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Left-Invariant Vector Fields

To recapitulate, a Lie group is a differentiable manifold with a group structure
in which the multiplication and inversion maps G X G — G and G — G
are smooth. A homomorphism of Lie groups is a group homomorphism that
is also a smooth map.

Remark 7.1. There is a subtlety in the definition of a Lie subgroup. A Lie sub-
group of G is best defined as a Lie group H with an injective homomorphism
1 : H — G. With this definition, the image of ¢ in G is not closed, however,
as the following example shows. Let G be T x T, where T is the circle R/Z.
Let H be R, and let i : H — G be the map i(t) = («t, 8t) modulo 1, where
the ratio /8 is irrational. This is a Lie subgroup, but the image of H is not
closed. To require a closed image in the definition of a Lie subgroup would
invalidate a theorem of Chevalley that subalgebras of the Lie algebra of a Lie
group correspond to Lie subgroups. If we wish to exclude this type of example,
we will explicitly describe a Lie subgroup of G as a closed Lie subgroup.

Remark 7.2. On the other hand, in the expression “closed Lie subgroup,” the
term “Lie” is redundant. It may be shown that a closed subgroup of a Lie
group is a submanifold and hence a Lie group. See Brocker and Tom Dieck
[25], Theorem 3.11 on p. 28; Knapp [106] Chap.I Sect.4; or Knapp [105],
Theorem 1.5 on p. 20. We will only prove this for the special case of an
abelian subgroup in Theorem 15.2 below.

Suppose that M and N are smooth manifolds and ¢ : M — N is a smooth
map. As we explained in Chap.6, if m € M and n = ¢(m), we get a map
de : T (M) — T, (N), called the differential of f.If ¢ is a diffeomorphism
of M onto N, then we can push a vector field X on M forward this way to
obtain a vector field on N. This vector field may be denoted ¢.X, defined
by (¢«X)n = d¢(X,,) when f(m) = n. If ¢ is not a diffeomorphism, this
may not work because some points in N may not even be in the image of ¢,
while others may be in the image of two different points m; and ms with no
guarantee that d¢X,,, = d¢X,,,.
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46 7 Left-Invariant Vector Fields

Now let G be a Lie group. If g € G, then L, : G — G defined by L,(h) =
gh is a diffeomorphism and hence induces maps Ly . : T)(G) — Tyn(G).
A vector field X on G is left-invariant if Ly (X)) = Xgp.

Proposition 7.1. The vector space of left-invariant vector fields is closed
under [, ] and is a Lie algebra of dimension dim(G). If X. € T.(G), there
18 a unique left-invariant vector field X on G with the prescribed tangent vec-
tor at the identity.

Proof. Given a tangent vector X. at the identity element e of G, we may
define a left-invariant vector field by X, = L, «(X.), and conversely any left-
invariant vector field must satisfy this identity, so the space of left-invariant
vector fields is isomorphic to the tangent space of G at the identity. Therefore,
its vector space dimension equals the dimension of G. a

Let Lie(G) be the vector space of left-invariant vector fields, which we may
identify with the T.(G). It is clearly closed under [, ].

Suppose now that G = GL(n,C). We have defined two different Lie alge-
bras for G: first, in Chap.5, we defined the Lie algebra gl(n,C) of G to be
Mat,,(C) with the commutation relation [X,Y] = XY — Y X (matrix multi-
plication); and second, we have defined the Lie algebra to be the Lie algebra
of left-invariant vector fields with the bracket (6.6). We want to see that these
two definitions are the same. We will accomplish this in Proposition 7.2 below.

If X € Mat,,(C), we begin by associating with X a left-invariant vector
field. Since G is an open subset of the real vector space V' = Mat,,(C), we may
identify the tangent space to G at the identity with V. With this identification,
an element X € V is the local derivation at I [see (6.3)] defined by

d
— St tx ’ ,
fe Spex)|
where f is the germ of a smooth function at I. The two paths t — I +tX
and t — exp(tX) = I +tX + --- are tangent when ¢t = 0, so this is the
same as
d
f— Zf(epx) |

which is a better definition. Indeed, if H is a Lie subgroup of GL(n,C) and X
is in the Lie algebra of H, then by Proposition 5.2, the second path exp(tX)
stays within H, so this definition still makes sense.

It is clear how to extrapolate this local derivation to a left-invariant global
derivation of C*°(G,R). We must define

(AX)f(9) = S Floesp(tX)) | (11)

t=0
By Proposition 2.8, the left-invariant derivation dX of C*° (G, R) corresponds
to a left-invariant vector field. To distinguish this derivation from the element

X of Mat,, (C), we will resist the temptation to denote this derivation also as
X and denote it by dX.
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Lemma 7.1. Let f be a smooth map from a neighborhood of the origin in R™
into a finite-dimensional vector space. We may write

f(x) =co+ c1(x) + Bz, x) + r(x), (7.2)

where ¢1 : R™ — V is linear, B : R™ x R" — V is symmetric and bilinear,
and r vanishes to order 3.

Proof. This is just the familiar Taylor expansion. Denoting u = (u1, ..., uy,),
let Co — f(O),

and

1 0 f
B(u,v) = B ; ui0a; (0) u;v;.

Both f(z) and ¢o + ¢1(x) + B(x, ) have the same partial derivatives of order
< 2, so the difference r(x) vanishes to order 3. The fact that B is symmetric
follows from the equality of mixed partials:
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Proposition 7.2. If X, Y € Mat,(C), and if f is a smooth function on
G = GL(n,C), then d[X,Y]f =dX(dY f) — dY (dX f).

