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1.1            Introduction 

 The sustainable socioeconomic development owing to the continued pace of world 
economic growth heavily relies upon a secure supply of raw material inputs for 
agriculture, industry, energy, and related sectors. The development heavily depends 
on energy, its applications ranging from home appliances, transportation, and indus-
trial processes to supply commodities for our daily needs. To fulfi ll the energy needs, 
we consume nearly 500 Quadrillion Btu (QBtu) of energy, and majority of it (92 %) 
comes from nonrenewable resources, such as petroleum, coal, and nuclear and natu-
ral gas (Khanal and Lamsal  2010 ). Energy demand is expected to escalate by around 
44 % by 2030 mostly due to the increasing demand from developing countries, such 
as India and China. However, today’s heavy reliance on nonrenewable resources, 
especially fossil fuels, is increasingly constrained by economic, political, and 
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 environmental factors. The dependence on these conventional resources is also 
accompanied by a heavy reliance on chemical and thermochemical processes. 
However, due to the continuous and fast depletion of the conventional energy resources 
and the growing awareness and concern regarding the environmental effects of their 
 utilization, there has been a major challenge in the recent past to identify and develop 
alternate energy sources. In this regard, the bio-based processes are growing at a 
faster pace, although currently their role in the global economy is trivial. There are 
increasing initiatives from both public and private sector interests that support 
the supply of our energy needs and other industrial products through biological 
 processes and/or biomass resources. 

 Rapid increase in volume and types of agricultural and industrial waste biomass, 
as a result of intensive agriculture in the wake of population growth, food processing, 
and improved living standards, is becoming a burgeoning problem. The waste bio-
mass being rich in carbon and other vital nutrients is highly amenable to biological 
degradation and emits methane and leachate. Moreover, the open burning of agricul-
tural wastes, such as rice stubble by the farmers to clear the lands, generates CO 2  and 
other pollutants. Hence, improper management of agricultural and agro- industrial 
waste biomass is contributing towards climate change, water and soil contamination, 
and local air pollution which jeopardizes the health of fl ora and fauna. Furthermore, 
this waste biomass is of high value with respect to material and energy recovery. 

 In the context of bio-based economy, the current chapter discusses the different 
sources, types, and nature of waste biomass. The overview of the different management 
strategies applied for the value addition of different types of waste biomass is discussed. 
This chapter also provide insights into the role of biotransformation of waste biomass 
resources for developing bio-based economy/processes. Finally, the chapter gives a 
brief summary of directly extractable high-value biochemicals from waste biomass.  

1.2     Waste Biomass 

 Biomass is a renewable resource and refers to any material having recent biological 
origin, such as plant materials, agricultural crops, and even animal manure   . 
According to   National Renewable Energy Laboratory     (NREL), biomass can be 
defi ned as any plant-derived organic matter. Biomass available for energy on a sus-
tainable basis includes herbaceous and woody energy crops, agricultural food and 
feed crops, agricultural crop wastes and residues, wood wastes and residues, aquatic 
plants, and other waste materials including some municipal wastes. Biomass is a 
very heterogeneous and chemically complex renewable resource. Owing to its natu-
ral abundance, sustainability, and often low cost, biomass is a potential alternative 
to nonrenewable energy sources for production of chemicals. Biomass has a chemi-
cal composition comprised of C, H, O, and N, similar to fossil feedstocks which 
contain C and H. Currently, the annual worldwide production of biomass is esti-
mated to exceed 100 trillion kilograms (Xu et al.  2008 ). However, presently, only 
5 % of chemicals are derived from renewable resources (Lucia et al.  2006 ). Hence, 
there is an enormous potential for production of bio- based chemicals to compete 
with their fossil-derived counterparts. 
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1.2.1     Types of Waste Biomass/Potential Waste Biomass 
Resources 

 Globally, 140 billion metric tons of biomass is generated every year from agricul-
ture. The main sources of biomass waste are given below (Fig.  1.1 ).

•      Agricultural and agro-industrial wastes : Agricultural biomass generally com-
prises of leftovers after grain separation, such as residual stalks, straw, leaves, 
roots, husk, nut or seed shells, waste wood, and animal husbandry waste. Some 
common examples are coconut (fronds, husk, shell), coffee (hull, husk, ground), 
corn (cob, stover, stalks, leaves), cotton (stalks), nuts (hulls), peanuts (shells), 
rice (hull/husk, straw, stalks), sugarcane (leavings, bagasse, molasses), vegetable 
wastes, etc.  

•    Animal husbandry wastes : Manure from cattle, poultry, and hogs.  
•    Food processing wastes : Include by-products and leftovers processing, such as 

fruit pomace wastes (peels, seeds, and pulp) and wastewater sludge, brewery 
wastes (brewer’s spent grain, spent hops, wastewaters, and surplus yeast), winery 
wastes (solid by-products include marcs, pomace, and stems and may account on 
average for almost 30 % (w/w) of the grapes and liquid sludge from organic 
wastewater treatment plants), starch industry wastes, dairy industry wastes 
(whey), and meat processing wastes.  

•    Forestry residues : Wood chips, bark, sawdust, timber slash, and mill scrap.  
•    Municipal waste : Solid household wastes, wastewater sludge, waste paper, and 

yard clippings.  
•    Marine processing wastes : fi sh industry waste (scales, skin, visceral mass 

 (viscera, air bladder, gonads, and other organs), head, fi ns, and visceral mass) 
and crustacean shell and shell fi sh waste (head and body carapace).  

  Fig. 1.1    Different types of waste biomass       
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•    Biotechnological industry wastes : Waste fungal/bacterial/yeast/microalgae 
biomass.  

•    Biodiesel industry wastes : Crude glycerol from biodiesel production.    

 This high volume of biomass can be converted to an enormous amount of energy 
and raw materials. Agricultural waste biomass converted to energy can substantially 
displace nonrenewable-based fossil fuels, reduce emissions of greenhouse gases 
(GHG), and provide renewable energy. Biomass is a renewable resource that has a 
steady and abundant supply, especially those biomass resources that are by-products 
of agricultural activity. With the increasing global concerns to combat climate 
change, countries are now looking for alternative sources of energy to minimize 
GHG emissions. Apart from being carbon neutral, the utilization of biomass for 
energy decreases reliance on the consumption of fossil fuel, hence, contributing to 
energy security and climate change mitigation while closing the carbon cycle loop. 
Currently, as the debate on food versus fuel gets intensifi ed, the biomass can pro-
vide extra income to farmers without compromising the production of main food 
and even nonfood crops. 

 Although there is an increasing trend on the utilization of biomass for energy and 
other industrial products, biomass is still largely underutilized and left to rot or 
openly burned in the fi elds, especially in developing countries. Mostly, these coun-
tries do not have strong regulatory laws to control such environmentally unfriendly 
practices or either fail to implement them. As a common practice, the burning of 
agricultural residue (e.g., open fi eld burning of rice stubble) results in air pollution 
which poses risk to human and ecological health. Biomass is a renewable resource 
that causes problems when not used. The challenge, therefore, is to convert biomass 
as a resource for energy and other productive uses.  

