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Compact Operators

If H is a normed vector space, a linear operator T : H → H is called bounded
if there exists a constant C such that |Tx| � C|x| for all x ∈ H. In this case,
the smallest such C is called the operator norm of T , and is denoted |T |.
The boundedness of the operator T is equivalent to its continuity. If H is a
Hilbert space, then a bounded operator T is self-adjoint if

〈Tf, g〉 = 〈f, T g〉

for all f, g ∈ H. As usual, we call f an eigenvector with eigenvalue λ if f �= 0
and Tf = λf . Given λ, the set of eigenvectors with eigenvalue λ (together
with 0, which is not an eigenvector) is called the λ-eigenspace. It follows from
elementary and well-known arguments that if T is a self-adjoint bounded
operator, then its eigenvalues are real, and the eigenspaces corresponding to
distinct eigenvalues are orthogonal. Moreover, if V ⊂ H is a subspace such
that T (V ) ⊂ V , it is easy to see that also T (V ⊥) ⊂ V ⊥.

A bounded operator T : H → H is compact if whenever {x1,x2, x3, . . .} is
any bounded sequence in H, the sequence {Tx1, T x2, . . .} has a convergent
subsequence.

Theorem 3.1 (Spectral theorem for compact operators). Let T be a
compact self-adjoint operator on a Hilbert space H. Let N be the nullspace
of T . Then the Hilbert space dimension of N⊥ is at most countable. N⊥ has an
orthonormal basis φi (i = 1, 2, 3, . . .) of eigenvectors of T so that Tφi = λiφi.
If N⊥ is not finite-dimensional, the eigenvalues λi → 0 as i → ∞.

Since the eigenvalues λi → 0, if λ is any nonzero eigenvalue, it follows from
this statement that the λ-eigenspace is finite-dimensional.

Proof. This depends upon the equality

|T | = sup
0�=x∈H

| 〈Tx, x〉 |
〈x, x〉 . (3.1)
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To prove this, let B denote the right-hand side. If 0 �= x ∈ H,

| 〈Tx, x〉 | � |Tx| · |x| � |T | · |x|2 = |T | · 〈x, x〉 ,

so B � |T |. We must prove the converse. Let λ > 0 be a constant, to be
determined later. Using

〈
T 2x, x

〉
= 〈Tx, Tx〉, we have

〈Tx, Tx〉
= 1

4

∣
∣〈T (λx+ λ−1 Tx), λx+ λ−1 Tx

〉− 〈
T (λx− λ−1 Tx), λx− λ−1 Tx

〉∣∣

� 1
4

∣
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∣
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〉∣∣
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[
B
〈
λx+ λ−1 Tx, λx+ λ−1 Tx

〉
+B

〈
λx− λ−1 Tx, λx− λ−1 Tx

〉]

= B
2

[
λ2 〈x, x〉 + λ−2 〈Tx, Tx〉] .

Now taking λ =
√|Tx|/|x|, we obtain

|Tx|2 = 〈Tx, Tx〉 � B|x| |Tx|,

so |Tx| � B|x|, which implies that |T | � B, whence (3.1).
We now prove that N⊥ has an orthonormal basis consisting of eigenvectors

of T . It is an easy consequence of self-adjointness that N⊥ is T -stable. Let Σ
be the set of all orthonormal subsets of N⊥ whose elements are eigenvectors
of T . Ordering Σ by inclusion, Zorn’s lemma implies that it has a maximal
element S. Let V be the closure of the linear span of S. We must prove that
V = N⊥. Let H0 = V ⊥. We wish to show H0 = N. It is obvious that N ⊆ H0.

To prove the opposite inclusion, note that H0 is stable under T , and T induces
a compact self-adjoint operator on H0. What we must show is that T |H0 = 0.
If T has a nonzero eigenvector in H0, this will contradict the maximality of Σ.
It is therefore sufficient to show that a compact self-adjoint operator on a
nonzero Hilbert space has an eigenvector.

Replacing H by H0, we are therefore reduced to the easier problem of
showing that if T �= 0, then T has a nonzero eigenvector. By (3.1), there is
a sequence x1, x2, x3, . . . of unit vectors such that | 〈Txi, xi〉 | → |T |. Observe
that if x ∈ H, we have

〈Tx, x〉 = 〈x, Tx〉 = 〈Tx, x〉

so the 〈Txi, xi〉 are real; we may therefore replace the sequence by a subse-
quence such that 〈Txi, xi〉 → λ, where λ = ±|T |. Since T �= 0, λ �= 0. Since T
is compact, there exists a further subsequence {xi} such that Txi converges
to a vector v. We will show that xi → λ−1v.

