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Tensors and Universal Properties

We will review the basic properties of the tensor product and use them to
illustrate the basic notion of a universal property, which we will see repeatedly.

If R is a commutative ring andM ,N , and P are R-modules, then a bilinear
map f :M ×N −→ P is a map satisfying

f(r1m1 + r2m2, n) = r1f(m1, n) + r2f(m2, n), ri ∈ R,mi ∈M,n ∈ N,

f(m, r1n1 + r2n2) = r1f(m,n1) + r2f(m,n2), ri ∈ R, ni ∈ N,m ∈M.

More generally, if M1, . . . ,Mk are R-modules, the notion of a k-linear map
M1 × · · · ×Mk −→ P is defined similarly: the map must be linear in each
variable.

The tensor product M ⊗RN is an R-module together with a bilinear map
⊗ : M ×N −→M ⊗R N satisfying the following property.

Universal Property of the Tensor Product. If P is any R-module and p :
M×N −→ P is a bilinear map, there exists a unique R-module homomorphism
F :M ⊗N −→ P such that p = F ◦ ⊗.

Why do we call this a universal property? It says that ⊗ : M × N −→
M ⊗ N is a “universal” bilinear map in the sense that any bilinear map of
M×N factors through it. As we will explain, the module M⊗RN is uniquely
determined by the universal property. This is important beyond the immediate
example because often objects are described by universal properties. Before
we explain this point (which is obvious if one thinks about it correctly), let
us make a categorical observation.

If C is a category, an initial object in C is an object X0 such that, for each
object Y , the Hom set HomC(X0, Y ) consists of a single element. A terminal
object is an objectX∞ such that, for each object Y , the Hom set HomC(Y,X∞)
consists of a single element. For example, in the category of sets, the empty
set is an initial object and a set consisting of one element is a terminal object.
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Lemma 9.1. In any category, any two initial objects are isomorphic. Any two
terminal objects are isomorphic.

Proof. If X0 and X1 are initial objects, there exist unique morphisms f :
X0 −→ X1 (since X0 is initial) and g : X1 −→ X0 (since X1 is initial). Then
g ◦ f : X0 −→ X0 and 1X0 : X0 −→ X0 must coincide since X0 is initial,
and similarly f ◦ g = 1X1 . Thus f and g are inverse isomorphisms. Similarly,
terminal objects are isomorphic. ��
Theorem 9.1. The tensor product M ⊗R N , if it exists, is determined up to
isomorphism by the universal property.

Proof. Let C be the following category. An object in C is an ordered pair
(P, p), where P is an R-module and p : M × N −→ P is a bilinear map.
If X = (P, p) and Y = (Q, q) are objects, then a morphism X −→ Y consists
of an R-module homomorphism f : P −→ Q such that q = f ◦p. The universal
property of the tensor product means that ⊗ :M ×N −→M ⊗N is an initial
object in this category and therefore determined up to isomorphism. ��
Of course, we usually denote ⊗(m,n) as m ⊗ n in M ⊗R N . We have not
proved thatM ⊗RN exists. We refer to any text on algebra for this fact, such
as Lang [116], Chap.XVI.

In general, by a universal property we mean any characterization of a
mathematical object that can be expressed by saying that some associated object
is an initial or terminal object in some category. The basic paradigm is that
a universal property characterizes an object up to isomorphism.

A typical application of the universal property of the tensor product is
to make M ⊗R N into a functor. Specifically, if μ : M −→ M ′ and ν :
N −→ N ′ are R-module homomorphisms, then there is a unique R-module
homomorphism μ ⊗ ν : M ⊗R N −→ M ′ ⊗R N

′ such that (μ ⊗ ν)(m ⊗ n) =
μ(m)⊗ ν(n). We get this by applying the universal property to the R-bilinear
map M ×N −→M ′ ⊗N ′ defined by (m,n) �−→ μ(m)⊗ ν(n).

As another example of an object that can be defined by a universal prop-
erty, let V be a vector space over a field F . Let us ask for an F -algebra⊗
V together with an F -linear map i : V −→ ⊗

V satisfying the following
condition.

Universal Property of the Tensor Algebra. If A is any F -algebra and
φ : V −→ A is an F -linear map then there exists a unique F -algebra homo-
morphism Φ :

⊗
V −→ A such that r = ρ ◦ i.

It should be clear from the previous discussion that this universal property
characterizes the tensor algebra up to isomorphism. To prove existence, we can
construct a ring with this exact property as follows. Let unadorned ⊗ mean
⊗F in what follows. By ⊗kV we mean the k-fold tensor product V ⊗ · · · ⊗ V
(k times); if k = 0, then it is natural to take ⊗0V = F while ⊗1V = V . If V
has finite dimension d, then ⊗kV has dimension dk. Let
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⊗
V =

∞⊕

k=0

(⊗kV
)
.

Then
⊗
V has the natural structure of a graded F -algebra in which the

multiplication ⊗kV ×⊗lV −→ ⊗k+lV sends

(v1 ⊗ · · · ⊗ vk, u1 ⊗ · · · ⊗ ul) −→ v1 ⊗ · · · ⊗ vk ⊗ u1 ⊗ · · · ⊗ ul.

We regard V as a subset of
⊗
V embedded onto ⊗1V = V .

Proposition 9.1. The universal property of the tensor algebra is satisfied.

