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           The Translational Dilemma and the Need for Dynamic 
Knowledge Representation 

 As noted elsewhere in this book, the Translational Dilemma, the inability to translate 
the successes at obtaining basic mechanistic knowledge about biological processes 
into clinically effective therapeutics, is the greatest challenge facing the biomedical 
community [ 1 ]. The Translational Dilemma consists of two primary barriers that 
need to be breeched (1) the need to accelerate the scope of hypothesis testing neces-
sary to deal with the multiplicity of possible explanations of high- resolution data 
(the experimental throughput problem) and (2) the ability to adequately evaluate the 
consequences of highly complex, multicomponent, multihierarchical integrative 
hypotheses (the multiscale problem). Both of these issues are directly related to this 
requirement: biomedical researchers must greatly increase their ability to evaluate 
the  plausibility  of mechanistic hypotheses and their manifestation at the systemic 
level. Meeting this requirement will almost certainly involve harnessing the power 
of advanced computational modeling and computer hardware for the dynamic 
knowledge representation of biological systems in such a way that hypotheses can 
be instantiated and evaluated in silico. The ability to execute in silico experiments 
offers potentially the only viable path to substantially accelerate and enhance the 
Scientifi c Cycle by providing a plausibility fi lter for putative hypotheses. This will 
substantially reduce the set of possible mechanistic explanations for a particular 
observation and will help direct and focus the design of traditional laboratory exper-
iments to further refi ne the set of possible hypotheses. This chapter discusses the 
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use of agent-based modeling (also known as individual-based modeling) for 
dynamic knowledge representation with an explicit translational goal in the area of 
acute infl ammation.  

    Dynamic Knowledge Representation 
with Agent-Based Modeling 

 Agent-based modeling is an object-oriented, discrete-event, rule-based computa-
tional modeling method [ 2 – 6 ]. Agent-based models (ABMs) consist of virtual environ-
ments populated with objects (agents) that execute behaviors based on programmed 
rules that govern their interactions with the local environment and other agents. An 
ABM represents a system as populations of components (“agents”) where the simu-
lation agent level of the ABM corresponds to the primary component level of the 
system being studied; for instance, a cell-level ABM uses agents that primarily rep-
resent biological cells. An ABM  agent class  is defi ned by a specifi cation of the 
properties, characteristics, and rules of an agent type that govern its identity and 
behavior. As an ABM is executed, it creates a population of individual computa-
tional instances (an agent) of each agent class, where each individual agent pos-
sesses the behavioral rule sets and defi ned properties of its agent class but once 
created can have diverging behavioral trajectories based on the different inputs it 
receives within a heterogeneous simulation environment. ABM rules are often 
expressed as conditional statements (“if-then” statements), making ABMs suited to 
expressing the hypotheses that are generated from basic science research, though it 
should be noted that the general conditional nature of simulation agent rules does 
not preclude the encapsulation of other types of mathematical or computational 
models (i.e., differential equation, stochastic, or network) as rule systems [ 7 – 9 ]. 
A standard conditional agent rule for a cell agent interacting with its environment 
might have the following format:

    if Compound A (in the environment) is present, then bind to and activate  Cell- Surface 
Receptor B (in the cell-agent)   

   if Cell-Surface Receptor B is activated, then increase Signal Transduction Enzyme 
C (in the cell-agent) by x   

   if Signal Transduction Enzyme C is increased beyond threshold y, then activate 
Transcription Factor D   

   if Transcription Factor D is activated, then express Gene E   
   and so on…     

 As noted above, the rule sets for agents can be of any formal type, such as a series 
of logical statements or a differential equation. Regardless of the specifi c ABM 
rules, ABMs allow a close mapping between the natural language expression of 
hypotheses present in publications (the current means by which this knowledge is 
communicated within the community) and the rule structure of ABM [ 10 ,  11 ]. As 
results can    be readily used for dynamic knowledge representation, particularly for 
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researchers not expressly trained in either computational or mathematical modeling 
by allowing them to more easily translate their biological knowledge into a compu-
tational form. 

 ABMs also intrinsically cross multiple scales of biological organization by nec-
essarily involving at least three levels of system organization. Scale #1 is the lowest 
level of system process represented, and this is accomplished by the agent’s behav-
ioral rules. Scale #2 is the “middle” level corresponding to the primary component 
level chosen, and processes at this level are represented by the behavior of an indi-
vidual agent. Scale #3 is the “system” level consisting of the global phenotype 
under investigation and is generated by the aggregate behavior of populations of 
agents. To use an example of a cell-as-agent ABM, Scale #1 then represents molec-
ular events associated with signaling and protein synthesis, Scale #2 represents the 
behavior of an individual cell as it changes state, secretes something or moves, and 
Scale #3 represents tissue behavior arising from the interactions between popula-
tions of cellular agents. Furthermore, these levels can theoretically be nested, to 
provide a comprehensive depiction of a multiscale biological system (see Fig.  3.1 ), 
making ABMs well suited for creating modular models [ 6 ,  7 ,  12 – 14 ].

