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8.1            Introduction 

    Plants need light, carbon dioxide, water, and minerals, including nitrogen in soil, for 
its growth. With these conditions, the plant has the ability to transform some simple 
materials into complex organic substances that compose all living organisms. In this 
way, plant hormones and phytohormones have a very important function or activity 
in the growth regulation. Hormones are organic substances that are produced in a 
tissue and transported to another, where they provoke a physiological response. 
They are active in very low concentrations. The term hormone comes from the 
Greek and means “impetus.” 

 It is known that in many instances, plant development can be dramatically infl u-
enced by a set of fi ve structurally simple phytohormones, auxins, ethylene, cytoki-
nin, abscisic acid (ABA), and gibberellins, each of which can elicit different 
responses. Experimental and theoretical approaches to this problem have prompted 
a long-standing debate concerning the relative importance of variations in phytohor-
mone concentration versus differential sensitivity of different plant cells to particu-
lar phytohormones (Palme et al.  1991 ). 

 This chapter intends to show the most important information, such as defi nition, 
structure, action, and lastly the advances, about the main groups of plant hormones 
auxins, ethylene, cytokinin, ABA, and gibberellins.  
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8.2     Auxins 

 The term auxin (from Greek “auxein,” meaning “to increase” or “to grow”) includes 
a spectrum of compounds that differ structurally and bring about a variety of auxin- 
type responses, albeit to varying degrees. 

    Since the original discovery of auxin as an indole compound that gave the grass 
coleoptile curvature (or growth) is tested, the defi nition of auxins has been broad-
ened to include not only indole-3-acetic acid (IAA) but several other indole as well 
as non-indole compounds. Simon and Petrasek ( 2011 ) presented that many hetero-
geneous synthetic substances have auxin activity, complicating studies of structure–
activity and the search for a common mode of action (Ferro et al.  2010 ). Even the 
most frequently used synthetic auxins, 2,4-dichlorophenoxyacetic acid (2,4-D) and 
naphthalene-1-acetic acid (NAA), do not completely share their mechanism of action 
with native IAA. Only indole-3-butyric acid (IBA), phenylacetic acid (PAA), and 
4-chloroindole-3-acetic acid (4-Cl-IAA) (Fig.  8.1 ) are synthesized by plants and 
therefore qualify as “endogenous auxins,” but their roles and mechanisms of action 
have not been satisfactorily described (Simon and Petrasek  2011 ).

8.2.1       Indole-3-Acetic Acid 

 IAA is the most widely distributed, naturally occurring auxin in vascular plants, 
dicots, monocots, gymnosperms, and ferns. There are also reports of IAA being 
present in mosses and liverworts, as well as in some green algae (e.g.,  Caulerpa ). 
IAA is a weak acid with a pH of 4.85. It occurs in dissociated state at neutral pH 
solutions. IAA is involved in nearly every aspect of plant growth and development, 
from embryo to adult reproductive plant. The processes regulated include pattern 
formation in embryo development, induction of cell division, stem and coleoptile 
elongation, apical dominance, induction of rooting, vascular tissue differentiation, 
fruit development, and tropic movements such as bending of shoots toward light or 
of roots toward gravity. 
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  Fig. 8.1    Chemical structure of four endogenous auxins. Indole-3-acetic acid (IAA), indole-3- 
butyric acid (IBA), 4-chloroindole-3-acetic acid (4-Cl-IAA), and phenylacetic acid (PAA)       
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 It is diffi cult to unambiguously defi ne typical “auxin activity.” Auxin displays 
morphogenic properties that are modulated by the environment and defi ned by 
dynamic changes in its perception and signal transduction. This machinery has been 
intensively studied during the past decade and includes effects that are either depen-
dent or independent of gene expression (Bhalerao and Bennett  2003 ). Thus, “auxin 
action” may be understood as the sum of all these processes (Simon and Petrasek 
 2011 ). Later research convincingly demonstrated that auxin is required together 
with other plant hormones for both cell division and oriented cell expansion (Perrot- 
Rechenmann  2010 ), infl uencing all aspects of plant development (Vanneste and 
Friml  2009 ). 

 The isolation of plant mutants related to auxin showed that the modifi cation of 
the regulation of auxin biosynthesis, transport, or signaling generates severe altera-
tions in many aspects of plant development. For example, the auxin overproducer 
mutant  Yucca  leads to defects in vascular tissue formation (Cheng et al.  2007 ). 
Disruption in auxin transport, in the mutant  pin1 , leads to defects in fl oral develop-
ment (Okada et al.  1991 ). Finally, mutation in auxin signaling can trigger a global 
dwarfi sm as for the auxin-resistant  axr112  mutant (Lincoln et al.  1990 ), the absence 
of root formation as for the monopteros ( mp ) mutant (Hamann et al.  2002 ), or even 
embryo lethality as for the  abp1  null mutant (Chen et al.  2001 ). This demonstrates 
that in plants, the phytohormone auxin plays a central role in plant growth and 
development. 