1.2.2     Nature of Biomass Feedstock 

 Agricultural crops can be roughly divided according to the composition of their 
(main) economic products, such as sugar, starch (grains, tubers), oilseed, protein, or 
fi ber crop and crops for specialty products (pharmaceutics, cosmetics, dyes, fra-
grance, and fl owers). Besides the main harvested product, all crop processing sys-
tems yield more or less secondary products/by-products and residues. These 
products may fi nd an application depending on demand and possibilities for eco-
nomic conversion. Biomass residues can be categorized into three main groups: (1) 
primary biomass residues, available at the farm; (2) secondary biomass residues, 
released in the agro- food industry; and (3) tertiary biomass, which is remaining 
after use of products. The characteristics that infl uence availability and suitability of 
the waste biomass as feedstocks are the nature of biomass, moisture content, the 
density, and the seasonality of supply. 

 Lignocellulosic biomass comprising forestry, agricultural, and agro-industrial 
wastes are abundant, renewable, and inexpensive energy sources. Such wastes 
include a variety of materials, such as sawdust, poplar trees, sugarcane bagasse, 
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waste paper, brewer’s spent grains, coconut coir and shell, fruit pomace and liquid 
sludge, switch grass, and straws, hull, stems, stalks, leaves, husks, shells, and peels 
from cereals like rice, wheat, corn, sorghum, and barley, among others. 
Lignocellulosic biomass is chemically composed of three main fractions: cellulose, 
hemicellulose, and lignin in varied concentrations (Table  1.1 ) with smaller amounts 
of proteins, lipids, and ash (Fig.  1.2 ). Cellulose is a polymer of glucose (a C6 sugar), 
which can be used to produce glucose monomers for fermentation to produce a 
variety of products, such as renewable fuels, platform chemicals, organic acids and 
biopolymers among others. Hemicellulose is a copolymer of different C5 and C6 
sugars including xylose, mannose, and glucose, depending on the type of biomass. 
Lignin is a branched polymer of aromatic compounds. Both the C5 sugars and the 
lignin fragments can be used as feedstock for the production of various value-added 
products including high-value biochemicals in a biorefi nery.

These polymers are closely associated with each other constituting the cellular 
complex of the vegetal biomass. Basically, cellulose forms a skeleton which is sur-
rounded by hemicellulose and lignin (Fig.  1.2 ). The pretreatment of lignocellulosic 
biomass helps to disrupt the 3D network structure of lignin, cellulose, and hemicel-
lulose, allowing high yields of fermentable sugars to be produced in subsequent 
enzymatic hydrolysis. Different pretreatments used for the separation of different 
polymers in lignocellulosic waste are given in Fig.  1.3 . The pretreatments help the 
enzymes for easy excess for the biomass hydrolysis to simple sugars.   

 Currently, biomass pretreatment is still a necessary step to establish a cheap 
sugar platform for bioethanol and other biochemicals. An ideal pretreatment tech-
nology should target the three basic requirements: simple process, cost-effective, 
and high sugar recovery. 

 Cellulose and hemicellulose are sugar-rich fractions of interest for use in fermen-
tation processes, since microorganisms may use the sugars for growth and 

   Table 1.1    The main components of different lignocellulose wastes (refs. Nigam et al.  2009 ; 
Dhillon et al.  2011b )   

 Lignocellulose waste  Cellulose (wt %)  Hemicellulose (wt %)  Lignin (wt %) 

 Sugarcane bagasse  40.0  27.0  10.0 
 Rice straw  36.2  19.0  9.9 
 Wheat straw  32.9  24.0  8.9 
 Barley straw  33.8  21.9  13.8 
 Rye straw  37.6  30.5  19.0 
 Oat straw  39.4  27.1  17.5 
 Corn cobs  33.7  31.9  6.1 
 Corn stalks  35.0  16.8  7.0 
 Cotton stalks  58.5  14.4  21.5 
 Soya stalks  34.5  24.8  19.8 
 Sunfl ower stalks  42.1  29.7  13.4 
 Apple pomace   7.2  –  23.5 
 Brewer’s spent grain  13.1–25.4  28.4–29.96  11.9–27.8 
 Citrus waste   8.8   4.4  3.7 
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  Fig. 1.2    The structure of lignocellulosic material and routes for its biotransformation to high- 
value biochemicals       
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  Fig. 1.3    Different pretreatments for the hydrolysis of lignocellulosic biomass       
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production of value-added compounds, such as ethanol, food additives, organic 
acids, enzymes, among others. Submerged and solid-state fermentation systems 
have been used to produce compounds of industrial interest from lignocellulosic 
wastes, as an alternative for valorization of these wastes and also to solve environ-
mental problems caused by their disposal. When submerged fermentation systems 
are used, a previous stage of hydrolysis for separation of the lignocellulose constitu-
ents is required. 

 Few common primary and secondary residues from agricultural crops are given 
in Table  1.2 . There is signifi cant variation in the quantities available. For instance, 
in some cases, residues amount to only about 10–20 % of the crop by weight, 
whereas in other cases, the residues might actually be greater than the original crop. 
As evident from the Table  1.2 , grain crops tend to have the highest overall residue 
ratio, amounting to as much as double the crop weight. For this reason, utilization 
of straw from grains should be a much higher priority for utilization of this largely 
untapped reservoir of biomass resources.

   Lignocellulose wastes are accumulated every year in large quantities, causing 
environmental problems. However, due to their chemical composition based on sug-
ars and other compounds of interest, they could be utilized for the production of a 
number of value-added products. Therefore, besides the environmental problems 
caused by their accumulation in the nature, the nonuse of these materials constitutes 
a loss of potentially valuable sources. .  

  The underutilized biomass resources from different possible sources, such as 
primary agricultural production, agro-industries, and municipal waste, are generally 
available in abundant quantities at negligible costs. Agriculture-based wastes, such 

    Table 1.2       Examples of biomass residues for different crops   

 Type of crop  Primary residues  Secondary residues  Residue ratio a  

 Fruits and nuts  Seeds  – 
 Fruit pulp, peelings, 

fruit pomace 
 0.2–0.4 

 Vegetables  Leaves, stems, etc.  0.2–0.5 
 Peelings, skin  0.1–0.2 

 Grains (wheat, corn, rice, 
barley, millet) 

 Straw (stover)  –  1.0–2.0 
 Chaff (hulls, husks)  Bran, cobs  0.2–0.4 

 Sugarcane  Leaves and tops  –  0.3–0.6 
 –  Bagasse  0.3–0.4 

 Molasses  – 
 Tubers, roots (potato, 

cassava, beet) 
 Foliage, tops  –  0.2–0.5 

 Peels  0.1–0.2 
 Oil seeds  Hulls  0.2–1.2 

 Press cake  0.1–0.2 
 Sunfl ower, olive  Foliage, stems  0.2–0.5 
 Cocos, palm oil  Husks, fronts  Shells  0.3–0.4 
 Soy, rape, peanut  Foliage  Seed coat, shells  0.3–0.5 

   Sources :    UNDP ( 2007 ),    Van Dam ( 2002 , Rosillo-Calle et al. ( 2007 ) 
  a Residue ratio refers to ratio of dry matter weight to crop produced  
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as straws or seed hulls, can be harvested and collected at the farm or at central pro-
cessing units. Others wastes, such as food industry wastes, are only available in 
dispersed/diluted forms and need collection systems to be installed at particular 
industries. 