  Fig. 3.1    The mapping between scales of biological organization, research community structure, 
and agent-based models. This diagram maps the similar structure of organizational scales present 
in biological systems, the research communities studying them, and the architecture of an ABM. 
Note that scales of organization are nested in the biological system and the ABM, refl ecting the 
trans-scale coupling seen in both systems. Alternatively, the research community structure is dis-
parate and compartmentalized, arising from both social and pragmatic logistical factors. Reprinted 
with permission from [ 11 ]       
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      Related Modeling Methods 

 Given the description above, it is clear that agent-based modeling is actually a very 
general means of system representation and as such is viewed as quite similar to 
many other modeling methods. In fact, many of these types of modeling methods 
can be considered as subtypes of ABMs, leading to a great deal of variability in the 
use of the term “ABM.” As such, it is useful to clarify the distinctions between cer-
tain other commonly used modeling methods and agent-based modeling as the term 
is used in Translational Systems Biology. One of the most closely related modeling 
methods is cellular automata (CA), particularly two-dimensional CAs. Cellular 
automata involve a discretely divided space into a series of “cells,” such that the 
state of each particular cell is defi ned by a set of rules dependent upon the states of 
some defi ned neighborhood of cells. Classical examples of two-dimensional CAs 
are Conway’s Game of Life [ 15 ] and Kaufman’s N-K System [ 16 ]. These systems 
can be seen as ABMs where there is a single agent class (the basic unit “cell”), 
which does not move, and a set of agent rules that govern an agent’s state transi-
tions. Another closely related modeling method is the Cellular Potts Model (CPM), 
developed by Glazier and Graner, where the states of points on a lattice are deter-
mined using probabilistic rules, and membership in a particular group of points is 
used to defi ne superstructures representing cells or aspects of tissue [ 17 ]. Each of 
these methods has its own benefi ts and uses, most often governed by a combination 
of the resulting model’s use and the data available to construct the model. For 
instance, while “movement” can be simulated using a CA, it is often less intuitive 
for a biologist to think of a cell’s movement as a progression of cellular variables 
across a grid as opposed to a specifi c computational object that changes its position. 
As another example, while a CPM can allow cells to change their size and shape 
(where a “cell” is defi ned by a group of lattice points), the means by which a lattice 
point’s membership in a particular cell, often expressed as a Hamiltonian represent-
ing an effective energy function, does not readily map to a biologist’s knowledge set 
(as evidenced by the relative incomprehensibility of the prior terms!). At one level 
(i.e., in terms of the actual execution of the binary code), the distinction between 
these methods and agent-based modeling may be a distinction without a difference; 
however, in terms of facilitating knowledge representation, the component-centric 
emphasis of agent-based modeling is more consistent with how most biological 
systems are conceptualized (i.e., “things doing things”).  

    Agent-Based Models Versus Multiagent Systems 

 In addition to closely related modeling methods, there is also ambiguity in the use 
of the term “agent.” The distinction between an “agent-based model” and a “multia-
gent system” is just such a situation. Both terms are widely used in the computer 
science and the modeling and simulation community and are often used to mean the 
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same thing: a computer program that utilizes multiple computational agents. 
However, in terms of the types of systems they usually describe these two methods 
actually represent very different types of computational tools. Therefore, for pur-
poses of comparison, we defi ne a distinct difference between these two entities (not-
ing that the following distinction is not intended to be a defi nitive description of the 
distinction but rather is intended to clarify the differential usage of the term “agent” 
in the context of Translational Systems Biology). 

 We consider “agent-based modeling” as a simulation method, where the model 
constructed is intended to mimic or represent some other reference system, which is 
the subject of investigation. The computational agents making up the ABM are 
intended to represent specifi c types of components in the real world where selected 
characteristics of the real-world object are refl ected in the nature of the rules incor-
porated into the simulation agent. Since a main benefi t of agent-based modeling is 
the ability to represent populations of real-world objects at the individual level with 
simulation agents, in many circumstances ABMs consist of a large number of indi-
vidual instances of simulation agents derived from a single agent class. 

 Alternatively, an “agent-directed” or “multiagent system” is generally used to 
describe a computer system design solution, where computational agents perform 
tasks related to the implementation of a particular computing goal. These computa-
tional agents generally have some decision-making capacity, which may be aug-
mented using artifi cial intelligence approaches, that allows them to manage the 
information fl ow within a particular software implementation. In multiagent com-
puter systems, the computational agents generally do not have a specifi c real-world 
reference object for a computational agent, rather there is a set of recognized tasks 
in information fl ow management that can be expressed as a set of algorithms and 
packaged for execution by a computational agent.  

    Properties of Agent-Based Models 

 As noted above, ABMs are related to other spatially discrete modeling methods, 
most notably cellular automata, though the mobile capability ABM agents and abil-
ity to represent a wider range of model topologies could lead to consideration of 
cellular automata as a special type of ABM. However, in practice, many ABMs have 
several characteristics of agent-based modeling that set it apart from other object- 
oriented, rule-based modeling systems (such as Petri nets, Boolean, or Bayesian 
Networks), even though at its purest defi nition, they could all be potentially viewed 
as ABMs. 

