes feature interleavers which provides a conflict free access scheme with
respect to a maximum parallelism of 64.

Three different possibilities exist to store the corresponding soft-output values of
the component decoders. The soft-values which have to be interleaved can be stored
before or after (de)interleaving, as shown in Fig. 6.20.

• Access scheme a: The interleaving is performed during writing.

– Pro: There exists an identical flow for both component decoders. Occurring
conflicts may be resolved by buffering or flow control methods.

– Con: A worst case analysis has to be done for all block sizes to ensure the
required throughput demands.

• Access scheme b: The interleaving and deinterleaving is performed during reading
and writing data of the second component decoder.

– Pro: One component MAP can be realized highly parallel since no conflicts
occur. This procedure seems to be logical for an unified decoder (LTE and
HSPA) since the maximum throughput demand of a LTE mode is typically 2
times higher than the corresponding HSPA mode.

– Con: The second component decoder should operate on a different paralleliza-
tion level since conflicts have to be resolved during reading and writing.
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Fig. 6.20 Storage and interleaving of exchanged soft-values: a interleaving and deinterleaving
upon write; b interleaving upon read, deinterleaving upon write, c two stage interleaving process
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• Access scheme c: Here a two stage interleaving process is assumed with two
interleaver tables.

– Pro: This access scheme allows a parallel processing of all HSPA interleavers
[23].

– Con: For each block length and thus interleaver pre-computed access patterns
have to be stored. The storage demand of this technique is high. Note that a
different pattern for MAP1 and MAP2 exists.

Low Power Techniques

Iteration control is one of the most important techniques to reduce the power con-
sumption. Goal is to reduce the average number of iterations. It has to be distinguished
between techniques to detect undecodable blocks and decodable blocks. Control cri-
teria can be based on soft (reliable) or hard information. An overview of different
techniques is presented in [24].

• Iteration control criteria based on soft information. Soft information can be either
the exchanged extrinsic information or the computed APP information.

– Pro: It does work for undecodable blocks by tracking the convergence of the
decoder.

– Con: In normal mode (decodable blocks) the additional energy consumption
and overhead can be large. There may exists a high false alarm rate for varying
channels.

• Iteration control criteria based on hard information.

– Pro: The implementation comes with only a small hardware overhead and does
work for decodable blocks. It is especially good for, e.g., HSPA decoding.

– Con: The detection of undecodable blocks is not reliable. It has to be switched
of for LTE decoding since the existing CRC check is more reliable.

• LTE: CRC check hardware instances after MAP1 and MAP2, since the decoding
process may oscillate for very high code rates [25].

– Pro: It is very important to perform the CRC after each MAP.
– con: Two separate CRC units may be mandatory due to latency reasons.

6.3.3 Dependencies of Architectural Parameters

In this section we show the dependencies of various architectural parameters on
throughput and area of state-of-the art turbo decoders. We use the following nomen-
clature and parameters:
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tcond technology node and operating conditions
w.r.t. feature size variation, Vdd , temperature

fcyc frequency of the design
Q = Qin quantization of the input data, the quantization

of all other variables are derived from this
i ter iteration number
K number of information bits
W L window length, in hardware the codeword is

processed window by window
AL acquisition length, the number of training steps

for the forward or backward recursion
rdx radix-2 or radix-4 realization of the recursion units
P architectural parallelism
CN latency due to network to realize the interleaving,

strongly depends on P and interleaver structure

The throughput (T ) for state-of-the-art turbo decoder architectures can be calcu-
lated by the frequency times the number of cycle needed to process an information
word of length K . An increased throughput requires a higher parallelism of the archi-
tecture, which increases the number of overhead cycles for interleaving CN (P). The
throughput is given as follows:

T = fcyc· K

2 · iter ·
(

WL+AL
log2(rdx) + K

P·log2(rdx) + CN (P)
) (6.4)

The frequency itself mainly depends on technology tcond , the quantization of the
input data, and the critical path in the combinatorial logic.

The area Aall of a turbo decoder is composed of three parts:

Aall = P · AM AP (tcond, Q,W L , AL , rdx)

+ Actrl(tcond)

+ AM (tcond, Q,W L , AL , rdx, P). (6.5)

AM AP is the logic area for a single MAP processing kernel which has to be instanti-
ated P times depending on the parallelism. Actrl is the area of the controller which is
typically small compared to the other two parts. AM is the required area for instan-
tiated memories. The area to store the input data (AI/O

M ), the area of extrinsic data
(Aextr

M ) which are exchanged between component decoders, and the area to store
state metric values used within the processing units (AM AP

M ). Thus the area of the
memory which is a large portion of the overall area is given by

AM = P · AM AP
M (tcond,W L , Q, rdx)

+ AI/O
M (tcond, P, K , Q)

+ Aextr
M (tcond, P, K , Q). (6.6)
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In a similar way it is possible to derive equations for the energy consumption.
Energy consumption of a turbo decoder can be expressed as

Eblock = iter · [2 · P ·
(

WL + AL + K

P

)
· Ekernel(tcond,P,Q)

+ Enetwork(tcond, P, Q)] + EI/O(tcond, Q) (6.7)

Eblock is the energy consumption of the entire block and depends of course directly
on the number of utilized iterations. The final energy per bit is thus

Ebit = Eblock

K
(6.8)

The power consumption results in

P = Eblock

2 · it ·
(

WL+AL
log2(rdx) + K

P·log2(rdx) + C(P)
)

+ II/O

· f (tcond, Q) (6.9)

Area and power results of various turbo decoder implementations will be pre-
sented in Chap. 9. Understanding the trade-offs between implementation efficiency,
communications performance and flexibility will be key for designing efficient turbo
decoders. Meaningful efficiency metrics are mandatory to explore and evaluate the
resulting huge design space which will be presented as well in Chap. 9.
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Chapter 7
Low-Density Parity-Check Codes

Low-density parity-check (LDPC) codes were introduced in 1960 by R. Gallager [1]
in his Phd thesis. He already introduced the iterative method for decoding LDPC
codes. However, also due to their computational and implementation complexity the
iterative decoding was largely ignored. Before the introduction of turbo codes only
a small group of researchers were interested in the field of iterative decoding, e.g.
P. Elias [2], M. Tanner [3]. With the rise of turbo codes 1993 iterative decoding turned
into focus again and thus LDPC codes were re-discovered in 1996 by MacKay and
Neal [4].

Since 1996 LDPC codes have experienced a renaissance and they are among the
best codes, especially for very large block lengths. Many communications standards
feature LDPC codes as their channel coding scheme. The most prominent standards
utilizing LDPC codes are the second generations of digital video broadcasting ser-
vices (DVB-T2 [5], DVB-S2 [6], DVB-C2 [7]). Further standards featuring LDPC
codes are WiMAX IEEE 802.16 [8], WLAN 802.11n [9], 802.3an [10],WiMedia
1.5 [11], and 802.15.3c [12]. The standards with corresponding codeword length
and rates are shown in Table 7.1. Shown is as well the maximal throughput for each
standard, e.g. for the 10 GBASE-T Ethernet standard the throughput is 10 Gigabit
per second.1

7.1 Basic Definition

An LDPC code is a linear block code defined by its sparse M × N parity check matrix
H . The code is represented as the set of all binary solutions x = (x0, x1, ..., xN−1)

to the linear algebraic equation
H · xT = 0T (7.1)

1 Further list of the standards and the details parameter settings are shown in the appendix (A).
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Table 7.1 Selection of standards utilizing LDPC codes, from [13]

Standard Codes Throughput Code rates Codeword size

IEEE802.11n (WiFi) [9] LDPC 600Mbit/s 1/2, 2/3, 3/4, 5/6 Up to 1620
IEEE802.16e (WiMAX) [8] LDPC 96 Mbit/s 1/2, 2/3, 3/4, 5/6 Up to 1920
DVB-S2/T2/C2 [5–7] LDPC ∼ 90 Mbit/s 1/5–9/10 1,6200,64,800
WiMedia 1.5 (UWB) [11] LDPC ∼ 1000Mbit/s 1/4–4/5 1,200,1320
802.15.3c (60 GHz) [12] LDPC ∼> 500Mbit/s 1/2,3/4,7/8,14/15 672, 1,440
802.3an [10] (10 GBASE-T) LDPC ∼ 10 Gbit/s 0.84 2048

The elements of the parity check matrix are 0s and 1s. The entries could also be
elements of a finite field GF(p). Here, only binary codes GF(2) are considered. The
multiplication of x by a row of H corresponds to a parity check equation, which is
the XOR of the bits in x at the ‘1’ positions in the row of H .

Gallager introduced so called ( j, k) regular LDPC codes, where each column
of H contains j 1s and each row contains k 1s. ( j, k) are called column and row
weight respectively. The fraction of 1s in the parity check matrix is M ·k

M ·N = k
N , which

gets very small for large N , thus the name low-density. The resulting code rate is
R = (N − M)/N if H is of full rank, i.e. all rows are linearly independent.

A good way to represent an LDPC code is a bipartite graph or Tanner graph [3].
Figure 7.1 shows the H matrix of a (3,6) parity check code and the resulting Tanner
graph. The M check nodes (CN) correspond to the parity constraints (rows in H ), the
N variable nodes (VN) represent the columns in H . An edge in the graph corresponds
to a 1 entry in the parity check matrix. As an example the connectivity of the first
check node is highlighted.

Figure 7.1 shows the Tanner graph of a regular LDPC code, however, it was
shown that irregular or structured codes show superior communications performance.
Irregular LDPC codes have nodes of varying degrees and were introduced in 1997
by Luby et al. [14]. The communications performance of an irregular LDPC code
can be superior to that of a regular one.

An irregular LDPC code is defined by its degree distributions ( f , g) instead of the
tuple ( j, k). The degree distribution f gives the fraction of variable nodes for a certain
degree. The variable node degree distribution can contain many nodes of different

 

Fig. 7.1 Parity check matrix H and the corresponding Tanner graph representation
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degrees f = ( f1, f2, f3, . . . , fV N max ), while the check node degree distribution g
often contains two or three different CN degrees g = (gC N max−2 , gC N max−1 , gC N max ).

A Tanner graph for irregular LDPC codes is shown in Fig. 7.2, the node fractions
f1 are here omitted since these type of VNs need a special type of structure which is
explained in Sect. 7.5. The connections between VNs and CNs are indicated by the
connectivity boxΠ . The degree distribution ( f , g) defines an ensemble of codes, in
conjunction with a fixed Π a single code is specified.

The degree distributions for the WiMAX LDPC codes are shown in Table 7.2.
Three different code rates are specified in the standard. The codeword size ranges
from N = 576 bits to N = 2304 bits with a step size of 24 bits. For the code rate
R = 2/3 and R = 3/4 two different codes are specified, here indicated as code
A and B. Note, that both codes show nearly identical communication performance,
while both codes can be implemented with an advanced scheduling method (layered
decoding) which is presented in the next section.

Fig. 7.2 Tanner graph of an irregular LDPC code

Table 7.2 Degree distributions of all WiMAX 802.16 LDPC code classes, the codeword size ranges
from N=576 to N=2304 bit in steps of 24 bits

R WiMAX 802.16
Variable node degree f Check node degree g

1/2 f[2,3,6] = {11/24, 1/3, 5/24} g[6,7] = {2/3, 1/3}
2/3 A f[2,3,6] = {7/24, 1/2, 5/24} g[10] = {1}
2/3 B f[2,3,4] = {7/24, 1/24, 2/3} g[10,11] = {7/8, 1/8}
3/4 A f[2,3,4] = {5/24, 1/24, 3/4} g[14,15] = {5/6, 1/6}
3/4 B f[2,3,6] = {5/24, 1/2, 7/24} g[14,15] = {1/3, 2/3}
5/6 f[2,3,4] = {3/24, 5/12, 11/24} g[20] = {1}
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7.2 Decoding

LDPC codes are decoded by using a message passing (MP) algorithm [1] either in
hard or soft decision form. Typically, a soft decision algorithm is used which is then
called belief propagation (BP). The decoding is an iterative process which exchanges
soft-values (beliefs) between variable and check nodes along the edges of the graph.
Each node can be seen as an independent component decoder which calculates an
update of the incoming messages. The most common message update scheme is the
two-phase MP. There in the first phase, all variable nodes are processed and in the
second phase all check nodes. This two-phase MP is described in the following:

1. Initialize each VN with the received channel LLR λy
n of the associated bit of the

codeword. The codeword position index n ∈ {0, . . . , N − 1} is dropped in the
following. In the first step all outgoing messages of each VN are initialized with
the corresponding λy value.

2. Propagate the outgoing VN messages to the CNs along the edges in the graph.
3. Process the check nodes. Each CN calculates new probabilities for each incident

edge. For a CN of degree k the resulting output λl of edge l can be calculated by

tanh

(
λl

2

)
=

k−1∏
i=0,i �=l

tanh

(
λi

2

)
. (7.2)

i �= l means that we do not take this edge into account for calculation. An
outgoing message from a CN to a VN represents the belief that the check node
condition is fulfilled assuming the corresponding bit of the codeword is either
zero or one.

4. Propagate the outgoing CN messages back to the VNs along the edges of the
graph.

5. Process the variable nodes. Each variable node calculates a new MAP probability
of the associated bit of the codeword which is the sum of all incoming messages
to the corresponding VN.

Λ = λy +
j−1∑
i=0

λi . (7.3)

The sign of the resulting APP information is passed as output information for the
corresponding bit estimate x̂ . In a second step we have to update the information
of each incident edge. For a VN of degree j the resulting output λl of edge l can
be calculated by

λl = λy +
j−1∑

i=0,i �=l

λi . (7.4)

An outgoing message from a VN to a CN represents the belief that the associated
bit of the codeword is either zero or one.
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6. Repeat steps (2–5) until all parity checks are fulfilled (Eq. 7.1), which is H x̂T = 0.
The decoding is stopped as well after a fixed number of iterations.

Note that the processing of variable and check nodes are exactly the symbol-
by-symbol MAP calculations of repetition codes and single-parity check-code as
described in Sect. 3.3.3. The message exchange between VNs and CNs again utilizes
the basic extrinsic information concept. Only the additional gain has to be passed to
the next processing node.

Further Scheduling Methods

The described decoding method is only one scheduling method. As mentioned, an
LDPC code is composed of so called repetition codes and single-parity check-codes.
Each row in H represents one single-party check-code and each column one repeti-
tion code. For the iterative decoding different scheduling methods for the exchange
of the messages exist. Figure 7.3 shows the message flow of three different schedul-
ing possibilities, note that hybrid update schemes are always possible. Each message
flow in Fig. 7.3 starts from left, while the next update step evolves to the right.

The top graph shows the classical two-phase scheduling which was described in
the previous section. First all variable nodes are active, then the messages are sent to
all check nodes and finally back to all variable nodes. One iteration is finished after
one round trip (VNs → CNs → VNs). The advantage of this scheduling method is the
clear separation between the processing of VNs and CNs. There are many situations
during a hardware realization where only this kind of scheduling is possible, e.g.
a fully parallel implementation as explained in Sect. 7.4.

The figure in the middle shows the message flow of a so called layered schedule
(horizontally). Here, the first step is to pass all messages to the first CN. Only this
messages are passed which belong to the first row in H , thus all other CNs are
inactive. The first CN calculates an update of the messages and passes them back to
the corresponding VNs. Only the VNs with new input messages update there values
according to Eq. (7.4). In fact the VNs at the current iteration Λi ter

V N assuming a new
information at edge l can be calculated by

Λi ter
V N = Λi ter−1

V N − λi ter−1
l + λi ter

l . (7.5)

If a message of the previous iteration was not yet initialized, we assume λi ter−1
l = 0.

In a next step all updated VN APP messages are passed to the second CN and so on.
One iteration is finished when all CNs have been processed once. At each iteration
we have to ensure that the extrinsic information principle is maintained.

The advantage of this scheduling method is the continuous update of the APP
messages at the variable nodes which results in a faster convergence of the com-
munications performance which is shown below. Note, that this scheduling can be
applied to entire groups of CNs.

http://dx.doi.org/10.1007/978-1-4614-8030-3_3
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Fig. 7.3 Three different scheduling methods: two-phase, layered (horizontally), layered (horizon-
tally), and layered (vertically)
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Shown at the bottom of Fig. 7.3 is a so called vertical scheduling. The update
scheme is related to the horizontal one, however, now variable node centric. One
iteration is finished when all VNs have been processed. The trick of this scheduling
method is to hold the intermediate results of each CN which is then continuously
updated. The intermediate result of a CN can be expressed by the full product of
Eq. (7.2). This vertical or CN centric scheduling is of interest for realizing high
throughput LDPC decoder which have to process high code rates [15].

Examples of Communications Performance

Figure 7.4 shows the communications performance of a WiMAX LDPC code with a
codeword length of N = 2, 304 bits and a code rate of R = 0.5. The corresponding
degree distribution is presented in Table 7.2, while the full code structure with respect
to Π in Fig. 7.2 is specified in the standard. Shown are the performance results
for different iterations (5, 10, 20, 40) utilizing two different scheduling methods
(two-phase and horizontally layered). The layered scheduling method shows a faster
convergence behavior. E.g the 10th iteration of the layered decoding has an equivalent
communications performance as the 20th iteration of a two-phase scheduling. Note
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Fig. 7.4 Communications performance for two-phase vs layered schedule for a WiMAX LDPC
code of codeword size N = 2, 304 and R = 0.5



154 7 Low-Density Parity-Check Codes

that this faster convergence behavior of the layered decoding is especially true for
lower code rates. For very high code rates the convergence speed advantage slightly
diminishes, since the overall convergence is faster for high code rates. For LDPC
decoder hardware realizations the layered scheduling should always be utilized, if
possible.

One major enabler for all iterative decoding techniques is the assumption that the
incoming messages are independent. As long as this can be ensured each component
decoder computes an optimal symbol-by-symbol decision and passes this message
to other component decoders. The message passing results in an optimal symbol-
by-symbol MAP decoding if the Tanner graph is cycle free [16]. A cycle in the
Tanner graph is defined as the path with the same starting and ending VN, while an
edge can be traveled only once. For finite block length the Tanner graph will contain
cycles. Once a message has completed a cycle, the nodes update become suboptimal.
Therefore, the longer the cycles the longer the optimality of the iterative decoding
process. During code design we often try to maximize the girth of the graph. The girth
is defined as the shortest cycle in the graph. The iterative message passing algorithm
is thus a clever heuristic for the decoding problem. Now, the question arises, how
much is the communication performance loss in dB when comparing to the optimal
ML decoding. Solving the optimal ML criterion is NP-hard and can only be evaluated
for small block sizes. The ML solution for this code was found by utilizing so called
integer linear (IP) programming methods [17]. Figure 7.5 shows the ML decoding
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Fig. 7.5 ML performance vs. BP performance (40 iterations) of a WiMAX LDPC code, with
codeword length of N = 864 and R = 0.83 [18]



7.2 Decoding 155

performance compared to 40 iterations layered decoding. The utilized code is a
WiMAX code of codeword length of N = 864 and a code rate of R = 0.83. The
performance difference is 0.75 dB at FER = 10−4. Note that this gap is supposed to
get smaller for larger block sizes. However, the gap shows that there is still room for
improvement for a decoding heuristic, at least for smaller block sizes.

7.3 Structured LDPC Codes

As mentioned in the previous chapter an LDPC code can be defined by its degree
distribution of the variable nodes and the check nodes. However, starting with a
degree distribution we still have to realize the message exchange between the VNs
and CNs, which is defined by the connectivity patternΠ. An unstructured placement
of the edges may have disadvantage for the communications performance and will
be an obstacle for the corresponding hardware realization. Two important techniques
to design structured codes are introduced here, the quasi-cyclic LDPC codes and the
multi-edge type LDPC codes.

7.3.1 Quasi-Cyclic LDPC Codes

Low latency and high throughput LDPC decoder architectures have to realize the
exchanging of messages between variable and check nodes. It was soon realized that
a random connectivity structure of a Tanner graph poses big problems for the decoder
realization, since a network has to handle this parallel message exchange between
both kinds of nodes. For a random connectivity, memory access conflicts will occur,
which are identical to the problem of parallel interleaving as shown in Sect. 4.3.2.

Thus, quasi-cyclic LDPC codes where introduced which have big advantages for
the hardware realization. Quasi-cyclic LDPC codes are composed of sub-matrices
Hmz ,nz of size z × z:

H Macro =

⎛
⎜⎜⎜⎝

H1,1 H1,2 . . . H1,N/z
H2,1 H2,2 . . . H2,N/z
...

...
. . .
...

HM/z,1 HM/z,2 . . . HM/z,N/z

⎞
⎟⎟⎟⎠ ,with Hmz ,nz =

⎧⎨
⎩

0
I x

I x + I y + . . .