 Auxin is considered as a morphogen since it regulates the development in a dose- 
dependent manner (Bhalerao and Bennett  2003 ). It highlights the importance of 
auxin gradients and the necessity of a subtle regulation of auxin concentration at the 
scale of organ, tissues, or even cells. To achieve such regulation, plants have devel-
oped various mechanisms aimed at controlling auxin homeostasis and the dynamics 
of auxin redistribution. In addition, various tissues exhibit distinct sensitivity to 
auxin, thus refl ecting that the responsiveness (perception and signaling) is also 
tightly modulated (Tromas and Perrot-Rechenmann  2010 ).  

8.2.2     Auxin-Binding Soluble Proteins 

 Shishova and Lindberg ( 2010 ) reported that for more than 100 years, the most 
intriguing question in plant physiology has been how IAA might trigger such enor-
mous variety in physiological responses. According to recent knowledge, a broad 
spectral activity is observed, which might correlate with changes in the number and 
properties of auxin receptors. These proteins are responsible for recognition of the 
hormone and the initiation of further signal transduction chains, resulting in a spe-
cifi c physiological response. Thus, one of the main properties of the auxin receptor 
is its capability to bind auxin. An investigation of auxin-binding sites in plant cells 
started almost 30 years ago (Hertel et al.  1972 ). It has showed a heterogeneity of 
these sites both in affi nity and localization. So, the pool of plant cell auxin-binding 
proteins (ABPs) consists of two groups: soluble and membrane-bound proteins. 
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 Early biochemical investigations identifi ed a number of auxin-binding soluble 
proteins such as 1,3-glucanase (MacDonald et al.  1991 ), β-glucosidase (Campos 
et al.  1992 ), glutathione S-transferase (Bilang et al.  1993 ), and superoxide dis-
mutase (Feldwisch et al.  1994 ). Two soluble ABPs with a relatively low affi nity for 
IAA were purifi ed and reported to stimulate RNA synthesis in isolated nuclei 
(Kikuchi et al.  1989 ). Later, it was shown that one of these protein-bound RNA 
polymerase II had DNA-binding activity (Sakai  1992 ). Another polypeptide, a 
65-kDa protein, was also found to have a nuclear localization (Prasad and Jones 
 1991 ). A soluble ABP 44-kDa protein showed a close link to auxin effects on elon-
gation growth and high affi nity labeling of chlorinated auxins (Reinard and Jacobsen 
 1995 ; Reinard et al.  1998 ).   

8.3     Gibberellins 

 The fi rst reports about gibberellins (GAs) came from a group of Japanese scientists 
who focused some of their studies on a disease called bakanae, which particularly 
affected rice produced by local farmers (Hori  1903 ). Bakanae disease is caused by 
one or more  Fusarium  species. This disease produces a myriad of symptoms, 
including seedling blight, root and crown rot, stunting, and the classic symptoms of 
etiolation and abnormal elongation induced by the fungal production of gibberellins 
(Sun and Snyder  1981 ; Webster and Gunnell  1992 ; Nicholson et al.  1998 ). 

 Although bakanae disease was described and identifi ed more than 100 years ago 
in Japan, it is still not clear which  Fusarium  species are associated with the various 
symptoms of the disease (Ou  1985 ). Earlier studies in Japan contributed to the 
identifi cation of a pathogen known as “ Fusarium moniliforme ” in a broad sense 
(Ou  1985 ). However, this taxon comprises a number of distinct species, now col-
lectively named the  Gibberella fujikuroi  species complex. The formation of 
 Gibberella’s  sexual stage can distinguish mating populations, or biological species, 
within this group (Hsieh et al.  1977 ; Kuhlman  1982 ; Leslie  1995 ). 

 In the 1950s, the British fi rm Imperial Chemical Industry (ICI) began a program 
to select for strains of  F. moniliforme  that had a greater capacity to produce gibber-
ellins, and attempts were made to optimize liquid and surface fermentation studies. 
After some purifi cation steps, a gibberellin was isolated and called “gibberellic 
acid.” These gibberellins had the molecular formula C 19 H 22 O 6  and had various phys-
iological properties of the gibberellin A that was previously discovered in Japan. 
This fact stimulated Japanese researchers to produce gibberellins and separate them 
into three products: gibberellins A 1 , A 2 , and A 3 . Gibberellin A 3  was identifi ed as the 
gibberellic acid produced by ICI (Takahashi  1986 ). 

