
2

Schur Orthogonality

In this chapter and the next two, we will consider the representation theory
of compact groups. Let us begin with a few observations about this theory
and its relationship to some related theories.

If V is a finite-dimensional complex vector space, or more generally a
Banach space, and π : G −→ GL(V ) a continuous homomorphism, then
(π, V ) is called a representation. Assuming dim(V ) < ∞, the function
χπ(g) = tr π(g) is called the character of π. Also assuming dim(V ) < ∞,
the representation (π, V ) is called irreducible if V has no proper nonzero
invariant subspaces, and a character is called irreducible if it is a character of
an irreducible representation.

[If V is an infinite-dimensional topological vector space, then (π, V ) is
called irreducible if it has no proper nonzero invariant closed subspaces.]

A quasicharacter χ is a character in this sense since we can take V = C

and π(g)v = χ(g)v to obtain a representation whose character is χ.
The archetypal compact Abelian group is the circle T =

{
z ∈ C

× ∣
∣ |z| = 1

}
.

We normalize the Haar measure on T so that it has volume 1. Its characters
are the functions χn : T −→ C×, χn(z) = zn. The important properties of the
χn are that they form an orthonormal system and (deeper) an orthonormal
basis of L2(T).

More generally, if G is a compact Abelian group, the characters of G form
an orthonormal basis of L2(G). If f ∈ L2(G), we have a Fourier expansion,

f(g) =
∑

χ

aχ χ(g), aχ =

∫

G

f(g)χ(g) dg, (2.1)

and the Plancherel formula is the identity:
∫

G

|f(g)|2 dg =
∑

χ

|aχ|2. (2.2)

These facts can be directly generalized in two ways. First, Fourier analy-
sis on locally compact Abelian groups, including Pontriagin duality, Fourier
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inversion, the Plancherel formula, etc. is an important and complete theory
due to Weil [169] and discussed, for example, in Rudin [140] or Loomis [121].
The most important difference from the compact case is that the charac-
ters can vary continuously. The characters themselves form a group, the dual
group Ĝ, whose topology is that of uniform convergence on compact sets. The
Fourier expansion (2.1) is replaced by the Fourier inversion formula

f(g) =

∫

Ĝ

f̂(χ)χ(g) dχ, f̂(χ) =

∫

G

f(g)χ(g) dg.

The symmetry between G and Ĝ is now evident. Similarly in the Plancherel
formula (2.2) the sum on the right is replaced by an integral.

The second generalization, to arbitrary compact groups, is the subject
of this chapter and the next two. In summary, group representation theory
gives a orthonormal basis of L2(G) in the matrix coefficients of irreducible
representations of G and a (more important and very canonical) orthonormal
basis of the subspace of L2(G) consisting of class functions in terms of the
characters of the irreducible representations. Most importantly, the irreducible
representations are all finite-dimensional. The orthonormality of these sets is
Schur orthogonality; the completeness is the Peter–Weyl theorem.

These two directions of generalization can be unified. Harmonic analysis
on locally compact groups agrees with representation theory. The Fourier
inversion formula and the Plancherel formula now involve the matrix coeffi-
cients of the irreducible unitary representations, which may occur in contin-
uous families and are usually infinite-dimensional. This field of mathematics,
largely created by Harish-Chandra, is fundamental but beyond the scope of
this book. See Knapp [104] for an extended introduction, and Gelfand, Graev
and Piatetski-Shapiro [55] and Varadarajan [165] for the Plancherel formula
for SL(2,R).

Although infinite-dimensional representations are thus essential in har-
monic analysis on a noncompact group such as SL(n,R), noncompact Lie
groups also have irreducible finite-dimensional representations, which are
important in their own right. They are seldom unitary and hence not relevant
to the Plancherel formula. The scope of this book includes finite-dimensional
representations of Lie groups but not infinite-dimensional ones.

In this chapter and the next two, we will be mainly concerned with com-
pact groups. In this chapter, all representations will be complex and finite-
dimensional except when explicitly noted otherwise.