    Representation of Spatial Relationships 

 Agent-based models (ABMs) readily incorporate  spatial relationships , be they man-
ifest in an actual spatial topology or a topological interaction neighborhood linking 
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individual agents. In an ABM agent, behavior is driven by interactions determined 
by agent neighborhoods defi ning the communication and interaction network for 
each agent. An agent neighborhood can be represented as a two- dimensional square 
grid (very common), a three-dimensional cubic space [ 7 ,  12 ], two- or three-dimen-
sional hexagonical space [ 18 ,  19 ] or as a network topology, as a neighborhood does 
not necessarily mean physical proximity but rather the confi guration of some set of 
other agents with whom an agent can interact. This defi nition of an agent neighbor-
hood is consistent with the bounded nature of the sense-and- respond and message 
passing capabilities of biological objects. This may also be used to represent physi-
cal interactions and forces between agents that affect their subsequent behavior.  

    Representation of Parallelism and Concurrency 

 ABMs simulate  parallelism . In general, each ABM agent class has multiple compu-
tational instantiations that form a population of agents, each capable of having dif-
ferent behavioral trajectories. These heterogeneous behaviors produce population 
dynamics that are the observable, system-level output of the ABM. A classic exam-
ple of this phenomenon is the behavior of fl ocks of birds, in which simulations uti-
lizing relatively simple interaction rules among birds can lead to sophisticated 
fl ocking patterns without an overall controller [ 20 ]. This property is well suited to 
the tendency in biology towards classifi cation: the grouping of similar biological 
entities that share some set of properties and behaviors. Biological systems are then 
readily characterized as being composed of some types and numbers of these enti-
ties. This type of conceptual representation exactly suits the architecture of an ABM.  

    Incorporation of Stochasticity and Randomness 

 ABMs readily incorporate  stochasticity . Many biological systems have behaviors 
that appear to be random [ 21 ,  22 ]. Whether these behaviors are truly random, or just 
merely appear to be due to a lack of fi ner grained knowledge is, from an operational 
standpoint, often irrelevant as long as the probabilities of a particular behavior can be 
determined for the population as a whole experimentally. These probabilities are then 
used to generate a probability function for the behavior of a single agent that is then 
incorporated into the agent’s rules. As a population of agents executes their rules dur-
ing the course of a simulation, each agent follows a particular behavioral trajectory 
as its behavior rules’ probabilities are resolved as the simulation progresses. A set of 
behavioral outputs is thusly generated from a single ABM, producing system behav-
ioral state spaces representing the set of population-level biological observations.  

    Modular Architecture 

 ABMs are  modular . Agents represent a distinct and circumscribed modular level 
into which new information can be added either through the introduction of new 
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agent types or by the modifi cation of existing agent rules without having to reengi-
neer the entire simulation. Agent classes representing generic cell types can be sub-
divided and expanded to include a fi ner degree of detail with respect to subcategories 
of cells while the remainder of the ABM remains essentially intact. New mediators 
can be similarly added by creating new cellular state or environmental variables and 
rules. Multiple ABMs can be aggregated, providing that their points of contact and 
interaction are consistent across the incorporated ABMs [ 12 ,  19 ].  

    Generation of Non-Intuitive System-Level Phenomenon 

 A central hallmark of ABM is that they generate system-level behaviors that could 
not have been reasonably inferred from, and often may be counter-intuitive to, 
examination of the rules of the agents alone. This is our defi nition of  emergent  
behavior. ABMs are able to generate this type of behavior due to the locally con-
strained and stochastic nature of agent rules, and the population effects of their 
aggregated interactions. For example, in the bird fl ock, an initial observation would 
suggest an overall leader, thereby requiring a means of determining rules for fl ock- 
wide command and control communication. This, however, is not the actual case; 
birds function on a series of locally constrained, neighborhood-defi ned interaction 
rules, and the fl ocking behavior emerges from the aggregate of these interactions 
[ 20 ]. The capacity to generate nonintuitive behavior is a vital advantage of using 
ABM for conceptual model verifi cation, as often the translation of generative mech-
anisms to system-level behavior produces paradoxical and unanticipated results that 
break a conceptual model.  

    Facilitation of Useful and Detailed Abstraction 

 ABMs provide for high-fi delity component abstraction of system structure. ABMs 
can be readily constructed using incomplete and abstracted knowledge, yet produce 
surprisingly highly “realistic” system level behavior. Because of this property it is 
advantageous in the initial steps of developing an ABM to keep the rules as simple 
and verifi able as possible, even at the expense of some detail. As such, meta- analyses 
of existing basic research often guide the development of an ABM [ 23 ]. ABMs 
constructed with admittedly incomplete and uncertain mechanisms representing 
statements of hypotheses can provide qualitative verifi cation of those hypotheses 
[ 24 ]. As with all computational models, the greater fi delity of mapping between the 
ABM and its biological counterparts enhances the correlation between simulation 
results and the real-world behaviors. An iterative process of refi nement of an ABM 
will lead to increased detail, possibly a stronger correlation to real-world data and a 
greater confi dence in the ability of the ABM to describe observable phenomena. 

 Agent-based modeling is an integrative modeling framework that can readily 
be used for communicable dynamic knowledge representation [ 10 – 12 ,  25 ] (see 
Fig.  3.1 ). Agent-based modeling, because of its emphasis on “things doing things,” 
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is generally more intuitive for nonmathematicians/computer scientists than more 
formal mathematical modeling methods such as ordinary differential equations, 
partial differential equations, and their stochastic variants. Agent-based modeling 
presents a lower threshold barrier for researchers to “bring to life” their concep-
tual models and integrate in silico methods with traditional in vitro and in vivo 
experiments [ 2 ]. 