(7.6)

The sub-matrices Hmz ,nz are either the zero matrix or given by a cyclically shifted
identity matrix I x of size z × z with x − 1 the amount of circular right of left shifts.
Some codes also use superposed shifted identity matrices, where more than one shift
value per sub-matrix is defined (I x + I y + . . .). However, these superposed identity

http://dx.doi.org/10.1007/978-1-4614-8030-3_4
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matrices may pose a problem for a decoder hardware realization and should be
avoided, if possible, during code construction, see [13]. In communication standards
like WiMAX, WiFi or WiMedia so called macro matrices are defined, with the
corresponding shift values. We have to distinguish between a so called macro matrix,
at which only the positions of a shifted identity matrix is shown, and a detailed
realization for a given block length. For example, the description of one specific
WiMAX LDPC code (N = 576,M = 288) results in:

H Macro =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 24 19 0 0 0 0 0 14 21 0 0 2 1 0 0 0 0 0 0 0 0 0 0
0 7 0 0 0 6 20 3 0 0 0 4 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 7 6 21 0 9 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0

16 0 12 0 0 0 0 0 17 7 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 10 0 0 0 22 0 0 11 19 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 12 11 0 21 0 0 0 20 1 0 0 0 0 1 1 0 0 0 0 0
0 0 24 14 0 0 0 0 0 4 5 0 0 0 0 0 0 0 1 1 0 0 0 0
0 3 19 0 0 0 1 0 0 12 0 0 0 0 0 0 0 0 0 1 1 0 0 0
4 0 0 0 21 7 0 11 0 0 0 13 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 24 0 15 0 0 18 19 0 0 0 0 0 0 0 0 0 1 1 0
0 0 2 17 0 0 0 0 10 13 0 0 0 0 0 0 0 0 0 0 0 0 1 1

11 0 0 0 0 17 0 11 0 0 0 7 2 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.7)

In this notation, an entry still represents a z × z sub-matrix, with z = 24. In case
an entry is greater than zero it gives the amount of cyclic right shifts of a permuted
identity matrix, with the value 1 defining an identity matrix without shift. Zero sub-
matrices are indicated by the 0 entries. Note, that sometimes the −1 indicates a zero
sub-matrix, then the 0 would indicate an identity matrix.

Figure 7.6 shows the plot of the full binary parity check matrix H of the same
WiMAX code. The diagonals indicate where the parity check matrix is 1, in all other
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Fig. 7.6 A parity check matrix of the WiMAX code with N = 576,M = 288, R = 1/2, P = 24
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cases the parity check matrix contains a zero entry. In theses WiMAX codes the
variable nodes associated to information bits are located at the left of this matrix, the
variable nodes of the parity bits are allocated to right. The right columns of the matrix
show a typical double diagonal structure which is obtained by special structure of
the encoding scheme. The relation between encoder, parity check matrix and Tanner
graph is discussed in Sect. 7.3.3.

The separation of macro matrix H Macro and a final H matrix realization have
big advantages for the code design and analysis of the corresponding LDPC code
class. A macro matrix defines the positions of permuted identity matrices and thus
serves as template to derive different block sizes. This can be done by substituting
different z × z sub-matrix realizations as show in Fig. 7.6. The resulting communica-
tion performance is defined by the degree distribution, in particular the convergence
behavior. All analysis with respect to the macro matrix can be done independently
to the detailed realization for a certain block length. Thus during LDPC code design
typically a two step approach is done:

1. Designing the macro matrix:
Designing the macro matrix concerns about the convergence behavior and the
basic structure which group of z VNs is connected to which group of z CNs.
The macro matrix defines thus the degree distribution and not the final Tanner
graph realization. The entire analysis to define a good degree distribution is called
density evolution [19]. However, it is as important which VN group is connected
to which CN group which is explained in Sect. 7.3.2.

2. Determining the cyclic shift numbers:
Assuming one macro matrix we can realize various block sizes by a different
size of z × z. For a fixed z we still have to derive each specific cyclic shift entry
as shown for the WiMAX example. The corresponding shift entries which define
the final Tanner graph can be determined by a so called progressive edge growth
technique [20]. This technique starts with a Tanner graph without connection
and successively places z edges by z edges always checking the resulting girth
of the graph. Thus, the macro matrix will be lifted to the final size, step-by-step.
Typically we start the progressive edge growth from the VN groups of smallest
degree, since these nodes determine the low weight code words. For each newly
placed shifted entry we test all shift possibilities and decide in favor of the shift
value with the best girth or other appropriated measures [21].

Nearly all communication standards featuring LDPC codes utilize a quasi-cycle
code structure, at least when a certain code rate flexibility is required. In summary,
the quasi-cyclic LDPC codes have the following advantages:

• They allow for a compact description of the entries in the matrix.
• They enable a simple encoding scheme due to the quasi-cyclic property.
• The permuted identity matrix allow the use of simple barrel shifter for the hardware

implementation.
• The code construction itself can be simplified, since we can clearly separate code

properties defined by a macro matrix and a detailed realization of one code.
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7.3.2 Hidden Nodes/Multi-Edge Type LDPC Codes

In the previous section we have highlighted the advantage of the quasi-cyclic struc-
ture. All codes presented in this section can be defined by a macro-matrix and will
have a resulting quasi-cyclic structure, too. The additional feature of so called multi-
edge type LDPC code is the classification of variable nodes and check nodes in
groups. Typically, the connectivity structure of each group of nodes will follow rules,
i.e. which group of VNs are connected to which group of CNs. The advantage of
the multi-edge type classification is the larger flexibility with respect to the resulting
communications performance which can be either a better convergence behavior or
better minimum distance properties. These advantages can be obtained by embed-
ding so called hidden nodes and by using variable nodes of degree one. However,
then we have to take care how these group of nodes are embedded in the overall code
structure.

Figure 7.7 shows a general Tanner graph of a multi-edge type LDPC code. The
gray VNs are here the hidden nodes. For these group of nodes there is no initial
information available, i.e. the information of these nodes are not transmitted. Hidden
nodes can be seen as a kind of puncturing during the encoding process, e.g. nodes
and thus states which are used during the encoding process but not transmitted. The
expression hidden nodes and state nodes are used as synonyms in the following.
The Tanner graph shows NH additional variable nodes and NH additional CNs. The
problem with hidden nodes arises during the decoding process which is illustrated
in Fig. 7.8 by a small tree example. The four gray variable nodes in this graph are so
called hidden nodes or punctured nodes. When two messages-passed to one check
node-are zero, all output messages of this CN will be zero too. Thus, the lower
variable nodes will never receive an updated information. This is a typical problem
of the message passing algorithm. When the algorithm get stuck and is not able to
update messages any more we have identified a so called stopping set or stopping
condition. Such a trapping condition could arise by a disadvantageous puncturing
scheme at the transmitter side or even by chance caused by the channel.

Fig. 7.7 Multi-edge type LDPC code



7.3 Structured LDPC Codes 159

hidden nodes 
(initialized 
with zero) 

Fig. 7.8 Problem of hidden or erased nodes, i.e. problem of message passing when variable nodes
are not initialized for decoding

Thus, designing LDPC codes utilizing hidden nodes require a special connectivity
structure of the Tanner graph. It is not enough to specify a simple degree distribution.
The Tanner graph of Fig. 7.7 describes the presence of hidden nodes but not a precise
structure.

Multi-edge type LDPC codes are best described by a macro matrix. One exemplary
macro matrix for a rate R = 1/2 code is shown in Fig. 7.9. Remember, ones in the
macro matrix indicate positions of identity matrices of size z × z, zeros indicate all
zero matrix of size z × z. The allocation of columns to the information bits, parity
bits, and hidden bits is shown. Note that the hidden nodes have the highest column
weight and thus node degree. Here the degree of these nodes is six. The variable nodes
of degree one are only connected to the hidden nodes, this is an important aspect
for using VNs of degree one. The hidden nodes themselves require an elaborated
connectivity structure. Hidden nodes are initialized with a zero LLR information.

Fig. 7.9 Macro matrix of a multi-edge type LDPC code of R = 1/2
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Thus, situations as shown in Fig. 7.8 should be avoided during code design. Special
CN layers are utilized, which have to ensure that the hidden nodes are initialized with
values. These CN layers are only connected with one entry (edge) to a corresponding
VN group. The original idea of the multi-edge type LDPC codes is presented in the
book of Richardson and Urbanke [22].

Figure 7.10 shows the communications performance comparison of a WiMAX
LDPC code and a multi-edge type LDPC code. Both codes have K = 1154 infor-
mation bits with a code rate of R = 0.5. 40 layered iterations are performed in
maximum. The final performance of 20 and 40 iterations of the multi-edge type
LDPC is nearly 0.3 dB superiority to that of the WiMAX code. The 5th iteration
the WiMAX performance is slightly better, this is due to the hidden node initial-
ization which has to be done in the first iteration. We need one full iteration only
for initialization of the hidden nodes. The macro matrix of Fig. 7.9 was used for the
lifting process, the detailed permutations of this multi-edge type code is shown in
the Appendix, with further communication performance results.

7.3.3 Encoder, H Matrix, Tanner Graph

Since LDPC codes are linear block codes the encoding can be defined by multiplying
the systematic information with the generator matrix G:

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

10− 4

10− 3

10− 2

10− 1

100

E b

N0
/ dB

F
E

R

Fig. 7.10 Communications performance comparison of a multi-edge type LDPC code and a
WiMAX LDPC code, both with K = 1154 infobits and R = 0.5
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x = uG (7.8)

However, encoding of LDPC codes—which are utilized in standards—is usually
not performed with the generator matrix. These LDPC codes can be encoded by
a low complexity encoding procedure exploiting properties of the code structure.
For example, the dual diagonal on the right hand side of Fig. 7.6 allows for an
efficient encoding procedure which is described in the corresponding documentation
of the standards [8]. The second generation DVB codes [5–7] feature so called repeat
accumulate codes. The parity check matrices of these codes show a diagonal staircase
structure which enables a recursive encoding procedure.

Clear dependencies exist between parts of an encoder, parts of the resulting tan-
ner graph and the corresponding part of the parity check matrix which is shown in
Fig. 7.11. All presented encoder parts are composed of simple 2-state NSC or RSC
codes and a so called repetition part. The repetition part (rep) repeats the corre-
sponding input bits, e.g. 3 or 4 times. Depending on location of the corresponding
encoder part a different connectivity structure of the check nodes exists. For example
an accumulator at the output of a possible encoder structure will result in the already
mentioned staircase structure of the parity check matrix. This is shown at the bottom
of Fig. 7.11. The input in this example are bits which are not transmitted. These bits
will correspond to hidden nodes with respect to the Tanner graph. The recursive XOR
encoder structure will result in the zigzag connectivity of the check nodes.

When designing an encoder structure with an accumulator plus repetition unit
located at the input we will obtain variable nodes of degree one as shown at the top
of Fig. 7.11. These VNs of degree one are connected to CNs which are connected in
a zigzag pattern to hidden nodes. The corresponding part of a possible parity check
matrix already shows similarities to the structure of Fig. 7.9. An NSC structure at the
input results in a different connectivity as shown in the middle of the figure.

In the following we describe an example of a flexible encoding scheme which is
composed of the elements described above. The resulting LDPC codes are related to
accumulate repeat accumulate codes (ARA) which were introduced by Divsalar [23]
and later extended to proprietary products, e.g. for TrellisWare [24]. The flexibility
of the encoding and the communications performance is comparable to that of turbo
codes utilized in 3GPP. However, a possible LDPC decoder can be designed with a
throughput that is much higher.

Figure 7.12 shows the macro matrix view together with the corresponding encoder
structure. The encoder shows two different systematic input parts (sys 1 and sys 2)
which have a different encoding structure and thus a different connectivity with
respect to the hidden nodes. Rep 4 and rep 3/4 indicates a simple repetition of the
input bit. The information part 1 will result in a degree 1 variable node which is then
passed to a simple accumulator. The following 4 times repetition of these hidden bits
results in a degree 6 (hidden) VN node. As mentioned before, hidden nodes should
have a high variable node degree to ensure a good recovery of the information.
A further important rule to design hidden nodes is the fact that at least one CN
subgroup exists where only single edges are connected. This property cannot be seen
at the encoder structure but when looking to the macro matrix. The initialization of the
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Fig. 7.11 The interrelation of encoder part, resulting Tanner graph, and PCHK structure

hidden nodes is ensured at the bottom layer of the macro matrix. The corresponding
interleaverΠ for the encoder is derived by the already mentioned lifting process. The
encoder itself with a random interleaver would result in a very bad communications
performance. The puncturing unit (punct) determines the final code rate and the
resulting CN degree. The code rate can thus be adjusted by the puncturing unit or by
using additional systematic (sys 2) information. The encoder structure presented here
is one exemplary use case of a simple encoder which corresponds to one sub-class of
multi-edge type LDPC codes. Many more interesting and very powerful structures
exist which fit into the general framework of multi-edge type LDPC codes, see [22].
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Fig. 7.12 Flexible encoder structure together with the corresponding macro matrix view, zeros
within the macro matrix are not shown

7.4 LDPC Decoder Architecture

This section shows implementation aspects of LDPC decoder architectures. As
already explained the decoding of LDPC codes provides an inherent parallelism.
Each check node and variable node can be processed independently. This feature can
be explored for different scheduling methods, see Sect. 7.2. The independence of the
node processing is of great advantage for an LDPC decoder implementation. There
are some general components required for all LDPC decoder architectures:

• Functional units have to provide the VN and CN processing.
• Networks support the transportation of messages with respect to the Tanner graph

of the code.
• Memories are mandatory to store the received input channel LLRs and the

exchanged messages within the iterative decoding process.

However, each part depends on the input constraints of the standard to be sup-
ported. Many standards require flexibility regarding block lengths and code rates
while supporting a high decoding throughput. For example, an ultra wide band
(UWB) compliant LDPC decoder requires a maximum throughput of 1,024 Mbit/s
with a maximum codeword length of 1,200 bits. An LDPC decoder for GMR-1
requires only a throughput of less than 1Mbit/s, however, with a maximum code-
word length of 64,800 bits. Communication standards which utilize LDPC codes and
the corresponding data for different services can be found at www.ldpc-decoder.com.
Thus, for each of these standards different solutions have to be derived. The cost or

www.ldpc-decoder.com
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feasibility of each solution mainly depends on the storage requirements, throughput,
and flexibility of the decoder.

In the following the design space is derived together with some typical design
choices (Sect. 7.4.1). Possible solutions are identified for the message distribution,
the message storage, and the processing units. Different implementation possibilities
for CN processing are presented in Sect. 7.4.2. The already presented quasi-cyclic
LDPC codes provide a regularity which can be efficiently exploited during decoder
realization. The mapping process to hardware for quasi-cyclic LDPC code is pre-
sented in Sect. 7.4.3.

7.4.1 Design Space and Design Choices

The design space which reflects the possibilities of LDPC decoder implementations
can be divided into several levels. An enhanced list of design possibilities can be
found in [13]. From a high level point of view mainly the number of processed edges
per clock cycle defines the basic architecture. Then, only three basic possibilities
exist on a very high level:

• Fully parallel decoder: all edges are processed in one clock cycles.
• Partly parallel decoder: P edges are processed in one clock cycle.
• Serial decoder architecture: one functional node is processed per clock cycle. This

may result in a varying, however, small number of processed edges.

Depending on these basic techniques different solutions exist for the message
distribution, the message storage, and the realization of the processing units. The
three basic architectural decisions are presented in the following.

Fully Parallel LDPC Decoder

In a fully parallel LDPC decoder realization the Tanner graph is directly mapped
to hardware. Each variable and check node is instantiated and the connections are
realized hard-wired. This was shown in [25] for a R = 1/2 irregular LDPC code
with a codeword length of N = 1, 024 bits. They used a message quantization of 4
bits while the messages from variable to check nodes and the returning are carried
on distinct sets of wires. The data path of a fully parallel architecture is shown in
Fig. 7.13. The figure shows one functional node which processes a variable node of
degree 3, the functional node processes a check node of degree 4, respectively. It can
be seen that both types of functional nodes are implemented in parallel manner and
accepts all mandatory input messages. With this data path we need 1 clock cycle for
one iteration. The critical path of such an architecture is pretty long, since we have
to go through the CN and the VN functional node.

The resulting throughput of the decoder in [25] is 1 Gbit/s assuming 64 iterations.
The fully parallel implementation is the fasted possible implementation since all
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Fig. 7.13 Data path architec-
ture for a fully parallel real-
ization, the figure is derived
from [25]

nodes and thus all edges are processed concurrently. Thus, the advantage of a fully
parallel implementation is the high throughput. Especially in optical transmission
systems this is of great interest where one fixed LDPC code with a high code rate
(R > 0.8) could be established. The major problem for the hardware realization is
the routing complexity which becomes prohibitive for a large codeword length due
to routing congestions. Furthermore, this approach is only suitable for applications
where only one fixed code is used.

Partly Parallel LDPC Decoder

A partly parallel LDPC decoder processes P edges in one clock cycle, while P
is much smaller than the block length N . Often a partly parallel decoder becomes
mandatory to provide flexibility, at which only a subset of functional nodes are
instantiated. The variable nodes and check nodes are then processed sequentially on
these processing units. A processing node can be instantiated to process one edge
per clock cycle or multiple edges (degree dependent) per clock cycle. Hence, the
number of processed edges P and the number of instantiated functional nodes may
differ. The throughput is only determined by the number of edges (P) processed per
clock cycle. The major question for the mapping process is the allocation of a node
in the Tanner graph to a physically realized hardware unit. Thus, the question has
to be answered: which node has to be processed on which unit at which time? One
mapping procedure for a partly parallel architecture is shown in Fig. 7.14. In this
figure it is assumed that one functional unit processes one edge per clock cycle.

The messages which are exchanged between the functional units processing vari-
able nodes (VNFU) and check nodes (VNCN) have to be stored in memories. A
permutation network has to implement the desired connectivity of the given Tan-
ner graph, while the connectivity pattern has to be stored in additional memories.
The big advantage of a partly parallel architecture is the possibility to provide
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Fig. 7.14 Mapping from Tanner graph to parallel LDPC decoder architecture

flexibility, allowing different block lengths and code rates. The disadvantage is the
limited throughput which is smaller compared to a fully parallel decoder implemen-
tation.

Serial LDPC Decoder

The serial LDPC decoder is the simplest implementation. Only one functional vari-
able node and one functional check node are instantiated with a sequential processing
of all variable nodes and parity check nodes. The processed messages and the code
structure have to be stored in memories. The advantage of such an architecture is
the straight forward message distribution. A further advantage is its flexibility, the
disadvantage the very low throughput.

In [26] a serial decoder architecture is presented. They suggest using several
instantiated decoders in parallel to increase the throughput, but this results in a
huge decoding latency and large memory requirements. Instantiating several LDPC
decoders is always possible. The overall area increases linearly with the number of
decoder instantiation, however, this solution is not preferable if latency is a critical
issue.

In the following only partly parallel architectures are discussed since they can
provide flexibility in contrast to a fully parallel realization and a higher throughput
than a serial LDPC decoder implementation. The question of flexibility determines
the implementation style of functional nodes which are presented in the following
section.

7.4.2 Check Node Implementation

Depending on the basic architecture parallelism we have to instantiate either parallel
functional nodes, partially parallel or serial functional nodes. The hardware realiza-
tion of the variable node processing is straight forward and not further addressed.
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As seen in the design space different check node implementations are mandatory
which may result in a parallel, serial, or partially parallel CN architecture. Only two
architectures are derived here. The fully parallel CN implementation and the serial
CN implementation.

Fully Parallel CN Implementation

For a fully parallel hardware realization a CN implementation becomes mandatory
which processes all incoming messages within one clock cycle. This is shown in
Fig. 7.13. For realizing such a parallel functional unit the tanh equation of the CN
can be utilized, which is:

tanh

(
λl

2

)
=

k−1∏
i=0,i �=l

tanh

(
λi

2

)
. (7.9)

This check node calculation can be divided in two steps. Step one is the calculation
of an intermediate result I :

I =
k−1∏
i=0

tanh

(
λi

2

)
. (7.10)

I comprises the full tanh product of all incoming messages. For the output calculation
a second processing step is required. For each output each l we have to evaluate:

λl = 2 × arctanh

⎛
⎜⎜⎝ I

tanh

(
λold

l
2

)
⎞
⎟⎟⎠ . (7.11)

During hardware realization we should avoid divisions for complexity issues. Thus,
the two processing steps are transformed to the logarithm domain.

One problem arises during the CN processing in the logarithm domain. The treat-
ment of the sign posses a problem and can be solved by splitting the CN calculation in
a magnitude processing and a separate sign processing. The sign processing performs
a parity check (XOR) calculation of the signs of the input messages and checks if a
parity check is fulfilled. The output sign of a corresponding edge is the XOR of the
sign of the incoming message and the parity check result. For a detailed architecture
see [25].

In the following only the processing of the magnitudes is shown, see Fig. 7.15.
In the figure an input quantization of 4 bits is assumed (only magnitude part), while
the intermediate bit width is larger. For an efficient VLSI realization, each data bit
width of each intermediate result has to be optimized with respect to an adequate
communications performance. For example, the adder which sums up 3 values, each
value quantized with 7 bits, would have in worst case a 9 bit output value. However,
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Fig. 7.15 Data path of parallel CN architecture with three edges. Here, only the magnitude part is
processed, the sign bits are processed in a separate flow, see [25]

we can saturate the sum to 8 bits without any influence on the resulting communica-
tions performance.

For the data path of Fig. 7.15 we have to implement the function ln(tanh(x)).
Since the input bit width is quite small we can realize the function in hardware by
a look-up table. A look-up table stores pre-computed values for each possible input
combination. Deriving such a look-up table was shown in Sect. 5.2.2.

Serial CN Implementation

A serial CN implementation is often used for partly parallel decoder implementations.
Here, we do not implement a serial CN utilizing the tanh realization of the previous
section. The reason for that is the larger dynamics for supporting different code rates.
In the case of fully parallel implementation the look-up tables can be efficiently
derived since only one code rate and thus a limited SNR range is used with the
architecture. As mentioned the serial CN implementation has to provide a code rate
flexibility which ranges for the second generation DVB class from a CN degree of 4
to 30.