By an inner product on a complex vector space, we mean a positive definite
Hermitian form, denoted 〈 , 〉. Thus, 〈v, w〉 is linear in v, conjugate linear in
w, satisfies 〈w, v〉 = 〈v, w〉, and 〈v, v〉 > 0 if v �= 0. We will also use the term
inner product for real vector spaces—an inner product on a real vector space
is a positive definite symmetric bilinear form. Given a group G and a real or
complex representation π : G −→ GL(V ), we say the inner product 〈 , 〉 on
V is invariant or G-equivariant if it satisfies the identity
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〈π(g)v, π(g)w〉 = 〈v, w〉 .
Proposition 2.1. If G is compact and (π, V ) is any finite-dimensional com-
plex representation, then V admits a G-equivariant inner product.

Proof. Start with an arbitrary inner product 〈〈 , 〉〉. Averaging it gives another
inner product,

〈v, w〉 =
∫

G

〈〈π(g)v, π(g)w〉〉dg,

for it is easy to see that this inner product is Hermitian and positive definite.
It is G-invariant by construction. �	
Proposition 2.2. If G is compact, then each finite-dimensional representa-
tion is the direct sum of irreducible representations.

Proof. Let (π, V ) be given. Let V1 be a nonzero invariant subspace of minimal
dimension. It is clearly irreducible. Let V ⊥

1 be the orthogonal complement of
V1 with respect to a G-invariant inner product. It is easily checked to be
invariant and is of lower dimension than V . By induction V ⊥

1 = V2 ⊕ · · · ⊕ Vn

is a direct sum of invariant subspaces and so V = V1 ⊕ · · · ⊕ Vn is also. �	
A function of the form φ(g) = L

(
π(g) v

)
, where (π, V ) is a finite-dimensional

representation of G, v ∈ V and L : V −→ C is a linear functional, is called a
matrix coefficient on G. This terminology is natural, because if we choose a
basis e1, . . . , en, of V , we can identify V with Cn and represent g by matrices:

π(g)v =

⎛

⎜
⎝

π11(g) · · · π1n(g)
...

...
πn1(g) · · · πnn(g)

⎞

⎟
⎠

⎛

⎜
⎝

v1
...
vn

⎞

⎟
⎠ , v =

⎛

⎜
⎝

v1
...
vn

⎞

⎟
⎠ =

n∑

j=1

vjej.

Then each of the n2 functions πij is a matrix coefficient. Indeed

πij(g) = Li

(
π(g)ej

)
,

where Li(
∑

j vjej) = vi.

Proposition 2.3. The matrix coefficients of G are continuous functions. The
pointwise sum or product of two matrix coefficients is a matrix coefficient, so
they form a ring.

Proof. If v ∈ V , then g −→ π(g)v is continuous since by definition a represen-
tation π : G −→ GL(V ) is continuous and so a matrix coefficient L

(
π(g) v

)
is

continuous.
If (π1, V1) and (π2, V2) are representations, vi ∈ Vi are vectors and

Li : Vi −→ C are linear functionals, then we have representations π1 ⊕ π2

and π1 ⊗ π2 on V1 ⊕ V2 and V1 ⊗ V2, respectively. Given vectors vi ∈ Vi

and functionals Li ∈ V ∗
i , then L1

(
π(g)v1

) ± L2

(
π(g)v2

)
can be expressed as
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L
(
(π1⊕π2)(g)(v1, v2)

)
where L : V1⊕V2 −→ C is L(x1, x2) = L1(x1)±L2(x2),

so the matrix coefficients are closed under addition and subtraction.
Similarly, we have a linear functional L1 ⊗ L2 on V1 ⊗ V2 satisfying

(L1 ⊗ L2)(x1 ⊗ x2) = L1(x1)L2(x2)

and

(L1 ⊗ L2)
(
(π1 ⊗ π2)(g)(v1 ⊗ v2)

