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           Introduction 

 Infl ammation is an essential process in maintaining health and responding to 
 disease. Acute infl ammation is driven largely by the innate immune system, which 
not only serves as the fi rst line of defense against invading pathogens but also func-
tions to resolve tissue damage and restore homeostasis upon a variety of infl amma-
tory conditions including sepsis, trauma, wound healing, and many more. However, 
when infl ammation is either insuffi cient to address the original disruption of homeo-
stasis, or becomes dysregulated and systemic, it can contribute substantially to mor-
bidity and mortality in these conditions. Dysregulated systemic infl ammation also 
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plays a signifi cant role in the pathophysiology of diseases that are not primarily 
attributed to innate immunity such as cancer and diabetes. Although the list of dis-
eases is broad and the processes important to each setting may differ in certain 
respects, the core architecture of the infl ammatory response to biological stress is 
highly conserved [ 1 ]. 

 The systemic infl ammatory response syndrome (SIRS) is a major driver of mor-
bidity and mortality in the settings of sepsis and trauma/hemorrhagic shock. Sepsis 
is one of the leading causes of death in the USA and is responsible for nearly $17 
billion in health care costs annually [ 2 ]. Trauma/hemorrhage is the most common 
cause of death for young people in the USA, costing over $400 billion every year 
[ 3 ]. In both sepsis and trauma, the acute infl ammatory response is concomitant with 
physiologic manifestations including changes in heart rate and body temperature, 
responses that act in a concerted fashion in order to help optimize host defense 
while minimizing tissue damage. Indeed, although a well-regulated infl ammatory 
response is crucial for effective healing and host defense, an excessively vigorous 
response can become self-perpetuating and lead to organ dysfunction and death [ 4 , 
 5 ]. Both sepsis and trauma patients are particularly susceptible to multiple organ 
dysfunction syndrome (MODS), a poorly understood syndrome that may be partly 
attributed to excessive and dysregulated infl ammation [ 5 ]. These vastly different 
outcomes can be explained by the overall framework of the immune response, 
which includes a positive feedback loop from infl ammation → damage/dysfunction 
→ infl ammation that can drive pathophysiology in infl ammatory diseases [ 6 – 8 ]. 

 The adverse effects of self-sustaining infl ammation are likely responsible for the 
general perception of infl ammation as an intrinsically harmful process [ 9 ,  10 ]. 
However, in addition to the aforementioned benefi cial roles of infl ammation in the 
resolution of tissue injury, recent studies suggest that morbidity and mortality are 
worse in animals with low levels of early proinfl ammatory signals [ 11 ]. The emerg-
ing view of infl ammation is indeed more nuanced, casting infl ammation as a highly 
coordinated communication network that allows the body to sense and respond to 
challenges and subsequently restore homeostasis [ 6 ,  12 ]. One may consider the 
complexity resulting from this coordination to be an indicator of a well regulated and 
properly orchestrated response, and consequently a less complex response would be 
indicative of a pathological dys- or mis-connectivity of the network. Guided by 
insights from studies on the dysregulated physiology characteristic of sepsis and 
trauma/hemorrhage, which have reported that a decrease in variability/complexity of 
heart rate can presage increased morbidity and mortality, we have suggested that 
well-organized dynamic networks of mediators are crucial to an appropriate infl am-
matory response [ 2 ,  13 ]. Indeed, such networks are induced early in the response to 
experimental surgical trauma in mice, and these networks become disorganized and 
less complex with the addition of hemorrhagic shock to this minor trauma [ 13 ]. 

 The current paradigm for acute infl ammation, based in large part on studies in 
response to trauma, hemorrhage, or infection, involves a dynamic cascade of cellu-
lar and molecular events. Innate immune cells, such as mast cells, neutrophils, and 
macrophages, are activated directly by bacterial endotoxin or indirectly by various 
stimuli elicited systemically upon trauma and hemorrhage [ 14 – 17 ], including the 
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release of damage-associated molecular pattern molecules (DAMPs) [ 7 ,  18 ,  19 ]. 
Both DAMPs and proinfl ammatory cytokines—primary among them tumor necro-
sis factor-α (TNF-α) [ 20 – 26 ]—further activate both parenchymal and immune/
infl ammatory cells and can affect tissue/organ physiology adversely. These stressed 
tissues/organs feed back positively to promote further production of infl ammatory 
mediators. We have hypothesized that this behavior could lead to multicompartment 
and multiscale infl ammatory “tipping points” [ 27 – 29 ].  

