Compact Operators

If \mathfrak{H} is a normed vector space, a linear operator $T : \mathfrak{H} \to \mathfrak{H}$ is called *bounded* if there exists a constant C such that $|Tx| \leq C|x|$ for all $x \in \mathfrak{H}$. In this case, the smallest such C is called the *operator norm* of T, and is denoted $|T|$. The boundedness of the operator T is equivalent to its continuity. If \mathfrak{H} is a Hilbert space, then a bounded operator T is *self-adjoint* if

$$
\langle Tf, g \rangle = \langle f, Tg \rangle
$$

for all $f, g \in \mathfrak{H}$. As usual, we call f an *eigenvector* with *eigenvalue* λ if $f \neq 0$ and $T f = \lambda f$. Given λ , the set of eigenvectors with eigenvalue λ (together with 0, which is not an eigenvector) is called the λ-*eigenspace*. It follows from elementary and well-known arguments that if T is a self-adjoint bounded operator, then its eigenvalues are real, and the eigenspaces corresponding to distinct eigenvalues are orthogonal. Moreover, if $V \subset \mathfrak{H}$ is a subspace such that $T(V) \subset V$, it is easy to see that also $T(V^{\perp}) \subset V^{\perp}$.

A bounded operator $T : \mathfrak{H} \to \mathfrak{H}$ is *compact* if whenever $\{x_1, x_2, x_3, \ldots\}$ is any bounded sequence in \mathfrak{H} , the sequence $\{Tx_1, Tx_2,...\}$ has a convergent subsequence.

Theorem 3.1 (Spectral theorem for compact operators). *Let* T *be a compact self-adjoint operator on a Hilbert space* H*. Let* N *be the nullspace of* T. Then the Hilbert space dimension of \mathfrak{N}^{\perp} is at most countable. \mathfrak{N}^{\perp} has an *orthonormal basis* ϕ_i ($i = 1, 2, 3, \ldots$) *of eigenvectors of* T *so that* $T\phi_i = \lambda_i \phi_i$. *If* \mathfrak{N}^{\perp} *is not finite-dimensional, the eigenvalues* $\lambda_i \to 0$ *as* $i \to \infty$ *.*

Since the eigenvalues $\lambda_i \rightarrow 0$, if λ is any nonzero eigenvalue, it follows from this statement that the λ -eigenspace is finite-dimensional.

Proof. This depends upon the equality

$$
|T| = \sup_{0 \neq x \in \mathfrak{H}} \frac{|\langle Tx, x \rangle|}{\langle x, x \rangle}.
$$
 (3.1)

To prove this, let B denote the right-hand side. If $0 \neq x \in \mathfrak{H}$,

$$
|\langle Tx, x \rangle| \leqslant |Tx| \cdot |x| \leqslant |T| \cdot |x|^2 = |T| \cdot \langle x, x \rangle,
$$

so $B \leqslant |T|$. We must prove the converse. Let $\lambda > 0$ be a constant, to be determined later. Using $\langle T^2x, x \rangle = \langle Tx, Tx \rangle$, we have

$$
\langle Tx, Tx \rangle
$$

= $\frac{1}{4} |\langle T(\lambda x + \lambda^{-1} Tx), \lambda x + \lambda^{-1} Tx \rangle - \langle T(\lambda x - \lambda^{-1} Tx), \lambda x - \lambda^{-1} Tx \rangle|$
 $\leq \frac{1}{4} |\langle T(\lambda x + \lambda^{-1} Tx), \lambda x + \lambda^{-1} Tx \rangle| + |\langle T(\lambda x - \lambda^{-1} Tx), \lambda x - \lambda^{-1} Tx \rangle|$
 $\leq \frac{1}{4} [B \langle \lambda x + \lambda^{-1} Tx, \lambda x + \lambda^{-1} Tx \rangle + B \langle \lambda x - \lambda^{-1} Tx, \lambda x - \lambda^{-1} Tx \rangle]$
= $\frac{B}{2} [\lambda^{2} \langle x, x \rangle + \lambda^{-2} \langle Tx, Tx \rangle].$

Now taking $\lambda = \sqrt{|Tx|/|x|}$, we obtain

$$
|Tx|^2 = \langle Tx, Tx \rangle \leq B|x| \, |Tx|,
$$

so $|Tx| \le B|x|$, which implies that $|T| \le B$, whence [\(3.1\)](#page-0-0).