)
= L1

(
π1(g)v1

)
L2

(
π2(g)v2

)
,

proving that the product of two matrix coefficients is a matrix coefficient. �	
If (π, V ) is a representation, let V ∗ be the dual space of V . To emphasize the
symmetry between V and V ∗, let us write the dual pairing V × V ∗ −→ C in
the symmetrical form L(v) = �v, L�. We have a representation (π̂, V ∗), called
the contragredient of π, defined by

�v, π̂(g)L� =
�
π(g−1)v, L

�
. (2.3)

Note that the inverse is needed here so that π̂(g1g2) = π̂(g1)π̂(g2).
If (π, V ) is a representation, then by Proposition 2.3 any linear combination

of functions of the form L
(
π(g) v

)
with v ∈ V , L ∈ V ∗ is a matrix coefficient,

though it may be a function L′(π′(g) v′
)
where (π′, V ′) is not (π, V ), but a

larger representation. Nevertheless, we call any linear combination of functions
of the form L

(
π(g) v

)
a matrix coefficient of the representation (π, V ). Thus,

the matrix coefficients of π form a vector space, which we will denote by Mπ.
Clearly, dim(Mπ) � dim(V )2.

Proposition 2.4. If f is a matrix coefficient of (π, V ), then f̌(g) = f(g−1)
is a matrix coefficient of (π̂, V ∗).

Proof. This is clear from (2.3), regarding v as a linear functional on V ∗. �	
We have actions of G on the space of functions on G by left and right trans-
lation. Thus if f is a function and g ∈ G, the left and right translates are

(
λ(g)f

)
(x) = f(g−1x),

(
ρ(g)f

)
(x) = f(xg).

Theorem 2.1. Let f be a function on G. The following are equivalent.

(i) The functions λ(g)f span a finite-dimensional vector space.
(ii) The functions ρ(g)f span a finite-dimensional vector space.
(iii) The function f is a matrix coefficient of a finite-dimensional representa-

tion.

Proof. It is easy to check that if f is a matrix coefficient of a particular
representation V , then so are λ(g)f and ρ(g)f for any g ∈ G. Since V is finite-
dimensional, its matrix coefficients span a finite-dimensional vector space; in
fact, a space of dimension at most dim(V )2. Thus, (iii) implies (i) and (ii).
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Suppose that the functions ρ(g)f span a finite-dimensional vector space V .
Then (ρ, V ) is a finite-dimensional representation of G, and we claim that f is
a matrix coefficient. Indeed, define a functional L : V −→ C by L(φ) = φ(1).
Clearly, L

(
ρ(g)f

)
= f(g), so f is a matrix coefficient, as required. Thus (ii)

implies (iii).
Finally, if the functions λ(g)f span a finite-dimensional space, composing

these functions with g −→ g−1 gives another finite-dimensional space which is
closed under right translation, and f̌ defined as in Proposition 2.4 is an element
of this space; hence f̌ is a matrix coefficient by the case just considered.
By Proposition 2.4, f is also a matrix coefficient, so (i) implies (iii). �	
If (π1, V1) and (π2, V2) are representations, an intertwining operator , also
known as a G-equivariant map T : V1 −→ V2 or (since V1 and V2 are some-
times called G-modules) a G-module homomorphism, is a linear transforma-
tion T : V1 −→ V2 such that

T ◦ π1(g) = π2(g) ◦ T

for g ∈ G. We will denote by HomC(V1, V2) the space of all linear trans-
formations V1 −→ V2 and by HomG(V1, V2) the subspace of those that are
intertwining maps.

For the remainder of this chapter, unless otherwise stated, G will denote
a compact group.

Theorem 2.2 (Schur’s lemma).

(i) Let (π1, V1) and (π2, V2) be irreducible representations, and let T : V1 −→
V2 be an intertwining operator. Then either T is zero or it is an isomor-
phism.