A generic architecture of a serial CN is shown in Fig. 7.16. Only one input edge is
processed per clock cycle. Most of the serial CN architectures are based on minimum
searches with correction at the output stage or without correction term. All grey boxes
and the dotted lines in Fig. 7.16 are optional and only mandatory when we apply a

http://dx.doi.org/10.1007/978-1-4614-8030-3_5
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Fig. 7.16 Generic serial CN architecture based on searching the minimum. The white boxes are part
of the Min-Sum realization, the gray parts are optional for a better CN functionality approximation

correction term to approximate the optimal output processing. The entire processing
can be split in an input processing and an output processing. The input stage has the
task to search the minimum of all input edges and to store the corresponding index.
Depending on the output approximation we need only the two smallest values, which
would result in the so called Min-Sum algorithm where the minimum value is the
result for all output messages. However, we have to ensure not to pass back the
minimum to its origin. Thus, for this message we select the second smallest value as
output result. Correction terms to approximate the correct result can be derived from
further values, which is then often denoted as k − Min approximation. The value
k indicates how many values are utilized for the approximation. An approximation
function which can be efficiently realized within this architecture was already shown
in Sect. 5.2.3.

7.4.3 Mapping from Parity Check Matrix to Hardware

During the hardware design of the first LDPC decoders it turned out that a parity
check matrix with random entries will result in memory access problems. These
memory access problems are identical to that discussed for parallel interleaving,
Sect. 4.3. However, it is possible to design an LDPC code which jointly takes into
account the communications constraints and hardware constraints which is denoted
as joint code-decoder design in the following. The resulting codes are quasi-cyclic
which were introduced in Sect. 7.5. As mentioned, many LDPC codes defined in
wireless communication standards are quasi-cyclic, i.e. the parity check matrix is
composed of permuted identity matrices.

Figure 7.17 shows the first step of the joint code-decoder design. The joint code-
decoder design was already shown in Sect. 4.3 to design interleavers which can be
implemented without memory access conflicts. An identical design philosophy is

http://dx.doi.org/10.1007/978-1-4614-8030-3_5
http://dx.doi.org/10.1007/978-1-4614-8030-3_4
http://dx.doi.org/10.1007/978-1-4614-8030-3_4
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Fig. 7.17 Mapping step of the first three permuted identity matrices to hardware

shown in this section. Starting point is an empty parity check matrix and an architec-
ture hardware template for the decoder. On the right side we have an assumption of
four functional nodes with a serial processing of the variable nodes. Thus, each func-
tional VN can accept exactly one message per clock cycle. Four different memories
are allocated to the input. The output of the VN processing elements is connected to
a shifting network. This concept of functional processing node and afterwards a per-
mutation network was already derived in the interleaver chapter. Again four different
memories are assumed for storage which results in a maximum of four processed
edges per clock cycle. In this small example we would like to design a regular LDPC
code with variable nodes of degree three. Thus we have to reserve three memory
spaces for the messages of each variable node. The numbering inside the VN RAMs
indicates the three messages which will be allocated to the first 12 variable nodes,
labeled from 0 to 11.

On the left side of Fig. 7.17 part of a parity check matrix is shown with a possible
allocation of columns to variable and check nodes. Here the first column (VN) is
allocated to the first variable node, the second column to the second VN and so on.
For the check nodes the same allocation holds, first row is allocated to the first CN,
indicated with the square with the zero entry.

We have started to fill the parity check matrix with entries. Here three identity
matrices are already placed which shows directly which variable node is connected
to which check node. On the hardware side this may result in the shown memory
space allocation. The three messages of variable node 0 are stored at three distinct
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addresses in the CN RAM1. The same storage location exists for all four processed
messages.

Figure 7.18 shows the mapping of the next two identity matrices of a parity
check matrix. One identity matrix has already one permutation. This permutation
was mandatory to avoid short cycles which hampers the convergence of the utilized
message passing algorithm. The resulting messages in the architecture template are
changing the storage location to ensure the correct connectivity between VNs and
CNs. Messages are cyclic shifted to right, which is exactly the functionality a shifting
network can provide. The entire procedure to fill the parity check matrix with P mes-
sages by P messages was already introduced in the context of designing structured
codes, see Sect. 7.3. The mapping of the parity check matrix to an architecture tem-
plate as shown in Figs. 7.17 and 7.18 is one possibility to utilize a joint code-decoder
design. Many papers exist which utilize the joint code-decoder design technique,
like [27–29]. Sometimes serial processing units are assumed, and sometimes paral-
lel processing units. However, all publications have one basic part in common: all
utilize a permutation network which allows a parallel message distribution without
memory access conflicts.
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Fig. 7.18 Mapping step of further permuted identity matrices to hardware
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7.4.4 Advanced Topics for LDPC Decoder Realization

The hardware realization of LDPC decoders is already quite elaborated. Efficient
LDPC decoder designs for various standards can be found in [30–35]. The list is far
from being complete. As mentioned before, we have to solve three basic problems:
the realization of the computational units, the exchange of messages between the
computational units and the storage of the messages. In the following a very compact
review list for each of the topics is given.

Iterative Scheduling Method

For the LDPC decoder hardware realization we have to utilize an iterative schedul-
ing method, as described in Sect. 7.2: either a two-phase scheduling or a layered
scheduling.

• The two-phase scheduling updates first the VNs and then the CNs.

– Pro: It is the most simple scheduling method and can always be implemented.
The two-phase scheduling method is mandatory for a fully parallel decoder
realization.

– Con: The convergence speed is slower than that of a layered processing.

• The layered scheduling (horizontal) continuously updates the a posteriori infor-
mation of the VNs after processing one or a group of CNs. This scheduling method
utilized for a hardware realization was first presented by M. Mansour [28].

– Pro: The convergence speed is faster than the two-phase scheduling. For a hard-
ware realization this can be of great advantage since for a limited number of
iterations a better communications performance can be achieved. Whenever
possible this scheduling method should be utilized for a hardware realization,
see [13, 33, 36].

– Con: For hardware realization the layered update scheme can cause memory
access problems which is sometimes difficult to resolve, e.g., in the case of
DVB-S2 processing [34].

• The layered scheduling (vertically) continuously updates the information of the
CNs after processing one or a group of VNs. This scheduling method utilized for
hardware realization was first presented in [37]

– Pro: The convergence speed is faster compared to that of a two-phase scheduling.
Especially for very high throughputs and a partly parallel decoder design this
solution can have advantages, see [38]

– Con: The scheduling method has many restrictions for a joint code-decoder
design approach. Realizing a layered scheduling for high code rates is difficult.
The higher the code rate, the less is the advantage of a faster convergence
compared to a two-phase scheduling.
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Quantization Issues

For the hardware realization we have to quantize the input information and the
messages which are exchanged in the iterative process. Often the input quantization
and the quantization of the exchange messages are chosen to be identical.

• The input LLRs and the exchanged informations are typically quantized with 6
bits. The quantization directly influences the overall area of a chip.

– Pro: 6 bits results in a robust communications performance for wireless channels.
Especially for wireless communication different applications and thus code rates
and block sizes have to be supported. Thus, channel conditions will vary. 6 bits
are enough to obtain a communications performance with an acceptable loss
compared to a floating point implementation. The loss is smaller than 0.2 dB for
all cases. Fixed point explorations can be found in [39, 40].

– Con: When only one (high) code rate has to be supported, we can obtain very
good communications performance results with 4 input bits. 6 bits message
quantization would be a high routing overhead for a fully parallel decoder real-
izations.

• The messages can also be encoded by stochastic messages. Many bits are used
to encode a message, while the statistics of ones and zeros within a message
determines the corresponding confidence level of the message. These Bernoulli
sequences are passed bit by bit to the corresponding processing units. An entire
decoder with these messages is presented in [41].

– Pro: Stochastic messages allows a high clock frequency of the design since the
arithmetic units for VN and CN processing are very simple. Furthermore it has
advantages for the routing overhead due to bit serial message exchange.

– Con: The approach itself comes with a small performance degradation and
makes only sense for a fully parallel approach.

Sub-optimal CN Processing

For LDPC decoding only the processing of the check node functionality has different
solutions [39, 40, 42]. The variable node processing is trivial and thus not consid-
ered here. The CN functional unit can either compute a sub-optimal solution or an
optimal CN calculation. Note, that in all cases the optimal sign value is calculated
which indicates if the parity check condition is fulfilled. Only the calculation of the
corresponding message reliability differs.

• The most common sub-optimal realization is the Min-Sum realization. The CN
functional unit searches the smallest and second smallest magnitudes of all input
messages and passes only two different magnitude values back to the VNs.

– Pro: The realization of the CN functional unit will result in a very small area
and the communications performance is good for high code rates.
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– Con: The smaller the code rate, the worse will be the Min approximation. For
smaller code rates the performance degradation is quite large compared to an
optimal realization. E.g., DVB-S2 features rates of R = 1/5. With a simple Min-
Sum approximation the required communications performance of the standard
can not be achieved.

• The direct tanh realization results in an implementation close to the optimum.
The optimality depends of course on the quantization level.

– Pro: The tanh realization enables a full parallel processing of a check node and
is nearly optimal from a communications point of view.

– Con: The tanh realization is relatively unstable for SNR mismatches, i.e. if the
input LLR values are not correctly scaled with respect to the noise variance.
This kind of CN realization should not be implemented for decoders featuring
wireless communication standards. The non-linear functions are realized by
look-up tables which may increase fast for larger bit width

• Many different sub-optimal variants which show a communications performance
between an optimal CN computation and the Min-Sum realization. One of the
best trade-off possibilities is the so called λ-Min CN realization. For the APP
calculation of CN messages only a reduced number of messages are considered
for calculating a correction factor [43]

– Pro: This sub-optimal variant offers a good communications performance and
it is adjustable with a decent implementation complexity.

– Con: The technique is problematic for fully parallel CN processing.

Realizing the VN to CN Connections

For the iterative message exchange we have to provide the connectivity pattern, i.e.,
the routing between physically instantiated VNs and CNs. Different solutions exist
with respect to the required throughput and flexibility.

• Hardwired: the connectivity can be hardwired which makes sense for extremely
high throughputs [25].

– Pro: This results in a one-to-one mapping of the underlying Tanner graph. Hard-
wired is one possible solution to realize the 802.3an standard (10 GBASE-T)
[10].

– Con: Routing can be complex and the decoding is restricted to one (or few)
dedicated LDPC codes.

• Shuffling networks: these are simple networks which can realize for P input and
P output ports exactly P permutation possibilities. These are always cyclic shifts
of the input sequence.

– Pro: Shuffling networks are simple to realize in hardware. The connectivity
pattern of quasi-cyclic LDPC codes can be efficiently mapped on these networks.
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– Con: Shuffling networks are restricted to quasi-cyclic LDPC codes, e.g. the
connectivity pattern of 802.3an [10] could not be realized with these networks.

• Benes networks: these are networks which can realize exactly P! permutation
possibilities for P input and P output ports. The network can realize all conflict
free permutation possibilities, which means P input messages can be routed to P
distinct output ports.

– Pro: Benes networks provide a huge flexibility and are often utilized for flexible
solutions.

– Con: The storage amount of the control bits can be very large. P
2 × (2 × log2

(P)−1) control bits are mandatory for one permutation of P messages. Since at
each clock cycle a new permutation pattern is required the total storage demand
is often higher than the storage of the exchanged messages.

• Network-on-chip solutions: NoCs uses a kind of packet based solution [44–46].
Each packet is associated with a header to identify a destination port.

– Pro: In theory any connectivity pattern can be realized, demonstrators exist to
prove the theoretical capability for a fully flexible LDPC decoder.

– Con: For providing only the connectivity pattern of an LDPC decoder this solu-
tion is cumbersome and often quite large. We are not aware of a full NoC
approach for an LDPC decoder product.

Storage of the Exchanged Messages

For packet based transmission every LDPC decoder implementation has to store the
input LLR information. Besides the quantization level, the optimization possibilities
for the input storages is quite restricted. Most LDPC decoders for wireless trans-
ceivers are realized by utilizing a partly parallel architecture. For these architecture
different optimization possibilities exist to store the exchanged messages.

• Edge compression: it is possible to store a compressed versions of the exchanged
messages. Edge compression is only possible together with sub-optimal CN real-
izations at which the number of different magnitude values are limited. E.g. for
the Min-Sum realization only two different magnitude values are considered.

– Pro: The higher the CN degree the higher the achieved compression level and
thus the storage benefit. This results in power savings, due to less memory
accesses compared to architectures without compression.

– Con: For lower code rates and thus small CN degrees, the compression overhead
is getting larger and has to be switched off.
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7.5 Joint Code Construction and Architecture Design

This section shows a design study for a high throughput LDPC decoder. It highlights
again the fact that a joint know-how of architecture design and code construction is
mandatory to obtain an efficient LDPC decoder design.

In the previous sections we have shown the constraints to map a parity check
matrix to a decoder architecture, see Sect. 7.4.3. The presented code to architecture
mapping results in standard compliant LDPC decoders which support the processing
of up to P parity checks in parallel which belong to the same sub-matrix of size z×z.

In this case, the check nodes work serially, i.e. on one edge per clock cycle. This
was shown for the hardware mapping assuming P = z, see Fig. 7.18. The one-to-one
mapping of sub-matrices to serial processing units results in a decoder throughput
which is sufficient for WiFi [9] , WiMAX [8] or DVB-S2/T2/C2 [5–7]. This approach
is described in many publications e.g. [30, 31, 34]. However, future communications
systems will require a higher throughput while providing flexibility. Examples are
Utra Wide-Band (UWB) communication systems [11], or systems operating in the
60GHz range [12]. A further application with a large throughput demand will be
iterative BICM systems, throughput considerations for feedback loops via MIMO
receivers will be presented in Sect. 8.2.

This section shows an advanced LDPC decoder design study which tackles the
upcoming high throughput demands, parts of this sections are presented in [47]. One
key feature of a new LDPC decoder is always the support of quasi-cycle LDPC codes
which was highlighted in Sect. 7.3.1. Further key points which have to be considered
for the LDPC code and architecture design are summarized in the following.

Fig. 7.19 A parity check matrix which enables layered decoding with a three slot architecture. The
numbers indicate the clock cycles at which the corresponding sub-matrices will be processed

http://dx.doi.org/10.1007/978-1-4614-8030-3_8
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• Flexibility: The decoder architecture should support block sizes ranging from
N = 1,000 bits to several thousands of bits while supporting various code rates.

• Throughput: The decoder has to provide a throughput within the Gbit/s range.
• Layered decoding: The decoder should support layered decoding to obtain the best

communications performance result at each iteration.

All three constraints heavily influence the design of the parity check matrix of the
LDPC code and the final decoder architecture. Fulfilling the three constraints as good
as possible at the same time can only be achieved by joint channel code construction
and architecture design.

As highlighted in Sect. 7.4.1, numerous parallel check nodes can be instantiated in
an LDPC decoder to increase its throughput. The memory access patterns to supply
all check nodes with data are crucial for the code design to avoid access conflicts.
A quasi-cyclic code with sub-matrices of size z × z can avoid memory conflicts and
simplify the connectivity network between variable nodes and check nodes.

Meeting the target throughput in the Gbit/s range on a standard decoder archi-
tecture with P = z would require a large size for the identity matrices. However,
this contradicts with the given constraints on flexibility and layered decoding: For
a small block length, an assumption of P = z results in sub-matrices with multiple
diagonals. These multi-diagonals lead to severe memory access problems for lay-
ered decoding architectures which are well-known from literature [33, 48]. Thus,
increasing the sub-matrix size z in order to reach the required parallelism on a stan-
dard architecture is infeasible. Instead, we need to process several sub-matrices in
parallel.

In the following a design approach is presented at which 3 sub-matrices can be
processed in parallel, resulting in P = 3 × z. The resulting architecture is based on
the concepts presented in [36] and shown in Fig. 7.20. Each set of z Variable Nodes is
attributed to one of the three slots. One slot processes one sub-matrix per clock cycle.
In contrast to standard architectures, each of the z check node blocks (CNB) reads
and writes three edges in parallel, with each edge coming from a different slot. The
minimum search within the CFU is performed according to [31]. The variable node
operations are processed within the CNBs and do not require an explicit functional
unit. This architecture fulfills the constraints on flexibility, throughput and layered
decoding.

However, the architecture imposes hard restrictions on the parity check matrix.
In layered decoding, variable nodes are partly updated as soon as a connected check
node is processed. Processing is done in a pipeline with three stages including one
cycle from APP RAM through Network and CNB and back to the APP RAM. Writing
back the data can only be started after the whole check node has been processed. A
variable node can only be accessed again after being updated and is thus blocked for
several clock cycles. The length of the blocking interval B does not only depend on
the length of the pipeline but also on the check node degree dCN .

B = 3 +
⌈

dCN

3

⌉
(7.12)
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Fig. 7.20 Layered decoder architecture with partly parallel check nodes processing three sub-
matrices in parallel each of size z × z. The architecture can process (P = 3 × z) edges per clock
cycle

The challenge of the code design lies in the placement of non-zero sub-matrices.
Continuous processing has to be ensured which is not delayed by blocked variable
node columns, i.e. there always has to be a row of sub-matrices available which does
not contain any of the currently blocked variable node columns.

For example, consider Fig. 7.6: We start by processing the first group of z check
nodes (the first z rows of the parity check matrix). In the first clock cycle the three
sub-matrices labeled with ‘1’ are processed in parallel. Next, the sub-matrices ‘2’
are processed and all values for the first z parity checks have been read. But only 3
clock cycles later the results of the sub-matrices ‘1’ will be written back. Thus, all
variable node columns containing ‘1’ are blocked until clock cycle 6, all columns
containing ‘2’ until clock cycle 7. When we select the next group of check nodes,
we have to find a row of sub-matrices which does not contain any blocked columns.

The layered constraint mainly influences the placement of identity matrices and
poses an obstacle especially for high code rates and/or small block sizes. For the
design study we chose z to be z = 93 due to the derived throughput constraints in [47],
see as well Sect. 8.2. The architecture can process P = 3×z = 279 edges in parallel.
After deciding for a detailed size of z we can lift the identity matrix as described in
Sect. 7.3.1.

Constructing a structured LDPC code for layered decoding and a sub-matrix size
of z = 93 allows for a minimum block length of N = 3,720. Furthermore, the

http://dx.doi.org/10.1007/978-1-4614-8030-3_8
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maximum variable node degree for the shortest blocks is restricted to VNmax = 5.
The block size and variable node degree restrictions are due to the layered constraint
as described above. The larger the block the more freedom to place sub-matrices,
i.e. the size of the macro matrix will be changed. Starting from a block size of 7,440
bits a maximum VN degree of VNmax = 15 can be supported.

The final implemented LDPC decoder architecture supports block sizes between
3,720 and 14,880 bits with code rates between 1/2 and 4/5. The maximum block
size is only restricted due the used sizes of the SRAMs.

The LDPC decoder is implemented on a 65 nm low power bulk CMOS library.
We considered the following PVT parameters: Worst Case (WC, 1.1V, 125 ◦C),
Nominal Case (NOM, 1.2V, 25 ◦C) and Best Case (BC, 1.3V, −40 ◦C). Synthesis
was performed with Synopsis Design Compiler in topographical mode, P&R with
Synopsys IC Compiler.

Synthesis as well as P&R were performed with worst sase PVT settings of the
65 nm library. PVT defines the process, voltage, and temparature as decribid for
SRAM memories in Sect. 4.2. Table 7.3 shows the results for area and maximum
clock frequency. The differences between Synthesis (2.932 mm2, 322 MHz) and
P&R (4.588 mm2, 275 MHz) mainly result from the huge internal bandwidth inside
the LDPC decoder. Each message is quantized with 8 bits, thus we have to route
z × 3 × 8 = 2, 232 wires. This results in routing congestion problems due to the
huge number of wire connections between memory blocks and logic. For Nominal
Case, the maximum clock frequency increases to 465 MHz.

The final physical design shown in Fig. 7.21 contains 59 SRAMs which occupy
more than 40 % of the area (2.244 mm2). An area utilization (cell/core area ratio) of
67 % was achieved.

The power consumption of the physical design is evaluated with Synopsys
PrimeTime-PX. Table 7.4 summarizes the results. At a low frequency of 100 MHz,
the implemented design consumes 481 mW. The power consumption scales linearly
with the clock frequency.

The LDPC decoder has a net throughput of 4.6 Gbit/s assuming five layered
decoding iterations. Depending on the code rate the information bit throughput will
be smaller. The evaluation of this result and the comparison with other channel
decoder realizations is done in Chap. 9.

Table 7.3 Synthesis and P&R results

Design step Case Max. clock freq. (MHz) Area (mm2)

Synthesis Worst 322 2.932
Worst 275

P&R Nominal 465 4.588

http://dx.doi.org/10.1007/978-1-4614-8030-3_4
http://dx.doi.org/10.1007/978-1-4614-8030-3_9
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Fig. 7.21 Physical design of the LDPC decoder. The barrel-shifter networks are in the top middle
(0: light yellow, 1: orange, 2: red). The processing unit containing the 93 check node blocks covers
the lower half of the chip (olive)

Table 7.4 Power consumption of the implemented LDPC decoder after P&R

Clock freq. (MHz) Process case Power after P&R (mW)

100 Nominal (Vdd = 1.2V ) 481
265 Nominal (Vdd = 1.2V ) 1,271
265 Worst (Vdd = 1.1V ) 1,070
265 Best (Vdd = 1.3V ) 1,378
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Chapter 8
Bit-Interleaved Coded MIMO System

In Chap. 2 we introduced the so called bit-interleaved coded modulation systems. In
BICM systems a channel code is followed by an interleaver stage and the modulation.
So far, the transmission of information was assumed to be done via one pair of
antennas (one on the sender side and one on the receiver side), which means one
symbol was sent in each time slot. However, as introduced in Sect. 2.4 it is possible
to transmit multiple symbols via multiple antennas, while on the receiver side it is
also possible to receive information via multiple antennas. In this chapter we will
enhance the outer tranceiver of the BICM system towards so called multiple-input
multiple-output (MIMO) antenna systems. The resulting BICM-MIMO system is
part of the outer transceiver, as a clear separation of the frequency modulation part
is possible.