 Earlier, agricultural residues were promoted mainly for energy (e.g., bioethanol 
production) use, often at low effi ciency (Fig.  1.4 ). However, it is now more widely 
recognized that there are in fact other possible routes that may provide higher-
value- added products or could serve as complementary products via coproduction 
schemes alongside energy applications.    The sugar-rich syrups produced after pre-
treatment and enzymatic hydrolysis of lignocellulosic biomass can be used for the 
production of high-value products. Currently, such integrated processes are recur-
ring theme in industrial  biotechnology development (van Dam et al.  2005 ). For 
instance, microalgae/fungal/yeast cultivations involving production of various 
products result in waste microalgae/fungal/yeast biomass as a by-product. The fun-
gal biomass is rich in chitin which can be extracted and transformed to its deacety-
lated derivative, chitosan (Dhillon et al.  2012a ; Kaur and Dhillon  2013a ). Similarly, 
microalgae biomass resulting after lipid extraction for biodiesel is also rich in car-
bohydrates, proteins and other products, such as pigments.

   Crude glycerol (CG) is a waste by-product of biodiesel production process. For 
every 100 kg of biodiesel produced by transesterifi cation of vegetable oil/animal 
fat/microalgae-derived lipids, 10 kg of CG is produced. CG is a carbon-rich source 

  Fig. 1.4    Process showing the pretreatment and enzymatic hydrolysis of lignocellulosic biomass to 
produce sugar syrups for production of bioethanol       
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and an emerging and less expensive feedstock for bioprocess technology. CG can 
be used for the production of a wide range of products, such as ethanol and biohy-
drogen. More recently, it has been evaluated for the production of high-value bio-
chemical, such as eicosapentaenoic acid, docosahexaenoic acid, glycolipid, 
 biosurfactant, 1,3-propanediol, and antibiotics, such as cephalosporin C (Pyle et al. 
 2008 ; Athalye et al.  2009 ; Liu et al.  2011 ; Shin et al.  2011 ; Ferreira et al.  2012 ).   

1.3     Bio-Based Economy/Processes 

 Recently, a great deal of research is being devoted to the area of sustainable pro-
cesses (Bruggink et al.  2003 ). The need for such processes stems from the burgeon-
ing human population and the accompanied required growth in availability of 
materials and energy (Song  2006 ). A signifi cant part of the developments is dedi-
cated to bio-based sustainable processes, which make use of renewable feedstocks, 
such as agro-industrial wastes and industrial by-products, to decrease the use of 
nonrenewable fossil resources which are depleting very quickly. Owing to the 
higher effi ciency in terms of energy and materials and the reduction of environmen-
tally unfriendly wastes, the bio-based processes are clearly advantageous. In view 
of bio-based green processes, the identifi cation and assessment of environmentally 
sound technologies that promote the use of biomass, i.e., conversion of lignocellu-
losic biomass into energy and raw materials, is highly desired. 

 The bio-based economy can be defi ned as consisting of those sectors that derive 
a majority of their market value from biological processes and/or products derived 
from natural materials, as compared to products/processes allied with nonrenewable 
resources and/or purely based on chemical processes. The industrial portion of the 
bio-economy is somewhat distinct from agricultural, forestry, and other sectors, in 
the sense that raw materials are utilized to make industrial feedstocks or products or 
to drive industrial processes. Sustainable feedstock supply is one of the key issues 
for the evolution towards the bio-based economy. Therefore, the resource base 
needs to be identifi ed from the perspective of supply and demand. The waste bio-
mass derived from crop residues of food and feed production, forestry residues, 
fermentation process wastes, food/beverage processing wastes, marine crops and 
processing wastes, municipal waste, manure and animal products, and biological 
process-derived wastes are potential candidates/resources towards the realization of 
a bio-based economy. 

 The deliberate importance of the bio-economy is linked to those areas in which 
bio-based products and processes can provide alternative for fossil- or mineral- 
based products and/or chemical processes. Since the vast majority of industrial 
products and processes are currently centered on nonrenewable resources and min-
erals, such substitution has considerable potential to make various industry sectors 
more sustainable in the long run while also reducing environmental impacts in the 
near future, especially with regard to the Kyoto protocol aiming towards reducing 
GHG emissions and land disposal requirements. The utilization of bio-based 
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renewable resources holds great potential value for industries in various sectors, 
such as energy, platform chemicals, biopolymers, and health/personal care  products. 
In  general, a bio-based economy offers many benefi ts and opportunities:

•    New areas of economic growth and development for the many regions especially 
rural areas that have abundant biomass resources.  

•   Creation of new innovative business sectors and entrepreneurial skills.  
•   Improved energy security, by reducing dependence on nonrenewable resources, 

such as fossil fuels.  
•   Enhanced economic and environmental linkages between the agricultural sector 

and a more prosperous and sustainable industrial sector.  
•   Mitigation of GHG emissions.  
•   Improved health by alleviating exposure to harmful substances through substitu-

tion of natural bio-based materials for chemical and synthetic materials.  
•   Employment creation and rural development.  
•   Avoid the competition of land used as raw material for industry with other land 

uses, especially in relation to food and animal feed (competition for other uses of 
biomass, especially food, feed, and fi ber).     

1.4     Value Addition of Waste Biomass 

 Transformation of waste biomass to various biotechnological products and bioen-
ergy is carried out through different routes. The major routes comprise biological, 
chemical, and thermal processes and are depicted in Fig.  1.5 . The conversion of 
biomass either can result in fi nal products or may provide building blocks for fur-
ther processing.

1.4.1       Biotransformation of Biomass 

 Biological transformation involves the utilization of living organisms or enzymes 
(biocatalysts)  to catalyze the conversion of biomass into specialty and commodity 
chemicals. Generally, it is considered to be the most fl exible mode for conversion of 
 biomass into various industrial products (Dale  2003 ). Compared to chemical trans-
formations, where high temperatures and pressures are involved, operating condi-
tions for biological transformations are relatively mild. Fermentation is the 
primogenital and the most fundamental and mature area of biotechnology for bio-
logical transformation. For centuries, fermentation was used for preserving and pro-
cessing food and beverages. Only in the last several decades due to current 
advancements in biotechnology, it has been used to bring to market a wide variety 
of fermentation-based products, including platform chemicals, renewable fuels, 
biopolymers, antibiotics, amino acids, organic acids, and pharmaceuticals using 
various agro-industrial feedstocks   . Some commercial bulk chemicals, such as etha-
nol, lactic acid, citric acid, acetone, and butanol, have been produced via yeast, 
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fungal and bacterial fermentation processes (Atsushi et al.  1996 ; Huang et al.  2005 ; 
Ezeji et al.  2007 ; Dhillon et al.  2011c ). 

 Recently, there has been increasing interest in the utilization of biocatalysts to 
transform renewable resources into biochemicals, owing to high yield and selectiv-
ity, and fewer by-products as compared to chemical synthesis. Table  1.3  shows the 
biotransformation of different wastes to high-value biochemicals through different 
processes. However, due to the metabolic restriction in microorganisms, only a few 
bulk products currently are produced via fermentation (Danner and Braun  1999 ). 
Therefore, development of new technologies to broaden the product range is neces-
sary. Advances in genetic engineering have been viewed as a powerful tool for 
genetic manipulation of multistep catalytic systems involved in cell metabolism 
(Zha et al.  2004 ). Recombinant DNA technology has been used to clone and manip-
ulate gene encoding enzymes in organisms. Recombinant microorganisms, with 
altered sugar metabolism, are able to ferment sugar to few specialty biochemicals, 
which cannot be produced by the corresponding wild strain (Danner and Braun 
 1999 ). For instance, catechol and adipic acid were produced from glucose using 
genetically modifi ed  Escherichia coli . Both glucose and xylose, in cellulosic bio-
mass, have been converted into ethanol by recombinant  Saccharomyces  strains 
(Anastas and Kirchhoff  2002 ). Hence, it is imperative that the recombinant strains 
can be used for the effi cient utilization of pentose and hexose sugars from the abundant 
lignocellulosic biomass. Moreover, immobilized enzyme systems and whole cells 
have been used to produce various biochemicals from biomass.