Here [X,Y] means XY — Y X computed using matrix operations; that is, the
bracket computed as in Chap. 5. This proposition shows that if X € Mat,, (C),
and if we associate with X a derivation of C*°(G,R), where G = GL(n,C),
using the formula (7.1), then this bracket operation gives the same result as
the bracket operation (6.6) for left-invariant vector fields.

Proof. We fix a function f € C*°(G) and an element g € G. By Lemma 7.1,
we may write, for X near 0,

flg(I + X)) =co+e1(X) + B(X, X) +r(X),

where ¢ is linear in X, B is symmetric and bilinear, and r vanishes to order
3 at X = 0. We will show that

(dX f)(g) = er(X) (7.3)

and
(dX odY f)(g9) = a1(XY) +2B(X,Y). (7.4)
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Indeed,

(AX 1)(g) = S (9T + 1) uco

_ % (o + er(tX) + B(EX, tX) + (X))

t=0

We may ignore the B and r terms because they vanish to order > 2, and since
c1 is linear, this is just ¢1(X) proving (7.3). Also

(dX odY f)(g) = — ((dY f)(g(I + X))

u=0

d_

0 0

oo fgU + U +uy)) |
(;9 88 [co+ c1(tX +uY + tuXY)

+B(tX +uY + tuXY, tX +uY + tuXY)
+r(tX + uY + tuXY)] |t=u—o.

We may omit r from this computation since it vanishes to third order.
Expanding the linear and bilinear maps ¢; and B, we obtain (7.4).
Similarly,

(dY 0odX f)(g) = 1 (YX)+2B(X,Y).
Subtracting this from (7.4) to kill the unwanted B term, we obtain
(dX odY —dY odX) f)(9) = (XY — Y X) = (d[X,Y] /) (9)
by (7.3). O

If ¢ : G — H is a homomorphism of Lie groups, there is an induced map of
Lie algebras, as we will now explain. Let X be a left-invariant vector field on G.
We have induced a map d¢ : T.(G) — T.(H), and by Proposition 7.1 applied
to H there is a unique left-invariant vector field Y on H such that d¢(X,) =
Y.. It is easy to see that for any g € G we have d¢(X,) = Yy(,). We regard
Y as an element of Lie(H), and X ~— Y is a map Lie(G) — Lie(H),
which we denote Lie(¢) or, more simply, d¢. The Lie algebra homomorphism
d¢ = Lie(¢) is called the differential of ¢. A map f : g — b of Lie algebras
is naturally called a homomorphism if f([X,Y]) = [f(X), f(Y)].

Proposition 7.3. If ¢ : G — H is a Lie group homomorphism, then Lie(¢) :
Lie(G) — Lie(H) is a Lie algebra homomorphism.

Proof. It X,Y € G, then X, and Y, are local derivations of O.(G), and it is
clear from the definitions that ¢.([Xe, Ye]) = [¢«(Xe), ¢« (Ye)]. Consequently,
[Lie(¢) X, Lie(¢)Y] and Lie(¢)([X, Y]) are left-invariant vector fields on H that
agree at the identity, so they are the same by Proposition 7.1. ad
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We may ask to what extent the Lie algebra homomorphism Lie(¢) contains
complete information about ¢. For example, given Lie groups G and H with
Lie algebras g and b, and a homomorphism f : g — b, is there a homomor-
phism G — H with Lie(¢) = f?

In general, the answer is no, as the following example will show.

Ezample 7.1. Let H = SU(2) and let G = SO(3). H acts on the three-

t y—i—zz) of trace

dimensional space V' of Hermitian matrices & = (y i

zero by h : & — héh™! = héth, and
€= —det(¢) = 2% + 9> + 22

is an invariant positive definite quadratic form on V invariant under this
action. Thus, the transformation £ — h&h™! of V is orthogonal, and we have
a homomorphism ¢ : SU(2) — SO(3). Both groups are three-dimensional,
and ¢ is a local homeomorphism at the identity. The differential Lie(4)) :
su(2) — s0(3) is therefore an isomorphism and has an inverse, which is
a Lie algebra homomorphism s0(3) — su(2). However, 1 itself does not
have an inverse since it has a nontrivial element in its kernel, —I. Therefore,
Lie(y)) ™! : s0(3) — su(2) is an example of a Lie algebra homomorphism that
does not correspond to a Lie group homomorphism SO(3) — SU(2).

Nevertheless, we will see later (Proposition 14.2) that if G is simply connected,
then any Lie algebra homomorphism g — b corresponds to a Lie group
homomorphism G — H. Thus, the obstruction to lifting the Lie algebra
homomorphism s0(3) — su(2) to a Lie group homomorphism is topological
and corresponds to the fact that SO(3) is not simply connected.

Exercises

Exercise 7.1. Compute the Lie algebra homomorphism Lie(¢) : su(2) — s0(3) of
Example 7.1 explicitly.

Exercise 7.2. Show that no Lie group can be homeomorphic to the sphere S* if k
is even. On the other hand, show that SU(2) = S®. (Hint: Use Exercise 6.1.)

Exercise 7.3. Let J be the matrix (5.3). Let o(N, C) and 0;(C) be the complexified
Lie algebras of the groups O(N) and O (C) in Exercise 5.9. Show that these complex
Lie algebras are isomorphic. Describe o(N,C) explicitly, i.e., write down a typical
matrix.
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