 Since ABMs are knowledge-based models, constructed by instantiating bottom-
 up mechanisms (as opposed to inductive models, where mechanisms are inferred 
with the goal of explaining data), agent-based modeling addresses different model-
ing questions than equation-based inductive models. For instance, ABMs are not 
readily developed directly from a mass of raw data; they require that the modeler 
have a mechanistic hypothesis that, when instantiated in an ABM, can be used to 
generate simulated data, which can then be compared to the real-world data set. One 
can envision an iterative process by which inductive models are applied to large data 
sets, wet lab experiments are carried out to investigate the mechanisms inferred 
from the inductive model, and the experimentally confi rmed mechanisms are used 
as a basis of an ABM, which would close the discovery loop by recapitulating the 
original data set. 

 Agent-based modeling was pioneered in the areas of ecology, social science, and 
economics, but since 2000 they have increasingly been used to in the biomedical 
arena to study sepsis [ 11 ,  12 ,  26 ,  27 ], cancer [ 7 ,  18 ,  28 – 30 ], cellular traffi cking 
[ 31 – 35 ], wound healing [ 36 – 38 ], and intracellular processes and signaling [ 8 ,  25 , 
 39 – 44 ]. The majority of biomedical ABMs utilize cells as the primary simulation 
agent level, though there are several exceptions of modeling intracellular processes 
from [ 8 ,  25 ,  39 – 44 ], and we consider the use of agent-based modeling in epidemiol-
ogy, with its extremely rich background [ 45 ], as a separate discipline. From the 
standpoint of addressing the Translational Dilemma, cells form a ready level of 
“encapsulated complexity” that is both highly studied as a unit (i.e., cellular biol-
ogy) and can be addressed with relatively straightforward input–output rules [ 6 ]. As 
noted above, while ABM agent rules are often logical or algebraic statements, rules 
can be a mathematical model in itself. There are multiple examples of embedding 
complex mathematical models within a cell-level ABM agent [ 6 – 9 ,  14 ,  38 ,  46 ]. 
These examples emphasize the potential unifying role of agent-based modeling as a 
means of “wrapping” different simulation methodologies. This suggests that the 
metastructure of an ABM can be used as a template into which structured biomedi-
cal knowledge can be integrated to facilitate the instantiation of multiple mechanis-
tic hypotheses [ 47 ].   

    Tools for Agent-Based Modeling 

 Agent-based modeling environments require addressing certain software issues 
beyond the basic capabilities of more traditional object-oriented programming 
tools. These issues include emulating parallel processing to represent the actions of 
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multiple agents within populations, dealing with associated execution concurrency 
issues within those populations, establishing means of defi ning model topology 
(i.e., agent interaction neighborhood), and the development of task schedulers to 
account for the multiple iterations that constitute an ABM run. As a result of these 
issues, along with the case that many researchers who utilize ABMs are not trained 
computer scientists or programmers, many biomedical ABMs are created using 
existing ABM development software packages. These agent-based modeling envi-
ronments attempt to strike a balance between representational capacity, computa-
tional effi ciency, and user-friendliness. A noncomprehensive list of such ABM 
toolkits can be seen in Table  3.1 . All these platforms represent some trade-off 
among the triad of goals mentioned above. For an excellent review and comparison 
of many of these agent-based modeling toolkits, see [ 48 ].

       Agent-Based Modeling of Infl ammation 

 The diffi culty in engineering safe and effective therapeutic agents directed at infl am-
mation is a primary example of the Translational Dilemma in biomedical research. 
Because of these characteristics infl ammation represents perhaps the ideal target for 
systems biology and computational modeling with agent-based modeling. The use 
of agent-based modeling has dramatically increased since the year 2000 and is now 
a generally accepted means of performing computational biology. As is the case 
when discussing any specifi c modeling method, it should be reemphasized that 
agent-based modeling is only one of an array of methods that can be used to repre-
sent and investigate biological systems (such as those covered in other chapters in 
this book). Each of these modeling techniques has its strengths and weaknesses, and 

   Table 3.1    Freeware agent-based modeling toolkits   

 Toolkit 
name 

 Language/
Platform 

 Degree of 
programming 
expertise? 

 Degree of 
fl exibility?  Website 

 Swarm  Objective C, 
Java 

 High  High    http://www.swarm.org     

 Netlogo  Windows, 
Macintosh, 
Linux 

 Low  Low    http://www.ccl.northwestern.edu/
netlogo/     

 Starlogo  Windows, 
Macintosh, 
Linux 

 Low  Low    http://education.mit.edu/starlogo/     

 Repast  Java  Moderate/high  Moderate    http://repast.sourceforge.net/     
 MASON  Java  Moderate/high  High    http://cs.gmu.edu/~eclab/projects/

mason/     
 SPARK  Java  Moderate/high  Moderate/

high 
   http://www.pitt.edu/~cirm/spark/     
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potential modelers need to recognize that the modeling method chosen should be 
tailored to the question(s) being asked of the model [ 49 ]. One of the most effective 
ways of communicating the capabilities (and limitations) of a particular modeling 
method is through the use of examples. Since the rest of this book includes detailed 
descriptions of several ABMs involved in Translational Systems Biology, this chap-
ter presents a few examples of types of ABMs not explicitly covered elsewhere in 
this book. 