We now prove that \mathfrak{N}^{\perp} has an orthonormal basis consisting of eigenvectors of T. It is an easy consequence of self-adjointness that \mathfrak{N}^{\perp} is T-stable. Let Σ be the set of all orthonormal subsets of \mathfrak{N}^{\perp} whose elements are eigenvectors of T. Ordering Σ by inclusion, Zorn's lemma implies that it has a maximal element S . Let V be the closure of the linear span of S . We must prove that $V = \mathfrak{N}^{\perp}$. Let $\mathfrak{H}_0 = V^{\perp}$. We wish to show $\mathfrak{H}_0 = \mathfrak{N}$. It is obvious that $\mathfrak{N} \subseteq \mathfrak{H}_0$. To prove the opposite inclusion, note that \mathfrak{H}_0 is stable under T, and T induces a compact self-adjoint operator on \mathfrak{H}_0 . What we must show is that $T | \mathfrak{H}_0 = 0$. If T has a nonzero eigenvector in \mathfrak{H}_0 , this will contradict the maximality of Σ . It is therefore sufficient to show that *a compact self-adjoint operator on a nonzero Hilbert space has an eigenvector.*

Replacing \mathfrak{H} by \mathfrak{H}_0 , we are therefore reduced to the easier problem of showing that if $T \neq 0$, then T has a nonzero eigenvector. By (3.1) , there is a sequence x_1, x_2, x_3, \ldots of unit vectors such that $|\langle Tx_i, x_i \rangle| \rightarrow |T|$. Observe that if $x \in \mathfrak{H}$, we have

$$
\langle Tx, x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle}
$$

so the $\langle Tx_i, x_i \rangle$ are real; we may therefore replace the sequence by a subsequence such that $\langle Tx_i, x_i \rangle \to \lambda$, where $\lambda = \pm |T|$. Since $T \neq 0, \lambda \neq 0$. Since T is compact, there exists a further subsequence $\{x_i\}$ such that Tx_i converges to a vector v. We will show that $x_i \to \lambda^{-1}v$.

Observe first that

$$
|\langle Tx_i, x_i \rangle| \leqslant |Tx_i| \, |x_i| = |Tx_i| \leqslant |T| \, |x_i| = |\lambda|,
$$

and since $\langle Tx_i, x_i \rangle \rightarrow \lambda$, it follows that $|Tx_i| \rightarrow |\lambda|$. Now

$$
|\lambda x_i - Tx_i|^2 = \langle \lambda x_i - Tx_i, \lambda x_i - Tx_i \rangle = \lambda^2 |x_i|^2 + |Tx_i|^2 - 2\lambda \langle Tx_i, x_i \rangle,
$$

and since $|x_i| = 1$, $|Tx_i| \rightarrow |\lambda|$, and $\langle Tx_i, x_i \rangle \rightarrow \lambda$, this converges to 0. Since $Tx_i \to v$, the sequence λx_i therefore also converges to v, and $x_i \to \lambda^{-1}v$. Now, by continuity, $Tx_i \to \lambda^{-1} Tv$, so $v = \lambda^{-1} Tv$. This proves that v is an eigenvector with eigenvalue λ . This completes the proof that \mathfrak{N}^{\perp} has an orthonormal basis consisting of eigenvectors.

Now let $\{\phi_i\}$ be this orthonormal basis and let λ_i be the corresponding eigenvalues. If $\epsilon > 0$ is given, only finitely many $|\lambda_i| > \epsilon$ since otherwise we can find an infinite sequence of ϕ_i with $|T\phi_i| > \epsilon$. Such a sequence will have no convergent subsequence, contradicting the compactness of T. Thus, \mathfrak{N}^{\perp} is countable-dimensional, and we may arrange the $\{\phi_i\}$ in a sequence. If it is infinite, we see the $\lambda_i \longrightarrow 0$. П

Proposition 3.1. *Let* X *and* Y *be compact topological spaces with* Y *a metric space with distance function* d. Let U be a set of continuous maps $X \longrightarrow Y$ *such that for every* $x \in X$ *and every* $\epsilon > 0$ *there exists a neighborhood* N of $x \text{ such that } d(f(x), f(x')) < \epsilon \text{ for all } x' \in N \text{ and for all } f \in U. \text{ Then every }$ *sequence in* U *has a uniformly convergent subsequence.*

We refer to the hypothesis on U as *equicontinuity*.

