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     Abbreviations 

   ABM    Agent-based model   
  ICU    Intensive care unit   
  ISS    Injury Severity Score   

          Infl ammatory Diseases: A Pox on All Our Houses 

 We are currently faced with a barrage of complex diseases that often coexist in the 
same patient [ 1 ]. In the developing world, the modern disease landscape is a con-
stellation of acute and chronic infections, traumatic injuries, and nonhealing 
wounds; diseases that are made even more complex due to the impact of malnutri-
tion, war, and displacement [ 2 ,  3 ]. In the industrialized world, we face some of the 
same challenges with regard to infections, trauma, and wounds, but these diseases 
are complicated by lifestyles of excess and the attendant metabolic irregularities 
(diabetes and obesity). In addition, the generally longer life spans now being expe-
rienced around the world have paradoxically resulted in the rise of aging-related 
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diseases such as cancer and various neurodegenerative diseases [ 4 ]. Given the 
degree and extent of medical care in the fi rst world, it is virtually guaranteed that a 
common pathway for patients with this range of diseases is to spend at least some 
time in an intensive care unit (ICU) with critical illness manifesting with multicom-
partment pathophysiological derangements and organ failure. Critical illness can 
result directly from trauma, hemorrhagic shock, and bacterial infection (sepsis). On 
its own, trauma/hemorrhage is a leading cause of death worldwide, often leading to 
infl ammation-related late complications that include sepsis and multiple organ 
dysfunction syndrome (MODS) [ 5 – 7 ]. Sepsis alone is responsible for more than 
215,000 deaths in the USA per year and an annual healthcare cost of over $16 
billion [ 8 ], while trauma/hemorrhage is the most common cause of death for young 
people in the USA, costing over $400 billion annually [ 9 – 11 ].  There is currently 
not a single approved pharmacological therapy for critical illness . 

 It is now clear that the acute infl ammatory response, with its manifold manifesta-
tions at the molecular, cellular, tissue, organ, and whole-organism levels, drives 
outcomes in all the aforementioned diseases, and is central to the pathophysiology 
of critical illness. Properly regulated infl ammation allows for timely recognition 
and effective reaction to threats to an individual, be it tissue damage resulting from 
injury or infection from pathogenic microbes. However, when the insult is too great, 
or repetitive in nature (as seen in chronic infl ammatory and autoimmune diseases), 
we have suggested that infl ammation can become disordered and result in ongoing 
tissue damage and organ dysfunction. We assert that critical illness is the most dra-
matic manifestation of disordered, dysregulated, and miscompartmentalized infl am-
mation [ 12 – 14 ]. Thus, the presence of a robust, evolutionarily conserved network of 
infl ammation [ 15 – 17 ], able to respond to heterogeneous insults and tuned for effec-
tive containment yet paradoxically capable of driving and propagating host tissue 
damage, results in disease states that are fundamentally resistant to reductionist 
characterization. This property of critical illness is the basis for the lack of effective 
mechanism-based pharmacologic therapies and accounts for the fact that even life- 
saving/perpetuating measures, such as mechanical ventilation or hemodialysis, may 
have detrimental effects through the induction of additional infl ammation [ 18 – 20 ].  

    Insuffi ciencies in the Current Process of Drug/Device Design 
and Executing Clinical Trials 

 In order for a therapeutic drug or device to reach its ultimate end-user—the patient—
a multistep process must be carried out, culminating in approval by regulatory agen-
cies. This process generally consists of years/decades of basic research to identify 
candidate therapeutic targets, followed by sequential studies to demonstrate safety 
and some acceptable degree of effi cacy (e.g., dosage or timing that results in great-
est therapeutic benefi t with least harm) in both experimental animals and humans. 
This process typically concludes with a pivotal (Phase III) clinical trial, which is 
randomized (i.e., subjects that meet predecided inclusion and exclusion criteria are 
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recruited into either a placebo or treatment arm in a random fashion) and double 
blinded (i.e., neither the clinician nor the patient knows a priori the study arm in 
which the patient is enrolled) [ 16 ,  21 – 24 ]. The enrollment into this Phase III trial is 
usually not individualized in any fashion beyond the set inclusion and exclusion 
criteria (and, of course, the withdrawal of a patient from the study if certain prede-
cided adverse events occur). This process is considered the sine qua non of the sci-
entifi c method, and it has indeed resulted in numerous drugs and devices available 
to physicians to treat diseases. 