In a MIMO system a symbol stream is demultiplexed to multiple transmit anten-
nas while the receiver side collects superimposed samples, which are additionally
disturbed by channel noise, from multiple receive antennas. There are two reasons
to use MIMO antenna systems: increasing the data rate and/or increasing the reli-
ability of the transmission. Many techniques exist to reduce the complexity of the
MIMO demodulation process, e.g. by introducing constraints in space and/or time,
by trading off diversity gain and multiplexing gain. MIMO demodulator or MIMO
detector are used as synonyms in the following. Two of the most famous space-time
codes are the original Bell Labs layered space-time (BLAST) technique [1] or the
well-known Alamouti scheme [2].

Typically, all of these techniques have to be concatenated with an additional
channel code to ensure a desired quality of service. The overall data rate of the
transmission—the number of bits transmitted per channel use—is determined by the
space-time encoder and the channel encoder independently. The overall complexity
depends rather on the individual modules than on the integration of the two.

Transmission rates close to the theoretical capacity of a MIMO channel can be
achieved by a simple encoder structure, by a serial concatenation of an outer code,
interleaver, and modulator. In this case the modulator performs a spatial multiplexing
of the symbol stream without introducing any further constraints and thus data rate
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loss. This simple concatenation can be seen as a classical bit-interleaved coded-
modulation scheme (BICM).

Approaching the MIMO capacity limit can be achieved by an iterative receiver,
where probabilistic (soft) information are exchanged between MIMO detector and
channel decoder [3, 4]. However, the demodulator has to calculate maximum a pos-
teriori probabilities (APP) for each bit which can be computationally demanding.
The complexity of the MIMO-APP demodulator depends on the number of transmit
antennas and the size of the modulation alphabet.

Typically, the MIMO detector and the channel decoder are designed indepen-
dently, while the overall complexity mainly depends on each individual part. There
exist many different possibilities for the realization of the required soft-in soft-out
MIMO detector. This chapter deals only with the one which can provide the best
communications performance. This MIMO detector is based on the so called sphere
detection algorithm. This chapter puts focus on a design flow to improve a sys-
tem in terms of architectural efficiency and communications performance. The three
steps are: understanding the system, deriving architectural constraints, and improve
the system. The last step requires know-how from the algorithmic domain and the
hardware domain to improve the system. The three steps are sketched in Fig. 8.1.
Understanding all steps requires the knowledge of the previous chapters.

• First the system set up is explained and the state-of-the art performance of iterative
BICM-MIMO systems is introduced. The basic MIMO detection algorithms are
explained, but only the sphere-based algorithm is considered further. The presented
soft-in soft-out sphere detector can calculate the optimal symbol-by-symbol MAP
criterion.

• The second part deals with an architectural evaluation of the BICM-MIMO system.
We show how to derive the necessary parallelism for a channel decoder with
or without feedback loop. A high level exploration like the presented is always
required before realizing an architecture. This is a classical top down approach
at which a designer evaluates the parallelism of the data flow. Based on this the
number of instances for the individual components can be derived.

Fig. 8.1 Design steps for system improvement. Parts of this chapter and the related topics which
are required for a joint design of algorithm and architecture with respect to BICM-MIMO systems
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• Implementing a BICM-MIMO system in a top down approach results in inde-
pendent implementations of the channel decoder and the MIMO detector. The
overall complexity will be lower bounded by the VLSI footprints of the individ-
ual components. The basic philosophy of joint MIMO detector and channel code
design, which is shown in the third part of the chapter, requires the knowledge
of the algorithm and a basic understanding of architectural design. The goal is
to reduce the complexity and to increase the communications performance at the
same time. This can only be achieved when architectural know-how is taken into
consideration in the early phases of system design.

8.1 State-of-the-Art BICM-MIMO Systems

In this section we will revise state-of-the-art BICM-MIMO systems. We assume
for all MIMO system that they have a symmetrical number of antenna setup, i.e.
MT = MR . The MIMO encoding and decoding processes are explained in the fol-
lowing paragraphs, furthermore the achievable communications performance is pre-
sented.

8.1.1 MIMO Transmitter

The entire encoding procedure is a bit-interleaved coded modulation (BICM) scheme
and is shown in Fig. 8.2. The source bits are encoded by an outer channel code of
code rate R. The resulting codeword is interleaved and then mapped to symbols.
The symbols are then multiplexed to the different antennas and MT symbols are
transmitted simultaneously at each time step. In the following we will explain the
notation, which differs slightly from the notation used in previous chapters. Instead
of scalars each time slot now holds a vector of transmitted data. The source generates
a random information word u of length K which is encoded by the channel encoder.
The resulting codeword x consists of N bits which are grouped into Ns subblocks xn .
In the following we combine the interleaver stage and this grouping in one stage with
the resulting codeword matrix X

Fig. 8.2 Typical MIMO transmitter with the encoded codeword x and the transmisson vector st .
The serial to parallel de-multiplexing stage is denoted as S/P
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X = (x1, x2, . . . , xn, . . . , xNs). (8.1)

Each subblock consists of Q coded bits (Q being the modulation size).

xn = (x1,n, x2,n, . . . , xq,n, . . . , xQ,n) (8.2)

Each subblock xn is mapped to one complex symbol s chosen from a 2Qary QAM
modulation scheme (Gray mapping). The advantage of this matrix notation is that it
combines the interleaver and the allocation of the bit positions to symbol positions.
At any given time MT consecutive symbols are combined in one transmitted vector
st .

st = (s1,t , s2,t , . . . , sMT ,t ) (8.3)

The whole modulated sequence is represented by

S = (s1, s2, . . . , st , . . . , sT ) (8.4)

T time slots are needed to transmit all symbols of one codeword. The transmission
of one transmission vector st in time step t is modeled by multiplying it with the
channel matrix H t and adding Gaussian noise nt :

yt = H t · st + nt (8.5)

The channel modeling and the difference between a quasi-static channel and an
ergodic channel was already introduced in Sect. 2.4. For all presented communica-
tions performance curves in this chapter the type of channel model is stated explicitly.

The overall data rate of the presented transmission is η = RMT Q which reflects
the number of information bits per time slot. Often, the used channel codes in BICM-
MIMO system are either convolutional codes, or turbo codes, or LDPC codes respec-
tively.

8.1.2 BICM-MIMO Receiver

We have to distinguish between BICM-MIMO receivers with an open loop structure
and a closed loop structure. The different receiver types are shown in Figs. 8.3 and
8.4. We denote the information received via the MR received antennas as a matrix
Y ,

Y = ( y1, y2, . . . , yt , . . . , yT ) (8.6)

with yt being the received samples in time slot t ,

yt = (y1,t , y2,t , . . . , yMR ,t ) (8.7)

http://dx.doi.org/10.1007/978-1-4614-8030-3_2
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Fig. 8.3 TBICM-MIMO receiver with open loop structure. The MIMO detector transforms the
received information Y into LLRs (λ) for each bit position. The interleaved MIMO detector output
is passed to the channel decoder

Fig. 8.4 BICM-MIMO receiver with closed loop structure, with the a priori information La and
the extrinsic information λe passed to the outer decoder

As already stated throughout this manuscript it is always assumed that the channel
(H t ) is perfectly known by the receiver.

Assuming the open loop case of Fig. 8.3 we can calculate the detector output
information using different criteria. The corresponding MIMO detectors are out-
lined shortly in the following. Note, that only systems with spatial multiplexing are
assumed.

• Zero forcing detector: The received vector is multiplied by H† the pseudo-inverse
of the channel matrix

ẑZ F = H† yt = (H H H)−1 H H yt . (8.8)

The major problem of this approach is the amplification of the noise which results
in a large degradation in communications performance. The zero forcing solution
ẑZ F has a maximum diversity order of MR − MT + 1 [5]. The hard decision
symbols are obtained by quantizing the result to the closest constellation points.

• MMSE detector: The minimum mean square estimator calculates a filter matrix
W which minimizes the following condition

WMMSE = arg min
W

{
E{||W H yt − st ||2}

}
(8.9)
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The resulting filter output ẑMMSE evaluates to

ẑMMSE = WMMSE yt =
(

H H H + MT

SN R
I
)−1

H H yt , (8.10)

with I representing a diagonal matrix which is weighted by the corresponding
noise. For large SNR values the MMSE solution approximates the ZF solution,
thus a diversity order of MR − MT + 1 is obtained [5].

• ML detector: ZF and MMSE are so called linear detectors while the ML detector is
not. The ML detector calculates the maximum likelihood symbol estimation ŝM L

which is defined as:
ŝM L = arg min

s

{
|| yt − H t s||2

}
(8.11)

The ML detector has a diversity order of MR [5] and provides hard-output val-
ues. Though correct, we can improve further the BICM system performance by
calculating soft-output values.

• APP detector: Soft-output values can be obtained by applying an a posteriori
probability (APP) criterion. The results is denoted as MIMO-APP to distinguish it
from the APP detectors for single antenna systems introduced already in Sect. 2.2.
The major difference for MIMO-APP detection is the conditional probability on
a received vector yt which comprises the information of MR symbols. The LLR
value on each individual bit can be calculated by

λ(xt,q,m) = ln
P(xt,q,m = 0| yt )

P(xt,q,m = 1| yt )
(8.12)

Since the channel decoder has its maximum achievable coding gain with APP infor-
mation at its input we only concentrate on detectors which can provide APP infor-
mation.

As mentioned, for the MIMO detection and channel decoding we have to distin-
guish between open loop and closed loop receiver structures.

• Open loop: Figure 8.3 shows a receiver structure with a demodulator concatenated
with an outer channel decoder. The APP information of the MIMO detector is
interleaved and directly passed to the channel code.

• Closed loop: Figure 8.4 shows a structure in which the demodulator and the chan-
nel decoder pass information back and forth. During the iterative message exchange
between detector and outer decoder the input messages we have to ensure the
extrinsic information principle, similar as done for turbo or LDPC decoding. La is
the a priori information which is passed to the MIMO-APP detector. λe = λ+ Le

comprises the information λ extracted from the received information and the addi-
tional gain Le obtained due to a priori input information. During the first demod-
ulation there exist no a priori information, thus La = 0.

http://dx.doi.org/10.1007/978-1-4614-8030-3_2
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Closed loop BICM-MIMO receivers can gain more than 3db in communications
performance compared to open loop receivers [3]. The final gain depends on many
system parameters like the used antenna system, modulation type, number of iter-
ations, channel model and the channel code. Communications performance results
are shown in Sect. 8.1.3.

In the following only the MIMO-APP demodulator capable for iterative process-
ing is further considered. A MIMO-APP detector computes logarithmic likelihood
values (LLRs) on each bit according to

λ(xq,m) = ln
P(xq,m = +1| y)

P(xq,m = −1| y)
(8.13)

We have to evaluate this equation for each transmission time slot t , however, the
index for the time slot t is skipped from now on. q is the index within a modulated
symbol with q ∈ 1, ..., Q and m the index with respect to the antenna layer with
m ∈ 1, ...,M . For independent xq,m , the probability P(xq,m = 0| y) is obtained
by summing up the probabilities of all possible symbol vectors s which contain
xq,m = 0.

P(xq,m = 0| y) =
∑

∀s|xq,m=0

P(s| y) (8.14)

s|xq,m = 0 determines the symbol vector conditioned that the corresponding bit
position is 0. This calculation is related to the demodulator example of Eq. D.9.

Using Bayes theorem, P(s| y) can be expressed as

P(s| y) = P(s) · P( y|s)
P( y)

(8.15)

We can observe that the analyzed probability consists of three parts. P(s) takes into
account that not every s is equally likely given the a-priori information La from the
channel decoder. As the codeword is interleaved before the QAM mapping the bits
xq,m are assumed to be independent from each other. Therefore, P(s) is the product
of the probabilities of the individual bits that were mapped into s:

P(s) =
∏
∀q,m

P(xq,m) (8.16)

The term P( y|s) is the probability of receiving y under the condition that the vector
s was sent. P( y|s) can be calculated via the corresponding Gaussian function, as an
additive noise is assumed. The third part P( y) is constant during the detection of y
and is canceled out when applying (8.15) to calculate the LLRs of (8.13). Finally for
the soft-input soft-output processing we have to evaluate



192 8 Bit-Interleaved Coded MIMO System

λ(xq,m) = ln

∑
∀s|xq,m=0 P(s) · e−|| y−Hs||2/N0

∑
∀s|xq,m=1 P(s) · e−|| y−Hs||2/N0

(8.17)

Applying the Jacobian logarithm and ignoring the correction term results in the
Max-Log-Map approximation. The detailed discussion can be found in [3, 6].

λ(xq,m) ≈ min∀s|xq,m=0

⎧⎨
⎩‖ y − Hs‖2 − N0

∑
∀q ′,m′

ln P(xq ′,m′)

⎫⎬
⎭

− min∀s|xq,m=1

⎧⎨
⎩‖ y − Hs‖2 − N0

∑
∀q ′,m′

ln P(xq ′,m′)

⎫⎬
⎭ (8.18)

An interpretation for (8.18) is that we derive the LLR value λ(xq,m) from the most
likely symbol vectors s with one bit xq,m being 0 or 1 respectively. The expression
N0

∑
∀q ′,m′ ln P(xq ′,m′) determines the a priori information under the constraint of

∀s|xq,m = ±1.
The metric d(s) measures the likelihood that a specific vector s has been sent:

d(s) = ‖ y − Hs‖2 − N0

∑
∀q ′,m′

ln P(xq ′,m′). (8.19)

Small metrics d(s) relate to a high probability of s having been sent.
Calculating all possible d(s) to determine Eq. 8.18 quickly grows infeasible for

higher antenna constellations and/or higher order modulations as the complexity
grows with 2QM . Therefore, many sub-optimal algorithms with lower were devised.
Most of them are based on a tree search. In order to map the metric calculations
Eq. 8.19 on a tree, the channel matrix H is decomposed into an unitary matrix Q
and an upper-triangular matrix R. The Euclidean distance is rewritten as

‖ y − Hs‖2 = ∥∥ y′ − Rs
∥∥2 (8.20)

with y′ = QH y. Equation 8.19 is replaced by the equivalent metric

d(s) = ∥∥ y′ − Rs
∥∥2 − N0

∑
∀q ′,m′

ln P(xq ′,m′) (8.21)

The triangular structure of R allows the recursive calculation of d(s) which can be
seen when we fully extend the term for the Euclidean distance in the equation:
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∥∥ y′ − Rs
∥∥2 =

∥∥∥∥∥∥∥∥∥∥
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y′
2
...

y′
M

⎞
⎟⎟⎟⎠ −
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...
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′
m −

m∑
j=1

rm, j sm

∣∣∣∣∣∣
2

. (8.22)

Using the partial symbol vector s(m) = (s1, s2, . . . , sm) the recursive calculation for
each antenna layer m can be written as

dm = dm−1 + γm

(
s(m)

)
. (8.23)

d0 = 0 is used for initialization. Including a priori information the partial distance
metric of an antenna layer γm(s(m)) evaluates to:

γm

(
s(m)

)
=

∣∣∣∣∣∣y
′
m −

m∑
j=1

rm, j s j

∣∣∣∣∣∣
2

− N0

Q∑
q=1

ln P(xq,m). (8.24)

The recursive calculation can be represented by a tree with M +1 layers as shown
in Fig. 8.5 for two different cases. The top figure represents a four antenna system
with BPSK modulation (one bit per symbol), while the lower tree represents two
antennas with two bits per symbol.

The root node corresponds to d0 and each leaf node corresponds to the metric
dM = d(s) of one possible vector s. Each layer corresponds to the detection of one
symbol sm . Branches are labeled with the corresponding bit pattern of the symbol.
Each branch in the tree can be associated with a certain weight γm(s(m)) which
depends on the path from the root node to the corresponding edge. Thus, when
advancing from a parent node to a child node, the metric of the child node dm is
calculated from the metric of the parent node dm+1 and the branch metric γm(s(m)),
see Eq. 8.23.

Evaluating all possibilities of d(s) results in P = 2M Q possibilities. E.g. for a
4×4 antenna system with a 16-QAM modulation this results in P = 2M Q = 65536
possibilities reflecting all bit possibilities which are decoded within one transmission
vector st .

Based on this tree search, many different MIMO detection algorithms exist. The
main differences between the algorithms can be described by how the tree is traversed,
e.g. breadth-first or depth-first, and how branches of the tree are pruned. In general,
those algorithms achieve different results in terms of communications performance
and implementation complexities.
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Fig. 8.5 Decision tree for MIMO detection, upper M = 4 antennas and one bit per modulated
symbol, e.g. BPSK. Lower figure with 2 antennas and a two bit modulation, e.g. 4-AM

8.1.3 Communications Performance of State-of-the-Art Systems

All following communications performance results assume a BICM system with
rate R = 1

2 LDPC code as channel coding scheme. We distinguish between the
closed loop system with feedback between channel decoder and MIMO demapper
and the open loop system without feedback. Figure 8.6 shows the communications
performance for a 16-QAM 4×4 system (8 bits/channel use). Each Eb/N0 point is
simulated with 100k transmitted codewords of length N = 1920. Here we assume a
quasi-static channel, i.e., the channel matrix H t remains constant within one trans-
mitted codeword (120 channel uses). Four different performance curves are shown.
The left most curve shows the outage capacity which is the theoretical lower bound
for reliable transmission for this system. The curves are now explained starting
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Fig. 8.6 State-of-the-art communications performance for quasi-static MIMO channel

with the one with worst performance. The right curve is achieved by performing
the MIMO-APP demodulation and 40 iterations of an LDPC code, thus building an
open loop system. A WiMAX type LDPC code is used with a degree distribution

of f[6,3,2] =
{

5
24 ,

1
3 ,

11
24

}
, g[7,6] = { 1

3 ,
2
3

}
. The next performance improvement step

is to close the loop and do 5 outer loop iterations by evaluating Eq. 8.18. Iterations
within an LDPC decoder are denoted as inner iterations, the feedback via MIMO-
APP detector is denoted as outer iterations. For LDPC codes we can adjust the com-
munications performance by its degree distribution as seen in Chap. 7. An LDPC
code can be adjusted for iterative feedback loops by utilizing EXIT chart techniques,
according to [7]. The new LDPC code is thinned out to obtain a different conver-

gence performance. The resulting degree distribution here is f[6,3,2] =
{

1
8 ,

2
8 ,

5
8

}
,

g[6,5] = { 1
2 ,

1
2

}
. All LDPC codes presented here are quasi-cyclic to facilitate their

implementation in hardware, as explained in Sect. 7.3.1. Especially for the matched
LDPC design many variable nodes of degree two are present which gives a higher
error floor. This degree distribution is a good trade-off between good convergence
and a reasonable error floor. The performance gain of a closed loop system compared
to an open loop system can be above 4 dB as seen in Fig. 8.6. The BICM system with
matched LDPC codes is denoted as matched BICM in the following, the BICM with
WiMAX LDPC code is denoted as WiMAX BICM, respectively.

http://dx.doi.org/10.1007/978-1-4614-8030-3_7
http://dx.doi.org/10.1007/978-1-4614-8030-3_7
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Fig. 8.7 Communications performance of open loop systems and a closed loop systems using two
LDPC codes. One system utilizes an LDPC code which is matched with respect to the 4×4 MIMO
system, the other system uses the standard WiMAX code

Figure 8.7 shows the communications performance with the same set up (4× 4
antennas, 16-QAM), but for an ergodic channel, i.e., H t changes for each time slot.
The graph shows the results for the open loop system and the closed loop system for
the matched BICM and WiMAX BICM system. For the closed loop performance,
using five outer iterations, we can see a 1 dB performance gain of the matched BICM
system at FER = 10−2. This gain between matched BICM and WiMAX BICM
system is identical to that obtained under quasi-static channel conditions. However,
for an open loop performance the WiMAX BICM system outperforms the matched
BICM system. In summary two important aspects are highlighted:

• The gain in communications performance for different BICM-MIMO systems
depends on the number of outer iterations. Achieving always the best communi-
cations performance within all outer iterations can not be achieved by a single
code.

• Second important aspect which should be further discussed is the realistic number
of outer loop iterations which can be performed in hardware designs. The important
analysis of outer loop iterations for a BICM receiver architecture is done in the
next section.
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8.2 Architecture Feasibility BICM-MIMO

In this section we analyze complexity aspects for the BICM receiver system shown
in Fig. 8.4. Again we distinguish between the closed loop system with feedback
between channel decoder and MIMO demapper and the open loop system without
feedback. For the open loop system we assume that the MIMO demapper provides
soft-output information to the channel decoder.

For the realization of the closed loop system several possibilities for the architec-
ture exist. Assuming a fixed number of outer iteration, the iterations can be unrolled
and pipelined. The corresponding architecture is shown in Fig. 8.8 for three itera-
tions. Now three blocks are processed simultaneously in this pipeline which implies
the instantiation of three hardware instances of the APP demodulator and the APP
channel decoder respectively. Unrolling the loop will result in a linear increase in
terms of area, since all memories and the logic will be duplicated. The architecture
is inflexible with respect to number of performed closed loop iterations.