  Fig. 1.5    Conversion routes of biomass to bioenergy and other biotechnological products       

Lignocellulosic and
starchy biomass

Oilseedcrops, vegetable
oils, microalgae

Biological
transformation

Thermal 
transformation

Chemical
transformation

Fermentation

Anaerobic
digestion

Pyrolysis

Combustion Gasification

Cogeneration
Co-firing Synthetic

gas

+ Gas turbine 
for power 
generation

Fischer-Tropsch
liquid fuels

Carbon-rich
chains platform

Unrefined oils

Bio-diesel

Biogas

Different VAPs

Pyrolysis
oils

Carbon-
rich chains
platform

Different biomass
resources

 

1 Waste Biomass: A Prospective Renewable…



14

   Ta
bl

e 
1.

3  
  B

io
tr

an
sf

or
m

at
io

n 
of

 d
if

fe
re

nt
 w

as
te

s 
to

 h
ig

h-
va

lu
e 

bi
oc

he
m

ic
al

s 
th

ro
ug

h 
di

ff
er

en
t p

ro
ce

ss
es

   

 W
as

te
 b

io
m

as
s 

 H
ig

h-
va

lu
e 

pr
od

uc
t/m

ic
ro

or
ga

ni
sm

s 
 R

em
ar

ks
 

 R
ef

er
en

ce
s 

  A
gr

ic
ul

tu
ra

l w
as

te
s 

(v
eg

et
ab

le
 a

nd
 fr

ui
t p

ro
ce

ss
in

g 
w

as
te

s)
  

 R
ic

e 
hu

sk
 a

nd
 s

tr
aw

 
 A

nt
ib

io
tic

, n
eo

m
yc

in
 b

y 
 St

re
pt

om
yc

es
 m

ar
in

en
si

s  
 SS

F 
 E

lla
ia

h 
et

 a
l. 

( 2
00

4 )
 

 Su
ga

rc
an

e 
ba

ga
ss

e/
m

ol
as

se
s 

an
d 

co
rn

 s
te

ep
 w

as
te

 
 A

nt
ib

io
tic

, c
ep

ha
lo

sp
or

in
 C

- 
by

  A
cr

em
on

iu
m

 
ch

ry
so

ge
nu

m
  

 SS
F 

 C
ua

dr
a 

et
 a

l. 
( 2

00
8 )

 

 W
he

at
 b

ra
n 

fl o
ur

 a
nd

 c
oc

on
ut

 o
il 

ca
ke

 
 A

nt
ib

io
tic

, c
yc

lo
sp

or
in

 A
 b

y 
 To

ly
po

cl
ad

iu
m

 
in

fl a
tu

m
  

 SS
F 

 Su
rv

as
e 

et
 a

l. 
( 2

00
9 )

 

 Pe
an

ut
 s

he
lls

, c
or

n 
po

m
ac

e/
hu

sk
/

co
b,

 w
he

at
 b

ra
n,

 c
as

sa
va

 
pe

el
s,

 c
oc

on
ut

 o
il 

ca
ke

, 
gr

ou
nd

nu
t o

il 
ca

ke
, g

ro
un

dn
ut

 
sh

el
l, 

an
d 

ri
ce

 h
us

k 

 A
nt

ib
io

tic
s—

te
tr

ac
yc

lin
e 

 an
d  

ox
yt

et
ra

cy
cl

in
e 

( S
tr

ep
to

m
yc

es
 s

tr
ai

ns
 );

 r
if

am
yc

in
 B

 
( A

m
yc

ol
at

op
si

s 
sp

 .)
 

 SS
F 

 A
sa

gb
ra

 e
t a

l. 
( 2

00
5a

 ,  b
 );

 
M

ah
al

ax
m

i e
t a

l. 
( 2

01
0 )

; 
V

as
tr

ad
 a

nd
 N

ee
la

gu
nd

 (
 20

12
 ) 

 A
pp

le
 p

om
ac

e 
an

d 
sl

ud
ge

 
 N

at
ur

al
 a

nt
io

xi
da

nt
s,

 b
io

po
ly

m
er

s,
 o

rg
an

ic
 a

ci
ds

 
 SS

F 
an

d 
Sm

F 
 D

hi
llo

n 
et

 a
l. 

( 2
01

1c
 );

 A
jil

a 
et

 a
l. 

( 2
01

1 )
; G

as
sa

ra
 e

t a
l. 

( 2
01

2 )
 

 A
pp

le
 p

om
ac

e 
  A

nt
ib

io
ti

c ,
 m

ev
as

ta
tin

 b
y 

 St
re

pt
om

yc
es

 fr
ad

ia
e  

 SS
F 

 V
as

tr
ad

 a
nd

 N
ee

la
gu

nd
 (

 20
11

 ) 
 G

ra
pe

 p
om

ac
e 

 V
ar

io
us

 a
nt

io
xi

da
nt

 c
om

po
un

ds
 

 E
xt

ra
ct

io
n 

 K
no

bl
ic

h 
et

 a
l. 

( 2
00

5 )
 

 To
m

at
o 

pe
el

 a
nd

 s
ee

d 
by

-p
ro

du
ct

s 
 C

ar
ot

en
oi

ds
 f

ro
m

 p
ee

l: 
ly

co
pe

ne
, l

ut
ei

n,
 

 β -
ca

ro
te

ne
, a

nd
  c

is
 - β

 -c
ar

ot
en

e.
 

 C
ar

ot
en

oi
ds

 f
ro

m
 s

ee
ds

: L
yc

op
en

e 
an

d 
ot

he
r 

ca
ro

te
no

id
s 

 E
xt

ra
ct

io
n 

 St
ra

ti 
an

d 
O

re
op

ou
lo

u 
( 2

01
1 )

; 
Sp

at
af

or
a 

an
d 

T
ri

ng
al

i (
 20

12
 ) 

 D
at

e 
pa

lm
 ju

ic
e 

by
-p

ro
du

ct
s 

 X
an

th
an

 e
xo

po
ly

sa
cc

ha
ri

de
s 

(E
PS

)—
 X

an
th

om
on

as
 c

am
pe

st
ri

s  
 43

.3
5 

g/
l 

 B
en

 S
al

ah
 e

t a
l. 

( 2
01

0 )
 

 C
as

sa
va

 r
es

id
ue

s 
 A

st
ax

an
th

in
 b

y 
 P

ha
ffi 

a 
rh

od
oz

ym
a  

( y
ea

st
 ) 

 0.
06

0 
m

g/
g 

 Y
an

g 
et

 a
l. 