   ABMs of Infl ammation-Related Intracellular Processes 

 The characterization of intracellular pathways is the traditional focus of systems 
biology, with a long history of work and achievement in the development of math-
ematical models of cellular signaling and metabolic control. These models are gen-
erally biochemical kinetic models, utilizing deterministic and stochastic differential 
equations. However, the use of discrete-event, particle-based modeling, exempli-
fi ed by agent-based modeling, has certain applications in this arena. With increas-
ing awareness of the infl uence of the complex, compartmentalized environment of 
the intracellular milieu on intracellular dynamics, there is a need to account for 
issues of molecular crowding and spatial heterogeneity of the reaction milieu and 
how they affect enzymatic reactions within the intracellular environment. 
Additionally, the presence of subcellular structures, cytoskeletal elements, organ-
elles, and compartments call for the increasing incorporation of spatial properties 
and detail. Ridgway et al. [ 42 ] used an ABM of intracellular signaling to demon-
strate that the biochemical reaction kinetics in the prokaryotic cytoplasm was 
reduced from three dimensions to nearly two dimensions, with signifi cant conse-
quences for the dynamic modeling of control loops in which subtle changes in 
feedback determine the direction of a molecular switch. Pogson et al. [ 41 ] devel-
oped an ABM of control pathways affecting the transcription factor Nuclear Factor 
kappa B (NF-kB). These studies demonstrating the importance of the spatial distri-
bution in terms of nuclear translocation of the constitutive inhibitor of NF-kB, 
I-kappa-B (IkB), and the binding of IkB to actin, a cytoskeletal protein, a mecha-
nism subsequently identifi ed in their laboratory [ 40 ]. We developed an agent-based 
architecture called Spatially Confi gured Stochastic Reaction Chambers to demon-
strate that even an abstract representation of enzyme kinetics could, if suffi cient 
pathway component detail was included, reproduce canonical behavior at the cel-
lular level, as in the effect of preconditioning on the behavior of the Toll-like 
Receptor 4 (TLR-4) signaling pathway [ 25 ]. A screenshot of the SCSRC for TLR-4 
can be seen in Fig.  3.2 . Similarly, an ABM of NF-kB response to endotoxin uti-
lized molecular level agents nested within “mega-agents” representing different 
infl ammatory cell types to reproduce recognizable dynamics of endotoxin response, 
including priming and tolerance at both the transcription factor and cellular activa-
tion level [ 44 ].
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      Cell-Level ABMs of Systemic Infl ammation and Simulated Clinical Trials 
for Sepsis 

 The cell-as-agent level of component representation provides perhaps the most intui-
tive link between the laboratory-derived basic mechanistic knowledge and the struc-
ture of an ABM. Some of the earliest examples of biomedical ABMs were focused 
at this level leading to the realization that even abstract agent rules could produce 
very recognizable dynamics that could provide deep insights into the essential char-
acterization of a disease process [ 26 ,  29 ]. For example, an early ABM of systemic 
infl ammation and sepsis viewed the infl ammatory process as being governed by 
interactions at the endothelial blood interface [ 26 ]. This ABM generated four clus-
ters of distinct trajectories of model-system behavior purely by altering the degree of 
initial perturbation, trajectories that matched the four primary clinical scenarios 

  Fig. 3.2    Screenshot of spatially confi gured stochastic reaction chamber (SCSRC) model of TLR-4 
signaling. This fi gure demonstrates the underlying architecture of the SCSRC as well as the signal 
trajectory of a single LPS signal agent. Reaction chambers are oriented vertically, and TLR-4 
signaling propagates from the “top” of the model (representing extracellular space) towards the 
“bottom” (DNAs). The various signal transduction proteins are represented as  horizontal bars  
across the model. The trajectory of a single LPS signaling agent as it passed through the various 
layers of signaling. Note the irregular path of the agent, refl ecting the random movement rules that 
refl ect the stochasticity in molecular dynamics. Letter “A” denotes the initial extracellular space 
where the LPS agent is introduced. Letter “B” denotes the fi rst intracellular reaction space imme-
diately under the TLR-4 border. Letter “C” demonstrates the signal amplifi cation at the NF-κB 
activation site, as the single signal agent results in multiple NF-κB agents. Letter “D” denotes the 
DNA reaction space, as additional amplifi cation can be seen in simulated transcription. Letter “E” 
labels synthesized TNF molecules in the process of transport to the extracellular space, seen as the 
straight trajectories. This fi gure is reprinted with permission from [ 25 ]       
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associated with systemic infl ammatory response. This ABM also demonstrated that 
the mechanistic basis of infl ammation was the same whether the initiating insult was 
infectious, as in classical sepsis, or tissue damage, as in severe trauma. 