 However, there are many problems with this approach. To begin with, the disease 
being targeted is usually thought of in a reductionist, static way as a series of dis-
crete “stages” or “syndromes” rather than as a dynamic, stochastic progression of 
biological events driven by initial conditions and genetically determined parameters 
that, upon reaching certain multidimensional thresholds, leads to multiple out-
comes. This discrepancy leads to the design of drugs that are targeted to ostensibly 
diagnostic symptoms rather than to underlying causes of the disease as a whole. 
Next, a highly linear (cause–effect) view of the biological pathways is presumed to 
underlie the various discrete symptoms, leading to the generation of drugs absent 
any consideration (at this initial stage of drug development) of impact on other 
pathways, cells, tissues, and organs. Finally, the statistical approaches commonly 
used to structure and analyze clinical trials typically make a number of questionable 
assumptions, e.g., that variables are normally distributed, that a marker of patient 
state is equivalent to a mechanistic driver of that state, and that such a marker of 
patient state will be altered in a statistically signifi cant fashion as a function of 
therapeutic effi cacy. Below, we discuss how these general features of the healthcare 
delivery process manifest in therapies for acute infl ammatory diseases, with a focus 
on critical illness.  

    Infl ammation in Critical Illness: Rational Systems Approaches 
for a Complex Therapeutic Target 

 The fl aws in—and the fragmented nature of—the current healthcare delivery para-
digm have led to the recognition of the need to address complex interplay between 
infl ammation and physiology in critical illness, manifesting in divergent group out-
comes and heterogeneous individual trajectories [ 12 ,  25 ,  26 ]. Initially, there was 
hope for some improvement in this situation through the adoption of “omics” meth-
odologies, with their theoretical capability of interrogating the complete responses of 
cells and tissues in individuals (and thereby both improving the mechanistic under-
standing of critical illness in general and enhancing diagnostic and treatment capaci-
ties in individuals) [ 27 – 34 ]. While this approach has resulted in key contributions to 
the understanding of molecular pathways induced by injury and infection in humans 
[ 35 ,  36 ], as these techniques have become more commonplace there has been a grow-
ing recognition that more data does not necessarily lead to better—or any—explana-
tions for the phenomena from which those data are derived. Thus, these “omics” 
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methods have not proven to be the panacea for the design of drugs, clinical trials, and 
diagnostics that they were projected to become. In addition, from a practical stand-
point, there are multiple challenges to implementation of these purely data-driven, 
descriptive approaches in the healthcare delivery chain [ 7 ,  13 ,  14 ]. 

 In contrast to data-driven, descriptive modeling, mechanistic computational simu-
lations depict the behavior of biological interactions (e.g., among cells, their prod-
ucts, and the outcomes that result under a given set of conditions) dynamically. Such 
dynamic computational models and simulations may be used as “knowledge stores” 
that may be queried as to the emergent behavior of the sum total of known or hypoth-
esized reductionist biological interactions [ 37 – 41 ], to suggest novel interactions not 
yet described by experimental data [ 42 ], and to address controversies based on diverse 
experimental/clinical conditions or other experimental differences among groups 
studying any given complex biological system [ 43 ]. Unlike data- oriented, descriptive 
models, dynamic mechanistic models offer the possibility of prediction outside of 
and beyond the data on which they were developed [ 7 ,  13 ,  14 ,  44 ]. We have extended 
the classical systems biology approach to that of Translational Systems Biology as 
systems and computational biology methods have matured and begun to take on 
 characteristics, features, and operating principles of engineering [ 24 ,  44 – 46 ]. 

 Indeed, the computational modeling toolset now available for integration into the 
healthcare delivery pipeline is rich and suited to diverse tasks. Translational dynamic 
mechanistic modeling used to date in acute infl ammation and other phenomena 
related to critical illness can be divided into two general types: continuous methods, 
generally employing differential equations (either ordinary or partial) and particu-
larly useful in settings involving data that refl ect the mean fi eld approximations of 
behavior of a biological system, e.g., the concentrations of molecules in a biofl uid 
[ 47 – 55 ]; and discrete methods, most notably agent-based modeling for settings in 
which spatial pattern/image data are involved or for prototyping initial computa-
tional models of a complex system [ 42 ,  56 – 59 ]. These various method have their 
respective strengths and weaknesses [ 24 ,  45 ,  60 ,  61 ] and have all been used in the 
setting of critical illness [ 15 ,  16 ,  44 ,  45 ,  60 ,  62 ,  63 ]. 

