The Exponential Map

The exponential map, introduced for closed Lie subgroups of $\operatorname{GL}(n, \mathbb{C})$ in Chap. 5, can be defined for a general Lie group G as a map $\operatorname{Lie}(G) \longrightarrow G$.

We may consider a vector field (6.5) that is allowed to vary smoothly. By this we mean that we introduce a real parameter $\lambda \in (-\epsilon, \epsilon)$ for some $\epsilon > 0$ and smooth functions $a_i : M \times (-\epsilon, \epsilon) \longrightarrow \mathbb{C}$ and consider a vector field, which in local coordinates is given by

$$(Xf)(m) = \sum_{i=1}^{n} a_i(m,\lambda) \frac{\partial f}{\partial x_i}(m).$$
(8.1)

Proposition 8.1. Suppose that M is a smooth manifold, $m \in M$, and X is a vector field on M. Then, for sufficiently small $\epsilon > 0$, there exists a path $p: (-\epsilon, \epsilon) \longrightarrow M$ such that p(0) = m and $p_*(d/dt)(t) = X_{p(t)}$ for $t \in (-\epsilon, \epsilon)$. Such a curve, on whatever interval it is defined, is uniquely determined. If the vector field X is allowed to depend on a parameter λ as in (8.1), then for small values of t, p(t) depends smoothly on λ .

Here we are regarding the interval $(-\epsilon, \epsilon)$ as a manifold, and $p_*(d/dt)$ is the image of the tangent vector d/dt. We call such a curve an *integral curve* for the vector field.

Proof. In terms of local coordinates x_1, \ldots, x_n on M, the vector field X is

$$\sum a_i(x_1,\ldots,x_n)\frac{\partial}{\partial x_i},$$

where the a_i are smooth functions in the coordinate neighborhood. If a path p(t) is specified, let us write $x_i(t)$ for the x_i component of p(t), with the coordinates of m being $x_1 = \cdots = x_n = 0$. Applying the tangent vector $p_*(t)(d/dt)(t)$ to a function $f \in C^{\infty}(G)$ gives

$$\frac{\mathrm{d}}{\mathrm{d}t}f\big(x_1(t),\ldots,x_n(t)\big)=\sum x_i'(t)\frac{\partial f}{\partial x_i}\big(x_1(t),\ldots,x_n(t)\big).$$

On the other hand, applying $X_{p(t)}$ to the same f gives

$$\sum_{i} a_i (x_1(t), \dots, x_n(t)) \frac{\partial f}{\partial x_i} (x_1(t), \dots, x_n(t)),$$

so we need a solution to the first-order system

$$x'_{i}(t) = a_{i}(x_{1}(t), \dots, x_{n}(t)), \qquad x_{i}(0) = 0, \qquad (i = 1, \dots, n).$$

The existence of such a solution for sufficiently small |t|, and its uniqueness on whatever interval it does exist, is guaranteed by a standard result in the theory of ordinary differential equations, which may be found in most texts. See, for example, Ince [81], Chap. 3, particularly Sect. 3.3, for a rigorous treatment. The required Lipschitz condition follows from smoothness of the a_i . For the statement about continuously varying vector fields, one needs to know the corresponding fact about first-order systems, which is discussed in Sect. 3.31 of [81]. Here Ince imposes an assumption of analyticity on the dependence of the differential equation on λ , which he allows to be a complex parameter, because he wants to conclude analyticity of the solutions; if one weakens this assumption of analyticity to smoothness, one still gets smoothness of the solution.

In general, the existence of the integral curve of a vector field is only guaranteed in a small segment $(-\epsilon, \epsilon)$, as in Proposition 8.1. However, we will now see that, for left-invariant vector fields on a Lie group, the integral curve extends to all \mathbb{R} . This fact underlies the construction of the exponential map.

Theorem 8.1. Let G be a Lie group and \mathfrak{g} its Lie algebra. There exists a map $\exp : \mathfrak{g} \longrightarrow G$ that is a local homeomorphism in a neighborhood of the origin in \mathfrak{g} such that, for any $X \in \mathfrak{g}$, $t \longrightarrow \exp(tX)$ is an integral curve for the left-invariant vector field X. Moreover, $\exp(((t+u)X)) = \exp(tX) \exp(uX)$.

Proof. Let $X \in \mathfrak{g}$. We know that for sufficiently small $\epsilon > 0$ there exists an integral curve $p : (-\epsilon, \epsilon) \longrightarrow G$ for the left-invariant vector field X with p(0) = 1. We show first that if $p : (a, b) \longrightarrow G$ is any integral curve for an open interval (a, b) containing 0, then

$$p(s) p(t) = p(s+t)$$
 when $s, t, s+t \in (a, b)$. (8.2)

Indeed, since X is invariant under left-translation, left-translation by p(s) takes an integral curve for the vector field into another integral curve. Thus, $t \rightarrow p(s) p(t)$ and $t \rightarrow p(s+t)$ are both integral curves, with the same initial condition $0 \rightarrow p(s)$. They are thus the same.

