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The Exponential Map

The exponential map, introduced for closed Lie subgroups of GL(n,C) in
Chap. 5, can be defined for a general Lie group G as a map Lie(G) −→ G.

We may consider a vector field (6.5) that is allowed to vary smoothly. By
this we mean that we introduce a real parameter λ ∈ (−ε, ε) for some ε > 0
and smooth functions ai : M×(−ε, ε) −→ C and consider a vector field, which
in local coordinates is given by

(Xf)(m) =

n∑

i=1

ai(m,λ)
∂f

∂xi
(m). (8.1)

Proposition 8.1. Suppose that M is a smooth manifold, m ∈ M , and X is
a vector field on M . Then, for sufficiently small ε > 0, there exists a path
p : (−ε, ε) −→ M such that p(0) = m and p∗(d/dt)(t) = Xp(t) for t ∈ (−ε, ε).
Such a curve, on whatever interval it is defined, is uniquely determined. If
the vector field X is allowed to depend on a parameter λ as in (8.1), then for
small values of t, p(t) depends smoothly on λ.

Here we are regarding the interval (−ε, ε) as a manifold, and p∗(d/dt) is the
image of the tangent vector d/dt. We call such a curve an integral curve for
the vector field.

Proof. In terms of local coordinates x1, . . . , xn on M , the vector field X is

∑
ai(x1, . . . , xn)

∂

∂xi
,

where the ai are smooth functions in the coordinate neighborhood. If a path
p(t) is specified, let us write xi(t) for the xi component of p(t), with the
coordinates of m being x1 = · · · = xn = 0. Applying the tangent vector
p∗(t)(d/dt)(t) to a function f ∈ C∞(G) gives

d

dt
f
(
x1(t), . . . , xn(t)

)
=

∑
x′
i(t)

∂f

∂xi

(
x1(t), . . . , xn(t)

)
.
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On the other hand, applying Xp(t) to the same f gives

∑

i

ai
(
x1(t), . . . , xn(t)

) ∂f
∂xi

(
x1(t), . . . , xn(t)

)
,

so we need a solution to the first-order system

x′
i(t) = ai

(
x1(t), . . . , xn(t)

)
, xi(0) = 0, (i = 1, . . . , n).

The existence of such a solution for sufficiently small |t|, and its uniqueness on
whatever interval it does exist, is guaranteed by a standard result in the theory
of ordinary differential equations, which may be found in most texts. See, for
example, Ince [81], Chap. 3, particularly Sect. 3.3, for a rigorous treatment.
The required Lipschitz condition follows from smoothness of the ai. For the
statement about continuously varying vector fields, one needs to know the
corresponding fact about first-order systems, which is discussed in Sect. 3.31
of [81]. Here Ince imposes an assumption of analyticity on the dependence of
the differential equation on λ, which he allows to be a complex parameter,
because he wants to conclude analyticity of the solutions; if one weakens
this assumption of analyticity to smoothness, one still gets smoothness of the
solution. ��
In general, the existence of the integral curve of a vector field is only guaran-
teed in a small segment (−ε, ε), as in Proposition 8.1. However, we will now see
that, for left-invariant vector fields on a Lie group, the integral curve extends
to all R. This fact underlies the construction of the exponential map.

Theorem 8.1. Let G be a Lie group and g its Lie algebra. There exists a map
exp : g −→ G that is a local homeomorphism in a neighborhood of the origin
in g such that, for any X ∈ g, t −→ exp(tX) is an integral curve for the
left-invariant vector field X. Moreover, exp

(
(t+ u)X

)
= exp(tX) exp(uX).

Proof. Let X ∈ g. We know that for sufficiently small ε > 0 there exists
an integral curve p : (−ε, ε) −→ G for the left-invariant vector field X with
p(0) = 1. We show first that if p : (a, b) −→ G is any integral curve for an
open interval (a, b) containing 0, then

p(s) p(t) = p(s+ t) when s, t, s+ t ∈ (a, b). (8.2)

Indeed, since X is invariant under left-translation, left-translation by p(s)
takes an integral curve for the vector field into another integral curve. Thus,
t −→ p(s) p(t) and t −→ p(s + t) are both integral curves, with the same
initial condition 0 −→ p(s). They are thus the same.

With this in mind, we show next that if p : (−a, a) −→ G is an integral
curve for the left-invariant vector field X , then we may extend it to all of R.
Of course, it is sufficient to show that we may extend it to (− 3

2a,
3
2a). We

extend it by the rule p(t) = p(a/2) p(t − a/2) when −a/2 � t � 3a/2 and
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p(t) = p(−a/2) p(t + a/2) when −3a/2 � t � a/2, and it follows from (8.2)
that this definition is consistent on regions of overlap.

Now define exp : g −→ G as follows. Let X ∈ g, and let p : R −→ G be an
integral curve for the left-invariant vector field X with p(0) = 0. We define
exp(X) = p(1). We note that if u ∈ R, then t �→ p(tu) is an integral curve for
uX , so exp(uX) = p(u).

The exponential map is a smooth map, at least for X near the origin in g,
by the last statement in Proposition 8.1. Identifying the tangent space at the
origin in the vector space g with g itself, exp induces a map T0(g) −→ Te(G)
(that is g −→ g), and this map is the identity map by construction. Thus, the
Jacobian of exp is nonzero and, by the Inverse Function Theorem, exp is a
local homeomorphism near 0. ��
We also denote exp(X) as eX for X ∈ g.