(ii) Suppose that (π, V ) is an irreducible representation of G and T : V −→ V
is an intertwining operator. Then there exists a scalar λ ∈ C such that
T (v) = λv for all v ∈ V .

Proof. For (i), the kernel of T is an invariant subspace of V1, which is assumed
irreducible, so if T is not zero, ker(T ) = 0. Thus, T is injective. Also, the image
of T is an invariant subspace of V2. Since V2 is irreducible, if T is not zero,
then im(T ) = V2. Therefore T is bijective, so it is an isomorphism.

For (ii), let λ be any eigenvalue of T . Let I : V −→ V denote the identity
map. The linear transformation T −λI is an intertwining operator that is not
an isomorphism, so it is the zero map by (i). �	
We are assuming that G is compact. The Haar volume of G is therefore finite,
and we normalize the Haar measure so that the volume of G is 1.

We will consider the space L2(G) of functions on G that are square-
integrable with respect to the Haar measure. This is a Hilbert space with
the inner product
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〈f1, f2〉L2 =

∫

G

f1(g) f2(g) dg.

Schur orthogonality will give us an orthonormal basis for this space.
If (π, V ) is a representation and 〈 , 〉 is an invariant inner product on V ,

then every linear functional is of the form x −→ 〈x, v〉 for some v ∈ V . Thus
a matrix coefficient may be written in the form g −→ 〈π(g)w, v〉, and such a
representation will be useful to us in our discussion of Schur orthogonality.

Lemma 2.1. Suppose that (π1, V1) and (π2, V2) are complex representations
of the compact group G. Let 〈 , 〉 be any inner product on V1. If vi, wi ∈ Vi,
then the map T : V1 −→ V2 given by

T (w) =

∫

G

〈π1(g)w, v1〉π2(g
−1)v2 dg (2.4)

is G-equivariant.

Proof. We have

T
(
π1(h)w

)
=

∫

G

〈π1(gh)w, v1〉π2(g
−1)v2 dg.

The variable change g −→ gh−1 shows that this equals π2(h)T (w), as required.
�	

Theorem 2.3 (Schur orthogonality). Suppose that (π1, V1) and (π2, V2)
are irreducible representations of the compact group G. Either every matrix
coefficient of π1 is orthogonal in L2(G) to every matrix coefficient of π2, or
the representations are isomorphic.

Proof. We must show that if there exist matrix coefficients fi : G −→ C of πi

that are not orthogonal, then there is an isomorphism T : V1 −→ V2. We may
assume that the fi have the form fi(g) = 〈πi(g)wi, vi〉 since functions of that
form span the spaces of matrix coefficients of the representations πi. Here we
use the notation 〈 , 〉 to denote invariant bilinear forms on both V1 and V2,
and vi, wi ∈ Vi. Then our assumption is that

∫

G

〈π1(g)w1, v1〉
〈
π2(g

−1)v2, w2

〉
dg =

∫

G

〈π1(g)w1, v1〉 〈π2(g)w2, v2〉dg �= 0.

Define T : V1 −→ V2 by (2.4). The map is nonzero since the last inequality
can be written 〈T (w1), w2〉 �= 0. It is an isomorphism by Schur’s lemma. �	
This gives orthogonality for matrix coefficients coming from nonisomorphic
irreducible representations. But what about matrix coefficients from the same
representation? (If the representations are isomorphic, we may as well assume
they are equal.) The following result gives us an answer to this question.
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Theorem 2.4 (Schur orthogonality). Let (π, V ) be an irreducible
representation of the compact group G, with invariant inner product 〈 , 〉 .
Then there exists a constant d > 0 such that

∫

G

〈π(g)w1, v1〉 〈π(g)w2, v2〉 dg = d−1 〈w1, w2〉 〈v2, v1〉 . (2.5)

Later, in Proposition 2.9, we will show that d = dim(V ).

