Compact Operators

If \mathfrak{H} is a normed vector space, a linear operator $T : \mathfrak{H} \to \mathfrak{H}$ is called *bounded* if there exists a constant C such that $|Tx| \leq C|x|$ for all $x \in \mathfrak{H}$. In this case, the smallest such C is called the *operator norm* of T, and is denoted |T|. The boundedness of the operator T is equivalent to its continuity. If \mathfrak{H} is a Hilbert space, then a bounded operator T is *self-adjoint* if

$$\langle Tf,g\rangle = \langle f,Tg\rangle$$

for all $f, g \in \mathfrak{H}$. As usual, we call f an eigenvector with eigenvalue λ if $f \neq 0$ and $Tf = \lambda f$. Given λ , the set of eigenvectors with eigenvalue λ (together with 0, which is not an eigenvector) is called the λ -eigenspace. It follows from elementary and well-known arguments that if T is a self-adjoint bounded operator, then its eigenvalues are real, and the eigenspaces corresponding to distinct eigenvalues are orthogonal. Moreover, if $V \subset \mathfrak{H}$ is a subspace such that $T(V) \subset V$, it is easy to see that also $T(V^{\perp}) \subset V^{\perp}$.

A bounded operator $T : \mathfrak{H} \to \mathfrak{H}$ is *compact* if whenever $\{x_1, x_2, x_3, \ldots\}$ is any bounded sequence in \mathfrak{H} , the sequence $\{Tx_1, Tx_2, \ldots\}$ has a convergent subsequence.

Theorem 3.1 (Spectral theorem for compact operators). Let T be a compact self-adjoint operator on a Hilbert space \mathfrak{H} . Let \mathfrak{N} be the nullspace of T. Then the Hilbert space dimension of \mathfrak{N}^{\perp} is at most countable. \mathfrak{N}^{\perp} has an orthonormal basis ϕ_i (i = 1, 2, 3, ...) of eigenvectors of T so that $T\phi_i = \lambda_i\phi_i$. If \mathfrak{N}^{\perp} is not finite-dimensional, the eigenvalues $\lambda_i \to 0$ as $i \to \infty$.

Since the eigenvalues $\lambda_i \to 0$, if λ is any nonzero eigenvalue, it follows from this statement that the λ -eigenspace is finite-dimensional.

Proof. This depends upon the equality

$$|T| = \sup_{0 \neq x \in \mathfrak{H}} \quad \frac{|\langle Tx, x \rangle|}{\langle x, x \rangle}.$$
(3.1)

To prove this, let B denote the right-hand side. If $0 \neq x \in \mathfrak{H}$,

$$|\langle Tx, x \rangle| \leqslant |Tx| \cdot |x| \leqslant |T| \cdot |x|^2 = |T| \cdot \langle x, x \rangle,$$

so $B \leq |T|$. We must prove the converse. Let $\lambda > 0$ be a constant, to be determined later. Using $\langle T^2 x, x \rangle = \langle Tx, Tx \rangle$, we have

$$\begin{split} \langle Tx, Tx \rangle \\ &= \frac{1}{4} \left| \left\langle T(\lambda x + \lambda^{-1} Tx), \lambda x + \lambda^{-1} Tx \right\rangle - \left\langle T(\lambda x - \lambda^{-1} Tx), \lambda x - \lambda^{-1} Tx \right\rangle \right| \\ &\leqslant \frac{1}{4} \left| \left\langle T(\lambda x + \lambda^{-1} Tx), \lambda x + \lambda^{-1} Tx \right\rangle \right| + \left| \left\langle T(\lambda x - \lambda^{-1} Tx), \lambda x - \lambda^{-1} Tx \right\rangle \right| \\ &\leqslant \frac{1}{4} \left[B \left\langle \lambda x + \lambda^{-1} Tx, \lambda x + \lambda^{-1} Tx \right\rangle + B \left\langle \lambda x - \lambda^{-1} Tx, \lambda x - \lambda^{-1} Tx \right\rangle \right] \\ &= \frac{B}{2} \left[\lambda^2 \left\langle x, x \right\rangle + \lambda^{-2} \left\langle Tx, Tx \right\rangle \right]. \end{split}$$

Now taking $\lambda = \sqrt{|Tx|/|x|}$, we obtain

$$|Tx|^2 = \langle Tx, Tx \rangle \leqslant B|x| |Tx|,$$

so $|Tx| \leq B|x|$, which implies that $|T| \leq B$, whence (3.1).