    A Systems Approach to Infl ammation 

 The complexity and nonlinearity of the acute infl ammatory response as described 
above has largely stymied the development of novel therapies for trauma/hemor-
rhage and sepsis. Systems biology is an emerging paradigm for tackling complex 
biological systems in a holistic fashion [ 30 ]. Approaches in systems biology span a 
broad range of techniques and can be categorized roughly into correlative or caus-
ative methods, with focus on either learning basic principles of system organization 
and function [ 31 – 33 ] or building predictive computational models [ 31 ,  34 ]. 
Although there is overlap between these areas, most efforts at elucidating biological 
mechanisms from high-dimensional data have traditionally focused on particular 
points along this spectrum of computational approaches. We suggest that gleaning 
translationally relevant insights into the infl ammatory response and its intercon-
nected (patho)physiology will require integration of methods from across this spec-
trum [ 13 – 17 ,  35 – 38 ], in order to progress from data to models to actionable 
knowledge and prediction (ideally in an in vivo or clinical context) [ 18 ,  27 ]. 

    Data-Driven (Correlative) Approaches to Dynamic 
Infl ammation Data 

 Statistically based approaches, with which most biologists and clinicians are gener-
ally familiar, include regression techniques that build models predictive within the 
conditions of the data on which the models were trained [ 39 ]. Although these meth-
ods cannot provide detailed mechanistic insights, they can be used to understand 
abstract features of the response such as the presence of nonlinearities or the identi-
fi cation of factor interactions that affect the response. The main drawback of this 
class of models is the fact that they often are devoid of mechanistic insight, and their 
linearity in the parameters can overfi t to the data on which they were trained. 
Associative methods, such as hierarchical clustering, may be used to highlight the 
natural variability, as well as any overlap, across experimental or clinical condi-
tions. Hierarchical clustering is a simple and unbiased clustering method, which 
aims to build a hierarchy of clusters. The limitation is the cluster must be built pair-
wise; since it is purely based on the similarity between the data, the cluster may lack 
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biological relevance [ 20 ]. Hierarchical clustering is used extensively in the genom-
ics fi eld and was used to discern patterns and coregulated clusters of gene expres-
sion associated with sepsis and trauma/hemorrhage in both animals [ 40 – 43 ] and 
humans [ 44 – 48 ]. 

 A less-utilized data-driven method is principal component analysis (PCA), 
which reduces a high-dimensional dataset into a few principal components that 
account for much of the observed variance in the data. When applied to time-series 
data, PCA may identify the subsets of the variables under study (genes/proteins/
etc.) that are most strongly representative of the response. Thus, these principal 
components may be interpreted as the principal drivers of the observed response 
and can give some mechanistic insights into the underlying process [ 13 ,  49 ]. In the 
setting of infl ammation, correlative approaches, such as PCA, could facilitate the 
development of therapeutics by yielding insights into the mechanisms by which 
these therapeutic modalities may function [ 50 ]. Similarly, PCA may aid the devel-
opment of diagnostics by analyzing the cytokine milieu in the blood resulting from 
infl ammatory spillover in order to identify the health state of individuals and pos-
sibly inform patient-specifi c interventions [ 51 ]. 