Proof. We will show that if v1 and v2 are fixed, there exists a constant c(v1, v2)
such that

∫

G

〈π(g)w1, v1〉 〈π(g)w2, v2〉dg = c(v1, v2) 〈w1,w2〉 . (2.6)

Indeed, T given by (2.4) is G-equivariant, so by Schur’s lemma it is a scalar.
Thus, there is a constant c = c(v1, v2) depending only on v1 and v2 such that
T (w) = cw. In particular, T (w1) = cw1, and so the right-hand side of (2.6)
equals

〈T (w1), w2〉 =
∫

G

〈π(g)w1, v1〉
〈
π(g−1)v2, w2

〉
dg,

Now the variable change g −→ g−1 and the properties of the inner product
show that this equals the left-hand side of (2.6), proving the identity. The
same argument shows that there exists another constant c′(w1, w2) such that
for all v1 and v2 we have

∫

G

〈π(g)w1, v1〉 〈π(g)w2, v2〉dg = c′(w1, w2) 〈v2,v1〉 .

Combining this with (2.6), we get (2.5). We will compute d later in Proposi-
tion 2.9, but for now we simply note that it is positive since, taking w1 = w2

and v1 = v2, both the left-hand side of (2.5) and the two inner products on
the right-hand side are positive. �	
Before we turn to the evaluation of the constant d, we will prove a different
orthogonality for the characters of irreducible representations (Theorem 2.5).
This will require some preparations.

Proposition 2.5. The character χ of a representation (π, V ) is a matrix co-
efficient of V .

Proof. If v1, . . . , vn is a matrix of V , and L1, . . . , Ln is the dual basis of V ∗,
then χ(g) =

∑n
i=1 Li

(
π(g)vi

)
. �	

Proposition 2.6. Suppose that (π, V ) is a representation of G. Let χ be the
character of π.

(i) If g ∈ V then χ(g−1) = χ(g).
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(ii) Let (π̂, V ∗) be the contragredient representation of π. Then the character
of π̂ is the complex conjugate χ of the character χ of G.

Proof. Since π(g) is unitary with respect to an invariant inner product 〈 , 〉,
its eigenvalues t1, . . . , tn all have absolute value 1, and so

tr π(g)−1 =
∑

i

t−1
i =

∑

i

ti = χ(g).

This proves (i). As for (ii), referring to (2.3), π̂(g) is the adjoint of π(g)−1 with
respect to the dual pairing � , �, so its trace equals the trace of π(g)−1. �	
The trivial representation of any group G is the representation on a one-
dimensional vector space V with π(g)v = v being the trivial action.

Proposition 2.7. If (π, V ) is an irreducible representation and χ its charac-
ter, then ∫

G

χ(g) dg =

{
1 if π is the trivial representation;
0 otherwise.

Proof. The character of the trivial representation is just the constant function
1, and since we normalized the Haar measure so that G has volume 1, this
integral is 1 if π is trivial. In general, we may regard

∫
G
χ(g) dg as the inner

product of χ with the character 1 of the trivial representation, and if π is
nontrivial, these are matrix coefficients of different irreducible representations
and hence orthogonal by Theorem 2.3. �	
If (π, V ) is a representation, let V G be the subspace of G-invariants , that is,

V G = {v ∈ V |π(g)v = v for all g ∈ G} .

Proposition 2.8. If (π, V ) is a representation of G and χ its character, then

∫

G

χ(g) dg = dim(V G).

Proof. Decompose V = ⊕iVi into a direct sum of irreducible invariant sub-
spaces, and let χi be the character of the restriction πi of π to Vi. By Propo-
sition 2.7,

∫
G
χi(g) dg = 1 if and only if πi is trivial. Hence

∫
G
χ(g) dg is the

number of trivial πi. The direct sum of the Vi with πi trivial is V
G, and the

statement follows. �	
If (π1, V1) and (π2, V2) are irreducible representations, and χ1 and χ2 are their
characters, we have already noted in proving Proposition 2.3 that we may form
representations π1 ⊕ π2 and π1 ⊗ π2 on V1 ⊕ V2 and V1 ⊗ V2. It is easy to see
that χπ1⊕π2 = χπ1 + χπ2 and χπ1⊗π2 = χπ1χπ2 . It is not quite true that
the characters form a ring. Certainly the negative of a matrix coefficient is a
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matrix coefficient, yet the negative of a character is not a character. The set
of characters is closed under addition and multiplication but not subtraction.
We define a generalized (or virtual) character to be a function of the form
χ1 − χ2, where χ1 and χ2 are characters. It is now clear that the generalized
characters form a ring.