( 2
01

1 )
 

 C
as

sa
va

 b
ag

as
se

 
 Po

ly
ke

tid
e 

m
ix

 (
pi

gm
en

t)
—

 M
on

as
cu

s 
sp

 . 
 SS

F 
 C

ar
va

lh
o 

et
 a

l. 
( 2

00
7 )

 
 C

itr
us

 p
ee

l, 
m

an
go

 k
er

ne
l, 

ba
na

na
 p

ee
l, 

lit
ch

i p
er

ic
ar

p 
an

d 
se

ed
s,

 o
liv

e 
po

m
ac

e,
 

po
m

eg
ra

na
te

 p
ee

ls
 a

nd
 s

ee
ds

 

 D
if

fe
re

nt
 p

he
no

lic
 c

om
po

un
ds

 
 A

nt
im

ic
ro

bi
al

 
co

m
po

un
ds

 
 A

ro
gb

a 
( 2

00
0 )

; P
ur

av
an

ka
ra

 e
t a

l. 
( 2

00
0 )

; S
om

ey
a 

an
d 

O
ku

bo
 

( 2
00

2 )
; O

bi
ed

 e
t a

l. 
( 2

00
5 )

; 
Te

hr
an

if
ar

a 
et

 a
l. 

( 2
01

1 )
; D

ua
n 

et
 a

l. 
( 2

00
7 )

 

S. Kaur et al.



15
 W

as
te

 b
io

m
as

s 
 H

ig
h-

va
lu

e 
pr

od
uc

t/m
ic

ro
or

ga
ni

sm
s 

 R
em

ar
ks

 
 R

ef
er

en
ce

s 

 St
ra

w
be

rr
y/

bl
ac

kb
er

ry
/r

as
pb

er
ry

 
po

m
ac

e 
 A

nt
ho

cy
an

in
s,

 ta
nn

in
s,

 s
ta

rc
he

s,
 s

ap
on

in
s,

 
po

ly
pe

pt
id

es
 a

nd
 le

ct
in

s,
 p

ol
yp

he
no

ls
, 

la
ct

on
es

, fl
 a

vo
ne

s,
 a

nd
 p

he
no

ns
 

 A
nt

im
ic

ro
bi

al
 

co
m

po
un

ds
 

 K
ri

sc
h 

et
 a

l. 
( 2

00
9 )

 

 B
ee

t r
oo

t p
om

ac
e 

 Ph
en

ol
ic

, fl
 a

vo
no

id
 b

et
al

ai
ne

    
 A

nt
im

ic
ro

bi
al

 
co

m
po

un
ds

 
 C

an
ad

an
ov

ic
 e

t a
l. 

( 2
01

1 )
 

 C
itr

us
 p

ee
ls

 
 Fl

av
on

oi
ds

, s
ap

on
in

s,
 s

te
ro

id
s,

 te
rp

en
oi

ds
, 

ta
nn

in
s,

 a
nd

 a
lk

al
oi

ds
 

 A
nt

im
ic

ro
bi

al
 

co
m

po
un

ds
 

 A
sh

ok
 e

t a
l. 

( 2
01

1 )
 

 G
ua

va
 b

ag
as

se
 

 E
pi

ca
te

ch
in

, q
ue

rc
et

in
 a

nd
 c

af
fe

ic
 

 A
nt

im
ic

ro
bi

al
 

co
m

po
un

ds
 

 M
ar

tin
 e

t a
l. 

( 2
01

2 )
 

 B
ee

t m
ol

as
se

s,
 s

ug
ar

ca
ne

 
m

ol
as

se
s,

 w
as

te
 r

es
id

ue
 o

f 
ri

ce
 b

ra
n 

oi
l 

 2-
ph

en
yl

et
ha

no
l, 

ac
et

oi
n,

 v
an

ill
in

 
 A

ro
m

a 
co

m
po

un
ds

 
 E

ts
ch

m
an

n 
et

 a
l. 

( 2
00

3 )
; X

ia
o 

et
 a

l. 
( 2

00
7 )

; Z
he

ng
 e

t a
l. 

( 2
00

7 )
 

  Fo
od

 p
ro

ce
ss

in
g 

in
du

st
ry

 w
as

te
  

 St
ar

ch
y 

w
as

te
w

at
er

 
 Po

ly
(β

-h
yd

ro
xy

bu
ty

ri
c)

 (
PH

B
)—

 A
lc

al
ig

en
es

 la
tu

s  
 55

 %
 (

g/
g)

 
 Y

u 
( 2

00
1 )

 
 Po

ta
to

 p
ee

ls
 

 G
al

lic
 a

ci
d,

 c
af

fe
ic

 a
ci

d,
 v

an
ill

ic
 a

ci
d 

 – 
 Z

ey
ad

a 
et

 a
l. 

( 2
00

8 )
 

 C
ar

ro
t p

ee
ls

 
 Ph

en
ol

s,
 β-

ca
ro

te
ne

 
 – 

 C
ha

nt
ar

o 
et

 a
l. 

( 2
00

8 )
 

 C
uc

um
be

r 
pe

el
s 

 C
hl

or
op

hy
ll,

 p
he

op
hy

tin
, p

he
lla

nd
re

ne
, 

ca
ry

op
hy

lle
ne

 
 – 

 Z
ey

ad
a 

et
 a

l. 
( 2

00
8 )

 

  D
ai

ry
 w

as
te

  
 W

he
y 

 β-
ca

ro
te

ne
 b

y 
 B

la
ke

sl
ea

 tr
is

po
ra

  (
 fu

ng
us

)  
 17

0 
m

g/
g 

 V
ar

za
ka

ko
u 

et
 a

l. 
( 2

01
0 )

 
 R

ec
on

st
itu

te
d 

w
he

y 
 β-

ca
ro

te
ne

 b
y 

 Sp
or

ob
ol

om
yc

es
  

  ro
se

us
  (

ye
as

t)
 

 0.
55

 m
g/

g 
 M

ar
ov

a 
et

 a
l. 

( 2
01

2 )
 

 W
he

y 
 Pi

gm
en

t c
an

th
ax

an
th

in
—

 D
ie

tz
ia

 n
at

ro
no

li
m

na
ea

  
(b

ac
te

ri
a)

 
 0.

02
0 

m
g/

g 
 K

ho
da

iy
an

 e
t a

l. 
( 2

00
8 )

 

  B
ev

er
ag

e 
pr

od
uc

ti
on

 w
as

te
s  

 B
re

w
er

’s
 s

pe
nt

 g
ra

in
—

re
qu

ir
es

 
no

 p
re

lim
in

ar
y 

de
to

xi
fi c

at
io

n 
st

ep
s 

an
d 

ov
er

al
l p

ro
du

ct
io

n 
is

 f
av

or
ed

 b
y 

hi
gh

 in
iti

al
 

xy
lo

se
 c

on
ce

nt
ra

tio
ns

 

 X
yl

ito
l (

sw
ee

te
ne

r)
, a

 r
ar

e 
su

ga
r 

th
at

 e
xi

st
s 

in
 lo

w
 

am
ou

nt
s 

in
 n

at
ur

e—
us

ed
 to

 c
om

ba
t d

en
ta

l 
ca

ri
es

, d
ia

be
te

s,
 d

is
or

de
rs

 in
 li

pi
d 

m
et

ab
ol

is
m

, 
an

d 
pa

re
nt

er
al

 a
nd

 r
en

al
 le

si
on

s 
an

d 
to

 p
re

ve
nt

 
lu

ng
 in

fe
ct

io
n,

 o
tit

is
, a

nd
 o

st
eo

po
ro

si
s 

 A
ci

d 
hy

dr
ol

ys
is

 a
nd

 
ye

as
t f

er
m

en
ta

tio
n 

 M
us

sa
tto

 a
nd

 R
ob

er
to

 (
 20

05
 ,  2

00
8 )

 

(c
on

tin
ue

d)

1 Waste Biomass: A Prospective Renewable…



16

 W
as

te
 b

io
m

as
s 

 H
ig

h-
va

lu
e 

pr
od

uc
t/m

ic
ro

or
ga

ni
sm

s 
 R

em
ar

ks
 

 R
ef

er
en

ce
s 

 B
re

w
er

’s
 s

pe
nt

 g
ra

in
 

 Fe
ru

lic
 a

ci
d,

 h
yd

ro
xy

ci
nn

am
ic

 a
ci

d 
 (1

) 
al

ka
lin

e 
hy

dr
ol

ys
is

—
0.