We now prove that \mathfrak{N}^{\perp} has an orthonormal basis consisting of eigenvectors of T. It is an easy consequence of self-adjointness that \mathfrak{N}^{\perp} is T-stable. Let Σ be the set of all orthonormal subsets of \mathfrak{N}^{\perp} whose elements are eigenvectors of T. Ordering Σ by inclusion, Zorn's lemma implies that it has a maximal element S. Let V be the closure of the linear span of S. We must prove that $V = \mathfrak{N}^{\perp}$. Let $\mathfrak{H}_0 = V^{\perp}$. We wish to show $\mathfrak{H}_0 = \mathfrak{N}$. It is obvious that $\mathfrak{N} \subseteq \mathfrak{H}_0$. To prove the opposite inclusion, note that \mathfrak{H}_0 is stable under T, and T induces a compact self-adjoint operator on \mathfrak{H}_0 . What we must show is that $T|\mathfrak{H}_0 = 0$. If T has a nonzero eigenvector in \mathfrak{H}_0 , this will contradict the maximality of Σ . It is therefore sufficient to show that a compact self-adjoint operator on a nonzero Hilbert space has an eigenvector.

Replacing \mathfrak{H} by \mathfrak{H}_0 , we are therefore reduced to the easier problem of showing that if $T \neq 0$, then T has a nonzero eigenvector. By (3.1), there is a sequence x_1, x_2, x_3, \ldots of unit vectors such that $|\langle Tx_i, x_i \rangle| \to |T|$. Observe that if $x \in \mathfrak{H}$, we have

$$\langle Tx, x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle}$$

so the $\langle Tx_i, x_i \rangle$ are real; we may therefore replace the sequence by a subsequence such that $\langle Tx_i, x_i \rangle \to \lambda$, where $\lambda = \pm |T|$. Since $T \neq 0$, $\lambda \neq 0$. Since T is compact, there exists a further subsequence $\{x_i\}$ such that Tx_i converges to a vector v. We will show that $x_i \to \lambda^{-1}v$.

Observe first that

$$|\langle Tx_i, x_i \rangle| \leqslant |Tx_i| |x_i| = |Tx_i| \leqslant |T| |x_i| = |\lambda|,$$

and since $\langle Tx_i, x_i \rangle \to \lambda$, it follows that $|Tx_i| \to |\lambda|$. Now

$$|\lambda x_i - Tx_i|^2 = \langle \lambda x_i - Tx_i, \lambda x_i - Tx_i \rangle = \lambda^2 |x_i|^2 + |Tx_i|^2 - 2\lambda \langle Tx_i, x_i \rangle,$$

and since $|x_i| = 1$, $|Tx_i| \to |\lambda|$, and $\langle Tx_i, x_i \rangle \to \lambda$, this converges to 0. Since $Tx_i \to v$, the sequence λx_i therefore also converges to v, and $x_i \to \lambda^{-1}v$. Now, by continuity, $Tx_i \to \lambda^{-1} Tv$, so $v = \lambda^{-1} Tv$. This proves that v is an eigenvector with eigenvalue λ . This completes the proof that \mathfrak{N}^{\perp} has an orthonormal basis consisting of eigenvectors.

Now let $\{\phi_i\}$ be this orthonormal basis and let λ_i be the corresponding eigenvalues. If $\epsilon > 0$ is given, only finitely many $|\lambda_i| > \epsilon$ since otherwise we can find an infinite sequence of ϕ_i with $|T\phi_i| > \epsilon$. Such a sequence will have no convergent subsequence, contradicting the compactness of T. Thus, \mathfrak{N}^{\perp} is countable-dimensional, and we may arrange the $\{\phi_i\}$ in a sequence. If it is infinite, we see the $\lambda_i \longrightarrow 0$.

Proposition 3.1. Let X and Y be compact topological spaces with Y a metric space with distance function d. Let U be a set of continuous maps $X \longrightarrow Y$ such that for every $x \in X$ and every $\epsilon > 0$ there exists a neighborhood N of x such that $d(f(x), f(x')) < \epsilon$ for all $x' \in N$ and for all $f \in U$. Then every sequence in U has a uniformly convergent subsequence.