With this in mind, we show next that if $p: (-a, a) \longrightarrow G$ is an integral curve for the left-invariant vector field X, then we may extend it to all of \mathbb{R} . Of course, it is sufficient to show that we may extend it to $(-\frac{3}{2}a, \frac{3}{2}a)$. We extend it by the rule p(t) = p(a/2) p(t - a/2) when $-a/2 \leq t \leq 3a/2$ and

p(t) = p(-a/2) p(t + a/2) when $-3a/2 \le t \le a/2$, and it follows from (8.2) that this definition is consistent on regions of overlap.

Now define exp : $\mathfrak{g} \longrightarrow G$ as follows. Let $X \in \mathfrak{g}$, and let $p : \mathbb{R} \longrightarrow G$ be an integral curve for the left-invariant vector field X with p(0) = 0. We define $\exp(X) = p(1)$. We note that if $u \in \mathbb{R}$, then $t \mapsto p(tu)$ is an integral curve for uX, so $\exp(uX) = p(u)$.

The exponential map is a smooth map, at least for X near the origin in \mathfrak{g} , by the last statement in Proposition 8.1. Identifying the tangent space at the origin in the vector space \mathfrak{g} with \mathfrak{g} itself, exp induces a map $T_0(\mathfrak{g}) \longrightarrow T_e(G)$ (that is $\mathfrak{g} \longrightarrow \mathfrak{g}$), and this map is the identity map by construction. Thus, the Jacobian of exp is nonzero and, by the Inverse Function Theorem, exp is a local homeomorphism near 0.

We also denote $\exp(X)$ as e^X for $X \in \mathfrak{g}$.

Remark 8.1. If $G = \operatorname{GL}(n, \mathbb{C})$, then as we explained in Chap. 7, Proposition 7.2 allows us to identify the Lie algebra of G with $\operatorname{Mat}_n(\mathbb{C})$. We observe that the definition of $\exp : \operatorname{Mat}_n(\mathbb{C}) \longrightarrow \operatorname{GL}(n, \mathbb{C})$ by a series in (5.2) agrees with the definition in Theorem 8.1. This is because $t \longmapsto \exp(tX)$ with either definition is an integral curve for the same left-invariant vector field, and the uniqueness of such an integral curve follows from Proposition 8.1.

Proposition 8.2. Let G, H be Lie groups and let \mathfrak{g} , \mathfrak{h} be their respective Lie algebras. Let $f: G \to H$ be a homomorphism. Then the following diagram is commutative:

$$\begin{array}{cccc}
\mathfrak{g} & \stackrel{\mathrm{d}f}{\longrightarrow} & \mathfrak{h} \\
\downarrow \exp & & \downarrow \exp \\
G & \stackrel{f}{\longrightarrow} & H
\end{array}$$

Proof. It is clear from the definitions that f takes an integral curve for a left-invariant vector field X on G to an integral curve for df(X), and the statement follows.

A representation of a Lie algebra \mathfrak{g} over a field F is a Lie algebra homomorphism $\pi : \mathfrak{g} \longrightarrow \operatorname{End}(V)$, where V is an F-vector space, or more generally a vector space over a field E containing F, and $\operatorname{End}(V)$ is given the Lie algebra structure that it inherits from its structure as an associative algebra. Thus,

$$\pi([x, y]) = \pi(x) \,\pi(y) - \pi(y) \,\pi(x).$$

We may sometimes find it convenient to denote $\pi(x)v$ as just xv for $x \in \mathfrak{g}$ and $v \in V$. We may think of $(x, v) \mapsto xv = \pi(x)v$ as a multiplication. If Vis a vector space, given a map $\mathfrak{g} \times V \longrightarrow V$ denoted $(x, v) \mapsto xv$ such that $x \mapsto \pi(x)$ is a representation, where $\pi(x) : V \longrightarrow V$ is the endomorphism $v \longrightarrow xv$, then we call V a \mathfrak{g} -module. A homomorphism $\phi : U \longrightarrow V$ of \mathfrak{g} -modules is an F-linear map satisfying $\phi(xv) = x\phi(v)$. Example 8.1. If $\pi : G \longrightarrow \operatorname{GL}(V)$ is a representation, where V is a real or complex vector space, then the Lie algebra of $\operatorname{GL}(V)$ is $\operatorname{End}(V)$, so the differential $\operatorname{Lie}(\pi) : \operatorname{Lie}(G) \longrightarrow \operatorname{End}(V)$, defined by Proposition 7.3, is a Lie algebra representation.

By the universal property of $U(\mathfrak{g})$ in Theorem 10.1, A Lie algebra representation $\pi : \mathfrak{g} \longrightarrow \operatorname{End}(V)$ extends to a ring homomorphism $U(\mathfrak{g}) \longrightarrow \operatorname{End}(V)$, which we continue to denote as π .