3 
%

 
 (2

) 
E

st
er

as
e 

fr
om

  A
 . 

 ni
ge

r —
3.

3 
%

 

 B
ar

to
lo

m
è 

et
 a

l. 
( 1

99
7 ,

  2
00

2 ,
  2

00
3 )

 

 B
re

w
er

’s
 s

pe
nt

 g
ra

in
 

 Pu
llu

la
n—

an
 e

xt
ra

ce
llu

la
r 

w
at

er
-s

ol
ub

le
 m

ic
ro

bi
al

 
po

ly
sa

cc
ha

ri
de

 p
ro

du
ce

d 
by

 s
tr

ai
ns

 o
f 

 A
ur

eo
ba

si
di

um
 p

ul
lu

la
ns

  

 M
ax

im
um

 c
on

c.
 

(6
.0

 g
/l)

 a
ft

er
 7

2 
h 

of
 f

er
m

en
ta

tio
n 

 R
ou

ka
s 

( 1
99

9 )
 

 W
in

e 
in

du
st

ry
 w

as
te

 (
po

m
ac

e—
gr

ap
e 

se
ed

s,
 s

ki
ns

, s
te

m
s)

 
 Po

ly
ph

en
ol

ic
 a

nt
io

xi
da

nt
s—

e.
g.

, g
al

lic
 a

ci
d,

 
an

th
oc

ya
ni

ns
, p

ro
an

th
oc

ya
ni

di
ns

, fl
 a

va
no

ls
, 

an
d 

hy
dr

ox
yc

in
na

m
at

es
 

 E
xt

ra
ct

io
n 

 G
ue

nd
ez

 e
t a

l. 
( 2

00
5 )

; P
in

el
o 

et
 a

l. 
( 2

00
5 )

; M
ak

ri
sa

 e
t a

l. 
( 2

00
7 )

 

  M
ar

in
e 

pr
oc

es
si

ng
 w

as
te

s  
 Fi

sh
 in

du
st

ry
 w

as
te

 
 Fi

sh
 o

il 
 E

xt
ra

ct
io

n 
 C

ru
st

ac
ea

n 
sh

el
l w

as
te

s 
 C

ar
ot

en
oi

d 
pi

gm
en

ts
—

as
ta

xa
nt

hi
n,

 c
an

th
ax

an
-

th
in

, 4
-h

yd
ro

xy
ec

hi
ne

no
ne

, 3
-h

yd
ro

xy
ca

n-
th

ax
an

th
in

, e
ch

in
en

on
e,

 is
oc

ry
pt

ox
an

th
in

, 
 β -

ca
ro

te
ne

 

 E
xt

ra
ct

io
n 

 Po
ko

rn
y 

et
 a

l. 
( 2

00
1 )

 

  B
io

te
ch

no
lo

gy
 in

du
st

ry
 w

as
te

s  
 Fu

ng
al

-b
as

ed
 p

ro
ce

ss
es

 w
as

te
 

 B
io

po
ly

m
er

s—
ch

iti
n/

ch
ito

sa
n,

 p
ro

te
in

s,
 p

ig
m

en
t, 

an
d 

m
in

er
al

s 
 E

xt
ra

ct
io

n 
 D

hi
llo

n 
et

 a
l. 

( 2
01

2a
 ) 

 M
ic

ro
al

ga
e-

ba
se

d 
pr

oc
es

si
ng

 
w

as
te

 
 Pi

gm
en

ts
, p

ro
te

in
s,

 a
nt

io
xi

da
nt

s,
 p

ol
ys

ac
ch

ar
id

es
, 

vi
ta

m
in

s,
 tr

ig
ly

ce
ri

de
s,

 p
ol

yu
ns

at
ur

at
ed

 f
at

ty
 

ac
id

s 

 E
xt

ra
ct

io
n 

 M
at

a 
et

 a
l. 

( 2
01

0 )
 

Ta
bl

e 
1.

3 
(c

on
tin

ue
d)

S. Kaur et al.



17

   Currently, research efforts are ongoing to isolate, identify, characterize, and even 
tailor microorganisms and enzymes in order to better utilize renewable resources to 
produce structurally diverse and complex chemicals. Biotransformation of biomass 
to higher-value chemicals provides advantages of high yield and selectivity, as well 
as minimum waste streams. However, there are still problems with current biologi-
cal transformation technologies including both upstream and downstream pro-
cesses. The capital costs related to energy requirements, such as pretreatment, 
sterilization, production, agitation, aeration, temperature control, and fi nally recov-
ery of target products from aqueous systems with low product concentration, result 
in high-cost processes (Danner and Braun  1999 ). Further, considerable investment 
is required to make processes highly effi cient and continuous (Dodds and Gross 
 2007 ). Therefore, there are research opportunities in the development of new eco-
nomic biological transformation technologies which could effectively transform 
biomass into high-value biochemicals. 

 Biological conversion or biotransformation is a well-established process and 
comprises of fermentation and anaerobic digestion. Sugar and starchy crops provide 
the main feedstocks for the process of fermentation in which a microorganism con-
verts the sugars into bioethanol. As an economic alternative to costly sugars, ligno-
cellulosic biomass can be used as feedstock after pretreatment which helps to break 
it down into simple sugars. The pretreatment can be carried out by enzymes or acids. 
Although acid hydrolysis offers the more mature conversion platform, enzymatic 
hydrolysis appears to offer the best long-term option in terms of technical effi ciency. 
Besides its recalcitrant structure, the effi cient hydrolysis of lignocellulosic wastes 
and subsequent conversion of sugar syrups to various value-added products also 
depends upon various other factors, such as crystalline structure of cellulose, amount 
and nature of lignin present, and production of various inhibitory compounds during 
acid hydrolysis (Fig.  1.6 ). Lignocellulosic conversion would greatly increase the 
supply of raw materials available for production of various high-value products. The 
lignin residues could be used as fuel for the energy required and even providing sur-
plus energy, resulting in signifi cantly improved energy balances and resulting poten-
tial reductions in GHG emissions. The following sections discusses the potential of 
two underutilized wastes (marine processing and biotechnological process wastes) 
for the production of high-value biochemicals.