In the following we assume that one MIMO demodulator instance and one chan-
nel decoder instance are used which operate on one coded block. This is shown in
Fig. 8.4. Only one codeword of the channel code is decoded, while an equal balancing
of the processing time between these two instances is assumed. Thus, each of them
is 50 percent of the overall time in an idle mode. This equal balancing relates to the
typical iterative turbo code processing where information is exchanged between two
MAP components, see Chap. 6. Here, in Fig. 8.4, the two components are the demod-
ulator and outer channel decoder which are separated by an interleaver. We could
also process two blocks concurrently in this engine, while one is processed by the
demodulator and the other is processed by the APP decoder. However, the different
number of iterations of the channel decoders and the feedback loop respectively will
result in a difficult scheduling problem which is not in the scope of this analysis.

Fig. 8.8 Unrolled architecture for three outer iterations

http://dx.doi.org/10.1007/978-1-4614-8030-3_6


198 8 Bit-Interleaved Coded MIMO System

A pragmatic solution for processing two blocks simultaneously is the instantiation
of two independent closed loop receivers. An appropriate allocation of the codeword
to be processed has thus to be done at a higher architectural level.

For the following discussions we assume one instantiated MIMO detector and one
channel decoder where only one codeword is processed. We consider the through-
put constraints for the outer channel decoder utilizing turbo decoders and LDPC
decoders, respectively. The parameters to derive the throughput constraints are shown
in following:

#cycles number of cycles required to process one block
PI/O parallelization of the input/output
iter number of iterations of the channel decoder (half iterations for turbo decoding)
P parallelization of the decoder architecture:

for turbo codes parallelization of the MAP architecture,
for LDPC codes the number of concurrently processed edges

dV N average variable node degree in the Tanner graph (LDPC codes)
N , K block length, number of information bits
R code rate of the channel code
fclk clock frequency
δoverhead additional fixed architectural overhead (e.g. for flushing the pipeline)
# bits

cycle normalized throughput: number of information bits decoded per clock cycle

The expected normalized throughput for a given architecture is

#
bits

cycle
= K

#cycles
= N · R

#cycles
. (8.25)

The normalized throughput is a good performance metric of an architecture. For
example, LTE advanced will require a turbo decoder architecture with # bits

cycle ∼ 2.
For a typical frequency of fcyc = 300 MHz this yields a payload (information bit)
throughput of Tpayload = # bits

cycle · fcyc = 600 Mbit/s.

Low-Density Parity-Check Decoder

The degree of parallelism for LDPC codes is defined as the number of simulta-
neously processed edges. The normalized throughput of an LDPC decoder can be
approximated by:

#
bits

cycle
≈ N · R

iter · N ·dVN
P

= P · R

iter · dVN
(8.26)

Most of the current partly parallel architecture use the layered architecture where a
nearly continuous processing takes place. No overhead cycles (δoverhead) are present
within the iterative loop, for more details see Chap. 7 and [8, 9]. An average variable
node degree of dVN = 3.2 (WiMAX LDPC) is assumed to derive the parallelism of
a decoder architecture.

http://dx.doi.org/10.1007/978-1-4614-8030-3_7
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P =
(

#
bits

cycle

)
· i ter · 3.2 · 1

R
(8.27)

Turbo Code Decoder

For turbo code decoders we define the parallelism P of the architecture as the number
of LLRs which are exchanged per clock cycle between the component decoders. For
turbo decoding a normalized throughput can be expressed as

#
bits

cycle
≈ P

2 · i ter · (
1 + δoverhead · P

K

) (8.28)

Turbo decoding needs two half iterations to process the two component codes, thus
we need the term 2 · i ter . The overhead δoverhead is a big obstacle to a further
parallelization of turbo decoders. Reducing them is a research topic that is receiv-
ing a lot of attention. The LTE Release 8 standard supports very high code rates
(R > 0.9) which hampers the reduction of these δoverhead cycles. The problem for
high throughput turbo decoder architectures is the limited throughput increase for
moderate length K ∼ 5000 and increasing architecture parallelism P . In this case
the term δoverhead · P

K is significant. For the following calculations the turbo decoder
parallelization is calculated with an overhead of δoverhead = 32 and evaluates to:

P =
(

# bits
cycle

)
· 2 · i ter

1 −
(

# bits
cycle

)
·2·i ter ·32

K

. (8.29)

Channel Coding Architecture in BICM-MIMO Systems

Table 8.1 shows the required parallelism for turbo decoder architectures and LDPC
decoder architectures for an open loop system. A normalized throughput of # bits

cycle =
1 and # bits

cycle = 2 is assumed.
The required architecture parallelism depends on the number of iterations. For

example, the presented turbo decoder of [10] has a throughput of 150 Mbit/s at
fcyc = 300 MHz. This turbo decoder uses an architecture of P = 8 and results
in a normalized throughput of # bits

cycle = 0.5 at 6.5 iterations. State-of-the-art turbo
decoder architectures are already targeting a parallelism up to P = 32 [11]. However,
the resulting chip size is very large and a further increase in parallelism is inefficient
due to the overhead cycles. Thus, a further increase of the throughput off turbo
decoders can best be achieved on block level, which means by instantiating multiple
turbo decoder instances. For LDPC decoders a parallelism of P = 360 was already
presented in 2005 [12], a larger degree of parallelism is possible. In summary for the
open loop case we can say that there seems to be no practical obstacle to increasing
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Table 8.1 Parallelization (P) of an open loop architecture for the given iterations and normalized
throughput

Normalized Turbo codes K = 6000 LDPC codes R = 1/2
throughput Iterations P Iterations P

4 iter 9 5 iter 32
# bits

cycle = 1 6 iter 13 10 iter 64

8 iter 18 20 iter 128
4 iter 18 5 iter 64

# bits
cycle = 2 6 iter 28 10 iter 128

8 iter 39 20 iter 256

the throughput. This can always be done by multiple decoder instances, if the latency
constraints can be fulfilled.

Now we analyze the required parallelism of turbo decoder or LDPC decoders used
within an iterative BICM-MIMO receiver. Table 8.2 shows the parallelization of a
turbo decoder or LDPC decoder for a given normalized throughput assuming a closed
loop system. The normalized throughput is defined for the BICM-MIMO receiver
while we have now a double iterative system with inner channel code iterations and
outer feedback iterations. For example, the notation ‘2 outer–3 inner’ means that the
demodulator and channel code is active two times for each block, while the channel
code performs three channel code iterations for each of these two times.

The parallelism for, e.g., a # bits
cycle = 1 closed loop system with 2 outer–3 inner

iterations translates to a 6 channel decoder iteration in the open loop system. However,
since the decoder is assumed to be idle 50 the parallelism to achieve the desired
system throughput. This results in large parallelism of P = 26 for the simplest case
of Table 8.2. The number of outer iterations and inner channel code iterations are
rather small in these examples. The parallelization even has to be increased in order
to achieve the best possible communications performance. Note, that the normalized
throughput assumption of # bits

cycle = 1 or even higher required by upcoming standards,
e.g. LTE advanced.

Table 8.2 Parallelization (P) of a closed loop architecture for the given outer and (inner) code
iterations with respect to a normalized throughput

Normalized Turbo codes K = 6000 LDPC codes R = 1/2
throughput Iterations P Iterations P

2 outer–3 inner 26 2 outer–5 inner 128
# bits

cycle = 1 3 outer–3 inner 35 3 outer–5 inner 192

4 outer–3 inner 52 4 outer–5 inner 256
2 outer–3 inner 55 2 outer–5 inner 256

# bits
cycle = 2 3 outer–3 inner 77 3 outer–5 inner 384

4 outer–3 inner 110 4 outer–5 inner 512
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As mentioned, for turbo decoder architectures we can increase the throughput
further by creating multiple instances. However, for a closed loop system this requires
to handle multiple blocks within an iterative BICM-MIMO system. In our opinion
this is currently a strong argument against a double iterative scheme with targets of
# bits

cycle = 2, especially in the case of turbo codes. For LDPC codes achieving the
required architecture parallelism seems to be easier.

The MIMO demodulator in the outer loop has to provide a normalized through-
out of # bits

cycle = 1 or # bits
cycle = 2. The advantage of the MIMO detector is that each

received vector yt can be decoded independently. Thus, the high throughput require-
ments for the MIMO demodulation can always be achieved by multiple instances.

In summary: the double iterative structure poses a big challenge for the architec-
tural realization. We can extract two options to limit the architectural overhead.

• Either we should get rid of the double iterative scheme,
• or we should ensure a very good communications performance with a limited

number of outer iterations, e.g. just 2 outer iterations.

Reducing the number of closed loop iterations, while providing a good communica-
tions performance requires a joint consideration of the MIMO detector and channel
code design. One possible joint design is presented in the next section.

8.3 Joint Architecture-Algorithm Design

Implementing an iterative BICM-MIMO system in a straight forward manner results
in an independent implementation of the channel decoder and the MIMO detector.
This straight forward approach was treated in the previous section. A lower bound for
the overall area is given by the sum of the independent realizations. In fact, additional
memories for the iterative data exchange are required [13].

The goal of the techniques presented in this section is to reduce the complexity
of the MIMO-APP detection without sacrificing the overall data rate or the capacity
approaching communications performance. The goal is to reduce complexity while
increasing communications performance. This can only be achieved when architec-
tural know-how is taken into consideration in early phases of the system design.

The basic idea of the joint design approach is to reduce the search possibilities
of the MIMO-APP detection. This can be achieved by a special design of the bit
interleaver (Sect. 8.3.1) or by a dedicated code design (Sect. 8.3.2), which in part
was published in [14, 15]. All channel codes used for the examples here are LDPC
codes, however, it is possible to use the presented idea as well for turbo codes and
convolutional codes.

The LDPC codes used in this section are also described by a parity check matrix
Hc and fulfill HcxT = 0. Note that the parity check matrix is here denoted with
subscript c to make it distinguishable from H , the channel matrix. The parity check
matrix Hc has Nc columns and Mc rows and has to be of full rank. The parity check
matrix can be described by two layers with
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Hc =
(

Hg

He

)
=

⎛
⎜⎜⎜⎝

Hg

H ′
e · · · 0

0
. . . 0

0 · · · H ′
e

⎞
⎟⎟⎟⎠ (8.30)

The first layer Hg is a sparse parity check matrix, while the second layer He

defines multiple, unconnected sub-codes. Each sub-code H ′
e has a codeword length

of N ′
e ≤ MT Q.

As mentioned before, each transmission vector st carries the information of MT Q
bits. For the transmission it has to be guaranteed that all bits of a sub-code H ′

e are
transmitted within one transmission vector. Thus each transmission vector carries
an embedded code H ′

e. Embedded code or sub-code are used as synonyms in the
following.

Hg has the task to connect all embedded codes. The sparse layer Hg can be
described by a degree distribution ( fg ,gg). Where fg represents the degree distribu-
tion of the variable nodes of the layer Hg and gg defines the degree distribution of
the check nodes respectively. The description of the second layer He can be done by
defining one embedded code H ′

e.
The graph structure of such an LDPC code is shown in Fig. 8.9. In this graph 4

symbol nodes of the transmission vector are connected to 8 variable nodes. These
are linked to one embedded code H ′

e, here, two check nodes. Each symbol node rep-
resents the information of one modulated symbol. Assuming a 4×4 antenna system
the received transmission vector yt comprises the information of four symbols. The
major advantage will be that the embedded constraints reduce the complexity of the

Fig. 8.9 Generic graph structure for an LDPC code with symbol nodes connected to embedded
codes. One symbol node represents the information of one modulated symbol
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MIMO-APP detection while implicitly solving parts of the channel code. We will
see that this will reduce the overall complexity while even a better overall commu-
nications performance can be achieved.

The most simple constraint on a sequence of bits is a single parity check constraint,
which means H ′

e results in a single parity check code. For MIMO-APP detection a
new decision tree with one embedded check node results, which is shown in Fig. 8.10.
Again two different decision trees are shown, both with one embedded single parity
check node constraint. Figure 8.10 top represents four transmit antennas (M = 4)
and BPSK modulation (Q = 1), the lower figure represents the decision tree for two
transmit antennas and Q = 2 bits per symbol.

Fig. 8.10 Reduced decision tree with one embedded single parity check node
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The check constraint (black square) in both cases is linked to all 4 bits which are
simultaneously transmitted. This check eliminates paths in the decision tree, since the
last bit has to fulfill the parity check equation. Thus the MIMO-APP demodulation
Eq. 8.18 changes to

λ(xq,m) ≈ min∀s|ce,xq,m=0

⎧⎨
⎩‖ y − Hs‖2 − N0

∑
∀q ′,m′

ln P(xq ′,m′)

⎫⎬
⎭

− min∀s|ce,xq,m=1

⎧⎨
⎩‖ y − Hs‖2 − N0

∑
∀q ′,m′

ln P(xq ′,m′)

⎫⎬
⎭ (8.31)

with the major difference of the term s|ce, xq,m = 0, which means, the currently
observed s is conditioned on bit xq,m and ce. Each observed bit has to be an ele-
ment of a valid codeword ce, while a valid codeword is defined via the embedded
code constraint H ′

ece
T = 0. Thus, we reduce the search space of the MIMO-APP

demodulation while implicitly solving the second layer of Hc during the MIMO-APP
demodulation. If we embed one single parity check equation, the overall possibili-
ties for demodulation downscales to P = 2M Q−1. With q parity checks embedded
within one transmission vector the number of possibilities for MIMO demodulation
is reduced to P = 2M Q/2q = P = 2M Q−q .

It is important to distinguish the complexity reduction of the presented codes
and the complexity reduction caused by algorithmic techniques. All algorithmic
transformations, which are published for tree based MIMO-APP decoding, can be
applied for the presented approach as well. In the following we will present two
examples of how to enable the embedding of code constraints.

• Example one utilizes a standard WiMAX LDPC code (Sect. 8.3.1). By defining
a well chosen bit interleaver we can embed parts of the defined parity checks
within the transmission vector. The resulting BICM-MIMO will show a better
communications performance while reducing the complexity of sphere decoding.

• Example two describes the design of quasi-cyclic LDPC codes which can be
decoded by a standard compliant LDPC code decoder. Furthermore, the presented
LDPC codes can largely decrease the search space of a sphere detector (Sect. 8.3.2).

8.3.1 Sphere Decoder Aware Bit Interleaver Design

The joint design approach as presented in the previous section enables us to design
an elaborated interleaver for the BICM-MIMO system which will decrease the com-
plexity of the sphere detection while improving the communications performance.

This approach works for all LDPC codes which are quasi-cyclic. The resulting
interleaver will be a quasi-cyclic interleaver. The motivation of this section is that
we can reduce complexity and improve communications performance by simple
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derivations from existing communications standards. The basic design method is
explained by using one specific WiMAX LDPC code as an example. The follow-
ing parity check matrix represents a WiMAX LDPC code with codeword length of
N = 576 bits and code rate R = 1/2:

H Macro =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 24 19 0 0 0 0 0 14 21 0 0 2 1 0 0 0 0 0 0 0 0 0 0
0 7 0 0 0 6 20 3 0 0 0 4 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 7 6 21 0 9 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0

16 0 12 0 0 0 0 0 17 7 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 10 0 0 0 22 0 0 11 19 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 12 11 0 21 0 0 0 20 1 0 0 0 0 1 1 0 0 0 0 0
0 0 24 14 0 0 0 0 0 4 5 0 0 0 0 0 0 0 1 1 0 0 0 0
0 3 19 0 0 0 1 0 0 12 0 0 0 0 0 0 0 0 0 1 1 0 0 0
4 0 0 0 21 7 0 11 0 0 0 13 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 24 0 15 0 0 18 19 0 0 0 0 0 0 0 0 0 1 1 0
0 0 2 17 0 0 0 0 10 13 0 0 0 0 0 0 0 0 0 0 0 0 1 1

11 0 0 0 0 17 0 11 0 0 0 7 2 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.32)

As described in Chap. 7 each entry in this matrix indicates a z × z sub-matrix,
here with z = 24. In case an entry is one or greater it gives the amount of cyclic
right shifts of a permuted identity matrix. Zero sub-matrices are indicated by the zero
entries.

Goal is to ensure the mapping of parity check constraints to transmission vectors
which can be achieved by the bit interleaver of the BICM system. Here, the design
of one interleaver is presented for a 4 × 4, 64-QAM system since this fits well to the
24 columns of the WiMAX macro matrix.

In this example we can ensure that always two check nodes are mapped to one
transmission vector by using a cyclic block interleaver. A cyclic block interleaver
can be described by a vector in which each entry defines the offset value for writing,
see Sect. 4.3. The idea of the cyclic block interleaver is to reverse the permutation
index of the last two groups, such that, the last two rows are rotated back to identity
matrices. Thus, embedded sub-codes H ′

e will be obtained each consisting of two
parity checks and each of these are allocated to transmission vectors. Note, that is
possible with any type of quasi-cyclic LDPC code to ensure at least one single parity
check code to be embedded in a transmission vector. In this example we cannot ensure
a third parity bit within a transmission vector since it is not possible to guaranty that
the resulting sub-codes H ′

e are unconnected across sphere detectors.
The resulting cyclic block interleaver has a dimension of C1 = 24 columns and

C2 = 24 rows. The corresponding (negative) offset values for writing the columns
are:

Iof f set = (−11 1 1 −17 1 −17 1 −11 −10 −13 1 −7 −2 1 1 1 1 1 1 1 1 1 1 1
)

(8.33)
The negative entries here indicate the negative offset values at which position a
column is started to be filled. A 1 indicates that we fill the corresponding column
of the block interleaver regularly, i.e., from top to bottom. The corresponding offset

http://dx.doi.org/10.1007/978-1-4614-8030-3_7
http://dx.doi.org/10.1007/978-1-4614-8030-3_4
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values in Iof f set are the reversed permutation of the quasi-cyclic entries with respect
to the last two groups of Eq. 8.32.

Figure 8.11 shows the open loop communications performance of a 64-QAM,
4×4 antennas system. All curves use WiMAX LDPC codes, either with 10 or 30
iterations. The communications performance labeled with default sphere uses the bit
interleaver defined in the WiMAX communications standard. The sphere decoder
has to search through 224 branches of the tree. The improved communications per-
formance is obtained by using the described bit to transmission vector mapping. The
performance gain is up to 0.5 dB. The search space of the sphere detector is reduced
by a factor of four (2 parity checks embedded).

12 12.5 13 13.5 14 14.5
10

−3

10
−2

10
−1

10
0

E b

N0
/ dB

F
E

R

FER OVER (Eb/N0), 4x4 antennas, 64−QAM, K=960, R=1/2 

open loop: 2PC per sphere iteration:10

open loop: 2PC per sphere iteration:30

open loop: default sphere iteration:30

open loop: default sphere iteration:10

Fig. 8.11 Open loop communications performance, ergodic channel 64-QAM, 4×4 antennas, both
utilizing WiMAX LDPC codes. Improved communications performance and reduced complexity
by a well chosen bit to transmission vector mapping. Note that the channel code is equivalent in
both cases, while the number of leaves was reduced by a factor of four by embedding two parity
checks (PC)
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8.3.2 Sphere Decoder Aware LDPC Code Design

The second design example shows the design of LDPC codes with a special focus on
the complexity reduction of the MIMO detector when using a tree search algorithm.
Whenever considering a new design of an LDPC code it is beneficial when the new
channel code can be processed by standard LDPC decoder architectures. Since nearly
all wireless communications standards rely on quasi-cyclic LDPC codes we restrict
the design example of this section to this type of codes. Here, only the basic idea is
presented to introduce the potential of the approach of joint design of algorithm and
architecture. Further results and how to derive the parity check matrix of the channel
code are presented in [14, 15].

The transmission system assumed for the design example is a 4×4 antenna system
using a 16-QAM transmission scheme. The bit interleaver used in the example is a
classical block interleaver with 16 columns and z rows. The number of rows of the
block interleaver depends on the size of the identity matrix. In the following we
assume one particular LDPC code with a block length of N = 1920 bits and a code
rate of R = 0.5.

H Macro =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

64 0 0 119 50 53 0 0 1 0 0 0 0 0 0 8
34 70 0 0 66 27 49 63 0 1 0 0 0 0 0 0
0 74 82 0 86 64 80 0 0 0 1 0 0 0 0 0
0 0 76 71 15 117 111 101 0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.34)

The macro matrix with (z = 120) shown here is one realization which allows to
embed four check nodes within each transmission vector. This is indicated by the
separator between the top four and bottom four rows of the macro matrix. With the
four rows all using identity matrices without permutation we can directly identify
the embedded sub-code H ′

e.
The block interleaver ensures always the correct codeword bit to transmission

vector mapping. The bit positions which have to be mapped to the first transmission
vector are [0 z − 1 2z − 1 . . . 15z − 1] for the second transmission vector
[1 z 2z . . . 15z], and so on.