Proof. Let $S_0 = \{f_1, f_2, f_3, \ldots\}$ be a sequence in U. We will show that it has a convergent subsequence. We will construct a subsequence that is uniformly Cauchy and hence has a limit. For every $n > 1$, we will construct a subsequence $S_n = \{f_{n1}, f_{n2}, f_{n3}, \ldots\}$ of S_{n-1} such that $\sup_{x \in X} d(f_{ni}(x), f_{nj}(x)) \leq 1/n$.

Assume that S_{n-1} is constructed. For each $x \in X$, equicontinuity guarantees the existence of an open neighborhood N_x of x such that $d(f(y), f(x)) \leq$ $\frac{1}{3n}$ for all $y \in N_x$ and all $f \in X$. Since X is compact, we can cover X by a finite number of these sets, say N_{x_1}, \ldots, N_{x_m} . Since the $f_{n-1,i}$ take values in the compact space Y, the *m*-tuples $(f_{n-1,i}(x_1),...,f_{n-1,i}(x_m))$ have an accumulation point, and we may therefore select the subsequence ${f_{ni}}$ such that $d(f_{ni}(x_k), f_{nj}(x_k)) \leq \frac{1}{3n}$ for all i, j and $1 \leq k \leq m$. Then for any y, there exists x_k such that $y \in N_{x_k}$ and

$$
d(f_{ni}(y), f_{nj}(y)) \leq d(f_{ni}(y), f_{ni}(x_k)) + d(f_{ni}(x_k), f_{nj}(x_k)) + d(f_{nj}(y), f_{nj}(x_k)) \leq \frac{1}{3n} + \frac{1}{3n} + \frac{1}{3n} = \frac{1}{n}.
$$

This completes the construction of the sequences $\{f_{ni}\}.$

The diagonal sequence $\{f_{11}, f_{22}, f_{33}, \ldots\}$ is uniformly Cauchy. Since Y is a compact metric space, it is complete, and so this sequence is uniformly convergent. \Box

We topologize $C(X)$ by giving it the L^{∞} norm $||_{\infty}$ (sup norm).

Proposition 3.2 (Ascoli and Arzela). *Suppose that* X *is a compact space and that* $U \subset C(X)$ *is a bounded subset such that for each* $x \in X$ *and* $\epsilon > 0$ *there is a neighborhood* N of x such that $|f(x) - f(y)| \leq \epsilon$ for all $y \in N$ and *all* $f \in U$. Then every sequence in U has a uniformly convergent subsequence.

Again, the hypothesis on U is called *equicontinuity.*

Proof. Since U is bounded, there is a compact interval $Y \subset \mathbb{R}$ such that all functions in U take values in Y . The result follows from Proposition [3.1.](#page-2-0) \Box

Exercises

Exercise 3.1. Suppose that T is a bounded operator on the Hilbert space \mathfrak{H} , and suppose that for each $\epsilon > 0$ there exists a compact operator T_{ϵ} such that $|T - T_{\epsilon}| < \epsilon$. Show that T is compact. (Use a diagonal argument like the proof of Proposition [3.1.](#page-2-0))

Exercise 3.2 (Hilbert–Schmidt operators). Let X be a locally compact Hausdorff space with a positive Borel measure μ . Assume that $L^2(X)$ has a countable basis. Let $K \in L^2(X \times X)$. Consider the operator on $L^2(X)$ with kernel K defined by

$$
Tf(x) = \int_X K(x, y) f(y) d\mu(y).
$$

Let ϕ_i be an orthonormal basis of $L^2(X)$. Expand K in a Fourier expansion:

$$
K(x,y) = \sum_{i=1}^{\infty} \psi_i(x) \overline{\phi_i(y)}, \qquad \psi_i = T\phi_i.
$$

Show that $\sum |\psi_i|^2 = \int \int |K(x, y)|^2 d\mu(x) d\mu(y) < \infty$. Consider the operator T_N with kernel

$$
K_N(x,y) = \sum_{i=1}^N \psi_i(x) \overline{\phi_i(y)}.
$$

Show that T_N is compact, and deduce that T is compact.