 Dynamic computational modeling has improved our knowledge of the basic 
biology of infl ammation, and, directly or indirectly led to translational applications 
in critical illness [ 7 ,  12 – 16 ,  24 ,  44 ,  63 ]. One key translational application, namely 
the in silico clinical trial, was pioneered in the arena of critical illness [ 48 ,  58 ]. The 
potential use of mechanistic computational modeling in the diagnostic arena is evi-
denced by studies showing the potential to predict the individual infl ammatory and 
pathophysiologic outcomes of human subjects [ 64 ] and large, outbred animals [ 65 ]. 
Thus, it may be possible, in the not-too-distant future, to predict and impact the 
outcomes of individual critically ill patients [ 44 ,  63 ]. 

 Given the multiscale complexity of the disease processes, we suggest that it is 
imperative to not only merely identify candidate molecules but also determine if the 
higher-order, system-level consequences of attempting to intervene in a particular 
pathway will lead to an ultimately benefi cial or detrimental outcome. We have 
pointed out the need for a computational means of  dynamic knowledge representa-
tion  as a means of hypothesis instantiation and testing [ 41 ,  66 ]. In the context of 
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translating molecular-level mechanistic hypotheses up through the various steps of 
the healthcare delivery continuum, this process is envisioned as allowing one to 
determine if the assumptions regarding manipulating a given biological interaction at 
a given scale of organization (typically the molecular/cellular scale) is likely to 
behave as expected at another, typically higher scale (e.g., tissue, organ, or the entire 
organism). In this way, one may identify effects that would otherwise be considered 
“unanticipated.” Dynamic knowledge representation may be augmented with insights 
derived from high-throughput/high-content data [ 41 ], along with appropriate data 
analysis and data-driven modeling [ 17 ,  44 ,  46 ] in order to generate and parameterize 
mechanistic computational models of disease, patient [ 44 ], or population [ 16 ,  24 ].  

    Dynamic Knowledge Representation in the Context 
of In Silico Clinical Trials 

 A key example of the in silico clinical trial as a form of dynamic knowledge repre-
sentation can be seen in the simulated clinical trials of existing and hypothetical 
antimediator interventions for sepsis [ 48 ,  58 ]. Importantly, these simulated trials 
were based on the knowledge available at the time the actual clinical trials were 
performed. In one case, a simulation of neutralizing antibodies to proinfl ammatory 
cytokines was implemented in an agent-based model (ABM) [ 57 ,  58 ]. This dynamic 
computational model reproduced the general disease dynamics of sepsis and mul-
tiple organ failure and was used to generate a simulated population corresponding 
to the control group in a sepsis clinical trial. Highlighting the power of computa-
tional modeling as a high-throughput test bed for novel therapies, early in silico 
clinical trials simulated a series of existing [ 48 ,  58 ] and hypothetical [ 58 ] therapies 
targeting infl ammatory mediator-based therapies. Importantly, these clinical trials 
were simulated in such a way that assumed that the proposed interventions behaved 
mechanistically exactly as had been hypothesized. Therefore, these in silico trials in 
the paper are a form of verifi cation of the underlying hypotheses—either explicit or 
implicit—that formed the basis for such trials. The way in which these computa-
tional simulations were structured avoided the need to invoke factors such as hetero-
geneity of adjunctive therapy, different pharmacodynamics/kinetics, faulty 
randomization or other potentially confounding practical issues commonly used to 
explain negative outcomes of clinical trials. In line with actual outcomes, and not 
surprisingly for those studies that were purely hypothetical, none of the simulated 
interventions demonstrated a benefi cial effect [ 48 ,  58 ]. The conclusion drawn from 
these fi ndings is that, most likely, the underlying conceptual models that informed 
the development of these therapeutic strategies targeted at blocking individual 
mediators were fl awed, precisely because the hypotheses underlying their selection 
as therapeutic modalities were fl awed. That is not to say that—despite this fl aw of 
universal therapeutic effi cacy—these mediator-directed therapies would fail. 
Indeed, one of the studies, an in silico trial of anti-TNF-α therapy using an equation-
based model of systemic infl ammation, suggested that this type of therapy would 
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work on defi ned subsets of sepsis patients [ 48 ]. Thus, we suggest that fl aws in 
the original hypotheses and assumptions underlying these failed clinical trials 
would have been exposed through the use of computational dynamic knowledge 
representation been available and used early and throughout the process of drug 
development. 

 As touched upon above, in silico clinical trials offer an unprecedented possibility 
to transcend the long list of practical limitations—including: relatively small cohort 
sizes, limited availability of measurements, fi nite study durations, and the presence 
of confounding factors—that affect real-world clinical trials. However, the interdis-
ciplinary team of clinicians, biologists, and computational modelers who carry out 
these in silico clinical trials must assure that the base models and implementation of 
simulated populations represent both the biology and clinical setting. 