 Nonetheless, principal components, being linear combinations of the original 
mediator variables, often do not lend themselves to clear biological interpretations 
[ 32 ]. Principal components do, however, greatly ease dimensionality issues and pro-
vide a compact and effi cient explanation of the data in terms of meaningful groups of 
mediator variables. Successful implementation of PCA within this context requires 
some adjustments. Mediators are measured on widely different scales which need to 
be appropriately adjusted for meaningful comparisons. This may be done in several 
ways, taking into account known biological effects. Two mediators may show sig-
nifi cant variation within their possibly very different ranges, in which case we can 
rescale them appropriately. However, this should not be done, for example, if one of 
the two hypothetical mediators has small variation simply because it is an inert fac-
tor. Rescaling inert factors would simply amplify the error in the data. Once this 
rescaling issue is settled, a PCA can be carried out. In our own studies, we aug-
mented such analysis in two additional ways. We reevaluated the importance of a 
specifi c mediator as follows: deem  k  principal components as being signifi cant (by 
explaining, as usual, a certain fraction of the total variance). Next, assess the impor-
tance of each mediator in view of these  k  principal components, by adding the abso-
lute values of the weights associated to that mediator within the  k  principal 
components. The higher the sum, the more relevant the mediator. This allows us to 
rank the relative importance of the mediators. A word of caution: a mediator that is 
naturally very noisy may be ranked as important by the PCA method, but it need not 
necessarily be highly relevant to the phenomenon under study. The last point we 
make is that it is often more convenient to work with only biologically intuitive linear 
combinations of mediators rather than principal components. Such intuitive linear 
combinations are usually suggested by the principal components themselves from 
which we may delete certain mediators that appear nonintuitive. This still reduces the 
dimension, offers good biological interpretation, but the analysis that results is more 
complicated, since these linear combinations become correlated [ 18 ,  32 ]. 
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 One clinically important area in which we have carried out data-driven modeling 
is traumatic brain injury (TBI). Infl ammation induced by TBI can lead to both mor-
bidity and mortality [ 3 ,  52 ]. We obtained both clinical data and data on the dynamic 
changes in multiple infl ammatory mediators in the cerebrospinal fl uid of TBI 
patients. The clinical data on each patient consisted of one-dimensional variables 
such as age, gender, presence of infection, bleeding, decompression, presence of 
subarachnoid hemorrhage, and Glasgow Coma Scale (GCS), which quantifi es the 
nature of the initial brain injury on a numerical scale. The Glasgow Outcome Score 
(GOS) is the outcome variable; we view it as the response variable to study and 
predict as a function of the other input variables. The GOS quantifi es the state of 
health of the subject when hospital treatment ceases. Our initial approach involved 
extracting orthogonal polynomial trends from each cytokine’s time series, up to a 
specifi c degree  d . The degree  d  was constant across both cytokines and subjects. 
The trends, by merely encapsulating linear, quadratic or cubic growth, have the 
distinct advantage of not being dependent on the actual length of the time series 
(which generally have widely different lengths). We then used these polynomial 
trends, quantifi ed as one-dimensional variables, as predictors for the GOS and 
explored multinomial logistic as well as probit models. The models emerged upon 
fi tting to data, and subsequent selection of the statistically signifi cant clinical pre-
dictors as well as the orthogonal polynomial time trends of cytokines. Upon extract-
ing polynomial trends, we carried out a study of the residuals. The model was 
obtained by using 80 % of the available data and was tested on the remaining 20 %. 
Ultimately, a logistic model was found as an optimal predictive tool (unpublished 
observations). 