Remark 8.1. If G = GL(n,C), then as we explained in Chap. 7, Proposition 7.2
allows us to identify the Lie algebra of G with Matn(C). We observe that the
definition of exp : Matn(C) −→ GL(n,C) by a series in (5.2) agrees with the
definition in Theorem 8.1. This is because t �−→ exp(tX) with either definition
is an integral curve for the same left-invariant vector field, and the uniqueness
of such an integral curve follows from Proposition 8.1.

Proposition 8.2. Let G, H be Lie groups and let g, h be their respective Lie
algebras. Let f : G → H be a homomorphism. Then the following diagram is
commutative:

g
df−−−−→ h

⏐⏐�exp

⏐⏐�exp

G
f−−−−→ H

Proof. It is clear from the definitions that f takes an integral curve for a
left-invariant vector field X on G to an integral curve for df(X), and the
statement follows. ��
A representation of a Lie algebra g over a field F is a Lie algebra homomor-
phism π : g −→ End(V ), where V is an F -vector space, or more generally a
vector space over a field E containing F , and End(V ) is given the Lie algebra
structure that it inherits from its structure as an associative algebra. Thus,

π([x, y]) = π(x)π(y) − π(y)π(x).

We may sometimes find it convenient to denote π(x)v as just xv for x ∈ g
and v ∈ V . We may think of (x, v) �→ xv = π(x)v as a multiplication. If V
is a vector space, given a map g × V −→ V denoted (x, v) �→ xv such that
x �→ π(x) is a representation, where π(x) : V −→ V is the endomorphism
v −→ xv, then we call V a g-module. A homomorphism φ : U −→ V of
g-modules is an F -linear map satisfying φ(xv) = xφ(v).
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Example 8.1. If π : G −→ GL(V ) is a representation, where V is a real or
complex vector space, then the Lie algebra of GL(V ) is End(V ), so the differ-
ential Lie(π) : Lie(G) −→ End(V ), defined by Proposition 7.3, is a Lie algebra
representation.

By the universal property of U(g) in Theorem 10.1, A Lie algebra represen-
tation π : g −→ End(V ) extends to a ring homomorphism U(g) −→ End(V ),
which we continue to denote as π.

If g is a Lie algebra over a field F , we get a homomorphism ad : g −→
End(g), called the adjoint map, defined by ad(x)y = [x, y]. We give End(g)
the Lie algebra structure it inherits as an associative ring. We have

ad(x)([y, z]) = [ad(x)(y), z] + [y, ad(x)(z)] (8.3)

since, by the Jacobi identity, both sides equal [x, [y, z]] = [[x, y], z] + [y, [x, z]].
This means that ad(x) is a derivation of g.

Also
ad(x) ad(y)− ad(y) ad(x) = ad

(
[x, y]

)
(8.4)

since applying either side to z ∈ g gives [x, [y, z]]− [y, [x, z]] = [[x, y], z] by the
Jacobi identity. So ad : g −→ End(g) is a Lie algebra representation.

We next explain the geometric origin of ad. To begin with, representations
of Lie algebras arise naturally from representations of Lie groups. Suppose
that G is a Lie group and g is its Lie algebra. If V is a vector space over R
or C, any Lie group homomorphism π : G −→ GL(V ) induces a Lie algebra
homomorphism g −→ End(V ) by Proposition 7.3; that is, a real or complex
representation.

In particular, G acts on itself by conjugation, and so it acts on g = Te(G).
This representation is called the adjoint representation and is denoted Ad :
G −→ GL(g). We show next that the differential of Ad is ad. That is:

Theorem 8.2. Let G be a Lie group, g its Lie algebra, and Ad : G −→ GL(g)
the adjoint representation. Then the Lie group representation g −→ End(g)
corresponding to Ad by Proposition 7.3 is ad.

Proof. It will be most convenient for us to think of elements of the Lie algebra
as tangent vectors at the identity or as local derivations of the local ring there.
LetX,Y ∈ g. If f ∈ C∞(G), define c(g)f(h) = f(g−1hg). Then our definitions
of the adjoint representation amount to

(
Ad(g)Y

)
f = Y

(
c(g−1)f

)
.

To compute the differential of Ad, note that the path t −→ exp(tX) in G is
tangent to the identity at t = 0 with tangent vector X . Therefore, under the
representation of g in Proposition 7.3, X maps Y to the local derivation at
the identity

f �−→ d

dt

(
Ad(etX)Y

)
f
∣∣∣
t=0

=
d

dt

d

du
f(etXeuY e−tX)

∣∣∣
t=u=0

.
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By the chain rule, if F (t1, t2) is a function of two real variables,

d

dt
F (t, t)

∣∣∣
t=0

=
∂F

∂t1
(0, 0) +

∂F

∂t2
(0, 0). (8.5)

Applying this, with u fixed to F (t1, t2) = f(et1XeuY e−t2X), our last expression
equals

d

du

d

dt
f(etX euY )

∣∣∣
t=u=0

− d

du

d

dt
f(euY etX)

∣∣∣
t=u=0

= XY f(1)− Y Xf(1).

This is, of course, the same as the effect of [X,Y ] = ad(X)Y . ��

Exercises

Exercise 8.1. Show that the exponential map su(2) → SU(2) is surjective, but the
exponential map sl(2,R) → SL(2,R) is not.
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