We refer to the hypothesis on U as *equicontinuity*.

Proof. Let $S_0 = \{f_1, f_2, f_3, \ldots\}$ be a sequence in U. We will show that it has a convergent subsequence. We will construct a subsequence that is uniformly Cauchy and hence has a limit. For every n > 1, we will construct a subsequence $S_n = \{f_{n1}, f_{n2}, f_{n3}, \ldots\}$ of S_{n-1} such that $\sup_{x \in X} d(f_{ni}(x), f_{nj}(x)) \leq 1/n$.

Assume that S_{n-1} is constructed. For each $x \in X$, equicontinuity guarantees the existence of an open neighborhood N_x of x such that $d(f(y), f(x)) \leq$ $\frac{1}{3n}$ for all $y \in N_x$ and all $f \in X$. Since X is compact, we can cover X by a finite number of these sets, say N_{x_1}, \ldots, N_{x_m} . Since the $f_{n-1,i}$ take values in the compact space Y, the *m*-tuples $(f_{n-1,i}(x_1), \ldots, f_{n-1,i}(x_m))$ have an accumulation point, and we may therefore select the subsequence $\{f_{ni}\}$ such that $d(f_{ni}(x_k), f_{nj}(x_k)) \leq \frac{1}{3n}$ for all i, j and $1 \leq k \leq m$. Then for any y, there exists x_k such that $y \in N_{x_k}$ and

$$d(f_{ni}(y), f_{nj}(y)) \leq d(f_{ni}(y), f_{ni}(x_k)) + d(f_{ni}(x_k), f_{nj}(x_k)) + d(f_{nj}(y), f_{nj}(x_k)) \leq \frac{1}{3n} + \frac{1}{3n} + \frac{1}{3n} = \frac{1}{n}$$

This completes the construction of the sequences $\{f_{ni}\}$.

The diagonal sequence $\{f_{11}, f_{22}, f_{33}, \ldots\}$ is uniformly Cauchy. Since Y is a compact metric space, it is complete, and so this sequence is uniformly convergent.

We topologize C(X) by giving it the L^{∞} norm $| |_{\infty}$ (sup norm).

Proposition 3.2 (Ascoli and Arzela). Suppose that X is a compact space and that $U \subset C(X)$ is a bounded subset such that for each $x \in X$ and $\epsilon > 0$ there is a neighborhood N of x such that $|f(x) - f(y)| \leq \epsilon$ for all $y \in N$ and all $f \in U$. Then every sequence in U has a uniformly convergent subsequence.

21

Again, the hypothesis on U is called *equicontinuity*.

Proof. Since U is bounded, there is a compact interval $Y \subset \mathbb{R}$ such that all functions in U take values in Y. The result follows from Proposition 3.1. \Box

Exercises

Exercise 3.1. Suppose that T is a bounded operator on the Hilbert space \mathfrak{H} , and suppose that for each $\epsilon > 0$ there exists a compact operator T_{ϵ} such that $|T - T_{\epsilon}| < \epsilon$. Show that T is compact. (Use a diagonal argument like the proof of Proposition 3.1.)

Exercise 3.2 (Hilbert–Schmidt operators). Let X be a locally compact Hausdorff space with a positive Borel measure μ . Assume that $L^2(X)$ has a countable basis. Let $K \in L^2(X \times X)$. Consider the operator on $L^2(X)$ with kernel K defined by

$$Tf(x) = \int_X K(x, y) f(y) \,\mathrm{d}\mu(y)$$

Let ϕ_i be an orthonormal basis of $L^2(X)$. Expand K in a Fourier expansion:

$$K(x,y) = \sum_{i=1}^{\infty} \psi_i(x) \overline{\phi_i(y)}, \qquad \psi_i = T\phi_i.$$

Show that $\sum |\psi_i|^2 = \int \int |K(x,y)|^2 d\mu(x) d\mu(y) < \infty$. Consider the operator T_N with kernel

$$K_N(x,y) = \sum_{i=1}^N \psi_i(x) \overline{\phi_i(y)}.$$

Show that T_N is compact, and deduce that T is compact.