1.4.1.1       Biotransformation of Marine Processing Wastes 

 Large quantities of marine processing by-products are accumulated as aquaculture 
waste and shells of crustaceans and shellfi sh. Generally, the fi shery by-products 
fi nd applications for production of low-economic-value products, such as fi sh oil, 
fi shmeal, fertilizer, pet food, and fi sh silage (Choudhury and Gogoi  1995 ). 
Currently, studies have identifi ed a number of high-value bioactive compounds 
from fi sh wastes, such as fi sh muscle-derived peptides, collagen and gelatin, fi sh oil 
(source of omega-3 fatty acids), fi sh bone (consists of 60–70 % of inorganic sub-
stances, mainly composed of calcium phosphate and hydroxyapatite), and other 

1 Waste Biomass: A Prospective Renewable…
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visceral organs (rich in a range of proteolytic enzymes including pepsin, trypsin, 
chymotrypsin, and collagenases) (Kim et al.  2001 ; Je et al.  2005 ). Lipid-based 
compounds that can be recovered from fi sh waste include fi sh oil, omega-3 fatty 
acids, phospholipids, squalene, vitamins, and cholesterol. Recovery of oil or lipids 
from fi sh industry waste offers not only the revenue generation but makes it suit-
able for other applications, such as spreading on land as a fertilizer or feedstuffs in 
swine diets to meet the protein requirements and as a substitute for common protein 
sources (i.e., soybean meal and commercial fi shmeal) (Esteban et al.  2006 ). 

 Similarly, the other important class of by-products from marine bioprocessing 
plants includes crustacean shells and shellfi sh wastes mainly in the form of head and 
body carapace. These body parts comprise 48–56 % depending on the species. The 
effi cient utilization of shellfi sh and crustacean shell by-products also becomes an 
environmental priority due to increased quantity of accumulation from processing 
plants as well as slow natural degradation of these materials. Shellfi sh and crustacean 
shells are a potential source of high-value biochemicals, such as biopolymers (chitin, 
chitosan), pigments (a carotenoid, astaxanthin), minerals, and proteins (Kaur and 
Dhillon  2013a ,  b ) (Fig.  1.7 ). Most crustaceans, such as shrimp, lobsters, and crabs, 
are important reservoirs of natural carotenoids, such as astaxanthin and its esters 
(Sachindra et al.  2005 ).

   However, the recovery of shell waste products, such as pigments and proteins, 
through chemical methods is complicated and the biological value of chemically 
extracted compounds is low. Additionally, these methods generate large quantities 
of hazardous chemical wastes. This has led to amplifi ed interest in biotechnology 
research regarding the identifi cation and extraction of high-grade, low-volume bio-
active compounds produced from crustacean shell wastes. Recently, fermentation 

  Fig. 1.6    Schematic diagram showing different aspects of lignocellulosic hydrolysis and its value 
addition       
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has also been reported as a suitable and economic method to extract carotenoid 
 pigments from crustacean shell wastes. These bioactive compounds can be extracted 
and purifi ed with technologies varying from simple to complex. Furthermore, some 
of these bioactive compounds have been identifi ed to possess nutraceutical poten-
tials that are benefi cial in human health promotion. Therefore, development of new 
technologies in exploration of new bioactive compounds from marine processing 
wastes will alleviate costs associated with its safe disposal. The bioactive com-
pounds from marine processing wastes will add high value to marine waste and 
represent unique challenges and opportunities for the seafood industry. 

 The commercial applications of marine fi sh processing by-products are expanded 
every year. However, their applicability as bioactive compounds and their nutraceu-
tical properties are not well described. High-value profi t can be achieved by identi-
fying bioactive compounds and exploring their nutraceutical properties and 
pharmaceutical and personal care applications. Identifi cation of nutraceutical poten-
tial of natural compounds is a growing fi eld and marine processing by-products 
represent potential feedstocks for this purpose. To date, only a limited number of 
bioactivities have been identifi ed from isolated compounds and mandate future 
research developments to apply them for the human health promotion.  

  Fig. 1.7    Schematic diagram for preparation of proteins, pigments, chitin, chitosan, and their 
oligomers from marine wastes       
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1.4.1.2     Biotransformation of Fermentation/Biotechnological 
Process Wastes 

 The advancements in bioprocess technology led to commercialization of various 
biotechnological/fermentation processes for the production of various bioproducts, 
such as food and beverages, organic acids, antibodies, pharmaceutical products, and 
renewable fuels among others. These microorganism-mediated processes result in 
thousands of tons of waste biomass, such as of yeast, bacteria, fungi, and algae. 
These waste are rich in various kinds of bioactive compounds, such as biopolymers, 
proteins, lipids, and pigments, among others. 

 Chitin and chitosan occur naturally in some fungi ( Mucoraceae ). Fungal cell 
walls are composed of polysaccharides and glycoproteins. Polysaccharides, such as 
chitin and glucan, are the structural components, whereas the glycoproteins, namely, 
mannoproteins, galactoproteins, xylomannoproteins, and glucuronoproteins, form 
the interstitial components of fungal cell walls (Bowman and Free  2006 ; Dhillon 
et al.  2012a ). Commercially, chitin and chitosan are mainly derived from the marine 
processing wastes, such as shrimp, crabs, squids, and lobsters shell by chemical 
deacetylation, using a hot concentrated base solution (30–50 % w/v) at high tem-
peratures (<100 °C) for a prolonged time (Dhillon et al.  2012a ). However, the chi-
tosan obtained by such treatments suffers some inconsistencies, such as protein 
contamination, inconsistent levels of deacetylation, and high molecular weight 
(MW), which results in variable physicochemical characteristics (No et al.  2000 ). 
There are some additional problems, such as environmental issues, due to the large 
amount of waste (concentrated alkaline solution), seasonal limitation of seafood 
shell supply, and high cost (Wu et al.  2005 ). In this context, production and purifi ca-
tion of chitin and chitosan from the cell walls of waste fungal mycelium (Fig.  1.8 ) 
offers the advantage of being environmentally friendly and provides greater poten-
tial for a consistent product (Dhillon et al.  2012a ; Kaur and Dhillon  2013a ). 
Additionally,  β -glucan can also be isolated from the mycelia chitosan–glucan com-
plex and has important applications in biomedicine (Pomeroy et al.  2001 ).

   Edible mushrooms are produced and consumed on a large scale. The amount of 
waste remaining after removing the edible part mainly consists of stalks and mush-
rooms with irregular dimensions and shapes and accounts for 5–20 % of the total pro-
duction volume. In the USA alone, mushroom production results in nearly 50,000 
metric tons of mushroom waste material per year with no suitable commercial applica-
tion (Wu et al.  2005 ). The huge amount of wastes of edible mushrooms, such as 
 Agaricus bisporus ,  Lentinus edodes ,  Pleurotus  species, and  Volvariella  volvacea , 
among others, can be potentially used for the extraction of the high-value-added prod-
uct chitosan, which nowadays fi nds promising applications in various fi elds (Dhillon et 
al.  2012a ; Kaur and Dhillon  2013a ; Dhillon et al.  2013 ). 

 Aspergillus niger  strains are extensively used for the bioproduction of citric acid 
(CA) (Dhillon et al.  2011a ,  b ,  c ,  2012b ,  c ). The annual worldwide production of CA is 
estimated to be 1.7 million tons, which results in 0.34 million tons of  A. niger  myce-
lium waste per year, and furthermore, the industry continues to expand with an annual 
growth rate of 5 % (Wu et al.  2005 ; Dhillon et al.  2011c ).  A. niger  strains contain 
approximately 15 % chitin, which can be separated and transformed into chitosan 
(Dhillon et al.  2012a ). 
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  Penicillium chrysogenum  is widely used for the large-scale production of antibi-
otics. As a by-product of the antibiotic industry, a large amount of  P .  chrysogenum  
mycelia waste is managed by incineration. Only a small percentage is used as an 
additive for cattle feed and in agriculture as fertilizers. Similarly, another important 
microbial strain,  Rhizopus oryzae , is widely used in the food industry. Some yeast 
strains, such as  Saccharomyces cerevisiae , fi nd commercial applications in the 
brewery and bioethanol production. These yeasts strains are rich source of proteins 
and biopolymers. The development of bio-based economy mandates need to develop 
some integrative technology to utilize the unlimited waste mycelium resulting from 
fermentation industries which has not only a commercial advantage but also an 
ecological benefi t.   