 In the 1960s, a series of studies were carried out on the application of GAs on 
various plants, poultry, animals, and microorganisms (Mees and Elson  1978 ). Since 
then, several production techniques have been developed in order to make the pro-
cess more reproducible and economically viable. 
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 Currently, there are 136 gibberellins (GAs) isolated from plants, produced by 
microorganisms such as fungi and bacteria or obtained synthetically (Blake et al. 
 2000 ; Bömke and Tudzynsk  2009 ). Gibberellins are designated by GAn where “n” 
corresponds, approximately, to the order of its discovery. 

 All gibberellins have an  ent -gibberellane (Fig.  8.2 ) ring system and are divided 
in two main types based on the number of carbon atoms, the C 20 GAs which have a 
full complement of 20 carbon atoms and C 19 GAs in which the twentieth carbon 
atom has been lost by metabolism. Besides the carbon number, the gibberellins dif-
fer in the number and position of hydroxyl groups, on the oxidation state of C 20 , and 
the presence or absence of lactone bridge between C 10  and C 19 .

   The effects of GAs on plant growth and development are mediated through gene 
expression modulation, as RNA and protein synthesis inhibitors interfere with these 
processes. To further understand the molecular mechanism by which GA regulates 
the growth and development of plants, it is necessary to identify and analyze more 
genes that are controlled by GA. Microarrays provide high-throughput, simultane-
ous analysis of mRNA for hundreds and thousands of genes (Aharoni and Vorst 
 2002 ); however, there are only a few reports on the microarray analysis of 
GA-regulated gene expression in  Arabidopsis  and rice (Ogawa et al.  2003 ; Yamauchi 
et al.  2004 ; Yang et al.  2004 ; Yazaki et al.  2004 ). A throughput analysis of transcript 
profi les in GA-regulated gene expression using different plant tissues and organs 
remains pertinent, and further characterization of the individual genes will help in 
understanding how GA regulates the growth and development of plants. 

8.3.1     Gibberellic Acid 

 Gibberellic acid (GA 3 ) is an important member of the gibberellin family and acts as 
a natural plant growth hormone, controlling many developmental processes, and is 
gaining great attention all over the world due to its effective use in agriculture, nurs-
eries, tissue culture, tea gardens, etc. (Davies  2004 ;    Shukla et al.  2005 ). GA 3  is used 
in ppm levels, and its use results in various physiologic effects. Some of its applica-
tions are presented in Table  8.1 .
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   The cost of GA 3  has precluded its use in promoting plant growth, except for 
 certain high-value plants. A reduction of its production costs could lead to wider 
applications for a variety of crops (Linnemannstons et al.  2002 ). 

 Recently, studies have been carried out to decrease GA 3  production costs using 
several approaches, such as screening fungi, optimizing the nutrients and culture 
conditions, using agro-industrial residues as a substrate, developing new processes 
(immobilized cells, fed-batch culture, airlift bioreactor) and minimizing the extrac-
tion procedure costs (Rodrigues et al.  2012 ).   

8.4     Cytokinins 

 Cytokinins (CKs) are a class of phytohormones that play an important role at all 
phases of plant development from seed germination to senescence. At the organism 
level, CKs take part in the control of many biological processes throughout the life 
of plants.    They act on induction expression of some genes, promotion of mitosis, 
and chloroplast development and by releasing buds from apical dominance or by 
inhibiting root growth (Riefl er et al.  2006 ; Kakimoto  2003 ; Sakakibara  2006 ; 
Werner et al.  2001 ). Moreover, CKs were found to negatively regulate stress signal-
ing (Nishiyama et al.  2011 ) and iron accumulation in the leaf (Werner et al.  2010 ). 
In tomatoes, salt and drought stresses were linked to reduced CK content (Albacete 
et al.  2008 ; Ghanem et al.  2008 ; Kudoyarova et al.  2007 ). 