 The endothelial-surface systemic infl ammation ABM was further extended to 
perform in silico clinical trials based on published and hypothetical infl ammatory-
mediator- based interventions [ 27 ]. Published pharmacologic properties of a series 
of mediator-targeting compounds were inputted into the ABM simulating a sepsis 
population. The effi cacies of the interventions were then evaluated against a simu-
lated control population. None of the mediator-directed interventions led to a statis-
tically signifi cant improvement in simulated patient outcome, including a set of 
immune augmenting interventions (e.g., addition of Granulocyte Colony Stimulating 
Factor) and combination anticytokine therapy (intended to overcome possible path-
way redundancy). While these results were not totally unexpected, the exercise 
demonstrated that the ABM could be used as a means of assessing the veracity of 
the proposed intervention, i.e., what are the global consequences of intervening in a 
particular pathway, and is it actually a good idea to intervene at this point? The 
confi rmation that what appeared to be intuitively plausible points of mechanistic 
intervention did  not  in fact behave as expected when placed in a systemic context 
demonstrated the potential usefulness of agent-based modeling and dynamic knowl-
edge representation for hypothesis verifi cation. We suggest that one of the primary 
roles of dynamic knowledge representation is exactly this type of hypothesis evalu-
ation and verifi cation, intended to reduce the set of plausible hypotheses and thereby 
help direct future investigation by eliminating therapeutic dead-ends.  

   ABMs of Multiorgan Infl ammation and Failure 

 The structural/anatomic approach to multiscale modeling can be taken one step fur-
ther by using the modular property of agent-based modeling to link individual organ 
ABMs in a multiscale architecture. The approach was introduced in an ABM of the 
gut–lung axis of systemic acute infl ammation and multiple organ failure [ 12 ]. This 
ABM incorporates multiple structural and anatomic spaces, e.g., endothelial and 
epithelial surfaces as aggregated by cell-type into organ-specifi c tissues and fi nally 
to organ-to-organ interconnections and crosstalk (see Fig.  3.3 ). This architecture 
also  translates  knowledge across domain specialties (molecular biology to clinical 
critical care), representing molecular and cellular mechanisms and behaviors 
derived from in vitro studies, extrapolated to ex vivo tissue experiments and obser-
vations, leading to patterns of organ-specifi c physiology, and fi nally simulating 
clinically relevant, interconnected, multiorgan physiology including the response to 
ventilator support of acute respiratory failure. This ABM also posited certain char-
acteristics of the gut-derived proinfl ammatory compound that is circulated in the 
mesenteric lymph and induces pulmonary infl ammation. Examining the time course 
of pulmonary infl ammation and comparing that to generated factors following 
intestinal ischemia suggested that the mesenteric lymph infl ammatory compound 
was neither an initial infl ammatory cytokine nor a translocating luminal compound 
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manifesting decreased intestinal permeability, but rather a substance refl ecting 
 cellular damage of gut tissue with properties consistent with damage-associated 
molecular patterns (DAMPs). This last hypotheses remains to be completely con-
fi rmed by the sepsis research community, but at this time appears to be consistent 
with ongoing research in this area [ 50 ].

        Moving Forward: Scaling Dynamic Knowledge Representation, 
the Agent-Based Modeling Format 

 As noted in the Introduction, the Translational Dilemma arises not only diffi culties 
in multiscale representation and instantiation but is also a throughput problem. 
While computational modeling (including agent-based modeling) can potentially 
address the former, generating these models, even with a relatively intuitive method 
as agent-based modeling, is currently a highly specialized, laborious, and 

  Fig. 3.3    Screenshot of multibilayer gut–lung ABM of systemic infl ammation. The multiple 
bilayer topology of the gut–lung ABM is seen with the upper bilayer (letter A) representing the 
pulmonary bilayer, with  aqua cubes  representing pulmonary epithelial cell agents,  red cubes  rep-
resenting pulmonary endothelial cell agents, and below are spherical infl ammatory cell agents. The 
lower bilayer (letter B) represents the gut bilayer, with a similar confi guration, the only difference 
being that gut epithelial cell agents are  pink . Circulating infl ammatory cell agents move between 
these two bilayers on a time schedule calibrated to the rate of systemic circulation and gut lymph 
fl ow. This ABM represents an aggregate of several submodels including endothelial-based infl am-
mation and epithelial tight-junction protein metabolism. This ABM was able to reproduce the 
effects of gut ischemia in propagating the development of acute respiratory failure, the salvaging 
effects of mechanical ventilation, and posited the nature of the gut ischemic product driving respi-
ratory failure as being tied to endothelial cell/tissue damage. Figure reproduced with permission 
from [ 12 ] under the creative commons license       
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time- consuming task. Therefore, developing a scalable global strategy to overcome 
the Translational Dilemma will require substantially lowering the threshold for the 
general researcher to engage in computational modeling. We suggest that the pro-
cess of constructing dynamic computational models can be augmented by leverag-
ing ongoing work in bioinformatics and knowledge representation, primarily related 
to ontologies [ 10 ,  47 ,  51 ]. 

 Ontologies are knowledge classifi cation systems that provide a structured vocab-
ulary and taxonomy for a particular scientifi c domain [ 52 ]. Ontologies utilize taxo-
nomic class structures, their properties, and the relationships between the constitutive 
concepts to organize information within the domain. The use of ontologies is well 
established in bioinformatics, and many bio-ontologies are currently found in an 
online repository called BioPortal [ 53 ], which is managed by the National Center 
for Biomedical Ontologies (NCBO) [ 54 ]. 