Lemma 2.2. Define a representation Ψ : GL(n,C) × GL(m,C) −→ GL(Ω)
where Ω = Matn×m(C) by Ψ(g1, g2) : X −→ g2Xg−1

1 . Then the trace of
Ψ(g1, g2) is tr(g−1

1 ) tr(g2).

Proof. Both tr Ψ(g1, g2) and tr(g−1
1 ) tr(g2) are continuous, and since diag-

onalizable matrices are dense in GL(n,C) we may assume that both g1
and g2 are diagonalizable. Also if γ is invertible we have Ψ(γg1γ

−1, g2) =
Ψ(γ, 1)Ψ(g1, g2)Ψ(γ, 1)

−1 so the trace of both tr Ψ(g1, g2) and tr(g−1
1 )tr(g2)

are unchanged if g1 is replaced by γg1γ
−1. So we may assume that g1 is di-

agonal, and similarly g2. Now if α1, . . . , αn and β1, . . . , βm are the diagonal
entries of g1 and g−1

2 , the effect of Ψ(g1, g2) on X ∈ Ω is to multiply the
columns by the α−1

i and the rows by the βj . So the trace is tr(g−1
1 )tr(g2). �	

Theorem 2.5 (Schur orthogonality). Let (π1, V1) and (π2, V2) be repre-
sentations of G with characters χ1 and χ2. Then

∫

G

χ1(g)χ2(g) dg = dimHomG(V1, V2). (2.7)

If π1 and π2 are irreducible, then

∫

G

χ1(g)χ2(g) dg =

{
1 if π1

∼= π2;
0 otherwise.

Proof. Define a representation Π of G on the space Ω = HomC(V1, V2) of all
linear transformations T : V1 −→ V2 by

Π(g)T = π2(g) ◦ T ◦ π1(g)
−1.

By lemma 2.2 and Proposition 2.6, the character of Π(g) is χ2(g)χ1(g). The
space of invariants ΩG exactly of the T which are G-module homomorphisms,
so by Proposition 2.8 we get

∫

G

χ1(g)χ2(g) dg = dim HomG(V1, V2).

Since this is real, we may conjugate to obtain (2.7). �	
Proposition 2.9. The constant d in Theorem 2.4 equals dim(V ).
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Proof. Let v1, . . . , vn be an orthonormal basis of V , n = dim(V ). We have

χ(g) =
∑

i

〈πi(g)vi, vi〉

since 〈π(g)vj , vi〉 is the i, j component of the matrix of π(g) with respect to
this basis. Now

1 =

∫

G

|χ(g)|2 dg =
∑

i,j

∫

G

〈π(g)vi, vi〉 〈π(g)vj , vj〉dg.

There are n2 terms on the right, but by (2.5) only the terms with i = j are
nonzero, and those equal d−1. Thus, d = n. �	
We now return to the matrix coefficients Mπ of an irreducible representation
(π, V ). We define a representation Θ of G×G on Mπ by

Θ(g1, g2)f(x) = f(g−1
2 xg1).

We also have a representation Π of G×G on EndC(V ) by

Π(g1, g2)T = π(g2)
−1T π(g1).

Proposition 2.10. If f ∈ Mπ then so is Θ(g1, g2) f . The representations Θ
and Π are equivalent.