   Table 8.1    Applications of GA 3    

 Application  Action/benefi t  Reference 

 Application on fl owering of 
 Helleborus niger  and 
 Helleborus  x  ericsmithii  

 Progressive decrease of the time 
to fl ower 

 Christiaens et al. 
( 2012 ) 

 Effects of GA 3  and calcium 
chloride in restoring the 
metabolic alterations resulting 
from salt stress in linseed 

 Increased plant height, number 
of branches, number of 
leaves, leaf area, fresh and 
dry weights 

 Khan et al. ( 2010 ) 

 Infl uenced all the vegetative 
parameters of “Chandler” 
strawberry 

 Crown height, crown spread, 
petiole length, leaf number, 
and leaf area 

    Sharma and Singh 
( 2009 ) 

 Pea seeds  Stimulate shoot growing  Baumgartner et al. 
( 2008 ) 

 Potato cultivation  Promote cell multiplication and 
elongation, breaking of 
dormancy 

 Alexopoulos et al. 
( 2007 ) 

 Fruitful tree “Yu Her Pau” litchi  Raise fruit weight  Chang and Lin 
( 2006 ) 

  Passifl ora nitida  Khunt  Effect on germination—breaking 
of dormancy 

 Passos et al. 
( 2004 ) 

 Grapes of cultivars Vênus  Raise berries mass and number, 
decrease seeds number 

 Botelho et al. 
( 2003 ) 
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 The CKs was discovered during the 1950s because of the powerful ability of 
these purine derivatives to trigger plant cell division in vitro. Rapidly thereafter, a 
variety of additional activities of the hormone were described, including the capa-
bility to induce the formation of shoots from unorganized callus tissue, to retard leaf 
senescence, to stimulate pigment accumulation, and to support plastid development 
(Heyl et al.  2012 ). 

 Currently, there are numerous studies about the possible uses and functions of 
CKs, such as delay of senescence (Gan and Amasino  1995 ; Kim et al.  2006 ), root 
proliferation (Werner et al.  2001 ,  2003 ), apical dominance (Shimizu-Sato et al. 
 2009 ; Tanaka et al.  2006 ), nutritional signaling (Samuelson and Larsson  1993 ; 
Takei et al.  2001 ), and shoot meristem function (Higuchi et al.  2004 ; Kurakawa 
et al.  2007 ; Nishimura et al.  2004 ; Miyawaki et al.  2006 ). The CKs also mediates 
the responses to variable extrinsic factors, such as light conditions in the shoot and 
availability of nutrients and water in the root, and has a role in the response to biotic 
and abiotic stress. Together, these activities contribute to the fi ne-tuning of quantita-
tive growth regulation in plants. 

 The CKs has been targeted in many plant species to improve their tolerance to 
different environmental stresses (Barna et al.  1996 ; Huynh et al.  2005 ; Havlova 
et al.  2008 ; Zhang and Ervin  2008 ). Exogenous application of CK has been shown 
to have potential in alleviating heat injury in various higher plants (Skogqvist  1974 ; 
   Liu et al.  2002 ; Schrader  2005 ). For example, retarded leaf senescence and reduced 
cell membrane lipid peroxidation in creeping bentgrass were observed via exoge-
nous zeatin riboside application and enhanced antioxidant response. This fact was 
suggested as a possible mechanism for the observed reductions in heat injury (Liu 
et al.  2002 ; Zhang and Ervin  2008 ), also indicating that CK is thought to protect 
plants under stress via its antioxidant properties (Wang et al.  2012 ). 

 Naturally occurring CKs are adenine derivatives that carry either an isoprene- 
derived side chain or an aromatic side chain at the N 6  terminus, called isoprenoid 
CKs or aromatic CKs, respectively (Mok and Mok  2001 ; Sakakibara  2006 ). The 
isoprenoid CKs are classifi ed into one of the four basic molecules: N 6 -(Δ 2 -
isopentenyl) adenine (iP),  trans -zeatin (tZ),  cis -zeatin (cZ), and dihydrozeatin (DZ) 
(Fig.  8.3 ). Each CK molecule is distinguished by characteristics of the side chain, 

  Fig. 8.3    Chemical structures of isoprenoids CKs: N 6 -(Δ 2 -isopentenyl) adenine (iP),  trans -zeatin 
(tZ),  cis -zeatin (cZ) and dihydrozeatin (DZ)       
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namely, the presence or the absence of a hydroxyl group at the end of the prenyl 
chain and the stereoisomeric position.

   Among isoprenoid CKs,  trans -zeatin is considered central due to its general 
occurrence and high activity in the most bioassays. Its stereoisomer,  cis -zeatin, is 
characterized by weak activity in bioassays. Dihydrozeatin and N 6 -(Δ 2 -isopentenyl)-
adenine are also commonly present in lower and vascular plants (Emery et al.  1998 ; 
Sakakibara  2006 ; Stirk et al.  2008 ). 