 We next hypothesized that changes in the probability of survival vs. nonsurvival 
are related to the dynamics of the infl ammatory response, the factors intrinsic to the 
patient (i.e., key demographic indicators) as well as to metrics related to the injury 
itself. To test this hypothesis, we developed a method which we call “Dynamic 
Profi ling,” as a means of assessing the dynamic course of a TBI patient within the 
hospital environment (Fig.  8.1 ). In the TBI application of Dynamic Profi ling, a clus-
ter is a subset of TBI patients that share similar characteristics. The set of clusters, 
recalculated after each set of cytokine readings, forms a partition of the TBI patients. 
To a given cluster, we associate three statistics based on the GOS score: the number 
of GOS scores equal to 1 in the cluster (this is the number of patients that died, to 
which we refer as “red fl ags”), the average GOS score of the subjects in the cluster, 
and the standard deviation of the GOS scores in that cluster. The vector of these 
three statistics is called the “weight” of the cluster. A cluster has a favorable weight 
if it has a small number of deaths, a high GOS average and a low GOS standard 
deviation. A useful statistic for the cluster is the probability of death of a patient 
belonging to that cluster (a “red fl ag”); it is derived as the ratio of “red fl ags” to the 
total number of subjects in the cluster. During the hospital stay, the aim is to diag-
nose, and ideally, reduce the probability of death (as we pass from stage  i  clusters to 
stage  i  + 1). The data on which clustering is based consists of vectors in Euclidean 
space, with the most natural metric to use being the usual Euclidean distance. 
Hartigan’s  k -means routine is particularly well suited to clustering such 
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high- dimensional Euclidean data. We used the following variables to obtain the 
clusters: GCS, the subset of statistically signifi cant demographic and clinical vari-
ables, the statistically signifi cant polynomial trends in the time series of infl amma-
tory mediator readings up to stage  i  − 1 clustering (inclusive), and the infl ammatory 
mediator readings during the current time interval. We note that the number of vari-
ables used to cluster on does not increase as we move to higher stage clustering. 
Indeed, we only use polynomial trends of degree at most  d , irrespective of the length 
of the time series, or, equivalently, irrespective of the stage of clustering. This yields 
robustness to the clustering process while simultaneously bounding the dimension 
in which clustering takes place. The clusters’ weights offer the opportunity of iden-
tifying patterns in the infl ammatory mediators that yield favorable GOS scores. At 
each clustering stage, the fraction of “red fl ags” (deaths) in the cluster, in which the 
new patient falls, estimates the probability of death of the patient. The procedure 
lends itself easily to a Bayesian approach by placing a prior distribution (of proba-
bility of death) on existing clusters based on known medical expertise not pertaining 
to the data at hand. This is then updated by the observed data through the Dynamic 
Profi ling method described above. The resulting posterior distribution encapsulates 
both the medical expertise as well as the observed probabilities of death within the 
data. Using this method, we were achieved a 72 % success rate in prediction of out-
come post-TBI, a rate considerably higher than that of 50 % obtained by  assigning 
the outcome to Low or High randomly (unpublished observations).

   Like most biological processes, infl ammation proceeds as a series of interacting 
cascades of signaling events that are often refl ected in the production and secretion of 

  Fig. 8.1    Patient data is used 
to generate clusters. The 
initial cluster is based solely 
on the GS initial injury. 
A cluster adding in 
demographic data follows. 
Upon the reading of cytokine 
data, successive clusters are 
produced. The stage  K  cluster 
yields the probability of 
survival at that stage of the 
hospital stay       
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infl ammatory mediators that likely form well-coordinated networks [ 13 ,  47 ,  53 – 59 ]. 
In order to better discern organizational aspects of interacting networks of infl amma-
tory mediators, such as coregulation or autoinduction, a variety of methods have been 
developed. Hierarchical clustering and Bayesian methods use high- throughput 
genomic or proteomic data of several time points and/or conditions to correlate gene 
expression patterns with function and infer regulatory networks of correlated genes 
[ 60 ,  61 ]. Several developments in these methods over the last 15 years have yielded 
more informative networks that can be more easily translated into mechanistic mod-
els [ 62 ,  63 ]. A key point is that any network analysis method must refl ect, and yield 
insights into, the dynamics of a given infl ammatory response. For example, we have 
utilized a relatively simple network analysis method employed over discrete intervals 
of data to analyze the commonality and differences between experimental surgical 
cannulation trauma + hemorrhage in mice vs. the sham procedure (surgical cannula-
tion only). This analysis suggested that the circulating mediators produced in 
response to the sham procedure were characterized by a high degree of interconnec-
tion/complexity at all time points, while the response to trauma/hemorrhage con-
sisted of different central nodes, and exhibited zero network density over the fi rst 2 h 
with lesser connectivity vs. sham at all time points [ 13 ]. 

