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Compact Operators

If $ is a normed vector space, a linear operator T : ) — §) is called bounded
if there exists a constant C such that |Tz| < C|z| for all z € $. In this case,
the smallest such C' is called the operator norm of T, and is denoted |T|.
The boundedness of the operator T is equivalent to its continuity. If § is a
Hilbert space, then a bounded operator T is self-adjoint if

<vag> = <faTg>

for all f,g € 9. As usual, we call f an eigenvector with eigenvalue X if f # 0
and Tf = M\f. Given )\, the set of eigenvectors with eigenvalue A (together
with 0, which is not an eigenvector) is called the A-eigenspace. It follows from
elementary and well-known arguments that if 7' is a self-adjoint bounded
operator, then its eigenvalues are real, and the eigenspaces corresponding to
distinct eigenvalues are orthogonal. Moreover, if V' C $ is a subspace such
that T'(V) C V, it is easy to see that also T(V1) Cc V.

A bounded operator T : $ — § is compact if whenever {x; za,23,...} is
any bounded sequence in §), the sequence {Tz1,Tzs,...} has a convergent
subsequence.

Theorem 3.1 (Spectral theorem for compact operators). Let T be a
compact self-adjoint operator on a Hilbert space $). Let I be the nullspace
of T. Then the Hilbert space dimension of M+ is at most countable. M- has an
orthonormal basis ¢; (i =1,2,3,...) of eigenvectors of T so that T'dp; = \; ;.
If W is not finite-dimensional, the eigenvalues \; — 0 as i — 0o.

Since the eigenvalues \; — 0, if A is any nonzero eigenvalue, it follows from
this statement that the A-eigenspace is finite-dimensional.

Proof. This depends upon the equality

T
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20 3 Compact Operators
To prove this, let B denote the right-hand side. If 0 # x € ),
[(Ta,2)| < |Ta| - |z <|T|- |z = |T] - (z,2),

so B < |T'|. We must prove the converse. Let A > 0 be a constant, to be
determined later. Using <T2x,x> = (Txz,Tx), we have

(Tz, T:v)
= i [{(TOx + A7 Te) Ae + A7 Ta) — (T(Ax = A~ Ta), ha = A7 T
<1 [(TOz+ A7 To), A+ 371 T [+[(T (A — A1 T), dw — A7 T
<E[BO@+ A" To,he + A7 Ta) + B — A~ T, dw — A0 Ta)]
= 2 [N (z,2) + A (T, Tw)]

Now taking A\ = /|Tz|/|z|, we obtain
|Tz|* = (Tx, Tx) < Blz| |Tx|,

so |Tz| < B|z|, which implies that |T'| < B, whence (3.1).

We now prove that 91+ has an orthonormal basis consisting of eigenvectors
of T. Tt is an easy consequence of self-adjointness that D9 is T-stable. Let X
be the set of all orthonormal subsets of 9+ whose elements are eigenvectors
of T. Ordering X by inclusion, Zorn’s lemma implies that it has a maximal
element S. Let V' be the closure of the linear span of S. We must prove that
V =ML, Let Hy = V+. We wish to show £ = 91. It is obvious that 91 C .
To prove the opposite inclusion, note that £ is stable under 7', and T" induces
a compact self-adjoint operator on $)9. What we must show is that T'[$) = 0.
If T has a nonzero eigenvector in g, this will contradict the maximality of X
It is therefore sufficient to show that a compact self-adjoint operator on a
nonzero Hilbert space has an eigenvector.

Replacing $ by $), we are therefore reduced to the easier problem of
showing that if T # 0, then T has a nonzero eigenvector. By (3.1), there is
a sequence 1, T2, rs, ... of unit vectors such that | (T'z;, x;) | — |T|. Observe
that if x € §, we have

(Tx,x) = {x,Tx) = (Tx,x)

so the (T'z;,x;) are real; we may therefore replace the sequence by a subse-
quence such that (T'z;, z;) — A, where A = +|T'|. Since T' # 0, A # 0. Since T
is compact, there exists a further subsequence {z;} such that Tz; converges
to a vector v. We will show that z; — A~ 1v

Observe first that

[(Twi, i) | < | T wi| = [Tai| < T i = [N,

and since (Tx;, ;) — A, it follows that |Tz;| — |A|. Now
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|)\ €T — TLL'1|2 = <)\ x;, —Tx;, \x; — TLL'1> = /\2|£L'i|2 + |T$i|2 — 2\ <T£L'l, $i> ,

and since |z;| = 1, |Tz;| — |A|, and (T'z;, ;) — A, this converges to 0. Since
Tx; — v, the sequence A\z; therefore also converges to v, and z; — A~ tv.
Now, by continuity, T2; — A~ ' Tw, so v = A~!Tw. This proves that v is
an eigenvector with eigenvalue X. This completes the proof that 9+ has an
orthonormal basis consisting of eigenvectors.