 However, despite their usefulness, ontologies/bio-ontologies remain primarily 
classifi cation systems that defi ne identity relationships between concepts but have 
diffi culty expressing dynamic and functional relationships than can be used to rep-
resent mechanistic rules; this gap is the transition from a descriptive model to a 
simulation. There has been work converting ontology-based knowledge representa-
tions into dynamic mathematical models of molecular signaling pathways [ 36 ,  55 –
 59 ]. However, while useful for representing the behavior of specifi c pathways, these 
approaches focus on working within a single ontology (namely the Gene Ontology) 
and do not deal with the multiscale aspects of biology, i.e., the transition of mole-
cules to cells to tissues to the whole organism. Alternatively, ABMs are well suited 
to be an integrating modeling paradigm since they capture the multiscale organiza-
tion of biological systems (see Fig.  3.1 ). We suggest that an ABM-based framework 
can be used to integrate the knowledge from multiple ontologies describing differ-
ent aspects of a biological system (components, functions, space, etc.) in order to 
construct a dynamic multiscale, translational model. 

 We propose the agent-based modeling format (ABMF) as a framework that 
leverages and integrates ontological descriptions of biology to facilitate the con-
struction of dynamic, executable knowledge representations with multiscale repre-
sentational capacity [ 47 ]. The ABMF integrates terms and metadata from BioPortal 
ontologies into three-level modules formatted around the information and data 
needed to construct an ABM. These levels are centered on the level of the simula-
tion agent in a “middle-out” confi guration [ 6 ]. A schematic of an ABMF module 
can be seen in Fig.  3.4  and is organized in a series of orthogonal descriptive class 
structures that can be populated with terms extracted from BioPortal ontologies. 
The modular structure of the ABMF allows for nesting of modules and a recursive 
description of biological systems; this multiscale organizational recursion has been 
noted as a property of biological systems [ 60 ].

   We emphasize that the ABMF is  not  “the” format for an executable ontology 
layer; we hope that there will be development of similar types of tools, using 
 different modeling paradigms. However, we believe that an agent-based modeling 
paradigm demonstrates a robust, evolvable approach that can be spur future 
development. 
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 We further note that the ABMF is not a modeling platform, but rather a 
 metastructure that helps collect and organize the components needed to construct an 
ABM from a biological hypothesis. There is still a signifi cant gulf between the 
formatting of a biological hypothesis and the ability to construct a computer simula-
tion of that hypothesis. The ABMF provides a pathway towards automation by 
leveraging the structured vocabulary and inference capabilities of ontologies. 
Additional text analysis and information extraction technologies can be integrated 
with an ABMF constructor and provide a semiautomated way to collect potential 
parameter values with which to populate a simulation program. 

 The expression of a conceptual biological model in the ABMF places that bio-
logical model into computable form, perhaps facilitating conversion into an execut-
able simulation through the use of a semi-intelligent computational agent. There has 
been recognition of the importance of ontologies in the development of intelligent 
system-aided model and simulation generation, with several proposed schema for 
the development and use of ontology-driven processes [ 61 – 63 ]. The repetitive 
nature of certain steps of model construction suggests that these steps in the creation 
and programming of a simulation model can be expressed as task-based algorithms 

  Fig. 3.4    A schematic description of an agent-based modeling format (ABMF) module. The 
ABMF module incorporates three levels of system representation centered on the simulation agent 
level, which corresponds to the classical agent level in an ABM. The system level corresponds to 
agent population behavior (including so-called emergent phenomenon), and the lowest level of 
organization, generative mechanisms, corresponds to agent rules. Inputted generative mechanisms 
can be in the form of any formal model system including another ABM. This gives the ABMF a 
recursive structure that allows nesting of ABMF modules and makes it a potential pathway to 
hybrid computational models that concurrently employ multiple modeling and simulation meth-
ods. Reprinted with permission from [ 47 ]       
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embedded into an intelligent computational agent, which then treats simulation 
 construction as a planning task using formal logical inference. Computational agents 
have been used in this fashion in bioinformatics for data integration and information 
fl ow management [ 64 – 68 ]. We have proposed that the task of converting biological 
conceptual models into executable simulations, including those associated with the 
population of the ABMF and subsequent conversion into ABMs, could be carried 
out by an intelligent computational agent, which we term a “computational model-
ing assistant (CMA)” [ 51 ]. We envision that this type of agent-directed process can 
semiautomate the specifi cation-mapping work of model construction through the 
use of ontology-based/traditional predicate logic inference structures to generate 
simulation code. This will move towards achieving the translational research goal of 
high-throughput instantiation of conceptual models. Treating the steps of the com-
position process as a planning task can improve the modularity, robustness, and 
scalability of knowledge integration by creating a “middle-ware” discipline, i.e., 
 modeling , and thereby focusing future development on the algorithmic expression 
of the mapping rules used in model development that form the CMA’s inference 
instruction set. This allows expansion of the CMA’s capabilities and expressiveness 
while maintaining interoperability with established but ongoing development in the 
areas of formal semantics/knowledge representation and modeling and simulation 
methods. We believe that this type process automation advances offered by the 
CMA will lead towards the development of cyberenvironments providing scalable 
high-throughput hypothesis instantiation and evaluation.   