The communications performance results with respect to an ergodic channel and
16QAM 4×4 system are shown in Fig. 8.12. The figure shows the open loop and the
closed loop performance of the new LDPC code using embedded codes in comparison
to the WiMAX simulations already presented in Fig. 8.7. Both schemes—WiMAX
LDPC codes and joint LDPC code design—use 4 outer and 5 inner channel code
iterations in the closed loop case. In the open loop case 20 LDPC iterations (layered)
are performed. In both cases, the simulated performance of the open loop system as
well as that of the closed loop system is better when using the joint design approach
compared to the original WiMAX scheme.
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Fig. 8.12 Simulated communications performance (ergodic, 4×4, 16QAM) of an open loop system
and a closed-loop system. The graph compares the original WiMAX code against a new LDPC code
design. The new LDPC code can be processed by a WiMAX LDPC decoder architecture while
reducing the size of the search tree for MIMO-APP detection b a factor of 16

In addition, when utilizing the new LDPC code design and a block interleaver
the resulting tree for MIMO detection has only 4096 branches. Thus, the search tree
for the sphere detector is reduced by a factor of 16 compared to standard case using
WiMAX LDPC codes.

In summary the most important points when designing LDPC codes which use
the knowledge of the sphere detector are:

• The properties of quasi-cyclic LDPC codes are used which enables the processing
by standard decoder architectures.

• Parts of the channel code are implicitly solved during the MIMO-APP demodula-
tion.

• The size of the search tree for MIMO-APP demodulation can be reduced by over
a factor of ten.
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• The achieved communications performance can be better than that of state-of-the-
art BICM-MIMO schemes for open loop and closed loop simulations.
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Chapter 9
Comparing Architectures

As mentioned in the previous chapters, todays high-end smart phones have to support
multiple radio standards, advanced graphic- and media applications and many other
applications resulting in a workload of about 100 giga operations per second in a
power budget of 1 W [1]. The baseband processing in the radio part (mainly front-
end processing, demodulation and decoding) requires more than 50 % of the overall
workload in a state-of-the-art 3.5G smart phone. To achieve higher spectral efficiency
new transmission techniques like MIMO will be established, see Chap. 8. However,
this will increase the workload even further. Thus, there is a strong need for efficient
wireless baseband receivers. The overall efficiency of a baseband receiver depends
on

• communications efficiency: expressed by the spectral efficiency and signal-to-noise
ratio (SNR). The requirements on the communications efficiency have the largest
impact on the selected baseband processing algorithms.

• implementation efficiency: related to silicon area, power and energy. Here, the
energy efficiency is the biggest challenge due to the limited available battery
power in many devices.

• flexibility: in software defined radio, receivers should be flexible/configurable at
run-time since they have to support multiple standards. There are various silicon
implementation styles ranging from general purpose architectures, over DSPs and
ASIPs down to fully physically optimized IP blocks which strongly differ in their
implementation efficiency but also in their flexibility. Thus, for each building block
of the receiver a detailed analysis of algorithmic flexibility and service parameter
flexibility requirements has to be carried out. Service parameter flexibility for a
specific channel code is for example varying code rates, block sizes with respect to
a given throughput. The goal is to find an optimal implementation style with respect
to a flexibility/cost trade-off. Thus, advanced baseband receivers are heterogeneous
multi-core architectures implemented in different design styles.

System requirements are very often specified by communication standards such
as UMTS, LTE and WiMAX, which define different services in terms of required
communications performance and system data throughput, i.e. information bits per
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second. To obtain an efficient baseband implementation, a careful and elaborate
design space exploration has to be performed. This is a very challenging task due to
the size and the multi-dimensionality of the design space as shown for turbo decoding
and LDPC decoding in Sects. 6.3.2 and 7.4 respectively. Therefore it is mandatory
to prune the design space in an early stage of the design process. In this process the
algorithms have to be selected, optimized, and quantitatively compared to each other
with respect to their system performance and implementation efficiency.

Appropriate metrics are key for efficient design space exploration to measure the
algorithmic and the implementation complexity, respectively. Parts of this chapter
was presented in [2].

Algorithmic Complexity

There exists no universal measure for complexity. The huge field of complexity theory
and the resulting ‘O’ notation is mainly focused towards software implementation
and cannot be adapted in a straight forward fashion to hardware implementation. The
algorithmic complexity, with respect to hardware implementation, has to be tailored
to its application space, in this case the communication system.

Thus, it is important to understand the application under consideration. From a
communication system point of view we can separate digital processing in the base-
band into two parts: the so called ‘inner modem’ and ‘outer modem’ [3], respectively.
The task of the inner modem is the extraction of symbols from the received signal
waveform, i.e., equalization, channel estimation, interference cancellation and syn-
chronization. The outer modem performs demodulation, de-interleaving and channel
decoding on the received symbols. A large diversity exists in the various baseband
processing algorithms with respect to operation types, operation complexity, and data
types especially between the inner and out modem. Thus, algorithmic complexity
in baseband processing should be separately analyzed for the inner and the outer
modem, respectively.

A useful description of complexity for our purpose is to use the number of ‘algo-
rithmic’ operations which have to be performed per received samples by the algo-
rithms of a baseband receiver. This complexity metric has the advantage of being
independent of a specific implementation of the algorithms. Based on this complexity
definition a two-dimensional graph can be set up in which the horizontal axis corre-
sponds to the sample rate of the receiver (which is proportional to the data rate) and
the vertical axis corresponds to the operations per sample which have to be carried
out. Typically, both axes are scaled logarithmically.

van Berkel determined the complexity of various algorithms in baseband process-
ing. In his remarkable and comprehensive article [1] he focused on the number
of ‘algorithmic’ operations which have to be performed per received bit by the
algorithms of a baseband receiver for different communication standards. As a
consequence the algorithmic complexity for the inner and outer modem is mea-
sured in giga operations per second (GOPs). Using this metric it can be seen that
sophisticated decoding schemes like turbo and LDPC codes have a much larger

http://dx.doi.org/10.1007/978-1-4614-8030-3_6
http://dx.doi.org/10.1007/978-1-4614-8030-3_7
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complexity—measured in GOPs—than the algorithms of the inner modem. Eberli
from ETH Zürich uses a similar metric [4] for measuring complexity in baseband
processing. The importance of appropriate metrics to compare forward error correct-
ing codes is recently shown in [5]. Two improved metrics are suggested, one metric
is based on operations the other metric is based on the required storage demands per
decoded bit. The major weakness of these metrics is the missing link between both
metrics which prevents an application to the resulting implementation complexity.

Implementation Complexity

Often implementation complexity is derived from algorithmic complexity in a
straight forward manner. For example, Eberli [4] uses a cost factor for each algo-
rithmic operation which reflects its implementation cost. In this way we can derive
area efficiency and energy efficiency which is even more important for baseband
receivers.

Graph representations for energy and area efficiency are commonly used for design
space exploration:

• A two dimensional energy efficiency graph: one axis corresponds to the algorithmic
complexity, e.g. measured in GOPs, and the other axis to the power, e.g. measured
in mW , consumed when providing the corresponding operations/second. Each
point in this graph describes the energy efficiency metric of a given implemen-
tation, i.e. operations/second/power unit, usually measured in GOPs/mW. Since
energy corresponds to power multiplied with execution time, each point gives the
operations/energy measured in operations/Joule.

• In a similar way we can set up an area efficiency graph in which one axis represents
the needed area. Each point in this graph yields the area efficiency metric, i.e.
operations/second/area unit, usually measured in GOPs/mm2.

Note that the energy and area efficiency for the same algorithmic complexity
can vary by several orders of magnitude, depending on the selected implementation
style. By far the highest energy efficiency is achieved by physically optimized cir-
cuits, however, at the expense of limited algorithmic and service parameter flexibility.
The highest flexibility, at the expense of low energy efficiency, is achieved by pro-
grammable digital signal processors. As said the designer has to find a compromise
between the two conflicting goals by trading off flexibility versus energy efficiency.
However, in contrast to area and energy efficiency, flexibility is hard to quantify.
The optimum design point has thus to be understood qualitatively. It depends on the
application and a large number of economic and technical considerations. We can
combine energy and area efficiency in a two dimensional design space in which the
two axes correspond to area efficiency and energy efficiency, respectively. This is a
well known representation of the design space.
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Assessment of Metrics

Area, throughput and especially energy in many system-on-chip implementations are
dominated by data-transfers and storage schemes [6] and not by the computations
themselves. However, common metrics as described above focus solely on opera-
tions, and do not consider data-transfer and storage issues at all. Thus, these metrics
are only valid if the operations dominate the implementation complexity. This is
the case in data-flow dominated algorithms like an FFT calculation, correlation or
filtering which are dominating the algorithms in the inner modem.

However, the channel decoding algorithms in the outer modem largely differ from
the algorithms used in the inner modem. Here, the operations to be performed are non-
standard operations (e.g. tanh) using non-standard data types (e.g. 7 bit fix-point).
But more importantly, the overall implementation complexity, especially energy, is
dominated by data-transfers and storage schemes.

The transitions from 3G to LTE advanced require an improvement of two orders
of magnitude in energy efficiency. This improvement will come from technology
scaling to a small extent only [7]. A general trend towards co-design of algorithm
and architecture can be seen in new standards. Since the traditional separation of
algorithm and architecture design leads to suboptimal results.

In channel decoding the co-design focuses on data-transfer and storage schemes
[8–10]. Examples with respect to communication standards are special interleavers
for turbo codes (e.g. LTE standard [11]) and special structures of the parity check
matrix for LDPC codes (e.g. DVB-S2 standard [12]). These special structures allow
an efficient parallel implementation of the decoding algorithm with small overhead
in data-transfer and storage. GOPs based metrics do not at all reflect such specific
structures.

Another important issue is flexibility. Flexibility on the service parameter side,
e.g., code rates and block sizes in the case of channel decoding, have a large impact
on the implementation complexity. The cost of the overhead introduced by flexibility
is normally not considered by looking only at the operations of the algorithm.

In summary, efficiency metrics based on GOPs only are questionable. Particularly,
for non-data flow dominated algorithms, as they entirely neglect important issues like
data and storage complexity, algorithm/architecture co-design and flexibility.

In this chapter we focus on channel decoding as application. The contributions of
this chapter are:

• We show that metrics based on GOPs can lead to wrong conclusions.
• We introduce meaningful and suitable metrics for energy and area efficiency.
• We present an approach for design space exploration based on these metrics.
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9.1 Reference Designs

Reference designs are key to assess various metrics. Many publications on VLSI
implementations exist for turbo decoders, e.g. [13–18] and LDPC decoders, e.g.
[19–23]. However, performing an objective assessment of metrics requires detailed
and complete information about the implementation cost and the communication
performance. However, performing an objective assessment of metrics requires all
information about the implementation data are mandatory together with the com-
munications performance data. Moreover an identical implementation technology is
mandatory since normalizing different technologies is in technologies below 90 nm
very error-prone. The difficulty of comparing different publications is shown in
Sect. 9.4 after deriving suitable metrics for comparison.

For the sake of demonstration, 5 different channel decoder implementations are
selected which were designed by the research group AG Wehn, University of Kaiser-
slautern in the last couple of years. All test benches, fixed point models, and tech-
nology related data are completely available for the comparison. Every decoder is
designed with the same design methodology: hand optimized VHDL code and syn-
thesized using Synopsis Design Compiler and in all cases many years of application
experience proved via industry projects. The decoders differ in services (throughput,
block sizes, code rates), decoding algorithms, and implementation styles. Selected
channel codes are convolutional codes, turbo codes and LDPC codes which covers a
large spectrum of channel codes used in todays standards. The 5 different decoders
are:

• An application specific instruction set processor (ASIP) [24] capable of processing
binary turbo codes, duo-binary turbo codes and various convolutional codes (CC)
with varying throughputs dependent on code rate and decoding scheme.

• A turbo decoder, which is LTE [11] compliant. The maximum throughput is
150 Mbit/s at 6.5 decoding iterations.

• An LDPC decoder optimized for flexibility, supporting two different decoding
algorithms, code rates from R = 1/4 to 9/10 and a maximum block length of
16384.

• An LDPC decoder which is WiMedia 1.5 compliant and optimized for throughput,
supporting code rates from R = 1/2 to 4/5 with two block lengths N = 1200 and
N = 1320 bits [25].

• A convolutional decoder with 64-states which is WiFi [26] compliant.

All decoders are synthesized on a 65 nm CMOS technology under worst case
PVT conditions with Vdd = 1.0 V, 120 ◦C. Power estimations are based on nominal
case Vdd = 1.1 V. Table 9.1 gives an overview of the key parameters of the different
decoders. P&R indicates that the corresponding data are post-layout data. The pay-
load (information bits) throughput depends on the number of decoding iterations for
turbo and LDPC codes which also impacts the communications performance. Thus,
the throughput is specified depending on the number of iterations.

We chose our own designs as reference designs, as these were the only designs
for which we had complete access to all information, which is necessary for a fair
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Table 9.1 Reference decoders: service parameters and implementation results in 65 nm technology,
including area and dynamic power consumption

Channel
decoder

Flexibility Max. size Throughput
(Mbit/s)

Frequency
(MHz)

Area
(mm2)

Power
(mW)

ASIP [24]
CC
Binary TC
Duo-binary

N = 16 k
40 (64-state)
14 (6 iter)
28 (6 iter)

385
(P&R)

0.7
(P&R)

∼100

LTE TC [27] R = 1/3 to
R = 9/10

N = 18 k 150 (6.5 iter) 300
(P&R)

2.1
(P&R)

∼300

Flexible
LDPC R = 1/4 to

R = 9/10
N = 16 k

30 (R = 1/3 40 iter)
100 (R = 1/2 20 iter)
300 (R = 5/6 10 iter)

385
(P&R)

1.17
(P&R)

∼389

LDPC [25]
WiMedia 1.5

R = 1/2 to
R = 4/5

N = 1.3 k 640 (R = 1/2 5 iter)
960 (R = 3/4 5 iter)

265 0.51 ∼193

CC decoder 64-state NSC 500 500 0.1 ∼37

assessment of metrics. This does not limit the validity of the statements and conclu-
sions made in this chapter.

In Table 9.2 we show the number of algorithmic operations required to process
the different types of convolutional codes, turbo codes and LDPC codes. Bit-true
C-reference models are used for operation counting. In all algorithms of Table 9.2
the operations are fixed point additions with varying bit width. We normalized all
operations to an 8 bit addition. The number of operations is related to information
bits which have to be decoded. The total number of operations, which have to be
performed per second, depends on the code rate R and throughput, which in turn
depends on the number of iterations for LDPC and turbo code decoding. Two different

Table 9.2 Number of normalized algorithmic operations per decoded information bit for different
channel decoders dependent on throughput and code rate R

Channel # iterations GOPs (w.r.t. throughput)
code 100 Mbit/s 300 Mbit/s 1 Gbit/s

CC (64-state) 20 60 200
5 7.5/R 22.5/R 75/R

LDPC 10 15/R 45/R 150/R
Min-Sum 20 30/R 90/R 300/R

40 60/R 180/R 600/R
LDPC 10 50/R 150/R 500/R
Min-Sum 20 30/R 90/R 300/R
λ-3-Min 40 200/R 600/R 2000/R
3GPP Turbo 2 28 84 280
(Max-Log) 4 56 168 560

6 84 252 840
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algorithms for LDPC codes are utilized in our LDPC decoders. Both algorithms are
suboptimal algorithm approximating the belief propagation algorithm: the Min-Sum
algorithm with a scaling factor and the λ-3-Min algorithm [28] which is a more
accurate approximation. However, the latter needs about 3.3 times more operations.
This more accurate approximation is required when lower code rates R < 0.5 have to
be supported, as for example in DVB-S2 decoders [21]. The flexible LDPC decoder
supports both decoding algorithms, the WiMedia LDPC decoder is based on the
Min-Sum algorithm only, see Sect. 5.2.3.

9.2 Suitable Metrics

Figure 9.1 shows the two dimensional design space for our channel decoders, cov-
ering area and energy efficiency based on operations. One axis represents the area
efficiency (GOPs/mm2), and the other axis the energy efficiency (op/p J ). In this
graph, efficient architectures w.r.t. area and energy are located in the upper right
corner. Less efficient architectures are placed in the lower left corner.

The convolutional decoder seems to be the most efficient decoder while the ASIP
shows to be the decoder with the lowest efficiency. An interesting observation is
the efficiency of the flexible LDPC decoder. The efficiency largely increases in both
directions (area, energy) when replacing the Min-Sum by the λ-3-Min algorithms
which is the more complex algorithm in terms of operations. As described in the
previous section the GOPs for this algorithm increases by a factor 3.3.
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Furthermore, we see that the λ-3-Min based flexible LDPC decoder has nearly
the same efficiency as the less flexible WiMedia decoder which is optimized for high
throughputs. This observation seems to be contradictory, we would expect that a less
flexible decoder, optimized for throughput, has a much higher efficiency compared
to a highly flexible decoder architecture. This aspect shows already the problem with
GOPs based metrics.

The problem with GOPs based metrics will become more obvious after intro-
ducing appropriate metrics which resolve the aforementioned anomaly. Instead of
referring to operations per task we refer to the number of decoded information bits.
Metrics normalized to the number of information bits allow to compare competing
architectures for a given algorithm since the efficiency metrics are independent of
the specific operations and data types used to execute the algorithm. All implemen-
tation issues like data-transfer and storage are taken into account since the metrics
are oblivious of how the task has been executed. Such a metric considers the result
only and not how the result is calculated. Furthermore, a metric normalized to the
number of information bits allows to compare different coding schemes as a function
of the communication parameters (modulation, signal to noise ratio, bandwidth). In
particular, iterative decoding algorithms can be compared in a meaningful way to
non-iterative algorithms.

We define two metrics for implementation efficiency as follows

• energy efficiency metric: decoded information bit per energy measured in bit/n J
• area efficiency metric: information bit throughput per area unit measured in

Mbit/s/mm2

We mapped our decoders to the design space which is based on these metrics.
The result is shown in Fig. 9.2. Again efficient architectures are in the upper right
corners, inefficient architectures are in the lower left corner.

A large change in the relative and absolute positions can be observed for some
decoders, when comparing the graph to Fig. 9.1 which was based on GOPs metrics.

• The difference in the efficiency between the two instances of the flexible LDPC
decoder (Min-Sum and the λ-3-Min decoder, respectively) is now much smaller.
Moreover the Min-Sum decoder is more efficient than the other ones which was not
the case in the conventional design space. This matches our expectations since the
data-transfer and storage scheme in both decoders is nearly identical. The increase
in computation results in only a small energy and area increase by about 10 %.
Both flexible LDPC decoders are targeting the same throughput.

• The efficiency of the WiMedia decoder which is optimized rather for throughput
than for flexibility, is now much larger than the efficiency of the flexible LDPC
decoder which again matches our expectations.

To summarize, in applications which are dominated by data-transfers and storage
schemes, like here in channel coding, the change in the number of operations in the
algorithm has only a small impact on area and energy. Comparing Figs. 9.1 and 9.2
demonstrates clearly the problem with GOPs based metrics.
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Fig. 9.2 Design space based on suitable metrics. Decoded information bit per energy over infor-
mation bit throughput per area unit

So far we have focused on the implementation complexity but have not discussed
the important aspect of flexibility and communication performance. In the following
we will investigate the relationship between communication performance, algorith-
mic/service parameter flexibility and implementation efficiency.

9.3 Approach for Design Space Exploration

In the previous section we investigated the absolute and the relative positions of the
different decoders to each other. However, equally important in this space is the shift
of an efficiency point when specific communication parameters are changed.

The following relevant parameters will be considered: the frame error rates (FER),
i.e. communications performance, coding techniques, code rates, number of iterations
and throughput.

We present two case studies to demonstrate an appropriate approach for design
space exploration. The resulting different values for area and energy efficiencies
illustrate the strong dependency between communications performance and imple-
mentation efficiency.

The two case studies will show that a single quantitative measure to select the best
channel code does not exist. The first case study is concerned with implementation
efficiency and compares non-iterative decoding techniques (convolutional codes)
to iterative decoding techniques (LDPC codes). The second case study compares
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two different iterative decoding techniques (LDPC and Turbo codes) with code rate
flexibility.

9.3.1 Implementation Driven Design Space Exploration

The first design study reflects the discussion performed during the WiMedia 1.5
standardization process. WiMedia [29] features low complexity devices for UWB
communication. The older WiMedia 1.2 standard uses convolutional codes as channel
coding technique which served as a reference design. LDPC codes were considered
as a promising candidate which had to be compliant to the given service parameters
like the throughput of 960 Mbit/s and the code rate R = 0.75. Thus, new LDPC
codes were developed according to the code/architecture co-design approach [25]
resulting in an LDPC decoder which has a much higher efficiency than e.g. a highly
flexible LDPC decoder.

As already shown in Fig. 9.2 the area and energy efficiency of the resulting WiMe-
dia 1.5 LDPC decoder is lower compared to a convolutional decoder. However, this
comparison does not at all consider the communications performance. At most five
decoding iterations can be performed by the LDPC decoder to comply with the
throughput requirements of the standard. As already pointed out, the number of iter-
ations strongly impacts the communications performance of the LDPC decoder. The
frame error rates as a function of the number of iterations are contrasted with imple-
mentation efficiency in Fig. 9.3. Point 3 in the design space figure corresponds to the
WiMedia 1.5 decoder when performing 5 iterations (this was the decoder assump-
tion in the previous figures when we referred to the WiMedia LDPC decoder). The
communication figure shows that this decoder has a 4 dB better communication per-
formance than the convolutional decoder. The communication performance is com-
parable to that of the convolutional decoder if the LDPC performs only two iterations
instead of five (case 2 in Fig. 9.3). Finally, executing only one iteration in the LDPC
decoder results in a communication performance which is about 4 dB worse than the
convolutional decoder (case 1 in Fig. 9.3).