Proof. Let L ∈ V ∗ and v ∈ V . Define fL,v(g) = L(π(g)v). The map L, v �−→
fL,v is bilinear, hence induces a linear map σ : V ∗⊗V −→ Mπ. It is surjective
by the definition of Mπ, and it follows from Proposition 2.4 that if Li and vj
run through orthonormal bases, then fLi,vj are orthonormal, hence linearly
independent. Therefore, σ is a vector space isomorphism. We have

Θ(g1, g2)fL,v(g) = L(g−1
2 gg1v) = fπ̂(g2)L,π(g1)v(x),

where we recall that (π̂, V ∗) is the contragredient representation. This means
that σ is a G × G-module homomorphism and so Mπ

∼= V ∗ ⊗ V as G × G-
modules. On the other hand we also have a bilinear map V ∗×V −→ EndC(V )
that associates with (L, v) the rank-one linear map TL,v(u) = L(u)v. This
induces an isomorphism V ∗ ⊗ V −→ EndC(V ) which is G × G equivariant.
We see that Mπ

∼= V ∗ ⊗ V ∼= EndC(V ). �	
A function f on G is called a class function if it is constant on conjugacy
classes, that is, if it satisfies the equation f(hgh−1) = f(g). The character of
a representation is a class function since the trace of a linear transformation
is unchanged by conjugation.

Proposition 2.11. If f is the matrix coefficient of an irreducible representa-
tion (π, V ), and if f is a class function, then f is a constant multiple of χπ.
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Proof. By Schur’s lemma, there is a unique G-invariant vector in HomC(V, V );
hence. by Proposition 2.10, the same is true of Mπ in the action of G by
conjugation. This matrix coefficient is of course χπ. �	
Theorem 2.6. If f is a matrix coefficient and also a class function, then f
is a finite linear combination of characters of irreducible representations.

Proof. Write f =
∑n

i=1 fi, where each fi is a class function of a distinct irre-
ducible representation (πi, Vi). Since f is conjugation-invariant, and since the
fi live in spaces Mπi , which are conjugation-invariant and mutually orthog-
onal, each fi is itself a class function and hence a constant multiple of χπi by
Proposition 2.11. �	

Exercises

Exercise 2.1. Suppose that G is a compact Abelian group and π : G −→ GL(n,C)
an irreducible representation. Prove that n = 1.

Exercise 2.2. Suppose that G is compact group and f : G −→ C is the matrix
coefficient of an irreducible representation π. Show that g �−→ f(g−1) is a matrix
coefficient of the same representation π.

Exercise 2.3. Suppose that G is compact group. Let C(G) be the space of contin-
uous functions on G. If f1 and f2 ∈ C(G), define the convolution f1 ∗ f2 of f1 and
f2 by

(f1 ∗ f2)(g) =
∫
G

f1(gh
−1) f2(h) dh =

∫
G

f1(h) f2(h
−1g) dh.

(i) Use the variable change h −→ h−1g to prove the identity of the last two terms.
Prove that this operation is associative, and so C(G) is a ring (without unit)
with respect to covolution.

(ii) Let π be an irreducible representation. Show that the space Mπ of matrix
coefficients of π is a 2-sided ideal in C(G), and explain how this fact implies
Theorem 2.3.

Exercise 2.4. Let G be a compact group, and let G × G act on the space Mπ

by left and right translation: (g, h)f(x) = f(g−1xh). Show that Mπ
∼= π̂ ⊗ π as

(G×G)-modules.

Exercise 2.5. Let G be a compact group and let g, h ∈ G. Show that g and h are
conjugate if and only if χ(g) = χ(h) for every irreducible character χ. Show also
that every character is real-valued if and only if every element is conjugate to its
inverse.

Exercise 2.6. Let G be a compact group, and let V,W be irreducible G-modules.
An invariant bilinear form B : V ×W → C is one that satisfies B

(
g·v, g·w)

= B(v,w)
for g ∈ G, v ∈ V , w ∈ W . Show that the space of invariant bilinear forms is at most
one-dimensional, and is one-dimensional if and only if V and W are contragredient.
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