 In addition to providing a check of the plausibility of the underlying scientifi c 
basis of a proposed intervention, in silico trials can augment the current process of 
performing clinical trials in three signifi cant ways:

    1.     Enhancement of study group substratifi cation : Clermont et al. [ 48 ] demon-
strate the use of an in silico trial to enhance subgroup stratifi cation and candidate 
patient identifi cation. The fi ner grained representation of each simulated patient, 
in terms of cytokine response trajectories, and how they respond to and without 
a proposed intervention allows the identifi cation of potential biomarker-defi ned 
inclusion criteria for a clinical trial. In essence, this allows each simulated patient 
to act as his own control with respect to the proposed intervention. This type of 
analysis is functionally impossible to obtain in clinical trial cohorts that refl ect 
the range of response that would arise in the general population. Furthermore, 
social or ethical factors that may limit the possible representation of specifi c 
groups (such as African-Americans, known to be generally underrepresented in 
many clinical trials, or women of child-bearing age, excluded for potential tera-
togenic risk). As a result, trials are very likely to miss important (positive or 
negative) effects in subgroups that are sampled inadequately. This missampling 
can lead to later discovery of adverse events following a promising clinical trial, 
or in the failure of truly useful treatments in clinical trials that were not properly 
targeted to the patients who would most benefi t from them. By simulating mas-
sive virtual cohorts sampled from the space of potential patients, in silico clinical 
trials can achieve much more thorough sampling of possible patients. The acqui-
sition and analysis of this simulation-generated data can in turn reveal clinical 
patient subgroups who merit particular attention and lead to better informed 
patient selection criteria and more effective clinical trials.   

   2.     Augmentation and optimization of protocol design : Protocols for modern 
interventions depend on multiple complex and often interacting parameters (e.g., 
dosage levels, timing and frequency of administration, etc.). Attempting to deter-
mine these parameters experimentally over a wide range of individuals is func-
tionally impossible, and therefore the optimal intervention strategy for an 
individual patient cannot pragmatically be determined. The inability to antici-
pate and account for this degree of interindividual heterogeneity will doom a 
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clinical trial to failure at the outset. In silico trials allow a more rigorous compu-
tational optimization of these parameters, both on massive populations and for 
individual patients and will increase the precision with which protocols can be 
designed, and therapeutic endpoints defi ned.   

   3.     Enhanced characterization of the control group : Clinical trials rely on control 
groups against which the effect of a proposed intervention is compared. However, 
given the vagaries of clinical practice, many control groups may actually com-
pare poorly to the intervention group. Interindividual variability in both underly-
ing biology and clinical practice leads to a situation where the defi nition of 
“similarity” between control and intervention patients is often quite crude and 
imprecise. This situation confounds the ability to actually defi ne the effect of the 
proposed intervention. In silico trials, however, offer the ideal control group: 
each simulated patient can be simulated with and without the intervention. 
Comparison of results against these “perfect” controls thus removes a source of 
uncertainty that is unavoidable in real trials.     

 An example of the potential insights obtained from carrying out in silico trials 
can be seen in a very early in silico trial based on an anti-TNF-α therapy [ 48 ]. These 
simulations recapitulated the general lack of effi cacy of the intervention; however, 
the researchers used the power of computational modeling to evaluate what would 
have happened in the absence of intervention or in the setting of different doses of 
the drug. In essence, the placebo group was “cloned” into multiple treatment arms 
or the placebo arm. Consequently, this in silico analysis suggested specifi c charac-
teristics of the simulated patients who had been helped by the intervention, had been 
harmed by the intervention, or had not been affected by the drug, thereby suggesting 
the possibility of using this in silico approach for deciding on inclusion and exclu-
sion criteria for eventual clinical trials. Thus, the key take-home lesson of this study 
was that a failed randomized, placebo-controlled clinical trial could possibly have 
been successful through the use of in silico modeling.  

    Dynamic Knowledge Representation at the Individual Level: 
Optimization of Diagnosis and Therapy 

 It may be argued that the ultimate test of dynamic knowledge representation is that 
of characterizing the drivers of dynamic patient state to a degree suffi cient to iden-
tify and treat the individual patient [ 12 ,  44 ]. To do so, a robust, mechanistic compu-
tational model (presumably the same one used for in silico clinical trial) must be 
adapted to refl ect the temporal dynamics of infl ammation and organ  damage/dys-
function in the individual patient. From a practical standpoint, model parameters 
that alter the patient’s dynamics (e.g., comorbidities, prior health history, relevant 
genetic traits, etc.) are modifi ed over known or presumed ranges in accordance with 
known biology [ 44 ]. The applications of this approach are myriad. Of most direct 
connection to the in silico clinical trial, individual-specifi c models could be used to 
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generate much larger cohorts of virtual patients, which in turn could be used to 
make in silico clinical trials more realistic. 