Note the resulting set of points in the design space for the different cases. The
different efficiency points in Fig. 9.3 are obtained by distinguishing two cases:

• The system throughput is not changed w.r.t. WiMedia 1.5. constraint (scenario a
in Fig. 9.3). In this scenario only the energy efficiency is improved (points 3 →
2a → 1a). Obviously the decoding time decreases when the decoder executes a
smaller number of iterations resulting in a negative time lag. This time lag can be
exploited for energy efficiency improvement. For example clock and power supply
could be completely switched off when decoding is finished. This reduces energy
and leakage current. Another possibility is to slow down the frequency (frequency
scaling). This reduces the energy by the same amount as in the previous case but
the peak power consumption during decoding instead of leakage is minimized.
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The most efficient technique is voltage scaling in which the voltage is reduced
which results in the highest energy efficiency.

• The system throughput is changed (scenario b in Fig. 9.3). In this scenario the area
efficiency increases by the same amount as the throughput increases due to smaller
number of iterations (points 3 → 2b → 1b).

We see that in terms of efficiency the LDPC decoder is increasing with decreasing
communication requirements, i.e. number of iterations. Thus, the decoder efficiency
is represented by various efficiency evaluations instead of a single point in the design
space. This varying set of points results from varying communication performance
requirements. We also see that the efficiency of the LDPC decoder outperforms the
convolutional decoder at the same communication performance.

9.3.2 Communications Performance Driven Exploration

In the second design study we compare two iterative decoding techniques and put
emphasis on the resulting communications performance. An LTE turbo decoder is
compared with a flexible LDPC decoder which supports code rate flexibility. The
right graph in Fig. 9.4 shows the communication performance for the two decoding
schemes for different code rates (R = 0.5 and R = 0.83) and iteration numbers.
The number of information bits is K = 6140 in all cases. Frame error rates are
based on fixed point simulations matching the hardware implementation. We use the
communications performance of the turbo decoder with 6.5 iterations as reference
point for both code rates. The 6.5 iterations result from the throughput constraint of
150 Mbit/s which is specified in the LTE standard. The 6.5 iterations fulfill the LTE
communications performance requirements for all code rates.

It is well known that the communication performance in LDPC decoding depends
on the number of iterations and the code rate. The LDPC decoder under investigations
provide large code rate flexibility, i.e., the hardware can support various code rates.
The LDPC decoder requires 10 iterations for R = 0.83 and 20 iterations for R = 0.5
to match the performance of the turbo decoder. For a code rate of R = 1/3 even 40
iterations are mandatory (this is not shown in Fig. 9.4b).

The corresponding results in the implementation space are noteworthy. The turbo
decoder efficiency is identical for all code rates (see left graph in Fig. 9.4). Thus,
we have only one fixed efficiency point. This is due to the fact that the code rate
flexibility is implemented by puncturing which has negligible impact on throughput,
area and energy.

However, the situations is completely different for the flexible LDPC decoder.
For a given communications performance the code rate has strong impact on the
number of required iterations. This iteration number influences the implementations
efficiency as we have seen in the previous case study. But beside this impact of the
iteration number, there is also a direct impact of the code rate on the implementation
efficiency since lower code rates require also a more accurate decoding algorithm
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(λ-3-Min algorithm instead of the less complex Min-Sum algorithm). The resulting
efficiency points are shown in the left graph of Fig. 9.4. We see that the efficiency
increases in both directions with increasing code rate (points 1 → 2 → 3).

The important observation in this exploration is the varying implementation effi-
ciency of the flexible LDPC decoder. The different efficiency evaluations result from
the required code rate flexibility in the LDPC decoder which is necessary to match
the communications performance with respect to a competitive turbo code decoder.
We see that analyzing only one code rate, and thus one snap shot, could result in a
wrong efficiency conclusions.

The two explorations have shown that implementation efficiency for iterative
decoders often results in many points instead of a single point in the design space.
The different evaluations result from the strong interrelation between communication
performance, flexibility and implementation efficiency.

9.4 Comparison of Published Decoder Architectures

Comparing different decoder architectures objectively, even given proper metrics, is
a very challenging task. This is due to the fact that published decoders

• are based on different technology nodes (e.g. 180 nm, 130 nm, 65 nm) and char-
acterization assumptions (e.g. worst case, nominal case or best case operating
conditions) and

• differ in their communications performance with respect to the chosen architectural
parameters.

To highlight the problem of a fair comparison, we list selected state-of-the-art
turbo decoder architectures in Table 9.3. This table shows the implementation para-
meters of the various decoders, i.e. frequency, area, throughput, technology node, but
also parameters which have a strong impact on the communications performance.
First, we will discuss technology parameters that influence the achievable throughput
followed by architectural parameters affecting the communications performance.

9.4.1 Technology Parameters

Different technologies have different area, timing (frequency) and energy charac-
teristics. In principle, it is possible to normalize the area from one technology node
(e.g. 130 nm) analytically to a reference technology node (e.g, 65 nm) [30], but scal-
ing timing and energy is very difficult for advanced technology nodes. We focus here
on only some aspects of technology scaling.

In larger technologies, e.g. a 130 nm process, the critical path is normally found
in the logic. In turbo decoders, for example, it is typically determined by the
add-compare-select unit in the maximum a posteriori (MAP) processing kernel.
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In advanced technologies of 65 nm and less, memories are becoming more and more
the limiting factor in terms of timing and energy [30]. Today, we can see large vari-
ations in timing and energy efficiency of memories even in the same technology
node, depending on the technology provider and the final memory instantiation [31].
Consequently, the assumption that memories scale as good as the logic, when scaling
published timing and energy to reference node, is not true [30, 32].

The assumptions under which published frequency and energy data were obtained
are another important issue. Timing and energy characterization can be performed
under nominal, worst and best case operating conditions. These conditions are related
to voltage supply, temperature and technology variations. The achievable frequency
can vary up to a factor of two between worst case and best case conditions. For
example, under worst case conditions the decoder presented in [27] has a maximum
frequency of fcyc = 300 MHz, but achieves fcyc = 450 MHz under nominal case
conditions. In Table 9.3 we list the operating conditions, when specified in the pub-
lication. Measurements of fabricated chips are often performed under nominal or
even best case conditions, whereas some of the listed decoders assume worst case
conditions. Depending on the assumed operating conditions, we see large differ-
ences in achievable frequencies, which in turn results in large variations in the final
throughput, see Sect. 6.3.3.

For comparing different architectures there exist one further problem. The dra-
matic change of efficiency for post synthesis data or post place and route (P&R) data.
Often when designing industry chips we assume a secure margin for the final P&R
data of up to 30 %, i.e., we add this overhead to the post synthesis area to enable a
fast extrapolation of the final chip area. However, the move to higher throughputs
and the mandatory high parallelism of the architectures pose stringent constraints
for the wiring. Especially for LDPC codes where randomness has to be ensured the
overhead for P&R becomes significant and exceeds the expected 30 % overhead. One
example which highlight the problems of place and route is shown in Fig. 9.5.

In this graph the already presented LDPC and turbo decoder architectures are
shown (throughput of 150 Mbit/s). In addition advanced LDPC and turbo decoder
architectures are shown with throughput numbers in the Gbit/s range. The data of
these architectures are shown in Table 9.4 and are taken from [36, 37]. Again the
same 65 nm technology for comparison reasons is used.

Two important problems for future channel decoders can be seen:

• The synthesis data of the decoders presented in Table 9.4 show a promising effi-
ciency increase in terms of area and power efficiencies. However, after P&R the
efficiency drops significantly due to the large overhead of routing. This can be
seen for the LDPC decoder architecture (1 Gbit/s) where the efficiency points are
present before and after P&R.

• For the turbo decoders we can see that the efficiency points are in the same range
for both implementations. The high throughput turbo decoders features new design
techniques to increase the architecture efficiency. However, the increase in terms
of area and energy efficiency is saturating, due to the large overhead of P&R.

http://dx.doi.org/10.1007/978-1-4614-8030-3_6
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Fig. 9.5 Architecture efficiency trend, all data points are derived with place and route. Only the
data for high throughput LDPC decoder shows as well post-synthesis efficiency points

Table 9.4 Gigabit reference decoders: service parameters and implementation results in 65 nm
(low power) technology, including area and dynamic power consumption

Channel decoder Flexibility Block length Throughput Frequency Area Power (mW)
(Mbit/s) (MHz) (mm2)

HSPA, LTE R = 1/3 to N = 18 k 1200 300 11.2 ∼2000
TC [36] R = 9/10 (7 iter) (P&R) (P&R) (P&R)
Flexible [37] R = 0.5 to N = 3720 to 1000 (R =

1/2 20
iter)

275 4.6 ∼1320

LDPC R = 0.8 N = 14.8 k 4600 (R =
4/5 5 iter)

(P&R) (P&R) (P&R)

9.4.2 Communications Performance

The communication performance is mainly affected by three parameters, which also
have a strong impact on throughput, area, and energy: input quantization (Q), window
length (WL), and acquisition length (AL). Efficient decoder architectures split the
input block into several so-called windows, to reduce the memory requirements and
to permit parallel processing, see Chap. 6. To counteract the consequent degradation
of the communications performance, an acquisition step is introduced at the window
borders. Of course, the input quantization has a large and direct effect on the com-
munications performance. The quantization of data internal to the turbo decoder can
be derived from the input quantization. Typically, a 5 bit input quantization shows
a 0.2 dB performance degradation compared to a 6 bit input quantization, assuming

http://dx.doi.org/10.1007/978-1-4614-8030-3_6
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the same number of iterations and a code rate of R = 1/3. Most of the published
turbo decoder architectures are instantiated with 5 or 6 bits for input quantization.

To highlight the impact of window and acquisition length on the communications
performance, we compare the two turbo decoders [34] and [27]. They share the
same quantization, technology, and basic decoder architecture, but strongly differ in
the window length and acquisition length (WL = 8,AL = 20 compared to WL =
32,AL = 96). For a code rate R = 1/3 and a given number of iterations, the
two decoders show a nearly identical communications performance. However, for
R = 0.95, the highest code rate specified in the LTE standard, the difference in
the communications performance after 6 iterations is about 2 dB. The decoder from
[34] achieves the desired communications performance only after 9 iterations, at a
much lower throughput, which is first order inverse proportional to the number of
iterations, see Sect. 6.3.3.

It is possible to derive some first order analytical equations showing the impact
of the parameters (WL, AL) on throughput and area (Sect. 6.3.3), but there is no
analytical equation for the dependency of the communications performance on these
parameters. Instead Monte Carlo simulations have to be performed, making it nearly
impossible to compare the decoders in Table 9.3 from a communications performance
point of view, unless the publications give detailed communications performance
graphs for the relevant parameters of the given standards. Although sometimes such
graphs are published, they typically cover only a subset of a standard’s parameters
and do not cover their corner cases. For example, the turbo decoder from [17] is LTE
compliant with respect to the supported interleavers and code rates, but it is not clear
how many iterations are required to fulfill the LTE communications performance
requirements at the code rate of R = 0.95.

These examples show that comparing only architectural results of different pub-
lished decoders may lead to entirely wrong conclusions. The communications perfor-
mance results have to be published as well, not for one point but for various service
parameters, to allow a comparison of implementation efficiencies.

9.4.3 VLSI Efficiency and Communications Performance at Once

The presented approach to plot two different charts for the communications perfor-
mance and the VLSI performance is not the only possibility to compare architectures.
One efficient way to compare different channel coding schemes is to visualize all
data in one graph. This is shown in Fig. 9.6. The x-axis shows the signal-to-noise
ratio which is mandatory to obtain a desired frame error rate. Here in this chart a
fixed frame error rate of FER = 10−3 is assumed. The y-axis is split in two parts,
the upper part shows the known area efficiency, while the lower part shows the
energy efficiency respectively. Thus, one channel coding scheme will have always
two lines, one in the top half, the other in the bottom half. In this chart the results
for a turbo decoder and an LDPC decoder architecture is shown, according to the
architectures of Table 9.1. The resulting efficiencies for two code rates are presented

http://dx.doi.org/10.1007/978-1-4614-8030-3_6
http://dx.doi.org/10.1007/978-1-4614-8030-3_6
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Fig. 9.6 Communications efficiency, area and energy efficiency in one chart, for a fixed FER =
10−3

(R = 0.5 and R = 0.8). Depending on the number of iterations we will have differ-
ent efficiency points with respect to SNR, in terms of area, and in terms of energy
efficiency, respectively. The advantage of this chart representation is the possibility
to compare communications performance and the resulting VLSI efficiency at once.
Here, it can be seen that the turbo decoder architecture has advantages for the R = 0.5
scenario, while the architecture of the LDPC decoder shows a better efficiency for
the case of a high code rate R = 0.8.

In summary of the chapter we analyzed the trade-offs between implementation
efficiency, communications performance and flexibility. Meaningful efficiency met-
rics are mandatory to explore and evaluate the resulting design space. We introduced
and discussed suitable energy and area efficiency metrics which are based on decoded
information bit per energy and throughput per area unit. Various channel decoder
implementations were utilized to examine these efficiency metrics with respect to
the achieved communications performance and with respect to the decoder flexibil-
ity. The presented approaches allow to systematically compare different realizations
by jointly considering: implementation efficiency, communications performance and
flexibility.
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Appendix A
Channel Coding Data

In this appendix various data for communication standards are presented and serves
as a parameter look up basis. The related information and parameter descriptions
are presented in the corresponding chapters in this manuscript. Data are partially
assembled by Creonic GmbH (http://www.creonic.com) (Tables A.1, A.2, A.3, A.4,
A.5 and A.6).

Table A.1 Selection of standards and their channel codes, table adapted from [1]

Standard Codes States Code rates Infobits for CC,TC
Codword for LDPC

GSM CC 16, 64 1/4, 1/3, 1/2 Up to 876
EDGE CC 64 1/4, 1/3, 1/2 Up to 870
UMTS CC 256 1/4, 1/3, 1/2 Up to 504

bTC 8 1/3 Up to 5114
CDMA2000 CC 256 1/6, 1/4, 1/3, 1/2 Up to 744

bTC 8 1/5, 1/4, 1/3, 1/2 Up to 20730
HSDPA bTC 8 1/2, 2/3, 3/4 Up to 5114
LTE bTC 8 1/3–9/10 Up to 6144
DAB CC 64 1/4 None
DVB-H CC 64 1/2, 2/3, 3/4, 5/6, 7/8 1624
DVB-T CC 64 1/2, 2/3, 3/4, 5/6, 7/8 1624
DVB-RCT dbTC 8 1/2, 3/4 Up to 648
DVB-RCS dbTC 8 1/3, 2/5, 1/2, 2/3, 3/4, 4/5, 6/7 Up to 1728
IEEE 802.11a/g CC 64 1/2, 2/3, 3/4 Up to 4095
IEEE 802.11n CC 64 1/2, 2/3, 3/4 Up to 4095

LDPC – 1/2, 2/3, 3/4, 5/6 Up to 1620
IEEE802.16e CC 64 1/2, 2/3, 3/4, 5/6 Up to 864
(WiMax) dbTC 8 1/2, 2/3, 3/4 Up to 4800

LDPC – 1/2, 2/3, 3/4, 5/6 Up to 1920
DVB-S2/C2/T2 LDPC 1/4–9/10 16200, 64800
WiMedia 1.5 UWB LDPC 1/2, 5/8, 3/4, 4/5 1200, 1320

(continued)
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Table A.1 (continued)

Standard Codes States Code rates Infobits for CC,TC
Codword for LDPC

IEEE 802.3an LDPC 0.841 2048
IEEE 802.15.3c LDPC 1/2, 5/8, 3/4, 7/8, 14/15 672, 1440
IEEE 802.22 LDPC 1/2, 2/3, 3/4, 5/6 384, 480
CCSDS LDPC 1/2–4/5 1280–32768
GMR-1 LDPC 1/2–9/10 950–11136

Table A.2 Duo-binary turbo decoding standards, table adapted from [2]

Standard DVB-RCS DVB-RCT WiMax
[3] [4] [5]

Codeword sizes 112–5184 192–864 96–9600
Info couples 48–864 72–324 24–2400
Code rates 1

3 – 6
7

1
2 , 3

4
1
2 – 5

6
Trellis states 8
Input polynomials I0 = 48, I1 = 78

Feedbackward polynomial G F B = 158

Feedforward polynomials G0 = 138, G0 = 138 G0 = 138

G1 = 118

Number of codes 84 10 24

Table A.3 LDPC code standards with high throughput requirements, adapted from [2]

Standard 802.3 an [6] WiMedia 1.5 [7] 802.15.3c [8]
(10 GBASE-T) (UWB) (60 GHz)

Codeword sizes 2048 1200, 1320 672, 1440
Code rates 1723

2048
1
2 – 4

5
1
2 , 3

4 , 7
8 , 14

15
Sub-matrix sizes N/A 30 21, 96
Min–Max CN degree 32 5–15 6–32
Min–Max VN degree 6 2–5 1–4
No. of codes 1 8 4
Throughput (Gbit/s) 10 1 ≤5

Table A.4 Degree distributions of the WiFi 802.11n LDPC Codes, only three block are defined
with N = 648, N = 1248, and N = 1944 bit, table adapted from [9]

WiFi 802.11n
R Variable node degree f Check node degree g

1
2 [2, 3, 12] =

{
11
24 ,

5
12 ,

1
8

}
[7, 8] = { 2

3 ,
1
3

}
2
3 [2, 3, 4, 6, 8] =

{
7

24 ,
1
3 ,

5
24 ,

1
24 ,

1
8

}
[11] = {1}

3
4 [2, 3, 4, 6] =

{
5

24 ,
1
3 ,

1
4 ,

5
24

}
[14, 15] = { 1

3 ,
2
3

}
(continued)
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Table A.4 (continued)

WiFi 802.11n
R Variable node degree f Check node degree g
5
6 [2, 3, 4] = { 1

8 ,
1

12 ,
19
24

} [22] = {1}
1
2 [2, 3, 4, 11] = { 11

24 ,
3
8 ,

1
24 ,

1
8

} [7, 8] =
{

5
6 ,

1
6

}
2
3 [2, 3, 7, 8] = { 7

24 ,
1
2 ,

1
12 ,

1
8

} [11] = {1}
3
4 [2, 3, 6] =

{
5

24 ,
1
2 ,

7
24

}
[14, 15] = { 1

3 ,
2
3

}
5
6 [2, 3, 4] =

{
1
8 ,

5
24 ,

2
3

}
[21, 22] = { 3

4 ,
1
4

}
1
2 [2, 3, 4, 11] = { 11

24 ,
3
8 ,

1
24 ,

1
8

} [7, 8] =
{

5
6 ,

1
6

}
2
3 [2, 3, 6, 8] = { 7

24 ,
1
2 ,

1
24 ,

1
6

} [11] = {1}
3
4 [2, 3, 6] =

{
5

24 ,
13
24 ,

1
4

}
[14, 15] =

{
5
6 ,

1
6

}
5
6 [2, 3, 4] =

{
1
8 ,

11
24 ,

5
12

}
[19, 20] = { 1

4 ,
3
4

}

Table A.5 Degree Distributions of all WiMax 802.16e LDPC Code Classes, the codeword size
ranges from N = 576 to N = 2304 bit in steps of 24 bits, table adapted from [9]

WiMax 802.16e
R Variable node degree f Check node degree g

1
2 f[2,3,6] =

{
11
24 ,

1
3 ,

5
24

}
g[6,7] = { 2

3 ,
1
3

}
2
3 A f[2,3,6] =

{
7

24 ,
1
2 ,

5
24

}
g[10] = {1}

2
3 B f[2,3,4] = { 7

24 ,
1

24 ,
2
3

}
g[10,11] = { 7

8 ,
1
8

}
3
4 A f[2,3,4] =

{
5

24 ,
1

24 ,
3
4

}
g[14,15] =

{
5
6 ,

1
6

}
3
4 B f[2,3,6] =

{
5

24 ,
1
2 ,

7
24

}
g[14,15] = { 1

3 ,
2
3

}
5
6 f[2,3,4] =

{
3

24 ,
5

12 ,
11
24

}
g[20] = {1}

Table A.6 Overview of LDPC codes in DVB standards, table adapted from [2]

Block Code Code Variable node Check node Edges Used in DVB-
Size Rate ID Rate Degrees Degrees S2 T2 C2

64800 1
4

1
4 2, 3, 12 4 194399 ×

64800 1
3

1
3 2, 3, 12 5 215999 ×

64800 2
5

2
5 2, 3, 12 6 233279 ×

64800 1
2

1
2 2, 3, 8 7 226799 × ×

64800 3
5

3
5 2, 3, 12 11 285119 × ×

64800 2
3

2
3 2, 3, 13 10 215999 × × ×

64800 3
4

3
4 2, 3, 12 14 226799 × × ×

64800 4
5

4
5 2, 3, 11 18 233279 × × ×

64800 5
6

5
6 2, 3, 13 22 237599 × × ×

64800 8
9

8
9 2, 3, 4 27 194399 ×

(continued)
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Table A.6 (continued)

Block Code Code Variable node Check node Edges Used in DVB-
Size Rate ID Rate Degrees Degrees S2 T2 C2

