The Exponential Map

The exponential map, introduced for closed Lie subgroups of $GL(n, \mathbb{C})$ in Chap. 5, can be defined for a general Lie group G as a map $\text{Lie}(G) \longrightarrow G$.

We may consider a vector field (6.5) that is allowed to vary smoothly. By this we mean that we introduce a real parameter $\lambda \in (-\epsilon, \epsilon)$ for some $\epsilon > 0$ and smooth functions $a_i : M \times (-\epsilon, \epsilon) \longrightarrow \mathbb{C}$ and consider a vector field, which in local coordinates is given by

$$
(Xf)(m) = \sum_{i=1}^{n} a_i(m,\lambda) \frac{\partial f}{\partial x_i}(m).
$$
 (8.1)

Proposition 8.1. *Suppose that* M *is a smooth manifold,* $m \in M$ *, and* X *is a vector field on M. Then, for sufficiently small* $\epsilon > 0$ *, there exists a path* $p: (-\epsilon, \epsilon) \longrightarrow M$ *such that* $p(0) = m$ *and* $p_*(d/dt)(t) = X_{p(t)}$ *for* $t \in (-\epsilon, \epsilon)$ *. Such a curve, on whatever interval it is defined, is uniquely determined. If the vector field* X *is allowed to depend on a parameter* λ *as in* [\(8.1\)](#page-0-0)*, then for small values of t, p(t) depends smoothly on* λ .

Here we are regarding the interval $(-\epsilon, \epsilon)$ as a manifold, and $p_*(d/dt)$ is the image of the tangent vector d/dt. We call such a curve an *integral curve* for the vector field.

Proof. In terms of local coordinates x_1, \ldots, x_n on M, the vector field X is

$$
\sum a_i(x_1,\ldots,x_n)\frac{\partial}{\partial x_i},
$$

where the a_i are smooth functions in the coordinate neighborhood. If a path $p(t)$ is specified, let us write $x_i(t)$ for the x_i component of $p(t)$, with the coordinates of m being $x_1 = \cdots = x_n = 0$. Applying the tangent vector $p_*(t)(d/dt)(t)$ to a function $f \in C^{\infty}(G)$ gives

$$
\frac{\mathrm{d}}{\mathrm{d}t}f(x_1(t),\ldots,x_n(t))=\sum x_i'(t)\frac{\partial f}{\partial x_i}(x_1(t),\ldots,x_n(t)).
$$

On the other hand, applying $X_{p(t)}$ to the same f gives

$$
\sum_i a_i(x_1(t),\ldots,x_n(t))\frac{\partial f}{\partial x_i}(x_1(t),\ldots,x_n(t)),
$$

so we need a solution to the first-order system

$$
x'_i(t) = a_i(x_1(t),...,x_n(t)),
$$
 $x_i(0) = 0,$ $(i = 1,...,n).$

The existence of such a solution for sufficiently small $|t|$, and its uniqueness on whatever interval it does exist, is guaranteed by a standard result in the theory of ordinary differential equations, which may be found in most texts. See, for example, Ince [81], Chap. 3, particularly Sect. 3.3, for a rigorous treatment. The required Lipschitz condition follows from smoothness of the ^a*i.* For the statement about continuously varying vector fields, one needs to know the corresponding fact about first-order systems, which is discussed in Sect. 3.31 of [81]. Here Ince imposes an assumption of analyticity on the dependence of the differential equation on λ , which he allows to be a complex parameter, because he wants to conclude analyticity of the solutions; if one weakens this assumption of analyticity to smoothness, one still gets smoothness of the solution. \Box

In general, the existence of the integral curve of a vector field is only guaranteed in a small segment $(-\epsilon, \epsilon)$, as in Proposition [8.1.](#page-0-1) However, we will now see that, for left-invariant vector fields on a Lie group, the integral curve extends to all R. This fact underlies the construction of the exponential map.

Theorem 8.1. *Let* G *be a Lie group and* g *its Lie algebra. There exists a map* $\exp: \mathfrak{g} \longrightarrow G$ *that is a local homeomorphism in a neighborhood of the origin in* g *such that, for any* $X \in \mathfrak{g}$, $t \longrightarrow \exp(tX)$ *is an integral curve for the* left-invariant vector field X. Moreover, $\exp((t+u)X) = \exp(tX)\exp(uX)$.

Proof. Let $X \in \mathfrak{g}$. We know that for sufficiently small $\epsilon > 0$ there exists an integral curve $p : (-\epsilon, \epsilon) \longrightarrow G$ for the left-invariant vector field X with $p(0) = 1$. We show first that if $p : (a, b) \longrightarrow G$ is any integral curve for an open interval (a, b) containing 0, then

$$
p(s) p(t) = p(s+t) \text{ when } s, t, s+t \in (a, b). \tag{8.2}
$$

Indeed, since X is invariant under left-translation, left-translation by $p(s)$ takes an integral curve for the vector field into another integral curve. Thus, $t \longrightarrow p(s) p(t)$ and $t \longrightarrow p(s+t)$ are both integral curves, with the same initial condition $0 \longrightarrow p(s)$. They are thus the same.