 Among network methods, dynamic Bayesian networks (DBNs) are particularly 
suited for inferring directed (causative) networks of interactions based on the proba-
bilistic measure of how well the network can explain observed data. DBNs provide 
a good platform for incorporating biological knowledge alongside data in order to 
increase our knowledge of connectivity in biological processes and may be supple-
mented by additional experimental evidence and expert knowledge to hypothesize 
mechanistic models. As an example of the application of this methodology to the 
acute infl ammatory disease, we have begun to examine the systemic infl ammatory 
responses of pediatric acute liver failure (PALF) patients (unpublished observa-
tions). PALF is a complex, catastrophic, rapidly evolving clinical syndrome. The 
clinical trajectory of PALF is dynamic and the precise onset of disease rarely identi-
fi ed, with an exception being acute ingestions (e.g., mushrooms and acetamino-
phen). Patient outcome is refl ected, in part, by the interaction among etiology, 
disease severity, supportive management, and treatment. Yet, outcomes vary among 
children with seemingly similar etiology, disease severity, and treatment; thus, addi-
tional factors are likely involved to explain these variations. Such factors likely 
include a complex interaction among the infl ammatory milieu, end-organ damage, 
immune activation, potential for liver regeneration, and interventions [ 64 ,  65 ]. We 
hypothesized that dynamic networks of immune/infl ammatory dysregulation drive 
outcomes in PALF, and that DBN analysis would shed insights into the structures of 
these networks. We assayed 26 infl ammatory mediators on stored serum samples 
obtained from 49 children in the PALF study group (PALFSG;   http://www.ccm.pitt.
edu/research/projects/multi-center-group-study-acute-liver-failure-children    ) collected 
over 7 days after enrollment. Data were subjected to DBN analysis to suggest how 
infl ammatory mediators are connected over time in spontaneous survivors, nonsur-
vivors, and PALF patients who received liver transplants (outcomes were assessed 
within 21 days of enrollment). Whereas raw infl ammatory mediator levels assessed 
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over time did not distinguish among PALF outcomes, DBN analysis revealed 
 distinct chemokine-related networks that distinguished spontaneous survivors from 
those who died. The DBN pattern identifi ed in patients who underwent liver trans-
plantation was more like that seen in spontaneous survivors than in those who died. 
Thus, we suggest that DBN may have general utility in other complex diseases with 
an infl ammatory etiology.  

    Dynamic, Mechanistic Modeling of Infl ammation 

 Mechanistic computational models are derived from more-detailed biological and 
physical descriptions of a system and have a rich set of tools for both analysis and 
simulation. These models, based on causative interactions, can be constructed as 
ordinary differential equations (ODEs), rules-based models (RBMs), and agent- 
based models (ABMs) among other methods (including hybrid methods) and have 
the advantage of potentially being predictive outside the range of conditions/time- 
points on which they were calibrated. Although it is often diffi cult to parameterize 
such models, they can unveil emergent phenomena not immediately obvious from 
the interactions that are encoded in the model. There are several analytic tools, for 
ODE models especially, that have been developed and used to decipher the organi-
zational principles of networks (or subnetworks), the properties that explain the 
dynamics and robustness/sensitivity of a given complex system, and, perhaps most 
importantly, the critical points of control in the system [ 33 ]. These tools are particu-
larly important in order to help defi ne the complex interplay between the infl amma-
tory mediators in the blood and other compartments both within the host (organs/
tissue) and without (e.g., in the case of interactions with blood-feeding vectors). 
Tools from dynamical systems theory allow identifi cation of the possible steady 
state(s) of a system as well as the dynamics of the system’s time evolution. These 
tools have been used extensively to explain (or predict, depending on the context) 
diverse behaviors such as bistability, hysteresis, and oscillations in a variety of bio-
logical systems [ 66 ]. Bifurcation diagrams, in particular, can be used to map out the 
effects of a particular parameter on the possible steady-state behaviors of a system 
and to indicate the transition from a healthy steady state to a pathological one [ 16 , 
 35 ,  67 ,  68 ]. The relative importance of parameters can also be quantifi ed by calculat-
ing the change in the model output in response to changes in the parameter values 
using sensitivity analysis [ 33 ,  69 ]. These methods work in a complementary fashion 
to identify the key points that can be modulated to change the behavior of a system. 