 N 6 -Benzyladenine and its derivatives, representing aromatic CKs, have been 
detected in a number of plant species as minor components of the total CKs. 
Hydroxylated derivatives of N 6 -benzyladenine in meta or ortho position of benzyl 
group are commonly named as meta- and ortho-topolin, respectively (Strnad et al. 
 1997 ). Kinetin, the most known CK, has furfuryl ring at the N 6 -position of adenine 
and was identifi ed in both animal cellular DNA and plant tissue extracts (Barciszewski 
et al.  2000 ). 

 All forms of CKs may be reversible or irreversible conjugated with sugars and 
amino acids.    In most bioassays, CK bases are the most active, and therefore, CK 
conjugation contributes to the regulation of their activity. CK conjugates seem to 
serve as storage, transport, and deactivate forms because they are resistant to degra-
dation by cytokinin oxidase/dehydrogenase (Auer  2002 ; Blagoeva et al.  2004 ).  

8.5     Abscisic Acid 

 Absicisic acid (ABA) belongs to a class of metabolites known as isoprenoids, also 
called terpenoids.    ABA, which contains 15 carbon atoms, belongs to a class of 
metabolites known as isoprenoids also called terpenoids (Fig.  8.4 ). ABA was dis-
covered in the early 1960s. Originally it was believed to be involved in the abscis-
sion of fruit and dormancy of woody plants. However, in later studies, it became 
evident that ABA is necessary for seed development, adaptation to several abiotic 
stress, and sugar sensing (Zeevaart and Creelman  1988 ; Nambara and Marion-Poll 
 2005 ; Schwartz and Zeevaart  2010 ).

   ABA is not only synthesized by higher plants, it is also produced by certain algae 
(Zeevaart and Creelman  1988 ), by several phytopathogenic fungi (Zeevaart and 
Creelman  1988 ; Tudzynski and Sharon  2002 ) and by bacteria (Karadeniz et al.  2006 ). 

 The metabolism pathway of ABA has been studied in plants and fungi. Since    
1987, there were many in vivo and in vitro biochemical studies of ABA metabolism, 
including studies of ABA-defi ciency mutants, that have established an outline of the 
probable biosynthesis route. It was thought that all isoprenoids were synthesized 

  Fig. 8.4    Abscisic acid       
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from mevalonic acid (MVA), but recently, it was shown that carotenoids and ABA 
are formed by the “non-mevalonate” triose-pyruvate pathway (from pyruvate to iso-
pentenyl diphosphate) in chloroplasts (Milborrow and Lee  1998 ; Tudzynski and 
Sharon  2002 ; Nambara and Marion-Poll  2005 ). 

8.5.1     ABA Effects in Plants 

 ABA seems to act as a general inhibitor of growth and metabolism, but, like other 
plant hormones, ABA has multiple roles during the life cycle of a plant (Zeevaart 
and Creelman  1988 ; Srivastava  2002 ). It plays an important role in modifying tran-
spiration of drought-treated plants. It also acts in stomatal conductance affecting the 
water supply of the plant (Larcher  2003 ; Guo et al.  2008 ; Aasamaaa and Sõberb 
 2011 ). Other applications of ABA in plants are presented in Table  8.2 .

   Table 8.2    Application of ABA in plants   

 Application  Action/benefi t  Reference 

 Blueberries 
( Vaccinium 
darrowii ) 

 Increase the fi rmness  Buran et al. ( 2012 ) 

  Arachis hypogaea  L.  Inhibits lateral root primordial 
initiation 

 Guo et al. ( 2012 ) 

 Wheat  Effect of cold acclimation and ABA 
on amino acid content and 
composition 

 Kovacs et al. ( 2011 ) 

 Plant defense 
against 
pathogens 

 Processes of plant defense against 
pathogens such as virus, fungi, 
and bacteria 

 Song et al. ( 2011 ); Iriti and 
Faoro ( 2008 ); Vysotskaya 
et al. ( 2008 ); De Torres-
Zabala et al. ( 2007 ) 

 Arabidopsis roots  Have    a negative effect to gravitropic 
response as regard to root 
growth in Arabidopsis roots 

 Han et al. ( 2009 ) 

 Tobacco plants  Increase the hydraulic conductance 
of whole tobacco roots and 
stimulated aquaporin expression 

 Mahdieh and Mostajeran ( 2009 ) 

 Maize seedlings  Induction of cytosolic Ca 2+  
concentration of mesophyll cells 

 Guo et al. ( 2008 ) 

 Rice  Involvement of H 2 O 2  (hydrogen 
peroxide) in ABA-induced 
anthocyanin accumulation in 
rice leaves 

 Hung et al. ( 2008 ) 

 Canarian laurel trees  Response of gas exchange and 
osmotic adjustment capacity in 
drought-treated trees 