With this in mind, we show next that if $p:(-a,a) \longrightarrow G$ is an integral curve for the left-invariant vector field X , then we may extend it to all of \mathbb{R} . Of course, it is sufficient to show that we may extend it to $\left(-\frac{3}{2}a, \frac{3}{2}a\right)$. We extend it by the rule $n(t) = n(a/2) n(t - a/2)$ when $-a/2 \le t \le 3a/2$ and extend it by the rule $p(t) = p(a/2)p(t - a/2)$ when $-a/2 \le t \le 3a/2$ and

 $p(t) = p(-a/2) p(t + a/2)$ when $-3a/2 \le t \le a/2$, and it follows from [\(8.2\)](#page-1-0)
that this definition is consistent on regions of overlap that this definition is consistent on regions of overlap.

Now define $\exp : \mathfrak{g} \longrightarrow G$ as follows. Let $X \in \mathfrak{g}$, and let $p : \mathbb{R} \longrightarrow G$ be an integral curve for the left-invariant vector field X with $p(0) = 0$. We define $\exp(X) = p(1)$. We note that if $u \in \mathbb{R}$, then $t \mapsto p(tu)$ is an integral curve for uX , so $\exp(uX) = p(u)$.

The exponential map is a smooth map, at least for X near the origin in \mathfrak{g} , by the last statement in Proposition [8.1.](#page-0-1) Identifying the tangent space at the origin in the vector space g with g itself, exp induces a map $T_0(\mathfrak{g}) \longrightarrow T_e(G)$ (that is $\mathfrak{g} \longrightarrow \mathfrak{g}$), and this map is the identity map by construction. Thus, the Jacobian of exp is nonzero and, by the Inverse Function Theorem, exp is a local homeomorphism near 0.

We also denote $\exp(X)$ as e^X for $X \in \mathfrak{g}$.

Remark 8.1. If $G = GL(n, \mathbb{C})$, then as we explained in Chap. 7, Proposition 7.2 allows us to identify the Lie algebra of G with $\text{Mat}_n(\mathbb{C})$. We observe that the definition of $\exp: \text{Mat}_n(\mathbb{C}) \longrightarrow \text{GL}(n, \mathbb{C})$ by a series in (5.2) agrees with the definition in Theorem [8.1.](#page-1-1) This is because $t \mapsto \exp(tX)$ with either definition is an integral curve for the same left-invariant vector field, and the uniqueness of such an integral curve follows from Proposition [8.1.](#page-0-1)

Proposition 8.2. *Let* G*,* H *be Lie groups and let* g*,* h *be their respective Lie algebras. Let* $f : G \to H$ *be a homomorphism. Then the following diagram is commutative:*

$$
\begin{array}{ccc}\n\mathfrak{g} & \xrightarrow{\mathrm{d}f} & \mathfrak{h} \\
\downarrow \exp & \downarrow \exp \\
G & \xrightarrow{f} & H\n\end{array}
$$

Proof. It is clear from the definitions that f takes an integral curve for a left-invariant vector field X on G to an integral curve for $df(X)$ and the left-invariant vector field X on G to an integral curve for $df(X)$, and the statement follows. statement follows.

^A *representation* of a Lie algebra g over a field F is a Lie algebra homomorphism $\pi : \mathfrak{g} \longrightarrow \text{End}(V)$, where V is an F-vector space, or more generally a vector space over a field E containing F, and $\text{End}(V)$ is given the Lie algebra structure that it inherits from its structure as an associative algebra. Thus,

$$
\pi([x, y]) = \pi(x) \, \pi(y) - \pi(y) \, \pi(x).
$$

We may sometimes find it convenient to denote $\pi(x)v$ as just xv for $x \in \mathfrak{g}$ and $v \in V$. We may think of $(x, v) \mapsto xv = \pi(x)v$ as a multiplication. If V is a vector space, given a map $\mathfrak{g} \times V \longrightarrow V$ denoted $(x, v) \mapsto xv$ such that $x \mapsto \pi(x)$ is a representation, where $\pi(x) : V \longrightarrow V$ is the endomorphism $v \rightarrow xv$, then we call V a g-module. A *homomorphism* $\phi: U \rightarrow V$ of g-modules is an F-linear map satisfying $\phi(xv) = x\phi(v)$.

Example 8.1. If $\pi : G \longrightarrow GL(V)$ is a representation, where V is a real or complex vector space, then the Lie algebra of $GL(V)$ is $End(V)$, so the differential $Lie(\pi): Lie(G) \longrightarrow End(V)$, defined by Proposition 7.3, is a Lie algebra representation.