 The analysis of ODE models of biological systems can be approached from a 
control theory perspective as well. Achieving robustness and effi ciency are core 
principles of both evolution as well as engineering. Indeed, feedback, a pervasive 
biological phenomenon, is also a fundamental component of control strategies [ 70 ]. 
An ODE model is the equivalent of a state space representation of a control system. 
Thus, it is possible to decompose the biological system into a control structure and 
analyze the role of each component using control theoretic tools that characterize 
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their robustness and identify the key mediators that modulate the performance of 
such a control system [ 71 ]. These analyses are especially relevant given that the 
“tipping point” phenomenon in the infl ammatory response is likely the result of a 
failure of the body’s control structure to handle stress. 

 While we wish to navigate through the process of data → data-driven model → 
mechanistic model → prediction and understanding of the innate immune response, 
we seek to put it in the perspective of translational applications with a focus on 
clinical and preclinical settings. Much of the work in systems biology has under-
standably been in simpler, well-studied model organisms, but even among studies 
focused on preclinical science, there has been an overall lack of translation to the 
clinical arena.  Translational Systems Biology  is a framework with a focus on trans-
lational insights for novel diagnostic or therapeutic purposes and predictive mathe-
matical models that inform in silico clinical trials [ 6 ,  72 ,  73 ]. Initially formulated to 
deal with the clinical challenge of integrating acute infl ammation and organ dys-
function in critical illness, this work expanded to include healing of acute and 
chronic wounds and infections in various diseases, and rational dynamic modula-
tion of infl ammation. 

 We and others have created mechanistic computational models of acute infl am-
mation in sepsis [ 16 ,  37 ,  74 – 76 ], endotoxemia [ 14 ,  35 ,  36 ,  77 – 88 ], and trauma/
hemorrhage [ 14 ,  15 ,  17 ,  36 ]. In large part, these models (both ODE and ABM) are 
based on the typical progression of the infl ammatory pathway described in the pre-
ceding section. Some of these models are purely theoretical (e.g., [ 16 ,  35 ,  37 ,  74 –
 76 ]), while others are based on data either at the protein [ 14 ,  15 ,  17 ,  36 ] or mRNA 
[ 78 ,  79 ,  84 – 86 ] level. Similar mechanistic models have focused on related diseases 
such as necrotizing enterocolitis [ 89 ,  90 ]. 

 Infl ammation is an inherently multiscale process that manifests at the molecular, 
cellular, tissue/organ, whole organism, and population levels [ 28 ]. Early models of 
acute infl ammation at the cellular level highlighted the nonlinear responses to mul-
tiple exposures to the same stimulus (Gram-negative bacterial lipopolysaccharide) 
[ 78 ,  80 – 82 ,  84 ,  88 ]. Some of these computational studies based on in vitro data 
suggested molecular control mechanisms that lead to the phenomena of nonlinear 
responses to repeated infl ammatory stimulation at the cellular level [ 80 – 82 ,  84 ,  88 ]. 
One recent in vitro study involved mouse macrophages treated with extracellular 
β-nicotinamide adenine dinucleotide (NAD + ), a ubiquitous intracellular molecule 
that is anti-infl ammatory when given extracellularly [ 91 ]. In that study, we hypoth-
esized that extracellular NAD +  would modulate the anti-infl ammatory cytokine 
transforming growth factor (TGF)-β1. Indeed, NAD +  led to increases in both active 
and latent cell-associated TGF-β1 in mouse macrophages. The time and dose effects 
of NAD +  on TGF-β1 were complex and biphasic. A statistical model suggested that 
the effects of NAD +  on TGF-β1 were nonlinear and this model was capable of pre-
dicting not only the levels of active and latent TGF-β1 but also the biphasic dose 
effect of NAD + . Based on these data-driven modeling studies, we inferred that the 
effects of NAD +  on TGF-β1 are nonlinear. Accordingly, we created a nonlinear 
ODE model of interactions we considered the most parsimonious and yet still capa-
ble of recapitulating the complex biological phenomena observed experimentally. 
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Model- predicted levels of TGF-β1 protein and mRNA were not only largely con-
fi rmed experimentally but also suggested the presence of other mechanisms of regu-
lation of TGF-β1 by NAD +  [ 92 ]. These studies highlight the utility of traditional 
biochemical/pharmacological studies coupled with computational modeling in 
defi ning novel biological mechanisms.  