 Sánchez-Díaz et al. ( 2008 ) 

 Carrot ( Daucus 
carota ) 

 Somatic embryo development  Shiota et al. ( 2008 ) 
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8.5.2        ABA Production by Microorganisms 

    The presence of ABA was demonstrated in several fungi, such as  Cercospora rosi-
cola ,  C. cruenta ,  Botrytis cinerea,  and other phytopathogenic fungi, as a secondary 
metabolism product (Zeevaart and Creelman  1988 ; Tudzynski and Sharon  2002 ). 
Budková et al. ( 2000 ) demonstrated that micromycetes from soil,  Aspergillus niger  
and  Cladosporium cladosporioides , produced ABA into the culture medium 
Czapek-Dox and a liquid medium. 

 Yurekli et al. ( 1999 ) utilized white-rot fungi  Funalia trogii  ATCC 200800 and 
 Trametes versicolor  ATCC 200801 to produce ABA, and as substrate, they utilized 
olive oil mill wastewater (OOMW) and vinasse, with a dilution ratio of 20:80, v/v 
(wastewater/distilled water). The    higher ABA concentration was obtained utilizing 
 F. trogii  and vinasse (170.41 µg/ml) and utilizing OOMW as a substrate concentra-
tion of 16.28 µg/ml was obtained.  T. versicolor  fungus produced 34.95 µg/ml using 
vinasse and 5.32 µg/ml utilizing OOMW. 

 Plant growth-promoting bacteria (PGPB) such as  Azospirillum  produce phyto-
hormones including ABA (Forchetti et al.  2007 ; Cohen et al.  2008 ). Bacteria com-
monly found in the human body which also live in the soil and in water ( Proteus 
mirabilis ,  P. vulgaris ,  Bacillus megaterium ,  B. cereus ,  Klebsiella pneumoniae , 
 Escherichia coli ) also produce ABA (Karadeniz et al.  2006 ). Some studies that 
report the production of ABA by bacteria can be seen in Table  8.3 .

8.5.3        ABA Analyses 

 Several methods have been established for measurement of ABA, such as thin 
layer chromatography (TLC). It has been used with ultraviolet (UV) lamp and the 

   Table 8.3    ABA production by bacteria   

 Microorganism  Culture medium  ABA production  Reference 

  Azospirillum 
brasilense  
strain Sp 245 

 NFb medium with 
NH 4 Cl and NaCl 

 235 ± 17 ng/ml  Cohen et al. ( 2008 ) 

  Azospirillum 
brasilense  
strain Sp 245 

 NFb medium with 
NH 4 Cl 

 73 ± 8 ng/ml  Cohen et al. ( 2008 ) 

 Isolated endo-
phytic bacteria 
from sunfl ower 

 LB supplemented 
with polyethyl-
ene glycol 

 20–45 pmol/ml  Forchetti et al. ( 2007 ) 

  P. mirabilis   Brain heart broth  4.20 ± 1.75 µg/100 ml  Karadeniz et al. ( 2006 ) 
  P. vulgaris   Brain heart broth  0.44 ± 0.02 µg/100 ml  Karadeniz et al. ( 2006 ) 
  B. megaterium   Brain heart broth  0.07 ± 0.00 µg/100 ml  Karadeniz et al. ( 2006 ) 
  B. cereus   Brain heart broth  0.03 ± 0.01 µg/100 ml  Karadeniz et al. ( 2006 ) 
  K. pneumoniae   Brain heart broth  0.91 ± 0.10 µg/100 ml  Karadeniz et al. ( 2006 ) 
  E. coli   Brain heart broth  1.45 ± 1.00 µg/100 ml  Karadeniz et al. ( 2006 ) 
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mobile phase of benzene, ethyl acetate, and acetic acid (Budková et al.  2000 ) and 
isopropanol, ammonia, and distilled water (Karadeniz et al.  2006 ). High-
performance liquid chromatography (HPLC) coupled to UV detector also has been 
utilized (Budková et al.  2000 ; Karadeniz et al.  2006 ). 

 Gas chromatography coupled to mass spectrometry (GC–MS) was reported for 
analysis of ABA (Forchetti et al.  2007 ; Cohen et al.  2008 ). 

 Recently, liquid chromatography–electrospray ionization tandem mass spec-
trometry (LC–ESI-MS/MS) has been applied to the determination of phytohor-
mones including ABA (Hou et al.  2008 ; López-Carbonell et al.  2009 ).   