By the universal property of $U(\mathfrak{g})$ in Theorem 10.1, A Lie algebra representation $\pi : \mathfrak{g} \longrightarrow \text{End}(V)$ extends to a ring homomorphism $U(\mathfrak{g}) \longrightarrow \text{End}(V)$, which we continue to denote as π .

If g is a Lie algebra over a field F, we get a homomorphism ad : $\mathfrak{g} \longrightarrow$ End(g), called the *adjoint map*, defined by $ad(x)y = [x, y]$. We give End(g) the Lie algebra structure it inherits as an associative ring. We have

$$
ad(x)([y, z]) = [ad(x)(y), z] + [y, ad(x)(z)]
$$
\n(8.3)

since, by the Jacobi identity, both sides equal $[x, [y, z]] = [[x, y], z] + [y, [x, z]].$ This means that $ad(x)$ is a derivation of \mathfrak{g} .

Also

$$
ad(x) ad(y) - ad(y) ad(x) = ad([x, y])
$$
\n(8.4)

since applying either side to $z \in \mathfrak{g}$ gives $[x, [y, z]] - [y, [x, z]] = [[x, y], z]$ by the Jacobi identity. So ad : $\mathfrak{g} \longrightarrow \text{End}(\mathfrak{g})$ is a Lie algebra representation.

We next explain the geometric origin of ad. To begin with, representations of Lie algebras arise naturally from representations of Lie groups. Suppose that G is a Lie group and $\mathfrak g$ is its Lie algebra. If V is a vector space over $\mathbb R$ or C, any Lie group homomorphism $\pi: G \longrightarrow GL(V)$ induces a Lie algebra homomorphism $\mathfrak{g} \longrightarrow \text{End}(V)$ by Proposition 7.3; that is, a real or complex representation.

In particular, G acts on itself by conjugation, and so it acts on $\mathfrak{g} = T_e(G)$. This representation is called the *adjoint representation* and is denoted Ad : $G \longrightarrow GL(\mathfrak{g})$. We show next that the differential of Ad is ad. That is:

Theorem 8.2. *Let* G *be a Lie group*, \mathfrak{g} *its Lie algebra, and* Ad : $G \longrightarrow GL(\mathfrak{g})$ *the adjoint representation. Then the Lie group representation* $\mathfrak{g} \longrightarrow \text{End}(\mathfrak{g})$ *corresponding to* Ad *by Proposition 7.3 is* ad*.*

Proof. It will be most convenient for us to think of elements of the Lie algebra as tangent vectors at the identity or as local derivations of the local ring there. Let $X, Y \in \mathfrak{g}$. If $f \in C^{\infty}(G)$, define $c(g)f(h) = f(g^{-1}hg)$. Then our definitions of the adjoint representation amount to

$$
(\mathrm{Ad}(g)Y)f = Y(c(g^{-1})f).
$$

To compute the differential of Ad, note that the path $t \longrightarrow \exp(tX)$ in G is tangent to the identity at $t = 0$ with tangent vector X. Therefore, under the representation of $\mathfrak g$ in Proposition 7.3, X maps Y to the local derivation at the identity

$$
f \longrightarrow \frac{d}{dt} \left(\text{Ad}(e^{tX}) Y \right) f \Big|_{t=0} = \frac{d}{dt} \frac{d}{du} f(e^{tX} e^{uY} e^{-tX}) \Big|_{t=u=0}.
$$

By the chain rule, if $F(t_1, t_2)$ is a function of two real variables,

$$
\frac{\mathrm{d}}{\mathrm{d}t}F(t,t)\Big|_{t=0} = \frac{\partial F}{\partial t_1}(0,0) + \frac{\partial F}{\partial t_2}(0,0). \tag{8.5}
$$

Applying this, with u fixed to $F(t_1, t_2) = f(e^{t_1 X}e^{uY}e^{-t_2 X})$, our last expression equals equals

$$
\frac{\mathrm{d}}{\mathrm{d}u}\frac{\mathrm{d}}{\mathrm{d}t}f(\mathrm{e}^{tX}\mathrm{e}^{uY})\Big|_{t=u=0} - \frac{\mathrm{d}}{\mathrm{d}u}\frac{\mathrm{d}}{\mathrm{d}t}f(\mathrm{e}^{uY}\mathrm{e}^{tX})\Big|_{t=u=0} = XYf(1) - YXf(1).
$$

This is, of course, the same as the effect of $[X, Y] = ad(X)Y$.

Exercises

Exercise 8.1. Show that the exponential map $\mathfrak{su}(2) \to SU(2)$ is surjective, but the exponential map $\mathfrak{sl}(2,\mathbb{R}) \to \mathrm{SL}(2,\mathbb{R})$ is not.