 As an example of this approach, we constructed a multicompartment, equation- 
based model, consisting of the “tissue” (in which physical injury could take place), 
the “lungs” (which can experience dysfunction) and the “blood” (as a surrogate for 
the rest of the body). This model was initially calibrated with data on approximately 
30 individual trauma patients, all survivors of moderate blunt trauma. Based on 
these individual trajectories of both infl ammatory and physiological variables, nor-
mal and uniform distributions were created. These distributions were sampled 
repeatedly to create a population of 10,000 virtual trauma patients, where each 
patient is defi ned by his/her parameter values in the mathematical model. Each 
patient was then subjected to simulated low, moderate, and severe trauma. These 
virtual populations of trauma patients exhibited realistic and partially overlapping 
distributions of “damage” recovery times (which we equated with intensive care 
unit [ICU] lengths of stay) and total “damage” (which we equate with degree of 
multiple organ dysfunction). These virtual patients were queried as to the parame-
ters driving the above distributions and found that for patients with a low Injury 
Severity Score (ISS), parameters related to IL-1β were the predominant drivers, 
while IL-6 was the main driver of outcome in patients with moderate or severe ISS. 
Principal Component Analysis of the circulating infl ammatory mediators from the 
original trauma patients suggested that IL-1β was the principal driver of infl amma-
tion in these patients, in line with the results of the analysis of the equation-based 
virtual trauma patients. These results suggest the possibility of determining novel 
basic mechanisms in trauma, of individualized outcome prediction for trauma 
patients, and of virtual clinical trials based on a small number of actual patients. 

 These studies highlight some of the particular advantages that mechanistic mod-
els afford: virtual cohorts can be generated of any required size, and each individual 
patient’s disease state can be tracked at an extremely high level of resolution (lim-
ited only by the resolution of the model) for as long as required. When information 
is available about the approximate distribution of these characteristics in real popu-
lations, this information can be used in the generation of a virtual patient population 
to ensure that the composition of simulated cohorts mirrors reality. 

 Another application of this approach involves in silico “testing” of multiple ther-
apeutic modalities on individuals. As an example of this application of dynamic 
mechanistic modeling, an ABM of vocal fold infl ammation and healing was cali-
brated to the early levels of infl ammatory mediators present in the laryngeal secre-
tions of individual humans subjected to experimental phonotrauma and could 
predict the later levels of these mediators in an individual-specifi c fashion [ 64 ]. 
Importantly, these individualized ABMs were utilized to predict the likely effi cacy 
of a “rehabilitative” treatment, namely resonant voice exercises, both in patients 
who had in fact received this treatment and in patients who did not [ 64 ]. A similar 
process could be employed to evaluate the specifi c effi cacy of a drug modulating an 
aspect of infl ammation or healing, thereby forming the basis of a much more realis-
tic in silico clinical trial.  
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    Conclusions 

 What is clear now is that the biocomplexity of pathophysiological processes under-
lying the systems-level diseases that represent the greatest health risk today, such as 
cancer, diabetes, atherosclerosis, Alzheimer’s, sepsis and wound healing, confounds 
the use of traditional experimental methods. These reductionist experiments and 
data-oriented descriptive methods are unable to evaluate and test multiscale causal-
ity, an essential and critical step in the design and development of therapeutic inter-
ventions for systems-level diseases. The complexity and dimensionality (in terms of 
multiple factors and variables) of these biomedical issues, particularly in terms of 
translating mechanisms across scales of organization, essentially precludes this 
approach. Reliance on only these traditional methods can produce, at best, “one- 
off” products based on fortuitous discovery but does not provide a robust and sus-
tainable strategy. The Scientifi c Method mandates that it is the ability to evaluate 
mechanisms and causality suffi ciently in a multidimensional, high-throughput 
world—as is potentially possible with dynamic computational modeling and the 
application of principles from Translational Systems Biology—that forms the crux 
of the translational dilemma. The use of dynamic computational modeling can pro-
vide a framework that allows the introduction of “theories” into biomedicine, to 
facilitate the translation of robust conceptual structures and architectures across 
experimental platforms as well as into the differences among individual patients 
[ 67 ]. Specifi cally, we assert that the computational approaches described in this 
chapter, with an explicit goal of addressing the challenges of implementing the last 
stage of getting a therapy to the bedside, represents a necessary step in the future of 
obtaining and implementing effective therapeutics for the complex diseases that 
challenge us today and in the future.     
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