Now let {¢;} be this orthonormal basis and let A; be the corresponding
eigenvalues. If € > 0 is given, only finitely many |)\;| > € since otherwise we
can find an infinite sequence of ¢; with |T'¢;| > e. Such a sequence will have
no convergent subsequence, contradicting the compactness of 7. Thus, 91+ is
countable-dimensional, and we may arrange the {¢;} in a sequence. If it is
infinite, we see the \; — 0. O

Proposition 3.1. Let X andY be compact topological spaces with' Y a metric
space with distance function d. Let U be a set of continuous maps X — Y
such that for every x € X and every e > 0 there exists a neighborhood N of
x such that d(f(z), f(2')) < € for all 2’ € N and for all f € U. Then every
sequence in U has a uniformly convergent subsequence.

We refer to the hypothesis on U as equicontinuity.

Proof. Let So = {f1, fa, f3,...} be a sequence in U. We will show that it has
a convergent subsequence. We will construct a subsequence that is uniformly
Cauchy and hence has a limit. For every n > 1, we will construct a subsequence
Sn = {fnl; fng, fng, . } of Sn,1 such that supwex d(fm(x), fnj (.I)) g 1/7’L

Assume that S,,_; is constructed. For each x € X, equicontinuity guaran-
tees the existence of an open neighborhood N, of « such that d(f(y), f(z)) <
SLn for all y € N, and all f € X. Since X is compact, we can cover X by
a finite number of these sets, say Ng,,..., N, . Since the f,_1,; take values
in the compact space Y, the m-tuples (fn,lyl-(xl), e fn,lyl-(:zrm)) have an
accumulation point, and we may therefore select the subsequence {f,;} such
that d(fm(a:k),fnj(:zrk)) < SLn for all 4,57 and 1 < k < m. Then for any y,
there exists xj, such that y € N, and

d(fui (W) fri(¥)) < d(friW), Friler)) + d(fri(zr), fuj(@r))

This completes the construction of the sequences { fy,;}.

The diagonal sequence { f11, fa2, f33, ...} is uniformly Cauchy. Since Y is
a compact metric space, it is complete, and so this sequence is uniformly
convergent. O

We topologize C(X) by giving it the L* norm | | (sup norm).

Proposition 3.2 (Ascoli and Arzela). Suppose that X is a compact space
and that U C C(X) is a bounded subset such that for each x € X and e > 0
there is a neighborhood N of x such that |f(x) — f(y)| < € for ally € N and
all f € U. Then every sequence in U has a uniformly convergent subsequence.
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Again, the hypothesis on U is called equicontinuity.

Proof. Since U is bounded, there is a compact interval Y C R such that all
functions in U take values in Y. The result follows from Proposition 3.1. O

Exercises

Exercise 3.1. Suppose that T is a bounded operator on the Hilbert space £, and
suppose that for each € > 0 there exists a compact operator Te such that |T'—T.| < e.
Show that T is compact. (Use a diagonal argument like the proof of Proposition 3.1.)

Exercise 3.2 (Hilbert—Schmidt operators). Let X be a locally compact Haus-
dorff space with a positive Borel measure p. Assume that L?(X) has a countable
basis. Let K € L*(X x X). Consider the operator on L*(X) with kernel K defined by

T(x) = /X K(z,9) f(y) dn(y).

Let ¢; be an orthonormal basis of L? (X). Expand K in a Fourier expansion:

oo

K(:E,y) :Zwl(x)mv i = To;.

i=1

Show that 3 [¢:* = [ [|K(z,y)[*du(z) du(y) < oo. Consider the operator Ty with

kernel
N

Kn(z,y) =Y bi(x) diy).

i=1

Show that T is compact, and deduce that 7" is compact.
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