Proof. If φ : V −→ A is any linear map of V into an F -algebra, define a map
Φ :

⊗
V −→ A by Φ(v1 ⊗ · · · ⊗ vk) = φ(v1) · · ·φ(vk) on ⊗kV . It is easy to

see that Φ is a ring homomorphism. It is unique since V generates
⊗
V as an

F -algebra. ��
A graded algebra over the field F is an F -algebra A with a direct sum decom-
position

A =

∞⊕

k=0

Ak

such that AkAl ⊆ Ak+l. In most examples we will have A0 = F . Elements
of Ak are called homogeneous of degree k. The tensor algebra is a graded
algebra, with ⊗kV being the homogeneous part of degree k.

Next we define the symmetric and exterior powers of a vector space
V over the field F . Let V k denote V × · · · × V (k times). A k-linear
map f : V k −→ U into another vector space is called symmetric if for
any σ ∈ Sk it satisfies f(vσ(1), . . . , vσ(k)) = f(v1, . . . , vk) and alternating

if f
(
vσ(1), . . . , vσ(k)) = ε(σ) f(v1, . . . , vk), where ε : Sk −→ {±1} is the

alternating (sign) character. The kth symmetric and exterior powers of V ,
denoted ∨kV and ∧kV , are F -vector spaces, together with k-linear maps
∨ : V k −→ ∨kV and ∧ : V k −→ ∧kV . The map ∨ is symmetric, and the
map ∧ is alternating. We normally denote ∨(v1, . . . , vk) = v1 ∨ · · · ∨ vk and
similarly for ∧. The following universal properties are required.

Universal Properties of the Symmetric and Exterior Powers: Let
f : V k −→ U be any symmetric (resp. alternating) k-linear map. Then there
exists a unique F -linear map φ : ∨kV −→ U (resp. ∧kV −→ U) such that
f = φ ◦ ∨(resp. f = φ ◦ ∧).

As usual, the symmetric and exterior algebras are characterized up to
isomorphism by the universal property. We may construct ∨kV as a quo-
tient of ⊗kV , dividing by the subspace W generated by elements of the form
v1 ⊗ · · · ⊗ vk − vσ(1) ⊗ · · · ⊗ vσ(k), with a similar construction for ∧k. The

universal property of ∨kV then follows from the universal property of the
tensor product. Indeed, if f : V k −→ U is any symmetric k-linear map, then
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there is induced a linear map ψ : ⊗kV −→ U such that f = ψ ◦ ⊗. Since f is
symmetric, ψ vanishes on W , so ψ induces a map ∨kV = ⊗kV/W −→ U and
the universal property follows.

If V has dimension d, then ∨kV has dimension
(
d+k−1

k

)
, for if x1, . . . , xd

is a basis of V , then {xi1 ∨ · · · ∨ xik | 1 � i1 � i2 � · · · � ik � d} is a basis for
∨kV . On the other hand, the exterior power vanishes unless k � d, in which
case it has dimension

(
d
k

)
. A basis consists of {xi1 ∧ · · · ∧ xik | 1 � i1 < i2 <

· · · < ik � d}. The vector spaces ∨kV may be collected together to make a
commutative graded algebra:

∨
V =

∞⊕

k=0

∨kV.

This is the symmetric algebra. The exterior algebra
∧
V =

⊕
k ∧kV is con-

structed similarly. The spaces ∨0V and ∧0V are one-dimensional and it is
natural to take ∨0V = ∧0V = F .

Exercises

Exercise 9.1. Let V be a finite-dimensional vector space over a field F that may
be assumed to be infinite. Let P(V ) be the ring of polynomial functions on V . Note
that an element of the dual space V ∗ is a function on V , so regarding this function
as a polynomial gives an injection V ∗ −→ P(V ). Show that this linear map extends
to a ring isomorphism

∨
V ∗ −→ P(V ).

Exercise 9.2. Prove that if V is a vector space, then V ⊗ V ∼= (V ∧ V )⊕ (V ∨ V ).

Exercise 9.3. Use the universal properties of the symmetric and exterior power to
show that if V and W are vector spaces, then there are maps ∨kf : ∨kV −→ ∨kW
and ∧kf : ∧kV −→ ∧kW such that

∨kf(v1 ∨ · · · ∨ vk) = f(v1)∨ · · · ∨ f(vk), ∧kf(v1 ∧ · · · ∧ vk) = f(v1)∧ · · · ∧ f(vk).

Exercise 9.4. Suppose that V = F 4. Let f : V −→ V be the linear transformation
with eigenvalues a, b, c, d. Compute the traces of the linear transformations ∨2f and
∧2f on ∨2V and ∧2V as polynomials in a, b, c, d.

Exercise 9.5. Let A and B be algebras over the field F . Then A ⊗ B is also an
algebra, with multiplication (a ⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′. Show that there are ring
homomorphisms i : A → A ⊗ B and j : B → A ⊗ B such that if f : A → C and
g : B → C are ring homomorphisms into a ring C satisfying f(a) g(b) = g(b) f(a)
for a ∈ A and b ∈ B, then there exists a unique ring homomorphism φ : A⊗B → C
such that φ ◦ i = f and φ ◦ j = g.

Exercise 9.6. Show that if U and V are finite-dimensional vector spaces over F
then show that

∨
(U ⊕ V ) ∼=

(∨
U
)
⊗

(∨
U
)

and
∧

(U ⊕ V ) ∼=
(∧

U
)
⊗

(∧
U
)
.
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