If \mathfrak{g} is a Lie algebra over a field F, we get a homomorphism ad : $\mathfrak{g} \longrightarrow$ End(\mathfrak{g}), called the *adjoint map*, defined by $\operatorname{ad}(x)y = [x, y]$. We give End(\mathfrak{g}) the Lie algebra structure it inherits as an associative ring. We have

$$ad(x)([y,z]) = [ad(x)(y), z] + [y, ad(x)(z)]$$
(8.3)

since, by the Jacobi identity, both sides equal [x, [y, z]] = [[x, y], z] + [y, [x, z]]. This means that ad(x) is a derivation of \mathfrak{g} .

Also

$$\operatorname{ad}(x)\operatorname{ad}(y) - \operatorname{ad}(y)\operatorname{ad}(x) = \operatorname{ad}([x, y])$$
(8.4)

since applying either side to $z \in \mathfrak{g}$ gives [x, [y, z]] - [y, [x, z]] = [[x, y], z] by the Jacobi identity. So ad : $\mathfrak{g} \longrightarrow \operatorname{End}(\mathfrak{g})$ is a Lie algebra representation.

We next explain the geometric origin of ad. To begin with, representations of Lie algebras arise naturally from representations of Lie groups. Suppose that G is a Lie group and \mathfrak{g} is its Lie algebra. If V is a vector space over \mathbb{R} or \mathbb{C} , any Lie group homomorphism $\pi : G \longrightarrow \operatorname{GL}(V)$ induces a Lie algebra homomorphism $\mathfrak{g} \longrightarrow \operatorname{End}(V)$ by Proposition 7.3; that is, a real or complex representation.

In particular, G acts on itself by conjugation, and so it acts on $\mathfrak{g} = T_e(G)$. This representation is called the *adjoint representation* and is denoted Ad : $G \longrightarrow GL(\mathfrak{g})$. We show next that the differential of Ad is ad. That is:

Theorem 8.2. Let G be a Lie group, \mathfrak{g} its Lie algebra, and $\operatorname{Ad} : G \longrightarrow \operatorname{GL}(\mathfrak{g})$ the adjoint representation. Then the Lie group representation $\mathfrak{g} \longrightarrow \operatorname{End}(\mathfrak{g})$ corresponding to Ad by Proposition 7.3 is ad.

Proof. It will be most convenient for us to think of elements of the Lie algebra as tangent vectors at the identity or as local derivations of the local ring there. Let $X, Y \in \mathfrak{g}$. If $f \in C^{\infty}(G)$, define $c(g)f(h) = f(g^{-1}hg)$. Then our definitions of the adjoint representation amount to

$$\left(\operatorname{Ad}(g)Y\right)f = Y\left(c(g^{-1})f\right).$$

To compute the differential of Ad, note that the path $t \longrightarrow \exp(tX)$ in G is tangent to the identity at t = 0 with tangent vector X. Therefore, under the representation of \mathfrak{g} in Proposition 7.3, X maps Y to the local derivation at the identity

$$f \longmapsto \frac{\mathrm{d}}{\mathrm{d}t} \left(\mathrm{Ad}(\mathrm{e}^{tX})Y \right) f \Big|_{t=0} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\mathrm{d}}{\mathrm{d}u} f(\mathrm{e}^{tX} \mathrm{e}^{uY} \mathrm{e}^{-tX}) \Big|_{t=u=0}.$$

By the chain rule, if $F(t_1, t_2)$ is a function of two real variables,

$$\frac{\mathrm{d}}{\mathrm{d}t}F(t,t)\Big|_{t=0} = \frac{\partial F}{\partial t_1}(0,0) + \frac{\partial F}{\partial t_2}(0,0).$$
(8.5)

Applying this, with u fixed to $F(t_1, t_2) = f(e^{t_1 X} e^{uY} e^{-t_2 X})$, our last expression equals

$$\frac{\mathrm{d}}{\mathrm{d}u}\frac{\mathrm{d}}{\mathrm{d}t}f(\mathrm{e}^{tX}\,\mathrm{e}^{uY})\Big|_{t=u=0} - \frac{\mathrm{d}}{\mathrm{d}u}\frac{\mathrm{d}}{\mathrm{d}t}f(\mathrm{e}^{uY}\,\mathrm{e}^{tX})\Big|_{t=u=0} = XYf(1) - YXf(1).$$

This is, of course, the same as the effect of $[X, Y] = \operatorname{ad}(X)Y$.

Exercises

Exercise 8.1. Show that the exponential map $\mathfrak{su}(2) \to \mathrm{SU}(2)$ is surjective, but the exponential map $\mathfrak{sl}(2,\mathbb{R}) \to \mathrm{SL}(2,\mathbb{R})$ is not.