1.4.2     Direct Extraction of Biochemicals from Biomass 

 Generally, the waste biomass contains many extractable compounds of high value 
which can be extracted directly from waste biomass. Fruit industry wastes, such as 
apple pomace (AP), are rich source of natural antioxidant compounds. Due to health 

  Fig. 1.8    Extraction of chitosan and other products from waste fungal mycelium ( SmF  submerged 
fermentation,  SSF  solid-state fermentation)       

Waste fungal biomass

SSF/SmF (Fungi)

AIM-chitin rich

AIM-chitin rich

Filtrate

Tween 80-0.5% w/w
NaOH 0.5 M-121oC, 30-45 min
centrifugation 

Proteins, lipids & alkali 
soluble carbohydrates

Phosphate rich
72 m MH2SO4  

centrifugation

Acid- & alkali -insoluble 
material(AAIM)

Acidic treatment (0.1-0.2M)-121oC,
30-45 min
Hot vacuum filtration

pH 8-10 with 1N NaOH
Washing-dH2O, acetone &
EtOH and drying

Supernatant

Supernatant

Biotechnological product
e.g. organic acids,
antibiotics, enzymes etc.

Chitosan

Lignocellulosic
wastes

 

1 Waste Biomass: A Prospective Renewable…



22

and environmental awareness, sustainable food production and value addition of 
agro-industrial wastes is the principal issue in the agro- and food processing 
 industry. AP is an excellent source of natural antioxidants, such as catechins, procy-
anidins, caffeic acid, phloridzin, phloretin glycosides, quercetin glycosides, chloro-
genic acid, among others. Apple pomace, including seeds, contains polyphenolics 
with the strong antioxidant activity of quercetin glycosides, phloridzin, and its oxi-
dative products (Schieber et al.  2003 ; Sanchez-Rabaneda et al.  2004 ; Guyot et al. 
 2007 ; Cetkovic et al.  2008 ). Similarly, many other fruit wastes are rich source of 
various natural oxidants and hence can be viewed as potential sources of bioactive 
phenolics. 

 Ferulic acid, a precursor for vanillin, occurs in a relatively high concentration 
in the form of xylan polysaccharide ester in corn fi ber. The ferulic acid was 
extracted from corn fi bers using novel fungal and bacterial feruloyl esterases (   Shin 
et al.  1978 ). Vanillin is commonly used in the fl avor and fragrance industries and 
it can be recovered by alkaline oxidation of lignin in the presence of a copper cata-
lyst (Azadbakht et al.  2004 ). Ecket et al. ( 2007 ) described a more benign and cost- 
effi cient method to extract vanillin from lignin using a gas-expanded liquid. 
Arabinogalactan and quercetin dihydrate were isolated from larch wood 
(Kuznetsova et al.  2008 ). Direct extraction of high-value biochemicals is a prom-
ising pathway for utilizing renewable resources, irrespective of scale. From an 
economic point of view, the extraction of high-value-added chemicals from bio-
mass can be the most profi table, though the availability and variety of chemicals 
are limited. 

 Brewer’s spent grains are the by-products of mashing process in brewery which 
is carried out in order to solubilize the malt and cereal grains to ensure adequate 
extraction of the wort (water with extracted matter). Following different separation 
strategies, the amount of BSG generated could be about 85 % of the total by- products 
(Tang et al.  2009 ). BSG is a readily available, high-volume, low-cost by- product of 
brewing and is a potentially valuable resource for industrial exploitation (Dhillon 
et al.  2012d ). According to Stojceska et al. ( 2008 ) about 3.4 million tons of BSG 
from the brewing industry is produced in the EU every year. Ferulic (4-hydroxy-
3-methoxy-cinnamic acid) and  p -coumaric acid (4-hydroxycinnamic acid) are the 
most abundant phenolic acids in BSG (Bartolomè et al.  1997 ,  2002 ,  2003 ). The 
extraction of these high-value biochemicals opens up new possibilities for the use of 
BSG. Ferulic acid exhibits a number of potential applications, such as natural anti-
oxidant, food preservative/antimicrobial agent, anti-infl ammatory agent, photopro-
tectant, and as a food fl avor precursor, while  p -coumaric exhibits chemoprotectant 
and antioxidant properties (Bartolomè et al.  2002 ; Mussatto et al.  2007 ). Similarly, 
winery waste which is composed of solid pomace is rich in antioxidant polyphenols 
which can be extracted by various mild hydrolysis methods. 

 The food processing industry produces large volumes of both solid and liquid 
wastes. These wastes pose increasing dumping and severe pollution problems and 
represent a loss of valuable biomass and nutrients. In the past they often have been 
dumped or utilized without treatment for low-value applications, such as for animal 
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feed or as fertilizers. However, due to the increasing environmental awareness as 
well as for economic motives and the need to conserve energy and new materials, 
recently new methods and policies for waste handling and treatment have been 
introduced in the recovery, bioconversion, and utilization of valuable constituents 
from these wastes. With the advancement in technology, food processing wastes 
might have a potential for recycling raw materials or for conversion into useful 
products of higher value as a by-product, or even as raw material for other indus-
tries, or for the use as food or feed/fodder after biological treatment. The biotrans-
formation of food processing residues is receiving increased attention regarding the 
fact that these residual matters represent a possible and utilizable resource for trans-
formation to high-value products.   

1.5     Conclusions and Future Prospects 

 Interest in waste biomass utilization has increased dramatically over the last few 
years as a renewable resource alternative for fossil fuels as well as an input into 
other industrial processes. The environmental impacts of waste biomass utilization 
for energy and other commodity products are quite signifi cant and are arguably 
greater in scale and scope than any other class of energy resources, viz., renewable 
or nonrenewable, due to the intensive use of land, water, and other resources. 
Developing countries have a vast agricultural resource base for alternatives for bio-
energy and industrial biotechnology. The majority of biomass is found in rural areas 
resulting from agriculture processes. Therefore, the bio-economy has the potential 
to provide much needed diversifi cation of the rural economy. The biomass has been 
viewed as an alternative to energy; while it has potential it can also be used as input 
into various biotechnological processes for production of various consumer prod-
ucts. Production of value-added by-products serves to expand a bio-based economy 
or sustainable development, offering alternatives for fossil fuel-based products and 
facilitating a lower overall cost of production. A greater reliance on bio-based 
resources and biological processes is an inevitable part of an overall sustainability 
transition, and thus the main questions for technical innovation and policy develop-
ment relate to how to positively impact the nature and pace of such changes. In 
many developing countries, biomass is currently a signifi cant source of energy and 
materials only for local and traditional uses. The biomass is generally used ineffi -
ciently with very few higher-value-added product markets. Bio-based renewable 
resources can provide raw materials for many new and growing biotechnological 
industries while also stimulating rural development, job creation, and GHG reduc-
tion. In assessing the options and strategies of a bio-based economy, economic, 
environmental, and social issues need to be addressed to ensure that sustainable 
development  objectives can be met.     
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