8.6     Ethylene 

 Ethylene is an unsaturated hydrocarbon which plays various important functions in 
plant growth and development, such as seed germination, fl ower and fruit develop-
ment, dormancy, abscission, senescence, certain plant defense mechanisms, and a 
number of interactions with other plant hormones (Abeles et al.  1992 ; Arteca  1996 ; 
Binder  2008 ). 

 Ethylene is produced by higher plants and also by bacteria and fungi (Kanellis 
et al.  1999 ; Al-Masri et al.  2006 ). In higher plants, ethylene is biosynthesized from 
methionine by a well-defi ned pathway in which methionine is fi rst converted to 
 S -adenosyl methionine (SAM) which is then used for the production of 
1- aminocyclopropanecarboxylic acid (ACC) by the enzyme ACC synthase. ACC 
oxidase converts ACC to ethylene (Yang and Hoffman  1984 ). 

 Ethylene is a gaseous hormone, and because of this, gas chromatography has 
been utilized for ethylene analysis. Orberá Ratón et al. ( 2012 ) and Thuler et al. 
( 2003 ) utilized GC equipped with a PORAPAK-N 80/100—INOX column that 
operated isothermally at 70 °C with nitrogen as gas carrier and fl ame ionization 
detector. Visible/short-wave near-infrared (Vis/SW NIR) spectroscopy technique 
was proposed for the determination of ethylene content in tomatoes by Xie et al. 
( 2009 ). 

8.6.1     Effects of Ethylene in Plants 

 One of the most studied ethylene effects were reported in fruit ripening. Fruit ripen-
ing can also be diverse; however, it involves many closely related changes such as 
color change, softening of walls, and conversion of starch to sugar (Barry and 
Giovannoni  2007 ). Fruits known as climacteric, such as banana, apple, avocado, 
and tomato, produce ethylene which infl uences the fruit ripening process. Other 
fruits that are known as nonclimacteric, such as grape, citrus, and strawberry, show 
no climacteric and no signifi cant production of ethylene. Even though, they show 
ripening-related changes (Srivastava  2002 ; Barry and Giovannoni  2007 ). 

 Applications of ethylene in plants are shown in Table  8.4 .
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8.6.2        Ethylene Production by Microorganisms 

 Beside plants, ethylene can be produced by microorganisms and can be obtained by 
cracking the petroleum, a process that requires crude oil and has severe effects on 
the environment (Tudzynski and Sharon  2002 ). 

 Ethylene production by fungus  Sclerotinia sclerotiorum  was observed by 
Al-Masri et al. ( 2006 ). Zhu et al. ( 2012 ) analyzed ethylene production by six strains 
of  B. cinerea  (a mass-destructive, necrotrophic plant pathogen that causes grey 
mold) and all were confi rmed to produce ethylene. On grape juice agar (GJA) 

   Table 8.4    Applications of ethylene in plants   

 Application  Action/benefi t  Reference 

  Arabidopsis thaliana   Ethylene in the response of root hair 
cells 

 Galland et al. ( 2012 ) 

  Gentiana scabra  fl owers  Ethylene production of unpollinated 
fl owers was very low, but pollina-
tion increases ethylene production 

 Shimizu-Yumoto and 
Ichimura ( 2012 ) 

 Mexican “Ataulfo” mango  Improving the uniformity in ripening  Tovar et al. ( 2011 ) 
 Spinach ( Spinacia oleracea  

L. cv Bison) 
 Effect of ethylene on ascorbic acid 

(antioxidant) metabolism during 
dark-induced leaf senescence 

 Gergoff et al. ( 2010 ) 

 Tomato and pepper fruits  Existence of extensive common 
regulons suggests the conservation 
of ripening mechanisms in 
climacteric and nonclimacteric 
fruits 

 Lee et al. ( 2010 ) 

 Carrot  Exposure to methyl jasmonate and 
ethylene treatments enhanced the 
accumulation of bioactive phenolic 
compounds and phenylalanine 
ammonia lyase enzyme activity in 
carrot tissue 

 Heredia and 
Cisneros- 
Zevallos ( 2009 ) 

 Sand verbenas ( Abronia  spp.)  Effects on the germination  Drennan ( 2008 ) 
  Guzmania lingulata  Mez. 

“Anita” 
 Endogenous ethylene production 

contributes substantially to fl oral 
induction. Ethylene treatment on a 
single young leaf induced fl owering 
as well 

 Dukovski et al. 
( 2006 ) 

 Hydroponically grown 
strawberry plants 

 Ethylene levels from leaves are useful 
as an early indicator of stress 
conditions within the system 

 Hogan et al. ( 2006 ) 

 Potato tuber ( Solanum 
tuberosum  L.) 