Observe first that

| 〈Txi, xi〉 | � |Txi| |xi| = |Txi| � |T | |xi| = |λ|,

and since 〈Txi, xi〉 → λ, it follows that |Txi| → |λ|. Now
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|λ xi − Txi|2 = 〈λ xi − Txi, λ xi − Txi〉 = λ2|xi|2 + |Txi|2 − 2λ 〈Txi, xi〉 ,
and since |xi| = 1, |Txi| → |λ|, and 〈Txi, xi〉 → λ, this converges to 0. Since
Txi → v, the sequence λxi therefore also converges to v, and xi → λ−1v.
Now, by continuity, Txi → λ−1 Tv, so v = λ−1 Tv. This proves that v is
an eigenvector with eigenvalue λ. This completes the proof that N⊥ has an
orthonormal basis consisting of eigenvectors.

Now let {φi} be this orthonormal basis and let λi be the corresponding
eigenvalues. If ε > 0 is given, only finitely many |λi| > ε since otherwise we
can find an infinite sequence of φi with |Tφi| > ε. Such a sequence will have
no convergent subsequence, contradicting the compactness of T . Thus, N⊥ is
countable-dimensional, and we may arrange the {φi} in a sequence. If it is
infinite, we see the λi −→ 0. 
�
Proposition 3.1. Let X and Y be compact topological spaces with Y a metric
space with distance function d. Let U be a set of continuous maps X −→ Y
such that for every x ∈ X and every ε > 0 there exists a neighborhood N of
x such that d

(
f(x), f(x′)

)
< ε for all x′ ∈ N and for all f ∈ U . Then every

sequence in U has a uniformly convergent subsequence.

We refer to the hypothesis on U as equicontinuity.

Proof. Let S0 = {f1, f2, f3, . . .} be a sequence in U . We will show that it has
a convergent subsequence. We will construct a subsequence that is uniformly
Cauchy and hence has a limit. For every n > 1, we will construct a subsequence
Sn = {fn1, fn2, fn3, . . .} of Sn−1 such that supx∈X d

(
fni(x), fnj(x)

)
� 1/n.

Assume that Sn−1 is constructed. For each x ∈ X , equicontinuity guaran-
tees the existence of an open neighborhood Nx of x such that d

(
f(y), f(x)

)
�

1
3n for all y ∈ Nx and all f ∈ X . Since X is compact, we can cover X by
a finite number of these sets, say Nx1, . . . , Nxm . Since the fn−1,i take values
in the compact space Y , the m-tuples

(
fn−1,i(x1), . . . , fn−1,i(xm)

)
have an

accumulation point, and we may therefore select the subsequence {fni} such
that d

(
fni(xk), fnj(xk)

)
� 1

3n for all i, j and 1 � k � m. Then for any y,
there exists xk such that y ∈ Nxk

and

d
(
fni(y), fnj(y)

)
� d

(
fni(y), fni(xk)

)
+ d

(
fni(xk), fnj(xk)

)

+d
(
fnj(y), fnj(xk)

)
� 1

3n + 1
3n + 1

3n = 1
n .

This completes the construction of the sequences {fni}.
The diagonal sequence {f11, f22, f33, . . .} is uniformly Cauchy. Since Y is

a compact metric space, it is complete, and so this sequence is uniformly
convergent. 
�
We topologize C(X) by giving it the L∞ norm | |∞ (sup norm).

Proposition 3.2 (Ascoli and Arzela). Suppose that X is a compact space
and that U ⊂ C(X) is a bounded subset such that for each x ∈ X and ε > 0
there is a neighborhood N of x such that |f(x) − f(y)| � ε for all y ∈ N and
all f ∈ U . Then every sequence in U has a uniformly convergent subsequence.
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Again, the hypothesis on U is called equicontinuity.

Proof. Since U is bounded, there is a compact interval Y ⊂ R such that all
functions in U take values in Y . The result follows from Proposition 3.1. 
�

Exercises

Exercise 3.1. Suppose that T is a bounded operator on the Hilbert space H, and
suppose that for each ε > 0 there exists a compact operator Tε such that |T−Tε| < ε.
Show that T is compact. (Use a diagonal argument like the proof of Proposition 3.1.)

Exercise 3.2 (Hilbert–Schmidt operators). Let X be a locally compact Haus-
dorff space with a positive Borel measure μ. Assume that L2(X) has a countable
basis. Let K ∈ L2(X×X). Consider the operator on L2(X) with kernelK defined by

Tf(x) =

∫
X

K(x, y) f(y) dμ(y).

Let φi be an orthonormal basis of L2(X). Expand K in a Fourier expansion:

K(x, y) =
∞∑
i=1

ψi(x)φi(y), ψi = Tφi.

Show that
∑ |ψi|2 =

∫ ∫ |K(x, y)|2dμ(x) dμ(y) < ∞. Consider the operator TN with
kernel

KN (x, y) =
N∑
i=1

ψi(x)φi(y).

Show that TN is compact, and deduce that T is compact.
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