    Challenges to the Use of Agent-Based Modeling 

 As with all modeling methods, agent-based modeling is not without its limitations. 
One common issue shared with all computational and mathematical modeling 
methods is that the quality and reliability of the models are directly related to the 
reliability of the underlying assumptions of the model and the quality of their imple-
mentation during construction of the model. This issue can be addressed by empha-
sizing transparency of both underlying assumptions and implementation details 
with respect to the construction of an ABM. The ODD protocol, while not devel-
oped specifi cally with biomedical ABMs in mind, provides a useful reference point 
with respect to documenting the structure and goals associated with an agent-based 
modeling project [ 69 ]. 

 One shortcoming of agent-based modeling is the diffi culty in applying formal 
analysis to the relationship between the agent rules and the behavior of the system. 
Due to the combined stochastic behavior of agents and the diffi culty in assigning 
scalar metrics to account for the spatial aspects of an ABM’s output, it can be very 
challenging to evaluate the effect of parameter values and model structure on an 
ABM’s behavior. Alternatively, equation-based models have well-established pro-
cedures for analytical tasks such as parameter sensitivity analysis, bifurcation anal-
ysis, and behavior-state-space determination. Work on developing mathematical 
descriptions of ABMs offer the prospect that formal analysis may be available in the 
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future [ 70 ]. In the meantime, ABM researchers use a variety of strategies, such as 
heuristics [ 5 ,  27 ], literature-based constraints [ 31 ,  34 ] and Latin Hypercubes [ 9 ,  71 ], 
for parameter estimation and sensitivity analysis. 

 Some of the apprehension associated with the analysis of ABMs can be addressed 
by viewing ABMs as objects more akin to wet lab experimental platforms rather 
than more traditional, equation-based mathematical models. Pattern-oriented analy-
sis, in which corresponding patterns of dynamic behavior are used to relate the 
computational ABM to its real-world referent, allows ABMs to be evaluated much 
in the same way as wet lab systems or model organisms [ 24 ]. From this regard, the 
stochastic and emergent properties of ABMs reinforce their ability to capture the 
robustness of dynamic behavior seen in complex systems, thereby allowing more 
insight into their core organizational structure. 

 ABMs are, in general, more computationally intensive than equation-based mod-
els. The increased computational requirements place constraints on both the size of 
ABMs in terms of number of agents as well as the complexity of their internal rule 
systems. The natural solution to this bottleneck is to implement very large-scale 
ABMs on current high performance computing platforms. However, there are 
intrinsic properties of ABMs, primarily related to the high degree of dynamics in the 
agent-to-agent interaction and communication network that challenge the ability to 
implement ABM on highly distributed memory systems. Certain types of model 
architectures, mostly incorporating limited or relatively static interaction neighbor-
hoods with a high ratio of intra-agent computation (i.e., very complex mathematical 
rules) to interagent communication, are more suited to implementation on these 
massively parallel computer architectures. These types of models are also suited to 
implementation using Graphical Processing Units (GPUs), which offers the possi-
bility of “supercomputer on a desk” computational power for selected types of 
ABMs [ 72 – 74 ]. It should be noted that there are also nontrivial modeling issues 
associated with parallel implementation of ABMs, aside from the computer science 
challenges just noted above. The selection of the scale of process to be distributed 
across multiple processors may have consequences with respect to concurrency and 
event scheduling and to the mapping of the simulation behavior back to the biologi-
cal referent, for instance, attempting to distribute a single agent’s rules over a series 
of processors. Thus, far parallel ABM implementations have not explored the distri-
bution of a single agent’s execution across multiple processors and have opted for a 
more organizationally defi ned distribution strategy that expands the overall size of 
the ABM (i.e., more agents) and keeps the implementation of agent-scale behavior 
at the processor and subprocessor level.  

    Conclusions 

 The Translational Dilemma is the greatest challenge facing the biomedical research 
community today. Future operational procedures for biomedical science should 
involve technological augmentation of all the steps of the scientifi c cycle and allow 
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the knowledge generated from such research to manifest in multiple areas. These 
include the development of highly predictive, personalized simulations to stream-
line the development and design of therapies, simulating the clinical application of 
these therapies in population studies (in silico clinical trials) and predicting the 
effects of drugs on individuals. We suggest that the agent-based paradigm, incorpo-
rating knowledge encapsulation, modularity, and parallelism can play an important 
role in the development of this metaengineering process. Agent-based modeling can 
provide an integrative architecture for the computational representation of biologi-
cal systems. Expanding the tools for AI-augmentation of computational dynamic 
knowledge representation (such as the ABMF and the CMA) can signifi cantly 
reduce the threshold for the general researcher to utilize computational modeling 
and allow investigators to “see” the consequences of a particular hypothesis struc-
ture/conceptual model, such that the mechanistic consequences of each component 
of the hypothesis can be probed and evaluated. Dynamic knowledge representation 
enables the instantiation of “thought experiments”: the exploration of possible alter-
native solutions and identifying those that are plausible, i.e., consistent with the 
observed data. These models can aid in the scientifi c process by providing a trans-
parent framework for this type of speculation, which can then be used as jumping 
off points for the planning and design of further laboratory experiments and mea-
surements. It is hoped that the increasing use of this type of knowledge representa-
tion and communication will foster the further development of “virtual laboratories” 
and in silico investigations.     
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