64800 9
10

9
10 2, 3, 4 30 194399 × ×

16200 1
4

1
5 2, 3, 12 3, 4 48599 × ×

16200 1
3

1
3 2, 3, 12 5 53999 ×

16200 2
5

2
5 2, 3, 12 6 58319 ×

16200 1
2

4
9 2, 3, 8 4, 5, 6, 7 48599 × × ×

16200 3
5

3
5 2, 3, 12 11 71279 ×

16200 3
5

3
5 2, 3, 12 9 58319 ×

16200 2
3

2
3 2, 3, 13 10 53999 × × ×

16200 3
4

11
15 2, 3, 12 9, 10, 11, 12, 13 47519 × × ×

16200 4
5

7
9 2, 3 11, 12, 13 44999 × × ×

16200 5
6

37
45 2, 3, 13 16, 17, 18, 19 49319 × × ×

16200 8
9

8
9 2, 3, 4 27 48599 × ×



Appendix B
Communications Performance Results

The communications performance results serves as a reference for comparing
simulations. The related information and parameter descriptions are presented in the
corresponding chapters in this manuscript. Simulations are partially assembled by
Creonic GmbH (http://www.creonic.com). The communications performance data
for LTE turbo codes are the floating point reference simulations which were utilized
for the chip designs in Chap. 9 (Figs. B.1, B.2, B.3, B.4, B.5, B.6, B.7, B.8, B.9, B.10
and B.11).
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Fig. B.1 Communications performance for LTE turbo decoding for the code rate R = 1/2 for
different block sizes
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Fig. B.2 Communications performance for HSPA turbo decoding for different code rates, all with
maximum infobit size of K = 5114
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Fig. B.3 Communications performance for LTE turbo decoding for different code rates, all with
maximum infobit size of K = 6144
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LTE Turbo: K=1024, Floating−point, Max−Log−MAP + ESF

iteration 8, N=1152, R=0.89

iteration 8, N=1280, R=0.80
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Fig. B.4 Communications performance for LTE turbo decoding for different code rates, all with
maximum infobit size of K = 1024 bits
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LTE Turbo: K=512, Floating−point, Max−Log−MAP+ ESF

iteration 8, N=576, R=0.89
iteration 8, N=640, R=0.80
iteration 8, N=704, R=0.73
iteration 8, N=832, R=0.62
iteration 8, N=1024, R=0.50
iteration 8, N=1280, R=0.40
iteration 8, N=1536, R=0.33

Fig. B.5 Communications performance for LTE turbo decoding for different code rates, all with
maximum infobit size of K = 512 bits
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Fig. B.6 Communications performance for LTE turbo decoding for different code rates, all with
maximum infobit size of K = 128 bits
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LTE Turbo: K=64, Floating−point, Max−Log−MAP + ESF

iteration 8, N=72, R=0.89
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Fig. B.7 Communications performance for LTE turbo decoding for different code rates, all with
maximum infobit size of K = 64 bits



Appendix B: Communications Performance Results 241

0.6 0.8 1 1.2 1.4 1.6 1.8 2
10−5

10−4

10−3

10−2

10−1

100

Eb/N0/dB

F
E

R

iteration 3, Max−Log−MAP
iteration 4, Max−Log−MAP
iteration 6, Max−Log−MAP
iteration 8, Max−Log−MAP
iteration 15, Max−Log−MAP
iteration 3, Log−MAP
iteration 4, Log−MAP
iteration 6, Log−MAP
iteration 8, Log−MAP
iteration 15, Log−MAP

Fig. B.8 Communications performance for LTE turbo decoding of R = 0.5 and K = 6144 bits for
two decoding algorithms. Shown are the performance for different iterations utilizing the Log-MAP
and the Max-Log-MAP algorithm
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Fig. B.9 Communications performance for LTE turbo decoding of R = 0.5 and K = 6144 bits for
two decoding algorithms. Shown are the performance for different iterations utilizing the Log-MAP
and the Max-Log-MAP with extrinsic scaling factor of E SF = 0.75
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Communications performance of turbo  codes vs. LDP Ccodes
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Fig. B.10 Communications performance for duo-binary turbo codes and LDPC codes both speci-
fied in the WiMAX standard. The code rate is in all cases R = 0.5
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Fig. B.11 Communications performance of LTE turbo codes and multi-edge type LDPC codes,
both with K = 1500 infobits and R = 0.5



Appendix C
Probability Terms

In this section we describe several probability terms by means of examples. For
formal definitions of probability terms see for example [10].

One popular example is to calculate the odds in a game of chance, like rolling a die.
Rolling dice is a discrete experiment with 6 possible outcomes, which is denoted as
sample space of the experimentΩ = {1, 2, 3, 4, 5, 6}. The probability of an idealized
die showing a particular number after rolling it, can be calculated by

P(X = 6) = Possible outcomes favoring event 6

Total number of possible outcomes
, (C.1)

here with rolling a 6 as an example.
When referring to an outcome of an experiment we utilize a capital letter, where

X denotes a discrete random variable. A random variable is an expression whose
value is the outcome of one particular experiment.

We have to distinguish between the small letter x which reflects always one
particular event with one result, i.e. x = 6. However, a random variable, with capital
X , can have a more complicated probability constraint. For example, we can write
the probability showing a number smaller than 4 after rolling it is

P(X < 4) = P(x = 3)+ P(x = 2)+ P(x = 1) = 1/2 (C.2)

We can define as well more complected event like the probability to be an odd number
Q ∈ {1, 3, 5}, the probability of this experiment is

P(X = Q) = P(x = 1)+ P(x = 3)+ P(x = 5) = 1/2 (C.3)

The probability of an event is always linked to all possible events, which means here:

pX (x = 1)+ pX (x = 2)+ pX (x = 3)+ pX (x = 4)+ pX (x = 5)+ pX (x = 6) = 1
(C.4)

F. Kienle, Architectures for Baseband Signal Processing, 243
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pX (x) is called probability distribution function of a random variable X . The
distribution has to satisfy ∑

x∈Ω
pX (x) = 1. (C.5)

For a discrete sample space Ω , as shown here, the function pX (x) is denoted as
probability mass function. Assuming a continuous sample space the sum is replaced
by an integral, this case is shown later. The probability to obtain an odd number Q
can now be evaluated in a more generic way as:

P(X = Q) =
∑
x∈Q

pX (x) = 1/2 (C.6)

The probability of either random variable X or random variable Y occurring is
given by:

P(X ∪ Y ) = P(X)+ P(Y ) (C.7)

This equation holds only when the two random variables are independent. For exam-
ple, the probability to roll a 6 in the first attempt or to roll a 6 in the second attempt
is P(X ∪ Y ) = P(x = 6)+ P(x = 6) = 1

3 .
If two events are independent then their joint probability, the probability of both

events occurring in the same experiment, is

P(X ∩ Y ) = P(X,Y ) = P(X)P(Y ). (C.8)

The probability of rolling two sixes in a row is P(X,Y ) = P(x = 6)·P(x = 6) = 1
36 .

The probability of an random variable X given an occurrence of Y is called the
conditional probability. The conditional probability of X given Y is defined as

P(X |Y ) = P(X,Y )

P(Y )
. (C.9)

Using this we can calculate the probability to roll a six in the second attempt, when

the first attempt was a six, already. P(X = 6|Y = 6) = P(X∩Y )
P(Y ) = 1

36
1
6

= 1
6 . Note

that, since both events are independent, the conditional probability is just P(X |Y ) =
P(X)!

Equation C.9 links the joint probability of two random variable P(X,Y ) and the
conditional probability. Thus, the relation between P(X |Y ) can be derived, which
leads to Bayes’ theorem:

P(X |Y ) = P(X,Y )

P(Y )
= P(Y |X) · P(X)

P(Y )
(C.10)
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Fig. C.1 Probability distribution of the sum of two, three, and four dice events

The probability mass function in the example of rolling a die describes a so called
discrete uniform distribution. The discrete uniform distribution is important, e.g. to
model a random binary source, which has an equal probability to generate either
a zero or a one event. However, there are many more discrete distributions where
different events have a distinct probability of occurrence. Imagine the following
experiment: instead of rolling one die, as in the previous examples, now there are
two, three, or four dice, which are rolled together. The result of the experiment is the
sum of pips all dice show at the end of the experiment. The possible outcomes of
this experiment range from 2 to 12 for two dice (or n to 6n for n dice), but not every
outcome is equally likely. The probability for each outcome of this experiment can
be seen in Fig. C.1.

Assuming the sum of two dice the outcome z is quite clear with the maximum
sum to be z = 12 and the minimum of z = 2. These are rather rare events, as
both dice have to show the same value. It can be seen that the z = 7 is the most
common sum, because various different combinations result in a sum of 7 pips. The
resulting probability mass function is denoted with p(X+X)(z) and can be obtained
by the convolution conv(pX (x), pX (x)) of the individual mass functions. The larger
the sum of individual experiments, e.g. the sum of 4 experiments p(X+X+X+X)(z),
the more we approach the important Gaussian distribution.

In communication systems we typically evaluate specific observations, lower case
letter x , within a discrete random variable X . Thus, whenever possible, we skip the
capital X , and we will use p(x) or P(x |y) instead.
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Gaussian Distribution

So far we have only discussed discrete random variables, the distributions of which
can be described by a probability mass function. In the case of continuous random
variables the distributions are described by so called probability density functions
(pdf). One probability density function of particular importance is the Gaussian or
normal distribution, which is given by:

p(x |μ, σ 2) = 1√
2πσ 2

exp

{
− 1

2σ 2 (x − μ)2
}

(C.11)

The Gaussian variable N (x |μ, σ 2) is fully described by μ and σ 2, with μ being
the mean or center value and σ 2 being the variance, which gives the width of the
distribution. With the probability density function we can evaluate the probability of
a random variable X ∼ N (x |μ, σ 2) lying within a certain range:

P[a ≤ X ≤ b] =
∫ b

a
p(x |μ, σ 2) dx (C.12)

The standard deviation σ defines the boundaries at which 68.27 % of all outcomes are
in the range of [−σ, σ ], thus P[−σ ≤ X ≤ σ ] ≈ 0.6827. 95.45 % of all outcomes
X will be in the range of [−2σ ≤ X ≤ 2σ ] and 99.73 % within the range of ±3σ ,
respectively.

As mentioned, the probability density is defined for continuous random variables.
However, in hardware design we have typically a limited, quantized, range of values
and thus discrete events. The probability of a random variable falling in a certain
range has to be calculated via the corresponding range integral. Figure C.2 shows
the continuous Gaussian function, the ranges for different standard deviation values
are highlighted. Figure C.3 shows the corresponding probability mass function with
ranges of identical probability; the well known histogram visualization appears. It
is worth mentioning that, if the range integrals are not perfectly symmetrical with
respect to the mean value, a probability mass function results that shows slightly
imbalanced bins, as can be observed in Fig. C.3. In hardware design we always
have to keep in mind that this can happen due to limited resolution or incomplete
information about μ or σ . An algorithm realized in hardware has to be stable with
respect to these inaccuracies.
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Fig. C.2 Continious
Gaussian function

Fig. C.3 Histogram or prob-
ability mass function



Appendix D
4-AM Demodulator

In this example we show the mathematical operations done by a demodulator for the
4 amplitude modulation (AM). Within a 4-AM modulation process always Q = 2
bits are mapped to one symbol s j with s j ∈ {−3,−1, 1, 3}. Each value (amplitude)
occurs equally likely since we assume an equal distributed binary source for the
mapping process. The mapping form binary input variables xi , xi+1 to the resulting
symbol s j and the transmission via an AWGN channel is shown in Fig. D.1. The
figure shows only the transmission of one symbol s j , which will be received as a
noise corrupted real valued yi .

The task of the demodulator is to calculate an a posteriori probability with respect
to a received value y j . The demodulator can calculate the result on symbol level
with P(s j |y j ) or directly on bit level using P(xi |y j ), P(xi+1|y j ), as introduced in
Sect. 2.2. Table D.1 summarizes the different expressions for demodulation on bit and
symbol level in the probability and the log-likelihood domain. In order to understand
the different possibilities and to derive the calculations of the demodulation,we have
to review the 4-AM transmission and receiving process.

In Fig. D.2 we have plotted the transmission statistics for submitting equally dis-
tributed 4-AM symbols via an AWGN channel with σ 2 = 1. The Fig. D.2a–f will
help to illustrate the terms joint probability, marginal distribution, and conditional
distribution, the understanding of which is necessary to calculate the output of a
higher order demodulator, here 4-AM demodulator. All sub-figures represent results
of Monte Carlo simulations for a limited number of experiments (10,000), which
thus results in inaccuracies of the corresponding histogram, probability mass func-
tions, or scatter plot visualizations. We assume the input to the channel as a random
variable S with an equal occurrence or each value s ∈ {−3,−1,+1,+3}, which
results as well for the output of the AWGN channel a random received variable Y .

• Figure D.2a shows the so called scatter plot of the transmission, with the input data
s on the x-scale and the corresponding observed output y data on the y-scale. Visu-
alizing the probability mass function of p(s, y) would require a third dimension
to represent the frequency with respect to a quantized y realization.

F. Kienle, Architectures for Baseband Signal Processing, 249
DOI: 10.1007/978-1-4614-8030-3, © Springer Science+Business Media New York 2014
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     Mapper 
(2 bits to symbol) 

Fig. D.1 Illustration of the 4 level modulation and transmission via an AWGN channel

Table D.1 Demodulator possibilities with respect to higher order modulation, here the 4-AM
example

Demodulator Bit-level Symbol level

P(xi = 0|y j ) P(s j = −3|y j )

Probability domain P(xi = 1|y j ) P(s j = −1|y j )

P(xi+1 = 0|y j ) P(s j = +1|y j )

P(xi+1 = 1|y j ) P(s j = +3|y j )

ln
P(s j =−3|y j )

P(s j =+1|y j )

Log-likelihood domain ln
P(xi =0|y j )

P(xi =1|y j )
ln

P(s j =−1|y j )

P(s j =+1|y j )

ln
P(xi+1=0|y j )

P(xi+1=1|y j )
ln

P(s j =+1|y j )

P(s j =+1|y j )
= 0

ln
P(s j =+3|y j )

P(s j =+1|y j )

Comment Information loss full APP information

• Figure D.2b shows the simulated mass distribution of p(y). The probability of each
bin is shown on the x-scale, while the received random variable y for small ranges
is given on the y-axis. p(y) is the marginal probability of p(x, y) which can be
obtained by summing over all possible realizations p(y) = ∑

s∈{−3,−1,1,3} p(s, y)
.• Figure D.2c shows the obtained mass distribution of p(y|s = 1). The mean value
of this distribution is at μ = 1, exactly the value of the fixed channel input s = 1.

• Figure D.2d shows the distribution of the input variable s. Each value should occur
equally likely, the inaccuracies in the graph are due to the limited amount of
simulated data. p(s) can be seen as well as the marginalization of p(s, y) which
is p(s) = ∑

y∈Ωy
p(s, y).

• Figure D.2e, f show the conditional probabilities for each possible channel input
under the condition of the received variable Y < 1 (Fig. D.2e) or Y > 1) (Fig. D.2f)
was observed.

Figure D.2a–f are now utilized to explain the demodulator process. First we will
derive the demodulator calculations in the probability domain on symbol level.
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Fig. D.2 Illustration of a distribution over the received variable Y and sent variable S
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4-AM Demodulation: Probability Domain on Symbol Level

As an example we assume a received value of y = 3.4 and calculate the probability
that s = 3 was sent. Thus, we evaluate the conditioned probability P(s = 3|y = 3.4).
We can not directly calculate this probability and first apply Bayes’ theorem, resulting
in

P(s = 3|y = 3.4) = P(y = 3.4|s = 3) · P(s = 3)

P(y = 3.4)
. (D.1)

The most difficult part to evaluate in this equation is P(y = 3.4), since we need
the full knowledge of the density function p(Y ). However, we eliminate this part by
introducing a further condition. The sum of probabilities of all possible sent symbols
has to be one, i.e.

∑
s∈{−3,−1,1,3} P(s|y = 3.4) = 1. We know that P(y = 3.4)

occurs in each term of the sum and is independent of the sent symbol. Furthermore,
each symbol is equally likely.

P(s = 3|y = 3.4) = P(y = 3.4|s = 3)∑
s∈{−3,−1,1,3} P(y = 3.4|s) (D.2)

The sum in the denominator reflects the introduced normalizing condition on each
symbol. This equation can now be solved by utilizing the shifted Gaussian pdf of
Eq. C.11 with the mean value μ = s and the received value y = 3.4.

p(y = 3.4|s) = 1√
2πσ 2

exp

(
− 1

2σ 2 (3.4 − s)2
)

(D.3)

For each received value y j and each symbol s j ∈ {−3,−1,+1,+3} we have
to evaluate this equation. The final corresponding probability results for each are
shown in Fig. D.3. The figure shows the demodulation of a 4 amplitude modulation
(AM) scheme. Each sub-figure shows the results for 4 different noise levels σ 2. The
figures show the probability for each symbol as a function of the received value y.
Thus, the left sub-figure shows the probability of P(y|s = −3). On the x-axis the
various values for a received y are shown, on the y-axis the corresponding probability
conditioned on a sent symbol. It is obvious that the probabilities for P(y|s = −3)
and P(y|s = +3) are axially symmetrical.

4-AM Demodulation: Log-Likelihood Ratios on Symbol Level

The log-likelihood ratio was already introduced in the binary case, here we show as
well it’s advantage on symbol level.

λ(s|y) = ln

(
P(s|y)

P(snorm |y)
)

(D.4)
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Fig. D.3 Illustration of the demodulation of a 4 amplitude transmission. Each subfigure shows the
results for four different noise levels σ 2. Each figure shows the probability for one symbol having
been the channel input as a function of the received channel output y

Equation D.4 represents the LLR on symbol level, each normalized to the symbol
snorm . The normalizer symbol can be chosen arbitrarily, so without loss of generality
in the following we assume snorm = +1. Starting form Eq. D.2 we can see that the
LLR on symbol level results in:

λ(s|y) = − 1

2σ 2 (y − s)2 + 1

2σ 2 (y − snorm)
2 (D.5)

λ(s|y) = 1

σ 2 y(s − snorm)+ 1

2σ 2 ((snorm)
2 − (s)2) (D.6)

Figure D.4 shows the same information as Fig. D.3, only in the LLR domain. For
each symbol and noise level there exists a linear dependency. All lines intersect the
LLR = 0 value at

√
s − snorm while the angle of the line depends on σ 2 and the

corresponding symbol. This linear dependencies is of big advantage for the hardware
realization. As well for the binary LLR value the linear relation exists, as derived in
Eq. 2.22.

4-AM Demodulation: Log-Likelihood Ratios on Bit Level

An other possibility for the demodulator is to calculate the bit level LLRs, which can
be calculated from symbol probabilities. In many practical applications the LLRs
are required on bit level since the channel code itself is working as well on bit level.
For independent bits xi , the probability P(xi = 1|y j ) is obtained by

http://dx.doi.org/10.1007/978-1-4614-8030-3_2
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Fig. D.4 Illustration of the demodulation of 4 amplitude transmission. Each subfigure shows the
results for 4 different noise levels σ 2, the log-likelihood ratios of each symbol are normalized to
s = 1

P(xi = 1|y j ) =
∑

∀s j |xi =1

P(s j |y j ) (D.7)

In this section we do not skip the indices to stress the fact that one symbol j comprises
the information of two bits at bit position i, i + 1. ∀s j |xi = 1 defines all symbols s j

which results from the mapping with the mapped bit at position i to be a one. Using
Bayes’ theorem, P(s j |y j ) can be expressed as

P(s j |y j ) = P(s j ) · P(y j |s j )

P(y j )
(D.8)

Furthermore, by utilizing the log-likelihood ratio:

λ(xi |y j ) = ln

∑
∀s j |xi =0 P(y j |s j ) · P(s j )∑
∀s j |xi =1 P(y j |s j ) · P(s j )

(D.9)

If additional and independent a priori information P(xi ) for each bit is available,
then the symbol information is the product of probabilities of Q bit positions mapped
to the symbol.

P(s j ) =
i+Q−1∏

i

P(xi ) (D.10)

However, within our example of a 4-AM demodulator we assume the a priori
information of P(s j ) to be constant, thus this information cancels out. As already
mentioned, every symbol in the 4-AM modulation scheme encodes two bits. The
calculation of the bit LLR is different for these two bits, depending on their bit
position. Assume the bits xi and xi+1 are mapped to the symbol s j . If xi = 0, we
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Fig. D.5 Illustration of the bit demodulation of 4-AM transmission. Each subfigure shows the
results for four different noise levels σ 2. The true bit LLRs are shown as a function of y. Furthermore
a possible hardware approximation is shown

know that s j = −3 or s j = −1, while if xi = 1, then s j = +1 or s j = +3. Thus,
the LLR for xi can be calculated by:

λ(xi |y j ) = ln
P(y j |s j = −3)+ P(y j |s j = −1)

P(y j |s j = +1)+ P(y j |s j = +3)
(D.11)

The second bit xi+1 = 0 has a different mapping, see Fig. D.1. The resulting LLR
can be evaluated by:
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λ(xi+1|y j ) = ln
P(y j |s j = −3)+ P(y j |s j = +3)

P(y j |s j = −1)+ P(y j |s j = +1)
(D.12)

In Fig. D.5 the LLR values for both bit positions within a symbol are shown. The
results clearly show that one bit is protected better by the modulation scheme, since
the resulting values are unambiguous and can result in higher magnitude values. For
the second bit some LLR values result from three different y values.

Figure D.5 shows as well a possible hardware approximation of the LLR calcula-
tion. This approximation takes only the maximum probability within the nominator
and denominator calculation into account, i.e.

λ(xi |y j ) = ln

max∀s j |xi =0

{
P(y j |s j ) · P(s j )

}

max∀s j |xi =1

{
P(y j |s j ) · P(s j )

} (D.13)

This kind of approximation technique is typically denoted as Max-Log approxi-
mation and is derived in more general context in Sect. 3.3.4.
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