 Determination of hormonal require-
ments for wound-induced 
suberization 

 Lulai and Suttle 
( 2004 ) 

 Carnation cultivars ( Dianthus 
caryophyllus  L.) 

 Continuous and short exposures of 
ethylene reduce the vase life of 
fl owers 

 Wu et al. ( 1991 ) 
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medium,  B. cinerea  produced ethylene without methionine (Met) addition. When 
Met was added, the fungus produced more ethylene than that on Czapek and potato 
dextrose agar (PDA) media. 

 Orberá Ratón et al. ( 2012 ) isolated bacteria and fungi from sugarcane rhizo-
sphere and the isolated microorganisms. Four isolates produced ethylene, which 
correspond to  Bacillus  sp. B63 (134.12 ng/mL),  Brevibacillus  sp. (B65 279.44 ng/
mL),  Bacillus  sp. B90 (870.8 ng/mL), and  Paenibacillus  sp. B100 (166.88 ng/mL). 

 A comparison of plant growth-promoting potential of rhizospheric bacteria from 
endophytic bacteria, both isolated from sugar cane, was studied by De Santi Ferrara 
et al. ( 2012 ).    In the study, the ability of these bacteria to produce amino acids IAA 
and ethylene was assessed. The putative endophytes released signifi cantly higher 
amounts of amino acids than the rhizospheric bacteria, while the latter produced 
higher quantities of ethylene and were more actively antagonistic to fungi. Both 
types of bacteria released similar amounts of IAA.   

8.7     Phytochemicals 

 Phytochemicals are non-nutritive plant chemicals that have protective or disease- 
preventive properties. They are nonessential nutrients, meaning that they are not 
required by the human body for sustaining life (Karthishwaran et al.  2010 ; Srivastava 
et al.  2010 ; Badugu  2012 ; Neerati et al.  2012 ). Plant produces these chemicals as a 
natural defense against disease and infection, and they have been used throughout 
human history for various purposes. It has been recognized that natural compounds 
play an important role in modern pharmaceutical care. Numerous studies of folk 
medical practices have been undertaken to verify the real properties of some plants 
used in ancestral treatments (Kamanzi Atindehou et al.  2002 ; Neerati et al.  2012 ; 
Brusotti et al.  2013 ). 

 There are many phytochemicals known and each works differently. These phyto-
chemicals have various health benefi ts such as antioxidant, antimicrobial, anti- 
infl ammatory, cancer-preventive, antidiabetic, and anti-hypertensive effects (Kumar 
et al.  2009 ; Nisha Raj and Radhamany  2010 ; Srivastava et al.  2010 ). Antioxidant 
properties of plants have been studied to reduce oxidative stress which may cause 
various degenerative diseases (Bektas et al.  2005 ; Pereira et al.  2009 ). Antioxidant 
activity can be attributed to phenolic compounds (Girones-Vilaplana et al.  2012 ; Lv 
et al.  2012 ; Silva et al.  2012 ; Sousa et al.  2013 ; Jaberian et al.  2013 ), fl avonoids 
(Girones-Vilaplana et al.  2012 ; Sousa et al.  2013 ), and vitamins (Girones-Vilaplana 
et al.  2012 ; Jaberian et al.  2013 ). 

    Extracts of plants were tested against fungi and bacteria and demonstrated anti-
microbial activity. Brusotti et al. ( 2013 ) showed that tannin resulted more active 
against bacteria, while the saponin showed a pronounced activity against fungus 
 Pyricularia grisea . Others studies have demonstrated a correlation between anti-
bacterial activity and phytochemicals (alkaloid, saponin, phenol) (Akgul and 
Gulshen  2005 ; Doughari and Manzara  2008 ; Jaberian et al.  2013 ). 
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 Phytochemicals have been utilized in other studies such as antiproliferative 
activities (Lv et al.  2012 ; Kontogianni et al.  2013 ), antipyretic activity (saponin, 
tannins, and fl avonoids) (Sasmal et al.  2012 ), and anti-infl ammatory activity 
 (phenolic compounds and betacyanins) (Silva et al.  2012 ).  

8.8     Conclusions 

 Auxins, gibberellins, ABA, cytokinins, and ethylene are the main groups of plant 
hormones. There are numerous reports that present the main applications and the 
way of action of these hormones, each of them having their specifi cities and poten-
tialities. The transport and mode of action of each hormone are being elucidated. 
However, there are some technological barriers to surpass concerning the economi-
cal production and purifi cation of these important biomolecules. In this way, many 
researchers are seriously involved to fi nd best conditions for these bioprocesses.     
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