    Combining Data-Driven and Mechanistic Modeling 
of Infl ammation 

 We have utilized dynamic data, data-driven modeling, and dynamic mechanistic 
modeling in diverse contexts. We also utilized both correlative (transcriptomic anal-
ysis, PCA, and regression) and causative (ODE) models in our in vivo studies on the 
role of trauma in the murine response trauma/hemorrhagic shock. Initial studies 
using a literature-based, in vivo-calibrated mechanistic ODE model suggested that 
the underlying trauma is central in driving the infl ammatory response to combined 
trauma/hemorrhage, both systemically and in the liver [ 15 ]. Transcriptomic data 
supported these model predictions as indicated by a large overlap between the genes 
and pathways induced in trauma alone vs. those induced in the setting of experimen-
tal trauma/hemorrhage [ 15 ]. This ODE model was extended to include details of 
experimental trauma/hemorrhage in mice (e.g., bleeding rate and target blood pres-
sure) and further validated using a unique, computerized platform for automated 
hemorrhage that was constructed specifi cally to test the behavior of this mathemati-
cal model [ 17 ]. Later, multivariate regression, hierarchical clustering analysis, PCA, 
and dynamic network analysis all suggested that despite a large overlap at the level 
of unprocessed infl ammatory mediator data (as shown by inconclusive hierarchical 
clustering of these data), there were major mechanistic differences between surgical 
trauma alone vs. trauma/hemorrhage [ 13 ]. 

 In addition to the data-driven modeling work on TBI described above, we also 
carried out combined data-driven and mechanistic modeling in TBI using the same 
data on TBI patients described above (unpublished observations). Initially, we car-
ried out PCA, which suggested that primary drivers of infl ammation in this TBI 
cohort. Based on this analysis, we created patient-specifi c, mechanistic ODE mod-
els that were fi t to each patient’s data. These modeling-based studies raise the pos-
sibility of personalized modeling for TBI patients during their hospital stay. 

 In a similar fashion, we created a two-compartment mathematical model of por-
cine endotoxemia [ 83 ], based on an existing mathematical model of mouse endotox-
emia [ 14 ,  15 ,  17 ,  36 ], in order to further test the hypothesis that a conserved 
infl ammation framework could have radically individual manifestations. PCA of 
circulating infl ammatory mediators suggested a central role for the cytokine IL-1β in 
this infl ammatory response. Based on this analysis, we constructed a two- 
compartment ODE mathematical model that encompasses infl ammation, lung 
(patho) physiology, and a damage variable that recapitulates the health of the animal 
[ 83 ]. This mathematical model could be fi t to both infl ammatory and physiologic 
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data in the individual swine, whose outcomes ranged from a self-resolving infl am-
matory response with fairly normal lung histopathology and function through vari-
ous degrees of dysregulated infl ammation and lung damage to death accompanied 
by severe lung injury [ 83 ]. More recently, we augmented this pig-specifi c two- 
compartment ODE model to include a third “tissue” compartment. This three- 
compartment mechanistic model was initially calibrated with data from individual 
surviving trauma patients, data that were used to produce 10,000 in silico patients 
subjected to virtual trauma/hemorrhage. This study raises the possibility of individu-
alized outcome prediction for trauma patients as well as showing the potential for in 
silico clinical trials based on a small, but representative, cohort of actual patients.   

    Conclusions 

 We have increased our understanding of the infl ammatory response beyond descrip-
tion of its symptoms and unveiled an ever-increasing complexity underlying this 
evolutionarily conserved internal communication mechanism [ 2 ,  7 ] that manifests 
at multiple biological scales [ 27 ,  28 ]. Clinically, translational systems approaches to 
infl ammation have the potential for the identifi cation of novel, rationally designed 
therapies and diagnostics—as well as for gaining new basic mechanistic insights—
via combined data-driven and mechanistic modeling.     
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